
UNIVERSITY OF OSLO
Department of Informatics

Social Navigation on
the Social Web
Unobtrusive Prototyping
of Activity Streams in
Established Spaces

Master thesis

Eivind Uggedal

August 2008

SOCIAL NAVIGATION

on the

SOCIAL WEB

m

Unobtrusive Prototyping of

Activity Streams in Established Spaces

Eivind Uggedal

August 2008

Submitted in partial ful�llment of the requirements

for the degree of Master of Science

to the

Department of Informatics

Faculty of Mathematics and Natural Sciences

University of Oslo

�is thesis was typeset using the LATEX typesetting

system originally developed by Leslie Lamport,

based on TEX created by Donald Knuth.

�e body text is set 12/14.5pt on a 26pc measure with

Minion Pro designed by Robert Slimbach.

�is neohumanistic font was �rst issued by Adobe

Systems in 1989 and have since been revised.

Other fonts include Sans and Typewriter from

Donald Knuth’s Computer Modern family.

Typographical decisions were based on the

recommendations given inCe Elements of

Typographic Style by Bringhurst (2004).

�e use of sidenotes instead of footnotes and

�gures spanning both the textblock and

fore-edge margin was inspired byBeautiful

Evidence by Tu�e (2006).

�e guidelines found inCeVisual Display of

Quantitative Information by Tu�e (2001) were

followed when creating diagrams and tables.

Colors used in diagrams and �gures were inspired

by the Summer Fields color scheme found at

http://www.colourlovers.com/palette/399372

a

http://www.colourlovers.com/palette/399372

ABSTRACT

Social navigation usage on the Social Web were studied by conducting

content analyzes to see how prevalent such navigation is now compared

to the Web’s earlier years. �e common characteristic of the types of

social navigation we found in these sites were the reliance on peers for

the information used in the navigation process. We therefore built on

existing de�nitions of social navigation an provided our own de�ni-

tion which emphasized the essentialness of peers in the web site one is

navigating in.

We found activity streams – chronological listings of what all the

individuals one is particularly interested in have recently been doing

on a web site – to be an interesting and seemingly useful technique

of social navigation. A prototype of activity streams were built on top

of the Urørt web site to test the usefulness of such a social navigation

technique in a real world two-group experiment with a pre-post setup.

�e experiment results were somewhat inconclusive, partly because of

high non-accomplishment rates and some ambiguous results. �e high

non-accomplishment rates seemed to have a strong connection to the

technical prototype plattform we used as participants had a hard time

trying to install the necessary so�ware.

i

CONTENTS

Abstract i

Contents iii

List of Figures v

List of Tables vi

Preface vii

1 Introduction 1

1.1 Focus 1

1.2 Motivation 2

1.3 Objective 3

1.4 Contributions 3

1.5 Outline 4

Social Navigation on the Social Web

2 Introducing Social Navigation 7

2.1 Literature Search 7

2.2 Navigation 8

2.3 Sociality 9

2.4 Social Navigation 13

2.5 Forms of Social Navigation 16

2.6 Is Social Navigation Valuable? 30

3 Social Navigation on Flickr& Facebook 33

3.1 Method 33

3.2 Results 37

3.3 Discussion 43

3.4 Generalizability and Validity 44

Unobtrusive Prototyping of Social Navigation

4 Implementation of an Unobtrusive Prototype 47

4.1 Building on Top of the Web 47

iii

4.2 Design 48

4.3 Process 54

4.4 Architecture 56

4.5 Performance 65

4.6 Source Code 65

5 Empirical Study of a Social Navigation Prototype 67

5.1 Research Problems and Hypotheses 67

5.2 Method 69

5.3 Results 76

5.4 Discussion 88

5.5 Generalizability and Validity 96

Summary

6 Conclusion 101

6.1 Lessons Learnt 101

6.2 Future Work 102

Bibliography 105

Appendices

A Content Inventory 125

A.1 Flickr 125

A.2 Facebook 131

B Selection of �ird Party So�ware 141

B.1 Prototype So�ware Stack 141

B.2 Development Tools 153

C Questionnaires 157

C.1 Pretest Survey 157

C.2 Follow-up Survey 158

C.3 Posttest Survey 158

D Source Code 161

D.1 Unobtrusive Social Navigation Prototype for Urørt 161

D.2 Reddit Collaborative Filtering Algorithm 161

D.3 JavaScript Comment Stripper 162

D.4 Shell File and Directory Hierarchy 162

iv

LIST OF FIGURES

2.1 Blogroll 17

2.2 Research Journal Tag Cloud 20

2.3 Trail�re Trail 23

2.4 Collaborative Filtering at Reddit 25

2.5 Recommendations at Amazon 28

2.6 CoWeb Contextual Cues 29

2.7 CoWeb Global Cues 29

2.8 virtPresenter Timeline 30

3.1 Flickr Welcome Page 36

3.2 Flickr Photo Detail Page 36

3.3 Flickr Photo Meta-data 37

3.4 Flickr Tag Cloud 38

3.5 Flickr Tag Cluster 39

3.6 Flickr Geotagging 40

3.7 Facebook News Feed 41

3.8 Facebook Pro�le 41

3.9 Facebook Hyperlink Sharing 42

3.10 Facebook Photo Tagging 43

4.1 Hoodwink.d Comments 48

4.2 Urørt Main Page 50

4.4 Socialthing! Activity Stream 51

4.3 FriendFeed Activity Stream 51

4.5 Urørt Activity Stream 53

4.6 Urørt Favorite List 54

4.7 Prototype Class Diagram 63

4.8 Prototype Server File Hierarchy 64

5.1 Experiment Overview 71

5.2 Experiment Non-Achievement Rates 77

B.1 JavaScript Library Comparison 145

B.2 Prototype Architecture 152

v

LIST OF TABLES

1.1 Social Navigation in Academia 2

2.1 Literature Databases 8

4.1 Prototype Data Structure 64

4.2 Retrieval Time and Speed 65

4.3 Prototype Source Code Statistics 65

5.1 Statistical Symbols 67

5.2 Respondents Gender and Age, Between Groups 78

5.3 Respondents Firefox and Urørt Usage, Between Groups 78

5.4 Up-to-date on Favorites’ Activities, Between Groups 79

5.5 Up-to-date on Favorites’ Activities, Within Groups 80

5.6 Up-to-date on Speci�c Activities, Between Groups 81

5.7 Up-to-date on Speci�c Activities, Within Groups 82

5.8 Perceived Usefulness, Between Groups 83

5.9 Perceived Ease of Use, Between Groups 84

5.10 �e Prototype as a Standard Feature, Between Groups 85

5.11 Up-to-date on Activities Frequency, Between Groups 85

5.12 Up-to-date on Activities Frequency, Within Groups 86

5.13 Usage of Prototype Frequency, Between Groups 86

5.14 Number of Favorites, Between Groups 87

5.15 Number of Favorites, Within Groups 87

5.16 Prototype Installation Success 88

5.17 Prototype Installation Drop O� 88

A.1 Variable Listing for Flickr 125

A.2 Content Inventory of Flickr 126

A.3 Variable Listing for Facebook 131

A.4 Content Inventory of Flickr 132

B.1 �ird Party So�ware Versions 153

vi

PREFACE

�is is a master thesis of 60 credits1 in the �eld of Informatics. It was 1. Prescribed to one year of full time

study.written for the Design of Information Systems research group at the De-

partment of Informatics, Faculty of Mathematics and Natural Sciences,

University of Oslo.

Asbjørn Følstad at sintef was of great help in building the research

design used for our real world experiment. He did also accept our work

as part of the record project where we were able to obtain founding.

Morten Skogly at nrk Urørt was helpful with providing information

about their web site and recruiting participants to our experiment.

Andreas Dieberger, Peter Brusilovsky, and Robert Mertens was help-

ful with giving us permission to freely use illustrations from their pub-

lished articles.

Last but not least my supervisor, Gisle Hannemyr, deserves credit

for his guidance and thoughtful input during the majority of the master

thesis process. �anks to Tone Bratteteig for helping me out when Gisle

was unavailable.

Eivind Uggedal

Oslo, Norway

August 2008

vii

1

INTRODUCTION

�e web has come a long way since its inception when it functioned as a

global interconnected system for document sharing amongst researchers

(Berners-Lee et al., 1992, p. 82). We’ve seen the coming of an increasingly

more social web as “the digital domain has seen a signi�cant growth in

the scale and richness of on-line communities” (Backstrom et al., 2006,

p. 44). �ere have been an increase from 18% to 45% in blog usage by

the general public1 in an 18 month period from 2005 to 2007. It has been

1. Represented with a total of 6,545

respondents to a survey conducted

in Canada, France, Germany, Japan,

the United Kingdom, and the

United States by Rosa et al. (2007,

ch. 1, p. 2).

argued that web citizens’ familiarity with blogging laid the groundwork

for the explosion we are seeing in user participation in web communities

(Weiss, 2005, p. 20; Beer and Burrows, 2007, paragraph 2.2).

At the same time advances in hardware and web development tools

have made it easier and cheaper to create new web sites. We’re now

seeing an abundance of new o�erings in this �eld. It has been argued

that many of the concepts this modern web brings are evolutionary

instead of revolutionary (Yakovlev, 2007, p. 45). Treese (2006, p. 17) also

witnesses a continuous evolution, but with exploratory innovations as

he notes that most technological changes are incremental.2 Weiss (2005,

2. Knuth (2007) also believes in-

novation in computer science is

incremental: “I �rmly believe that

computer science advances by

thousands of people solving small

problems, which go together and

create a massive edi�ce. Every year

that goes by, hardly anything is done

that appears to be a milestone wor-

thy of mass attention; yet a�er �ve

or ten years pass, the whole �eld has

changed signi�cantly”.

p. 18) have noticed this trend:

When we consider a hot, buzz-worthy Web site of the new Internet evolu-

tion [. . .] they are at the same time incredibly innovative and yet – not.

What we’re experiencing today with the World Wide Web and so-

cial/collaborative so�ware systems was envisioned several decades ago

by Licklider and Taylor (1968) and Bush (1945).

During the initial studies of our research we frequented many of

these modern web sites. Our impression is that this area of the web

infamously coinedWeb 2.0 – an increment in version opposed to the age

when the Web was in its infancy – is bringing interesting innovations.

While they might not be groundbreaking, we justify a closer look at

them in this thesis.

1.1 focus

�is thesis have a focus on navigational problems and only those which

are of a social type.3 Navigation in context of computer systems is es-

3. Take a look at § 2.4 (p. 13) to learn

more about navigational systems

with social characteristics.sentially a metaphor based on how people �nd their way in the physical

1

world. So just as a compass and map can be crucial in your ability to �nd

a cabin deep in the woods during a hike – reliable and e�cient naviga-

tional systems on the web is of uttermost importance when you’re trying

to locate a certain electronic object containing valuable information.

In addition to only focusing on social navigation we’re only con-

cerned which such types of navigation on the Web. On the Web we’re

using hyperlinks (Nelson, 1965, p. 90) to provide users with navigational

choices. We’re only focusing on the use of such hyperlinks within web

browsers and not navigation support in auxiliary tools as email clients,

instant messaging clients, and so on. Our focus is further re�ned by

targeting our research only on what happens inside various web pages.

�is means that other navigation forms supported by the browser itself

or third party extensions or plugins is outside of our scope, as detailed

in § 2.2.1 (p. 8).

While we’re aware that search is an important part of peoples every

day navigational behavior we’ve introduced additional con�nements

and decided to only concentrate on browsing behavior (see § 2.2.1 (p. 8)

for details).

When studying various web pages it became apparent that some use

of social navigation mechanisms implies pretty large privacy concerns.

By mining users’ previous actions speci�c user pro�les can be generated.

One can then represent very sensitive characteristics of individuals such

as sexual orientation, political status, and religious beliefs. We feel this

subject area of social navigation in relation to privacy warrants a master

thesis on its own. Discussion of privacy concerns have therefore been

excluded from our research so that we can look more closely at the

navigational characteristics of social navigation.

1.2 motivation

Articles

Modern Web 5

Other 21

Table 1.1: Social navigation in

academia, by content. When collect-

ing these statistics we encountered

similar articles by the same authors

discussing the same problems and

systems. In such circumstances

the collection of two or more sim-

ilar articles was counted as one.

Social navigation are as we’ll see in § 2.4 (p. 13) a well de�ned termwithin

the academic community. During our literature review we collected to

the best of our abilities all academic articles where social navigation was

discussed. Our approach was to use keyword search and citation search

in the databases listed in Table 2.1 (p. 8).4 Table 1.1 shows the metrics

4. For more about our literature

collection method, see § 2.1 (p. 7).

of articles we found about social navigation in context of the modern

web as captured by theWeb 2.0 term (social network sites, folksonomies,

and wikis) and other areas of computer science (classic web, general

user interfaces, security, and so on).

Our current area of Web 2.0 in relation to navigational problems

have in our view (based on our literature �ndings) little coverage in

academia. Beer and Burrows (2007) notes that “ ‘internet time’ now

runs at at a clock speed several orders of magnitude faster than that of

academic research”. We described earlier the growth we’re seeing of web

sites with social aspects and we believe that some of these provide for

novel examples of social navigation. It would therefore be interesting

2

to look at some of the state-of-the-art social web sites and look at what

contributions they have made to the �eld of social navigation.

1.3 objective

We’ll �rst try to give an overview of the disparate �eld of social navigation

as found in academic literature. Here we’ll look at what social navigation

is, di�erent characteristics of social navigation, and �nally provide an

overview of di�erent types of social navigation.

Based on the concepts we introduce in this overview of social naviga-

tion we’ll collect examples of social navigational implementations in the

wild and analyzing them. In doing this we hope to give a clearer view

of how social navigation is used in the Social Web. As we are unaware

of any established technique for conducting such a study on real world

navigation systems we create our own method as we go – �ne tuning it

as we learn from our experiences.

We try to improve an existing web site by implementing a naviga-

tional prototype using the knowledge we gained from collecting social

navigation examples from real world web sites. �e navigational tech-

nique we decided on implementing is a so called activity stream.5 5. See § 3.2.2 (p. 41) and § 4.2.2

(p. 49) for more information about

this particular social navigation

technique.

�e Norwegian Broadcasting Corporation’s joint tv, radio, and

internet project Urørt – a site where artists upload their demos and get

valuable playtime on radio and tv if their products are judged to be of

su�cient quality – was the candidate for implementing a navigational

prototype. Our focus was on the Urørt web community6 where users 6. Available at http://nrk.no/urort.
can interact in a social manner, listen to other people’s songs, and upload

their own creations.

We decided to build our application in an unobtrusivemanner on top

of the web site Urørt o�ered.7 Based on our prototypical implementation 7. �e rationale for such a decision

can be found in § 4.1 (p. 47).of an activity stream for Urørt we’ll provide a discussion of the technical

feasibility of such an approach.

With our technical solution in place we were able to test how it

performed in practice by conducting an empirical study with real world

users. �e insights into activity streams as a social navigation technique

will be shared, as well as our experience with providing our technical

prototype solution to real world users.

1.4 contributions

Contributions from our research on social navigation is threefold:

1 Informing navigational design by giving a structured overview of various

social navigational schemes used in academia and the real world.

2 Exemplifying transparent prototyping methods by sharing experiences

with creating an unobtrusive shell of navigational designs on top of an

3

http://nrk.no/urort

existing web site.

3 Applicability of a activity streams as a particular social navigation tech-

nique by discussing �ndings from an experiment of its real world usage.

1.5 outline

�is thesis is composed of two parts:

1 Social Navigation on the Social Web. In this part we �rst give you back-

ground information about social navigation before we analyze social

navigation in two modern social web sites.

2 Unobtrusive Prototype of Social Navigation. �e second part starts with

an account of howwe created an unobtrusive social navigation prototype

before we go through an empirical study of the prototype implementa-

tion.

A�er these two parts we conclude our work and give pointers to

future work in Chapter 6 (p. 101).

4

PART I

SOCIAL NAVIGATION ON THE

SOCIAL WEB

2

INTRODUCING SOCIAL

NAVIGATION

A�er we’ve descried how we collected our secondary literature for which

we’ve based this chapter, we’ll brie�y discuss navigation and sociality –

both in general terms and relating to the web. �en we’ll concentrate on

these two topics together by looking at scholarly research where social

navigation is used consciously as a concept. By this wemean the research

where either social navigation is de�ned, rede�ned or problems relating

to the concept is discussed with a basis in such de�nitions. We’ll give

an overview of social navigation and its concepts before diving in to the

various forms of social navigation that researchers have implemented or

proposed. In this latter section of applications of social navigation we’ll

also include related examples from the real world where appropriate.

Finally, at the end of this chapter we’ll brie�y see if social navigation can

be valuable for navigation in web sites.

2.1 literature search

Before the literature search was conducted we did some preliminary

thinking about (i) the focus of our topic to get more precise results, and

(ii) what literature databases would yield su�cient and accurate �ndings.

Based on these concerns we settled on the literature indexes laid out in

Table 2.1 (p. 8) and used the following keywords1 for search:

1. With varying use of modi�ers (i.e.

and) or quotations to �nd exact

phrases

• social navigation is the concept of our main topic.

• collaborative �ltering is o�en used to realize our main topic.

• recommender system can be an application of our main topic.

• tagging can be related to our topic depending on use.

In addition to keyword based search we also conducted citation

searches on the articles that in our opinion seemed to be the most im-

portant in the �eld. �e articles that we found relevant during our

literature search phase was collected and studied. During this process

we eliminated articles by the same authors where similar topics and

implementations were discussed and focused on either the most recent

or the most representative article.

7

Type

Full-text acm Digital Library

Bibliography �e Collection of Computer Science Bibliographies

Reference Inspec Online

Bibliography hci Bibliography

Table 2.1: Literature databases used for search

2.2 navigation

Navigation was traditionally associated with controlling a vessel at sea to

a given destination.2 Since then it’s been used to describe behavior related

2. Navigate is in fact derived from

the two Latin words navismean-

ing “ship” and ageremeaning “to

drive” (Anderson, 1994, p. 756).
to safely �nding ones way whether one is driving a car, �ying a plane, or

walking on foot. Maps (a graphical representation of the medium one

are navigating in) and compass (a tool for connecting graphical maps to

the physical world) are o�en used as aids in this way�nding.

When used in context of computer systems navigation is essentially

a metaphor of our usage of the word in our physical world. �rough

computer systems we present users with a conceptual space in which

they can navigate (Whiteside et al., 1985, p. 189). Today we normally

present such a space as a gui.3

3. gui is short for graphical user

interface. Our notion of a gui

was pioneered by Sutherland

(1999) and his Sketchpad system.

2.2.1 Navigation on the Web

�eWeb is based on the ideas of hypertext – a term coined by Nelson

(1965, p. 86). �e essential part of hypertext are hyperlinks (Nelson, 1965,

p. 90) which enables navigation between distinct documents. While

Nelson was clearly inspired by the work of Bush (1945) it has been argued

(Rayward, 1994) that many of the features of hypertext was envisioned

by Paul Otlet in his Traité de documentation of 1934.

Navigation is important on the Web. Without a way to e�ciently

and safely navigate one is in danger of becoming lost. �is problem

was evident even before the Web was invented as Conklin (1987, p. 38)

describes:

Hypertext o�ers more degrees of freedom, more dimensions in which one

can move, and hence a greater potential for the user to become lost or

disoriented.

Jones and Cockburn (1996) studied the navigational support pro-

vided by the Web’s �rst browsers: (i) loading of a page by entering its

location, (ii) loading a bookmarked page, (iii) loading a page by using a

hyperlink on the current page, (iv) recall previously visited pages with

forward and backward buttons, (v) recall a previously visited page by lo-

cating it in a history list, and (vi) reloading the current page. While mod-

ern web browsers support more forms of navigation4 than the earliest

4. �ese early browsers’ history

lists were not remembered between

sessions. In addition we’re see-

ing browsers as Flock (available
at http://flock.com) with new

methods of navigation integrated.

�ere is also an abundance of plu-

gins and extensions for the main

stream browsers which enable

new possibilities for navigation.

8

http://flock.com

applications we’re not concerned with those here. We’re only interested

in the navigation which are conducted within the main browser window

(where web pages are rendered) enabled by following hyperlinks. We

can therefore de�ne navigation on the Web for our purposes as:

�e behavior of clicking on a hyperlink in a web page.

Following hyperlinks is today the most used navigation method

on the Web (Weinreich et al., 2008, p. 10). Garrett (2002) gives us a

description of the physiology of such navigation which illuminates the

thought process of the navigator:

A typical user, faced with a typical, freshly loaded Web page – her eyes

bouncing around the page – takes in all the options available. Maybe

she scrubs the pointer over a few navigation elements. �en, �nally, she’s

poised to click. In that moment, as her pointer hovers over the link and

�nger hovers over the mouse button, she has a picture in her mind of what

is on the other end of that link.

More speci�cally, we’re either using a strategy of browsing or search-

ing whenwe’re navigating theWeb through hyperlinks. Marchionini and

Shneiderman (1988, p. 71) describes the characteristics of browsing:

Browsing is an exploratory, information-seeking strategy that depends on

serendipity. It is especially appropriate for ill-de�ned problems and for

exploring new task domains.

Serendipity – “the art of making an unsought �nding” (van Andel, 1994,

p. 631) – is whatmakes browsing e�ective as a navigationmethod in some

situations. Search as a navigation method does not rely on serendipity

as much as browsing since you have a clearer idea about what you’re

navigating towards.

Today we o�en use search engines – either local to a particular web

page or global for all web pages – when navigating theWeb with a search

oriented mind set. Freyne et al. (2007, pp. 53–54) distinguishes between

browsing by navigating with hyperlinks and searching by using a search

engine. We’ve taken this distinction and decided, as stated earlier, to

only focus on navigation through hyperlink usage. We’ll therefore not

look at search with search engines as a form of navigation in our thesis.

2.3 sociality

If one looks up the adjective “social” in the Oxford English Dictionary,

second edition Simpson and Weiner (1989, p. 905, vol. 15) it’s de�ned as

“capable of being associated or united to others”. Discussion about explicit

social matters is le� for scholars of the social sciences. We’ve therefore

9

brie�y introduced the term and are more concerned with situations

where it relates to computer systems. More speci�cally we’re going to

look at sociality on the Web.

2.3.1 �e Social Web

Sociality has become an integral part of our modern age version of the

Web. We called this generation of the web forWeb 2.05 in our introduc-

5. Web 2.0 was �rst used as the

name of a conference arranged

by O’Reilly Media. �e “2.0” part

of the conference name was then

used to signify the revival of inter-

est in the web a�er the dot-com

bubble in the early 21st century

(O’Reilly, 2007). Later the founder

of O’Reilly Media, Tim O’Reilly,

de�ned the term as the character-

istics of the web sites that survived

the dot-com bubble and the web

sites he deemed to be the best new-

comers to the �eld (O’Reilly, 2005).

tory chapter. When O’Reilly (2005) introduced the term he emphasized

the characteristics of interaction, community, and openness. But di�er-

ent people give Web 2.0 various meanings and there is no established

de�nition as Treese (2006, p. 15) have experienced:

Pinning down Web 2.0 is like trying to scoop up water with your hands.

You can’t really hold onto all of it, but a�er most of the water runs through

your �ngers, there’s still something le�.

Some have synonymized Web 2.0 with the various types of systems

on the Web which have been popular in the recent years. Examples of

such systems are wikis, social network sites, folksonomies, mash-ups,

blogs, and syndication (Beer and Burrows, 2007, paragraphs 2.10–2.24;

Murugesan, 2007, pp. 35–37). But Web 2.0 is not a class of systems

(Millard and Ross, 2006, p. 28) even though these examples o�en live up

to the aspirations of interaction, community, and openness embodied

in Web 2.0.

We’re sympathetic with the view of de�ning Web 2.0 more by the

attitude it has for enabling user participation for all people (Lin, 2007,

p. 101) as the Web is becoming democratized (Graham, 2005). �is shi�

is concerned with both social and technical factors as certain technology

had to be in place for building products that adheres to the principles of

Web 2.0. We do however think it’s bene�cial to use some examples of

systems when describing Web 2.0 as a term. We’ll now look at several of

these examples of Web 2.0 systems and the more general characteristics,

both social and technical, of the Social Web.

Improved interaction

One can argue that the most important technological change related to

interactiveness since the Web’s infancy was when Garrett (2005) intro-

duced ajax.6 More elaborate interaction due to technological advances

6. ajax is an acronym for Asyn-

chronous JavaScript and xml

and was introduced as a term in

2005 (Garrett, 2005). It captures

how modern applications on the

Web uses JavaScript for retriev-

ing data asynchronous with the

XMLHttpRequest object found in

most recent web browsers. xml

was then exempli�ed as a possi-

ble data-interchange format for

the asynchronous requests. It’s

not a technical term but describes

how a suite of technologies can

be used together to create inter-

active web pages. In addition to

the technologies mentioned above

one commonly use standardized

markup and presentational lan-

guages for presenting information

and JavaScript to not only fetch

data, but enable behavior (Stamey

and Richardson, 2006, p. 282).

such as ajax enables production of applications on the Web previously

only viable to implement as desktop so�ware (Lin, 2007, p. 101; Mesbah

and van Deursen, 2007, p. 44). We’re now able to create systems just

like we’ve done on the desktop for 25 years, only in a di�erent medium

(Arnowitz and Dykstra-Erickson, 2007, p. 64). Interestingly, support for

the core technical feature of ajax was introduced in March 1999 when

10

Microsoft Internet Explorer 5 was released (Microso�, 1999). It would

still take almost six years before such technologies saw such widespread

use that a new term was warranted.

One possible reason for the lack of early developer uptake of this

new technology could be the disparate �eld of browser implementations.

Di�erent browsers have variations in their interfaces for interacting with

web documents through JavaScript.7 It’s quite hard to implement an 7. For more about JavaScript, a

programming language o�en used

to implement behavior in web

browsers, see § B.1.1 (p. 143).

application when one have to write your code to handle several di�er-

ences in browsers. �e JavaScript web platform have been described as

“a really hostile programming environment” (Crockford, 2007). ajax

comes with a price. One have to be quite pro�cient in the intricacies of

each browser to develop truly cross-browser applications. �ankfully

frameworks that abstract away such tediousness have come to the rescue

(Mesbah and van Deursen, 2007, p. 45). We believe part of the �ourish-

ing of ajax technologies are due to frameworks’ ability to make browser

development friendly for the average programmer. At the moment of

critical mass ajax hit a tipping point and the usage and uptake changed

dramatically similar to the way an epidemic spreads (Gladwell, 2002,

pp. 8–12).

Social network sites

Community brings the social aspect to theWeb. While social interaction

on theWeb is nothing new, greater availability for all citizens of the Web

to take part in such interaction is.

Boyd and Ellison (2007) give their de�nition of a social network site

as:

web-based services that allow individuals to (1) construct a public or semi-

public pro�le within a bounded system, (2) articulate a list of other users

with whom they share a connection, and (3) view and traverse their list of

connections and those made by others within the system.

�e �rst site that adhered to Boyd and Ellison’s de�nition was ar-

guably SixDegrees, which saw the day of light in 1997.8 �ere had been

8. SixDegrees closed their operations

in 2000. Its founder believes SixDe-

grees simply was ahead of its time

(Boyd and Ellison, 2007).

web sites that implemented parts of this de�nition of social network

sites, but SixDegrees was the �rst to include all necessary characteristics.

�e threemost in�uential social network sites until this point of time

have been Friendster,9 MySpace,10 and Facebook11 according to Boyd

9. Available at http://friendster.
com.

10. Available at http://myspace.
com.

11. Available at http://facebook.
com. For the social navigational

characteristics of Facebook, look at

§ 3.2.2 (p. 40).

and Ellison (2007). We feel this holds true if one have an American

world view.12 Friendster made some blunders by not listening to its users’

12. Blink (http://blink.dagbladet.
no) for instance was a popular
social network in our home country,

Norway, before Facebook became

adopted by Norwegians.

wishes and are therefore not widely used today. MySpace was launched

in 2003 hoping to attract unsatis�ed Friendster users (Boyd and Ellison,

2007). �ey were successful in this endeavor in addition to attracting

loads of music bands and later teenagers. Facebook seems to be the hot

social network today13 attracting users from many walks of life.

13. Facebook is now the largest social

network site in our home country,

Norway. As of May 14, 2008 it had

approximately 1,142,300 registered

pro�les from Norwegian users. If

every pro�le represents a unique

individual (highly unlikely) this

would mean that almost a quarter

of all Norwegians are registered at

Facebook. Data was collected by

starting to register an advertisement

for all Norwegian members and

capture the market reach statistics.

Population data was gathered from

Statistics Norway (http://ssb.no).

11

http://friendster.com
http://friendster.com
http://myspace.com
http://myspace.com
http://facebook.com
http://facebook.com
http://blink.dagbladet.no
http://blink.dagbladet.no
http://ssb.no

Mash-ups

Openness enables exchange of information between di�erent parties so

that new services on the Web easily can be created. �is phenomenon, a

mash-up,14 occurs when information and/or functionality from separate

14. �e term mash-up is taken

from the similar activity �nding

place within the music scene where

artists combine the music from

one song with the a capella from

another song (Wikipedia, 2008c).

web sites and services are brought together in a complementary way

(Murugesan, 2007, p. 36).

Mash-ups is most o�en created by utilizing one or more web apis.15

15. api is short for Application

Programming Interface and can

be seen as a “set of calling con-

ventions de�ning how a service is

invoked through a so�ware package”

(Jacobsen and Lynch, 1991, p. 2).

Floyd et al. (2007, p. 86) argues that web apis enable innovation since

they provide access to robust technologies and massive amounts of con-

tent – something no individual could create for himself. In addition

these apis lowers the barriers to entry since they o�en provide a sound

and e�cient interface to content. Before the days web apis were com-

monplace developers would resort to scraping web sites for getting a

hold of data. Even though such scraping still happens today, it seems

that web apis are proliferating.

Collective intelligence

�e notion of collective intelligence is important for understanding the

characteristics of our modern web. It’s been argued that the sharing

we’re seeing in blogging, Wikipedia,16 and mash-ups “could lead the16. Wikipedia – the free content

encyclopedia allowing submis-

sions from everyone – can be

found at http://en.wikipedia.org.

way to a truly democratic network, where producers and consumers

are one and the same” (Weiss, 2005, p. 23). �is change is however not

only technological, it represents a fundamental mind shi� (Kolbitsch

and Maurer, 2006, p. 206). Collective intelligence is not unique to the

Internet but the communication facilities enabled by this relatively new

technology have created new ways for widely dispersed people to work

together (MIT Center for Collective Intelligence, 2008). �e result is a

lower barrier to entry for taking part in a collaborative process where a

shared intelligence emerges.

Collective intelligence is closely related to wisdom of crowds – a

phenomena that describes the amount of information contained in a

group’s collective verdict. In many situations the crowd is able to hold a

complete picture of the world in their collective brains (Surowiecki, 2004,

p. 11). �e larger the crowd, the more accurate their answers will be.17

17. Take for example the Google

search engine which we’ve now

grown accustomed to use in our

daily search because of the accu-

racy of the results it provides. �e

underlying principle of Google’s

search algorithm called PageRank

is that a page is rated of impor-

tance based on how many pages

who link to that page and the im-

portance of the pages that linked

there (Brin and Page, 1998, p. 109).

A wise crowd is characterized by diversity of opinion, independence,

decentralization, and aggregation (Surowiecki, 2004, p. 10). Powazek

(2008) argues that one have to design for sel�shness to make collective

intelligence work in a community. If an individual don’t have self-interest

in contributing knowledge, it will seldom happen. Powazek (2008)

therefore sees collective intelligence as “sel�sh behavior aggregated for

the common good”.

In the case of Wikipedia, Giles (2005) found a sample of science

articles to be comparable in accuracy to similar articles in Ce New

Encyclopædia Britannica. While the quality of content in these two

sources was similar, readability and structuring of content seemed to be

12

http://en.wikipedia.org

better in the professionally edited encyclopedia. Lanier (2006) argues

that while Wikipedia can be accurate it lacks personality and context. In

his view it’s important to know whom the author is and in what setting

information is written.

Lanier (2006) goes on to questioning the resurgence of collectivism

on the Web, not just in Wikipedia. He thinks the reason for people’s

blindly usage of collectivism is happening since bad old ideas packaged

in modern technology have an confusing ability to appear fresh. Just as

individuals can be either stupid or intelligent he feels the collective can

be both stupid in some cases and intelligent in others. Both individual

and collective intelligence is important since these two forms seems to

not be intelligent in the same settings.

Lanier (2006) o�ers a set of conditions that have to be in place for

enabling the collective to be smarter than the individual:

�e collective is more likely to be smart when it isn’t de�ning its own

questions, when the goodness of an answer can be evaluated by a simple

result (such as a single numeric value), and when the information system

which informs the collective is �ltered by a quality control mechanism that

relies on individuals to a high degree.

Taking the advice of Lanier we have to question the answers the

collective gives us by providing structure and constraints and �rstly rely

on intelligent individuals.

2.4 social navigation

Drawing on the previous explanation of navigation and de�nition of

social, we can combine the two terms. Social navigation then means

going from one point to another in a medium with other people.

Social navigation as a term was introduced in an article by Dourish

and Chalmers (1994) where they discussed three types of navigational

mechanisms, spatial, semantic,18 and social, which they argue can be

18. Oxford English Dictionary, second

edition de�nes the adjective seman-

tic as “Relating to signi�cation or

meaning” (Simpson andWeiner,

1989, p. 939, vol. 14). Semantic nav-

igation on the Web is navigation

when one utilizes the semantic

properties of hyperlinks and the

semantic relationships amongst

them.

separated even though there is evidence of situations where the di�erent

mechanisms are combined. In their description of the social type of

navigation Dourish and Chalmers (1994, p. 1) coined the term social

navigation:

When navigable information systems are extended to support collaborative

activity, a third model of navigation arises. �is is social navigation. In

social navigation, movement from one item to another is provoked as an

artifact of the activity of another or a group of others.

Dourish and Chalmers exempli�es two cases where neither location

(spatial) nor content (semantic) is used for exploration – the social

model is used on its own. Based on these two experiences Dourish and

13

Chalmers argues that we possibly need tomove away from spatialmodels

of navigation and rather focus on designing explicitly with semantic and

social navigational techniques.

Dieberger highlights an important aspect for making interaction on

the Web smoother. With an “awareness of the presence of other users”

(1997, p. 812) one can give an indication of what parts of a web page that

is of high demand and possibly identify the users accessing them. �is

means that one can move in the direction others are heading – one can

follow the stream.

Dieberger et al. (2000, p. 39) include the properties of personaliza-

tion and dynamism into their understanding of what social navigation

is. Social navigation is not pre-planned, but grown dynamically in an

organic fashion. �is distinction is shown by the example of walking

down a road in a city versus walking on a forest trail. Personalization

means that the navigation advice is given to the receiver in a fashion that

suits him. Related to dynamism is social navigation’s temporal nature.

Dieberger et al. (2000, p. 39) shows this with the analogy of a forest trail

which will vanish if it’s not used. �is idea was envisioned for computer-

like systems by Bush over half a decade ago in that “trails that are not

frequently followed are prone to fade, items are not fully permanent”

(1945, p. 106).

Svensson et al. (2005) argues that while social navigation is plentiful

in our everyday world it’s not implied that it’s a good idea to implement

computer based systems with this perspective in mind. Instead of cre-

ating translations from our physical world to our virtual world they

explain that one instead have to “make information spaces a�ord social

interactions and accumulate social trails” (2005, p. 377). With social

trails the authors mean traces le� in the system by past users guiding

current users’ navigational behavior.

Robins on the other hand argues that one can not rely on technolog-

ical structures alone when using social navigation which “transforms a

space on a computer network into a virtual place” (2002, par. 50). Dur-

ing an ethnographic study the author examined social navigation in

relation to the persistent structures found in the physical world during a

distance education program. She found that these real world structures

supported and a�orded social navigation in virtual places.

2.4.1 De�nition

�e most detailed de�nition of social navigation to our knowledge is

given by Svensson (2003) in his Ph.D. thesis. To understand his de�ni-

tion we’ll have to introduce his nomenclature for the actors in a social

navigation process:

• �e navigator is “the person seeking navigational advice” (2003, p. 20).

• �e advice provider is a “person or arti�cial agent providing navigational

advice to a navigator” (2003, p. 20).

14

Social navigation was then de�ned by Svensson (2003, p. 20) as:

. . . navigation that is conceptually understood as driven by the actions from

one or more advice providers.

Firstly, Svensson talks about navigation which is “conceptually under-

stood” as driven by these advice providers. As long as the user believes

his navigational choices are driven by advice providers it is social nav-

igation. Secondly, the actions that the navigator is driven by need not

be only direct advice from a single advice provider, but can also be

aggregated of nature.

2.4.2 Fundamental categorization

We’ll take a look at broader characteristics of social navigation before

we’ll continue with a discussion of several technical applications of social

navigation found in secondary academic literature.

Active, direct, passive, & indirect social navigation

In his classic article Dieberger (1997) distinguishes between active social

navigation and passive social navigation. Such a distinction is grounded

in the nature of the exchange of information between the two parties

involved in a social navigation process. �ese are the advice provider –

the creator of navigation cues – and the navigator:

• Active social navigation �nds place when a person either deliberately

seeks out another and asks for a navigation advice or intentionally gives

away such navigational advice.

• Passive social navigation happens when people make available naviga-

tional aids that later can be used by another person.

Svensson groups navigation of a social type in direct social navigation

and indirect social navigation:

• Direct social navigation occurswhen “communication betweennavigator

and advice provider is mutual and two-way” (2003, p. 21).

• Indirect social navigation is where “communication between navigator

and advice provider is non-mutual and in one direction” (2003, p. 21).

Despite Svensson’s more precise wording, active social navigation is

similar to direct social navigation. Both are di�erentiated with passive

social navigationwhich is similar to indirect social navigation. Dieberger

characterizes the relationship between the navigator and advice provider.

Svensson on the other hand describes the nature of the communication

between the two parties.

15

Explicit & implicit advice

Related to passive or indirect social navigation is the notion of explicit

feedback and implicit feedback. �ese terms can be used for distinguish-

ing how passive or indirect social navigation is provided by an advice

provider. Collecting advice given by an advice provider explicitly means

that the advice provider have to use conscious e�ort to make the advice

available. Such an advice provider can for instance choose to share an

interesting web site and does so by putting a hyperlink to it on his web

page.

When advice is mediated implicitly the process for so doing are

transparent and unobtrusive for the advice provider. Based on the work

the advice provider would have done regardless of the social e�ects it

conveys one can provide advice to future navigators. An example of such

behavior is recording of browsing history that can be computationally

evaluated to provide advice for others. We’ll return to such recording of

history in § 2.5.3 (p. 22).

Active and direct social navigation inherently make advice avail-

able by explicit feedback. Partaking in these direct methods of social

navigation will always require conscious e�ort by the advice provider.

2.5 forms of social navigation

Social navigation have been applied in various forms described in aca-

demic literature. What follows is a review of these forms of social navi-

gation sprinkled with examples from our modern web.

2.5.1 Hyperlink sharing

Dieberger (1997) is particularly concerned with making handling of

url19 entities transparent for users both in the operating system and in19. Uniform Resource Locator.

url was formerly an abbreviation

of Universal Resource Locator.
various tools related to web browsers. Making urls invisible to users

will in his opinion enable more widespread use of social navigation

through pointer sharing. Web browsers handles urls embedded as

hyperlinks transparently, so we’re not going to elaborate on matters of

url handling in auxiliary systems here.

Both Dourish and Chalmers (1994) and Dieberger (1997) observed

social navigation activity on the Web when hyperlinks were shared on

web pages. Creators of these pages o�en had a list of pointers to other

web pages. �ese were the pointers they deemed interesting enough to

actually go through the trouble of creating such a listing for. By doing

this they created an opportunity for navigation based on social factors.

While pointer pages still is in existence, it seems that the increasing

use of blogs (see Chapter 1 (p. 1) for details) have resulted in a new form

for sharing interesting web pages, which o�en is other blogs. So called

blogrolls is a way for blog authors to list other blogs they are reading

regularly. �ey thereby function “as a navigation tool for readers to �nd

16

other authors with similar interests” (Marlow, 2007, p. 3). An example

Figure 2.1: Blogroll for Daily Kos,

retrieved December 5, 2007, from

http://www.dailykos.com/. Daily
Kos is one of the most popular

American collaborative political

blogs where people provide news

and opinion from a liberal point of

view.

of a blogroll can be seen in Figure 2.1.

Social bookmarking

A new phenomena appeared to the mainstream with the introduction of

the del.icio.us20 social bookmarking system. �is web site made individ-

20. Initially a system for organiz-

ing Joshua Schachter’s personal

bookmark collection, del.icio.us

was introduced to a wider audi-

ence in 2003 (Livingston, 2007,

p. 223). del.icio.us is available at

http://del.icio.us.

ual bookmark collections globally available, making it easy to discover

what other people was taking notice of. Interestingly Keller et al. (1997)

created a system in the early days of the web with almost the same fea-

tures as social bookmarking systems of today. �is system,WebTagger,
allowed individuals to store bookmarks that later could be retrieved by

other people. �e architecture of the system was based on a web proxy,

which enabled controls for storing the location of a given web page to

be present within the web page itself. Since the system was proxy-based,

only users having enabled the proxy server in their browsers could take

advantage of the shared bookmarks.

As Dieberger (1997, p. 806) argues, the Web’s growth – even at its

modest size in 1997 compared to its staggering size over 10 years later –

have implications on how easily it is to locate information. By creating

pointer pages, and now socially shared bookmarking services, users are

imposing a structure on the web. By navigating these kinds of interlinked

hyperlink collections it’s quite plausible that users are getting access to

more highly related and higher quality information. Sharing a hyperlink,

either on you web page or through a bookmarking service, requires a

conscious e�ort. One would believe that people only choose to do so for

information they �nd interesting.

2.5.2 Tagging

In addition to being amodern formof pointer pages, social bookmarking

with del.icio.us introduced a new way to annotate all kinds of items.21
21. Like photos, articles, wine, books,

videos, music, and so on.

By applying textual keywords to bookmarks – and later other types of

content – users were able to browse such collections in new ways. �ese

keywords have been popularized as tags and the act of applying them

is called tagging.22 Joshua Schachter, creator of del.icio.us, highlight

22. Tagging was discovered by

Joshua Schachter when he kept a

plain text �le with a list of all his

web page bookmarks. He annotated

these bookmarks by introducing

single-worded labels pre�xed with

a number sign (#). He could then

easily search his bookmarks �le with

these labels by pre�xing searches

with the number sign. Schachter

later introduced tagging to the

masses by creating the del.icio.us so-

cial bookmarking site (Weinberger,

2007, p. 92).

tagging as its most essential feature – the feature that set it apart from

the competition (Livingston, 2007, p. 225). Tagging solves a recurring

problem with using traditional folder or hierarchical categorization of

items like bookmarks. In such a system an item can only go in one folder.

With tags items can live in several categories at once (Weinberger, 2007,

p. 93).

�eWebTagger system by Keller et al. (1997, p. 1109) we described

earlier had a novel approach to bookmark categorization:

�e system provides a simple means of organizing and sharing bookmarks

using a structure-neutral categorization scheme, rather than a hierarchical

17

http://www.dailykos.com/
http://del.icio.us

�ling scheme. �e neutrality of this bookmarking scheme allows users

to concentrate on tagging urls with the most appropriate categories to

facilitate subsequent retrieval, rather than forcing users to select a single

best location within a rigid hierarchical structure.

�is description of the categorization scheme used in WebTagger

very much resemble tagging as found in del.icio.us. Keller et al. even

describes the act of categorizing in this way as tagging. While Joshua

Schachter may never have heard of WebTagger, it’s evident that tagging

was �rst used in the WebTagger system – the �rst social bookmarking

service.

Folksonomy

Tagging enables a user driven taxonomy (classi�cation) which is o�en

called an folksonomy – a combination of the words folk and taxonomy. A

folksonomy is a strictly bottom-up approach because of the lack of any

prede�ned taxonomic structure. Folksonomies therefore rely on “shared

and emergent social structures and behaviors, as well as related and

linguistic structures of the user community” (Marlow et al., 2006, p. 31).

Since we’re mainly interested in the navigational possibilities tagging

can give us, we’re leaving out a deeper discussion of the bene�ts and

drawbacks of folksonomies.23

23. For those interested Golder

and Huberman (2006) and Mar-

low et al. (2006) gives a detailed

account of the tag usage and struc-

ture in respectively del.icio.us

and Flickr – a social image shar-

ing web site we dig deeper into

when we analyze its social naviga-

tion capabilities in § 3.2.1 (p. 37).

Tag sharing & scope

As we’ve described tagging is o�en a collaborative process. Some web

pages for instance give suggestions for tags if the item you’re annotat-

ing have been tagged by others previously. Based on our own usage of

collaborative tagging system we seem to be more inclined to use some

or all of these tags than to come up with our own. In other words, our

vocabulary is in�uenced by the user community. Sen et al. (2006, p. 186)

con�rmed our personal observations when they found that the commu-

nity in�uence a�ects the vocabulary of tags an individual uses. Farooq

et al. (2007, p. 355) conducted similar studies on a collaborative tagging

service where the user interface did not display the tags other people had

applied for a similar resource. �ey did not �nd any signi�cant reuse

of tags from other users and explained this discrepancy with the lack

of visualization of other user’s tags while tagging an item, as evident in

other bookmarking services. �is means that one can in�uence the vo-

cabulary of users when they are applying tags by showing the vocabulary

of other users.

In addition to being shown other people’s tags when tagging one

can also be given a list of the tags oneself have previously used. Under

such circumstances Sen et al. (2006, p. 185) found that the probability of

applying a previously used tag rose as the amount of tags the user had

18

applied increased. Farooq et al. (2007, p. 355) validated this phenomena

by showing similar results from another collaborative tagging system.

Applying your own tags for a given resource makes sense if you’re

annotating a bookmark. You have your own representation of the book-

mark given by the name you gave it and the tags you have chosen to

apply. Since a bookmark is distinguished by a url others can have other

representations of the same resource. For other content items as photos

in a photo sharing site it may make more sense to allow every user, not

only the creator, to apply globally visible tags for this single item. �ere

is then only one representation of this item and its tags. Tags need not

be collaboratively created. If for instance one are tagging one’s personal

email messages it makes sense to keep such behavior private.

As we’ve seen folksonomies can be separated by their level of tag

sharing: private systems, fully open systems, and systems with user con-

trol over what gets shared. In addition one can categorize folksonomies

based on tag scope: tags applied to an item globally or belonging to

separate users.24
24. For more about di�erent charac-

teristics of folksonomies see Marlow

et al. (2006, pp. 34–36) and their

detailed account of such matters.
Annotating items seems to have bene�ts with regards to describing

the items and using them for categorization. But how does this relate to

navigation? By giving users a means to better describe various items it

will hopefully be easier for others to use this information in navigation

– they will hopefully more easily �nd the items or resources they are

searching.

Tag Clouds

�e seemingly most used way to display tags for navigation is by gener-

ating a so called tag cloud.25 Fokker et al. (2006, p. 1) succinctly de�nes

25. According to Wikipedia (2008d)

the �rst use of tag clouds was on

Flickr for showing tags applied to

photos. �e idea of such visualiza-

tion most likely came from Flanagan

(2003) in his display of search terms

on his web site.

this visualization technique:

�e cloud is a representation of the frequency-based relation of tags.

�is means that a tag cloud is used to visualize how frequent various

tags are applied to one or more objects. Frequency is usually portrayed

by varying the font size based on usage. A highly utilized tag has a large

font size while less used tags have smaller font sizes. �ere are usually

several levels of font sizes in a tag cloud to visualize how popular tags are

in relation to others. Sometimes colors is used in addition to font size to

even better distinguish among the frequency of tag usage by showing the

most used tags with a higher contrast color than less used tags. Lastly

tags are most o�en listed alphabetically giving a visualization that in

many ways resembles clouds of various sizes in the sky. Figure 2.2 (p. 20)

shows an example of a tag cloud utilizing font sizes and color tones while

Figure 3.4 (p. 38) shows an example of a tag cloud using only font sizes

for distinguishing tags by frequency.

Rivadeneira et al. (2007, p. 996) conducted a study of how varying

properties of tag clouds a�ect use. Unsurprisingly, font size had a large

19

Figure 2.2: Tag cloud for the authors private research journal located at http://
journal.redflavor.com. �e tag cloud uses both font size and color to distinguish

between the frequency of usage for the di�erent tags. Generated with TagCrowd
(http://tagcrowd.com) on May 12, 2008.

a�ect on how well a given tag was perceived. Layout had a minor, but

noticeable e�ect on how well the users got an impression of the tag

cloud. Halvey and Keane (2007, p. 1314) expanded on the �ndings by

Rivadeneira et al. and found tag size to be important in how fast infor-

mation is found. During their study Rivadeneira et al. also noticed that

unalphabetized tag clouds were inferior to alphabetized tag clouds when

�nding information.

Sinclair and Cardew-Hall (2008, p. 18) studied whether tag clouds

provided value for individuals seeking information through a folkson-

omy bymaking a user interface which supported both search by keyword

and navigation by tag cloud. �ey found that a majority of users utilized

the tag cloud when looking for information (2008, pp. 22–23). When

looking for non-speci�c information – when the users were merely

browsing – this trend were even stronger. But for �nding speci�c in-

formation using search by keyword required fewer queries than using

tag clouds (2008, p. 24). Sinclair and Cardew-Hall. give merit to tag

clouds as a navigational interface since it reduces the costs of query –

clicking is faster than typing and scanning the tag cloud is faster than

formulating a search query (2008, p. 27). �e most important �nding

to take away from this study is that tag clouds does not function well

as the sole navigation mechanism for folksonomies. Complementary

navigation, with for example search by keyword, needs to be in place

for enabling e�cient navigation.

20

http://journal.redflavor.com
http://journal.redflavor.com
http://tagcrowd.com

Tags as social navigation

Millen and Feinberg (2006) gives an account of how they used collabo-

rative tagging as a means for enabling social navigation in their Dogear
social bookmarking system. When users were navigating bookmarks

they most frequently browsed bookmarks for a given user. But browsing

by a tag was not much less frequent, supporting evidence of the useful-

ness of folksonomies for enabling social navigation. In addition it was

found that of all bookmarks clicked, 74% was of other user’s bookmarks.

Such a high usage of other users’ bookmarks was interpreted as a

sign of high degrees of social navigation within the system.

Problems with tagging

Fokker et al. (2006, p. 1) argues that social tagging is ideal in situations

where you have objects one can not easily perform keyword search on.

If such objects for instance are composed of video content, tags can

serve as an augmenter for performing keyword based searches as one

can do in textual content. �ey leveraged tagging in this manner when

creating a prototype of Wikipedia supporting video content – using tags

as the principle navigation mechanism. By doing so Fokker et al. (2006,

p. 2) saw the need for bootstrapping the availability of tags so that users

would be more inclined to create their own tags. �eir solution was to

algorithmically create tags based on the textual contents of Wikipedia.

�ey hoped the existence of these tags would stimulate users to start

tagging themselves. Just as social network sites have problems satisfying

users before a su�cient amount enrol, folksonomies have initial pains

when few annotations are available.

Tagging have further shortcomings. Tags could be misspelled, tags

with the same name are not always homonymous, and tags with the same

meaning does not always have the same name because of synonyms

(Aurnhammer et al., 2006, p. 59).

In addition Li et al. (2007, p. 943) argues that browsing tags by

traditional methods with keyword search or tag clouds is ine�cient

when the set of tags are quite large. �ey implemented a system to

mediate the synonymy and homonymy problems with tags in addition

the the problems with browsing a large collection of tags. �eir solution

for tag ambiguity was to generate the semantic concept26 of a tag and

26. Generating the semantic concept

of a tag means to derive its meaning

in a broader sense. Say for instance

that a user is browsing formovies.

An algorithm that generates the

semantic meaning ofmovies could

for instance map this to the concept

ofmovie, where such tags asmovies,

�lm, and �ick could be associated

with the concept ofmovie.

use that semantic meaning when the user was looking for resources

through tag browsing (Li et al., 2007, p. 946). As Weinberger (2007,

p. 95) argues, this problem with tag ambiguity does not really matter

when the collection of annotated items becomes su�ciently large. One

would only be concerned with such matters if one need to �nd every

possible item that is associated with a concept.

�e problem of browsing large scale tagging collections can be tack-

led by inferring a hierarchy27 from the �at tag space (Li et al., 2007,

27. One can tag objects by several

levels of abstraction. One can for

instance tag a movie withmovie to

identify what it is. �en one could

use the tags comedy, romanticcom-

edy, and norwegian for describing

the object’s features. One could com-

putationally derive a hierarchy from

the varying levels of abstraction in

such tags saying that comedy is the

child ofmovie and romanticcomedy

is the child of comedy.pp. 946–948).

21

[

We’ve seen that item annotation or tagging can be used to annotate

items for describing the information they convey and thereby a�ord

navigation. As we’ll see in § 2.5.5 (p. 26) annotations can also be used for

describing the quality, importance, or usefulness of an item and thereby

potentially creating recommendations.

2.5.3 Interaction history trails

Wexelblat and Maes (1999) contrasts the digital world of computers

with our physical world with respect to the formers lack of history. In

our traditional world we exploit such historical information traces “to

guide our actions, to make choices, and to �nd things of importance

or interest” (Wexelblat and Maes, 1999, p. 270). It’s argued that this

apparent lack of history in computerized systems must be sorted out

such that future users can take advantage of past users’ historical traces

le� when they were working on solving problems similar to the current

user’s. A possible remedy for this problem on the Web is put forth

in the authors’ Footprints system – a navigational aid as an extension

to normal web browsers. �is navigational aid visualizes interaction

history of past users, enabling current users to navigate this history.

�e interaction history consists of several navigation trails which are

“coherent sequences of nodes followed by an individual” (Wexelblat and

Maes, 1999, p. 273).

�e idea of such trails of navigation far precededWexelblat andMaes

as they were envisioned by Bush (1945) when he proposed the infamous

theoretical computer-like system named theMemex.28 Bush describes

28. �e Memex was not envisioned

as a computer system but as a me-

chanical system consisting of a

set of controls hooked up to a mi-

cro�lm reader and camera. It was

theorized by Bush to be a system

for handling a person’s entire col-

lection of documents, books, and

communication. It was important

that a user would be able to access

this information with great speed

and �exibility. An integral part

of enabling such e�cient access

was a user’ and content providers’

ability to introduce trails between

information items. Bush’s writing

about trails inspired hypertext (Nel-

son, 1965, p. 86) which in turn was

the grand idea behind the World

Wide Web (Myers, 1998, p. 49).

a scenario where users are building trails explicitly, inserts comments

if needed, and gives it a name. Wexelblat and Maes on the other hand

implemented a system where trails were automatically collected using a

set of heuristics to identify browsing behavior representing a coherent

navigation trail. �ese characteristics makes Footprints a passive and

indirect social navigation system.

Bush wrote his essay before the invention of computer networks

and he thinks of each Memex as a separate island. Sharing of trails

is possible through an exportation and following importation process,

making it an explicit action for its users. �e Footprints system makes

the social process of sharing trails implicit and transparent to its users –

multiplayer is forced.

Controlled user studies by Wexelblat and Maes did partially falsify

their pre-test hypothesis of Footprint’s ability to let users �nd more rele-

vant results in a more e�cient manner during a speci�c browsing task.

Users of the history-enriched system reported signi�cant lower values of

mean page count in their browsing tasks. No signi�cant di�erence in the

quality of the located information was found between users of a plain

22

Figure 2.3: Browsing a trail in Trail�re, retrieved May 22, 2008, from http://trailfire.
com/Marje/marks/37759.

web browser and those with a browser enhanced with Footprints. �ey

also found people experienced in the problem domain of the browsing

task to a larger degree being able to take advantage of interaction his-

tory compared to novices. Wexelblat and Maes attributed this �nding

to experienced people’s ability to have a clearer mental model of the

information they was browsing.

Trailfire29 is a modern incarnation of some of Bush’s Memex ideas. 29. Available at http://trailfire.com.

By installing a browser extension users can create trails of web pages

which are automatically shared with other users. �e di�erence between

Trail�re and Footprints is that trail creation in the former system is an

explicit task while the latter systemmake this process implicit. Figure 2.3

shows one web page in a trail created with Trail�re. Each page in the trail

gets an information box with navigation controls for moving through

the trail, in addition to information about why this particular page was

included in the trail.

2.5.4 Collaborative �ltering

Collaborative �ltering “help people make choices based on the opinions

of other people” (Resnick et al., 1994, p. 175). �ese choices are o�en

used for navigation. Since the collaborative process of creating opinions

are of a social nature collaborative �lters are a form of social navigation.

�e origin of the concept comes from the Information Tapestry
project where users could annotate electronic documents arriving in

a continuous stream – typically email messages (Goldberg et al., 1992,

p. 69). By installing a pre-existing �lter, or creating one from scratch

in a special query language, users were able to �lter out the essential

documents based both on explicit feedback through annotations and

meta-data concerning the document (Goldberg et al., 1992, p. 62).

Resnick et al. (1994) expanded on the ideas put forth in the Tapestry

23

http://trailfire.com/Marje/marks/37759
http://trailfire.com/Marje/marks/37759
http://trailfire.com

project and created GroupLens, a system for collaboratively �ltering

Usenet postings. What was novel with their approach at the time was

that they could “automatically determine how much weight to place

on each evaluation, based on the degree of correlation between past

opinions of the reader and evaluator” (Resnick et al., 1994, 185). �is

made the �lter more personalized and would arguably give more satis-

fying results. Such an approach gives a conceptual model where (i) the

user enters ratings which constitutes a pro�le for that individual, (ii) the

collaborative �ltering system �nds the individuals with similar pro�les –

neighbors, (iii) the ratings of the user’s neighbors are aggregated to form

recommendations (Herlocker et al., 2000, p. 243).

During further studies of the GroupLens system Konstan et al. (1997,

p. 84) noticed some users’ lack of incentive to rate content. �eir solu-

tions was to introduce implicit ratings in addition to the existing explicit

ratings system already present.30 �e implicit ratings were collected by30. Implicit and explicit ratings

re�ect how the feedback is given

by the advice provider. We looked

at this separation in § 2.4.2 (p. 16).

monitoring whether a user read an item, and for how long he kept read-

ing it. �eir initial studies showed positive results for implicit ratings in

that they were nearly as accurate as explicit ratings. Claypool et al. (2001,

p. 39) validated the results Konstan et al. experienced when they tested

explicit and implicit ratings against each other. Claypool et al. found

implicit ratings to be somewhat less accurate than explicit ratings, but

suggested implicit ratings could be used successfully since they won’t

introduce the additional overhead explicit ratings embodies.

Tapestry and GroupLens lacks a direct connection between the ad-

vice giver and the navigator. Using the language of Dieberger (1997)

they are both passive collaborative �ltering systems. Maltz and Ehrlich

(1995) noticed how passive �ltering systems required a critical mass of

users to be useful. �ey therefore created an active collaborative �ltering

system. Maltz and Ehrlich (1995) found circumstances where one of the

two types of collaborative �ltering systems o�ered better solutions:

In “passive” collaborative �ltering the system works better the higher the

convergence of votes on the same set of documents. In contrast, the bene�t

of “active” collaborative �ltering increases with the divergence of documents

that are found.

Herlocker et al. (2000, pp. 242–243) gives compelling reasons for

explaining to users how the collaborative �ltering process works. Usage

experiments showed explanations’ ability to increase the acceptance of

advice given by collaborative �ltering systems. Whether explanations

improved actual �ltering performance was not certain – even though

the authors strongly believed in this idea (Herlocker et al., 2000, p. 250).

Collaborative �ltering is used on several modern web sites. One

example is Reddit – a web site where people can submit links to every-

thing they �nd interesting. Users of the community then votes these

submissions up or down (explicit advice) as one can see in Figure 2.4.

Submissions are then sorted based both on how many votes it have and

24

Figure 2.4: Collaborative �ltering at Reddit. Stories can be voted up and down by

using the up and down arrows. �e �rst entry has been voted up by the author (the

up arrow is highlighted red) which gave the submission a point, resulting in 132

points total. Retrieved June 25, 2008, from http://reddit.com/r/programming.

how new it is. Users are not given personalized listings based on their

voting history. Reddit is thus similar to Tapestry with regards to how

the collaborative �ltering works in that similarities amongst users is not

inferred (as in GroupLens).

As Reddit recently became open source31 we were able to take a 31. �e source code of Reddit can be

found at http://code.reddit.com.peek into its collaborative �ltering functionality. We did this to dissect

how collaborative �ltering algorithms are used in real applications. �e

source code of this algorithm can be found in Source Code Listing D.1

(p. 161). What follows is the algorithm used on Reddit in mathematical

notation.

Given the time the entry was posted tposted and the time of 7:46:43

a.m. December 8, 2005 tcuto f f , we have ts as their di�erence in seconds

ts = tposted − tcuto f f
and vsum as the di�erence between the number of up votes vup and the

number of down votes vdown

vsum = vup − vdown

where the sign s ∈ {−1, 0, 1}

s =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if vsum > 0

0 if vsum = 0

−1 if vsum < 0

and vmax as the maximal value, of the absolute value of vsum and 1

vmax =
⎧⎪⎪⎨⎪⎪⎩
∣vsum∣ if ∣vsum∣ ≥ 1

1 if ∣vsum∣ < 1

we have the rating as a function f (ts , s, vmax)

f (ts , s, vmax) = log
10
vmax + sts

45000

�e resulting rating is a real number which is used for numerically

sorting entries. �is is neither a computationally expensive algorithm

nor a very complicated algorithm. In spite of this we feel it delivers

satisfying results (as daily users of Reddit).

25

http://reddit.com/r/programming
http://code.reddit.com

[

As we’ve seen, collaborative �ltering is applied to generate recommen-

dations for users. �ese recommendations can aid users in navigating

towards content hopefully interesting for them.

2.5.5 Recommender systems

Resnick and Varian (1997, p. 56) clearly describes what a recommender

system is:

It is o�en necessary to make choices without su�cient personal experience

of the alternatives. [. . .] Recommender systems assist and augment this

natural social process.

What is then the di�erence between a collaborative �ltering system

and a recommender system? Recommender systems is a broader concept

than collaborative �ltering. �ere are two ways a recommender system

can generate recommendations for its users:

1 Using collaborative �ltering where the verdicts of other users, which

usually in some way are deemed to have similar taste as yourself, are

used for recommendation – a social process.

2 Using a content-based approach where one is relying on the nature of

potential items instead of other people’s perception of them. Based on

your previous usage of or reaction to items, similar items can then be

recommended – an asocial process.

�e distinction between a content-based and collaborative �ltering

approach lies in the way collaborative �ltering “are based on human and

not machine analysis of content” (Herlocker et al., 2000, p. 241). To put it

another way the similarity of users are measured instead of the similarity

of content. Because of this distinction, collaborative �ltering systems

and content-based systems have been called user-based and item-based

recommendation systems respectively (Greco et al., 2004, p. 156).

Recommender systems can be based on either one or both of these

approaches (Herlocker et al., 2000, p. 241). Balabanović and Shoham

(1997, p. 70) argues that a hybrid approach to recommendation is supe-

rior to an purely content or collaborative solution since it (i) enables one

to use content-based recommendation for items not yet recommended

by other individuals, (ii) enables one to use content-based recommenda-

tion when there are no other individuals with the same taste, (iii) when

collaborative recommendations are present those can be used in favor

of more imprecise content-based techniques, and (iv) collaborative rec-

ommendations can be generated even though users have not rated the

same items by inferring such ratings through content similarity. Since

26

we’re concerned with socially constructed navigation possibilities we’re

not going to discuss content-based systems further in this thesis.

Recommendation from tags

One of the two forms of social navigation found in Knowledge Sea – a
digital educational library – is recommendations by item annotation

(Brusilovsky et al., 2005, p. 13). Users can leave their emphatic marks on

content and thereby specify its usefulness. Questionnaires showed that

a fair majority of users was agreeable to the use of such recommenda-

tions (2005, p. 15). Analysis of server logs strengthened the impression

Brusilovsky et al. (2005, p. 38) had by showing that:

Social navigation support and speci�cally annotation-based social naviga-

tion increases the chance of accessing a resource dramatically.

Advanced algorithms from the �eld of collaborative �ltering and

recommender systems have been used together with folksonomies con-

sisting of collaborative tags (Wu et al., 2006, pp. 112–113). Preliminary

studies have shown positive results when harnessing such social knowl-

edge with �ltering algorithms as opposed to traditional folksonomy

representation (Wu et al., 2006, p. 114). Using a folksonomy for this

purpose can hoverer interfere with an existing recommender system.

Sen et al. (2006, p. 190) found that the introduction of tagging and tag

display in their established movie recommender system interfered with

some of the users’ primary objective: �nding interesting movies. Note

that this dislike of folksonomies was more likely to be present for users

familiar with the old movie recommender system sans a folksonomy.

New users, having not witnessed the recommender system without a

folksonomy, seemed more acceptant towards tagging.

Commercial use

Recommender systems have not only been extensively used in research

settings. Many of todays web sites uses some sort of recommender sys-

tem to deliver a better experience to their users. �e canonical example

is Amazon’s32 usage of recommendations for book purchases. As seen 32. An online store primarily carry-

ing books at http://amazon.com.in Figure 2.5 Amazon deploys both collaborative �ltering (similar peo-

ple’s purchases determined by shared search history) and content-based

recommendation (based on personal browsing history).

In 2006 Netflix33 announced a contest where the �rst person to 33. An online movie rental company

located at http://netflix.com.improve their existing recommender system by 10% would be eligible for

a $1 million prize (Segaran, 2007, p. 1). By o�ering such a large reward

Net�ix highlight how important accuracy in recommender systems can

be for a company’s earnings. As of this writing no team has yet claimed

the prize, but the front runners from at&t Labs Research currently have

a 9.12% improvement (Net�ix, 2008). �e secret to their recommender

27

http://amazon.com
http://netflix.com

Figure 2.5: Item-based and user-based recommendation at Amazon, retrieved May 21,

2008, from http://amazon.com.

improvements was to employ a variety of collaborative �ltering methods

and content-based methods. �is approach resulted in a situation where

the di�erent methods complemented each other (Bell et al., 2007, p. 4).

2.5.6 Social texture

We use social texture to describe socially constructed annotations or

visualizations which may be used for navigation or in some form guide

users in navigational choices.

Social texture ties in with the forms of social navigation we’ve re-

cently discussed. Tagging, for instance, is a social texture. Tag clouds

are especially good examples of social texture. �e interaction history

systems we’ve discussed uses forms of visualizations in close proximity

to hyperlinks to convey their degree of usage. �is is also a form of social

texture.

�e �rst usage of social texture in computer systems (to our knowl-

edge) occurred when Hill et al. (1992) took advantage of computational

28

http://amazon.com

Figure 2.6: Contextual interaction history cues next to

hyperlinks in CoWeb, retrieved January 25, 2008, from http:
//homepage.mac.com/juggle5/WORK/publications/
SwikiWriteup.html.

Figure 2.7: Global list of interaction history cues in CoWeb,

retrieved January 25, 2008, from http://homepage.mac.
com/juggle5/WORK/publications/SwikiWriteup.html.

wear – an analogy for the wear physical objects experience when being

used. �eymodi�ed a text editor to show both wear related to document

edits and readings of documents. �is wear was graphically visualized

through the editor’s scroll bar. �e concept of edit and read wear has

since been used on the Web in for instance the Footprints system (Wex-

elblat and Maes, 1999).

Dieberger and Lonnqvist (2000) modi�ed CoWeb – a collaborative
Web space modelled a�erWard Cunningham’s famousWiki – to include

interaction history visualization hoping to make it a more social space,

enabling social navigation. �ey visualized other users’ access of di�erent

pages both by including a global list of such behavior and contextual cues

about access next to internal hyperlinks. It was inferred by Dieberger

and Lonnqvist that markers of interaction history increased the overall

activity on the web page during a user study. �ey also learned that it’s

important to provide both global and contextual interaction history cues

as seen in Figure 2.6 and Figure 2.7.

Xu et al. (2006) modi�ed a Wiki in even more elaborate ways with

the aim of integrating several social navigational mechanisms. �ey

used read-wear information for creating social texture in the Wiki both

in-line pages, on a page level, and on a global level. Xu et al. took the

approach of displaying read-wear in real time, thus making the system

look like a populated space. To make such an approach useful the Wiki

needs a certain amount of users present at all times. If it’s not frequently

tra�cked it would probably be better to represent historical read-wear

as done in CoWeb (Dieberger and Lonnqvist, 2000, p. 220).

virtPresenter is a hypermedia based lecture viewer where read-wear

have been used to visualize a groups’ interactionwith continuous content

(Mertens et al., 2006). By following the traces other users have le�

29

http://homepage.mac.com/juggle5/WORK/publications/SwikiWriteup.html
http://homepage.mac.com/juggle5/WORK/publications/SwikiWriteup.html
http://homepage.mac.com/juggle5/WORK/publications/SwikiWriteup.html
http://homepage.mac.com/juggle5/WORK/publications/SwikiWriteup.html
http://homepage.mac.com/juggle5/WORK/publications/SwikiWriteup.html

Figure 2.8: virtPresenter timeline (Mertens et al., 2006, p. 43).

current users can interpret what’s the most sought a�er parts of a lecture.

�e visualization is implemented in ways similar to Hill et al. (1992) by

showing graphs of usage in-line with a timeline selector. �e result can

be seen in Figure 2.8.

We discussed KnowledgeSea regarding its use of recommendations

in § 2.5.5 (p. 26). �e system also incorporates what the authors calls

tra�c-based social navigation (Brusilovsky et al., 2005, p. 12) – in other

words history based visualizations in the form of read-wear. �e access

of di�erent articles in the digital library are recorded and the degree of

usage is then visualized in the form of di�erent color tones where darker

indicates amore popular resource. Such visualization is used consistently

throughout the web site. A questionnaire revealed that in excess of 70%

(2005, p.15) of the users found such history based visualizations useful

and appropriate.

2.6 is social navigation valuable?

Svensson et al. (2005) performed a throughout evaluation of the Kalas3434. An online system for shar-

ing and �nding cooking recipes. system where they sough out to answer two questions related to social

navigation:

1 Will social navigation enable users to navigate more e�ciently?

2 Do social navigation increase the perceived subjective quality of a navi-

gation process?

Server logs were statistically mined and more in depth qualitative in-

terviews were conducted. �e results showed that people tended tomove

to the most populated part of the system and used recommendations

for helping select which items to navigate. Svensson et al. also found

that the subjects overall had a positive impression of the social features

of the system. �ey seemed more interested in expressing themselves

through such features than using information from others to help their

navigation process.

Favorable results for the e�ectiveness of social navigation was ob-

served during a simulation experiment conducted by Riedl and Amant.

In most circumstances social navigation had favorable results in e�-

30

ciency contrasted with asocial navigation. It’s important to note that

social navigation decreased the e�ectiveness of navigation in some in-

stances of their simulations (2003, p. 365). Interestingly, it was discovered

that social navigation was more bene�cial in environments with high

uncertainty35 than environments with higher certainty – provided that

35. Riedl and Amant (2003, p. 363)

says that the two sources of such

uncertainty is “arising from the

correctness of the information

gained in any state, and the potential

di�culty of reaching that state to

obtain the information”.the simulated agents could reach the social media (2003, p. 368).

31

3

SOCIAL NAVIGATION ON

FLICKR & FACEBOOK

In this chapter we’ll look at the social navigation possibilities provided

by two large web sites with social characteristics – Flickr and Facebook.

Before we present the results of our investigation we’ll describe the

methodology we used for dissecting the navigational structures of Flickr

and Facebook. We’ll conclude this chapter, and the �rst part of our thesis,

with a discussion of our larger �ndings of how social navigation is used

in modern social web sites.

3.1 method

�e term content analysis is traditionally used to signify a qualitative

research method used in the social sciences. Krippendor� (2003, p. 18)

de�nes it as “a research technique for making replicable and valid infer-

ences from texts (or other meaningful matter) to the contexts of their

use”. Even though such an analysis of the contents, meanings, or e�ects

of communication messages also have been utilized on the Web (Weare

and Lin, 2000) it does not seem very well suited for understanding

navigational mechanisms.

We turn to content analysis as the more pragmatic practice con-

ducted within the �eld of information architecture1 hoping that it will

1. Information architecture can be

explained as (i) the structural design

of shared information environments,

(ii) the combination of organization,

labeling, search, and navigation sys-

tems within web sites and intranets,

(iii) the art and science of shaping in-

formation products and experiences

to support usability and �ndability,

and (iv) an emerging discipline and

community of practice focused on

bringing principles of design and

architecture to the digital landscape

(Morville and Rosenfeld, 2006, p. 4).

help us get an better understanding of navigational structures. Content

analysis is deployed as a technique by information architects for helping

them generate a sound and well structured web site architecture. It’s seen

as a bottom-up process. In its essence a content analysis should identify

the various relationships (or lack of correlation) between a web site’s

content items. It consists of two phases: (i) a collection of a representa-

tive sample of data and (ii) an analysis of this collected data (Morville

and Rosenfeld, 2006, pp. 241–243).

Information architects are concerned with the system’s content and

“need to move below the surface of the system interface to examine the

system information itself ” (Batley, 2007, p. 94). We on the other hand

are actually concerned with the system interface and speci�cally its

navigational structures. �is creates a striking contradiction as we’re

not interested in content unless it can help or guide users during their

navigation. We therefore had to adapt both our inventory and analysis

process accordingly.

33

3.1.1 Inventory

Content inventory is a technique for collecting data from web sites in a

structured manner. Its strength as a technique lies in its ability to truly

inform us about a web site’s content (Wodtke, 2002). �e process of

actually conducting a content inventory can be equally rewarding as the

resulting documents (Veen, 2002).

Sampling

Content inventories are o�en tedious and time consuming to perform.

Wodtke (2002, p. 267) argues that every single bit of content needs to

be determined while Morville and Rosenfeld (2006, p. 241) believes a

representative sample is su�cient.

�e web sites that are interesting to look at in our research are vast

and loaded with enormous amounts of user generated content. An all-

inclusive approach to content gathering would simply be impossible in

such situations. As a remedy to this we’ve decided to ignore certain parts

of web sites in our content inventories since the scope of our research is

limited to navigational constructs, and only those of a social nature.

Our experience is that social navigation and more static navigation

are intermixed all over web sites. O�en one have to use non-social

forms of navigation before social navigational options appear. �us we

could not simply ignore navigational aims which were non-social in our

content inventory phase. We did however eliminate the following parts

of web sites under investigation:

1 Administrative sections where users can change their pro�les or set their

preferences – a private and asocial endeavor.

2 Help pages where faqs, guides, and instructions are presented in a static

manner.

3 Legal information including terms of service, privacy policies, and copy-

right notices.

4 Content generation facilities like uploading, categorizing, and editing

photos, commenting, posting items, and so on.2

2. While there is no question about

the usefulness of such content

for providing social navigation

possibilities we’ve found few ex-

amples where social navigation

is used in the content generation

phases itself. �ere is however

a few exceptions, like applying

tags (see § 2.5.2 (p. 18) for details).
5 Advertisements from third party providers.

In addition to eliminating certain form of web pages we synthesized

abstract page representations by introducing variables. Take for example

a typical social network site. �ere are from thousands to severalmillions

of pro�le pages. In context of what navigational options these pages

present to us they are all essential similar. So we could introduce a

variable called $user-name3 and thereby describe all potential pro�le3. �e variable notation with a dollar

($) pre�x is inspired from vari-

able usage in unix shell scripting

(Kernighan and Pike, 1984, p. 88).

pages as: “Pro�le of $user-name”.
We would however have to make sure that the one page we used

in our inventory to represent the abstract notion of a pro�le page was

representative. To exemplify, say that a pro�le page included a stream of

34

the 10 most recent actions your friends had conducted. If the user of our

collected pro�le page had zero friends we would lack the navigational

opportunities such a stream could give in our inventory. �erefore we

used only pages which provided all possible forms of navigation as basis

for abstraction.

Approach

We started out on the �rst page that was given us when entering the web

site under investigation. From there we stepped through each page of the

web site by following all navigational hyperlinks provided on individual

pages. We did not however frequent a web site in its entirety, but bearing

in mind our sampling constraints and abstractions we frequented the

site to full coverage. We stopped browsing a particular page if it4 had 4. Either the exact same page or a

page deemed to be the same by our

variable driven abstraction method.
previously been inventoried. During the course of this browsing each

page was noted down in a table with the following characteristics:

1 Identi�er of numerical and hierarchical form where page with id 4.3.1 is

the �rst child of a page with id 4.3, representing its place in the navigation

structure. �e �rst page was given an id of “0”, its �rst descendant an id

of “1”, the �rst descendant’s sibling an id of “2”, the �rst descendant’s �rst

child and id of “1.1”, and so on.

2 Page title as a description of what the page contains. Some of the web

site’s we surveyed had a slight ambiguity of title usage. In these cases

we decided to collect the most representative sample.5 If this resulted in

5. A choice between the <title>
element in the <head> of the html

document and the <h1> top level
heading in-line the <body> portion
of the document was made.

unsatisfactory results we created a new title using the best of our abilities

to make it as clear and descriptive as possible.

3 Link name is either the textual name or a description of the contents (i.e.

a graphical representation) of the hyperlink that was utilized to navigate

to this very page.

4 Link location as a description of the spatial position (for example: global

navigation, content area, right sidebar) of the hyperlink used to navigate

to this page.

5 Page url as an identi�er for the page we visited.

�e result was a table representing a web site’s various pages and the

navigational relationships amongst them.

While we took note of the url of each page we’ve decided not to

display this information. We’re not convinced of its usefulness in light

of navigation and therefore for brevity’s sake omitted them. We did

however use them in our inventory process as away to identify previously

collected pages.

In a traditional content inventory other characteristics is usually

collected.6 We were only concerned with the navigational parts of web

6. For an example of more tra-

ditional collection methods see

Wodtke (2002, p. 269).pages. We opted to only record what we found to be useful for this pur-

pose. �is lead to a situation where we were collecting more information

about site structure than the attributes of a site’s content.

35

Figure 3.1: �e welcome page of Flickr showing three

di�erent streams of photos taken both by yourself, your

contacts, and the entire Flickr populace. Retrieved October

16, 2007, from http://flickr.com

Figure 3.2: A photo detail page on Flickr showing both

comments and tags, retrieved October 26, 2007, from

http://flickr.com/photos/benbengraves/187609810

3.1.2 Analysis

An analysis of the collected content follows a�er an inventory phase is

completed. Typically information architects use content analysis formak-

ing decisions on what and how to improve an existing web site’s content

architecture. With such an aim they look for patterns and relationships

when analyzing their content inventory. �ese patterns and relationships

will then suggest groupings and connections amongst separate content

items (Morville and Rosenfeld, 2006, p. 243).

Since our focuswere dissimilar compared to that ofmost information

architects’ we’ve had to tailor the analysis process to best help us discover

and understand patterns of social navigation in web sites. Analyzing

content inventories for such means is as far as we know not conducted

before. We were therefore exploring unknown waters and had to adapt

our method as we went about with our analysis.

We started with our impressions from the content inventory7 and

7. As stated earlier the process

of conducting a content inven-

tory is not only bene�cial just

because of the resulting docu-

mentation one creates of a web

site. People conducting content

inventories tends to get deeply in-

formed about a web sites content

and structure a�er having exhaus-

tively recorded large parts of it.

based our discussion on the �ndings we regard most conspicuous in rela-

tion to social navigation. During the resulting discussion we referenced

the relevant pages recorded in our content inventory by their identi�ers.

3.1.3 Subjects

Based on time considerations we decided to select two web sites for

which we would carry out a content analysis for illuminating social

navigation usage. We selected two web sites which we were somewhat

familiar with and believed was using social navigation in novel ways.

Based on these criteria we decided to study Flickr8 and Facebook9.

8. Available at http://flickr.com.

9. Available at http://facebook.com.

36

http://flickr.com
http://flickr.com/photos/benbengraves/187609810
http://flickr.com
http://facebook.com

3.2 results

�is section includes a survey and analysis of the most interesting data

we’ve collected in our inventory phase of a content analysis of two well

known web sites. �e inventory results can be found in its whole in

Appendix A (p. 125). When we’re referencing to ids we’re using the

identi�er in the tables found at the speci�ed pages.

3.2.1 Social navigation on Flickr

Flickr is a photo sharing site which are known to be on the cutting edge

when it comes to enabling new and innovating features in its domain.

Flickr has a quite peculiar history as it started out as a massively multi

player online game. An environment for photo sharing within the game

was added in 2004 which quickly became more popular than the game

itself. �e focus of the company was shi�ed and their new photo sharing

community was bought by Yahoo! Inc. in March 2005 (Livingston, 2007,

p. 257).

�is subsequent analysis of Flickr was carried out as a registered

user. One has to be registered for interacting with the site in such a way

that one leaves persistent traces. �e site has a open nature enabling

anonymous access to the majority of content.

�umbnails

Already on the welcome page (Figure 3.1) we’re �nding navigation links

Figure 3.3: Photo meta-data on

Flickr, retrieved October 28, 2007,

from http://flickr.com/photos/
benbengraves/187609810/

that are social of nature. Four thumbnails functions as sample of themost

recently uploaded photos by other members of the community and four

thumbnails samples the latest photos by your friends. One can either

navigate straight to a detailed page for each particular photo by clicking

on the respective thumbnail (id 6, p. 130) or the pro�le of the uploader by

clicking on their user name (id 7, p. 130). Such thumbnails with minimal

meta data (the uploader) are prevalent all over Flickr. Of the 120 pages we

collected in our content inventory 26 of them contained thumbnails.

Most of these thumbnails are giving users incentives to navigate using

social means.10 Which photos these thumbnails portray is dynamic. �at

10. Apart from the few pages that

only show a stream of your own

thumbnails when you’re brows-

ing your own photos by various

methods.

is to say that other users’ actions – uploading a photo, tagging a photo,

taking a photo with a speci�c camera, collecting photos into sets, and

adding photos to a certain group – all determine the navigational choices

you as a user is presented with. A good example of passive and indirect

social navigation with both implicit and explicit transfer of advice.

Meta-data

We arrive on a photo detail page (id 1.1, p. 126) as in Figure 3.2 if we

utilize one of these thumbnails for navigation. In addition to comments

on the photo we �nd meta-data as in Figure 3.3. Meta-data include the

37

http://flickr.com/photos/benbengraves/187609810/
http://flickr.com/photos/benbengraves/187609810/

Figure 3.4: Tag cloud on Flickr, retrieved November 1, 2007, from http://flickr.com/explore

date the photo was taken, the manufacturer and the model of the camera

that was used which are all so called Exif 11 data. Flickr utilize this data

11. Short for Exchangeable Image

File – a speci�cation for an image

�le format used in digital cameras.

by enabling navigation based both on the dates a picture was taken and

by camera make and model – social navigation with implicit advice. Say

you’re trying to �nd a picture from your home town on a particularly

beautiful summer day. By using date-of-picture-taking based navigation

coupled with tags or geographical data (which both will be discussed

shortly) you’re probably increasing you chances of �nding what you

want. Camera make information could also be useful when looking at

the quality of pictures taken with certain cameras before purchasing one

yourself.

Folksonomy

Of most importance for Flickr, and indeed what makes Flickr a folkson-

omy, is its tagging abilities. Caterina Fake, co-founder of Flickr, explains

its importance as “Tagging really revolutionized the way the product

behaved” (Livingston, 2007, p. 261). All registered user can label anyone’s

photos by applying such short descriptive tags. �is collaborative pro-

cess lay the ground work for other user’s ability to easily browse photos

by topic – a form of indirect and passive social navigation where advice

are explicitly given. Figure 3.4 exempli�es how the user generated data

through tagging (id 5, p. 128) can be used as a navigational aid. A tag

cloud is used to visualize the popularity (and thereby importance) of

the individual tags. �e larger the tag title, the more frequent the tag

has been applied to photographs.

Tag clustering was released in the fall of 2005 (Butter�eld, 2005) as a

way to easier see the relationships between separate tags. For any given

tag a cluster of three related tags is generated and displayed (id 5.6.1.2,

p. 129) to users when they are browsing as seen in Figure 3.5. Flickr

algorithmically generates these listings based on what tags users tend to

38

http://flickr.com/explore

Figure 3.5: Tag cluster on Flickr for “navigation”, retrieved November 19, 2007, from http://flickr.com/photos/tags/
navigation/clusters/

use together for labeling a photo.

Tagging is a very �exible approach only hindered by users’ imagina-

tion. In the early days of Flickr there was no support for geographical

data. Users soon found a remedy for this by tagging photos with the

longitude and latitude of the place where they were taken. By using the

same technology we’re using in our prototype application (see § B.1.1

(p. 142) for details) they were able to integrate Google Maps12 in Flickr,

12. Google Maps can be found at

http://maps.google.com.

enabling user’s to place their photos on amap and automatically generate

geographical coordinate tags.13

13. More info about geotagging

in the early days of Flickr can be

found in the remains of the Flickr

Geotagging group, available at http:
//flickr.com/groups/geotagging/.

Geographical data

In late August 2006 Flickr introduced geotagging abilities (Butter�eld,

2006) by integrating mapping aspects from Yahoo! Maps.14 Users could

14. Yahoo! Maps, a service similar

to Google Maps, have its home at

http://maps.yahoo.com.now place their photos on a map to signify where they were captured

without resorting to clever hacks of the standard tagging system.

Figure 3.6 (p. 40) shows how one of the authors photos are placed

on a map (id 1.1.6, p. 126). One can then cycle through the adjacent

photos of other users that are interesting or recently published. What

we see here is indirect social navigation where the advice is explicitly

given. When a user places his photo geographically on a map he makes

available navigational choices for other users who for some reason are

interested in that particular geographical area. Such visualizations of

geographic navigation clues are a good example of social texture.

Interestingness

�e concept of interestingness was introduced by Flickr during the same

time tag clustering was unveiled (Butter�eld, 2005).

Interestingness is a rating of how interesting a photograph is deemed

to be. Interestingness is based on how many views the photograph has,

39

http://flickr.com/photos/tags/navigation/clusters/
http://flickr.com/photos/tags/navigation/clusters/
http://maps.google.com
http://flickr.com/groups/geotagging/
http://flickr.com/groups/geotagging/
http://maps.yahoo.com

Figure 3.6: Geotagging on Flickr, retrieved March 3, 2008, from http://flickr.com/
photos/uggedal/261824261/map/?view=everyones

how many users who have favored the photograph, and how many com-

ments the photograph has. Favoring have the highest weight, comments

medium weight, and views the least weight in the algorithm that gen-

erates the interestingness rating (Photopreneur, 2008). Users are not

aware of the score of a particular photograph’s interestingness, but the

highest rated photographs are available through the “Explore” part of

Flickr (id 5.3, p. 128; id 5.4, p. 128).

�e interestingness system is a great example of passive and indirect

social navigation. Based on the behavior of other users the more inter-

esting photos are made more visible in Flickr’s interface. Flickr can be

seen as a collaborative �ltering system which uses implicit and explicit

ratings. When a user leaves a comment on a photo the aim is likely to

voice his reactions to the picture, and not vote the picture down or up.

Page views are also implicit of nature while favoring are explicitly given

by users.

Interestingly Flickr uses collaborative �ltering without personaliza-

tion of it’s recommendations and rather gives the whole population sim-

ilar recommendations. �e use of interestingness seem to have worked

well for Flickr as users are trying hard tomake their photos receive higher

interestingness scores. As of this writing a patent on interestingness is

pending (Butter�eld et al., 2006).

3.2.2 Social navigation on Facebook

Facebook is a social network site which started as a service only available

for Harvard students in February of 2004. Within the same month Face-

book was opened up for students at several other universities in the us.

40

http://flickr.com/photos/uggedal/261824261/map/?view=everyones
http://flickr.com/photos/uggedal/261824261/map/?view=everyones

Figure 3.7: Author’s news feed on Facebook showing events,

comments, photos, groups, persons, and status messages.

Retrieved March 26, 2008, from http://www.facebook.
com/home.php

Figure 3.8: Author’s pro�le page on Facebook, retrieved

May 30, 2008, from http://www.facebook.com/profile.
php?id=903795175

More universities and colleges were supported before Facebook opened

up it doors for high-school students in September of 2005 (Cassidy,

2006). Anyone – student or not – was allowed access in September of

2006 (Abram, 2006). Facebook has seen an enormous growth and are

today the largest social network in some countries (see § 2.3.1 (p. 11) for

details).

�e following analysis was carried out as an authenticated user of

Facebook. Most of Facebook’s content is only available for registered

users. Each user’s privacy settings also regulates how openly available

content is.

News feed

�e landing page when you log in to Facebook a�er having con�gured

your account is the “News Feed” (id 0, p. 132). �e news feed shows the

recent activities your friends have conducted. �is eliminates the tedious

process of checking every pro�le page of your friends to keep on top of

what they’re up to. �e feed shows a list of items, each representing a type

of activity. As shown in Figure 3.7 (p. 41) these activities are distinguished

by an icon and presented chronologically. �e data presented in the

news feed are an aggregation of every friend’s “Mini-Feed” located on

their pro�le page (id 1, p. 132) as seen in Figure 3.8 (p. 41).

�e news feed enables social navigation – all navigational choices

the feed provides through representations of activity are constructed as a

by-product of other people’s actions. When you select to attend an event,

41

http://www.facebook.com/home.php
http://www.facebook.com/home.php
http://www.facebook.com/profile.php?id=903795175
http://www.facebook.com/profile.php?id=903795175

Figure 3.9: Sharing of hyperlinks on Facebook, retrieved June 2, 2008, from http:
//www.facebook.com/profile.php?id=903795175

join a group, post a photo, change your relationship settings, befriend

a person, post a comment on a wall or photo, or update your pro�le

information your action is added to the feed. �e navigation presented

by the feed is therefore indirect and passive social navigation provided

by implicit feedback – providing no additional overhead for the advice

provider.

Hyperlink sharing

Facebook have an interesting feature that makes hyperlink sharing easier

for its users. When one are posting a comment on a the wall of a person

(id 1.19.1, p. 138), group (id 1.1.3.1.1.9, p. 134), or event (id 1.1.3.2.1.9,

p. 134) one can provide a url. By providing such a hyperlink to a third

party web page Facebook extracts an excerpt of the linked page with

optional graphics as seen in Figure 3.9. Since the recipient of a message

with a hyperlink can respond to the advice provider we’re witnessing

active and direct social navigation. Such improved url handling was

envisioned by Dieberger (1997, p. 811).

Photo tagging

Photos on Facebook can be tagged (id 1.19.1, p. 138) like those on Flickr.

But as you can see in Figure 3.10 one are tagging with people as identi�ers

on Facebook instead of keywords as on Flickr. We are therefore not

witnessing a folksonomy on Facebook. Photo tagging on Facebook can

be used as a means of navigating photos of particular individuals or

navigating towards people based on photos with various taggings of

individuals.

42

http://www.facebook.com/profile.php?id=903795175
http://www.facebook.com/profile.php?id=903795175

Figure 3.10: Photo tagging on Facebook, retrieved June 2, 2008, from http://www.
facebook.com/photo.php?pid=177290&id=579356186

Photo tagging can therefore be seen as passive and indirect social

navigation where advice is given explicitly. Navigational advice is made

available for future users when they stumble upon a photo with person

tags, person tags in news feeds, or navigates photos by a certain tagged

person.

3.3 discussion

�rough our study of Flickr and Facebook we’ve gotten an impression

of how social navigation is used in modern web sites. We’ll discuss our

most interesting �ndings in the next sections.

3.3.1 No explicit design for social navigation

It does not seem like the designers of social web pages design for social

navigation explicitly. �ere seem to be a trend of designing for social

interaction. As we’ve seen in § 2.3.1 (p. 11) social network sites have

become very popular amongst web citizens.

An implicit by-product of such a design approach seems to be the

creation of several forms of social navigation constructs. We base this

observation on our studies of two large social web sites in addition to

cursory observations from other social web sites.

3.3.2 Social navigation have become mainstream

We were able to locate navigational mechanisms which could be consid-

ered social navigation in all the web sites we studied. While our view

of the social web surely is incomplete, we take this as a sign for an in-

43

http://www.facebook.com/photo.php?pid=177290&id=579356186
http://www.facebook.com/photo.php?pid=177290&id=579356186

creased use of social navigation. Social navigation seems to have become

mainstream.

�e reasons for this increased usage can be many. We think the most

dominant factor is the high focus on creating web sites where social

interaction is supported. As described earlier, social navigation is then

o�en implicitly created when one designs web sites with such a focus.

3.3.3 Social navigation advice is given by peers

Anoverlying theme of the forms of social navigationwe found in thewild

were that it was created by equal peers. �e constructs for enabling social

navigation are created by the web site creators. But the data that enables

navigational choices of a social nature are created by the community.

We therefore purpose that navigational advice have to be given by

peers to be considered social navigation, whether indirect or direct, ex-

plicit or implicit. In other words navigational advice have to be given by

individuals on the same vertical level as yourself. �is means that naviga-

tional advice given by web editors and web designers – people vertically

superior to yourself – can not be considered true social navigation.

Based on this idea we propose our own de�nition of social navigation

on the Social Web. We base our de�nition on the nomenclature by

Svensson (2003, p. 20) which we’ve used so far in this thesis:

• An navigator is an individual who is looking for navigational opportuni-

ties on the Web.

• An advice provider is one or many peers positioned on the same vertical

level as the navigator within the web site where advice are given.

With the actors of the navigation process de�nedwe can de�ne social

navigation on the Social Web as:

Social navigation is navigation in the Web by a navigator, using informa-

tion given explicit or implicit by an advice provider.

3.4 generalizability and validity

Since Flickr as of this writing is the 39th most popular site on the web

and Facebook is placed 8th,15 one could argue that their usage of social15. According to Alexa’s tra�c rank-

ings as of July 18, 2008. Retrieved

from http://www.alexa.com/site/
ds/top_sites?ts_mode=global.

navigation is representative for what a sizeable portion of web citizens

have used. On the other hand, two web sites is like a drop of water in

the ocean compared to the Web’s over 170 million web sites (Netcra�,

2008). �e claims that we’ve made regarding the use of social navigation

in modern social web sites are based on these two web sites alone. One

should therefore take these claims as indication of how social navigation

can be used on the Social Web, and not as generalizations of how every

social web site functions.

44

http://www.alexa.com/site/ds/top_sites?ts_mode=global
http://www.alexa.com/site/ds/top_sites?ts_mode=global

PART II

UNOBTRUSIVE PROTOTYPING

OF SOCIAL NAVIGATION

4

IMPLEMENTATION OF AN

UNOBTRUSIVE PROTOTYPE

During our research on social navigation we came in contact with sin-

tef1 and their record research project. record is a research project

1. sintef – headquartered in Nor-

way – is the largest independent

research organization in Scandi-

navia.

which “aims to provide knowledge and methodologies to improve de-

velopment of online community products and services” (Record, 2008).

One of the partners of this project is nrk2 with their Urørt web site.

2. �e Norwegian Broadcasting

Corporation.

A�er some coordination meetings with the record project it became

clear that Urørt and its web site would be an excellent candidate for

trying out social navigation techniques.

As we’ll see in the next section, it’s possible to build applications

on top of existing web sites by creating unobtrusive implementations.

Following the background information on building applications on top

of established web sites we give an account of what kind of navigation

system we wanted to build for Urørt, go on to describe why we de-

cided on such navigational designs, and conclude with an explanation

of the deeper technical decisions we had to make. Appendix B (p. 141),

describes what kind of third party so�ware we used for realizing the

implementation details we describe in this chapter.

4.1 building on top of the web

Going in and making changes to an existing web site can be both an

daunting and time consuming task. First one have to establish a trust-

worthy relationship with the creators of such a site so they can be certain

you’re not introducing bugs in their production so�ware. Secondly,

grasping the code base, third party libraries, and development tools of

such a so�ware project demands a lot of upfront e�ort before any real

development work can begin. �is goes against the prototypical process

we intended to use while experimenting with Urørt.

Even though we’ve had an ongoing dialog with the developers of

Urørt, we decided to create our prototype as a layer on top of their site. By

using an extension for a leading open source3 web browser we were able 3. �e Firefox web browser. Avail-
able at http://firefox.com.to create a script which made changes to the way Urørt were presented

to users who were participating in our study. Such an approach would

hopefully result in a transparent experience for our end users, as long as

they had taken the necessary steps to set up our script.

47

http://firefox.com

Figure 4.1: Comments on the repository browser of Hoodwink.d’s source code,

retrieved March 7, 2008, from http://code.whytheluckystiff.net/hoodwinkd

4.1.1 Inspiration

�e idea of creating additional features for a web site in thismanner came

from the author’s involvement in an underground community based

around the Ruby programming language. Hoodwink.d4 is a service that

4. Hoodwink.d’s starting point

for new users can be seen at http://
hoodwinkd.hobix.com.

lets members post comments on all kinds of web sites. �ese comments

are only visible to the members of the community.

�e really interesting part of Hoodwink.d is the features it enables

on top of the Web. One can create a comment visible only to the com-

munity’s members on any web page that is supported. �is support is

not dependant on the creator of the web site. �e users of Hoodwink.d

need to record some information of the web site (where the comments

should be placed) to make it supported. Figure 4.1 shows an example of

how these comments are displayed on a web page. �is page does not

natively support comments. Using Hoodink.d for such means is a very

cheap (time wise) option compared to implementing commenting in

the web site itself. �ey are perceived as being part of the web page, even

though they are inserted right a�er the page is fully loaded.

4.2 design

With design, we mean how the application we’re making is presented

to users. For discussion of how the so�ware is designed or architected

internally, take a look at § 4.4 (p. 56).

4.2.1 Philosophy

Our philosophy when creating a navigational design have been similar

to that practiced by de Saint Exupéry (1967, chapter 3) in aviation design:

48

http://code.whytheluckystiff.net/hoodwinkd
http://hoodwinkd.hobix.com
http://hoodwinkd.hobix.com

And now, having spoken of the men born of the pilot’s cra�, I shall say

something about the tool with which they work, the airplane. Have you

ever looked at a modern airplane? Have you followed from year to year the

evolution of its lines? Have you ever thought, not only about the airplane,

but about whatever man builds, that all of man’s industrial e�orts, all his

computations and calculations, all the nights spent over working draughts

and blueprints, invariably culminate in the production of a thing whose

sole and guiding principle is the ultimate principle of simplicity?

It is as if there were a natural law which ordained that to achieve this

end, to re�ne the curve of a piece of furniture, or a ship’s keel, or the fuselage

of an airplane, until gradually it partakes of the elementary purity of the

curve of a human breast or shoulder, there must be the experimentation

of several generations of cra�smen. In anything at all, perfection is �nally

attained not when there is no longer anything to add, but when there is no

longer anything to take away, when a body has been stripped down to its

nakedness.

�is philosophy is closely related to minimalism.5 We feel the proto- 5. Minimalism is a movement where

the infamous architect Mies van

der Rohe popularized the concept

of “less is more” – achieving the

maximum e�ect with the minimum

of means (Whitman, 1969).

type we’re creating should provide users with only the necessary infor-

mation for a�ording navigational behavior.

Schwartz (2004) wrote a book calledCe Paradox of Choice: Why

More Is Less where he explains that we in our modern society have an

overabundance of choice. All these choices can produce psychological

distress. As Schwartz explains this problem can be resolved by limiting

the amount of choices we are presented with.

Our design could potentially introduce even more choices. We’re

introducing more information, and more navigational choices, into the

Urørt web site. A possible solution could be to remove some of the

choices presented to the user if we felt the choices we’re providing for

navigation were of higher importance than those provided by default.

We decided against this sincewewanted to test our navigational design in

opposition to the navigational designs already provided. By eliminating

some of the default navigation we would not be sure if potentially more

satis�ed users was the result of our removal of choices, the new choices

we provided, or a combination.

4.2.2 Activity stream for Urørt

According to Dubinko et al. (2007, p. 193) “�ere is enormous and

growing interest in the consumption of up-to-the-moment streams of

newly published content of various forms: news articles, posts on blogs

or bulletin boards, and multimedia data such as images, songs, or movie

clips”.

In the Urørt web page there is currently not an easy way to discover

what is new for the areas that you personally care about. �e main page

49

Figure 4.2: �e main page of Urørt with mostly editorial content. Retrieved May 8, 2008, from http://www11.nrk.no/urort/
default.aspx.

as seen in Figure 4.2 displays the latest editorial articles. In some sense

these activities represent new content. At the right margin there are also

lists of both editorial song selections and the most popular by listenings

and downloads. Whether you’re logged in to the web page by a registered

user handle or browsing the page anonymously, you’re presented with

the same information. Navigating onto your personal pro�le page yields

the same results: no good pointers to fresh content which you are likely

to especially care about.

When we conducted our study of the Facebook social network site

we became intrigued by how easy it was to keep updated on the latest

developments for our friends by using its news feed, as described in

§ 3.2.2 (p. 41).

Such streams of activity seem to have become popular also outside

Facebook. Socialthing! and FriendFeed are two services that aggre-

gates such streams from several sources and provides an uni�ed stream.

50

http://www11.nrk.no/urort/default.aspx
http://www11.nrk.no/urort/default.aspx

Figure 4.4: Activity stream for the author and his friends on Socialthing!, retrieved

May 18, 2008, from https://socialthing.com

�eir distinguishing factor is that Socialthing! fetches activities for your

existing friends on services as Facebook and Flickr. FriendFeed on the

Figure 4.3: Activity stream for

the author on FriendFeed, re-

trieved May 18, 2008, from

http://friendfeed.com/uggedal

other hand only collect activities from the people you decide to follow

on FriendFeed itself. FriendFeed can in addition display your personal

stream as an aggregation of all supported services you’re using. Both

activity stream aggregators are shown in Figure 4.3 and Figure 4.4.

When the news feed was introduced on Facebook in September 2006

users immediately responded negatively since they felt their privacy

was compromised. Even though all data available through the news

feed had previously been available to the same users, the aggregated

and e�cient display of this information led to concerns (Boyd, 2008,

pp. 13–14). Interestingly these negative �rst reactions seemed to vanish

as “Users quickly adjusted to the new architecture; they began taking

actions solely so that they could be broadcast across to Friends’ News

Feeds” (Boyd, 2008, p. 19). Joinson (2008b, p. 1031) found that the news

feed was indeed used by 241 respondents to a usage survey conducted

by the author. He feels these results indicate a greater acceptance of the

news feed today compared to when it was introduced. An ethnographic

study conducted by Joinson (2008a, p. 3126) of several social network

sites including Facebook found the news feed to be one of the primary

means of interacting with the web site.

Based on both our own observations and other’s of the perceived

usefulness of activity streams, we decided on using such a navigational

design in our prototype implementation for Urørt.

Relevant activities

�e approach seen at Facebook for letting users know what’s fresh and

relevant through an activity stream (or news feed as Facebook calls it)

seemed a good �t for Urørt. But Urørt does not have the concept of

friends as seen in social network sites. Urørt exists for people to freely

share their music and let others �nd music they like – and not making

new friends or keeping in touch with old friends. How do we then �nd

51

https://socialthing.com
http://friendfeed.com/uggedal

recent activities which potentially could be interesting for our users

when we don’t have any friends to consult?

We tried to answer this question by using a feature on Urørt that

allows any user to favor an artist. If a user conducts such an action he

or she becomes a fan of that artist. We don’t know why people signify

artists as their favorites on Urørt, but the main reason may be that they

simply like the music the artist is publishing. Another reason could

be that people know the artist personally and therefore add them as a

favorite – not dependent on whether they like their music or not.

But regardless of the motives for adding an artist as a favorite it

requires a conscious e�ort from the user. We’re therefore led to believe

that the list of artists a user have favored are more important than other

artists on Urørt. Our design is therefore based on the activities of a

person’s favorite artists. Initially we toyed with making a friend like

concept on Urørt by saying that people which share one or more favorite

artists with you are in some way similar to yourself. We had to throw

away this idea because of technical problems with getting such a solution

to scale.

Activity types

�ere were many activities taking place associated with an artist which

we could potentially use in our activity stream. We decided to select

those which contained information about when the activity occurred

and was technically easy6 to retrieve. �ose that matched our criteria

6. Easy as in only requiring access

to content freely available on Urørt.

was:

• Songs being published by an artist.

• Song reviews being written by users.

• Concerts being performed by an artist.

• Blog posts being written by an artist.

As you can see three of these activities are conducted by artists

themselves while reviews are conducted by other users.

Activity �ltering

�ere was quite bit of activity information available based on our four

categories for a typical artist. When a user had several artists as favorites

the amount of activity information got large. We therefore had to �lter

out some activities and only show what we thought would be most

relevant.

Firstly we were only concerned with historical information in our

activity list. Future concert events were therefore �ltered out. Secondly

we were only showing the most recent activities believing that fresh

content is more important than aged content. As activities were sorted

chronologically in our stream, we simply cut o� all activities a�er a

52

Figure 4.5: Activity stream for experiment users on Urørt, retrieved Jun 2, 2008, from

http://www11.nrk.no/urort/default.aspx

preset number of the most recent activities were displayed. �e version

of our prototype which was tested by real world users showed only the

ten most recent activities.

In the case of Facebook, they are not showing the complete picture of

friend activity in their news feed. It’s believed that up to 80% of all recent

activities are �ltered out (Elliott-McCrea, 2008). Facebook’s approach for

only showing a selection of recent activity is probably driven by technical

scalability problems, and not a desire to only present a selection of the

recent activity of friends. In our activity stream we gave users a complete

picture of all types of activities within the cut-o� point.

We named the implementation “Latest from your Favorites” – em-

phasizing the focus on providing the latest activities for a user’s favorites.

�e complete design of our activity stream for Urørt can be seen in

Figure 4.5.

53

http://www11.nrk.no/urort/default.aspx

Figure 4.6: Favorite list for control users on Urørt, retrieved Jun 2, 2008, from

http://www11.nrk.no/urort/default.aspx

4.2.3 Favorite list

As we’ll describe in § 5.2.1 (p. 69) we decided to used a control group

in our experiment setting. �e navigational design we presented them

with did not include an activity stream. In stead they were simply pre-

sented with a list of their favorites so that they manually had to keep

up with what recent activity their favorite artists were conducting. �is

implementation was also named “Latest from your Favorites” so that

it would appear similar to the full featured version. �e design of the

control group implementation can be seen in Figure 4.6.

To give both our control and experiment group the same navigational

possibilities – excluding the activity stream – we decided to show a list

of the favorites without recent activity for our experiment group. If

all their favorites had activities present in the stream, no such list was

displayed. Figure 4.5 (p. 53) shows the listing of one such artist without

recent activity.

4.3 process

�is sections details the development process we used for building our

activity stream implementation for Urørt.

4.3.1 Prototyping

A prototype is an early version of an application that are used for �nding

out more about the problem at hand and its possible solutions (Som-

merville, 2006, p. 409). �e so�ware developed for our research on

social navigation �tted these characteristics. It was not supposed to be

used a�er its behavior was evaluated. For that it was to ine�cient and

relied on speci�c web browser environments and extensions. �is did

not mean that the prototype couldn’t have impact on how Urørt evolved

54

http://www11.nrk.no/urort/default.aspx

in the future. If our evaluation favored our design decisions the devel-

opers of Urørt could take advantage of such potential improvements in

their web site design.

Sommerville (2006, pp. 409–410) explains that a prototype can be

used for (i) gathering more sound requirements from users during a

requirements phase, (ii) evaluating the feasibility of a proposed design

during a design phase, and (iii) testing the �nal system by verifying it

against the prototype. We followed his second example of prototype

usage by making a prototype for what we believed to be a sound social

navigation design. �is was then evaluated. If time had permitted

(sadly one has limited time and resources available during master thesis

research) the results of such an evaluation could have been input in a

new design process and a new prototype system.

AsMcConnell (2004, p. 114) explains, prototyping canmean di�erent

things based on context. O�en it’s used to explain systems where one

writes the least amount of code to get a solution and throw it all away

when the design question is answered. �is was not our intent. We tried

to make the system fully operational and make the code we authored

comprehensible and valid. More precisely wewere creating a high-�delity

prototype (Rudd et al., 1996, p. 78) with a robust architecture.

�e reason for creating a robust application was twofold. Firstly

we were developing the prototype as part of our master thesis and it

was meant to show how pro�cient we were in both programming and

designing applications. We imagined delivering a barely working and

poorly constructed so�ware package would not be bene�cial for our

examination results. Secondly the application could potentially see some

stress under user testing depending how large the test population were.

Having a crashing or non-functioning application during such testing

could have proved to be costly with regards to our experiment results.

We did therefore create a prototype to demonstrate our ability (or in-

ability) to develop so�ware. �is was not our sole reason, and probably

not the most important. As Mayhew (1990, p. 292) describes, proto-

typing is not successful if one have not learned something during the

process about what one set out to investigate at the outset. We wanted

to investigate navigational designs and the prototype was with such a

focus nearly a means to an end.

4.3.2 Testing

One can verify that the application one are building functions as it’s

supposed to do as code is added and changed by using automated tests.

We have personally experienced bene�ts with using automated testing

on earlier projects. Test-driven development is a development technique

where one writes an automated test for a non-existent feature or improve-

ment before one actually implement the feature itself – development is

literally driven by tests. So the focus is not primarily on the test, but to

better design so�ware through a test-�rst approach. Janzen and Saiedian

55

(2008) conducted studies on both developers in companies and univer-

sity students for �nding out whether a test-driven approach improved

the quality of so�ware design. Groups which wrote a test before the ac-

companying code were measured against groups which wrote their test

a�er implementing the solution. �ey found that code size decreased

when a test-�rst approach was used – both classes and methods were

smaller and simpler. In addition test-�rst developers had better cov-

erage of the implementation code in their tests (Janzen and Saiedian,

2008, p. 81). �is could indicate that it’s easier to opt out from testing

a�er you have a piece of working code. �e discipline that test-driven

development dictates makes it impossible not to write tests.

Behavior-driven development is a response to the test-driven devel-

opment approach. It was introduced by North for shi�ing the focus

from writing tests to writing speci�cations of behavior (North, 2006).

By writing speci�cations one is able to more clearly describe the intent

of an application than when one are writing traditional tests.

We were convinced of the bene�ts of behavior-driven development

based on earlier development projects and were therefore developing our

prototype application with such a development process. Having speci�-

cations that could be automatically run to check how our application

conformed to our expectations was very valuable. �is was especially so

when working with Urørt as an external data source since we did not

have control over the stability of its structure.

4.4 architecture

Our implementation basically needed to do two things:

1 Collect existing data from various places on the Urørt web site.

2 Display this data in existing web pages on the Urørt web site in a way

that we hoped would enhance navigation.

4.4.1 Extending an established web site

As we’ve described earlier in this chapter we were creating a prototype

application. Inspired by solutions in the Hoodwink.d community we set

out to implement our system on top of already established web pages.

Laird (2007) makes a case for using the means of such a browser

extension – Greasemonkey7 – and custom scripts for realizing projects7. See § B.1.1 (p. 142) for details on

Greasemonkey like extensions. that without such technology would never have come to existence. As

he describe there is a sweet spot where such an approach really shines.

He therefore created a framework for determining if a given project

embodies the factors that would make this kind of an implementation a

particularly suitable solution. What follows is a recitation of his selection

factors and how our project adhered to these.

56

Do you have access to the source code of the web application?

When the source code of the target web site is available it would probably

be easier to just change that. �e case is made for using Greasemonkey

when the source code is not available. Since we did not have access to

the internals of Urørt we saw this factor as favorable for Greasemonkey

in our project.

If the application is under your control and source code is available, is

updating the application a risky endeavor?

�is factor does not apply to our implementation since we obviously

did not create Urørt ourselves. Had been the authors we could have

used Greasemonkey for adding new features without putting the exist-

ing web site in danger, as it would be externalized from the original

implementation.

How critical is the feature to be added?

If the web site is not functional or complete without the new feature

it is advisable to defer from using Greasemonkey. �e reason is the

di�culty of ensuring that all users have the extension installed and the

newest version of the custom script. Since we will be able to ensure that

our test users have the right extension and scripts installed this is of no

concern to us. In addition Urørt is functioning �ne without our feature

enhancement which makes Greasemonkey a sound technical solution

for our means regarding this factor.

Is Firefox available for the potential users, and does it work with the target

application?

�e Firefox web browser should be available to install on most platforms

and we can report that it works �ne on the target web site. We cant

expect all potential users to install Firefox on their computers. �is

limits the reach we have with a Greasemonkey based implementation.

To what degree are the target users computer literate?

Installing a web browser, an extension for it, and �nally a custom script

can be a bit complicated for certain users. We have to expect the test users

to be a selection of our general population and some could therefore

have trouble with achieving such a setup. On this aspect a solution that

alters the original application would work better since users are not

required to change their computing environment. We hope to partly

solve this problem with providing clear instructions for how users can

con�gure their environments to support custom Greasemonkey scripts.

57

What size is the user population that needs the new feature?

�is factor is based around the fact that server applications can be more

easily updated since they seldom require intervention by the user. It’s

much harder to ensure that client applications like Greasemonkey are

kept up-to-date by its users. It’s argued that such an approach works

better for smaller populations and one should therefore keep users of

custom Greasemonkey scripts to a minimum.

Since we’re not foreseeing the use of our implementation outside

user testing the application does not have to be kept up to date. In

addition we’re anticipating a fairly limited user base due to our test

setting. Greasemonkey should therefore not put any hindrance in place

for our implementation in relation to this factor.

How o�en is the page structure in the web application changing?

Since implementations based around Greasemonkey o�en is dependent

on the underlying web site and its structure it’s important that this

remains stable while the implementation is in use. While we in our

project had a fairly small time window of actual use, we were concerned

with changes breaking our implementation.

We saw two possible solutions for this problematic aspect of Grease-

monkey implementations. Firstly, communication between the devel-

opers of Urørt and ourself about upcoming changes would allow us to

anticipate them and handle them gracefully when they arrived. Sec-

ondly one could introduce a meta structure in the web site by using

agreed-upon class names of certain html elements in the style of what

microformats8 are trying to achieve.

8. Microformats are a set of simple

and open data formats for better

structuring of web content. All

microformats adheres to the prin-

ciples of solving a speci�c problem,

starting as simply as possible, being

designed for humans �rst – ma-

chines second, reusing elements

from already established standards

being modular and embeddable, and

encouraging decentralized develop-

ment, content, and services (Allsop,

2007, p. 7). To us the essence of

microformats seems to be the usage

of semantic class names in html el-

ements. By semantic class names we

mean naming classes for what the

elements they belong to represent.
Does the new feature require many changes to the existing web

application?

Using Greasemonkey to enhance and alter existing web pages is not

as straight forward as altering the source of the web page. �erefore

massive changes to an existing web site is best handled directly in the

source code leaving Greasemonkey to be the better alternative when

only smaller alterations and addition are needed.

�e changes we proposed to introduce in the Urørt web site was not

earth shattering in scope and size. We therefore believed and hoped our

implementation could be implemented without too much additional

e�ort with Greasemonkey.

Does the target web application already have JavaScript code that mutates

the page?

�is factor tries to capture the fact that the behavior implemented with

custom Greasemonkey scripts are run before any additional behavior

58

implemented in the web site itself. It’s therefore hard to manipulate a

web site that mutates over time.

In our project we were quite fortunate as we were only adding be-

havior to the Urørt web site, not changing any existing behavior. We

therefore did not have to concern ourselves with the dynamically already

present on Urørt.

Does the feature require communication with a server in a di�erent

network domain than the web application?

Standard web pages can asynchronously retrieve information using

JavaScript and the XMLHttpRequest object. To enforce a certain level of

security browsers does not allow such requests to retrieve information

from other domains than what the request was sent from. �is limitation

is eliminated in Greasemonkey scripts as one can request information

from other domains through a similar asynchronous request object

existing in the extension.

�is feature was vital for our project. As we’ll see in the next sec-

tion we were dependent on requesting information from a resource that

we ourselves had control over from the custom Greasemonkey script.

�is resource was however not hosted in the domain that Urørt is op-

erating within. Without cross-domain requests in Greasemonkey our

implementation would be infeasible.

[

Based on how our project positioned itself with regard to the important

factors for the feasibility of using Greasemonkey according to Laird

(2007), we did not see any major objections for doing so. We believe

the bene�ts of a prototype implementation based on Greasemonkey

outweighed the disadvantages with such a technical solution.

Another solution would be to create a web proxy that altered pages

speci�c to Urørt. Keller et al. (1997, p. 1109) took this approach when

developing a collaborative bookmarking service. As the authors explain,

a proxy-based solution ensures universal access across browsers and

platforms requiring no installation of additional browser extensions or

plugins. �e drawbacks to such and approach for our prototype were

quite clear. A user having enabled our hypothetical web proxy would

have to take a round trip to our server for every web page he or she

visited, regardless of whether it was Urørt related. �is would introduce

substantial loads on our servers and users would probably notice reduced

page load times when browsing the Web.

4.4.2 Client-server model

A client-server model is an architecture where one is separating a system

into two logical parts: one or more clients and one or more servers

59

(Lewandowski, 1998, p. 3). �e client is a “computer system or process

that requests a service of another computer system or process” (Malkin,

2006, p. 11) and the server is a “provider of resources” (Malkin, 2006,

p. 49). More speci�cally, a client presents the user interface, uses a

prede�ned language for querying the server, communicates these queries

through a given communication method, performs computation on the

the results of queries sent by the server, and displays these through the

user interface (Sinha, 1992, pp. 78–79). A server is characterized by

providing a service to the client, responding to queries constructed by

the client, and hiding away its underlying technical system for the client

(Sinha, 1992, p. 79).

�e client and server thus have disparate responsibilities – the client

is a consumer and the server is a producer (Lewandowski, 1998, p. 3). �is

delegation is the essential part of client-server computing and enables

one to focus on one aspect of a problem as one does when adhering to the

concept of separation of concerns (Dijkstra, 1982, p. 61). A client-server

model also enables one to scale both horizontally and vertically9 – an

9. To scale horizontally entails

adding more servers to a client-

server architecture. When one

increases the resources of a single

server one is scaling vertically.

impossible feat with monolithic systems (Lewandowski, 1998, pp. 7–8).

We therefore decided to use a client-server architecture so that we

could o�oad some of the more computationally expensive operations

o� the client and onto a dedicated server. Another bene�t of such an

architecture is that it allows us to cache data globally – shared by all

clients. �is means that data collection is handled on the server-side,

while data display is handled on the client-side.

Following the characterization of client-server systems provided by

Sinha our client is presenting a user interface by altering the structure

of the Urørt web page. �e client sends queries to the server in the form

of http10 formatted requests. Our server takes these queries in http

10. Short for Hyper Text Trans-

fer Protocol – the protocol used

for transferring data on the Web. form and goes to the Urørt web site to collect the data it needs. Based on

the data the server �nds at the external Urørt web site, the server does

some computations on the data before a response is sent with the http

communication method to the client. �e client take this data (which is

represented in a prede�ned format) and uses it to alter the user interface

by introducing new information.

Nishimoto and Toda (2006, p. 887–888) implemented a system for

re-�nding places one have already visited on theWeb. What’s interesting

about their system is that their architecture is strikingly similar to our

own. �ey use a client-server model with a Greasemonkey enabled

browser as their client. �e client facilitates the users as they’re navigat-

ing by supplying additional information alongside existing web pages.

One of the ingredients in helping users in their browsing is suppling

information from third party content providers. By separating this com-

putationally heavy part of the application into the server-side they were

able to o�oad the clients in a similar manner we used when fetching

data from the Urørt web site for our prototype implementation of an

activity stream.

60

4.4.3 Caching

In the planning stages of our implementation and its early development

we decided to store all information retrieved from the Urørt web site in

a relational database. We did some study into selecting the best orm11

11. orm, an acronym for object-

relational mapping, is “the tech-

nique of converting records in

a relational database into object

instances in an object-oriented pro-

gramming environment” (Linskey

and Prud’hommeaux, 2007, p. 889).

�is is possible since “relational

databases can be represented rea-

sonably in object-based code if

you simply think of database tables

as classes, table rows as objects,

and table �elds as object attributes”

(Marshall et al., 2007, p. 2).

for connecting our application to the underlying database. We had

this nice model where the underlying relational database engine was

abstracted away and interaction to this database was done with a clear

and explicative dsl,12 eliminating the need for constructing complex

12. dsl or domain-speci�c lan-

guages are programming languages

shaped for a speci�c domain. By

doing so one can o�er more expres-

siveness in a limited application

domain. �is results in better us-

ability and increased productivity

within the limited domain, com-

pared to using a general-purpose

programming language (Mernik

et al., 2005, p. 317).

sql.13

13. sql (initially named sequel)

stands for structured query language

and is now the de facto language for

interacting with relational databases.

It was invented by Chamberlin and

Boyce (1974, p. 250).

�en we had a sudden realization when coding on the part of our

application that retrieved information from the external Urørt web site,

pushed it into our relational database, and made our data available in a

structured manner through our orm layer. It was not critical if we lost

some or the entirety of this data. We could just retrieve it again from

our external source. And since the data had to be kept up to date by

retrieving the data from our source within certain intervals, we saw no

need to make it available in a relational database. We were not trying to

persist data, but rather keeping a cache14 of what we had retrieved.

14. According to Wikipedia (2008a)

a cache is “a temporary storage area

where frequently accessed data can

be stored for rapid access”.

As described we came to the realization that no persistent data about

activities was needed in our implementation. We therefore sat out to

�nd the best cache solution for our needs as detailed in § B.1.2 (p. 151).

We only cached one type of data in our implementation: a chrono-

logically pre-ordered list of all activities for a given artist. Let us explain

how this works when user X requests his list of recent favorite activities.

Our system �rst determines that user X have artist A and artist B as

favorites. It then consults the cache and asks if it can get a list of activities

for artist A. �e cache have a list of activities for artist A and promptly

returns it to its caller. Our system then tries to do the same for artist B,

but this time there is no list of activities for that artist in the cache. �is

is a cache miss, and we are therefore forced to retrieve information about

artist B’s activities from the Urørt web site. From this information we

calculate a new list which are stored in the cache with a certain time to

live. �e next time a request for artist B’s list of activities are handled

the cache should now be able to return that list if the request were made

within the time to live interval.

In our system we set a time to live of 12 hours. �is meant that

activity lists stored in the cache were retrievable within 12 hours.

4.4.4 Persistence

As detailed in § 4.2.3 (p. 54) we designed two versions of our prototype:

one delivering an activity stream and another only listing favorites. �is

introduced the need to deliver two versions of the client so�ware, one

for our main experiment group and one for our control group. To

handle this we had to introduce persistence in our application to know

61

what kind of client so�ware the last user received to determine what

so�ware the next user should be provided with. �is way every second

user received a full-blown client version and the other users received a

control version.

4.4.5 Background processes

With our cache architecture in place it became apparent that it was too

expensive time wise for users to retrieve the activities of all their favorites

when multiple cache misses occurred. We therefore decided to “warm

up” the cache by running several background processes that populated

our cache with fresh data from the Urørt web site several times a day.

Since we had implemented persistence for the various experiment

participants of our system and their version of client so�ware, we simply

used their unique user names on the Urørt web site as input to our cache

warm up processes.

A�er testing the system casually we found a need for shortening the

response times in the event we received a request from a user with our

full-blown client so�ware where no relevant activity lists was present

in cache. Initially we retrieved information from the Urørt web site for

all artists that the requester had favored. Under this scheme a user with

several favorites could expect response times to be several minutes in

length. We therefore decided to deliver only the activities of the user’s

�rst favorite if non of the activity lists of his or her favorites were present

in cache. When doing so we registered the non returned artists and put

them in to a similar background process as we used for our cache warm

up.

�ismeant that the �rst time a usermade a request to our application

he or she would be presented with the activities of only his �rst favorite

if no other users previously requesting the system had similar favorites.

A�er the background processing of this user’s favorites was complete

he or she would get a full picture of the activities of all his or her artists.

We think this is an acceptable price to pay for reduced latency.

4.4.6 Asynchronous requests

In the traditional style of ajax applications we requested information

on the client-side of our prototype asynchronous.15 �is means that15. While it’s possible to create

synchronous requests with the

XMLHttpRequest object it’s dis-
couraged. With such requests the

entire web browser will be locked

while it’s waiting for a response

for its request (Crockford, 2006b).

requests handled by the XMLHttpRequest object are independent of

other requests the browser is making – they are non-blocking. �is en-

ables developers to create web pages where additional data is requested

a�er the page is loaded by a normal http request. �is is o�en coupled

with the ability to detect user behavior, and contents are requested only

when needed. Stamey and Richardson (2006, pp.281–282) argues that

the increased complexity (and thereby size) of todays web pages have

created problems in perceived responsiveness for users due to network

latency. �ey think asynchronous request of small content items solves

62

External Models

Rort

Fetchable

Blog

ConcertArtist Artist Person

Respondent

User

Http

Api Download

ParsersRackBackground

Queue Cache Persistence

Legend

Module:

Class:

Figure 4.7: Diagram of classes and modules in the prototype server so�ware.

this problem – bringing greater interactivity to the user. Another solu-

tion that can be used is to move some processing into the client with

JavaScript (Jazayeri, 2007, p. 9)

4.4.7 Code structuring

Both the client-side and server-side programming languages we used

are as we’ll see in § B.1.1 (p. 143) and § B.1.2 (p. 146) object-oriented.16

16. �e term object-orientation was

coined by Kay (2003) sometime

in 1967. �e motivations leading

to object-oriented programming

were mainly to �nd “a better mod-

ule scheme for complex systems

involving hiding of details” (Kay,

1996, p514). �e essence of object-

orientation lies in the concepts of

abstraction, classes, encapsulation,

inheritance, objects, message pass-

ing, methods, and polymorphism

(Armstrong, 2006, pp. 124–126).

Since our client so�ware was pretty dense in code size (see § 4.6

(p. 65) for details) and only had to handle a small set of operations we

63

Type Constraints

id Integer Auto incremented primary key

email Text Unique, not empty

group Text Not empty

slug Text

requests Integer Initial default of zero

created_at Time stamp

Table 4.1: Prototype persistent data structure, by �eld name

did not use object oriented features as classes and objects to structure

our client code. Instead we used functions as a partitioning scheme

when implementing on the client side. Our client side so�ware was

contained in two �les – one �le for each of our two versions (control

and full-featured).

However, on the server side we had to write more code and our code

had to handle quite a large set of operations. We therefore implemented

our server side so�ware with the use of modules, classes, objects, and

methods. A �gure of how the various classes and modules are related
|–rort
|–|–external
|–|–|–blog.rb
|–|–|–concert.rb
|–|–|–fetchable.rb
|–|–|–artist.rb
|–|–queue.rb
|–|–cache.rb
|–|–background.rb
|–|–core_ext.rb
|–|–persistence.rb
|–|–external.rb
|–|–parsers.rb
|–|–models.rb
|–|–http
|–|–|–download.rb
|–|–|–api.rb
|–|–models
|–|–|–user.rb
|–|–|–person.rb
|–|–|–respondent.rb
|–|–|–artist.rb
|–|–rack.rb
|–|–http.rb
|–rort.rb

Figure 4.8: Hierarchy of the server

prototype so�ware. �e code for

producing this hierarchy listing

can be found in § D.4 (p. 162).

to each other can be found in Figure 4.7 (p. 63). �e abstractions those

constructs gave us, made it easier to precisely handle the complexity and

disparity of our solution. As Dijkstra (1972, p. 864) puts it:

the purpose of abstracting is not to be vague, but to create a new semantic

level in which one can be absolutely precise.

To make the handling of our source code easier we used a hierarchy

of directories and �les that resembled our module and class constructs.

One �le and possible directories were used for each module and class as

can be seen in Figure 4.8.

4.4.8 Data structure

We’ll shortly summarize the data structure used in our database. We

stored informations about respondents to our survey in a respondents
table. We used a id column as an identi�er for each stored respondent;

an email column for identifying respondents in relation to their survey

answers; a group column to distinguish between experiment and control

respondents; a slug column to store the unique identi�er a respondent

had at the Urørt web site so that we could warm up our cache (see § 4.4.5

(p. 62) for details); a requests column to count the times the respondent

requested data from our server; and a created_at column to keep track

of when a respondent �rst registered his email when downloading our

client so�ware. In Table 4.1 we give further details about the data we

stored in a database.

64

4.5 performance

Initially we did not architect our application with performance in mind.

We wanted to create a working prototype �rst and then try to increase

it’s performance if need be.
Speed Time

(mb/s) (s)

Development 0.4 4.0

Production 10.2 2.8

Table 4.2: Retrieval time and speed

of a typical artist pro�le page (423kB

in size), by system. Note that the

speedup is not relative to the trans-

fer speed as there is overhead in

establishing a connection to the

servers at Urørt.

It became apparent that generating an activity stream for a user with

several favorites was very time consuming. We identi�ed the major

bottleneck to be the actual retrieval of information from the Urørt web

page. We could not do much code and algorithm wise to remedy this

problem. �e only solution was to increase the bandwidth allowed

on our internet connection. As can be seen in Table 4.2 our retrieval

times decreased as we moved to a production server with better internet

connectivity.

�e next bottleneck we became aware of was also related to the cost

of retrieving web pages from Urørt. We did some careful counting of

the number of retrieval attempts to Urørt and were able to minimize

these to a considerably lower number.

�e last bottleneck we encountered was the actual parsing of the

retrieved web pages fromUrørt. We were able to implement someminor

optimizations, but did not see any major improvements.

But the major performance gains were seen when we introduced a

fast cache solution and a system for periodically warming this cache up,

as described in § 4.4.3 (p. 61) and § 4.4.5 (p. 62). With these two pieces

in place we felt we could present users with bearable response times.

4.6 source code

We’ll wrap up the discussion of our implementation with showing some

statistics related to our source code:

Number of lines of

Files code comments blank lines

Client implementation 2 373 42 87

Server implementation 21 850 9 189

Server speci�cation 16 714 0 179

Table 4.3: Prototype source code statistics, by type

By dividing our number of lines of speci�cation code with imple-

mentation code we get a ratio of 84:100 between speci�cation/imple-

mentation on the server side.

65

5

EMPIRICAL STUDY OF A

SOCIAL NAVIGATION

PROTOTYPE

�is chapter details an empirical study of the prototype implementation

we developed in Chapter 4 (p. 47). First we’ll frame what we think this

study should answer through research problems and hypotheses. �en

we’ll go on to describe the method we used for conducting this study

before the results of the study are presented. Based on the results we’ll

discuss our �ndings before we close this chapter with some words about

the limitations of this particular empirical study.

In this chapter we’ll use the following symbols and abbreviations:

N number of occurrences

Mdn median

Rng range

σ standard deviation

x mean for x

U Mann-Whitney U-test statistic

T smallest of the two sums of ranks for

the Wilcoxon signed-rank test

Z standard score

p probability value

α level of signi�cance

Table 5.1: Statistical Symbols and Abbreviations

5.1 research problems and

hypotheses

Our main research question deals with how a speci�c social navigation

technique, activity streams, could potentially in�uence usage of a web

site:

rp0: Can social navigation through activity streams in�uence usage of

an established web site?

67

From this main research question we also proposed more speci�c

problem statements that more clearly states di�erent ways of in�uencing

usage:

rp1: Do users perceive social navigation through activity streams as

helpful in order to keep up-to-date on favorites’ activities on Urørt?

�is question deals with the way users keep up-to-date on what their

favorites are doing on Urørt. We want to investigate if activity streams

can help users in this task.

We were also concerned with how activity streams in�uenced the

frequency of keeping up-to-date on activities:

rp2: Does social navigation through activity streams lead users to more

o�en keep up-to-date on favorites’ activities on Urørt?

�e next research question deals with with how activity streams

could potentially in�uence the importance of favorites on Urørt:

rp3: Does social navigation through activity streams lead users to make

more artists on Urørt their favorites?

We also had a more technical research question relating to how one

can conduct experiments on established web sites with Greasemonkey:

rp4: Can prototyping with Greasemonkey be considered a viable technical

option when testing user behavior in an established web site?

�is question seek to investigate whether Greasemonkey prototyping

should be considered as one of potentially many technical alternatives

in future research experiments, where user behavior is tested. As this

is a new way to test user behavior in relation to social navigation, we’re

mainly concerned with gaining experience with using such a technical

solution.

[

We created hypotheses for the majority of our research questions. A�er

having presented our results in § 5.3 (p. 76) we’ll test these hypotheses

in § 5.4 (p. 88).

Our H1 hypothesis deals with how easy respondents can keep-up-to

date with favorites’ activities with and without an activity stream. B is

the degree respondents can easily keep up-to-date on favorites’ activities

without an activity stream. A is the degree respondents can easily keep-

up-to-date on favorites’ activities with an activity stream.

• H10: B ≥ A

• H1A: B < A

68

Relating to the hypotheses about the degree respondents can keep up-

to-date on activities we have a H2 hypothesis concerning the frequency

of keeping up-to-date. B is the frequency respondents keep up-to-date

on favorites’ activities without an activity stream. A is the frequency

respondents keep up-to-date on favorites’ activities with an activity

stream.

• H20: B ≥ A

• H2A: B < A

A h3 hypothesis about how activity streams in�uences favorite usage

is stated next. B is the amount of favorites for respondents without an

activity stream. A is the amount of favorites for respondents having used

an activity stream.

• H30: B ≥ A

• H3A: B < A

5.2 method

�is section outlines the methodology we used for testing our research

hypotheses. We wanted to test our hypotheses in a real usage situation,

while having control of e�ects that could in�uence the results. We

therefore decided to conduct a real world experiment with a pretest

and posttest, in addition to using a control group. We’ll dive into the

design of the experiment, how we collected the data, and how data was

analyzed.

5.2.1 Experiment design

Robson (1993, p. 78) describes an experiment as a process where:

• �e experimenter assigns subjects to di�erent conditions.

• �e experimenter manipulates one or more variables. �ese variables

are independent variables.

• �e experimenter measures the e�ect of the manipulation of the inde-

pendent variables on other variables. �ese other variables are dependent

variables.

We are conducting a real world experiment, meaning that our sub-

jects are studied in their natural habitat – not in a laboratory. �e advan-

tages of a real world experiments are �rstly that it’s easier to generalize

results to a wider real world population since one does not have an arti-

�cial setting as found in laboratories. Secondly, real world experiments

are not as prone to gaming by its participants. Lastly, it may be easier to

�nd willing subjects in the real world.

69

Real world experiments have some shortcomings compared to labo-

ratory experiments. Seemingly most important is the lack of control of

various variables which could interfere with the independent variables.

For more information about the merits and disadvantages of real world

experiments see Robson (1993, pp. 80–87).

In addition to a real world experiment we’re using a two-group

experiment design with a test before and a�er the independent variables

are manipulated through a treatment. �e two groups are:

• An experiment group: E. �is group are given a treatment by manipulat-

ing an independent variable.

• A control group: C. �is group are not given a treatment but are instead

given a placebo which does not manipulate the independent variable.

Using two groups means that we canmeasure the di�erence between

those that underwent treatment and those that were given a placebo. �is

gives us a way to measure any di�erence induced by the actual treatment

since we can detect possible placebo e�ects or observer e�ects. We will

then be able to see if respondents are answering positively simply because

they are given something new or since they know they are observed.

By using a before and a�er design we are also able to use pre-post

di�erences as a basis for measuring the e�ect of treatment or no treat-

ment.

In our case the treatment is analogous with the prototype implemen-

tation with an activity stream for Urørt as described in § 4.2.2 (p. 49).

�e placebo on the other hand is the prototype implementation with a

favorite list as seen in § 4.2.3 (p. 54). �e favorite list is an integrated part

of the treatment implementation. �is means that the only di�erence

between the two prototype versions are the activity stream – the inde-

pendent variable we as experimenters are manipulating (by introducing

the feature).

Bearing in mind the details of our experiment design, Figure 5.1

gives an overview of how the experiment process was carried out. In

addition to the pretest and posttest we conducted a follow-up survey of

our respondents to gauge whether they managed to install our prototype

implementation. �e timeline of the various parts of the experiment

were as follows:

1 Pretest: day 1

2 Follow-up: day 2

3 Posttest: day 11

5.2.2 Subjects

�e subjects were the 789 latest users of Urørt which had signed in

with their user name and password on the Urørt page as of when the

experiment was started.

70

Sample N

n1

Placebo C1

Pretest

Posttest

C2

E3 C3

E2

Follow-up

n2

Treatment E1

(rand.)

Figure 5.1: Overview of the various parts of the experiment. �e sample N are given

a pretest. n1 completes the pretest. E1 are given an treatment prototype while C1 is

given a placebo prototype by randomization. A�er one of the two types of prototypes

are provided, respondents are followed-up to check if they had problems installing

the prototype so�ware. n2 answers the follow-up questions. E2 successfully installed

the treatment prototype and C2 successfully installed the placebo prototype. Both E2

and C2 are given a posttest. E3 of the treatment sample E2 and accordingly C3 of the

placebo sample C2 completes the posttest.

71

Wewanted about 200 participants to answer our pretest and guessed

that 100 would be bothered to install our prototype. �rough random-

ization that would amount to 50 users in the experiment group and 50

users in the control group.

Since we were only concerned with users of the Firefox web browser

we had to contact a fairly high number of potential respondents to yield

a su�cient number of respondents using this particular browser. We

had read that a little more than 13% of world wide internet users use

Firefox (OneStat.com, 2008).

5.2.3 Data collection

We collected all our data through questionnaires. An online survey

system was used for creating a pretest, posttest, and follow-up question-

naire. �e various questionnaires can be found in their original language

and wording in Appendix C (p. 157). What follows are translations to

English of the most important questions and the response options.

Pretest & posttest questions

�ese questions were asked both in the pretest and posttest. First we

asked questions to investigate the usage of favorites on Urørt by our

respondents:

• How many favorites do you have on Urørt? – we expected a numerical

value of the amount of favorites the respondent had.

• How o�en do you update yourself on what your favorites on Urørt are

doing? – the respondents could select between the following frequency

categories: daily, several times a week, weekly, monthly, and seldom/n-

ever.

�en we asked the respondents to qualify several statements which

investigated how easy it was for them to keep up-to-date on favorites.

�ese statements was to be rated on a 5-point Likert scale (Likert, 1932):

• Fully disagree

• Somewhat disagree

• Neither agree nor disagree

• Somewhat agree

• Fully agree

With the statements:

• It’s easy to keep up-to-date on what my favorites are doing on Urørt.

• It’s easy to keep up-to-date on whether my favorites publishes new songs

on Urørt.

72

• It’s easy to keep up-to-date on whether my favorites publishes new blog

posts on Urørt.

• It’s easy to keep up-to-date on whether my favorites are performing at

concerts.

• It’s easy to keep up-to-date on the reactions other users at Urørt have

towards my favorite artists’ songs.

Pretest-only questions

�ese questions were asked only in the pretest. Here we asked questions

to get an impression of our pretest respondents:

• Age? – a numerical value was expected.

• Gender? – either male or female.

• Firefox user? – selection between the following frequency of use cate-

gories: always, regularly, sometimes, and seldom/never.

• How o�en do you use Urørt? – selection between the following fre-

quency categories: daily, several times a week, weekly, monthly, and

seldom/never.

• Do you sign-in (with user name and password) when using Urørt? –

selection between the following frequency categories: always, regularly,

sometimes, and seldom/never.

Posttest-only questions

�ese questions were asked only in the posttest. First we asked speci�-

cally about usage of the prototype implementation.

• How frequently have you used “Latest from your Favorites” when you

are signed-in on Urørt? – selection between the following frequency of

use categories: have not used, only a few times, almost every time, and

every time.

Next we wanted to investigate the perceived usefulness and ease of

use for our prototype implementation. �is well tested approach for

conveying technological acceptance was introduced by Davis (1989).

Like Davis (1989, p. 340) we used a 7-point scale as possible answers:

• Extremely unlikely

• Unlikely

• Slight unlikely

• Neutral

• Slight likely

• Likely

• Extremely Likely

73

We shorted the statements of perceived usefulness down to four

alternatives which we felt made sense for our implementation:

• “Latest from your Favorites” would enable me to keep up-to-date on my

favorites in an e�cient manner.

• “Latest from your Favorites” would enable me to keep up-to-date on

more favorites.

• “Latest from your Favorites” would make it easier to keep up-to-date on

favorites.

• “Latest from your Favorites” would be useful for keeping up-to-date on

favorites.

�e statement for perceived ease of use was also shorted down to

four alternatives:

• It would be easy to learn to use “Latest from your Favorites”.

• It would be easy to make “Latest from your Favorites” do what I want.

• It would be easy to become skillful at using “Latest from your Favorites”.

• “Latest from your Favorites” would be easy to use.

Lastly we wanted to investigate if respondents would like “Latest

from your Favorites” to be a standard feature on Urørt. We used a 5-

point Likert scale (Likert, 1932) to gauge respondents reactions to our

question:

• Fully disagree

• Somewhat disagree

• Neither agree nor disagree

• Somewhat agree

• Fully agree

With the speci�c question:

• Do you think “Latest from your Favorites” should be a standard feature

of Urørt?

Follow-up questions

We also asked the participants to answer a short questionnaire regarding

how the installation process went. �is was done to investigate how easy

or hard installation of Greasemonkey based prototypes were:

• Did youmanage to install “Latest from your Favorites”? – the respondent

had to choose between these categories: yes – it was an easy and quick

process, yes – but I experienced small problems, yes – but I experienced

large problems, and no – I gave up.

74

5.2.4 Data analysis

We used two statistical tests for analyzing the data we collected. Since

our sample sizes were fairly small we could not make any claims about

the forms of the distribution for the Urørt population from where our

samplewas drawn. �ismakes it suitable to usenon-parametric statistical

tests as they don’t make any assumptions about the distribution of the

variables to be tested (Siegel and Castellan, 1988, p. 34).

Most of our data are of an ordinal measurement – meaning that one

can infer the rating of variables, but not the distance between ratings. To

represent the central tendency of our data we’ll therefore use the median

(Siegel and Castellan, 1988, p. 27). Ordinal data is another characteristic

where non-parametric tests are best suited (Siegel and Castellan, 1988,

p. 35).

Mann-Whitney U-test

�eMann-Whiteney U-test is a non-parametric test for comparing two

independent conditions and can be seen as the non-parametric alter-

native to the independent t-test (Field, 2005, p. 522). More formally

the Mann-Whiteney U-test can “be used to test whether two indepen-

dent groups have been drawn from the same population” (Siegel and

Castellan, 1988, p. 128). According to Lowry (2008, chapter 11a) the

assumptions of the Mann-Whitney U-test are:

1 �e two samples under test should be randomly and independently

drawn.

2 �e dependent variable should be intrinsically continuous.

3 �e measures of the two samples should be at least of an ordinal scale.

We used the Mann-Whitney U-test when comparing di�erences

between our experiment group and control group.

Wilcoxon signed-rank test

�eWilcoxon signed-rank test is a non-parametric test for comparing

two related conditions and is a non-parametric alternative to the de-

pendent t-test (Field, 2005, p. 534). �e assumptions of the Wilcoxon

signed-rank test are similar to those of theMann-WhitneyU-test (Lowry,

2008, chapter 12a):

1 �e paired values of XA and XB should be randomly and independently

drawn.

2 �e dependent variable should be intrinsically continuous.

3 �e measures of the paired values XA and XB should be at least of an

ordinal scale.

75

�eWilcoxon signed-rank test was used for comparing di�erences

within groups between the pretest and posttest.

Level of signi�cance

For the two statistical test we’ve described we decided on a level of

signi�cance α of p ≤ 0.05. �is is the level for α we worked with based

on our sample size and the importance of the results which will be

obtained (Siegel and Castellan, 1988, pp. 8–9).

Outliers

Wewent through the collected data looking for outliers – “deviant scores

that [. . .] are uncommon score or they range far from the central ten-

dency of the data set” (Coolidge, 2006, p. 84). We were only concerned

with such numerical outliers for ratio values (age, number of favorites)

where it would be meaningful to talk about means. For ordinal values

we were not concerned with such outliers as we operated with medians

for conveying the center of a distribution. If outliers were found, the

value was simply deleted from the sample.

Another form of outliers can be respondents which respond very

monotonous – indicating that they just tick o� questions without any

thought. In such cases the respondents motivation is to complete the

questionnaire as fast as possible. We did not eliminate such responses

from the sample as it’s hard to know the exact motivations of the re-

spondents. In addition we don’t have a particular large set of values for

each respondent to base such analysis on. It would therefore be hard to

distinguish such outliers.

5.3 results

Figure 5.2 gives an overview of how many respondents we had to our

pretest, posttest, and follow-up questions. As seen in the �gure the

non-achievement rate was quite high from the initial sample N to the

respondents of our pretest n1. �e non-achievement rates was more or

less constant from pretest respondents n1 to treatment E1 and placebo

C1 obtention, to successful treatment E2 and placebo C2 installation,

and �nally to posttest respondents E3 and C3. �e non-achievement

rate for going through all steps from a pretest (n = 123) to the posttest

(n = 14 + 11 = 25) is quite high at 79.7%.

Table 5.2 (p. 78) shows the gender distribution and mean age of both

our experiment group, control group, and the respondents which never

got a treatment or placebo. �e age di�erences between groups are

unnoticeable and far from statistically signi�cant. �e data shows that

the majority of respondents were male.

In addition to gather characteristics about age and gender we also in-

vestigated how frequent respondents used Firefox as their browser, how

76

Sample N = 171

Placebo C1 = 36

Pretest

Posttest

E2 = 25

Follow-up

n1 = 123

C2 = 20

n2 = 38

E3 = 14 C3 = 11

Treatment E1 = 35

(rand.)

84.4%

42.2%

36.6%

44.4%

Figure 5.2: Non-achievement rates for the various parts of the experiment. �e sample N of 171

Urørt users were given a pretest and a sample n1 of 123 completes the pretest. By randomization

a sample E1 of 35 were given a treatment while a sample C1 of 36 were given a placebo. �e

sample n1 were given a follow-up questionnaire for checking how the installation of the

prototypes went. n2 completed the follow-up questionnaire. A sample E2 of 25 and a sample

C2 of 20 managed to install the treatment and placebo prototype respectively. Of those, a

sample E3 of 14 from the treatment sample E2 and a sample C3 of 11 from the placebo sample

C2 completed a posttest.

77

Gender (%)

N female male Age σ U Z p (2-tailed)

E 13 14.3 85.7 26.23 10.902 68.5 -0.174 0.876 E – C

C 11 — 100.0 24.55 7.917 580.0 -0.468 0.645 E – Rest

Rest 97 8.2 91.8 26.81 9.324 475.0 -0.595 0.559 C – Rest

Table 5.2: Respondents gender and age. Comparison of age between experiment group, control group, and those not

given treatment or placebo.

N Mdn Rng U Z p (2-tailed)

E 14 5 3 70.5 -0.407 0.707 E – C

Firefox usageC 11 5 2 668.0 -0.181 0.887 E – Rest

Rest 98 5 3 508.5 -0.352 0.748 C – Rest

E 14 3 4 47.5 -1.757 0.085 E – C

Urørt usageC 11 4 2 653.5 -0.294 0.773 E – Rest

Rest 98 3 4 353.5 -1.918 0.055 C – Rest

E 14 4 3 63.5 -0.774 0.462 E – C

Authenticated usageC 11 3 3 572.5 -1.035 0.306 E – Rest

Rest 98 3 3 527.5 -0.125 0.920 C – Rest

Table 5.3: Respondents Firefox and Urørt usage. Comparison between experiment group, control group, and those

not given treatment or placebo.

o�en they usedUrørt, and how o�en they usedUrørt in an authenticated

state. Based on the questions:

• Do you use Firefox?

• Do you sign-in (with user name and password) when using Urørt?

we graded respondents answers as follows:

• Always: 5

• Regularly: 4

• Sometimes: 3

• Seldom/never: 2

Based on the question: “How o�en do you use Urørt?” we graded

respondents answers as follows:

• Daily: 5

• Several times a week: 4

• Weekly: 3

• Monthly: 2

• Seldom/never: 1

78

Mdn∑ E

N Mdn −Mdn∑C Rng U Z p (1-tailed)

E 12 5
1

4
45 -1.353 0.089

C 11 4 3

Table 5.4: Up-to-date on favorites’ activities. Comparison between experiment and

control group for the posttest.

�e data in Table 5.3 shows little di�erence in Firefox usage between

groups – the di�erences are far from statistically signi�cant. �e same

trend can be observed for whether the respondents are authenticated

when they use Urørt.

In actual Urørt usage, we observe that control group respondents had

higher usage frequencies, both compared to experiment respondents

and respondents which never were given a treatment or placebo. �e

di�erence is close to statistically signi�cant, compared between the

control group and those without treatment or placebo (respondents not

having tried to install our prototype).

5.3.1 rp1: Do users perceive social navigation through

activity streams as helpful in order to keep up-to-date

on favorites’ activities on Urørt?

Our H0 stated that we would not see any positive change in how easy

respondents felt it was to keep up-to-date on favorite’s activities a�er

introducing an activity steam. OurHA said thatwewould indeed observe

a change in how respondents rated this task.

Activities in general

Based on the statement “It’s easy to keep up-to-date on what my favorites

are doing on Urørt” we graded respondents answers as follows:

• Fully disagree: 1

• Somewhat disagree: 2

• Neither agree nor disagree: 3

• Somewhat agree: 4

• Fully agree: 5

First we compared how easy respondents felt it was to keep up-to-

date on favorites’ activities a�er they were given a treatment (an activity

stream) or a placebo. See Table 5.4 for the results.

�e results show a tendency towards higher acceptance scores for

experiment respondents having used an activity stream, than control

respondents with a placebo. �is di�erence is however not statistically

signi�cant.

79

Post Mdn∑ E

N Mdn − Pre −Mdn∑C Rng T Z p (1-tailed)

E
Pre 14 3

2

1

4
10 -1.513 0.086

Post 12 5 4

C
Pre 11 3

1
3

16 -0.787 0.258
Post 11 4 3

Table 5.5: Up-to-date on favorites’ activities. Comparison between pretest and posttest within the

experiment and control group.

�en we tested if there was a change in acceptance within the re-

spondent groups from before they were given a treatment or placebo

and a�er. �e results can be seen in Table 5.5.

�e data shows a tendency towards higher acceptance rates from the

pretest to the posttest for both experiment and control respondents. �e

acceptance of the statement about how easy it was to keep up-to-date

on favorites’ activities have risen more for the respondents having used

an activity stream than those with a placebo. Neither of these increases

are statistically signi�cant.

Speci�c activities

We’ll now look at respondents answers to more speci�c statements about

keeping up-to-date on activities. Based on the statements:

• It’s easy to keep up-to-date on whether my favorites publishes new songs

on Urørt.

• It’s easy to keep up-to-date on whether my favorites publishes new blog

posts on Urørt.

• It’s easy to keep up-to-date on whether my favorites are performing at

concerts.

• It’s easy to keep up-to-date on the reactions other users at Urørt have

towards my favorite artists’ songs.

we graded respondents answers as follows:

• Fully disagree: 1

• Somewhat disagree: 2

• Neither agree nor disagree: 3

• Somewhat agree: 4

• Fully agree: 5

We compared how easy respondents felt it was to keep up-to-date on

favorites’ speci�c activities a�er they are given a treatment or a placebo.

See Table 5.6 for the results.

�e reported degree of how easy it is to keep up-to-date on new

songs, blogs posts, and reviews is higher for those which used an activ-

80

Mdn∑ E

N Mdn −Mdn∑C Rng U Z p (1-tailed)

E 12 5
1,0

4
59 -0.479 0.340 Song

C 11 4 2

E 12 4.5
1.5

4
59 -0.460 0.289 Blog

C 11 3 2

E 12 3.5
-0.5

4
66 0.000 0.517 Concert

C 11 4 3

E 12 3.5
0.5

4
60 -0.385 0.372 Review

C 11 3 3

Table 5.6: Up-to-date on favorites’ speci�c activities. Comparison between experiment and

control group for the posttest.

ity stream than those without. Respondents using and activity stream

reported a lower values of how easy it was to keep up-to-date on con-

certs compared to those without such treatment. Neither the tendencies

towards increases and decreases in degrees of keeping up-to-date, from

the control group to the experiment group, were statically signi�cant.

As for general activities, we also tested whether respondents percep-

tion of how easy it was to keep up-to-date on speci�c activities from

favorites had changed from before a treatment or placebo was given, to

a�er. See Table 5.7 (p. 82) for the results of the in group comparisons.

�e within group data shows that experiment respondents and con-

trol respondents �nd it easier to keep up-to-date on recent songs and

concert performances a�er the treatment or placebo was given. �e in-

creases are of the same order for both those which used an activity stream

and those without. Neither of the two groups increases for concerts is

statistically signi�cant. �e experiment groups’ increase is signi�cant

for songs while the control groups’ increase for songs is insigni�cant.

Note that the di�erence between p values for the two groups related to

songs are marginal.

Respondents having used an activity stream saw an increase in me-

dian response from “neither agree or disagree” to “fully agree” regarding

how easy it was to keep up-to-date on blog posts of favorites. �is di�er-

ence is statistically signi�cant. �e control group saw no such increase

a�er they were given a placebo.

On the topic of how easy respondents could keep up-to-date on

reviews of favorites’ songs the experiment group saw no change a�er

treatment while the control group saw a decrease a�er having used a

placebo. �is decrease is not statistically signi�cant.

Perceived usefulness

Like Davis (1989) we asked respondents about the perceived usefulness

of the prototype they were given (an activity stream or a placebo) in

81

Post Mdn∑ E

N Mdn − Pre −Mdn∑C Rng T Z p (1-tailed)

E
Pre 14 4

1

0

4
8.0 -1.780 0.049

Song
Post 12 5 4

C
Pre 11 3

1
3

4.0 -1.709 0.055
Post 11 4 2

E
Pre 14 3

1.5

1.5

3
9.5 -1.872 0.039

Blog
Post 12 4.5 4

C
Pre 11 3

0
3

13.0 -1.150 0.166
Post 11 3 2

E
Pre 14 3

0.5

-0.5

3
7.5 -1.127 0.188

Concert
Post 12 3.5 4

C
Pre 11 3

1
3

5.5 -1.063 0.203
Post 11 4 3

E
Pre 13 3

0.5

1.5

4
4.5 -1.298 0.125

Review
Post 12 3.5 4

C
Pre 11 4

-1
3

9.5 -0.780 0.281
Post 11 3 3

Table 5.7: Up-to-date on favorites’ speci�c activities. Comparison between pretest and posttest within the experiment

and control group.

relation to keeping up-to-date on favorites. Based on the statements:

• “Latest from your Favorites” would enable me to keep up-to-date on my

favorites in an e�cient manner.

• “Latest from your Favorites” would enable me to keep up-to-date on

more favorites.

• “Latest from your Favorites” would make it easier to keep up-to-date on

favorites.

• “Latest from your Favorites” would be useful for keeping up-to-date on

favorites.

were graded respondents answers as follows:

• Extremely unlikely: 1

• Unlikely: 2

• Slight unlikely: 3

• Neutral: 4

• Slight likely: 5

• Likely: 6

• Extremely Likely: 7

As these statements were only given in the posttest we compared

how e�cient, quanti�able, easy, and useful respondents felt it was to

82

Mdn∑ E

N Mdn −Mdn∑C Rng U Z p (1-tailed)

E 12 6.5
0.5

3
58.0 -0.547 0.355 E�ective

C 11 6 2

E 12 6
0

3
62.0 -0.270 0.387 More

C 11 6 2

E 12 6.5
0.5

3
55.5 -0.707 0.286 Easier

C 11 6 2

E 12 6
0

3
60.5 -0.370 0.400 Useful

C 11 6 2

Table 5.8: Perceived usefulness of “Latest from your Favorites”. Comparison between experi-

ment and control group for the posttest.

keep up-to-date on favorites’ speci�c activities a�er they had used an

activity stream or a placebo. In other words we compared the di�erence

between the experiment and control group. See Table 5.8 for the results.

�e data shows no di�erences in ranking regarding “Latest from

your Favorites” perceived ability for enabling respondents to keep up-to-

date on more favorites and general usefulness for keeping up-to-date on

favorites, between the experiment and control group. �e experiment

group shows a small increase in the ranking of “Latest from your Fa-

vorites” e�ectiveness and easefulness for keeping up-to-date on favorites

compared to the control group. �ese di�erences is not statistically

signi�cant.

Perceived ease of use

Borrowing from the works of Davis (1989) again, we asked respondents

about the perceived ease of use of the prototype they were given (an

activity stream or a placebo). Based on the statements:

• It would be easy to learn to use “Latest from your Favorites”.

• It would be easy to make “Latest from your Favorites” do what I want.

• It would be easy to become skillful at using “Latest from your Favorites”.

• “Latest from your Favorites” would be easy to use.

were graded respondents answers as follows:

• Extremely unlikely: 1

• Unlikely: 2

• Slight unlikely: 3

• Neutral: 4

• Slight likely: 5

• Likely: 6

83

Mdn∑ E

N Mdn −Mdn∑C Rng U Z p (1-tailed)

E 12 6
0

3
57.5 -0.561 0.320 Easy to learn

C 11 6 3

E 12 5.5
-0.5

3
50.5 -1.025 0.177 Flexible

C 11 6 4

E 12 6
0

3
58.5 -0.486 0.343 Become skillful

C 11 6 3

E 12 6
0

4
59.5 -0.429 0.372 Easy to use

C 11 6 3

Table 5.9: Perceived ease of use for “Latest from your Favorites”. Comparison between experiment and

control group for the posttest.

• Extremely Likely: 7

Just as the perceived usefulness statements, these statements were

only given in the posttest. We compared the responses to these state-

ments between the experiment and control group to see if the introduc-

tion of an activity stream or placebo made a di�erence in how easy the

respondents perceived “Latest from your Favorites” would be to use. See

Table 5.9 for the results.

�e ease of use data shows little di�erences between the groups.

�e respondents perception of how �exible “Latest from your Favorites”

would be in use are actually higher for the control group – does not

using an activity stream but a placebo. �is di�erence is not statistically

signi�cant.

Activity stream as standard feature

We wanted to measure how well perceived the prototype was, by asking

if people would want the functionality we provided to be a standard

feature on the Urørt web site. Based on the question:

• Do you think “Latest from your Favorites” should be a standard feature

of Urørt?

we graded respondents answers as follows:

• Fully disagree: 1

• Somewhat disagree: 2

• Neither agree nor disagree: 3

• Somewhat agree: 4

• Fully agree: 5

84

Mdn∑ E

N Mdn −Mdn∑C Rng U Z p (1-tailed)

E 11 5
0

1
55.0 -0.607 0.500

C 11 5 1

Table 5.10: �e prototype as a standard feature. Comparison between experiment and

control group for the posttest.

Mdn∑ E

N Mdn −Mdn∑C Rng U Z p (1-tailed)

E 13 2
-1

2
24.5 -2.955 0.002

C 11 3 2

Table 5.11: Frequency of keeping up-to-date on favorites’ activities. Comparison

between experiment and control group for the posttest.

�is question was naturally only asked in the posttest a�er usage.

Table 5.10 compares responses between the experiment and control

group.

�e standard feature data shows equally positive results for both

groups. �ere is no signi�cant di�erence in the results.

5.3.2 rp2: Does social navigation through activity streams

lead users to more o�en keep up-to-date on favorites’

activities on Urørt?

Our H0 stated that we would not see any increase in how frequent

experiment respondents kept up-to-date on favorites’ activities a�er

giving them an activity stream. �e alternative HA contradicted this

and said an activity stream would increase the frequency of how o�en

experiment respondents were keeping up-to-date.

Keeping up-to-date frequency

Based on the question “How o�en do you update yourself on what your

favorites onUrørt are doing?” we graded respondents answers as follows:

• Daily: 5

• Several times a week: 4

• Weekly: 3

• Monthly: 2

• Seldom/never: 1

First we compared how frequent respondents having used an activity

stream kept up-to-date with those which hadn’t used an activity stream.

�e results are displayed in Table 5.11.

85

Post Mdn∑ E

N Mdn − Pre −Mdn∑C Rng T Z p (1-tailed)

E
Pre 13 1

1

1

2
10 -1.941 0.046

Post 13 2 2

C
Pre 11 3

0
2

8 -1.134 0.227
Post 11 3 2

Table 5.12: Frequency of keeping up-to-date on favorites’ activities. Comparison between pretest

and posttest within the experiment and control group.

Mdn∑ E

N Mdn −Mdn∑C Rng U Z p (1-tailed)

E 12 3
1

2
40.0 -1.771 0.056

C 11 2 2

Table 5.13: Frequency of using “Latest from your Favorites”. Comparison between

experiment and control group for the posttest.

As can be seen from the data, respondents which had used an activity

stream reported lower frequencies of use than those which had used a

placebo. �is di�erence is highly signi�cant.

As for our previous two research questions and hypotheses we’ve also

checked if there were changes in the frequency of keeping up-to-date

within the experiment and control groups from before they were given

a treatment or placebo, to a�er. �e results can be seen in Table 5.12.

�e results show a di�erent picture than the between group posttest

results. Here we see that the frequency of keeping up-to-date have in-

creased over time for those respondents which used an activity stream.

�ose respondents with a placebo show a stagnation in the frequency of

keeping up-to-date. �e increase for experiment respondents is statisti-

cally signi�cant.

Prototype usage frequency

We did also collect information in the posttest of how frequent respon-

dents had used the prototype. Based on the question:

• How frequently have you used “Latest from your Favorites” when you

are signed-in on Urørt?

we rated respondents answers as follows:

• Have not used: 1

• Only a few times: 2

• almost every time: 3

86

Mdn∑ E

N Mdn −Mdn∑C Rng U Z p (1-tailed)

E 13 8
0

49
68.5 -0.174 0.438

C 11 8 38

Table 5.14: Number of favorites. Comparison between experiment and control group

for the posttest.

Post Mdn∑ E

N Mdn − Pre −Mdn∑C Rng T Z p (1-tailed)

E
Pre 13 8

0

-2

50
39.0 0 0.515

Post 13 8 49

C
Pre 11 6

2
35

22.0 -0.059 0.5
Post 11 8 38

Table 5.15: Number of favorites. Comparison between pretest and posttest within the experiment and

control group.

• every time: 4

Table 5.13 lists an comparison between the experiment and control

group for this question and ratings.

�e data shows that the experiment respondents used the prototype

more frequently when they were logged in to Urørt than the control

respondents. �is di�erence is however not statistically signi�cant.

5.3.3 rp3: Does social navigation through activity streams

lead users to make more artists on Urørt their

favorites?

Our H0 hypothesized that the amount of favorites would be greater for

the experiment group (due to their activity stream usage) in comparison

to the control group. First we looked at the di�erences between the

experiment and control group, as can be seen in Table 5.14.

�e data shows no notable nor signi�cant di�erence between the

amount of favorites for the two groups. �e range of favorites are greater

for the experiment group, but their medians are equal.

We also looked at di�erences in the amount of favorites within both

the control and experiment group from the pretest to the posttest. �e

data is summarized in Table 5.15.

�e within group data shows that there have been minimal devel-

opment in the amount of favorites for the experiment group a�er the

activity stream was used. �e control group have seen an increase in

the median amount of favorites. �is change is far from statistically

signi�cant.

87

N %

26 68.4 Yes, it was an easy and quick process

3 7.9 Yes, but I experienced small problems

0 0.0 Yes, but I experienced large problems

9 23.7 No – I gave up

Table 5.16: Successful and non-successful installation of the prototype.

Successful (%) Failed (%)

Follow-up questions 76.3 23.7

Actual non-accomplishment rates 63.4 36.6

Table 5.17: Drop o� for installation of the prototype.

5.3.4 rp4: Can prototyping with Greasemonkey be

considered a viable technical option when testing user

behavior in an established web site?

We collected responses about how the prototype installation process

went in a separate survey, in between the pretest and posttest. �e results

can be seen in Table 5.16.

�e data shows that 26 + 3 = 29 of 38 respondents (76.3 %) to this

particular survey managed to install the prototype.

Another data source for how respondents fared when trying to install

our prototype are the non-accomplish rates found in Figure 5.2 (p. 77).

�is data shows that of the 71 (E1 + C1) respondents which bothered

trying installing the prototype, only 45 (E2 +C2) managed to do so. �is

equates to 63.4% of the participants. Table 5.17 shows a comparison of

the actual non-accomplishment rates and the follow-up survey.

5.4 discussion

�is section will discuss our various research questions in relation to

the results we’ve presented. We’ll start with looking at several aspects

of activity streams as a social navigation mechanism before we discuss

prototyping with Greasemonkey on an established web site.

As stated earlier, we workedwith a level of signi�cance α of p ≤ 0.05.11. See § 5.2.4 (p. 76) for details.

Rosnow and Rosenthal (1989, p. 1277) argues that “surely, God loves the

.06 nearly as much as the .05”. We are therefore going to discuss results

with values of p approaching α in a �exible fashion in this section.

Based on our pro�ling of the respondents2 we found the two groups2. See Table 5.3 (p. 78) for details.

which were using our implementation to be representative of the general

sample in all aspects, except in how frequent they used Urørt. �e

control group used Urørt more frequent than than both the general

sample and the experiment group with a probability of 0.055 compared

88

to the general sample. We argue that this makes the control group more

experiencedUrørt users than the experiment group. �is is an important

aspect which we’ll try to keep in mind in the discussion about activity

streams which follows.

5.4.1 rp1: Do users perceive social navigation through

activity streams as helpful in order to keep up-to-date

on favorites’ activities on Urørt?

We hypothesized that usage of activity streams would improve the level

of which participants could keep up-to-date on what their favorites on

Urørt were doing.

Activities in general

Comparing how easy respondents felt it was to keep up-to-date on activ-

ities within the experiment and control group,3 we observed a higher 3. See Table 5.5 (p. 80) for details.

increase in agreement for the experiment group. �e increase of agree-

ment for the control group could be explained as a placebo e�ect. Since

the probability of making a type I error are p = 0.086, we simply take

this result as an indication and not as hard proof for validating our

alternative hypothesis.

In addition the comparison within groups, we also compared the

di�erences between the two groups. We observed similar positive results

for activity streams with p approaching α with 0.089. We take the higher

increase of agreement for the experiment group as an indication of the

appropriateness of an activity stream for keeping up to date on activities.

Due to lack of signi�cant evidence we can not reject H10 regarding

keeping up-to-date on activities in general.

Speci�c activities

When asking participants to qualify more speci�c statements of how

easy they felt they could keep up-to-date on di�erent types of activities,

we observed di�erences between4 the groups and within the groups5. 4. See Table 5.6 (p. 81) for details.

5. See Table 5.7 (p. 82) for details.

�e between group data showed no signi�cant nor borderline signi�cant

di�erences between groups. �is contradicts the borderline signi�cant

results we found with the same comparison on activities in general.

When comparing within groups, the only notable and signi�cant

di�erence appeared for activities relating to publishing new blog posts.

Based on this evidence we reject H10 in favor of H1A for speci�cally

keeping up-to-date on blog posts.

We did �nd signi�cant evidence of a an increase in ease of keeping

up-to-date on songs for respondents which used an activity streamwhile

those without had insigni�cant increases. �e di�erence of signi�cance

were quite small, so H0 stands accepted for songs.

89

We found no signi�cant di�erences while using an activity stream

for both concerts and reviews. H0 therefore stands accepted for concerts

and reviews.

Why do users of activity streams so strongly feel that the stream

help them to better keep up-to-date on recent blog posts and not the

other types of activities? One possible explanation could be that the

activity stream shows an excerpt of blog posts a�er the blog author and

title.6 �is means that the user can get a glimpse into the content of

6. �e activity stream with excerpts

can be seen in Figure 4.5 (p. 53).

the blog post without actually navigating to the post itself. But reviews

from other users are also displayed with an excerpt of its content. We

therefore �nd this explanation to be highly suggestive. It might be that

respondents from the experiment group answered with such a strong

tendency towards the usefulness of activity streams with regards to blog

posts by chance.

Our data shows no indicators as why we experienced contradicting

results when asking how easy users could keep up-to date on activities

in general compared to speci�c activities. A possible explanation could

be that respondents only formed a general impression of the usefulness

of the activity stream due to the short period respondents had access

to the feature. �ey were possibly unable to use all parts of the activity

stream and have therefore no speci�c meanings about these.

Wenote this as a potentially useful lessonwhen conducting questions

about the ease of conducting a task. In our case, asking more generally

gave larger di�erences than asking more speci�c questions.

Perceived usefulness

We tried to characterize in what way activity streams could be better than

no such feature for keeping up-to-date on favorites by asking respondents

to gauge statements of perceived usefulness.7 �e results of asking in7. See Table 5.8 (p. 83) for details.

this manner yielded no noticeable nor signi�cant di�erences between

experiment and control respondents. Similarly to asking for speci�c

activities, asking for speci�c qualities of keeping up-to-date seems to

result in only minor di�erences between groups. �e H10 can not be

rejected regarding perceived usefulness of an activity stream as a means

to keeping up-to-date on favorites.

Perceived ease of use

Our investigation into the perceived ease of use8 showed only minor8. See Table 5.9 (p. 84) for details.

di�erences between experiment and control groups. On the issue of how

�exible the prototype was, respondents from the control group actually

reported higher acceptance to our statements. In light of this evidence

H10 can not be rejected regarding perceived ease of use for an activity

stream as a means to keeping up-to-date on favorites.

We think the reason for this lies in the nature of asking respondents

about ease of use without mentioning for what task the prototype should

90

be easy to use. Our placebo prototype had fewer features (lacking activity

streams) and was more simple than the experiment prototype with an

activity stream. Surely the simplest application would be easier to use as

there are less information and less navigational possibilities available.

�e statements of perceived ease of use investigates the overall ease of

using the application, not how easy it to use for keeping up-to-date

on activities. �ey measure technological acceptance and not actual

acceptance of the application to perform a particular task.

Activity stream as standard feature

Relating to perceived ease of use and technological acceptance is our

question about whether respondents wanted the prototype to be a stan-

dard feature on Urørt. �e results9 indicated a dead race between the 9. Table 5.10 (p. 85) lists the results.

prototype with an activity feed and the prototype without. While this

data does not show a higher liking of activity feeds, it’s interesting to note

how high the acceptance as a standard feature are from our respondents.

Even the placebo – composed of only a list of a user’s favorites – seems

to be so useful for respondents that they want it included together with

Urørt’s standard features.

Activity streams for keeping up-to-date on favorites

Our data have showed inconclusive results for whether activity streams

help users in keeping up-to-date on activities. �ere seem to be an

indication of the usefulness of activity streams in this regard. Activity

streams clearly makes the task of keeping up with blog posts on Urørt

easier.

We’ve seen how one asks respondents questions can make a di�er-

ence in the results one are able to obtain. In our case, more speci�c

questions yielded answers further from where we believed them to be

based on our hypotheses. A more general question resulted in data more

in line with our expectations.

5.4.2 rp2: Does social navigation through activity streams

lead users to more o�en keep up-to-date on favorites’

activities on Urørt?

We hypothesized that usage of an activity stream would result in higher

frequencies of keeping up-to-date on favorites’ activities on Urørt.

Keeping up-to-date frequency

As we indicated in the beginning of our discussion the control respon-

dents seemedmore experienced with using Urørt. �is is evident in how

frequent they keep up to date compared to experiment respondents for

91

the posttest.10 �e control group’s more frequent action of keeping up-to-10. See Table 5.11 (p. 85) for details.

date is highly signi�cant. When we compared the shi� in the frequency

of keeping up-to-date from the pretest to the posttest11 we noticed, that11. See Table 5.12 (p. 86) for details.

the control group’s frequency is practically unchanged. Interestingly the

experiment respondents frequency of keeping up-to-date have increased

signi�cantly over the same period. �is is a good example of how our

pretest and posttest experiment design have enabled us to look at change

over time within groups, without jumping to inconclusive inferences by

looking only at the state a�er the treatment or placebo was introduced.

In light of the signi�cant within group increases for keeping up-to-

date for experiment respondents compared to control respondents, we

reject our H20 in favor of the H2A.

Prototype usage frequency

Our data concerning actual usage frequencies of the prototype12 supports12. See Table 5.13 (p. 86) for details.

the increase of keeping up-to-date for experiment respondents. �e

increase in usage approaches α with p = 0.056.

�is data is however di�erent than our �ndings of howo�en the same

groups kept up-to-date on favorites’ activities. �e prototype usage data

showed that the experiment group had a higher usage rate of “Latest from

your Favorites” than the control respondents. �e results approaches α

with p = 0.056.

Does this mean that these two data sources contradict each other?

Not necessarily. �e �rst frequency of use statistics shows how o�en the

two groups kept up-to-date on activities while the second shows how

o�en the two groups used our prototype. We believe the lower control

group usage of the prototype is related to the lower usefulness of the

placebo implementation.

Why do the control group then report higher frequencies for keeping

up-to-date on activities? �ere could be several reasons, but we believe

this could indicate that the control group are keeping up-to-date on

favorites’ activities with other means than the placebo prototype imple-

mentation alone. �is could then indicate that the prototype without an

activity stream is less useful for keeping up-to-date on activities.

Keeping up-to-date more o�en with activity streams

To summarize, we believe that an activity stream makes respondents

more o�en keep up-to-date on activities than without. �ose having

used such a tool reported larger changes over time in how frequent they

conducted such tasks than those which did not. When one takes into

account how o�en the prototype implementation was used, it seems like

the prototype without an activity stream is less suitable for keeping up-

to-date than that which implements such a feature. Respondents without

an activity stream would then need to keep up-to-date on activities with

other means than solely relying on the prototype.

92

5.4.3 rp3: Does social navigation through activity streams

lead users to make more artists on Urørt their

favorites?

We hypothesized that usage of activity streams on Urørt would make

respondents add more artists to their list of favorites.

As our data13 showed, we found no evidence whatsoever for our 13. See Table 5.13 (p. 86) for details.

claims of increases in number of favorites a�er having used an activity

stream. We believed that the increased focus on favorites and their

activities through an activity stream would lead users to make more

artists their favorites. Based on the data we’ve provided, the H0 for the

number of favorites related to an activity stream can not be rejected.

One reason for this mismatch between our hypotheses and the ev-

idence could be that there is no explanation of the bene�ts of adding

favorites on Urørt. When a user is browsing the pro�le page of an artist

there is no statement along the lines of: “become a favorite of this artist

and get automatically updated on their latest activities”. Such a reminder

of one bene�t of adding artists as favorites could possibly lead to more

favoring.

Another reason for this discrepancy could be the short time our

prototype was in use by experiment respondents. Just over a week could

be too small a timewindow formeasuring changes in howmany favorites

respondents were adding.

5.4.4 rp4: Can prototyping with Greasemonkey be

considered a viable technical option when testing user

behavior in an established web site?

When we conducted the experiment of our prototype with real world

users we got valuable feedback on how well such a technical solution

works. Since Greasemonkey enabled client with a dedicated server

back-end is (to our knowledge) a new way of experimenting with social

navigation, we did not make any hypotheses about the failure or success

of the solution. We consider this early work on such prototypes where a

few lessons were learnt.

Limitations in browser selection

As described in § B.1.1 (p. 142) there exists Greasemonkey-like imple-

mentations for all major browsers. Greasemonkey for Firefox is the only

implementation that supports sending requests to other domains than

the domain a user-script is running under. �is means that if one have

to use a server back-end to handle the heavy li�ing (as we did), one are

limited to using Firefox as a browser platform.14
14. Unless one have the opportunity

to run the server so�ware under

the domain of the web site one are

prototyping. We had no such luxury.
Targeting only Firefox as a platform means that one are unable to

reach all potential users. �e amount of Firefox users lies somewhere

93

between one tenth and one quarter of all web citizens.15 Installing a15. �e amount of users which use

Firefox can vary between di�erent

populations. According to OneS-

tat.com (2008) 13.8% of users world

wide used Firefox in February 2008.

�e market share for Firefox in Eu-

rope lied on 19.7% in February 2008

according to Adtech (2008). XiTi

Monitor (2008) reports the usage to

be 28.8% for Europe in March 2008

while 20.3% for Norway (our candi-

date country) for the same period.

new web browser to take part in an experiment is a lot to expect from

end-users. One therefore have to take into account the limited outreach

Firefox have when deciding on a Greasemonkey based prototype.

We speci�cally asked for users of Firefox when we contacted 789

potential respondents. 171 responded to our request, while 123 com-

pleted our pretest survey.16 �ose who completed the pretest survey

16. See Figure 5.2 (p. 77) for details.

reported a median usage frequency of Firefox as “always”.17 �is means

17. See Table 5.3 (p. 78) for details.

that from 789 people, 171 (22%) bothered to take our survey and was

likely a Firefox user. �is means that either almost 100% of all potential

respondents with a Firefox web browser decided to answer our survey

(highly unlikely) or Firefox usage for our sample of Urørt users were

above the norm for Norway.

Di�culties with installing Greasemonkey and user-scripts

Installing our prototype so�ware consisted of two steps:

1 Installing the Greasemonkey Firefox extension.

2 Installing our prototype user-script for Greasemonkey.

�e �rst step in the installation process consisted of (i) navigating to

the Greasemonkey installation page, (ii) clicking an installation button

on the page, (iii) clicking on another installation button in an installa-

tion dialog, and (iv) restarting the Firefox browser. �e second step in

the installation process consisted of (i) �lling out an email address,1818. We needed the respondents’

email addresses for associating

answers to the pretest with the

group each respondent was ran-

domly distributed to if they de-

cided to install our prototype.

(ii) pressing an install hyperlink on the user-script installation page, and

(iii) clicking on an installation button in a user-script installation dialog.

It’s evident that this multi-step process can be a bit complicated for the

average user. We tried to make the separate steps as seamless as possible

by providing screen dumps with descriptions for all parts of the process.

Our non-accomplish rates showed a drop o� rate of 36.6% while our

follow-up survey showed a drop o� rate of 23.7%.19 �is discrepancy19. See Table 5.17 (p. 88) for details.

probably shows that frustrated respondents which did not manage to

install the so�ware were less inclined to take a follow-up survey.

�ese are quite high rates of unsuccessful installations and one

should keep this in mind when one designs an experiment where re-

spondents have to install Greasemonkey and user-scripts themselves. To

solve this problem one could design an experiment where participants

were invited to a lab (where all so�ware were pre-installed). A lab study

have its shortcomings too, as we’ve described in § 5.2.1 (p. 69).

[

During our development of a prototype application with Greasemonkey

for enhancing an established web page we also got a feel for its pros and

cons from a development perspective.

94

Unobtrusive for the established implementation

Prototyping with Greasemonkey is unobtrusive for both the creators

of a web site and its users. One are only manipulating pages on an

already existing web site when having explicitly installed Greasemonkey

and an accompanying user-script. �is means that one can conduct

experiments by altering a web site without contacting its authors, nor

having to inform the web site’s existing users. One are in other words

only altering content on the client side – in the browser. Normal users

are presented with the web site as served by its the web server.

We had contact with the creators of Urørt during our prototype im-

plementation phase. But the prototype could just as well be implemented

without having contact with the creators.20 20. Easy access to experiment par-

ticipants was the main bene�t we

had with keeping in contact with the

creators of Urørt.

�e creators of Urørt bene�ted from a Greasemonkey approach

since they could keep going on with their work without worrying about

potential breakage caused by our prototype. Since we did not access

their implementation we could not make any harm on the product that

was delivered to non-experiment users.

Requires little knowledge of the established implementation

If we had been permitted access to the Urørt implementation we imagine

there would be a large upfront investment in learning how the Urørt ar-

chitecture worked before we could start conducting any implementation

work. With a Greasemonkey approach, there was some learning which

had to be completed before we could dive in to implementation work,

but we believe this to be less than what would be required to change the

Urørt implementation.

Could require more work than altering the established implementation

In our work with creating a navigational prototype we had to investigate

how Urørt worked through its outward facing interface. �is was a

somewhat convoluted experience. We believe it would be much easier to

change the Urørt implementation directly had we been well acquainted

with its inner workings. If one knows the underlying implementation of

an established web site it’s probably easier to change that directly.

Fragile when the established implementation is changed

A Greasemonkey based prototype have to hook in to the structure of

the established web site one are prototyping. �e prototype can cease to

function properly if this underlying structure changes. �e amount of

harm such a change imposes depends on what parts of a client-server

Greasemonkey prototype it hits:

• Server side: If changes to the established web page breaks functionality

on the server side, the prototype would be unusable while the changes

95

are compensated for in the server side implementation. �e experi-

ment would probably not be jeopardized if one are able to sort out such

problems in a timely manner.

• Client side: If changes to the underlying web site hinder the client side

Greasemonkey user-script to hook in to the web site and change its

contents, one could be in a world of pain. Regardless of how easily the

breakage can be �xed, one would need to publish a new user-script

version and get experiment users to install this. Needless to say, this

could have major rami�cations on how well the experiment goes.

When we were developing our prototype, before the experiment

was conducted, the developers of Urørt imposed a change which made

our client side user-script malfunction. �e �x was easy and no harm

were done since the user-script had not been deployed to experiment

participants.

We did not experience any changes which imposed bugs in our

server side prototype component. Nevertheless, we were aware of the

possibility of such changes and tried to keep updated on how our pro-

totype functioned at all times. Since we used automated testing in our

development (see § 4.3.2 (p. 55) for details) we could verify our server

side implementation at all times.

5.5 generalizability and validity

�ere is a few factors which have to be taken into consideration when

reading the conclusions of our empirical study which we’ve recently

discussed.

5.5.1 Scale of experiment

As presented in § 5.3 (p. 76) we saw fairly high non-accomplishment rates

in our study. �is meant that we only had 25 respondents to our posttest.

�is number were four times lower than what we had expected.21
21. See § 5.2.2 (p. 70) for details

about our participation expectations.

5.5.2 Selection of subjects

We were only concerned with respondents which were users of the

Firefox web browser due to the technical solution we had selected for

our prototype. �ere is a strong possibility for Firefox users not being

representative for the Urørt populace. Installing a custom web browser2222. Unless one are using an operat-

ing system like gnu/Linux where

o�en Firefox is the default browser.
requires some technical knowledge. One could therefore argue that

Firefox users are more technical on average compared to people which

use their operating system’s default browser.

96

5.5.3 Technical seeding

In addition to recruiting only Firefox users we may have recruited the

more technical respondents due to our complicated installation process.

We have reason to believe that the more technical respondents had a

better chance to understand and successfully complete our prototype

installation process. �is means that the respondents which took our

posttest have a strong possibility of being more technical apt than those

respondents which only completed the pretest.

5.5.4 Motive for participation

A fairly technical installation process and two surveys can take an consid-

erable amount of time to complete. We have reason to believe that only

themost active Urørt users bothered to partake in our experiment. Users

who o�en visit Urørt are naturally more experienced in howUrørt works

and are therefore possibly not representative for the Urørt populace.

5.5.5 Implications

�e factors we’ve listed are all limitations of our study which could

interfere with the validity of our �ndings. In light of these limitations we

can not generalize our results to the general Urørt populace. �e work

we’ve provided is early research on activity streams and prototyping with

Greasemonkey, and should be considered as preliminary indications of

the usefulness of such solutions.

97

PART III

SUMMARY

6

CONCLUSION

�e results of the research which we have provided in this thesis can be

categorized into three venues:

1 We have given a structured overview of the �eld of social navigation as

seen both in academic literature and in some noticeable social web sites.

2 We have provided details of how one can implement unobtrusive pro-

totypes in established spaces and the feasibility of such a technical ap-

proach.

3 We have contributed knowledge of how activity streams functions as a

social navigation technique on the Urørt web site.

Based on these three venues we’ll provide themost important lessons

to take away from our research before we discuss possible future work

in these �elds.

6.1 lessons learnt

We believe there are both some theoretical and practical lessons to take

away from our research.

6.1.1 Social navigation

Social navigation can mean di�erent things as viewed in academic lit-

erature. We proposed a new de�nition of social navigation based on

our belief in the importance of peers in a social navigation system.1 1. �e de�nition can be found in

§ 3.3.3 (p. 44).�is means that the information given from other people which guide

navigation have to come from peers within the system where navigation

are conducted to be considered social navigation.

Information given by the creators or editors of a web site when

used for navigational purposes are therefore not social navigation. �e

creators can however implement structures in their web pages where

users of the system can impose information which can be used for social

navigation. One example of this divide can be found in recommender

systems. Content based recommendations is not social navigation since

the information used in the navigational process are given by the editors

of the web page. Recommendations given by collaborative �ltering is on

101

the other hand social navigation since the navigational information is

given by peers in the system.

6.1.2 Unobtrusive prototyping

Creating unobtrusive prototypes withGreasemonkey have its advantages

and disadvantages when used in real world experiments.

Greasemonkey is best �tted for situationswhere one don’t have access

to the established web site one are prototyping on. If one have access to

the inner workings of a web site, it would probably be more e�cient and

easier to implement the prototypewithin the established implementation.

Another bene�t of modifying the web site implementation itself is the

elimination of the Greasemonkey and user-script installation process,

in addition to wider browser support.

We found the major disadvantage of using Greasemonkey in a real

world experimental setting to be this complicated installation process

and limited browser support. We contribute this as the major factors

for the high non-accomplish rates we witnessed. Having conducted

experiments in a laboratory setting where users used pre-con�gured

web browsers would have mediated this problem.

6.1.3 Activity streams

Based on our experiment with activity streams on Urørt we have pro-

vided inconclusive �ndings of the success of such a social navigation

technique. We take our results as indications of the usefulness of activity

streams. Further research is needed to abandon the idea or recommend

its usage. Since we did not �nd any noticeable negative results towards

activity streams we can recommend implementations or prototypes of

this feature in web sites with similar dynamics to Urørt.

6.2 future work

Our new de�nition of social navigation in light of the essentialness of

peers were based on cursory observations and more detailed analysis of

two social web sites. We regard our �ndings of how social navigation

is used in social web sites as early work in this area which needs to

be expanded on. More widespread collection and analysis of social

navigation in modern web sites is needed to see if our observations

holds true.

We’ve described social navigation as a disparate �eld. We hope our

work to some extent can remedy this problem. One venue for further

work to make social navigation a better understood term would be to

create a taxonomy of social navigation types. A set of design patterns

for when, where, how, and why these various types of social navigation

should be used could accompanying such a taxonomy.

102

In light of the problems we experienced with adopting su�cient

number of experiment participants we see the need for a laboratory

study of activity streams. Had time permitted in our master thesis work

its quite plausible that we had conducted an in-lab experiment where

factors as technological ability of the respondents would not interfere

with the generalizability of our study.

�ere should also be studies conducted of the use of activity streams

over a longer period than 11 days as for our study. Its possible that activity

streams become more useful (or perhaps annoying and intrusive) a�er

prolonged use. We would also like to see what e�ects longer usage

periods could have on the importance of favorites on the Urørt web site.

103

BIBLIOGRAPHY

Abram, Carolyn. September 2006. Welcome to Facebook, Everyone.

In �e FacebookBlog. Retrieved May 30, 2008, from http://blog.
facebook.com/blog.php?post=2210227130. Cited on p. 41.

Adtech. April 2008. Survey Unveils Extent of Internet Explorer Domina-

tion Across the European Browser Landscape. Press release, retrieved

July 16, 2008, from http://www.adtech.info/news/pr-08-07_en.htm.

Cited on p. 94.

Al-Ahmad, W. and Steegmans, E. 1999. Modeling and Reuse Perspectives

of Inheritance Can be Reconciled. In tools ’99: Proceedings of the

31st International Conference on Technology of Object-Oriented Lan-

guage and Systems, pp. 31–40. ieee Computer Society, Washington,

dc, usa. Cited on p. 142.

Allsop, John. March 2007. Microformats: Empowering Your Markup for

Web 2.0. friends of ED, Berkeley, ca, usa. isbn 1-59059-814-8. Cited

on p. 58.

American National Standards Institute and Information Technology

Industry Council. 1996. American National Standard for Informa-

tion Technology: Programming Language – Common Lisp. American

National Standards Institute, New York, ny, usa. Cited on p. 146.

van Andel, Pek. 1994. Anatomy of the Unsought Finding. Serendipity:

Origin, History, Domains, Traditions, Appearances, Patterns and Pro-

grammability. In British Journal for the Philosophy of Science, vol. 45,

no. 2, pp. 631–648. Cited on p. 9.

Anderson, Edward W. 1994. Navigation. In �e New Encyclopædia

Britannica, vol. 24, pp. 756–766. Encyclopædia Britannica, Chicago,

il, usa, ��eenth edn. Cited on p. 8.

Armstrong, Deborah J. 2006. �e Quarks of Object-Oriented Develop-

ment. In Communications of the acm, vol. 49, no. 2, pp. 123–128.

Cited on p. 63.

Arnowitz, Jonathan and Dykstra-Erickson, Elizabeth. 2007. Web 2.0 and

Beyond. In interactions, vol. 14, no. 3, p. 64. Cited on p. 10.

105

http://blog.facebook.com/blog.php?post=2210227130
http://blog.facebook.com/blog.php?post=2210227130
http://www.adtech.info/news/pr-08-07_en.htm

Aurnhammer, Melanie; Hanappe, Peter; and Steels, Luc. 2006. Augment-

ing Navigation for Collaborative Tagging with Emergent Semantics. In

iswc ’06: Proceedings of the Fi�h International Conference on the

Semantic Web, pp. 58–71. Springer-Verlag New York, Inc., New York,

ny, usa. Cited on p. 21.

Backstrom, Lars; Huttenlocher, Dan; Kleinberg, Jon; and Lan, Xi-

angyang. 2006. Group Formation in Large Social Networks: Mem-

bership, Growth, and Evolution. In kdd ’06: Proceedings of the 12th

acm sigkdd International Conference on Knowledge Discovery

and Data Mining, pp. 44–54. acm Press, New York, ny, usa. Cited

on p. 1.

Balabanović, Marko and Shoham, Yoav. 1997. Fab: Content-Based, Col-

laborative Recommendation. In Communications of the acm, vol. 40,

no. 3, pp. 66–72. Cited on p. 26.

Batley, Sue. January 2007. Information Architecture for Information

Professionals. Chandos Publishing Ltd., Oxford, UK. isbn 1-843-

34232-4. Cited on p. 33.

Beer, David and Burrows, Roger. September 2007. Sociology and, of

and in Web 2.0: Some Initial Considerations. In Sociological Research

Online, vol. 12, no. 5, pp. 805–825. Retrieved October 27, 2007, from

http://www.socresonline.org.uk/12/5/17.html. Cited on pp. 1, 2,

and 10.

Bell, Robert; Koren, Yehuda; and Volinsky, Chris. 2007. Chasing

$1,000,000: How We Won �e Net�ix Progress Prize. In �e Com-

puting and Graphics Newsletter, vol. 18, no. 2, pp. 4–12. Cited on

p. 28.

Berners-Lee, Tim; Cailliau, Robert; Gro�, Jean-François; and Poller-

mann, Bernd. 1992. World-Wide Web: �e Information Universe. In

Electronic Networking: Research, Applications and Policy, vol. 1, no. 2,

pp. 74–82. Cited on p. 1.

Boyd, DanahM. 2008. Facebook’s Privacy Trainwreck: Exposure, Invasion,

and Social Convergence. In Convergence: �e International Journal

of Research into New Media Technologies, vol. 14, no. 1, pp. 13–20.

Cited on p. 51.

Boyd, Danah M. and Ellison, Nicole B. 2007. Social Network Sites: De�-

nition, History, and Scholarship. In Journal of Computer-Mediated

Communication, vol. 13, no. 1. Retrieved May 14, 2008, from http:
//jcmc.indiana.edu/vol13/issue1/boyd.ellison.html. Cited on p. 11.

Bray, Tim. November 2007. Ruby Survey Results. In Ongoing. Retrieved

March 2, 2008, from http://www.tbray.org/ongoing/When/200x/
2007/11/26/Ruby-Tool-Survey. Cited on p. 154.

106

http://www.socresonline.org.uk/12/5/17.html
http://jcmc.indiana.edu/vol13/issue1/boyd.ellison.html
http://jcmc.indiana.edu/vol13/issue1/boyd.ellison.html
http://www.tbray.org/ongoing/When/200x/2007/11/26/Ruby-Tool-Survey
http://www.tbray.org/ongoing/When/200x/2007/11/26/Ruby-Tool-Survey

Brin, Sergey and Page, Lawrence. 1998. �e Anatomy of a Large-Scale

Hypertextual Web Search Engine. In Computer Networks and isdn

Systems, vol. 30, no. 1–7, pp. 107–117. Cited on p. 12.

Bringhurst, Robert. October 2004. �e elements of typographic style.

Hartley & Marks Publishers, Point Roberts, wa, usa, 3rd edn. isbn

0-881-79205-5. Cited on p. b.

Brusilovsky, Peter; Farzan, Rosta; and wook Ahn, Jae. 2005. Comprehen-

sive Personalized Information Access in an Educational Digital Library.

In jcdl ’05: Proceedings of the 5th acm/ieee-CS joint conference

on Digital libraries, pp. 9–18. acm Press, New York, ny, usa. Cited

on pp. 27 and 30.

Bush, Vannevar. 1945. As We May�ink. In Atlantic Monthly, vol. 176,

no. 1, pp. 101–108. Cited on pp. 1, 8, 14, 22, and 23.

Butter�eld, Daniel Stewart.; Fake, Caterina; Henderson-Begg, Cal-

lum James; and Mourachov, Serguei. October 2006. Interestingness

Ranking of Media Objects. Patent Pending, US 2006/0242139 A1. Cited

on p. 40.

Butter�eld, Stewart. August 2005. �e New New�ings. In Flickr Blog.

Retrieved November 14, 2007, from http://blog.flickr.com/en/2005/
08/01/the-new-new-things. Cited on pp. 38 and 39.

———. August 2006. Great Shot – Where’d You Take �at? In Flickr

Blog. Retrieved November 14, 2007, from http://blog.flickr.com/en/
2006/08/28/great-shot-whered-you-take-that. Cited on p. 39.

Cassidy, John. May 2006. �eOnline Life: MeMedia. In�e New Yorker.

Retrieved May 30, 2008, from http://www.newyorker.com/archive/
2006/05/15/060515fa_fact_cassidy. Cited on p. 41.

Chamberlin, Donald D. and Boyce, Raymond F. 1974. sequel: A struc-

tured English Query Language. In fidet ’74: Proceedings of the 1974

acm sigfidet Workshop on Data Description, Access and Control,

pp. 249–264. acm Press, New York, ny, usa. Cited on p. 61.

Claypool, Mark; Le, Phong; Wased, Makoto; and Brown, David. 2001.

Implicit Interest Indicators. In iui ’01: Proceedings of the 6th Inter-

national Conference on Intelligent User Interfaces, pp. 33–40. acm

Press, New York, ny, usa. Cited on p. 24.

Conklin, Je�. September 1987. Hypertext: An Introduction and Survey.

In Computer, vol. 20, no. 9, pp. 17–41. Cited on p. 8.

Coolidge, Frederick L. January 2006. Statistics: A Gentle Introduction.

Sage Publications, Inc., �ousand Oaks, ca, usa, 2nd edn. isbn

1-4129-2494-4. Cited on p. 76.

107

http://blog.flickr.com/en/2005/08/01/the-new-new-things
http://blog.flickr.com/en/2005/08/01/the-new-new-things
http://blog.flickr.com/en/2006/08/28/great-shot-whered- you-take-that
http://blog.flickr.com/en/2006/08/28/great-shot-whered- you-take-that
http://www.newyorker.com/archive/2006/05/15/060515fa_fact_cassidy
http://www.newyorker.com/archive/2006/05/15/060515fa_fact_cassidy

Crockford, Douglas. July 2006a. rfc 4627: �e application/json Media

Type for JavaScript Object Notation (json). Status: Informational.

Cited on p. 148.

———. April 2006b. Synchronous v. Asynchronous. In Yahoo! User

Interface Blog. Retrieved April 4, 2008, from http://yuiblog.com/
blog/2006/04/04/synchronous-v-asynchronous. Cited on p. 62.

———. February 2007. �e JavaScript Programming Language. Lecture,

retrieved April 5, 2008, from http://video.yahoo.com/watch/111593.
Cited on p. 11.

Davis, Fred D. 1989. Perceived Usefulness, Perceived Ease of Use, and User

Acceptance of Information Technology. In mis Quarterly, vol. 13, no. 3,

pp. 319–340. Cited on pp. 73, 81, and 83.

Deshpande, Amit and Riehle, Dirk. 2008. �e Total Growth of Open

Source. In oss ’08: Proceedings of the Fourth International Con-

ference on Open Source Systems. Springer-Verlag Berlin Heidelberg,

Munich, Germany. Cited on p. 141.

Dieberger, A.; Dourish, P.; Höök, K.; Resnick, P.; and Wexelblat, A.

November 2000. Social Navigation: Techniques for Building More

Usable Systems. In interactions, vol. 7, no. 6, pp. 36–45. Cited on p. 14.

Dieberger, Andreas. June 1997. Supporting Social Navigation on theWorld

Wide Web. In International Journal of Human-Computer Studies,

vol. 46, no. 6, pp. 805–825. Cited on pp. 14, 15, 16, 17, 24, and 42.

Dieberger, Andreas and Lonnqvist, Peter. May 2000. Visualizing Inter-

action History on a Collaborative Web Server. In hypertext ’00:

Proceedings of the Eleventh acm on Hypertext and Hypermedia, pp.

220–221. acm Press, New York, ny, usa. Cited on p. 29.

Dijkstra, Edsger W. 1972. �eHumble Programmer. In Communications

of the acm, vol. 15, no. 10, pp. 859–866. Cited on p. 64.

———. 1982. ewd 447: On the role of scienti�c thought. In Selected

Writings on Computing: A Personal Perspective, vol. 24, pp. 60–66.

Springer-Verlag New York, Inc., New York, ny, usa. Cited on p. 60.

Dourish, Paul and Chalmers, Matthew. 1994. Running Out of Space:

Models of Information Navigation. Short paper presented at hci’94,

Glasgow, UK. Cited on pp. 13 and 16.

Dubinko,Micah; Kumar, Ravi; Magnani, Joseph; Novak, Jasmine; Ragha-

van, Prabhakar; and Tomkins, Andrew. 2007. Visualizing Tags over

Time. In www ’06: Proceedings of the 15th International Conference

on World Wide Web, pp. 193–202. acm Press, New York, ny, usa.

Cited on p. 49.

108

http://yuiblog.com/blog/2006/04/04/synchronous-v-asynchronous
http://yuiblog.com/blog/2006/04/04/synchronous-v-asynchronous
http://video.yahoo.com/watch/111593

Eich, Brendan. April 2008. �e New New�ings. In Brendan’s Roadmap

Updates. Retrieved April 4, 2008, from http://weblogs.mozillazine.
org/roadmap/archives/2008/04/popularity.html. Cited on p. 143.

Elliott-McCrea, Kellan. May 2008. Twitter, or Architecture Will Not

Save You. In �e Laughing Meme Blog. Retrieved June 22,

2008, from http://www.laughingmeme.org/2008/05/28/twitter-or-
architecture-will-not-save-you. Cited on p. 53.

Facebook. May 2008a. Facebook Developers: Facebook Open Source

Projects. Retrieved May 20, 2008, from http://developers.facebook.
com/opensource.php. Cited on p. 151.

———. February 2008b. Facebook Help: Sign Up, Login and Password

Problems. Retrieved February 8, 2008, from http://www.facebook.
com/help.php?page=18. Cited on p. 131.

Farooq, Umer; Kannampallil, �omas G.; Song, Yang; Ganoe, Craig H.;

Carroll, John M.; and Giles, Lee. 2007. Evaluating Tagging Behavior

in Social Bookmarking Systems: Metrics and Design Heuristics. In

group ’07: Proceedings of the 2007 International acm Conference

on Supporting Group Work, pp. 351–360. acm Press, New York, ny,

usa. Cited on pp. 18 and 19.

Field, Andy. April 2005. Discovering Statistics Using SPSS. Sage Publi-

cations Ltd., London, uk, 2nd edn. isbn 0-7619-4451-6. Cited on

p. 75.

Fielding, Roy �omas. 2000. Architectural Styles and the Design of

Network-based So�ware Architecture. Ph.D. thesis, University of Cali-

fornia, Irvine. Retrieved February 8, 2008, from http://www.ics.uci.
edu/~fielding/pubs/dissertation/top.htm. Cited on p. 125.

Filman, Robert E. 2006. From the Editor in Chief: Taking Back the Web.

In ieee Internet Computing, vol. 10, no. 1, pp. 3–5. Cited on p. 142.

Flanagan, David. August 2006. JavaScript: �e De�nitive Guide. O’Reilly

Media, Inc., Sebastopol, ca, usa, 5th edn. isbn 0-596-10199-6. Cited

on pp. 142 and 143.

Flanagan, Jim. March 2003. Search Referral Zeitgeist. Retrieved May

11, 2008, from http://web.archive.org/web/20041204231120/http:
//twiki.tensegrity.net/bin/view/Main/SearchReferralZeitgeist. Cited
on p. 19.

Floyd, Ingbert R.; Jones, M. Cameron; Rathi, Dinesh; and Twidale,

Michael B. 2007. Web Mash-Ups and Patchwork Prototyping: User-

Driven Technological Innovation with Web 2.0 and Open Source So�-

ware. In hicss ’07: Proceedings of the 40th Annual Hawaii Interna-

tional Conference on System Sciences, p. 86. ieee Computer Society,

Washington, dc, usa. Cited on p. 12.

109

http://weblogs.mozillazine.org/roadmap/archives/2008/04/ popularity.html
http://weblogs.mozillazine.org/roadmap/archives/2008/04/ popularity.html
http://www.laughingmeme.org/2008/05/28/twitter-or- architecture-will-not-save-you
http://www.laughingmeme.org/2008/05/28/twitter-or- architecture-will-not-save-you
http://developers.facebook.com/opensource.php
http://developers.facebook.com/opensource.php
http://www.facebook.com/help.php?page=18
http://www.facebook.com/help.php?page=18
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://web.archive.org/web/20041204231120/http://twiki. tensegrity.net/bin/view/Main/SearchReferralZeitgeist
http://web.archive.org/web/20041204231120/http://twiki. tensegrity.net/bin/view/Main/SearchReferralZeitgeist

Foderaro, John. 1991. lisp: introduction. In Communications of the

acm, vol. 34, no. 9, p. 27. Cited on p. 146.

Fogel, Karl. October 2005. Producing Open Source So�ware: How to Run

a Successful Free So�ware Project. O’Reilly Media, Inc., Sebastopol,

ca, usa. isbn 0-596-00759-0. Cited on p. 141.

Fokker, Jenneke; Pouwelse, Johan; and Buntine, Wray. 2006. Tag-Based

Navigation for Peer-to-Peer Wikipedia. In World Wide Web 2006:

Workshop on Collaborative Web Tagging. Cited on pp. 19 and 21.

Freyne, Jill; Farzan, Rosta; Brusilovsky, Peter; Smyth, Barry; and Coyle,

Maurice. 2007. Collecting Community Wisdom: Integrating Social

Search & Social Navigation. In iui ’07: Proceedings of the 12th Inter-

national Conference on Intelligent User Interfaces, pp. 52–61. acm

Press, New York, ny, usa. Cited on p. 9.

Garrett, Jesse James. December 2002. �e Psychology of Navigation. In

Digital Web Magazine. Retrieved May 18, 2008, from http://www.
digital-web.com/articles/the_psychology_of_navigation. Cited on

p. 9.

———. February 2005. Ajax: A New Approach to Web Applications. In

Adaptive Path Essays. Retrieved April 2, 2008, from http://www.
adaptivepath.com/ideas/essays/archives/000385.php. Cited on p. 10.

Giles, Jim. December 2005. Internet Encyclopaedias Go Head to Head.

In Nature, vol. 438, no. 7070, pp. 900–901. Cited on p. 12.

Gladwell, Malcolm. February 2002. �e Tipping Point: How Little �ings

Can Make a Big Di�erence. Abacus, London, UK. isbn 0-349-11346-7.

Cited on p. 11.

Goldberg, Adele and Robson, David. May 1983. Smalltalk-80: the lan-

guage and its implementation. Addison-Wesley Longman Publishing

Co., Inc., Boston, ma, usa. isbn 0-201-11371-6. Cited on p. 154.

Goldberg, David; Nichols, David; Oki, Brian M.; and Terry, Douglas.

1992. Using Collaborative Filtering to Weave an Information Tapestry.

In Communications of the acm, vol. 35, no. 12, pp. 61–70. Cited on

p. 23.

Golder, Scott A. and Huberman, Bernardo A. April 2006. Usage Patterns

of Collaborative Tagging Systems. In Journal of Information Science,

vol. 32, no. 2, pp. 198–208. Cited on p. 18.

Graham, Paul. November 2005. Web 2.0. Retrieved May 19, 2008, from

http://paulgraham.com/web20.html. Cited on p. 10.

110

http://www.digital-web.com/articles/the_psychology_of_navigation
http://www.digital-web.com/articles/the_psychology_of_navigation
http://www.adaptivepath.com/ideas/essays/archives/000385.php
http://www.adaptivepath.com/ideas/essays/archives/000385.php
http://paulgraham.com/web20.html

Graham, Susan L.; Kessler, Peter B.; and Mckusick, Marshall K. 1982.

Gprof: A Call Graph Execution Pro�ler. In sigplan ’82: Proceedings

of the 1982 sigplan Symposium on Compiler Construction, pp.

120–126. acm Press, New York, ny, usa. Cited on p. 156.

Greco, Gianluigi; Greco, Sergio; and Zumpano, Ester. 2004. Collabora-

tive Filtering Supporting Web Site Navigation. In AI Communications,

vol. 17, no. 3, pp. 155–166. Cited on p. 26.

Guo, Philip Jia. August 2006. Programming in a Vacuum. Retrieved may

9, 2008, from http://www.stanford.edu/~pgbovine/programming-
vacuum.htm. Cited on p. 147.

Halvey, Martin J. and Keane, Mark T. 2007. An Assessment of Tag Presen-

tation Techniques. In www ’07: Proceedings of the 16th International

Conference onWorldWideWeb, pp. 1313–1314. acm Press, New York,

ny, usa. Cited on p. 20.

Herlocker, Jonathan L.; Konstan, Joseph A.; and Riedl, John. 2000. Ex-

plaining Collaborative Filtering Recommendations. In cscw ’00: Pro-

ceedings of the 2000 acm Conference on Computer Supported Co-

operative Work, pp. 241–250. acm Press, New York, ny, usa. Cited

on pp. 24 and 26.

Hill, William C.; Hollan, James D.; Wroblewski, Dave; and Mccandless,

Tim. 1992. Edit Wear and Read Wear. In chi ’92: Proceedings of the

sigchi Conference on Human Factors in Computing Systems, pp.

3–9. acm Press, New York, ny, usa. Cited on pp. 28 and 30.

von Hippel, Eric. April 2005. Democratizing Innovation. �e mit Press,

Cambridge, ma, usa. isbn 0-262-00274-4. Cited on p. 141.

International, Ecma. December 1999. ECMAScript Language Speci�ca-

tion. Ecma International, Geneva, Switzerland, 3rd edn. Cited on

p. 143.

Jacobsen, Ole J. and Lynch, Daniel C. March 1991. rfc 1208: A Glossary

of Networking Terms. Status: Informational. Cited on p. 12.

Janzen, David and Saiedian, Hossein. 2008. Does Test-Driven Devel-

opment Really Improve So�ware Design Quality? In ieee So�ware,

vol. 25, no. 2, pp. 77–84. Cited on pp. 55 and 56.

Jazayeri, Mehdi. 2007. Some Trends in Web Application Development. In

fose ’07: 2007 Future of So�ware Engineering, pp. 199–213. ieee

Computer Society, Washington, dc, usa. Cited on p. 63.

Joinson, Adam N. 2008a. International Ethnographic Observation of

Social Networking Sites. In chi ’08: Extended Abstracts on Human

Factors in Computing Systems, pp. 3123–3128. acm Press, New York,

ny, usa. Cited on p. 51.

111

http://www.stanford.edu/~pgbovine/programming-vacuum.htm
http://www.stanford.edu/~pgbovine/programming-vacuum.htm

———. 2008b. Looking At, Looking Up or Keeping Up With People?:

Motives and Use of Facebook. In chi ’08: Proceedings of the sigchi

Conference on Human Factors in Computing Systems, pp. 1027–1036.

acm Press, New York, ny, usa. Cited on p. 51.

Jones, Steve and Cockburn, Andy. 1996. A study of navigational sup-

port provided by two World Wide Web browsing applications. In hy-

pertext ’96: Proceedings of the the seventh acm conference on

Hypertext, pp. 161–169. acm Press, New York, ny, usa. Cited on p. 8.

Kay, Alan C. 1996. �e early history of Smalltalk. In History of program-

ming languages – II, pp. 511–598. acm Press, New York, ny, usa.

Cited on p. 63.

———. July 2003. Correspondence with Stefan Ram. Retrieved April 8,

2008, from http://www.purl.org/stefan_ram/pub/doc_kay_oop_
en. Cited on p. 63.

Keller, Richard M.; Wolfe, Shawn R.; Chen, James R.; Rabinowitz,

Joshua L.; and Mathe, Nathalie. 1997. A Bookmarking Service for

Organizing and Sharing urls. In Computer Networks and isdn

Systems, vol. 29, no. 8–13, pp. 1103–1114. Cited on pp. 17, 18, and 59.

Kelty, Christopher. 2005. Free Science. In Perspectives on Free and Open

Source So�ware, pp. 415–430. �e mit Press, Cambridge, ma, usa.

Cited on p. 141.

Kernighan, Brian W. and Pike, Robert. March 1984. �e unix Program-

ming Environment. Prentice-Hall, Inc., Englewood Cli�s, nj, usa.

isbn 0-13-937699-2. Cited on p. 34.

Klishin, Michael. May 2008. Why Separation of MSpec Matters to Me.

In Unwinding the Stack: Back to the Future, �is Time for Real.

Retrieved May 13, 2008, from http://novemberain.com/2008/5/9/
why-separation-of-mspec-matters-to-me. Cited on p. 155.

Knuth, Donald E. September 2007. Correspondence with Andreas

Zwinkau. Retrieved April 6, 2008, from http://focs.wordpress.com/
2007/09/18/don-knuth-on-progress-in-computer-science. Cited on

p. 1.

Kolbitsch, Josef and Maurer, Hermann. 2006. �e Transformation of the

Web: How Emerging Communities Shape the Information we Consume.

In Journal of Universal Computer Science, vol. 12, no. 1, pp. 187–213.

Cited on p. 12.

Konstan, Joseph A.; Miller, Bradley N.; Maltz, David; Gordon, Lee R.;

Herlocker, Jonathan L.; and Riedl, John. 1997. GroupLens: Applying

Collaborative Filtering to Usenet News. In Communications of the

acm, vol. 40, no. 3, pp. 77–87. Cited on p. 24.

112

http://www.purl.org/stefan_ram/pub/doc_kay_oop_en
http://www.purl.org/stefan_ram/pub/doc_kay_oop_en
http://novemberain.com/2008/5/9/why-separation-of-mspec- matters-to-me
http://novemberain.com/2008/5/9/why-separation-of-mspec- matters-to-me
http://focs.wordpress.com/2007/09/18/don-knuth-on- progress-in-computer-science
http://focs.wordpress.com/2007/09/18/don-knuth-on- progress-in-computer-science

Krippendor�, Klaus. December 2003. Content Analysis: An Introduction

to Its Methodology. Sage Publications, Inc., �ousand Oaks, ca, usa,

2nd edn. isbn 0-761-91544-3. Cited on p. 33.

Laird, Peter. August 2007. Greasemonkey in the Enterprise: When is

GM the Right Tool for IT? In Peter Laird’s Blog. Retrieved April 20,

2008, from http://dev2dev.bea.com/blog/plaird/archive/2007/08/
greasemonkey_in.html. Cited on pp. 56 and 59.

Lanier, Jaron. May 2006. Digital Maoism: �e Hazards of the New

Online Collectivism. In Edge. Retrieved may 5, 2008, from http:
//www.edge.org/3rd_culture/lanier06/lanier06_index.html. Cited
on p. 13.

Lewandowski, Scott M. 1998. Frameworks for Component-Based Clien-

t/Server Computing. In acm Computing Surveys, vol. 30, no. 1, pp.

3–27. Cited on p. 60.

Li, Rui; Bao, Shenghua; Yu, Yong; Fei, Ben; and Su, Zhong. 2007. Towards

E�ective Browsing of Large Scale Social Annotations. In www ’07:

Proceedings of the 16th International Conference on World Wide

Web, pp. 943–952. acm Press, New York, ny, usa. Cited on p. 21.

Licklider, J. C. R. and Taylor, R. April 1968. �e Computer as a Com-

munication Device. In Science and Technology, pp. 21–31. Cited on

p. 1.

Likert, Rensis. 1932. A Technique for the Measurement of Attitudes. In

Archives of Psychology, vol. 22, no. 140, pp. 1–55. Cited on pp. 72

and 74.

Lin, Kwei-Jay. 2007. Building Web 2.0. In Computer, vol. 40, no. 5, pp.

101–102. Cited on p. 10.

Linskey, Patrick Connor and Prud’hommeaux, Marc. 2007. An In-Depth

Look at the Architecture of an Object/Relational Mapper. In sigmod

’07: Proceedings of the 2007 acm sigmod International Conference

on Management of Data, pp. 889–894. acm Press, New York, ny,

usa. Cited on p. 61.

LiveJournal. May 2008. LiveJournal.com Statistics. Retrieved May 20,

2008, from http://www.livejournal.com/stats.bml. Cited on p. 151.

Livingston, Jessica. January 2007. Founders at Work: Stories of Startups’

Early Days. Apress, Berkeley, ca, usa. isbn 1-590-59714-1. Cited on

pp. 17, 37, and 38.

Lowry, Richard. 2008. Concepts and Applications of Inferential Statistics.

Vassar College, Poughkeepsie, ny, usa. Retrieved July 9, 2008, from

http://faculty.vassar.edu/lowry/intro.html. Cited on p. 75.

113

http://dev2dev.bea.com/blog/plaird/archive/2007/08/ greasemonkey_in.html
http://dev2dev.bea.com/blog/plaird/archive/2007/08/ greasemonkey_in.html
http://www.edge.org/3rd_culture/lanier06/lanier06_index.html
http://www.edge.org/3rd_culture/lanier06/lanier06_index.html
http://www.livejournal.com/stats.bml
http://faculty.vassar.edu/lowry/intro.html

Malkin, Gary Scott. August 2006. rfc 1983: Internet Users’ Glossary.

Status: Informational. Cited on p. 60.

Maltz, David and Ehrlich, Kate. 1995. Pointing the Way: Active Collabo-

rative Filtering. In chi ’95: Proceedings of the sigchi Conference

on Human Factors in Computing Systems, pp. 202–209. acm Press,

New York, ny, usa. Cited on p. 24.

Marchionini, Gary and Shneiderman, Ben. 1988. Finding Facts vs. Brows-

ing Knowledge in Hypertext Systems. In Computer, vol. 21, no. 1, pp.

70–80. Cited on p. 9.

Marlow, Cameron. 2007. Audience, Structure andAuthority in theWeblog

Community. Paper presented at 54th Annual Conference of the Inter-

national Communication Association, New Orleans, LA. Retrieved

December 5, 2007, from http://www.overstated.net/media/ICA2004.
pdf. Cited on p. 17.

Marlow, Cameron; Naaman, Mor; Boyd, Danah; and Davis, Marc. 2006.

HT06, tagging paper, taxonomy, Flickr, academic article, to read. In

hypertext ’06: Proceedings of the Seventeenth Conference on

Hypertext and Hypermedia, pp. 31–40. acm Press, New York, ny,

usa. Cited on pp. 18 and 19.

Marshall, Kevin; Pytel, Chad; and Yurek, Jon. September 2007. Pro

Active Record. Apress, Berkeley, ca, usa. isbn 1-59059-847-4. Cited

on p. 61.

Martin, Martin C. April 2008. Where are the Fast Dynamic Languages?

In Martin C. Martin: Inspiring Lunatics, Tainting Meats. Retrieved

April 2, 2008, from http://www.martincmartin.com/blog/?p=77.
Cited on p. 146.

Mayhew, Pam. 1990. So�ware Prototyping: Implications for the People

Involved in Systems Development. In CAiSE ’90: Proceedings of the

Second Nordic Conference on Advanced Information Systems Engi-

neering, pp. 290–305. Springer-Verlag New York, Inc., New York, ny,

usa. Cited on p. 55.

McAnally, Jeremy and Arkin, Assaf. August 2008. Ruby in Practice.

Manning Publications Co., Greenwich, ct, usa. isbn 1-933-98847-9.

Cited on p. 146.

McCarthy, John. 1978. History of lisp. In acm sigplan Notices, vol. 13,

no. 8, pp. 217–223. Cited on p. 146.

McConnell, Steve. June 2004. Code Complete: A Practical Handbook for

So�ware Construction. Microso� Press, Redmond, wa, usa, 2nd edn.

isbn 0-735-61967-0. Cited on p. 55.

114

http://www.overstated.net/media/ICA2004.pdf
http://www.overstated.net/media/ICA2004.pdf
http://www.martincmartin.com/blog/?p=77

McIlroy, M. Douglas. 1968. Mass Produced So�ware Components. In

Proceedings of the nato Conference on So�ware Engineering, pp.

138–155. nato Science Committee, Brussels, Belgium. Cited on p. 141.

Mernik, Marjan; Heering, Jan; and Sloane, Anthony M. 2005. When

and How to Develop Domain-Speci�c Languages. In acm Computing

Surveys, vol. 37, no. 4, pp. 316–344. Cited on p. 61.

Mertens, Robert; Farzan, Rosta; and Brusilovsky, Peter. 2006. Social

Navigation in Web Lectures. In hypertext ’06: Proceedings of the

Seventeenth Conference on Hypertext and Hypermedia, pp. 41–44.

acm Press, New York, ny, usa. Cited on pp. 29 and 30.

Mesbah, Ali and van Deursen, Arie. 2007. An Architectural Style for Ajax.

In icsa ’07: Proceedings of the SixthWorking ieee/ifip Conference

on So�ware Architecture, pp. 44–53. ieee Computer Society Press,

Los Alamitos, ca, usa. Cited on pp. 10 and 11.

Microso�. March 1999. Microso� Launches Internet Explorer 5, Passport

to the Global Online Community. Press release, retrieved April 2, 2008,

from http://www.microsoft.com/presspass/features/1999/03-18ie5.
mspx. Cited on p. 11.

Millard, David E. and Ross, Martin. 2006. Web 2.0: Hypertext by Any

Other Name? In hypertext ’06: Proceedings of the Seventeenth

Conference on Hypertext and Hypermedia, pp. 27–30. acm Press,

New York, ny, usa. Cited on p. 10.

Millen, David R. and Feinberg, Jonathan. 2006. Using Social Tagging

to Improve Social Navigation. In Adaptive Hypermedia 2006: Work-

shop on the Social Navigation and Community-Based Adaptation

Technologies. Cited on p. 21.

MIT Center for Collective Intelligence. February 2008. Collective Intel-

ligence Handbook. Retrieved May 4, 2008, from http://scripts.mit.
edu/~cci/wiki/index.php?title=Main_Page&oldid=5246. Cited on

p. 12.

Mitchell, Scott. May 2004. Understanding asp.net View State. In msdn

Library. Retrieved February 8, 2008, from http://msdn.microsoft.
com/en-us/library/ms972976.aspx. Cited on p. 148.

Morville, Peter and Rosenfeld, Louis. November 2006. Information

Architecture for the World Wide Web: Designing Large-Scale Web Sites.

O’ReillyMedia, Inc., Sebastopol, ca, usa, 3rd edn. isbn 0-596-52734-

9. Cited on pp. 33, 34, and 36.

Murphy, Gail C.; Kersten, Mik; and Findlater, Leah. 2006. How are Java

so�ware developers using the Elipse ide? In So�ware, ieee, vol. 23,

no. 4, pp. 76–83. Cited on p. 154.

115

http://www.microsoft.com/presspass/features/1999/03-18ie5.mspx
http://www.microsoft.com/presspass/features/1999/03-18ie5.mspx
http://scripts.mit.edu/~cci/wiki/index.php?title= Main_Page&oldid=5246
http://scripts.mit.edu/~cci/wiki/index.php?title= Main_Page&oldid=5246
http://msdn.microsoft.com/en-us/library/ms972976.aspx
http://msdn.microsoft.com/en-us/library/ms972976.aspx

Murugesan, San. 2007. Understanding Web 2.0. In IT Professional, vol. 9,

no. 4, pp. 34–41. Cited on pp. 10 and 12.

Myers, Brad A. November 1998. A brief history of human-computer

interaction technology. In interactions, vol. 5, no. 2, pp. 44–54. Cited

on p. 22.

Nelson, Ted Holm. 1965. Complex Information Processing: A File Struc-

ture for the Complex, the Changing and the Indeterminate. In Proceed-

ings of the 1965 20th National Conference, pp. 84–100. acm Press,

New York, ny, usa. Cited on pp. 2, 8, and 22.

Netcra�. June 2008. June 2008Web Server Survey. Press release, retrieved

July 16, 2008, from http://news.netcraft.com/archives/2008/06/22/
june_2008_web_server_survey.html. Cited on p. 44.

Net�ix. May 2008. Net�ix Prize Leaderboard. Retrieved May 21, 2008,

from http://www.netflixprize.com/leaderboard. Cited on p. 27.

Netscape. December 1995. Netscape and Sun Announce JavaScript, the

Open, Cross-plattform Object Scripting Language for Enterprise Net-

works and the Internet. Press release, retrieved March 5, 2008, from

http://wp.netscape.com/newsref/pr/newsrelease67.html. Cited on

p. 143.

Nishimoto, Ippei andToda,Masashi. 2006. Process-Recollective Re�nding

on the Web. In WI ’06: Proceedings of the 2006 ieee/wic/acm

International Conference on Web Intelligence, pp. 883–892. ieee

Computer Society, Washington, dc, usa. Cited on p. 60.

North, Dan. September 2006. Introducing bdd. In Dan North’s Blog.

Retrieved April 21, 2008, from http://dannorth.net/introducing-bdd.
Cited on p. 56.

OneStat.com. February 2008. Mozilla’s Firefox Global Usage Share is

Still Growing according to OneStat.com. Press release, retrieved March

4, 2008, from http://www.onestat.com/html/aboutus_pressbox57-
firefox-mozilla-ie-browser-market-share.html. Cited on pp. 72, 94,

and 142.

Open Market, Inc. April 1996. FastCGI: A High-Performance Web Server

Interface. White paper, retrieved April 16, 2008, from http://www.
fastcgi.com/devkit/doc/fastcgi-whitepaper/fastcgi.htm. Cited on

p. 149.

O’Reilly, Tim. September 2005. What Is Web 2.0: Design Patterns and

BusinessModels for theNext Generation of So�ware. RetrievedOctober

12, 2007, from http://www.oreillynet.com/lpt/a/6228. Cited on p. 10.

116

http://news.netcraft.com/archives/2008/06/22/june _2008_web_server_survey.html
http://news.netcraft.com/archives/2008/06/22/june _2008_web_server_survey.html
http://www.netflixprize.com/leaderboard
http://wp.netscape.com/newsref/pr/newsrelease67.html
http://dannorth.net/introducing-bdd
http://www.onestat.com/html/aboutus_pressbox57- firefox-mozilla-ie-browser-market-share.html
http://www.onestat.com/html/aboutus_pressbox57- firefox-mozilla-ie-browser-market-share.html
http://www.fastcgi.com/devkit/doc/fastcgi-whitepaper/fastcgi.htm
http://www.fastcgi.com/devkit/doc/fastcgi-whitepaper/fastcgi.htm
http://www.oreillynet.com/lpt/a/6228

———. October 2007. Today’s Web 3.0 Nonsense Blogstorm. In O’Reilly

Radar. Retrieved October 12, 2007, from http://radar.oreilly.com/
archives/2007/10/web_30_semantic_web_web_20.html. Cited on

p. 10.

Orenstein, Ben. February 2008. Switching Editors is Just as Hard as

Switching Languages. In Codeulate. Retrieved March 1, 2008, from

http://codeulate.com/?p=12. Cited on p. 154.

Photopreneur. January 2008. What It Takes to Get Your Photo on the

Flickr Explore Page. In �e Photopreneur Blog. Retrieved June 9,

2008, from http://blogs.photopreneur.com/what-it-takes-to-get-
your-photo-on-the-flickr-explore-page. Cited on p. 40.

Powazek, Derek. March 2008. �e Weird Turn Pro: Crowdsourcing

for Creatives. Recorded presentation from the South by South-

west Interactive Conference 2008. Retrieved June 14, 2008, from

http://audio.sxsw.com/podcast/interactive/panels/2008/SXSW08.
INT.20080308.CrowdsourcingForCreatives.mp3. Cited on p. 12.

Rayward, W. Boyd. 1994. Visions of Xanadu: Paul Otlet (1868-1944)

and Hypertext. In Journal of the American Society for Information

Science, vol. 45, no. 4. Cited on p. 8.

Record. 2008. About record. Retrieved June 21, 2008, from http:
//www.recordproject.org/index.php/about. Cited on p. 47.

Resig, John. December 2006. Pro JavaScript Techniques. Apress, Berkeley,

ca, usa. isbn 1-590-59727-3. Cited on p. 143.

Resnick, Paul; Iacovou, Neophytos; Suchak, Mitesh; Bergstrom, Peter;

and Riedl, John. 1994. GroupLens: An Open Architecture for Collabora-

tive Filtering of Netnews. In cscw ’94: Proceedings of the 1994 acm

Conference on Computer Supported Cooperative Work, pp. 175–186.

acm Press, New York, ny, usa. Cited on pp. 23 and 24.

Resnick, Paul and Varian, Hal R. 1997. Recommender Systems. In Com-

munications of the acm, vol. 40, no. 3, pp. 56–58. Cited on p. 26.

Riedl, Mark O. and Amant, Robert St. 2003. Social navigation: modeling,

simulation, and experimentation. In aamas ’03: Proceedings of the

second international joint conference on Autonomous agents and

multiagent systems, pp. 361–368. acm Press, New York, ny, usa.

Cited on pp. 30 and 31.

Rivadeneira, A. W.; Gruen, Daniel M.; Muller, Michael J.; and Millen,

David R. 2007. Getting Our Head in the Clouds: Toward Evaluation

Studies of Tagclouds. In chi ’07: Proceedings of the sigchi Confer-

ence on Human Factors in Computing Systems, pp. 995–998. acm

Press, New York, ny, usa. Cited on pp. 19 and 20.

117

http://radar.oreilly.com/archives/2007/10/web_30_semantic_web_web_20.html
http://radar.oreilly.com/archives/2007/10/web_30_semantic_web_web_20.html
http://codeulate.com/?p=12
http://blogs.photopreneur.com/what-it-takes-to-get-your-photo- on-the-flickr-explore-page
http://blogs.photopreneur.com/what-it-takes-to-get-your-photo- on-the-flickr-explore-page
http://audio.sxsw.com/podcast/interactive/panels/2008/ SXSW08.INT.20080308.CrowdsourcingForCreatives.mp3
http://audio.sxsw.com/podcast/interactive/panels/2008/ SXSW08.INT.20080308.CrowdsourcingForCreatives.mp3
http://www.recordproject.org/index.php/about
http://www.recordproject.org/index.php/about

Robins, Jenny. 2002. A�ording a Place: �e Role of Persistent Structures in

Social Navigation. In Information Research, vol. 7, no. 3. Retrieved Jan-

uary 23, 2008, from http://informationr.net/ir/7-3/paper131.html.
Cited on p. 14.

Robson, Colin. 1993. RealWorld Research: A Resource for Social Scientists

and Practitioner-Researchers. Blackwell Publishers, Oxford, UK. isbn

0-631-17688-8. Cited on pp. 69 and 70.

Rosa, Cathy De; Cantrell, Joanne; Havens, Andy; Hawk, Janet; and Jenk-

ins, Lillie. October 2007. Sharing, Privacy and Trust in Our Networked

World. A Report to the oclc Membership 3, Dublin, Ohio, usa.

Cited on p. 1.

Rosnow, Ralph L. and Rosenthal, Robert. 1989. Statistical Procedures and

the Justi�cation of Knowledge in Psychological Science. In American

Psychologist, vol. 44, no. 10. Cited on p. 88.

Rudd, Jim; Stern, Ken; and Isensee, Scott. 1996. Low vs. High-�delity

Prototyping Debate. In interactions, vol. 3, no. 1, pp. 76–85. Cited on

p. 55.

de Saint Exupéry, Antoine. 1967. Wind, Sand and Stars. Harcourt

Inc., New York, ny, usa. isbn 0-15-197087-4. Translated by Lewis

Galantière. Cited on p. 48.

Sandewall, Erik. 1978. Programming in an Interactive Environment: the

“Lisp” Experience. In acm Computing Surveys, vol. 10, no. 1, pp. 35–71.

Cited on p. 154.

Schmidt, Douglas C. 1996. Reactor: an object behavioral pattern for

concurrent event demultiplexing and event handler dispatching. In

Pattern languages of program design, pp. 529–545. Addison-Wesley

Publishing Company, Reading, ma, usa. Cited on p. 150.

Schwartz, Barry. January 2004. �e Paradox of Choice: Why More Is Less.

Ecco, New York, ny, usa. isbn 0-13-937699-2. Cited on p. 49.

Segaran, Toby. August 2007. Programming Collective Intelligence: Build-

ing Smart Web 2.0 Applications. O’Reilly Media, Inc., Sebastopol, ca,

usa. isbn 0-596-52932-5. Cited on p. 27.

Sen, Shilad; Lam, Shyong K.; Rashid, Al Mamunur; Cosley, Dan;

Frankowski, Dan; Osterhouse, Jeremy; Harper, F. Maxwell; and Riedl,

John. 2006. tagging, communities, vocabulary, evolution. In cscw ’06:

Proceedings of the 2006 20th Anniversary Conference on Computer

Supported Cooperative Work, pp. 181–190. acm Press, New York, ny,

usa. Cited on pp. 18 and 27.

118

http://informationr.net/ir/7-3/paper131.html

Siegel, Sidney and Castellan, N. John, Jr. 1988. Nonparametric Statistics

for Behavioral Sciences. McGraw-Hill Inc., New York, ny, usa, 2nd

edn. isbn 0-07-057357-3. Cited on pp. 75 and 76.

Simpson, J. A. and Weiner, E. S. C., eds. 1989. �e Oxford English Dictio-

nary. Clarendon Press, Oxford, UK, 2nd edn. isbn 0-198-61186-2.

Cited on pp. 9 and 13.

Sinclair, James and Cardew-Hall, Michael. 2008. �e Folksonomy Tag

Cloud: When is it Useful? In Journal of Information Science, vol. 34,

no. 1, pp. 15–29. Cited on p. 20.

Sinha, Alok. 1992. Client-Server Computing. In Communications of the

acm, vol. 35, no. 7, pp. 77–98. Cited on p. 60.

So�ware, TIOBE. April 2008. tiobe Programming Community Index

for April 2008. Retrieved April 7, 2008, from http://www.tiobe.com/
index.php/content/paperinfo/tpci/index.html. Cited on p. 142.

Sommerville, Ian. June 2006. So�ware Engineering. Pearson Education,

Upper Saddle River, nj, usa, eight edn. isbn 0-321-31379-8. Cited

on pp. 54 and 55.

Stamey, John and Richardson, Trent. 2006. Middleware development

with ajax. In Journal of Computing Sciences in Colleges, vol. 22,

no. 2. Cited on pp. 10 and 62.

Stroustrup, Bjarne. 1996. Language-Technical Aspects of Reuse. In icsr

’96: Proceedings of the 4th International Conference on So�ware

Reuse, pp. 11–19. ieee Computer Society, Washington, dc, usa.

Cited on p. 142.

Surowiecki, James. June 2004. �eWisdom of Crowds: Why the Many

Are Smarter�an the Few and How CollectiveWisdom Shapes Business,

Economies, Societies, and Nations. Little Brown, London, UK. isbn

0-316-86173-1. Cited on p. 12.

Sutherland, William Robert. 1999. Sketchpad: A Man-Machined Graphi-

cal Communication System. In Proceedings of the afips Spring Joint

Computer Conference, pp. 270–277. acm Press, New York, ny, usa.

Cited on p. 8.

Svensson, Martin. 2003. De�ning, Designing and Evaluating Social Navi-

gation. Ph.D. thesis, Stockholm University. Retrieved December 6,

2007, from http://eprints.sics.se/84. Cited on pp. 14, 15, and 44.

Svensson, Martin; Höök, Kristina; and Cöster, Rickard. 2005. Designing

and Evaluating Kalas: A Social Navigation System for Food Recipes. In

acm Transactions on Computer-Human Interaction, vol. 12, no. 3,

pp. 374–400. Cited on pp. 14 and 30.

119

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://eprints.sics.se/84

�e Open Source Initiative. n.d. �e Open Source De�nition. �e Open

Source Initiative (osi), Palo Alto, ca, usa, 1.9 edn. Cited on p. 141.

Torvalds, Linus. 2007. Tech Talk: Linus Torvalds on Git. Lecture, re-

trieved April 5, 2008, from http://www.youtube.com/watch?v=
4XpnKHJAok8. Cited on p. 153.

Treese, Win. 2006. Web 2.0: is it really di�erent? In netWorker, vol. 10,

no. 2, pp. 15–17. Cited on pp. 1 and 10.

Tu�e, Edward R. may 2001. �e Visual Display of Quantitative Infor-

mation. Graphics Press llc, Cheshire, ct, usa, 2nd edn. isbn

0-961-39214-2. Cited on p. b.

———. jul 2006. Beautiful Evidence. Graphics Press llc, Cheshire, ct,

usa. isbn 0-961-39217-7. Cited on p. b.

Veen, Je�. June 2002. Doing a Content Inventory. Retrieved March 25,

2008, from http://www.adaptivepath.com/ideas/essays/archives/
000040.php. Cited on p. 34.

Vitali, Fabio. 2006. �e next frontier of users’ preferences: content cus-

tomization. In interactions, vol. 13, no. 1, pp. 38–39. Cited on p. 142.

W3C html Working Group. 1999. html 4.01 Speci�cation. �e World

Wide Web Consortium (W3C), Biot, France. Cited on p. 147.

———. 2002. xhtml™: 1.0 �e Extensible HyperText Markup Language.

�e World Wide Web Consortium (W3C), Biot, France, 2nd edn.

Cited on p. 147.

Weare, Christopher and Lin, Wang-Ying. 2000. Content Analysis of the

World Wide Web: Opportunities and Challenges. In Social Science

Computer Review, vol. 18, no. 3, pp. 272–292. Cited on p. 33.

Weinberger, David. May 2007. Everything Is Miscellaneous: �e Power of

the New Digital Disorder. Times Books, New York, ny, usa. isbn

0-8050-8043-0. Cited on pp. 17 and 21.

Weinreich, Harald; Obendorf, Hartmut; Herder, Eelco; and Mayer,

Matthias. 2008. Not Quite the Average: An Empirical Study of Web

Use. In acm Transactions on the Web, vol. 2, no. 1, pp. 1–31. Cited on

p. 9.

Weiss, Aaron. April 2005. �e Power of Collective Intelligence. In net-

Worker, vol. 9, no. 3, pp. 16–23. Cited on pp. 1 and 12.

Wexelblat, Alan and Maes, Pattie. 1999. Footprints: History-Rich Tools

for Information Foraging. In chi ’99: Proceedings of the sigchi

conference on Human factors in computing systems, pp. 270–277.

acm Press, New York, ny, usa. Cited on pp. 22, 23, and 29.

120

http://www.youtube.com/watch?v=4XpnKHJAok8
http://www.youtube.com/watch?v=4XpnKHJAok8
http://www.adaptivepath.com/ideas/essays/archives/000040.php
http://www.adaptivepath.com/ideas/essays/archives/000040.php

Whiteside, John; Jones, Sandra; Levy, Paula S.; and Wixon, Dennis. 1985.

User performance with command, menu, and iconic interfaces. In

chi ’85: Proceedings of the sigchi conference on Human factors

in computing systems, pp. 185–191. acm Press, New York, ny, usa.

Cited on p. 8.

Whitman, Alden. August 1969. Obituary: Mies van der Rohe Dies at 83;

Leader of Modern Architecture. In �e New York Times. Retrieved

April 21, 2008, from http://www.nytimes.com/learning/general/
onthisday/bday/0327.html. Cited on p. 49.

Why the Lucky Sti�. July 2006. Hpricot 0.1. In RedHanded: Sneaking

Ruby�rough the System. Retrieved February 27, 2008, from http:
//redhanded.hobix.com/inspect/hpricot01.html. Cited on p. 148.

Wikipedia. May 2008a. Cache. In Wikipedia: �e Free Encyclopedia.

Retrieved June 3, 2008, from http://en.wikipedia.org/w/index.php?
title=Cache&oldid=216197897. Cited on p. 61.

———. March 2008b. Latent Typing. In Wikipedia: �e Free Encyclope-

dia. Retrieved March 4, 2008, from http://en.wikipedia.org/w/index.
php?title=Latent_typing&oldid=195222646. Cited on p. 146.

———. April 2008c. Mashup (music). In Wikipedia: �e Free Ency-

clopedia. Retrieved April 8, 2008, from http://en.wikipedia.org/w/
index.php?title=Mashup_%28music%29&oldid=204280292. Cited
on p. 12.

———. April 2008d. Tag Cloud. In Wikipedia: �e Free Encyclopedia.

Retrieved May 11, 2008, from http://en.wikipedia.org/w/index.php?
title=Tag_cloud&oldid=207819253. Cited on p. 19.

Wilson, John C. 1979. apl and a Black-Box�eory of Electric Circuits.

In apl ’79: Proceedings of the International Conference on apl: Part

1, pp. 171–175. acm Press, New York, ny, usa. Cited on p. 142.

Wodtke, Christina. October 2002. Information Architecture: Blueprints

for the Web. New Riders Press, Indianapolis, in, usa. isbn 0-735-

71250-6. Cited on pp. 34 and 35.

Wu,Harris; Zubair,Mohammad; andMaly, Kurt. 2006.Harvesting Social

Knowledge fromFolksonomies. In hypertext ’06: Proceedings of the

Seventeenth Conference on Hypertext and Hypermedia, pp. 111–114.

acm Press, New York, ny, usa. Cited on p. 27.

XiTi Monitor. March 2008. Mozilla Firefox à la lisière des 29%

d´utilisation dans les pays européens. Press release, retrieved July

16, 2008, from http://www.xitimonitor.com/fr-fr/barometre-des-
navigateurs/firefox-mars-2008/index-1-1-3-127.html. Cited on p. 94.

121

http://www.nytimes.com/learning/general/onthisday/bday/0327.html
http://www.nytimes.com/learning/general/onthisday/bday/0327.html
http://redhanded.hobix.com/inspect/hpricot01.html
http://redhanded.hobix.com/inspect/hpricot01.html
http://en.wikipedia.org/w/index.php?title= Cache&oldid=216197897
http://en.wikipedia.org/w/index.php?title= Cache&oldid=216197897
http://en.wikipedia.org/w/index.php?title= Latent_typing&oldid=195222646
http://en.wikipedia.org/w/index.php?title= Latent_typing&oldid=195222646
http://en.wikipedia.org/w/index.php?title= Mashup_%28music%29&oldid=204280292
http://en.wikipedia.org/w/index.php?title= Mashup_%28music%29&oldid=204280292
http://en.wikipedia.org/w/index.php?title= Tag_cloud&oldid=207819253
http://en.wikipedia.org/w/index.php?title= Tag_cloud&oldid=207819253
http://www.xitimonitor.com/fr-fr/barometre-des -navigateurs/firefox-mars-2008/index-1-1-3-127.html
http://www.xitimonitor.com/fr-fr/barometre-des -navigateurs/firefox-mars-2008/index-1-1-3-127.html

Xu, Wen; Kreijns, Karel; and Hu, Jun. 2006. Designing Social Navigation

for a Virtual Community of Practice. In Edutainment ’06: Proceedings

of the First International Conference on Edutainment, pp. 27–38.

Springer-Verlag Berlin Heidelberg, Munich, Germany. Cited on p. 29.

Yakovlev, Ilya V. 2007. Web 2.0: Is It Evolutionary or Revolutionary? In

IT Professional, vol. 9, no. 6, pp. 43–45. Cited on p. 1.

Yegge, Steve. August 2005. Code’s Worst Enemy. In Stevey’s Blog Rants.

Retrieved March 4, 2008, from http://steve-yegge.blogspot.com/
2007/12/codes-worst-enemy.html. Cited on p. 146.

Zygmuntowicz, Ezra. March 2008. Strengthening the Ruby Ecosystem –

Part II: Merb. Presentation at the MountainWest RubyConf 2008. Re-

trieved April 16, 2008, from http://mtnwestrubyconf2008.confreaks.
com/02zygmuntowicz.html. Cited on pp. 150 and 151.

122

http://steve-yegge.blogspot.com/2007/12/codes-worst-enemy.html
http://steve-yegge.blogspot.com/2007/12/codes-worst-enemy.html
http://mtnwestrubyconf2008.confreaks.com/ 02zygmuntowicz.html
http://mtnwestrubyconf2008.confreaks.com/ 02zygmuntowicz.html

APPENDICES

A

CONTENT INVENTORY

a.1 flickr

�e following content inventory detailed in Table A.2 represents the state

of the Flickr web site as of the 20th of September 2007. �e information

we’ve collected could very well have changed since then as web sites like

these are known to have a rapid development cycle where changes o�en

are imposed on the user base at quite a frequent rate.

As detailed in § 3.1.1 (p. 34) we introduced variables for abstracting

similar page. A complete listing of such variables for Flickr and their

meaning can be found in Table A.1.

When starting the content inventory of Flickr it became apparent

that the architects had chosen to use a restful approach for their url

scheme.1 �e sites’ structure was clearly illustrated by the hierarchy of

1. A system that adheres to the prin-

ciples of rest (Representational

State Transfer) (Fielding, 2000,

p. 76) are sometimes called restful.

Such principles can be applied

to urls making them represent

resources (Fielding, 2000, p. 110).

directories represented in the url. As noted in§ 3.1 (p. 33) we took note

of the urls as an aid during our inventory phase, but decided not to

display them in this thesis.

Variable Description

$user Unique nick-name for a user

$photo-id Unique numerical identi�er for a photo

$photo-title Textual title of a photo

$set-id Unique numerical identi�er for a set (of photos)

$set-title Textual title of a set (of photos)

$tag Unique name for a tag

$group Unique textual name for a group

$camera-make Manufacturer of digital cameras

$camera-model Model number of a particular digital camera

$date A given date (year, optional month, and optional day)

$topic-id Unique numerical identi�er for a discussion topic

$topic-title Textual title of a discussion topic

$member-count A variable number of members of a group

$license-type One of several di�erent Creative Commons licenses

Table A.1: Variables used in Flickr inventory

125

Table A.2: Content Inventory of Flickr

Id Page Title Link Name Link Location

0 Welcome Page

1 Photos from $user You Global navigation

1.1 Photo detail: $photo-title Photo thumbnail Content area

1.1.1 Photos from $user $user Content (comments list)

1.1.2 Photoset: $set-title $set-title (Set) Right sidebar

1.1.3 $group’s pool $group (Pool) Right sidebar

1.1.4 $user’s photos tagged with $tag $tag Right sidebar (tag list)

1.1.4.1 All photos tagged with $tag public photos tagged with $tag Le� sidebar

1.1.5 $user’s geotagged photos on a Map View $usermap Right sidebar (details list)

1.1.6 Everyone’s geotagged photos on a Map see more photos here Right sidebar (details list)

1.1.7 Camera �nder: $camera-model $camera-model Right sidebar (detail list)

1.1.8 Archive of $user’s photos taken on $date $camera-model Right sidebar (detail list)

1.2 Photoset: $set-title $set-title Le� sidebar

1.3 $user’s photosets Sets Local navigation

1.3.1 Photoset: $set-title $set-title Content area

1.1.1.1 Photo detail in set: $photo-title Photo thumbnail Content area

1.4 $user’s tags Tags Local navigation

1.4.1 $user’s photos tagged with $tag $tag Content (tag cloud)

1.4.1.1 All photos tagged with $tag public photos tagged with $tag Le� sidebar

1.4.1.2 Photo detail: $photo-title Photo thumbnail Content area

1.5 $user’s geotagged photos on a Map Map Local navigation

1.5.1 Photo detail on map: $photo-title Photo count icon Map

1.5.1.1 $user’s photos tagged with $tag $tag In-line dialog

1.5.1.2 Photo detail: $photo-title View photo page In-line dialog

12
6

Table A.2: (continued)

Id Page Title Link Name Link Location

1.6 Archive of $user’s photos on Flickr Archives Local navigation

1.6.1 Archive of $user’s photos taken on $date $date Content area (Taken on)

1.6.1.1 Photo detail: $photo-title Photo thumbnail Content area

1.6.2 Archive of $user’s photos posted on $date $date Content area (Posted on)

1.6.2.1 Photo detail: $photo-title Photo thumbnail Content area

1.7 $user’s favorite photos on Flickr Favorites Local navigation

1.7.1 Photo detail: $photo-title Photo thumbnail Content area

1.8 $user’s most popular photos, interestingness Popular Local navigation

1.8.1 Photo detail: $photo-title Photo thumbnail or photo title Content area

1.8.2 $user’s most popular photos, views Views Sub local navigation

1.8.2.1 Photo detail: $photo-title Photo thumbnail or photo title Content area

1.8.3 $user’s most popular photos, favorites Favorites Sub local navigation

1.8.3.1 Photo detail: $photo-title Photo thumbnail or photo title Content area

1.8.4 $user’s most popular photos, comments Comments Sub local navigation

1.8.4.1 Photo detail: $photo-title Photo thumbnail or photo title Content area

1.9 Pro�le: $user Pro�le Local navigation

1.9.1 Photos from $user $user Content (Groups)

1.9.2 Group: $group $group Content (Groups)

2 Organize your photos Organize Global navigation

3 Photos from your contacts Contacts Global navigation

3.1 Photo detail: $photo-title Photo thumbnail Content area

3.2 Photos from $user $user Content area

4 Groups Groups Global navigation

4.1 Group: $group $group Content

12
7

Table A.2: (continued)

Id Page Title Link Name Link Location

4.1.1 Discussion: $group Discussion Local navigation

4.1.1.1 Topic: $topic-title in $group $topic-title Content (topic list)

4.1.1.2 Photos from $user $user Content (topic list)

4.1.2 $group’s pool Pool Local navigation

4.1.2.1 Photo detail: $photo-title Photo thumbnail Content area

4.1.2.2 Photos from $user $user Content area

4.1.3 Geotagged photos from $group Pool Local navigation

4.1.3.1 Photo detail on map: $photo-title Photo count icon Map

4.1.3.1.1 $user’s photos tagged with $tag $tag In-line dialog

4.1.3.1.2 Photo detail: $photo-title View photo page In-line dialog

4.1.3 Members of $group $member-countMembers Local navigation

4.1.3.1 Photos from $user $user Content area

5 Explore Explore Global navigation

5.1 Photo detail: $photo-title Photo thumbnail or $photo-title Content (highlighted photo)

5.2 Photos from $user $user Content (highlighted photo)

5.3 Interesting photos from the last 7 days last 7 days Content area

5.3.1 Photo detail: $photo-title Photo thumbnail or $photo-title Content area

5.3.2 Photos from $user $user Content area

5.4 Interesting photos from $date $date Content area

5.4.1 Photo detail: $photo-title Photo thumbnail or $photo-title Content area

5.4.2 Photos from $user $user Content area

5.5 Everyone’s geotagged photos on a Map a map of the world Content area

5.5.1 Photo detail on map: $photo-title Photo count icon Map

5.5.1.1 $user’s photos tagged with $tag $tag In-line dialog

12
8

Table A.2: (continued)

Id Page Title Link Name Link Location

5.5.1.2 Photo detail: $photo-title View photo page In-line dialog

5.6 Popular Tags popular tags Content area

5.6.1 Photos tagged with $tag $tag Content (tag cloud)

5.6.1.1 Photos tagged with $tag Most interesting Le� column

5.6.1.1.1 Photo detail: $photo-title Photo thumbnail Content area

5.6.1.1.2 Photos from $user $user Content area

5.6.1.2 Clusters for $tag $tag clusters Le� column

5.6.1.2.1 Photo detail: $photo-title Photo thumbnail Content area

5.6.1.2.2 Photos from $user $user Content area

5.6.1.2.3 Clusters for $tag $tag Content (cluster list)

5.6.1.2.4 Photos in cluster: $tag $tag $tag See more of this cluster. . . Content area

5.6.1.2.4.1 Photo detail: $photo-title Photo thumbnail Content area

5.6.1.2.4.2 Photos from $user $user Content area

5.6.1.3 Photo detail: $photo-title Photo thumbnail Content area

5.6.1.4 Photos from $user $user Content area

5.7 Camera Finder Camera �nder Content area

5.7.1 Camera �nder: $camera-make $camera-make Content area

5.7.1.1 Camera �nder: $camera-make: $camera-model $camera-model Content area

5.7.1.1.1 Photo detail: $photo-title Photo thumbnail Content area

5.6.1.1.2 Photos from $user $user Content area

5.8 Photos from everyone most recent uploads Content area

5.8.1 Photo detail: $photo-title Photo thumbnail Content area

5.8.2 Photos from $user $user Content area

5.8.3 Popular Tags Popular tags Right sidebar

12
9

Table A.2: (continued)

Id Page Title Link Name Link Location

5.8.4 Creative Commons Creative Commons Right sidebar

5.8.4.1 Photo detail: $photo-title Photo thumbnail Content area

5.8.4.2 Photos from $user $user Content area

5.8.4.3 Photos with Creative Commons $license-type See more Content ($license-type
5.8.4.3.1 Photo detail: $photo-title Photo thumbnail Content area

5.8.4.3.2 Photos from $user $user Content area

5.9 Photos tagged with $tag $tag Content (tag cloud)

5.10 Interesting photos from $date $date Content (A year ago)

5.10.1 Photo detail: $photo-title Photo thumbnail Content area

5.10.2 Photos from $user $user and see more photos Content area

5.10.3 Pro�le: $user pro�le Content area

5.10.4 Clusters for $tag $tag Content area

5.11 Photo detail: $photo-title Photo thumbnail or $photo-title Content (A year ago)

5.12 Photos from $user $user Content (A year ago)

5.13 Pro�le: $user pro�le Content (A year ago)

5.14 Photoset: $set-title $set-title Content (Sets)

5.14.1 Photo detail in set: $photo-title Photo thumbnail Content area

5.15 Photos from $user $user Content (Sets)

5.16 Groups loads of groups Content (Groups)

5.17 Group: $group $group Content (Groups)

5.18 $group’s pool Pool Local navigation

5.19 Members of $group $member-countMembers Local navigation

6 Photo detail: $photo-title Photo thumbnail Content area

7 Photos from $user $user Content area

130

a.2 facebook

�e inventory of the Facebook web site represents the state it was in the

14th of May 2008. We’re also using variables for our Facebook inventory

and their representations can be found in Table A.3.

Note that we’ve described the users of Facebook as people. At Flickr

one can have an online, almost anonymous, nickname. On Facebook on

the other hand one have to provide a real name2 and the account have

2. From the Facebook help pages:

“Facebook disallows certain names

and words in names that tend to be

associated with fake accounts (e.g.

Paris Hilton)” (Facebook, 2008b).

to represent an existing individual.3
3. From the Facebook help pages:

“using the name of a group or organi-

zation is not permitted, as Facebook

accounts are for individual use only”

(Facebook, 2008b).

Variable Description

$person Full name of a person

$network �e name of a network

$group �e name of a group

$member-count A variable number of members of a group or network

$photo-count A variable number of photos

$video Title of a video

$video-count A variable number of videos

$posted-count A variable number of posted items

$comment-count A variable number of comments on a posted item

$discussion-topic Topic of a discussion topic in a discussion board

$discussion-count A variable number of discussions on a discussion board

$event �e name of an event

$guest-count A variable number of events

$guest-count A variable number of guest for an event

$wall-post-count A variable number of posts on a wall

$classified �e name of a classi�ed in the marketplace

$gender �e sex of a person: male, female, or unspeci�ed

$relationship Status of a person’s relationship: Single, in a relation-

ship, engaged, married, it’s complicated, or in an open

relationship.

$gender-interest What gender a person is interested in: men or women.

$looking-for What a person is looking for from other people: friend-

ship, dating, a relationship, or networking.

$birth-date �e date of a person’s birth

$birth-year �e year of a person’s birth

$home-town �e town a person calls home

$home-country �e country a person calls home

$political-view A person’s political view: very liberal, liberal moderate,

conservative, very conservative, apathetic, libertarian,

or other.

$religious-view A person’s religious view.

$album Title of a photo album.

$album-count A variable number of photo albums.

$page Title of a fan page.

$fan-count A variable number of fans of a fan page.

Table A.3: Variables used in Facebook inventory

131

Table A.4: Content Inventory of Flickr

Id Page Title Link Name Link Location

0 Home Login form Login page

1 $person Pro�le Global navigation

1.1 My networks $network Person info box

1.1.1 Browse My Networks $member-count Network info box

1.1.1.1 $person Pro�le picture Member list

1.1.1.2 $person $person Member list

1.1.1.3 $network $network Member list

1.1.1.4 $network Send message Member list

1.1.1.5 $person’s Friends View Friends Member list

1.1.1.5.1 $person Pro�le picture Member list

1.1.1.5.2 $person $person Member list

1.1.2 Networks on Facebook Browse Networks Network info box

1.1.2.1 $network $network Network List

1.1.3 Popular Today (Posted Items) See What’s Popular Network info box

1.1.3.1 Popular Today (Groups) Groups Global content area navigation

1.1.3.1.1 $group Group picture Group list

1.1.3.1.1.1 Photos from $group $photo-count Photo box

1.1.3.1.1.1.1 Photos from $group (View single) Photo thumbnail Photos list

1.1.3.1.1.1.1.1 Photos from $group (View single) Previous Photo navigation

1.1.3.1.1.1.1.2 Photos from $group (View single) Next Photo navigation

1.1.3.1.1.1.1.3 $person $person Tagged people in photo

1.1.3.1.1.1.1.4 $person Added by $person Photo meta-data

1.1.3.1.1.1.1.5 $person Pro�le picture Comment

1.1.3.1.1.1.1.6 $person $person Comment

132

Table A.4: (continued)

Id Page Title Link Name Link Location

1.1.3.1.1.2 Photos from $group See All Photos box

1.1.3.1.1.3 Videos from $group $video-count Videos box

1.1.3.1.1.3.1 Videos from $group $video Video thumbnail Video list

1.1.3.1.1.3.1.1 Videos from $group $video Previous Video navigation

1.1.3.1.1.3.1.2 Videos from $group $video Next Video navigation

1.1.3.1.1.3.1.3 $person $person Tagged people in video

1.1.3.1.1.3.1.4 $person Added by $person Video meta-data

1.1.3.1.1.3.1.5 $person Pro�le picture Comment

1.1.3.1.1.3.1.6 $person $person Comment

1.1.3.1.1.3.2 Videos from $group $video $video Video list

1.1.3.1.1.3.2 $person by $person Video list

1.1.3.1.1.4 Videos from $group See All Video box

1.1.3.1.1.5 Posted Items on $group $posted-count Posted items box

1.1.3.1.1.5.1 Posted Items on $group $comment-count comments Posted item

1.1.3.1.1.5.1.1 $person Pro�le picture Comment

1.1.3.1.1.5.1.2 $person $person Comment

1.1.3.1.1.6 Posted Items on $group See All Posted items list

1.1.3.1.1.7 $group Discussions $discussion-count discussion topics Discussions list

1.1.3.1.1.7.1 $discussion-topic $discussion-topic Discussions list

1.1.3.1.1.7.1.1 $person Pro�le picture Comment

1.1.3.1.1.7.1.2 $person $person Comment

1.1.3.1.1.8 Group Members $member-count Member box

1.1.3.1.1.8.1 $person Pro�le picture Member list

1.1.3.1.1.8.2 $person $person Member list

133

Table A.4: (continued)

Id Page Title Link Name Link Location

1.1.3.1.1.9 $groupWall $wall-post-count Wall posts list

1.1.3.1.1.9.1 $person Pro�le picture Wall post

1.1.3.1.1.9.2 $person $person Wall post

1.1.3.1.1.10 $person $person O�cer list (right sidebar)

1.1.3.1.1.11 $person $person Admin list (right sidebar)

1.1.3.1.2 $group $group Group list

1.1.3.2 Popular Today (Events) Events Global content area navigation

1.1.3.2.1 $event Event picture Event list

1.1.3.2.1.1 Photos from $event $photo-count Photo box

1.1.3.2.1.1.1 Photos from $event (View single) Photo thumbnail Photos list

1.1.3.2.1.2 Photos from $event See All Photos box

1.1.3.2.1.3 Videos from $event $video-count Videos box

1.1.3.2.1.3.1 Videos from $event $video Video thumbnail Video list

1.1.3.2.1.3.2 Videos from $event $video $video Video list

1.1.3.2.1.3.2 $person by $person Video list

1.1.3.2.1.4 Videos from $event See All Video box

1.1.3.2.1.5 Posted Items on $event $posted-count Posted items box

1.1.3.2.1.5.1 Posted Items on $event $comment-count comments Posted item

1.1.3.2.1.6 Posted Items on $event See All Posted items list

1.1.3.2.1.8 Event Guests $guest-count Guests box

1.1.3.2.1.8.1 $person Pro�le picture Member list

1.1.3.2.1.8.2 $person $person Member list

1.1.3.2.1.9 $eventWall $wall-post-count Wall posts list

1.1.3.2.1.9.1 $person Pro�le picture Wall post

134

Table A.4: (continued)

Id Page Title Link Name Link Location

1.1.3.2.1.9.2 $person $person Wall post

1.1.3.2.1.10 $person $person Other invited list (right sidebar)

1.1.3.2.1.10 $person Pro�le picture Other invited list (right sidebar)

1.1.3.2.1.11 $person $person Admin list (right sidebar)

1.1.3.2.2 $event $event Event list

1.1.3.3 Popular Today (Notes) Notes Global content area navigation

1.1.3.3.1 $person’s Notes $note Note list

1.1.3.3.1.1 $person Pro�le picture Note comment

1.1.3.3.1.2 $person $person Note comment

1.1.3.3.2 $person Pro�le picture Note list

1.1.3.3.3 $person $person Note list

1.1.4 Discussions View Discussion Board Network info box

1.1.3.1.1.8 Group Members $member-count Member box

1.1.3.1.1.8.1 $person Pro�le picture Member list

1.1.3.1.1.8.2 $person $person Member list

1.1.4 Browse My Networks $member-count People in $network box

1.1.5 $person Pro�le picture Member list

1.1.6 $person $person People in $network box

1.1.7 $event $event-count Upcoming events box

1.1.8 $event $event Upcoming events box

1.1.8 Popular Today (Posted Items) See All Network info box

1.1.9 Popular Today (Groups) See All Popular in $network box

1.1.10 $group $group Popular in $network box

1.1.11 Discussions $discussion-count discussion topics Discussion box

135

Table A.4: (continued)

Id Page Title Link Name Link Location

1.1.12 $discussion-topic $discussion-topic Discussion box

1.1.13 $network’s Wall $wall-post-count Wall posts box

1.1.14 $person Pro�le picture Wall post

1.1.15 $person $person Wall post

1.1.16 Marketplace See All Marketplace box

1.1.16.1 Marketplace - $classified $classified Classi�ed listing

1.1.16.1.1 $person $person Classi�ed info

1.1.16.2 $person $person Classi�ed info

1.1.17 Marketplace - $classified $classified Marketplace box

1.2 Browse My networks (by gender) $gender Person info box

1.2.1 $person Pro�le picture Person listing

1.2.2 $person $person Person listing

1.2.3 My networks $network Person listing

1.3 Browse My networks (by gender interest) $gender-interest Person info box

1.3.1 $person Pro�le picture Person listing

1.3.2 $person $person Person listing

1.3.3 My networks $network Person listing

1.4 Browse My networks (by relationship status) $relationship Person info box

1.4.1 $person Pro�le picture Person listing

1.4.2 $person $person Person listing

1.4.3 My networks $network Person listing

1.5 Browse My networks (by looking for) $looking-for Person info box

1.5.1 $person Pro�le picture Person listing

1.5.2 $person $person Person listing

136

Table A.4: (continued)

Id Page Title Link Name Link Location

1.5.3 My networks $network Person listing

1.6 Pro�le Search Results (by birthday) $birth-date Person info box

1.6.1 $person Pro�le picture Person listing

1.6.2 $person $person Person listing

1.6.3 My networks $network Person listing

1.7 Browse My networks (by birth year) $birth-year Person info box

1.7.1 $person Pro�le picture Person listing

1.7.2 $person $person Person listing

1.7.3 My networks $network Person listing

1.8 Pro�le Search Results (by home town) $home-town Person info box

1.8.1 $person Pro�le picture Person listing

1.8.2 $person $person Person listing

1.8.3 My networks $network Person listing

1.9 Pro�le Search Results (by home country) $home-country Person info box

1.9.1 $person Pro�le picture Person listing

1.9.2 $person $person Person listing

1.9.3 My networks $network Person listing

1.10 Browse My networks (by political view) $political-view Person info box

1.10.1 $person Pro�le picture Person listing

1.10.2 $person $person Person listing

1.10.3 My networks $network Person listing

1.11 Pro�le Search Results (by religious view) $religious-view Person info box

1.11.1 $person Pro�le picture Person listing

1.11.2 $person $person Person listing

137

Table A.4: (continued)

Id Page Title Link Name Link Location

1.11.3 My networks $network Person listing

1.12 Photos of $person View photos of $person Le� sidebar

1.13 $person’s Friends View $person’s Friends Le� sidebar sidebar

1.14 $person Pro�le picture Friends sidebar box

1.15 $person $person Friends sidebar box

1.16 $person Pro�le picture Mutual friends sidebar box

1.17 $person $person Mutual friends sidebar box

1.18 $person’s Friends View $person’s Friends Friends in other networks sidebar box

1.19 $person’s Photos – $album Album picture Photos sidebar box

1.19.1 $person’s Photos – $album Photo thumbnail Photos list

1.20 $person’s Photos – $album $album Photos sidebar box

1.21 $page Page picture Pages sidebar box

1.21.1 Fans of $page $fan-count Supporters box

1.21.1.1 $person Pro�le picture Fan list

1.21.1.2 $person $person Fan list

1.21.2 Fans of $page See All Supporters box

1.21.3 $person Pro�le picture Supporters box

1.21.4 $person $person Supporters box

1.21.5 $page’s photos $album-count Photos box

1.21.6 $page’s photos See All Photos box

1.21.6.1 $page’s Photos – $album Album picture Album list

1.21.6.2 $page’s Photos – $album $album Album list

1.21.6.3 $page’s Photos – $album View Album Album list

1.21.7 $page’s Notes $note Notes box

138

Table A.4: (continued)

Id Page Title Link Name Link Location

1.21.8 $page’s Wall $wall-post-count Wall posts box

1.21.9 $page’s Wall See All Wall posts box

1.21.3 $person Pro�le picture Wall posts box

1.21.4 $person $person Wall posts box

1.22 $page $page Pages sidebar box

2 $Friends All Friends Global navigation

2.1 $person Pro�le picture Friends list

2.2 $person $person Friends list

3 Photos Photos Le� sidebar

3.1 $person’s Photos – $album Album picture Album list

3.1 $person’s Photos – $album $album Album list

3.3 $person $person Album list

4 Groups Groups Le� sidebar

4.1 $group Group picture Group list

4.2 $group $group Group list

4.3 Group Members $member-count Group list

4.4 $person $person Group list

5 Events Events Le� sidebar

5.1 $event Event picture Event list

5.2 $event $event Event list

6 $person $person News feed

7 $group $group News feed

8 $person Pro�le picture News feed

9 $person’s Wall-to-Wall with $person Wall-to-Wall News feed

139

Table A.4: (continued)

Id Page Title Link Name Link Location

10 $event $event News feed

11 $person’s Photos – $album photo News feed

12 $person’s Photos – $album Photo thumbnail Photos list

13 $person $person Status updates, right sidebar

14 $person $person Birthdays right, sidebar

15 $person $person People you may know, right sidebar

14
0

B

SELECTION OF THIRD PARTY

SOFTWARE

�is appendixwill �rst describe the ingredients in our prototype so�ware

stack. A�erwards we’ll account for the tools we’ve used while developing

this so�ware stack.

Firstly one important aspect with the so�ware used in our thesis

work – from operating system to third party libraries – is that it should

only consist of open source 1 so�ware. In our experience it’s invaluable 1.Ce Open Source De�nition (�e

Open Source Initiative, n.d.) dictates

the terms so�ware needs to follow

to be accepted as open source. Some

call open source for Free So�ware

and the term Free/Libre/Open Source

So�ware have been used to reconcile

these di�erent wordings. We’re

pragmatics like others (Fogel, 2005,

p. 8) and are not going into the

political details of these terms and

are going to describe such so�ware

as open source throughout this

thesis.

to have sources available for all involved so�ware. If one encounter

abnormal behavior or bugs it’s much easier to locate themwhen one have

sources available and one can trivially (depending on the complexity of

the problem) create a patch that sorts them out. One of the motivating

factors of open source contributors is the opportunity for other users

to �nd and �x failures and provide improvements on their code (von

Hippel, 2005, p. 87).

It’s also our experience that one can �nd third party so�ware that

�ts one’s problem domain more easily if one chooses to use open source

so�ware because of the vast availability of such so�ware. Deshpande

and Riehle (2008) found that the availability of open source code and

projects had grown exponentially from January 1995 to December 2006.

Lastly it’s of importance to keep the act of conducting science open

so that future researchers easily can discuss, falsify, and improve on

previous research. So�ware is o�en an essential part of computer science

research and Kelty (2005, p. 430) therefore argues that open source is a

property to strive for when conducting such research.

b.1 prototype software stack

Based on the architectural decisions made in Chapter 4 (p. 47) we’ll

now go on to make more �ne-grained choices of what speci�c third

party so�ware components to utilize in our prototype application. We’ve

decided to harness some of the seemingly best freely available so�ware

components in this so�ware stack. �e issue of such code reuse was

introduced by McIlroy (1968, pp. 138–142) when he voiced a need for

the so�ware industry to become industrialized. His proposed technique

for enabling mass-production of so�ware was to o�er components –

families of program routines that can be used for any given job. �ese

141

components should be created in a way so that they can �t together as

building blocks. �e developer should be able to treat these components

as black boxes.2

2. In the �eld of electronics black

boxes are used to describe elec-

tronic circuits with a �xed set of

terminals where one is deliber-

ately ignoring the internals of the

circuit. Only the external prop-

erties of the circuit given by the

electronic properties of its termi-

nals are emphasized (Wilson, 1979,

p. 171). Paralleling with computer

science we can think of a compo-

nent, module, object, or routine

(electronic circuit) as being a black

box when we’re only concerned with

its input and output characteristics

through its interface (terminals).

A�er object-oriented programming became the most popular pro-

gramming paradigm3 it’s become commonplace to o�er so�ware compo-

3. According to tiobe’s list of of

how popular di�erent programming

languages are (based on the number

of engineers using them, courses

given for them, and third party ven-

dors endorsing them) 65.463 percent

of language use were object oriented

(So�ware, 2008). �e languages

counted towards object orientation

were: Java, php, C++, Perl, Python,

C#, Ruby, Delphi, JavaScript, D,

FoxPro, Ada, and ColdFusion.

nents in the form of classes and modules which easily can be integrated

into a new so�ware project. As Al-Ahmad and Steegmans (1999, p. 37)

puts it “code reuse is what object-orientation [is] all about in the �rst

place”. Such libraries or frameworks ought to provide more e�cient

development, higher code quality, and easier maintenance (Stroustrup,

1996, p. 12). We’re therefore leveraging several such freely available so�-

ware components in our prototype system. We’ll �rst survey system

components utilized on the client-side and then those selected for the

server-side implementation.

B.1.1 Client-side

Platform

�e platform for the clients is in essence a web browser. We are making

changes to a web page (more correctly the dom of a web page) a�er

all. �e web browser have to be explicitly chosen to be one that readily

supports scripting existing web pages – a term o�en called user scripting.

�e Firefox4 web browser was the �rst browser providing a plug-in for

4. Firefox is available at http://
www.mozilla.com/en-US/firefox.

handling such scripting of web pages and seems to have the most mature

implementation in our view. Since Firefox also is the most adopted5

5. Firefox was the second most used

web browser in February 2008 only

surpassed by Microso�’s Internet

Explorer (OneStat.com, 2008).

cross-platform open source web browser the platform choice was quite

easy.

Firefox provide user scripting through the means of the Greasemon-
key6 browser extension. Essentially all it provides is the ability for a user

6. Greasemonkey is available at

http://www.greasespot.net.

to install a script which can manipulate the behavior and properties of

an existing web page using the dom.7 When a user have such a script

7. �e dom is a three of objects

representing the hierarchical struc-

ture of nested tags (with text and

attributes) in html documents

(Flanagan, 2006, pp. 307–310).

for a speci�c web page installed its instructions will be executed on the

next visit to the given site, enabling all kinds of modi�cations to the

dom. Some have predicted that Greasemonkey could enable users to

�nally “take back the Web” – making the decision of how a web page

behaves and what information it presents the choice of the user of a web

page, not the creator (Filman, 2006, pp. 3–4.) Although most o�en used

for customizing the appearance of a given web site (Vitali, 2006, p. 39),

Greasemonkey can also be used for creating new navigational designs

on the Urørt web site.

Although we’ve settled on the Firefox and Greasemonkey platform

there is a certain possibility that our implementation could work in other

browsers providing user scripting. �e Opera browser provides user
scripting without any plugins,8 the Safari browser can handle user script

8. For more information about

Opera’s user-scripting capabili-

ties see http://www.opera.com/
support/tutorials/userjs/examples.

with the GreaseKit9 plug-in. Our prototype user script would not work9. GreaseKit for Safari is located

at http://8-p.info/greasekit. in the Opera browser since it does not allow a XMLHttpRequest for

142

http://www.mozilla.com/en-US/firefox
http://www.mozilla.com/en-US/firefox
http://www.greasespot.net
http://www.opera.com/support/tutorials/userjs/examples
http://www.opera.com/support/tutorials/userjs/examples
http://8-p.info/greasekit

another domain than what the user script is currently running in. As

described in § 4.4.1 (p. 59) this is an essential feature for our implemen-

tation. Recent versions of GreaseKit removed the possibility for such

kinds of requests to take place. We’re therefore le� with Greasemonkey

for Firefox as our only deployment platform.

Programming language

�e ability to programmatically alter behavior inside web browsers was

�rst introduced by Netscape in their 2.0 version of the web browser

with the same name. JavaScript was �rst intended to be a lightweight
scripting language for gluing together html and applets written in

the Java programming language (Netscape, 1995).10 Java applets never

10. Sun Microsystems, the cre-

ators of Java, had negotiated with

Netscape about including it in their

second major web browser release.

�e development of JavaScript, then

called Mocha, was already under-

way and people inside Netscape

wondered why one needed two

languages. “�e answer was that two

languages were required to serve the

two mostly-disjoint audiences in the

programming ziggurat who most

deserved dedicated programming

languages: the component authors,

who wrote in C++ or (we hoped)

Java; and the ‘scripters’, amateur or

pro, who would write code directly

embedded in HTML” (Eich, 2008).

took o� and JavaScript soon became the de facto standard for enabling

behavior on the Web and was standardized as ECMAScript in 1997

(International, 1999).

Because of this we had no say in what programming language to

use on the client-side. �at is not to say that JavaScript is a poor pro-

gramming language. Contradictory to its name, JavaScript bears few

similarities to the Java language.11 Despite its origins as a scripting 11. �e name was more of a market-

ing decision when Netscape teamed

up with Sun (Flanagan, 2006, p. 2).
language JavaScript is now considered a full-featured modern program-

ming language (Flanagan, 2006, p. 2; Resig, 2006, p. 3) including object-

orientation.

Convenience library

Wedecided to use a JavaScript library tomake interactions with the dom

simpler. In addition there recent JavaScript convenience libraries provide

a uni�ed interface to the browser – abstracting away inconsistencies

between browser vendors. Lately a myriad of such frameworks have

appeared, but the most interesting ones seems to be Prototype, Yahoo!
UI Library (yui for short),MooTools,MochiKit, and jQuery.12 �ere are

12. Available, in respective order, at

http://www.prototypejs.org, http:
//developer.yahoo.com/yui, http:
//mootools.net, http://mochikit.
com, and http://jquery.com.

other frameworks available that provide everything but the kitchen sink

but we needed a lightweight or modular solution.

As can be seen in Figure B.1 (p. 145) we summarized the size of the

most current version for each library of this writing. �ese are not exact

metrics – we selected not to include certain widgets and logging facilities

for the modularized libraries – but should provide clear guidance. To

keep a level playing feel in this comparison we did not use mini�ed (re-

moval of comments and unnecessary spaces) or packaged (compressed)

versions of the libraries. All comments and documentation was stripped

with a small script presented in Source Code Listing D.2 (p. 162) since the

in-line documentation and commenting varied amongst the libraries.

We played around a bit with the di�erent libraries to get a feel for how

they worked. What follows is a comparison of simple dommanipulation

for the di�erent libraries. We followed the o�cial documentation for

the various libraries and tried to solve or problem as succinct and clearly

143

http://www.prototypejs.org
http://developer.yahoo.com/yui
http://developer.yahoo.com/yui
http://mootools.net
http://mootools.net
http://mochikit.com
http://mochikit.com
http://jquery.com

as possible. We tried to add a class attribute of “highlight” to all em
elements with an descendant p element:

1 getElementsBySelector("p em").each(function(em) {
2 em.addClassName("highlight");
3 });

Source Code Listing B.1: dom manipulation in JavaScript with the Prototype library

1 var em = YAHOO.util.Selector.query("p em");
2 YAHOO.util.Dom.setClass(em , "highlight);

Source Code Listing B.2: dom manipulation in JavaScript with the Yahoo! ui library

1 $$("p em").each(function(em){
2 em.addClass("highlight");
3 });

Source Code Listing B.3: dom manipulation in JavaScript with the MooTools library

1 var p = getElementsByTagAndClassName("p");
2 for (i = 0; i < p.length; i++) {
3 em = getElementsByTagAndClassName("em","*", p[i]);
4 for (j = 0; j < em.length; j++) {
5 addElementClass(em , "highlight");
6 }
7 }

Source Code Listing B.4: dom manipulation in JavaScript with the MochiKit library

1 $("p em"). addClass("highlight");

Source Code Listing B.5: dom manipulation in JavaScript with the jQuery library

When we compare these rather trivial problem solutions it becomes

apparent that choosing a JavaScript library can have major impact on

how easily implemented and understood your code will be. Four of

the �ve libraries have support for selector syntax based on that found

in css.13 �is is what makes the MochiKit example the most complex13. css is short for Cascading Style

Sheets – a stylesheet language most

commonly used for describing the

presentation of html documents.

one, requiring the developer to do two queries into the dom and con-

struct two loop structures for iterating over the results. Prototype and

144

50

150

250

yui MochiKit Prototype jQuery MooTools

Figure B.1: Comparison of JavaScript library �le size, in kB.

MooTools also requires the developer to loop over a single result set,

but the iteration is abstracted into an each function making the logic

a bit more clearer. Yahoo! ui Library’s dom functions works on both

single elements and collections of elements – eliminating the need for an

explicit loop structure. Notice though that the library from Yahoo! relies

heavily on namespacing – which is a good thing for interoperability with

other libraries – but can be a bit verbose at times.

�e solution written with jQuery provides even more clarity. Every

query into the dom returns a special jQuery object which means that

one can call methods like addClass directly on this object regardless if

the jQuery object holds a single or multiple elements. Also unique to

jQuery is the fact that every method call returns a new jQuery object.

�is means that one can chainmethods together, expressing succinctly

and clearly what you intend to accomplish with your code. We can

extend our initial problem and add some punctuation inside our em
element:

1 $("p em"). addClass("highlight"). append("!");

Source Code Listing B.6: Chaining multiple methods together in jQuery

We decided to select jQuery as the JavaScript library for our im-

plementation. Firstly jQuery have a very minimal �le size compared

to the largest library we tested. It was only beaten in this regard

by MooTools, and the di�erence was minor. Secondly its unique

syntax makes for succinct and clear code which we value highly. It seems

others have take jQuery and its virtues to hart as many large corpora-

tions like Google, Intel, Dell, and bbc have used it in their public facing

o�erings.14

14. For a complete list see http:
//docs.jquery.com/Sites_Using_
jQuery.

145

http://docs.jquery.com/Sites_Using_jQuery
http://docs.jquery.com/Sites_Using_jQuery
http://docs.jquery.com/Sites_Using_jQuery

B.1.2 Server side

Platform

Based on the following survey of server side so�warewe needed anunix-

based operating sytem as the plattform of our server. �e particular

operating system was pre-selected for us as sintef already had a server

we could use. �is system was running Debian15 gnu/Linux – a perfect15. Debian gnu/Linux is freely

available at http://debian.org. �t for the rest of our server side so�ware stack.

Programming language

When doing prototype work it’s important that the programming lan-

guage one uses is e�cient to work with. �is means that programmer

e�ciency is more important than computational e�ciency (a language’s

native performance). McAnally and Arkin (2008) argues that the true

measure of a language’s productivity is how little code you need for

solving a given problem. Since we didn’t have time to invest in learn-

ing a new language we had to do with those we knew from before. Of

those Ruby,16 Python,17 and Common Lisp18 were the ones with language

16. �e Ruby language is avail-

able at http://ruby-lang.org.
17. �e Python language can

be found at http://python.org.
18. Common Lisp, the prevalent

Lisp dialect today, is a standard

(American National Standards

Institute and Information Tech-

nology Industry Council, 1996)

and has many implementations.

A gateway to this language and

its many implementations can be

found at http://common-lisp.net.

features that �tted our development process. All these languages sup-

ports multiple programming-paradigms though Common Lisp is most

functional of nature while Python and Ruby are more inclined towards

object-orientation.

�ey are all latent typed19 and have quite expressive syntax. �is

19. Latent typing “is a style of

typing that does not require (or

perhaps even o�er) explicit type

declarations”(Wikipedia, 2008b).

makes for concise source code. Yegge (2005) argues that the worst thing

that can happens to a code base is size which o�en is the result of code

bloat. In addition, both Ruby, Python, and Common Lisp are interpreted

languages.20 �is means that the programmer don’t have to go through

20. �is is only partly true since

Common Lisp implementations

incrementally compile code and

extensions or new implementations

for Python and Ruby implements

just-in-time compilers. In both

cases the developer does not need to

explicitly invoke a compile process

before using a program, therefore

resembling interpreted languages.

a compilation process before he can see the results of his labor. When

prototyping rapidly it’s quite convenient to make small changes and see

the results instantanously.

Disussion of the virtues of di�erent �avors and implementations

of programming languages have been the subject of endless debate. In

the end we think it comes down to personal preference and making a

pragmatic choice for the tool best suited for the job at hand. If we had

to select a programming language based on our list of candidates based

on the languages syntax and posibilities in itself we would probably

have gone with Common Lisp. Foderaro (1991, p. 27) have called it “the

programmable programming language”based on the fact that program

code in Lisp is data and can be manipulated with the same constructs

one are using on data. �is makes it immensly powerfull and is the

reason why it’s survived for over 50 years (McCarthy, 1978, p. 217) and

been able to adopt new paradigms in programming as they’ve appered.

Even though we walue programming e�ciency over computational

performance, it should be noted that Common Lisp have been described

as the only performant dynamic language (Martin, 2008) compared to

statically compiled languages.21

21. InCe Computer Language

Benchmarks Game (see http:
//shootout.alioth.debian.org)
several programming languages

are pitched against each other in

several tests to determine their

computational performance. As of

this writing (April 2, 2008) Com-

mon Lisp is 1.8 times slower than

the fastest language: C++. Python

and Ruby are respectively 18 and

56 times slower than the leader.

146

http://debian.org
http://ruby-lang.org
http://python.org
http://common-lisp.net
http://shootout.alioth.debian.org
http://shootout.alioth.debian.org

As it turns out, the most important criteria for choosing our imple-

mentation language was its library support.

Guo (2006) shares this viewpoint::

�e programming environment (development/target platforms, intended

audience, and most importantly, available libraries) is the primary factor

in determining one’s choice of programming language.

In the next section we discuss our options of such libraries or frame-

works. Based on our �ndings there we landed on Ruby as the language

of our server-side implementation.

Data extraction library

�ecore library we need is one that handles data extraction from existing

web pages, so called html scraping. While it’s possible to handle such

problems with regular expressions, this becomes tedious a�er a while.

We therefore prefer a special purpose library.

�e major deciding factor when we selected the implementation

language was the availability of such a library and its usefulness. We’ve

already revealed Ruby as our implementation language and are therefore

killing the suspense. Our data extraction library of choice is called

Hpricot22 and makes html parsing a blissful endeavor in our opinion.

22. Hpricot can be obtained from

http://code.whytheluckystiff.net/
hpricot. A curious note: Hpricot

is written by the same person who

created Hoodwink.d – our inspi-

ration for a transparent prototype

implementation.�e Python alternative for web page scraping is Beautiful Soup. We

were not able to �nd any libraries specially made for html scraping

implemented in Common Lisp. �ere exists several xml23 libraries that 23. Extensible Markup Language.

General purpose markup language

speci�cation that enables imple-

mentors to create custom markup

languages. html is not a subset

(speci�ed in) xml (W3C html

Working Group, 1999). xhtml

on the other hand, a reformulated

version of html, is a subset of

xml (W3C html Working Group,

2002).

could handle our tasks, but none as well integrated as the Ruby and

Python options.

To get a feel for the di�erence between Hpricot and Beautiful Soup

we tried them out on some trivial examples. Under you’ll see the listings

for one of these examples. We are trying to �nd an em element with

a class of citation, which have a p element as its parent, in a html

document contained in the html object:

1 html(’p’). content.findNextSiblings(’em’, ’citation ’)

Source Code Listing B.7: html parsing in Python with Beautiful Soup

1 html/’p > em.citation ’

Source Code Listing B.8: html parsing in Ruby with Hpricot

We feel that Hpricot’s syntax is much clearer than that of Beautiful

Soup. �is could be a personal preference since we’ve used css for a

long time and Hpricot’s selector syntax is based on css and Xpath, just

147

http://code.whytheluckystiff.net/hpricot
http://code.whytheluckystiff.net/hpricot

as jQuery. Hpricot was in fact initially based on jQuery’s selector syntax

(Why the Lucky Sti�, 2006). �is means that we can use the same syntax

for selectors on the server and client-sidea cognitive advantage.

When we started developing our prototype application we came over

what in some way can be seen as a bug of Hpricot. We feel the fault

lies with the server-side plattform Urørt uses. Simply put, Microso�’s

ASP.NETweb application framework uses a hiddenhtml input element

to maintain the state of html forms between stateless http requests.

�is hidden input element can be quite large24 in size since it contains a24. On the Urørt web site (http:
//www11.nrk.no/urort/Artist/

dividizzlDVD) the hidden in-

put element used for maintain-

ing state weighted in at 122kB!

serialized version of the state of the current page’s html forms. Such

large single html elements have been described by Microso� itself as a

problem (Mitchell, 2004). Hpricot sets aside a bu�er of 16kB for storing

each html element. When Hpricot encounters an element with the size

we’re seeing on Urørt it simply chokes.

Since Hpricot is open source so�ware someone had thankfully expe-

rienced the same problem and provided a patch to dynamically increase

the bu�er if an enormous html element was encountered. All we had

to do for properly using Hpricot on Urørt was to use a version patched

with this change instead of using the standard vanilla version.

Data fetching library

Since we’ve selected Ruby as our development language of choice we used

open-uri, part of the standard Ruby library, for fetching documents

over http. open-uri is trvial to use and integrates nicely with Hpricot:

1 require ’hpricot ’
2 require ’open -uri’
3
4 html = Hpricot(open(’http :// redflavor.com’))
5 (html/’address.vcard > .fn ’). inner_html
6 # => "Eivind Uggedal"

Source Code Listing B.9: Fetching a html document with open-uri and parsing it

with Hpricot to �nd the �rst and last name of a hCard Microformat

json library

Since we’ll mainly be serving requests for our JavaScript based client

implementationwe found it sound to transfer this data as json.25 Luckily

25. json, short for JavaScript

Object Notation, is speci�ed in

rfc 4627 (Crockford, 2006a).

Shortly put it’s a lightweigh data

interchange format based on

the object literals of JavaScript.

for us there exists a libary for encoding Ruby objects into json format

simply called json.26 �e next code listings show how simple objects can

26. �e Ruby json can be found

at http://json.rubyforge.org.

be encoded and the resulting json format.

http framework

A web framework or rather http framework is needed to make the gen-

erated activity data in json format available for our client. In addition

148

http://www11.nrk.no/urort/Artist/dividizzlDVD
http://www11.nrk.no/urort/Artist/dividizzlDVD
http://www11.nrk.no/urort/Artist/dividizzlDVD
http://json.rubyforge.org

1 msg = {: interjection => ’hello’,
2 :noun => ’world’,
3 :suffix => ’!’}
4
5 msg.to_json

Source Code Listing B.10: Encoding a Ruby hash to json format

1 {"interjection": "hello",
2 "noun": "world",
3 "suffix": "!"}

Source Code Listing B.11: �e result of the json encoding of a Ruby hash

we need to provide some traditional html pages and take action on

input we receive from some of these.

�ere is numerous frameworks for easing the creation of http

applications available for Ruby. �e most popular27 is Ruby on Rails.28
27. A search for Ruby on Rails books

on Amazon revealed 35 titles as of

20 May, 2008.

28. Ruby on Rails has its home at

http://rubyonrails.org.

Other actively developed frameworks includeMerb, Camping, Sinatra,
and Ramaze.29 �ese frameworks have a varying degree of complexity,

29. Available at http://merbivore.
com, http://code.whytheluckystiff.
net/camping, http://sinatrarb.com,

and http://ramaze.net respectively.

but none of them is as simple as Rack,30 a web server interface that sits

30. Rack is available at http://rack.
rubyforge.org.

between a web framework and a web server or can be used as a very

light weight web framework on its own. Since we our neeeds were a

bit specialized we decided to use Rack for handeling http requests.

Because of its simplicity it’s very �exible and allowed us to create exactly

the http interface we wanted. By using Rack we can also easily swap

between di�erent web servers that support the protocoll mandated by

Rack’s interface layer.

http server

Since our web framework builds on Rack we have several http servers

to select from. �e most prominent alternatives of Ruby servers are31: 31. �ese servers can be found at

respectively http://webrick.org,
http://fastcgi.com, http://mongrel.
rubyforge.org. http://swiftiply.
swiftcore.org/mongrel.html, http:
//code.macournoyer.com/thin, and
http://ebb.rubyforge.org.

• Webrick is the original Ruby web server included in all recent versions

of the Ruby environment. Because of its simplicity it has been widely

used when developingweb applications. Unfortunately it’s painstakingly

slow compared to the other alternatives.

• FastCGI was the de facto way of running Ruby web applications for pro-

duction systems before Mongrel, the following alternative, was released.

It’s basically an improvment over the well known cgi model. Contrasted

to its ancestor the processes of FastCGI are persistent and are reused

when handeling requests (Open Market, 1996).

• Mongrel was introduced as a faster alternative to Webrick. One of the

distinguishing factors of the library is that it handles each request in

its own thread – enabeling it to handle many concurrent requests. �e

149

http://rubyonrails.org
http://merbivore.com
http://merbivore.com
http://code.whytheluckystiff.net/camping
http://code.whytheluckystiff.net/camping
http://sinatrarb.com
http://ramaze.net
http://rack.rubyforge.org
http://rack.rubyforge.org
http://webrick.org
http://fastcgi.com
http://mongrel.rubyforge.org
http://mongrel.rubyforge.org
http://swiftiply.swiftcore.org/mongrel.html
http://swiftiply.swiftcore.org/mongrel.html
http://code.macournoyer.com/thin
http://code.macournoyer.com/thin
http://ebb.rubyforge.org

project is now very mature and can be concidered as the most stable

Ruby web server.

• Evented Mongrel is a fork of Mongrel which uses an event loop using

the Reactor pattern (Schmidt, 1996, p. 529) instead of using threading to

handlemultiple concurrent requests. �e requests are therefore handeled

sequentially.

• �in is a fork of Evented Mongrel, promising even better performance

than the original Mongrel. It’s an sequential server which includes vari-

ous convenience functions for easily starting, stopping, and managing a

wide array of �in servers.

• Ebb is the newest kid on the block and are proving to be faster than its

predecessors. It’s entrirely written in C and uses C libraries in contrast to

Mongrel and the Mongrel forks which are only partly written in C with

Ruby libraries. It supports both sequential and threaded processing of

requests. �is project is fairly new and it’s not recommended to utelize

it in production yet.

As we’ve seen the Ruby web server o�erings are many and it can be

quite hard to �nd out the best option. We �rst and foremost wanted a

stable solution with decent performance. �is eliminated Ebb in spite

of its promising performance characteristics. Webrick and FastCGI is

fairly outdated and leaves something to be desired in the performance

department. �in seems to have taken over the space Evented Mongrel

used to occupy in the Ruby server world because of its ease of use and

improved performance.

�is leaves us with two choices: �in and Mongrel. �e most dis-

tinguishing feature between them is that �in processes requests se-

quentially andMongrel processes them in threads, enabeling concurrent

processing. Wether sequential or concurrent processing is best depends

on your application. In general a concurrent model wins when you have

varying response times. If for instance one request takes several seconds

to process all other requests to you application have to wait until the

�rst request have �nished processing when one are using a sequential

model. For a concurrent model the �rst request can be processed in its

own thread while new requests can be accepted and processed in their

own threads.

Why then not use a concurrent model all the time? �e drawback

with a cuncurrent model is that creating threads is costly and introduces

some overhead – resulting in longer response times. If your application

only have fairly short response times you can take advantage of a sequen-

tial model where the time to process a response will be lower compared

to a scenario where one have to create a new thread for each request.

Zygmuntowicz (2008) recommends using Mongrel, the concurrent

Ruby web server, for general purpose applications. He goes on to say that

the treshold for wether one should use a sequential server is response

times that are no longer than two too three seconds. Seeing as our

150

application could very well fall outside this treshold for some requests32 32. When the data the user is re-

questing can not be found in the

cache we have to retrieve the data

from Urørt and perform calcula-

tions on it. �is can be quite time

consuming and could very well

exceed the 2–3 second treshold Zyg-

muntowicz recommends to use as

guidance in server selection.

we followed the recommendations from Zygmuntowicz an opted to use

Mongrel as our Ruby web server. By doing so we’re on the safe side

as we can deliver simultaneous requests even if one of the requests are

taking overly long to process. In addition we believe the overhead of

using a concurrent model with threading would not introduce to much

overhead in response time for average timed requests compared to a

sequential model.

Cache library

As detailed in § 4.4.3 (p. 61) we had no need to persist our activity data

since it was changing as time went by. We did however want to cache

this data for a given time so that users would get berable request times

when using our prototype implementation.

We did not test various cache solutions but instead went with a

proven cache solution calledMemcached.33 Memcached was developed

33. Available at http://www.danga.
com/memcached/.

at LiveJournal34 to handle caching of data for their large user base. Mem-

34. LiveJournal is a place where peo-

ple can keep a blog or journal with

some social network features baked

in. As of May 20, 2008 LiveJournal

had over 15 million registered users

(LiveJournal, 2008). LiveJournal is

available at http://livejournal.com.

cached is used by many large web sites and Facebook is currently the

largest user of the caching solution (Facebook, 2008a). Memcached is

very performant since it stores all its cached items in memory. To inter-

act with the Memcached server we used the memcache-client35 Ruby 35. Available at http://seattlerb.
rubyforge.org/memcache-client/.library.

Database

Since we were going to only use a single database table (see § 4.4.7 (p. 63)

for details) and did not need any special features, we could basically

have used all freely avaiable relational database systems. We selected

Sqlite36 as it have a much smaller footprint than it’s competitors. �is

36. Available at http://sqlite.org.

is mainly due to it’s limited featureset. Another usefull characteristic of

Sqlite is it’s storage format. Sqlite simply writes to a normal disk �le that

can be backed up and handeled with normal �le system tools.

For accessing the database we had a choice between several libraries

that makes interaction with the database easier and abstracted based

on database so�ware. We selected the library we found had the most

�exible and lightweight orm capability: Sequel.37 37. Sequel have a home at http:
//sequel.rubyforge.org.

B.1.3 Overview of client & server components

With all the pieces in place of our third party so�ware puzzle we present

a high level view of the architecture, from the client to the server, in

Figure B.2 (p. 152). Table B.1 lists the versions we used of the various

third party so�ware.

151

http://www.danga.com/memcached/
http://www.danga.com/memcached/
http://livejournal.com
http://seattlerb.rubyforge.org/memcache-client/
http://seattlerb.rubyforge.org/memcache-client/
http://sqlite.org
http://sequel.rubyforge.org
http://sequel.rubyforge.org

jQuery JavaScript
Library

Greasemonkey
(DOM)

Firefox
Web Browser

Application
Client Side Altered

Urørt Web Site

HTML Response Layer

(evaluation)
JavaScript JSON

(AJAX)

Rack HTTP Server
Interface

Application
Server Side

Ruby JSON Library
(generation)

Cache Library

Firefox
Web Browser

HTTP Server

Hpricot
HTML Parser

Greasemonkey

Mongrel

memcache-client

Urørt Web Site
Original

Cache Server
Memcached

HTTP Library
open-uri

JSON Request Layer

JSON Response Layer

Cache Layer HTML Extraction Layer

Figure B.2: High level view of the overall prototype architecture.

152

Name Version

Web browser Firefox User dependant (tested on 2.0.0.14 and 3.0 rc1)

Client-side language JavaScript Browser dependant (tested on 1.7 and 1.8)

User script extension Greasemonkey User dependant (tested on 0.7.20080121.0)

JavaScript library jQuery 1.2.4

Server-side plattform Debian gnu/Linux 4.0

Server-side language Ruby 1.8.5

html scraping library Hpricot 0.6 (with bu�er over�ow patch)

http fetching library open-uri 1.8.5 (included with Ruby)

json library json 1.1.2

http framework Rack 0.3.0

http server Mongrel 1.1.4

Cache server Memcached 1.1.12

Cache access library memcache-client 1.5.0

Database server Sqlite 3.3.8

Database access library Sequel 1.5.1

Table B.1: Versions of third party so�ware used in the prototype stack, by type

b.2 development tools

As with the implementation platforms, languages, and third party li-

braries our �rst criterion for selecting development tools is freedom.

B.2.1 Version control

We’ve found it indispensable to use version control when writing code

and even used it when authoring this thesis. We’ll not spend time to

discuss the merits of version control since we feel its bene�ts are major

and using one induces almost zero overhead in your working process.

Sometimes we feel that the use of version control can guide you when

conducting complex tasks.

�ere are however several di�erent forms of version control system

one can use. One of the most used version control implementations

the last years in open source circles was Subversion38 – a centralized

38. Available at http://subversion.
tigris.org.

version control systemmeaning that one central server holds the version

controlled code repository and its history.39 Recently decentralized ver-

39. Developers on the client-side

have working copies and need to

contact the centralized server to get

a hold of historical data and create

new history.

sion control systems have become more popular amongst developers. A

decentralized model means that every developer can have their own

repository consisting of all history.40 Code is then shared either in a

40. You can for instance be with-

out internet connectivity and still

commit changes, revert to previ-

ous versions, and handle all other

tasks your version control system

supports.

push or pull fashion between such individual repositories. �is enables a

much better model for collaboration. We favor this last model of version

control and so have projects like Linux, X,Mozilla, and OpenSolaris.41

41. Torvalds, author of the Linux

kernel, have described Subversion

and centralized version control

as fundamentally �awed since

it’s supposed to be a “cvs done

right”. Since he feels cvs is �awed

Subversion is therefore inherently

�awed (2007).

Based on criteria of performance and current adoption there are

in our view only two interesting decentralized version control systems:

Git42 and Mercurial.43 Both are unique in that they don’t track meta-

42. Available at http://git.or.cz.

43. Available at http://www.selenic.
com/mercurial.

153

http://subversion.tigris.org
http://subversion.tigris.org
http://git.or.cz
http://www.selenic.com/mercurial
http://www.selenic.com/mercurial

data, they just track content and meta-data are thereby inferred from

the content. At a very high level view Mercurial have a better user

interface and Git supports some advanced features the former don’t

have. We opted to used Mercurial for this development project since

we’ve substantial experience in using it and did not need any of Git’s

advanced features.

B.2.2 Editor

A developer’s main tool for authoring so�ware is his editor. Sometimes

the language of implementation warrants a specialized editor with aids

for handling cumbersome tasks speci�c to that language. Such an editor

is o�en called an ide44 and are used most o�en for languages like Java

44. A good example of an ide

(integrated development envi-

ronment for short) is Eclipse
(available at http://eclipse.org).
It was �rst used for Java devel-

opment but since extended with

plugins for handling other pro-

gramming languages and families.

andC#. Murphy et al. (2006) found that developersmostly use an ide for

navigating large collections of source code, refactoring code, debugging

code, and interacting with revision control systems in addition to normal

editor usage. Development environments found in Lisp45 and Smalltalk46

45. Sandewall (1978, p. 69) de-

scribes the nature and bene�ts

of the Lisp environment as “�e

‘residential’ design of program-

ing systems, whereby all facilities

for the user are integrated into

one system with which the user

communicates during the entire

interactive session, o�ers great

possibilities for user convenience”.

46. Similar to Lisp’s programming

environment “Smalltalk is designed

so that every component in the sys-

tem that is accessible to the user can

be presented in a meaningful way

for observation and manipulation”

(Goldberg and Robson, 1983, p. viii).

are surpassing ide types in integration and interactiveness even though

they preceded them.

�e programming languages we previously settled on, JavaScript

and Ruby, are very expressive and dynamic in their nature in addition to

being interpreted instead of compiled. Our experience is that ide usage

for such languages stands more in the way than aid you as a programmer

during your problem solving process. Bray (2007) conducted a rather

unscienti�c survey of 1000 Ruby programmers. Despite of the surveys

shortcomings it showed that the majority of Ruby programmers used

non-ide editors for their development.

�e interactive experience provided by Lisp and Smalltalk implemen-

tations are sadly missing47 from JavaScript and Ruby implementations.

47. Ruby has an interactive inter-

preter similar to those found in

Lisp and Smalltalk environments

called irb. It’s not integrated into

an overall programming envi-

ronment and therefore is mostly

used for testing out small ideas.

�is means that we’re le� with �nding a good editor which enables us

to focus on writing code as e�ciently and safely as possible. Editor

selection is highly a matter of preference and �nding one that matches

your work process. Powerful editors have a reputation of being quite

hard to learn. But if you get over the steep learning curve the bene�ts

the editor gives you are worth it.

Orenstein (2008) have experienced how much e�ort programmers

can invest in something seemingly trivial as an editor:

If the thought of switching editors doesn’t �ll you with quite a bit of dread,

what you’re using now is almost certainly under powered, and you de�nitely

haven’t customized it enough.

B.2.3 Testing suites

As described in § 4.3.2 (p. 55) we’re �rm believers of using automated

testing when developing applications.

154

http://eclipse.org

Greasemonkey user scripts inherit a strict security model where the

dom one is interacting with are a special copy of the browser’s dom. In

the case of testing this is unfortunate since it’s very complicated to get a

testing library to properly run within this secure model.

We initially tried to adapt the Screw Unit48 JavaScript behaviour- 48. Screw Unit is available at http:
//github.com/nkallen/screw-unit.driven development library to the intricacies of Greasemonkey user

scripts, but had to give up. We therefore had to develop without auto-

mated tests on the client-side. Fortunately the most complicated logic of

our application are on the server side and our client-side development

process did not get to hard despite the lack of a proper testing suite.

On the server-side we had better success with integrating a testing

suite into our application. �ere are several options available when

selecting amongst Ruby testing suites. We’re ignoring traditional test-

driven libraries as we’re proponents of a behaviour-driven style (§ 4.3.2

(p. 55)). We looked at49: 49. �ese behaviour libraries can be

found at respectively http://rspec.
info, http://rubyspec.org, http:
//chneukirchen.org/repos/testspec,
and http://chneukirchen.org/
repos/bacon.

• RSpec is the original behaviour-driven suite for Ruby. It’s therefore the

most mature project and have the best integration with other tools. It

does seem to su�er from too much complexity in its code base. �e

following suties adresses this complexity problem.

• MSpec havemore features than RSpec in spite of having clearer andmore

understandable source code (Klishin, 2008).

• test/spec is an interface for writing speci�cations of behavior on top of

the original Ruby unit testing library and are therefore compatible with

tests written with it.

• Bacon is the smallest of the suites when counting source code but still

implements themajority of the fatures of its big brothers. It’s still a young

project and have therefore not seen much usage.

Based on the tool support and code maturety we decided to use

RSpec for our development. �is allowed us to use autotest, a part of
ZenTest50 which continously runs your test suite as you make changes 50. Available at http://www.

zenspider.com/ZSS/Products/
ZenTest/.

to your source code �les. �is way you can keep your focus on the editor

and only glance over the status of your test suite as you move along.

B.2.4 Debugger & pro�ler

Since we were unable to utilize automated tests on the client-side we

had to resort to a debugger checking for correctness in our code while

developing. �ere are currently two JavaScript debuggers for the Firefox

browser: Venkman51 and Firebug.52 �e latter have a considerably less 51. Located at http://www.mozilla.
org/projects/venkman/.
52. Firebug has its home at http:
//www.getfirebug.com.

intrusive interface than the former and seems to be much more actively

developed as of this writing. Firebug have the most advanced features

with a better user interface. Our choice of a client side debugger was

simple.

On the server-side we never saw the need for a debugger since we

developed all our code in a behaviour-driven way enabeling us to both

155

http://github.com/nkallen/screw-unit
http://github.com/nkallen/screw-unit
http://rspec.info
http://rspec.info
http://rubyspec.org
http://chneukirchen.org/repos/testspec
http://chneukirchen.org/repos/testspec
http://chneukirchen.org/repos/bacon
http://chneukirchen.org/repos/bacon
http://www.zenspider.com/ZSS/Products/ZenTest/
http://www.zenspider.com/ZSS/Products/ZenTest/
http://www.zenspider.com/ZSS/Products/ZenTest/
http://www.mozilla.org/projects/venkman/
http://www.mozilla.org/projects/venkman/
http://www.getfirebug.com
http://www.getfirebug.com

catch bugs and form solutions through our speci�cation suite. But as

described in § 4.5 (p. 65) we stumbled upon some major performance

problems. For locating the bottlenecks in our application – the places

that consumed the most time – we used a pro�ler53 called ruby-prof.54

53. A pro�ler is a tool used by devel-

opers for identifying the execution

time of various parts of a program

or how o�en these parts of the pro-

gram are utilized (Graham et al.,

1982, p. 120). It’s used when try-

ing to improve the performance

of a segment of a given program

and should be used in an iterative

way (Graham et al., 1982, p. 125).

54. Available at http://rubyforge.
org/projects/ruby-prof.

�is is the fastest pro�ler for Ruby and it can generate various forms of

reports which enables a developer to understand the time related aspects

of his code.

156

http://rubyforge.org/projects/ruby-prof
http://rubyforge.org/projects/ruby-prof

C

QUESTIONNAIRES

�e questionnaires was given to Norwegian users and are therefore rep-

resented here in their original language and tone. A�er every question

we list the possible responses. Response options are separated by com-

mas (,). When response options are enclosed within angle brackets ([])

only one answer was allowed for that particular question. For response

options enclosed in curly braces ({}) multiple answers was allowed for

that question. An asterisk (*) at the beginning of a question denotes that

an answer was required. [0–N] means that the response have to be a

positive number. [*] indicates a free text response.

c.1 pretest survey

�ese set of questions were asked before users were given an option to

install and use our prototype application.

C.1.1 User pro�le

1 Er du mann eller kvinne? [Mann, Kvinne]

2 Hvor gammel er du? [0–N]

3 * Bruker du Firefox nettleser? [Alltid, Som regel, Av og til, Sjelden/aldri]

4 * Hvor o�e besøker du nettstedet Urørt? [Daglig, Flere ganger i uken,

Ukentlig, Månedlig, Sjelden/aldri]

5 * Når du besøker Urørt, pleier du å logge deg på (med brukernavn og

passord)? [Alltid, Som regel, Av og til, Sjelden/aldri]

C.1.2 Favorites on Urørt

1 * Er du kjent med begrepet “Favoritter” på Urørt? [Ja, Nei]

2 Hvor mange Favoritter har du på Urørt? [0–N]

3 Hva gjør at du velger å legge artister på Urørt til dine Favoritter? {Artis-

tens musikk, Artistens popularitet, Venner med artisten, Kjennskap til

artisten}

4 Hvor o�e opdatererer du deg på hva dine Favoritter på Urørt foretar

seg? [Daglig, Flere ganger i uken, Ukentlig, Månedlig, Sjelden/aldri]

157

C.1.3 Being up-to-date on favorites

1 Jeg synes det er enkelt å holde meg oppdatert på hva mine Favoritter

foretar seg på Urørt. [Helt uenig, Litt uenig, Verken enig eller uenig, Litt

enig, Helt enig]

2 Jeg synes det er enkelt å holdemeg oppdatert på hvorvidtmine Favoritter

legger ut nye sanger på Urørt [Helt uenig, Litt uenig, Verken enig eller

uenig, Litt enig, Helt enig]

3 Jeg synes det er enkelt å holdemeg oppdatert på hvorvidtmine Favoritter

legger ut nye blogg innlegg på Urørt. [Helt uenig, Litt uenig, Verken

enig eller uenig, Litt enig, Helt enig]

4 Jeg synes det er enkelt å holdemeg oppdatert på hvorvidtmine Favoritter

holder konserter. [Helt uenig, Litt uenig, Verken enig eller uenig, Litt

enig, Helt enig]

5 Jeg synes det er enkelt å holde meg oppdatert på hvilke reaksjoner andre

Urørt brukere har på mine favoritters sanger. [Helt uenig, Litt uenig,

Verken enig eller uenig, Litt enig, Helt enig]

6 Har du noen ønsker for hvordan Urørt kunne gjort det enklere å holde

seg oppdatert på Favoritter? [*]

c.2 follow-up survey

�e following pre-installation questions were asked 24 hours a�er users

were given their initial survey and the option to install our prototype

application.

1 * Klarte du å installere den nye funksjonen “Siste fra dine favoritter”? [Ja

– det gikk fort og greit, Ja – men jeg opplevde små problemer underveis,

Ja – men jeg opplevde store problemer underveis, Nei – jeg gav opp]

2 Dersom du opplevde problemer, vennligst fortell kort om hva som var

problemet. [*]

c.3 posttest survey

�e posttest survey was given to users 11 days a�er they took part in the

initial survey.

C.3.1 Favorites on Urørt

1 Hvor mange Favoritter har du på Urørt? [0–N]

2 Hva gjør at du velger å legge artister på Urørt til dine Favoritter? {Artis-

tens musikk, Artistens popularitet, Venner med artisten, Kjennskap til

artisten}

3 Hvor o�e opdatererer du deg på hva dine Favoritter på Urørt foretar

seg? [Daglig, Flere ganger i uken, Ukentlig, Månedlig, Sjelden/aldri]

158

C.3.2 Being up-to-date on favorites

1 Hvor mye har du brukt den nye funksjonen “Siste fra dine Favoritter”

når du har vært pålogget Urørt? [Har ikke brukt, Kun noen få ganger,

Nesten hver gang, Hver gang]

2 Jeg synes det er enkelt å holde meg oppdatert på hva mine Favoritter

foretar seg på Urørt. [Helt uenig, Litt uenig, Verken enig eller uenig, Litt

enig, Helt enig]

3 Jeg synes det er enkelt å holdemeg oppdatert på hvorvidtmine Favoritter

legger ut nye sanger på Urørt [Helt uenig, Litt uenig, Verken enig eller

uenig, Litt enig, Helt enig]

4 Jeg synes det er enkelt å holdemeg oppdatert på hvorvidtmine Favoritter

legger ut nye blogg innlegg på Urørt. [Helt uenig, Litt uenig, Verken

enig eller uenig, Litt enig, Helt enig]

5 Jeg synes det er enkelt å holdemeg oppdatert på hvorvidtmine Favoritter

holder konserter. [Helt uenig, Litt uenig, Verken enig eller uenig, Litt

enig, Helt enig]

6 Jeg synes det er enkelt å holde meg oppdatert på hvilke reaksjoner andre

Urørt brukere har på mine favoritters sanger. [Helt uenig, Litt uenig,

Verken enig eller uenig, Litt enig, Helt enig]

7 Hvordan påvirker funksjonen “Siste fra mine Favoritter” din bruk av

Urørt? [*]

C.3.3 Perception of new functionality

1 Funksjonen “Siste fra dine Favoritter” vil gjøre at jeg kan holde meg

oppdatert på mine favoritter på en e�ektiv måte. [Svært usannsynlig, Us-

annsynlig, Litt usannsynlig, Nøytral, Litt sannsynlig, Sannsynlig, Svært

sannsynlig]

2 Funksjonen “Siste fra dine Favoritter” vil gjøre det mulig å holde seg

oppdatert på �ere favoritter. [Svært usannsynlig, Usannsynlig, Litt us-

annsynlig, Nøytral, Litt sannsynlig, Sannsynlig, Svært sannsynlig]

3 Funksjonen “Siste fra dine Favoritter” vil gjøre det enklere å holde seg op-

pdatert på favoritter. [Svært usannsynlig, Usannsynlig, Litt usannsynlig,

Nøytral, Litt sannsynlig, Sannsynlig, Svært sannsynlig]

4 Funksjonen “Siste fra dine Favoritter” vil ære nyttig for å holde seg opp-

datert på favoritter. [Svært usannsynlig, Usannsynlig, Litt usannsynlig,

Nøytral, Litt sannsynlig, Sannsynlig, Svært sannsynlig]

5 Funksjonen “Siste fra dine Favoritter” vil være enkel å lære seg å bruke.

[Svært usannsynlig, Usannsynlig, Litt usannsynlig, Nøytral, Litt sannsyn-

lig, Sannsynlig, Svært sannsynlig]

6 Funksjonen “Siste fra dine Favoritter” vil la meg bruke den slik jeg

vil. [Svært usannsynlig, Usannsynlig, Litt usannsynlig, Nøytral, Litt

sannsynlig, Sannsynlig, Svært sannsynlig]

7 Funksjonen “Siste fra dine Favoritter” vil være enkel å bli dyktig til å

bruke. [Svært usannsynlig, Usannsynlig, Litt usannsynlig, Nøytral, Litt

sannsynlig, Sannsynlig, Svært sannsynlig]

159

8 Funksjonen “Siste fra dine Favoritter” vil være enkel i bruk. [Svært

usannsynlig, Usannsynlig, Litt usannsynlig, Nøytral, Litt sannsynlig,

Sannsynlig, Svært sannsynlig]

9 Synes du funksjonen “Siste fra dine Favoritter” burde være en standard

funksjon på Urørt? [Helt uenig, Litt uenig, Verken enig eller uenig, Litt

enig, Helt enig]

160

D

SOURCE CODE

d.1 unobtrusive social navigation

prototype for urørt

Due to size considerations we’re not going to list the source code of our

prototype implementation for Urørt called “Latest from your Favorites”

in this appendix. �e source code and its entire history is available at

http://bitbucket.org/uggedal/rort/.

d.2 reddit collaborative filtering

algorithm

Here is the source code of the algorithm that decides the score of a

submission. We made syntactical changes to make the code’s intent

clearer.

1 from datetime import datetime , timedelta
2 from math import log
3
4 def seconds_since_cutoff(date):
5 cutoff = datetime (2005 , 12, 8, 7, 46, 43)
6 td = date - cutoff
7
8 seconds = td.days * 24 * 60 * 60
9 seconds += td.seconds
10 seconds += float(td.microseconds) / 1000000
11 return seconds
12
13 def score(up_votes , down_votes , submitted_date):
14 score = up_votes - down_votes
15 order = log(max(abs(score), 1), 10)
16 sign = 1 if score > 0 else -1 if score < 0 else 0
17
18 age = seconds_since_cutoff(submitted_date)
19
20 return round(order + sign * age / 45000 , 7)

Source Code Listing D.1: �e collaborative �ltering algorithm used on Reddit

161

http://bitbucket.org/uggedal/rort/

d.3 javascript comment stripper

�is small script was written to help compare di�erent JavaScript li-

braries:

1 #!/ usr/bin/env ruby
2
3 js_files = Dir[’*.js’]
4
5 ignore_pattern = /^[\s\t]?(\/*|*|\/\/)/
6
7 js_files.each do |file|
8 File.open("#{file}.out", ’w’) do |out|
9 out.puts File.readlines(file). reject do |line|
10 line =~ pattern
11 end
12 end
13 end

Source Code Listing D.2: Strips comments from JavaScript libraries

d.4 shell file and directory

hierarchy

�is one-liner was used for conveying the directory and �le hierarchy of

our server side so�ware:

1 find . | sed -e ’s/[^\/]*\//| - -/g’ -e ’s/-- |/|/g’

Source Code Listing D.3: File and directory hierarchy with standard unix tools

162

	Abstract
	Contents
	List of Figures
	List of Tables
	Preface
	Introduction
	Focus
	Motivation
	Objective
	Contributions
	Outline
	Social Navigation on the Social Web
	Introducing Social Navigation
	Literature Search
	Navigation
	Sociality
	Social Navigation
	Forms of Social Navigation
	Is Social Navigation Valuable?
	Social Navigation on Flickr & Facebook
	Method
	Results
	Discussion
	Generalizability and Validity
	Unobtrusive Prototyping of Social Navigation
	Implementation of an Unobtrusive Prototype
	Building on Top of the Web
	Design
	Process
	Architecture
	Performance
	Source Code
	Empirical Study of a Social Navigation Prototype
	Research Problems and Hypotheses
	Method
	Results
	Discussion
	Generalizability and Validity

	Summary
	Conclusion
	Lessons Learnt
	Future Work

	Bibliography
	Appendices
	Content Inventory
	Flickr
	Facebook
	Selection of Third Party Software
	Prototype Software Stack
	Development Tools
	Questionnaires
	Pretest Survey
	Follow-up Survey
	Posttest Survey
	Source Code
	Unobtrusive Social Navigation Prototype for Urørt
	Reddit Collaborative Filtering Algorithm
	JavaScript Comment Stripper
	Shell File and Directory Hierarchy

