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Abstract

Motivation: There is a rapidly growing interest in high-throughput drug combination screening to identify synergiz-
ing drug interactions for treatment of various maladies, such as cancer and infectious disease. This creates the need
for pipelines that can be used to design such screens, perform quality control on the data and generate data files
that can be analyzed by synergy-finding bioinformatics applications.

Results: screenwerk is an open-source, end-to-end modular tool available as an R-package for the design and ana-
lysis of drug combination screens. The tool allows for a customized build of pipelines through its modularity and
provides a flexible approach to quality control and data analysis. screenwerk is adaptable to various experimental
requirements with an emphasis on precision medicine. It can be coupled to other R packages, such as bayesynergy,
to identify synergistic and antagonistic drug interactions in cell lines or patient samples. screenwerk is scalable and
provides a complete solution for setting up drug sensitivity screens, read raw measurements and consolidate differ-
ent datasets, perform various types of quality control and analyze, report and visualize the results of drug sensitivity
screens.

Availability and implementation: The R-package and technical documentation is available at https://github.com/
Enserink-lab/screenwerk; the R source code is publicly available at https://github.com/Enserink-lab/screenwerk under
GNU General Public License v3.0; bayesynergy is accessible at https://github.com/ocbe-uio/bayesynergy. Selected
modules are available through Galaxy, an open-source platform for FAIR data analysis at https://oncotools.elixir.no

Contact: jorrit.enserink@ibv.uio.no

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The advent of targeted therapy has revolutionized the treatment of
many types of cancer. However, despite often eliciting a strong ini-
tial response, most targeted therapies ultimately fail due to a variety
of reasons, including mutations in the molecular target, overexpres-
sion of the drug target or activation of compensatory mechanisms
(Bell and Gilan, 2020; Bergholz and Zhao, 2021; Logue and
Morrison, 2012). One solution to this problem is the use of combi-
nations of drugs (Bayat Mokhtari et al., 2017; Plana et al., 2022;
Saputra et al., 2018). This is exemplified by clinical trials with mel-
anoma, which is a form of cancer frequently driven by mutations

that activate the Ras-Raf-MEK-ERK pathway, such as BRAF V600
mutations (Hodis et al., 2012). Ras pathway-driven forms of melan-
oma can be treated with various kinase inhibitors, including the Raf
inhibitors vemurafinib and dabrafenib and the MEK inhibitors tra-
metinib and cobimetinib (Luke and Hodi, 2013; Robert et al.,
2015). Randomized phase III clinical trials have demonstrated that
Raf inhibitors are associated with increased progression-free sur-
vival (Chapman et al., 2011; Hauschild et al., 2012). However,
acquired resistance to these single-drug treatments is a major prob-
lem, and only a minority of patients showed durable responses
(Chapman et al., 2011; Hauschild et al., 2012). Resistance to BRAF
inhibitors can occur via multiple mechanisms, although reactivation
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of the MAPK pathway is a common theme (Solit and Rosen, 2011),
which can be partially overcome by combining BRAF inhibitors
with MEK inhibitors (Flaherty et al., 2012). Additional combina-
tions of targeted therapy and, more recently, with immunotherapy
have been identified that can overcome resistance (Luke et al.,
2017). Similar effects have been observed for a wide variety of can-
cers, including acute myeloid leukemia (AML), lung cancer and
breast cancer (Fisusi and Akala, 2019; Latif et al., 2021; Yuan et al.,
2019), and combination treatment clearly has the potential to sig-
nificantly improve survival rates for cancer patients. However, given
the sheer number of targeted therapies, identifying synergistic drug
combinations is a major challenge, and several obstacles still need to
be overcome.

One such obstacle is the lack of an integrated bioinformatics
workflow that integrates the design and execution of drug combin-
ation screens. Such a workflow should also include quality control
measures to identify and reduce technical variability, which is a per-
sistent problem that limits the reproducibility of high-throughput
drug screens (Hatzis et al., 2014; Larsson et al., 2020; Niepel et al.,
2019). Lack of reproducibility is a well-documented problem in the
screening of new drugs for the treatment of cancer. However,
including strict quality control measures during the early stages of
preclinical development can contribute to reducing the high attrition
rates associated with cancer drug sensitivity screens (Larsson et al.,
2020). The bioinformatics workflow should also include a data out-
put step that produces data files that can be visualized and analyzed
across multiple platforms.

Here, we present screenwerk, which provides a comprehensive
end-to-end solution that integrates design, execution, quality control
and data analysis of large-scale drug combination screens.

2 Materials and methods

2.1 Generating drug combination files
Screenwerk is a modular software tool to facilitate drug combin-
ation screening (Fig. 1A). It takes a list of drugs and creates a drug
combination output file that can be used by a pipetting robot to gen-
erate a source plate that can subsequently be used to prepare a set of
multi-well plates containing drug combinations of interest. This in-
ventory list of drug names and concentrations has to be provided in
the form of a comma-separated values file. If desired, screenwerk
can generate a visual map of the source plate and target plates
(Supplementary Figs S1 and S2). The set of plates containing the
drug combinations is then used to screen cells using the desired ex-
perimental read-out, such as widely used luminescent cell viability
assays (e.g. CellTiter-GloVR ). Upon completing the drug combination
screen, raw data files from various sources can be used by screen-
werk to integrate the raw measurements with the original drug com-
bination map, thereby creating a master dataset that now contains
important information for downstream analysis, such as plate num-
bers, bar codes and drug identifiers.

2.2 Quality control
High-throughput assays can suffer from technical errors, such as
evaporation at the borders of the plate and ‘line effects’ stemming
from errors during drug or cell dispension. Therefore, screenwerk
performs quality control on the master dataset and generates several
plots and heatmaps that provide quantitative and qualitative insight
in the overall variance and noise in the experimental controls for
each of the multi-well plates in the screen (Supplementary Figs S3–
S7). The Z’-factor (Zhang et al., 1999) is also calculated to obtain
an overview of the statistical effect size for each of the plates
(Supplementary Fig. S8). These visualizations can help the experi-
menter with assessing the quality of the screen, which is useful not
only for identifying and correcting potential technical errors but also
for deciding whether to continue with comprehensive downstream
analysis of the dataset.

2.3 Curve fitting and visualization of drug interactions
Upon completing quality control analysis, screenwerk normalizes
the raw measurements to the positive and negative controls and cre-
ates files for single-drug responses and for drug combination
responses. These single-drug response files are then used for curve
fitting using a four-parameter log-logistic function (Vølund, 1978)
(Supplementary Figs S9–S12), which is required for calculating
EC10, EC50 and EC90 values. Screenwerk also includes a tool to

visually identify drug responses that fall outside the dynamic range
(Supplementary Figs S13–S15). In addition to calculating single-
drug responses, screenwerk generates dose–response matrices to
visualize drug-drug interactions (Fig. 1B).

2.4 Drug synergy and antagonism
Several tools can be used to identify positive and negative drug–drug
interactions (synergy and antagonism, respectively), including
SynergyFinder (Ianevski et al., 2017). For analysis of very large
datasets that are typically generated by high-throughput drug
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combination screens, we prefer to use bayesynergy (Rønneberg
et al., 2021), which uses a Bayesian semi-parametric model that ana-
lyzes the volume under the surface to calculate synergy scores.

Bayesynergy is flexible, in that it allows the estimation of several
relevant measures of interest including synergy and antagonism, but

also for example total efficacy. As a fully probabilistic model baye-
synergy handles uncertainty in these estimates correctly, which
allows proper control of the expected proportion of false positive

results, a key requirement for large screens. The synergy scores can
be used to generate several plots that visualize synergistic and antag-

onistic relationships between drugs (Fig. 1C and Supplementary
FigS S18 and S19).

2.5 Documentation and extended development
Screenwerk is implemented using R. Both user documentation and
technical documentation are available for the use and implementa-
tion of the R-package. The R-package is available as an open-source

project under GPL (GNU General Public License) v3.0 and open for
further developmental contribution at https://github.com/Enserink-

lab/screenwerk; the R source code is publicly available at https://
github.com/Enserink-lab/screenwerk under GNU General Public
License v3.0; and bayesynergy is accessible at https://github.com/

ocbe-uio/bayesynergy. Selected modules are available through
Galaxy, an open-source platform for FAIR data analysis at https://

oncotools.elixir.no.
More details, including an example of screenwerk analysis, are

available in the Supplementary Information.

3 Conclusion

Screenwerk provides an end-to-end pipeline for drug combination
screening, ranging from design of the drug combination library to
generation of drug interaction files. It integrates quality control pro-

cedures and quantifies relative drug interactions. The modularity of
screenwerk allows for coupling of separate modules to various

forms of input data and drug interaction applications. The possibil-
ity of visualizing data at multiple steps of the drug combination
screen assists with identification and correction of potential tech-

nical issues and provides an intuitive overview of the drug inter-
action landscape.
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