




Abstract

The techniques employed by viruses to avoid detection by antivirus scanners are be-
coming increasingly advanced. One technique commonly used by viruses to evade
detection is polymorphism. The level of polymorphism in a virus indicates its ability
to create different forms of itself. The use of junk instructions is a common tech-
nique to increase the level of polymorphism in a virus. Junk instructions are machine
code instructions with no other function than to alter the appearance of a virus. Junk
instructions do not contribute to the function of the virus, only the form.

This master thesis focuses on the problem of separating junk instructions from non-
junk instructions in computer viruses. To assail the problem, a junk instruction detec-
tion (JID) framework has been developed, capable of detecting junk in viruses created
for the Intel IA-32 Architecture R© (x86). JID relies on the static instruction informa-
tion produced by a disassembler. Static instruction information describes the static
information found in an instruction: the number of input/output operands and their
accesses. Because JID only depends on the static instruction information, JID can pos-
sible be ported to other processor architectures. As long as there exist a disassembler
for the architecture capable of producing static instruction information, JID is portable.

The results of testing JID on polymorphic viruses are promising. Tests show that JID
manages to detect junk instructions found in the polymorphic virus Zmist. It is be-
lieved that JID would work as a tool to detect and remove junk instructions from future
polymorphic viruses, thus reducing the time spent analysing the virus. Additionally
in this thesis, the virus Zmist is analysed as a case study, and a detection algorithm
devised. The detection algorithm manages to detect 100% of the polymorphic version
of Zmist, although shortcomings in the disassembler algorithm reduces this number to
94%.

Keywords: Polymorphism, metamorphism, polymorphic, metamorphic, computer virus,
malware, worm, junk instruction, garbage instruction, junk code, garbage code, Zmist
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She has been my primary support when lacking motivation, and I could never have
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Chapter 1

Introduction

The topic of this thesis is detection of junk instructions found in computer viruses. Junk
instructions are one of many techniques used to increase the level of polymorphism in
viruses. The expression polymorphism stems from Latin. Poly translates to “many”
and morph translates to “form”. The level of polymorphism in a virus indicates its
ability to create different forms of itself. The higher the level of polymorphism, the
greater variety between the forms. The traditional detection method is based on byte-
signature scanning. The variety found in polymorphic viruses implies that each form
requires an individual byte-signature. This leads to that the byte-signature approach in
the context of polymorphic virus detection, is considered deprecated. Polymorphism
is therefore a problem for the antivirus companies.

Preliminary Notation

The terms metamorphic and polymorphic computer viruses are often used promis-
cuously. Meta is Latin and translates to “change”. Metamorphism is used to describe
viruses changing themselves, instead of producing new forms. The two terms and their
differences when used to describe computer viruses, are explained in section 2.4.5 on
page 36. Until then, the term polymorphism is used to describe both types.

The initial case study done in the thesis was focused on a computer virus and the
term computer virus has been used since. Where the correct term would perhaps be
malware, the term computer virus or virus is therefore used. Only when the context
require separate identification, the different terms are used.

1.1 Motivation

Virus writers have commonly been thought of as “computer nerds” seeking to in-
crease their reputation in underground subcultures by writing viruses. From article
“The Generic Virus Writer” [25] written in 1994, the motivation for writing viruses

15



16 CHAPTER 1. INTRODUCTION

between the studied groups of virus writers varied. Writing viruses for economical
benefits is not stated as a motivation. From “Hackers/Crackers” [51] written in 2006,
the motivation for writing malicious programs or malware has changed. The quote is
translated from Norwegian.

The annual report of SIS (Senter for Informasjonssikring) describes the
current threat picture. The report shows that there is an increased devel-
opment in the use of security holes to gain profits. It is not the “computer
nerds” which are responsible for malware production anymore; organized
crime is behind and large amounts of money is involved.

Mikko Hypponen of antivirus company F-Secure stated the following in 2006 [22].

The most significant change has been the evolution of virus writing hob-
byists into criminally operated gangs bent on financial gain.

Symantec confirms this trend in [37]. Fortinet writes extensively about how the virus
business is organised using mafia-like terms: the members are divided into coders,
kids, mobs and drops [26]. Each group has dedicated tasks in the virus production
cycle and there are large sums of money involved. Valerie McNiven, US Treasury
advisor on cybercrime stated the following in 2005 [26].

Last year was the first year that proceeds from cybercrime were greater
than proceeds from the sales of illegal drugs, and that was, I believe, over
$105 billion.

The concept of virus-writing has evolved from vandalism to organised crime. Follow-
ing from this evolution, the amount of new complex viruses written are higher every
year. Spinellis has devised a proof stating that general detection of evolving, bounded
length viruses is NP-complete [34]. This is not necessarily true when a detection algo-
rithm is allowed to produce false positives. False positives are clean files erroneously
reported as containing a virus. Many articles on detection of both known and unknown
polymorphic viruses are written and because of the increased cybercrime, there is an
increased interest in the field. However, no unified method of detecting polymorphic
viruses has been elected, and the different methods have their strengths and weak-
nesses.

1.2 Problem Statement

In October 2006, I contacted the Norwegian antivirus company Norman ASA with an
enquiry about writing a master thesis on the subject of computer viruses. The selected
field of interest was “Detection of polymorphic viruses”. Because this is a rather broad
field, two research goals were defined to aid the process of determining a final problem
statement.
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1. Learn about polymorphic viruses through a case study.

2. Examine if there is possible to infer any knowledge from the case study which
could be used in general detection of polymorphic viruses.

The first research goal had the following implications. To analyse the case study, the
PE file format, the x86 assembly language and diverse reverse engineering tools had
to be mastered. The virus selected for the case study were Zmist, written in 2001.
Because detecting Zmist would give a better foundation for the second research goal,
the first goal were extended to include detection of Zmist.

After 8 months, the first research goal were reached and the focus was placed on the
second research goal. When analysing Zmist, most of the time were spent comparing
the different forms. The comparison foundation acquired lead to a working detection
algorithm and conforming to the second goal, the following question was posed:
“Is it possible to automatise or semi-automatise this comparison process?”

The first step in such an automatised comparison, would be to remove the detectable
elements that are not common patterns in the different forms of a polymorphic virus.
Junk instructions are an example of such detectable elements, and it was decided that
junk instructions should be removed as the first step in the process of creating a au-
tomatised comparison program.

Problem Statement

As a result of the research conducted related to the second goal, the following problem
statement was formulated.

Is it possible to separate junk instructions from non-junk instructions in an
executable file?

The contents of this thesis are therefore a product of the studies made, and the tools
and techniques developed, to be able to produce an answer to the problem statement.

1.3 Thesis outline

The thesis is comprised of the following chapters.

• Chapter 1 (Introduction) is an introduction to the thesis, describing the motiva-
tion, research goals and problem statement.

• Chapter 2 (Background) contains background information necessary to know
when analysing viruses. Further, computer virus history, polymorphic viruses
and detection methods are explained in this chapter.
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• Chapter 3 (Case Study) provides the results of the first research goal. In this
chapter Zmist is discussed and analysed, and two detection attempts are de-
scribed. Most of the Zmist analysis and both the detection attempts are results of
my own findings. A disassembler termed Gdasm was specifically developed to
aid the research conducted in this thesis and Gdasm is presented in this chapter.

• Chapter 4 (Analysis and Lessons Learnt) describes the analysis and outcome
related to the second research goal.

• Chapter 5 (The JID Framework) contains the discussion and design of a junk
instruction detection framework. This chapter tries to answer the problem state-
ment and the results developed in this chapter are of my own findings.

• Chapter 6 (Testing) describes the different tests conducted and the results. The
tests are related to the Zmist detection algorithm developed in chapter 3 and the
JID framework developed in chapter 5.

• Chapter 7 (Conclusion and Future Work) contains a summary of the thesis, the
contributions made and suggestions for future work.



Chapter 2

Background

Most computer viruses today infects one or more of the Microsoft Windows operating
systems. To investigate viruses, it is crucial to have a basic understanding of Windows’
executable file format (PE). The PE files contains executable binary machine code, cre-
ated to run on a CPU.
The 32-bit x86 architecture has been the most common processor architecture used for
development world wide and most computer viruses are written for x86. It is therefore
necessary to understand the x86 assembler language which is the programming lan-
guage for the x86 CPU architecture.
The binary machine code found in the PE files must be reversed (disassembled) into
meaningful x86 instructions when analysing viruses. It is therefore necessary to learn
about common disassembling techniques. Finally, computer viruses and detection
methods are described.

2.1 PE File format

PE is an acronym for Portable Executable and is described in the PE file format speci-
fication from Microsoft [19]. A PE file is an executable file for the Microsoft Windows
family of operating systems. PE files often have the file extension .EXE and a more
popular term is “EXE-files”, short for executable files. Because binary viruses can
exist inside PE files, it is necessary to have a thoroughly understanding of the PE file
format.

2.1.1 PE File Structure and Headers

A PE file contains many types of headers and several fields inside each header. Fig-
ure 2.1 on the following page illustrates the PE layout and is reproduced from [19, page
6]. MS-DOS doesn’t support the PE file format, but for backwards-compatibility the
MS-DOS header is placed first in a PE file. This header contains stub code compatible

19
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Figure 2.1: Figure illustrating the Microsoft PE Executable format

with MS-DOS, such that when the file is executed in MS-DOS the stub is executed.
The stub typically displays “This program cannot be run in DOS mode” message, be-
fore exiting. Because valid MS-DOS executables start with the characters ‘MZ’, the
MS-DOS header is often termed “MZ header”.

When an OS executing the PE file supports the PE file format, the PE loader of the OS
locates the PE header using the “Offset to PE header” field found at position 0x3c in
the MZ header. It is within the PE header and the subsequent sections the code and
data constituting the actual executable file is found. It it is therefore necessary to have a
fundamental understanding of the PE header and the sections. The terms VA and RVA
are used extensively in the PE file format and must be described prior to explaining the
PE header and sections.

VA and RVA

All the OSes capable of loading PE files also have support for virtual memory enabling
each PE file to be loaded on the same address in memory. The address each PE file
is loaded to is termed the imagebase, and is a field found in the PE header described
next.
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VA A VA is a virtual address. VA is the imagebase + the offset of the item in question
loaded in memory (for example an instruction). The VA completely describes
the location of one item in memory.

RVA An RVA is a relative virtual address. This is the VA - the imagebase, in short
terms the offset of the item in question loaded in memory.

Important PE header Fields

There are a total of 53 header fields in the PE header. The following list enumerates
the fields necessary to recognise in the thesis.

Characteristics Information about the attributes of the file. Examples are “the file is
executable”, “relocation information has been removed from the file” and “the
file is a system file, not a user program”.

AddressofEntrypoint When the OS executes a PE file, it needs to know where the
code should begin its execution. The instruction at the entry point address is
the first instruction executed by the CPU when the PE file is run. Usually the
entry point is within the code section. The entry point address is stored in the PE
header as an RVA.

Imagebase The imagebase is the memory address of where the first byte of the exe-
cutable image is loaded. Default imagebase for Windows 95/98/Me/NT/2000/XP
is 0x400000.

2.1.2 Sections

A section is described in Microsoft’s PE specification as the “basic unit of code or
data within a PE file”. Each section have a section header, and the header contains 10
fields. The 5 most characteristic fields are listed here.

Name The name of the section. The names themselves do not identify the sections
and different compilers can produce different names. For instance, Borland uses
the name “CODE” while GCC use the name “.text” to describe the executable
section. The sections are identified by the characteristics.

Raw size The size of the section in the PE file.

Virtual size The size of the section when loaded in memory.

Pointer to raw data Pointer to the raw data in file (where does the section begin in
the file).

Characteristics Information about the section. Examples are if it is executable, if it
can be read from, if it can be written to, and more.
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There can be many types of sections. Present in all PE files is a section containing
executable code, often named .text. If the program has uninitialised data, this is
often found in a section named .bss. Initialised data, such as global variables, are
found in a section often named .data.

Having introduced a executable code section in a PE file, it will from now on be re-
ferred to as .text.

2.1.3 Relocation Section

Sometimes the OS cannot load the given PE file at the wanted imagebase. All memory
addresses found in instructions in the PE file assumes the use of the default imagebase
(0x400000). Unless the program is loaded at this default imagebase, the execution
of the program would be erroneous. The relocation section, or relocation table, con-
tains pointers to each instruction’s RVA/VA. The pointers are called fixups and must
be updated when executed at a non-default imagebase address. Each fixup points to
the memory offset in the instruction, not the instruction itself. The PE loader can then
loop through each fixup, adjusting the memory address to the new imagebase before
the PE file is executed. The relocation section is often named .reloc.

2.1.4 Import Section

Practically all executable files uses one or more functions from shared libraries. The
shared libraries on the Microsoft Windows platform often have the extension DLL.
The import section contains references to the DLLs and the corresponding functions
imported from each DLL. Only the functions used in the PE file are imported. The
import section is split in two tables:

1. The import table. Each entry in this table contains the DLL reference (for in-
stance kernel32.dll) and a pointer to the import lookup table.

2. The import lookup table. Each entry in this table contains a function reference
within a given DLL (for instance the function GetModuleHandleA of kernel32.dll)

Since a PE file should execute on all systems it was compiled for (for instance Win-
dows 2000 and Windows XP), the entries in the import lookup table cannot contain
specific memory addresses for each imported function. This is because different OSes
can load the DLL functions to different memory addresses. When a PE file is executed,
the PE loader resolves the imported functions’ memory addresses in the OS. There-
fore, it doesn’t matter if the function GetModuleHandleA resides in memory address
0x7C573DFC or 0xBFF77716. The PE loader resolves the correct memory address each
time the PE file is run.
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2.1.5 Summary

This chapter were started by pointing out that most binary viruses are written for the
Microsoft Windows platform. The PE file format is used to structure the executable
code designed to run on the Microsoft Windows platform and an introduction to the
PE file format were therefore given in this section.

To understand how a virus works, it is necessary to master the language the executable
code found in .text is expressed in. This is described in the next section.

2.2 x86 Assembler Language

All the information in this section is based on Intel’s Architecture Manual Vol 1 [18],
Vol 2 A-M [16] and Vol 2 N-Z [17].

The 32-bit Intel processor architecture, commonly known as “x86”, has been the most
common processor architecture used for software development worldwide. Because of
the popularity of the x86 architecture, most viruses are written for x86. To be able to
read virus code, the x86 assembler language must be mastered.

Assembler language is the low-level symbolic representation of the binary machine
codes understandable by a CPU. It is more or less a one to one mapping between the
machine codes and a symbolic representation. Because the machine codes are highly
processor-dependent, a program written in assembler language is not portable between
different processor architectures. The process of converting assembler language source
code into binary machine code is called assembling. The process of reversing a block
of binary machine code into assembler language representation is called disassembling.
In most cases the virus source code is not available to a virus analyst. A disassembling
of the binary file infected with the virus is therefore the best method of transforming
the virus into human understandable operations.

2.2.1 Intel Syntax and Examples

This section describes the assembler language dialect used in this thesis. Further, this
section gives two examples of assembler language code. These are provided as a mo-
tivation for further reading, and to illustrate the main features of the dialect used.

In this thesis, all assembler language listings use the dialect termed Intel syntax. A
typical instruction in the Intel syntax has the following form:
instruction destination, source. Another common dialect is the AT/T syntax.
This is not used or discussed any further in this thesis.
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# Instruction
1 mov EAX, 2
2 mov EBX, 3
3 add EAX, EBX

Table 2.1: x86 Assembler Language Example 1

# Instruction
1 mov EAX,[input1]
2 add EAX, [input2]
3 mov [output+4], EAX

Table 2.2: x86 Assembler Language Example 2

Table 2.1 contains an example of Intel syntax assembler code. In instruction 1, the
value 2 is copied into the register EAX. A register can be viewed as a temporary storage
unit. In instruction 2, the value 3 is copied into the register EBX. In the third instruction,
the value contained in EBX is added to the value in EAX. After instruction 3 has executed
on the processor, EAX holds the value 5 and EBX the value 3.

Table 2.2 contains another example of Intel syntax assembler code. In instruction 1,
the value found at memory address input1 is copied into EAX. In instruction 2, the
value found at memory address input2 is added to EAX. Finally in instruction 3, the
value in EAX is stored at memory address output+4. The square bracket: [ptr] found
in x86 assembler language is equivalent to pointers in C: *(ptr).

2.2.2 Instruction Format

An instruction consist of possible 6 parts: Prefix byte, Opcode bytes, ModR/M byte,
SIB byte, Displacement bytes and Immediate bytes. The disassembler converts the
six parts into a symbolic representation. To understand the material presented in this
thesis it is not necessary to have a complete understanding of the different parts. When
an instruction is represented symbolically, the instruction has the following format:
mnemonic operand1, operand2, operand3.

A mnemonic is a reserved name for a class of instruction opcodes which have the
same function. For instance the opcode mnemonic MOV has several different opcode
byte encodings depending on what should be moved where, but the function is iden-
tical. From the symbolical representation, there can be from zero to three explicit
operands. The instruction act on the operands, and operands can be viewed as argu-
ments to the instruction. In addition to the explicit operands, there can also be several
implicit operands. The implicit operands are typical “side-effects” of an instruction.
For instance, the instruction push EAX pushes the content of the register EAX onto
the stack. EAX is an explicit operand and the stack pointer register esp is an implicit



2.2. X86 ASSEMBLER LANGUAGE 25

operand. Each operand in an instruction is a source, a destination or both. A source
operand can be any of the following listed here.

• an immediate operand or value encoded in the instruction itself

• a register

• a memory location

• an IO port (direct communication with hardware through a hardwired input/output
port)

A destination operand can be any of the following listed here.

• a register

• a memory location

• an IO port

Immediate operands are values given as an operand to the instruction. In the instruction
sub EAX, 13, the value 13 is an example of an immediate operand.

2.2.3 About the Basic Execution Environment

A basic execution environment is the resources available for executing instructions
found in application- and OS-code. The components of the basic execution environ-
ment provides the foundation for executing instructions on a processor and they are
listed here.

Address space The address space is the amount of memory the processor can address.
There are possible 232 addressable memory bytes in the x86 32-bit architecture.

Basic program execution registers Registers are the basic storage units in a proces-
sor. There are eight general-purpose registers, one control flag register and one
program counter register.

x87 FPU registers The floating point unit (FPU) registers are used to do floating point
operations.

MMX registers The multimedia extension (MMX) registers exist to perform “single-
instruction multiple-data” (SIMD) instructions on 64-bit data and are often used
in multimedia applications.

XMM registers The XMM (extension to MMX) registers are similar to the MMX
registers, but are used on 128-bit data.

The registers constituting the basic program execution registers are used in all exe-
cutable files and are explained on the next pages.
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Figure 2.2: Substitute the question mark (?) with A,B,C or D.

The General Purpose Registers

The general-purpose registers are provided for storing pointers and results from general
operations. The general-purpose registers are the 32-bit registers: EAX, EBX, ECX, EDX,
ESI, EDI, EB and ESP. Each of the 32-bit registers 16 least significant bits (lsb), can
be addressed by the corresponding 16-bit registers: AX, BX, CX, DX, SI, DI, BP
and SP. The 8 most significant bits (msb) of AX, BX, CX and DX, can be separately
addressed by the following corresponding 8-bit registers: AH, BH, CH and DH. Also,
the 8 lsb of the same 16-bit registers can be addressed by the following corresponding
8-bit registers: AL, BL, CL and DL. Figure 2.2 illustrates the addressing possibilities
of EAX, EBX, ECX and EDX.

The Intel manual describes the following uses for each register [18].

EAX Accumulator for operands and results data.

EBX Pointer to data.

ECX Counter for string and loop operations.

EDX I/O pointer.

ESI Source pointer for string operations.

EDI Destination pointer for string operations.

ESP Stack pointer. This register contains the location in memory where the last ele-
ment pushed onto the stack is found.

Note that this is the intended usage of each register. Each register can be used freely
by the programmer in any type of operation.
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EFLAGS register

The EFLAGS register contains several flags. Each flag is of size 1 bit, and has a fixed
position in the EFLAGS register. A flag can be set, meaning that it receives the value
1, or cleared, meaning that it receives the value 0. Amongst all the flags found in the
EFLAGS register, there are seven flags used in regular applications. The flags are listed
here.

Carry Flag The CF flag is set/cleared depending on different results in arithmetic
instructions.

Parity Flag The PF flag is set/cleared depending on parity of result.

Adjust Flag The AF flag is set/cleared depending on binary-coded decimal arith-
metic.

Zero Flag The ZF flag is set if result is zero, cleared if not.

Sign Flag The SF flag is set if sign of an integer result is negative, cleared if positive.

Overflow Flag The OF flag is set if integer result overflowed, cleared if not.

Direction Flag The DF flag is used in string operations to tell if loop should process
memory addresses in low-high (cleared) or high-low (set) order.

EIP register

The EIP register contains a memory pointer to the next instruction to be fetched and
executed by the processor. EIP cannot be addressed explicitly, but is manipulated
implicit through the following control transfer instructions: JMP, CALL, RET, IRET and
the group of conditional jumps. Conditional jumps, or short Jccs, are a collective term
for the different opcodes which transfers the execution flow to the target given in the
Jcc instruction when certain conditions are met. Examples are JZ (jump if zero flag is
equal to 1), JECXZ (jump if ECX is equal to 0), JNO (jump if overflow flag is equal to
0). There are two possible outcomes when a Jcc is executed: The flow of execution is
set to the fall through branch (jump not taken) or the taken branch (jump taken).

2.2.4 Instruction groups

There are a vast number of different instructions, but when grouped the number be-
comes manageable. The Intel manual [18] unify the instructions in 13 different groups.
The following list describes each group.

Data transfer Move data between operands.

Binary arithmetic Basic binary integer computations on operands.
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Decimal arithmetic Decimal adjusting.

Logical AND, OR, NOT, XOR operations on operands.

Shift and rotate Shift and rotate bits in operands.

Bit and byte Bit instructions test and modify individual bits in operands. Byte in-
structions set the value of a byte operand, based on flag status in the EFLAGS
register.

Control transfer Provide jump, conditional jump, call and return to control the pro-
gram flow.

String Move strings of bytes to and from memory.

I/O Move data between the processor’s I/O ports and operands.

Enter and leave High level procedure entry and exit.

Flag control Instructions operating on the EFLAGS register.

Segment register Instructions loading pointers into segment registers.

Miscellaneous Instructions which cannot be placed in the other groups, such as NOP
(no operation) and CPUID (identify processor).

Each group contains mnemonics performing various tasks, related to their grouping.

2.2.5 Summary

This section described the layout of the x86 processor architecture, and gave an in-
troduction to the x86 assembler language. Mastering the x86 assembler language is
essential when analysing viruses, because most viruses are written for the x86 archi-
tecture.

As previously described, the .text section contains the executable code of a program.
Converting the bytes in the .text section into instructions is done by the disassem-
bler, but the sequence the disassembler should process the bytes in, is not necessarily
evident. The next section describes the two most common disassembler algorithms:
linear sweep and recursive traversal.

2.3 Disassembling Algorithms

The process of converting a sequence of bytes into meaningful instructions is called
disassembling. A disassembling algorithm describes the sequence the bytes should
appear in, when given as input to the disassembler. There are two well-established
disassembling algorithms: Linear sweep and recursive traversal [33].
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2.3.1 Linear sweep

Linear sweep (LS) disassembles the byte stream sequentially. LS typically starts at the
beginning of the code section and proceeds to the end. LS runs in O(n). The following
pseudocode illustrates LS.

Algorithm 2.3.1: DISASSEMBLE(Addr)

while Addr is a valid section address

do
{

i=DecodeInstr(Addr)
output(i)

Advantages

Compared to recursive traversal, LS’s main advantage is simplicity. There is no need
to parse the instruction disassembled, and there is no need for an input buffer to store
the instructions. Another advantage is that all code within an executable code section
is disassembled, because all the bytes in the code section is processed by the disassem-
bler.

Disadvantages

LS doesn’t provide any logical structure in the instruction output. This is a drawback
when an analysis method requires the disassembled instructions to appear in the same
order as when executed on a CPU.

Misinterpretation is another disadvantage. If code and data are mixed together in a
section, misinterpretation is likely to occur: All the bytes used for data stored in an
executable code section, is misinterpreted as code. Without utilising any information
about the placement of data and code, it is only possible to detect misinterpretation
when an invalid opcode byte sequence, termed bad instructions, is encountered. As
seen in the Intel instruction manuals, the x86 architecture has many byte patterns de-
coding into valid instructions and few byte sequences yield bad instructions.

2.3.2 Recursive traversal

Recursive traversal (RT) follows the designated flow of the program. RT starts the
disassembling at a program’s entry point, and follows the flow from there. If a control
transfer instruction is encountered, the transfer is followed if possible. RT runs in
O(n).

Algorithm

The basic algorithm for recursive traversal given in [33] is reproduced here.
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# Instruction
1 mov EAX, 0x4000320
2 add EAX, 0x10
3 xor EAX, 0x14
4 call [EAX+6]

Table 2.3: Example illustrating an instruction containing an unresolvable control flow

Algorithm 2.3.2: DISASSEMBLE(Addr, instrList)

if (Addr.visited)
then return

do



instr = DecodeInstr(Addr)
Addr.visited = true
add instr to instrList
output(instr)
if (instr is a branch or function call)

then
{

for each possible target t of instr
do Disassemble(t, instrList)

else Addr += instr.length
while Addr is a valid instruction address;

Advantages

RT’s main advantage is correct disassembling of a code section with both code and
data mixed together. Also, the decoded instructions appear in the same order as when
the instructions are executed on a CPU.

Disadvantages

The disadvantage of RT is when control transfers cannot be resolved. The x86 assem-
bler language contains many addressing forms, and some are only resolvable when ex-
ecuting the instructions. Table 2.3 illustrates the concept of unresolvable control flow
instructions. The instruction sequence illustrated is a valid x86 instruction sequence.
Unless the sequence is emulated or executed on a CPU, it is not possible to determine
the value of EAX in instruction 4. Instruction 4 is therefore an instruction containing
an unresolvable control flow. Because the destination of the control transfer instruction
cannot be resolved, the RT algorithm cannot disassemble the byte stream found at the
destination. Schwarz et al. lists the two possible consequences when this situation oc-
curs. failure to disassemble some reachable code (if control transfer instruction is not
followed) or erroneous disassembling of data (if some algorithm makes an erroneous
guess of the jump destination).
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2.3.3 Summary

In this section, the two most common disassembling algorithms have been explained
and their advantages and disadvantages have been discussed. The tools needed to
understand polymorphic viruses have now been acquired, and the following section is
devoted to computer viruses.

2.4 Computer Viruses

This section is about computer viruses. The layout is structured as follows. First, terms
used in this and subsequent sections are defined. Second, a brief history illustrating the
evolution of both virus technology and the motivation for writing the viruses is given.
Finally, polymorphic viruses are introduced and techniques for achieving polymor-
phism are discussed.

2.4.1 Definitions

Peter Szor defines a computer virus in his book “The Art of Computer Virus Research
and Defence” as follows [38].

A computer virus is a program that recursively and explicitly copies a
possibly evolved version of itself.

The definition disagrees with the common belief that a program needs to do unwanted,
explicit damage to be termed a virus. The definition contains all programs intentionally
spreading themselves without any acknowledgement from the user.

There are many different types of malware. Aycock lists several types in his book
“Computer Viruses and Malware” [13]. Amongst the types listed are: Viruses, worms,
trojans, backdoors. Viruses and worms are two types of malware often confused with
each other, and the two types are explained here.

Computer viruses

Computer viruses, or viruses, hide inside hosts the same way biological viruses hide
inside cells. To replicate, viruses need new hosts. Viruses infect files on the host
machine, and they spread when users exchange files, for instance through USB-pens or
a shared directory in a P2P application. Note that mapped network drives, for instance
an NFS mount or a mapped UNC path in Windows, might provide the virus an entrance
through the network. Harley et al list in “Viruses Revealed” [24] three parts a computer
virus consists of.

1. Infection mechanism - How the virus spreads.
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2. Trigger - If the virus is to deliver the payload or not.

3. Payload - What the virus does except from spreading. Payloads can be inten-
tional or accidental (bugs in virus code, damaged in network transport, etc).

Computer worms

Computer worms, or worms, are often confused with viruses. Worms are similar to
viruses except for two main differences. The differences are listed here.

1. A worm is not parasitic, i.e. it doesn’t require a host to infect a new target. It
is a stand-alone application performing self-replication. This is often done by
exploiting buffer overflows in different Internet applications.

2. Worms spread to new hosts through the network via different network protocols
(for instance the TCP/IP protocol).

As stated in the introduction to chapter 1, the term “virus” is used for describing com-
puter viruses, trojans, worms and other types of malware in the thesis. The specific
terms are only used when the context requires separate identification of the terms.

2.4.2 History

The term “computer virus” as it is used today, is attributed Len Eidelmen who defined
the term in 1983 [48]. However, as early as in 1949, John Von Neumann devised
a theory of a program capable of replicating itself as long as a computer can hold
information in “memory” [31].

The first acknowledged computer virus appearing on regular users computers (often
termed “in the wild”), was “Elk Cloner” [44]. Elk Cloner was written for the Apple
II computer and displayed a poem on every 50th boot. In 1986, “(c) Brain” appeared.
Brain is considered the first virus compatible with the IBM PC. It was written by two
brothers from Pakistan, and it spread over the whole world [42].

Later, more malicious viruses appeared. “CIH” also known as “Chernobyl” was one
of the most direct damage-dealing viruses known [43]. The first version was seen in
the wild in 1998. CIH fills the first megabyte of the hard drive with zeroes, and it also
tries to write to Flash BIOS. If the latter is successful, the Flash BIOS needs to be
replaced/rewritten for the computer to work.

Isolated, most other viruses do not cause an equal amount of damage to the computer
as the CIH virus did. However, they can cause more damage world-wide because of
their ability to spread. The damage can be anything. For instance, the amount of spam
is something regarded as damage because spam contributes to slowing the Internet
down. In 1999 the “Melissa” worm caused a damage estimated to $80 million dollars.
In 2001, the “Code Red” worm caused a damage estimated to $2 billion dollars [31]. In
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Figure 2.3: Blackmailing scheme

2003, the estimated amount reaches an even higher level. A UK-based digital risk firm
called “mi2g” estimates the worm MyDoom to have caused a damage equal to $38.5
billion dollars. However, the correctness of this estimate and others are discussed by
Vmyths, “a site dedicated to erase the computer virus hysteria” [11].

Change of Motivation

Regarding viruses, the situation of today has changed. There has been a massive ex-
plosion in the number of viruses created and released in the wild. The reason for this
increase lies in the change the Internet has undergone for the last decade. The Internet
has changed from being an information provider, to the world’s biggest marketplace.
As mentioned in the introduction, the virus business is organised in mafia-like struc-
tures. The reason for organised crime to enter the virus scene is simple: money. The
scheme in figure 2.3 illustrates another reason to why the mafia-analogy has been in-
troduced. Assume a “mafia” has control over a vast number of infected computers,
termed a botnet (net of robots). First, a virus is written to gather bots to the bot-
net. When enough bots are under the mafia’s control, the owners of the site making
legitimate money are contacted by the mafia. The mafia threaten them to pay protec-
tion money. If they do not comply, a distributed denial of service (DDOS) attack is
launched on the site. The reason for launching a DDOS attack on the site, is that pay-
ing customers and others will in the worst case be unable to use the site at all, because
it is too busy serving the bots requests. If the DDOS attack lasts for days, the paying
customers grow tired of not being able to use the service they are paying for, and head
over to other sites providing similar services instead. The number of infected comput-
ers vary between the researchers estimating the sizes of botnets [40]. Some researchers
estimate the size to be at maximum a few thousand bots, while others estimate a botnet
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to reach 350000 bots. It is however clear that botnets exist, and are used in organised
crime.

The scheme illustrated in the figure is only one of many money-making schemes re-
quiring viruses to be installed on computers. Spamming and phishing are other tech-
niques used to make money. For instance, the Bagle worm opens TCP port 6777,
providing remote access to the infected computer [21]. This can be used to install vari-
ous programs on the infected computer and harvest sensitive information such as VISA
card numbers. Another “interesting” extortion scheme is ransomware [45]. When the
virus is executed, it encrypts files present on the computer, such as DOC and JPG files.
The user receives a message stating that in exchange for money, the user will receive a
decryption tool which recovers the previously encrypted files. “Gpcode” is an example
of such a virus [41].

All the organised crime business models require viruses infecting computers without
being detected. The virus writers are therefore constantly developing techniques for
avoiding detection. One of the major techniques for making a virus “undetectable” is
code changing.

Code Changing viruses

The first polymorphic virus appeared in 1990, and was called “1260” [12]. It was cre-
ated by Mark Washburn as a research virus to demonstrate for the antivirus companies
that string-based pattern scanners fail, when such viruses are encountered. Each in-
fected file increases with 1260 bytes (hence the name). The payload is encrypted with
two sliding keys different in each infection. The decryptor contains do-nothing instruc-
tions inserted between the real decryptor instructions. The virus was never released in
the wild.

The “Marburg” and “HPS” viruses were the first to use 32-bit polymorphic engines
[23]. “Appariton” was the first metamorphic virus (See section 2.4.5 on page 36 for
definition). In 2001, Simile and Zmist made their entrance. These are two of the most
complex poly- and metamorphic viruses known. The metamorphic engine of Simile
contains over 12000 lines of Intel x86 assembly code[13]. Zmist is chosen as the case
study in this thesis and chapter 3 on page 47 contains a thorough analysis of Zmist.

Server-side Polymorphism

Today, the amount of new file-infecting viruses is low compared to other types of
malware such as worms and trojans. The polymorphic techniques established in the
file-infecting polymorphic viruses are however still valid. Commtouch’s “Malware
outbreak trends” for the first quarter of 2007 [15] reports of an increase in “server-
side polymorphic malware”. This type of malware is created by a metamorphic engine
residing on one or more servers. When enough worms have been created, they are
launched simultaneously on the Internet. The following quote is taken from Comm-
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touch’s report.

Rapid simultaneous release of massive amounts of distinct variants allows
each variant to do maximum damage before a suitable signature or heuris-
tic can provide protection.

The type of attack described in the quote is known as a “zero-hour” attack, because
of the rapid spread before it is detected by antivirus software. Because the worms are
pre-mutated, there is no need for mutation engines present in the worm-files. When the
mutation engine is not present, the virus analysts cannot reliably analyse the algorithm
which produced the mutated worms. The virus analyst can only acquire samples and
construct a detection algorithm based on the samples. The “Storm Worm” is an exam-
ple of malware effectively utilising server-side polymorphism. Between 18th January
2007 and 31th January 2007, there were observed at average 3824 distinct variants of
the Storm Worm per day. On 28th January the maximum of 7893 distinct variants were
observed [14]. The payload of the Storm Worm is to generate bots that can be used to
send spam emails and participate in botnets.

Having illustrated the use of polymorphism, polymorphic viruses and techniques for
achieving polymorphism will be described. Polymorphic viruses are built upon mech-
anisms developed in encrypted viruses and this type is therefore described prior to
polymorphic viruses.

2.4.3 Encrypted Viruses

A host with an encrypted virus infection contains two parts: a decryptor and an en-
crypted engine [13]. When the host is executed, the decryptor receives control in some
fashion, decrypts the encrypted engine and runs it. The decrypted engine is responsible
for delivering the payload and infecting new hosts. Because the encryption key vary
for each new infection, a static signature cannot be used to detect the encrypted en-
gine. Except for the key used, the decryptor is static in each infection, revealing itself
for traditional signature-based scanning. Signature-based scanning will be explained
in 2.5.1 on page 41.

About the Decryptor

The decryptor’s main task is to decrypt an encrypted engine, transfer control to the
engine and possibly control back to the host code after the engine has infected new
hosts. It is typically implemented as a loop inside the host with a control transfer
instruction to the engine after the loop. The size of the decryptor can range from under
ten to theoretically an infinitely number of instructions.
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About the Engine

The engine is the main part of the virus. The engine is responsible for finding new
hosts, encrypt itself, create a decryptor which successfully manage to decrypt the en-
gine, and inserts the engine and decryptor into the hosts.

2.4.4 Polymorphic Viruses

A polymorphic virus contains the same two parts as an encrypted virus: a decryp-
tor and an encrypted engine [13]. The difference between a regular encrypted virus
and a polymorphic virus lies in the decryptor: The decryptor of a polymorphic virus is
syntactically different for each infection. The engine is capable of constructing a seem-
ingly unlimited amount of different decryptor versions. The decrypted engine is the
same each time, i.e. the length and syntax of the engine code is constant in each infec-
tion. Because of the “unlimited” amount of decryptors, the traditional signature-based
scanning cannot be used since that would require an “unlimited” amount of signatures.

Webster & Malcolm uses the term allomorphic in [27]. An allomorph is any two
generations of the same code-changing virus that differ syntactically. Two allomor-
phic code segments are semantically equal, but not syntactically equal. Polymorphic
viruses have allomorphic decryptors. There are many ways of creating allomorphic
code and section 2.4.7 on the facing page explains common methods for achieving
polymorphism.

2.4.5 Metamorphic Viruses

Metamorphic viruses are code changing viruses similar to polymorphic viruses. The
difference is that there is no encryption of the virus engine, and hence no decryptor.
The engine itself avoids detection by changing each time it replicates. Two engines of
the same metamorphic virus is therefore allomorphic

About the Engine

The engine of a metamorphic virus is by Harleys definition similar to the polymor-
phic engine. The techniques needed to create new instances of itself, are the same as
the techniques used in polymorphic viruses when creating new decryptors (see sec-
tion 2.4.7 on the next page for a description of the most used methods). The difference
is that the methods are applied on the whole engine, instead of constructing a new
decryptor each time the virus infects a new host. This self-modifying code should be
allomorphic for each time the virus infects, and a small coding error could cause an
early death of the virus when the error evolves into new variants.
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2.4.6 Notation usage for poly- and metamorphic viruses

Polymorphic and metamorphic viruses are similar considering detection methods. Both
types change appearances for each new infection. It is therefore reasonable to continue
using “polymorphic viruses” to describe both polymorphic and metamorphic viruses,
unless the context requires separate identification of the two types.

2.4.7 Achieving Polymorphism

In this section, the most common techniques used to achieve polymorphism are ex-
plained. The essence in all the types listed, is to change the syntax and not the seman-
tics, i.e. make allomorphic code segments. The techniques listed here, are a summary
from techniques listed in Aycock [13].

Instruction Equivalence This technique is based on the fact that different sequences
of instructions achieve the same. Consider the following code.

# Instruction Seq 1 Instruction Seq 2
1 mov EAX, 8 sub EAX, EAX
2 add [mem], EAX xor EAX, 4
3 add [mem], EAX
4 add [mem], EAX

Table 2.4: Instruction Equivalence

In sequence 1, the value 8 is added to the content of memory address mem. In
sequence 2, the value 4 is added twice to the content of mem, achieving the same
as sequence 1. The two code segments are therefore allomorphic.
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Instruction Reordering If two or more instructions do not have any dependencies,
their execution order do not impose on the overall program state. Consider the
following code.

# Instruction Seq 1 Instruction Seq 2
1 mov EAX, 8 mov EBX, 4
2 mov EBX, 4 mov EAX, 8
3 add EAX,EBX add EAX, EBX

Table 2.5: Instruction Reordering

The instruction reordering must take into account the dependencies between the
registers. For instance, the two sequences would not be allomorphic if the add
instruction appeared before one of the mov instructions in only one of the se-
quences.

Register Renaming This technique changes the registers used in the instruction se-
quence. Consider the following code.

# Instruction Seq 1 Instruction Seq 2
1 mov EAX, 8 mov EDX, 8
2 mov EBX, 4 mov ECX, 4
3 add EAX,EBX add EDX, ECX

Table 2.6: Register Renaming

The two code sequences are allomorphic, but the instruction encoding is different
because of the different registers used.

Reordering Data This technique changes the location of memory variables. Consider
the following code.

# Instruction Seq 1 Instruction Seq 2
1 mov EAX, 8 mov EAX, 8
2 add [0x402008], EAX add [0x403004], EAX

Table 2.7: Reordering Data

The memory location is changed and the instruction encoding is different.

Jump Islands Jump islands are linked together with unconditional jumps (JMP). Con-
sider the following example.
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# Instruction Seq 1 Instruction Seq 2
1 mov EAX, 8 mov EAX, 8
2 mov EBX, 4 jmp insn 3
3 add EAX,EBX mov EBX, 4
4 jmp insn 5
5 add EAX, EBX

Table 2.8: Jump Islands

Because the instructions are scattered in sequence 2, the syntax is changed com-
pared to sequence 1.

Junk Code Junk code is code inserted to obfuscate and confuse without altering the
semantic of the program. The state of the original code is equal to the state from
the original + junk code. Consider the following example.

# Instruction Seq 1 Instruction Seq 2
1 mov EAX, 8 mov EAX, 8
2 mov EBX, 4 mov ECX, EAX
3 add EAX,EBX mov EBX, 4
4 mov ECX, 2 xor ECX, EAX
5 add EAX, EBX
6 sub ECX, EBX
7 mov ECX, 2

Table 2.9: Junk Code

In sequence 2, the ECX register is used for junk code. Note that in sequence 2,
instructions 2,4 and 6 do not contribute to the output of the program. Sequence
1 and 2 are therefore allomorphic.

All the different techniques listed can be combined, increasing the level of polymor-
phism employed in a virus.

2.4.8 Summary

This section gave an introduction to computer viruses and their history from the begin-
ning to the present situation. The main focus has been on polymorphic viruses and to
describe the techniques for achieving polymorphism.

Polymorphic viruses are advanced and so are their detection methods. The next chapter
is devoted to explaining the established detection methods.
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Figure 2.4: Figure illustrating FP, FN, TP and TN

2.5 Computer Virus Detection

Aycock [13] divides antivirus detection techniques into two parts: static and dynamic
methods. The static methods attempt to detect the presence of a virus without executing
any code. Vice-versa, the dynamic methods execute the code and attempt to detect
the presence of a virus by properties only present when executing the virus. Szor
[38] separates antivirus detection into algorithmic methods (static), emulation methods
(dynamic) and heuristic methods (both static and dynamic).

Outcomes in Virus Detection

Figure 2.4 (reproduced from Aycock [13, page 54]) illustrates the four possible results
considering virus detection. The outcomes are independent of the method used for
detection. In the figure, a perfect detection method would always return with results
laying within the circle on the diagonal. The terms false positive, false negative, true
positive and true negative are used to describe the different results.

The term true positive (TP) is used to describe a virus is present in a file which is
detected. If a virus is absent in a file and the virus is not detected, the term is true
negatives (TN). The term false negatives (FN) is used when a scanner reports a file as
clean, but there is a virus present. To describe a file reported by a scanner as infected
but the file is clean, the term false positives (FP) is used. All algorithms strive to
reduce the number of false negatives and false positives, and to decrease the time spent
verifying true negatives. If a file actually contains an infection (true positive), the time
spent verifying the virus’ presence is not critical to the user. It is the time spent on
deciding whether a file is clean or not, that should be minimised. Unfortunately, there
is a vast number of different viruses. Using elaborate detection methods on all files
present on a computer, would result in unacceptable time delays. The use of filtering
techniques such as geometric properties (GP), is a common method for sorting which
viruses the antivirus product should scan for. The following paragraph describes GP.
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GP can also be used as a static heuristic, reporting whether a file is “suspicious” and
would require a more complex scan (often termed deep scan).

Geometric Properties

Geometric properties are the alterations a virus does to the file structure. Szor lists
common geometric properties found in viruses in [38]. Execution of code starting in
the last section in the PE file is an example of a geometric property. This would imply
that a virus has prefixed its code to the PE file. This is detected by following the entry
point in the PE header and examine if it points to an address found in the last section
defined in the PE header. Another common geometric property is the use of not-normal
names for code section. For instance, it is suspicious that a section named .reloc has
the EXECUTABLE characteristic set. Values considered not-normal in the PE header
is another geometric property used to indicate the presence of a virus. For instance,
there is a “checksum” PE header field containing a checksum of the PE file. If this
checksum is not correct (i.e. the virus doesn’t update this checksum), this can be used
to classify a file as suspicious.

Layout

It exists far to many detection approaches to describe all in this section. Selected detec-
tion methods from the different categories are provided instead, to illustrate the level of
complexity and diversity employed by the different methods. The material is presented
using Szor’s categorisation. First, three algorithmic approaches are described. Then,
detection using emulation is described. Last, one example of a static heuristic method
and one example of a dynamic heuristic method are described.

2.5.1 Algorithmic Approaches

The Merriam-Webster’s online dictionary [30] defines an algorithm as a step-by-step
procedure for solving a problem or accomplishing some end especially by a computer.
An algorithmic antivirus approach searches especially for a known virus with some
knowledge of the virus’ properties. How the search is conducted and what the proper-
ties of the virus are, are different with each algorithmic approach.

Traditional antivirus methods

The established method for detecting viruses in the past has been signature based scan-
ning[13]. The scan itself has been employed on-demand. A signature consist of the
sequence of bytes necessary to identify a virus. As the viruses became more com-
plex, the signature based scanning was not suited to detect the most advanced viruses.
Signatures with wildcard support and on-access scanners (scanning on the fly) was



42 CHAPTER 2. BACKGROUND

mov [edi], IMM −→ push ECX
mov ECX, IMM
mov [edi], ECX
pop ECX

Figure 2.5: Example of term rewriting

developed to battle the new viruses. When polymorphic viruses started to appear,
the antivirus companies were forced to find new techniques instead of upgrading the
old ones. However, traditional signatures are still used and needed, for instance in
emulation-based detection.

From now on in this thesis, the term signature is not necessarily related to byte-
scanning, but to something that defines a virus’ property relative to the method. An
example is the reduced engine-signature together with the language normalising detec-
tion method. This detection method is described after the part about X-raying.

X-raying

X-raying is a cryptographic detection method [38]. Viruses employing encryption and
polymorphism contains a static encrypted engine. Many viruses containing an en-
crypted engine, encrypts the engine using a single instruction such as ADD, SUB, XOR
and ROL/ROR (rotate left/right). A X-raying method decrypts the engine, and uses tra-
ditional byte-scans to verify the presence/absence of a virus. When the engine is en-
crypted using different keys, the X-raying method must enumerate all possible keys.

When the placement of the encrypted engine is different with each infection, X-raying
is ineffective. X-raying starting from every byte sequence present in the file in question
would yield an intolerable high scanning time.

Language Normalising

Language normalising reduces the polymorphic code to a canonical form. Because
polymorphic decryptors can be short, language normalisation is in general better suited
for detection of metamorphic viruses. In [28], Rachit normalises code with term rewrit-
ing. Term rewriting is a way of replacing an opcode sequence with another semanti-
cally equal opcode sequence. An example given is in figure 2.5. To detect an instance
of a metamorphic virus, the code fragment in question must be term-rewritten to nor-
mal form and compared to an a’priori analysed engine.

A more mathematical approach is described by Webster & Malcolm in [27]. In this
article, OBJ is used to prove equivalences between different allomorphic code frag-
ments. OBJ is described as an algebraic specification formalism and theorem prover
based on order-sorted equational logic. When rules have been defined for each opcode
type used in two code fragments, OBJ can reduce each fragment and prove/disprove if
the reduced output is equivalent. One example given in the article is a proof that two
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allomorphic generations of Zmorph.A manipulate the stack equivalently in both gen-
erations. To detect an instance of a metamorphic virus, the code fragment in question
must be reduced and compared to an a’priori reduced engine. The a’priori reduced
engine would then act as a signature.

The major drawback with language normalising is a high computing cost. Reducing a
block of instructions to normal form and then comparing these to previously analysed
forms requires a CPU time most users would find intolerable if applied on every file a
virus scanner scans.

2.5.2 Emulation

The material about emulation is taken from Szor [38]. An emulator is an application
simulating a CPU with an execution environment. Detection of a virus with emulation
requires an emulator combined with an algorithmic scanning method such as tradi-
tional byte-sequence scanning. A polymorphic virus can then be detected by exam-
ining the contents of the emulated memory when executing a file inside the emulator.
By actively scanning the memory for known patterns of a polymorphic engine, the
presence/absence of the virus in the given file is determined.

There are two major drawbacks considering emulation. The first is the time spent
emulating files. Because emulating is slower than actually executing a program on the
CPU, this requires the file in question to be processed slower than if it actually were
run. The second is that only one path of execution is traversed for each emulation.
Assume a program has three Jcc instructions, each branch taken target pointing to a
block of code not reachable by any other of the Jccs. Each fall through branch points
to the next Jcc. This results in four different paths of execution. To ensure that there
are no virus present in the file, the emulator would need to traverse all four paths.

The running time scales badly with the number of Jccs and emulators are therefore
seldom used to detect viruses alone. However, emulation is a powerful tool in combi-
nation with other scanning methods.

2.5.3 Heuristic Methods

There are two different types of heuristics: static and dynamic heuristics. Static heuris-
tic analyse code fragments without running them, dynamic is vice versa. One common
property is their ability to detect unknown viruses, because the heuristics looks for
“virus-like” behaviour. The common problem with the heuristic methods is the possi-
ble large amount of false positives reported.

Machine Learning

An example of a static heuristic method is the methods falling under the machine
learning group. Hidden Markov Model (HMM) is such a machine learning technique
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t = number of states, Xt = states, A = state transition probability distribution, B = observation
probability distribution, Ot = observation sequence

Figure 2.6: Generic Hidden Markov Model figure

and is described in this section. Wong uses HMMs to detect metamorphic malware in
[49]. HMMs are well suited for statistical pattern analysis and have been used in many
fields, for instance speech recognition and biological sequence analysis.

A HMM is a state machine containing the assumption that there is a Markov process
which cannot be observed directly. A process is a Markov process if the conditional
probabilities of future states of the process depends only on the current state, and not
past states. There are three main components of an HMM: the states, the observations
and the transitions. The states represent some unknown or hidden features of the input
data. Each state has a probability distribution for a set of observation symbols and the
transitions between the states have fixed probabilities. In figure 2.5.3 (reproduced from
Wong [49, page 28]), a generic HMM is illustrated.

HMMs can be trained to detect if two generations are related. First, the HMM model is
set up with a fixed number of hidden states. Wong experimented with two to six states.
The HMM is trained so that the probability for observing the average metamorphic
engine is maximised. This is done by feeding the opcodes of several generations of
metamorphic viral code to the HMM. The opcode sequences corresponds to the obser-
vations in the HMM. What the states represent when the HMM is trained is not directly
observable. However, it is possible to obtain information on the Markov process in-
directly by the means of observations and their probabilities. An example is English
text which is fed to a two stated HMM, as done by Wong et al. in [35]. Examining the
observations and their probabilities in the different states, they found that the two states
corresponds to vowels and consonants. However, it is important to understand that to
detect new generations of metamorphic code, the states need not to be interpreted like
in the example.

To detect new generations of metamorphic code, the sequence in question is fed to the
HMM. The HMM computes the probabilities for that the sequence is similar to a pre-
viously trained metamorphic engine. If the probabilities are over the trained threshold,
the sequence is reported as an allomorphic version of the trained metamorphic engine.

There are several drawbacks with using machine learning in general, including HMM.
First, as it is with most advanced methods, the computing cost is high and this results
in a slow virus scanner. As mentioned in the conclusion of language normalising, this
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is something not tolerated by most users. Another drawback is that heuristic is prone
to reporting false positives or false negatives, depending on the thresholds used.

Behaviour Blockers

A behaviour blocker (BB) monitors a running program in real time. BB is a mem-
ber of dynamic heuristic. A BB has a set of rules, defining what should be allowed
and what should not be allowed. For instance, displaying question boxes on the
screen should be allowed while a search for all EXE files on a hard-drive and opening
them with read/write permissions should not be allowed. Signatures can be devel-
oped based on a virus’ action pattern. A simple example would be when the files
c:\windows\system32\cmd_.EXE and c:\windows\000.EXE are created, the BB
can detect this and conclude that virus x is infecting the system.

As illustrated, the virus has to actually run on the computer to identify it using BB.
It would be better if the virus could be detected before it was executed on the com-
puter. Therefore, BB is often used in combination with emulators and other methods
to execute the virus safely. This technique is often called sandboxing.

2.6 Summary

This chapter contains one of the two parts constituting the first research goal posed in
the introduction, namely to “learn about polymorphic viruses through a case study”.
This chapter provides a foundation for studying polymorphic viruses in detail. Because
most viruses are written for the Microsoft Windows platforms, the PE file format was
explained in section 2.1 on page 19. The PE file format is the executable file format
used in Microsoft Windows platforms. Inside the PE files, there are executable code
(including the code of a possible virus). To understand this code, the x86 assembler
language was necessary to master and an introduction was given in section 2.2 on
page 23. The instructions found inside the code section of a PE file can be analysed in
many different sequences. The disassembling algorithms described in section 2.3 on
page 28 are two established methods of analysing the sequences. Having established
a basic foundation for understanding computer viruses, section 2.4 on page 31 intro-
duced viruses and explores polymorphism in detail. Finally, counter-measures were
discussed in section 2.5 on page 40 which is about computer virus detection.

Having provided a foundation for examining polymorphic viruses, the next chapter is
about the case studied in the thesis: the poly- and metamorphic virus Zmist.
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Chapter 3

Case Study

The first research goal posed in section 1.2 on page 16 states the following: Learn
about polymorphic viruses through a case study. Further, it was extended to include
detection of the case study. In this chapter, analysis of the virus Zmist is presented as
well as a developed detection method of Zmist. Szor & Ferrie has written a paper con-
taining an analysis of Zmist, termed “Zmist opportunities” [39]. This paper is one of
two sources used in this chapter. The second source of information is results from my
own research on Zmist. Section 3.2 on page 51 is an introduction to Zmist and is pri-
marily based on Szor & Ferrie’s findings. Sections 3.3 on page 56 and 3.4 on page 62
contains respectively an analysis, and a detection of the polymorphic decryptor. Both
sections represents results of my own research.

A disassembler termed Gdasm was specifically developed to aid the research con-
ducted in this thesis. Aside from having been a tool used to gain knowledge about
Zmist, Gdasm provides the foundation for the Zmist detection algorithm developed.

The disassembling output of the files referred to in this section, is found on the CD
described in appendix A on page 125.

3.1 Case Study Discussion

3.1.1 Choosing a Case

Choosing a virus for the case study was done in collaboration with Norman ASA. The
following argument provides a background for the choice of the virus Zmist as a case
study.

Zmist is superior to other polymorphic viruses when considering the level of complex-
ity.

• Zmist is a polymorphic- and metamorphic virus. Zmist is one of few viruses
which is both poly- and metamorphic, and utilises most of the techniques for
achieving polymorphism described in section 2.4.7 on page 37.

47
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• Zmist is the only virus known to utilise the entry point obscuring technique
termed: code integration.

Code Integration and EPO

Aycock [13] describes the different techniques a virus use to insert itself into host files
and code integration is described as the most advanced type of insertion method. The
host code must be moved away to make space for the virus. Branch targets, memory
references and data location references must be updated to point to the new location
of the original host code which was moved away. Aycock states that this technique
is rarely seen and the only known virus fully employing it is Zmist. Because there is
no sign of where Zmist is placed inside the virus, code integration is often referred to
as the perfect entry point obscuring (EPO) technique. EPO is a term used to describe
that the entry point of the virus is more or less random, i.e. the entry point field in the
PE header is not modified to point directly to the virus code. The starting point of the
virus is obscured because it cannot be directly observed in the PE header and finding
this starting point requires an increased scanner effort.

The polymorphism, metamorphism and the unique entry point obscuring technique,
made Zmist the obvious choice of case study. Szor & Ferrie confirms the complexity
of the virus:

Many of us will not have seen a virus approaching this complexity for a few
years. We could easily call Zmist one of the most complex binary viruses
ever written.

In the virus world, Zmist is fairly old. Because of its high complexity it is still used
as an indicator whether an AV product contains the technology needed to detect poly-
morphic viruses or not. AV comparatives is an Internet site dedicated to “Independent
comparatives of Anti-Virus Software” [20]. Their On-demand comparative report from
February 2008 shows that 7 of 14 manage to detect 100% of the samples of Zmist.B. 8
of 14 manage to detect 100% of the Zmist.D samples. Because many antivirus compa-
nies (including Norman ASA) does not detect Zmist today, an algorithm for detecting
Zmist would therefore have real-world impact. This motivates further the choice of
Zmist as a case study.

3.1.2 Methodology

To understand Zmist, the learning process was divided in two phases.

• First, read up on Zmist and polymorphic techniques in general.

• Second, investigate Zmist in an iterative trial by error fashion, using appropriate
tools.
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The results of the first phase is found both in the background chapter and in the intro-
duction to Zmist found in section 3.2 on page 51. The results of the second phase is
primarily found in section 3.3 on page 56.

3.1.3 Tools used in Case Study

The following tools were used during the case study:

• VMware Workstation, version 6.0.3.

• IDA Pro - The Interactive Disassembler, version 5.0.880.

• NAP - Norman SandBox Analyzer Pro, version 1.02d.

• Gdasm - General Disassembler (made specially for the thesis).

VMware Workstation

VMware Workstation [9] is a virtual computer capable of running multiple virtual ma-
chines on one host computer. A virtual machine is essentially a CPU emulator, capable
of emulating everything that is designed to run on a CPU, inclusive an operating sys-
tem. From the homepage VMware describes their products as follows.

The VMware approach to virtualization inserts a thin layer of software
directly on the computer hardware or on a host operating system. This
software layer creates virtual machines and contains a virtual machine
monitor or “hypervisor” that allocates hardware resources dynamically
and transparently so that multiple operating systems can run concurrently
on a single physical computer without even knowing it.

There are many benefits of using virtual machines in conjunction with analysis of
viruses. A virtual machine can easily be cloned from a clean master copy. When a
virus is executed inside a virtual machine, it is easy to reset the machine to a clean
state. The infected machine can be deleted, and a clone is created from the clean
master copy. This can be done in minutes, compared to the hours spent installing and
configuring an operating system.

Because the cost of running a virus is very low in a virtual environment, it is easy to
create new virus samples. This is beneficial when analysing polymorphic viruses, be-
cause many samples provides a better insight on how the polymorphism is employed in
the virus. Many samples are also needed to increase the trustworthiness of an eventual
detection algorithm.
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IDA Pro

IDA Pro [2] is a highly sophisticated disassembler. It is regarded as one of the most
advanced disassemblers available. The following quote is taken from the homepage of
IDA Pro.

IDA Pro combines an interactive, programmable, multi-processor disas-
sembler coupled to a local and remote debugger and augmented by a com-
plete plugin programming environment.

Norman SandBox Analyzer Pro

Norman SandBox Analyzer Pro (NAP) [6] is a tool developed specifically for analysing
suspicious PE files. It is a controllable emulator/debugger, where the PE file in question
is run in the SandBox OS. NAP provides a view of loaded libraries, threads, created
sockets, registers, stack contents and tons of other information interesting to a virus
analyst. It is possible to emulate instruction for instruction and set breakpoints based
on various criteria. From the homepage of Norman, NAP is described as follows.

When working with Norman SandBox Analyzer Pro you can use an exten-
sive list of parameters enabling you to analyse and manipulate the emu-
lation, extend emulation cycles, etc. You will also be able to explore files
and changes made to the simulated SandBox OS to get the full view of the
impact executing the respective file would have had if it was run on a “real
computer”.

3.1.4 Gdasm

The first research goal states that the case study should be detected. It was therefore
necessary to have a disassembler supporting a plugin environment in which the de-
tection algorithm could be written. An alternative to developing a disassembler from
scratch, was to use the programmable plugin environment found in IDA Pro. How-
ever, writing a disassembler would increase the understanding of the PE file format
and the x86 assembler language, and it was decided that the disassembler should be
programmed from scratch.

Gdasm is an abbreviation for “general disassembler”, and is written in C. Gdasm con-
sists of a PE parser and the RT algorithm. Because of the weaknesses in the linear
sweep algorithm described in 2.3.1 on page 29, the recursive traversal algorithm (RT)
described in 2.3.2 on page 29 were chosen as the preferred disassembling algorithm.
Note that the actual process of disassembling, i.e. converting bytes to instructions is
not done by Gdasm, but by a library called libdisasm (version 0.23) [4].

Figure 3.1 on the facing page illustrates the components and the general work flow of
Gdasm. The following list describes the states in the figure.



3.2. INTRODUCTION TO ZMIST 51

Figure 3.1: Flow chart illustrating the Gdasm program

1. A PE file is given as input to Gdasm. The PE handler loads the section containing
entry point into memory, and calls the RT algorithm function with entry point as
argument.

2. The RT function passes the data pointer to libdisasm which returns an instruc-
tion to the RT function. The instruction is also passed on to a detection plugin
containing code for detecting Zmist.

3. The RT function then sets the data pointer based on the instruction given corre-
sponding to the RT algorithm. If an instruction points to a section not loaded in
memory, the PE handler loads this section in memory from the PE file.

4. The cycle is repeated from stage 2, until the file is disassembled or an unresolv-
able instruction occur.

The source code of Gdasm is found on the CD described in appendix A on page 125.

3.2 Introduction to Zmist

Zmist is written by a Russian virus writer who calls her/himself “Zombie”. In January
2001, “Zombie” released “Total Zombification”, an e-zine containing several texts and
source files related to creating viruses [10]. One of the source files contained Mistfall,
which is the title of the main virus engine in Zmist1. The antivirus companies named

1One of the strings which can be found in memory when Zmist is run is: “with morning comes
Mistfall”, which is the title of a science fiction story by George R. R. Martin written in 1973.
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the virus from the first letter of the author’s alias (Zombie) and the name of the engine
(Mistfall).

The material is structured as follows. First, different versions of Zmist and their in-
equalities are illustrated in section 3.2.1. Second, the code integration technique used
by Zmist is discussed in section 3.2.2. Third, the three different infection types Zmist
choose from are discussed in section 3.2.3 on page 54. Fourth, suggested detection
methods for two of the three infection types is found in section 3.2.4 on page 55 “De-
tection of JMP and Unencrypted Engine”. Finally, analysis, code examples and devel-
oped detection algorithms for the last infection type is found in section 3.3 on page 56
and section 3.4 on page 62.

3.2.1 Zmist Versions

There are currently four different versions of Zmist: Zmist.A, Zmist.B, Zmist.C and
Zmist.D. With each new version, “vulnerabilities” used by AV products to discover
Zmist are removed by “Zombie”. Table 3.1 illustrates the differences between the ver-
sions. The information provided in the table is taken from “Zombie’s” own changelog,
released in the 29A e-zine [50]. The writeup on Zmist done by Szor & Ferrie focuses
on Zmist.A, but the detection methods developed discussed in section 3.4 on page 62
is valid for all Zmist versions.

Zmist version Changes
Zmist.A Initial release
Zmist.B - ’Z’-sign from MZ header removed, multi-infections

can occur, max 2-4 times.
-UEP probability changed from 1/10 to 1/5
-Decryptor scheme changed

Zmist.C -Randomly remove PE fixups
-More trash generated within permutated body of en-
gine
-Encryption scheme improved

Zmist.D -Random CALL’s from decryptor to RETN’s within
host code
-Bugfixes

Table 3.1: Differences between Zmist versions

3.2.2 Code Integration

Szor & Ferrie states the following on code integration: “This [code integration] is
something never seen before in previous viruses”. Aycock [13] has seen this technique
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employed in Zmist only. It is therefore interesting to examine this unique method,
starting with the consequences of code integration (CI) for Zmist.

CI and consequences for Zmist

When Zmist infects a new host, it disassembles the host program and search for suit-
able instructions to insert itself after. This means that all code and data references to
locations appearing possibly before and after the inserted virus code must be regener-
ated. Consider the following clean-code snippet:

0x401000 mov EAX,13h
0x401004 cmp ECX,1
0x401006 jz 0x401020
...
0x401020 mov [0x401040], EAX

If a 20 byte Zmist-code snippet should be inserted after the jz 0x401020 instruction,
the mov [0x401040],EAX instruction would not be executed as intended unless the
address of the instruction is updated to 0x401060. The same problem occurs with the
jz 0x401020, where the address must be regenerated to 0x401040. Because of this
regeneration of locations, code integration requires the host to have fixups. Fixups
were described in section 2.1.3 on page 22.

CI and Zmist receiving control

Because of CI, Zmist is the “perfect” entry point obscuring (EPO) virus. There is
no need for Zmist to replace any host-calls with its own code transfer, because Zmist
insert the code between the host-code. There is no need for Zmist to add new sections
to the PE file it infects or place its code in sections usually reserved for data. Because
of this, there are no code transfers to unusual PE-sections which could be triggered by
heuristics.

Because of CI, Zmist might never receive control. Consider the following code snippet:

Host code
..
Host conditional jump
ZMIST ENTRY POINT CODE
Host conditional jump destination
Host code
..

If the conditional jump is taken when the code is run, Zmist is not executed. From
the Zmist point of view, this is not a problem because only one execution of the Zmist
code results in an infection.
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Name Clean code→Zmist Zmist→clean code
Absolute indirect call and ret call [mem] ret
Relative call and ret call imm ret
Relative jump jmp imm jmp imm
Part of flow UEP UEP

Table 3.2: Zmist receiving- and passing-control transfer instructions

Zmist receives control using one of four different instructions with a corresponding
instruction returning the control to clean code. Table 3.2 illustrates the instructions
with corresponding return instruction. The last element in the table is unique for Zmist.
Because of CI, Zmist can be a part of the natural instruction flow of the clean code.
“Zombie” calls this method for UEP. Szor & Ferrie suggest this might be an acronym
for Unknown Entry Point, since there are no direct references to where the entry point
of the virus is.

3.2.3 Infection Mechanisms

When analysing a virus, it is important to know how the virus appears in the host.
Zmist choose one of three different infection types when infecting new hosts.

1. JMP after each host instruction.

2. Unencrypted Mistfall engine.

3. Encrypted Mistfall engine with polymorphic decryptor.

JMP after each host instruction

In this infection type, the Mistfall engine is not included in the infected host. The
virus is therefore not able to replicate. The only difference between the clean host and
the infected host, is a JMP instruction with some random bytes inserted between each
original instruction. Consider the following code-snippet.
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orig inst 1
JMP to orig inst 2
garbage bytes
orig inst 2
JMP to orig inst 3
garbage bytes
...

The clean host instructions are preserved, and the infected host runs as if it weren’t in-
fected. The infected host would theoretically execute slower because of the additional
instructions added by Zmist. In Zmist.A, it is a 1/10 probability that a file is infected
using this technique.

Unencrypted Mistfall Engine

The “Unencrypted Mistfall Engine” infection type inserts an unencrypted engine in
the infected host. The engine receives control using one of the four types described
in table 3.2 on the facing page. In Zmist.A, it is also a 1/10 probability that a file is
infected using this technique. From the changelog in table 3.1 on page 52, in Zmist.B,
C and D the probability is increased to 2/10.

Encrypted Mistfall Engine

In the “Encrypted Mistfall Engine” infection type, the Mistfall engine is encrypted in
the infected host. Because the engine is encrypted, a decryptor is also present. The
decryptor is polymorphic and receives control using one of the four types described in
table 3.2 on the facing page. It is a 8/10 probability that a file is infected using this
technique in Zmist.A. This infection type is from now on referred to as infection type
pd, short for “polymorphic decryptor infection type”.

If the host PE-file does not contain a writable section with initialised data (.data)
within the three first sections, this infection type is not chosen. If .data is present,
the virtual size is increased with 32KB, making room for the variables used in the
decryption routine and the decrypted engine.

The encrypted engine is placed in the .text segment.

3.2.4 Detection of JMP and Unencrypted Engine

Detecting the JMP infection type is possible using instruction statistics. Approximately
50% of the instructions disassembled using the RT algorithm would be JMP instruc-
tions. It is considered unusual of a compiler to produce such code. It is therefore
assumed that detection of this type is trivial, and is therefore not investigated further.
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To detect the presence of the unencrypted Mistfall engine, one proposal was to use a
conventional byte signature with wildcard support. This was suggested as a possible
approach, because even though the engine is metamorphic, there are fixed parts appear-
ing in each instance of the virus, i.e. the level of metamorphism is not high enough
to avoid detection by byte-signatures. This proposition was not investigated any fur-
ther, because of two reasons. First, searching for byte-signatures has been done by the
antivirus industry for decades. The competence on finding accurate byte-signatures is
therefore high and it was natural that this task should be left to the virus analysts at
Norman ASA. Second, the detection of the polymorphic decryptor infection type was
still unsolved.

Therefore, the rest of this chapter focuses on the polymorphic decryptor infection type.

3.3 About the Polymorphic Decryptor Infection type

As stated in section 3.2.3 on the previous page, 80% of the Zmist.A infected files
contains the pd-infection type. The analysis effort was therefore initially directed at
the files containing this infection type. The material described in this section is valid
for all four Zmist versions (A,B,C and D). The material is a result of my own research.

3.3.1 Analysis of the Polymorphic Decryptor

Figure 3.2 on the facing page is a flow chart illustrating the flow:
clean code→ decryptor→ engine→ decryptor→ clean code.

The “Initialising code”-state

This is the first Zmist-state in the flow chart illustrated in figure 3.2 on the next page.

There are two keys involved in the decryption process. One permanent seed key and
one dynamic round key changing for each iteration of the decryption. Both keys are
stored in the .data section. The “Initialising code”-state performs the following.

1. Save the registers which is to be used in the decryptor on the stack (push reg),
by a move onto the .data section (mov [.data-address], reg), or by a push/pop
pair (push reg ; pop [.data-address]).

2. Initialise the round key variable with a static value.

3. Initialise accounting variables used by the decryption routine.
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Figure 3.2: pd-infection type flow chart

The “Decryption of Mistfall”-state

This is the second Zmist-state in the flow chart illustrated in figure 3.2.

In the “Decryption of Mistfall”-state, the actual decryption of the engine is done. The
state can be summarised as follows.

1. The instruction used for decryption is one of the following: add, xor or sub. For
each iteration, 4 bytes of the encrypted engine is fetched and decrypted using the
round key. After the decryption, the 4 decrypted bytes are written to the .data
section. Both the fetch and store is done sequentially.

2. A new round key is generated by performing an add, xor or sub instruction
between the seed key and the existing round key.

The two steps are repeated until the whole engine is decrypted. The reason for gener-
ating a new round key for each iteration is probably to make x-raying more difficult.
X-raying were described in section 2.5.1 on page 41. Note that the seed key, the round
key, the decryption instruction and the round key instruction is different each time
Mistfall generates a new polymorphic decryptor. The placement of the keys are also
different.

The “Mistfall decryption completed?”-question box

This is the question box in the flow chart illustrated in figure 3.2.
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Zmist use two different methods to loop back to another round of decryption. With both
methods, a compare (cmp) is done between two arbitrary registers. One register holds
the total size of the encrypted engine, the other holds the number of bytes decrypted.
The difference between the two methods is how they jump back to the start of the
decryptor.

1. The first method is a common way of looping code. After the compare, a Jcc
instruction transfers the control back to the decryptor loop. The type of Jcc
instruction vary amongst many variants, such as: jl,jz,jg,jnz. The list is not
complete. The fall through branch is code responsible for transferring control to
the decrypted engine.

2. The second method is an unusual variant. After the compare, one of the SETcc
instructions (Set Byte on Condition, [17]) is used with a 8 bit register as operand.
After the SETcc instruction is executed, the register holds a value of 0 or 1. The
code then jumps using this register as an index to a jump table with two en-
tries. One of the entries is a pointer to the start of the decryptor loop. The
other entry is a pointer to code responsible for transferring control to the de-
crypted engine. The instruction responsible for the jump is on the following
form: jmp [reg*4 + imm].

Because the second method is relatively specific for Zmist, a real-world example is
given in table 3.3.

# Instructions
1 cmp EDX, edi
2 setc dl
3 movzx EDX, dl
4 jmp [EDX*4+0x40C438]

Table 3.3: Unusual conditional control transfer

The instructions are reproduced from a disassembling of the file REGEDIT-4.VXE us-
ing the Gdasm tool. In instruction 2, dl is 0 or 1. In instruction 3, dl is moved into
EDX by movzx which zero-extends the value [16]. The JMP destination would then be
[40C438] or [40C43C] depending on the value in EDX.

When the decryptor has decrypted the engine, control is transferred to a part of the
decryptor dedicated to transferring control to the Mistfall engine. One of the two
following instructions is used to transfer control to Mistfall:

1. call displacement

2. call [mem]

The engine returns to the decryptor with a ret instruction.
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The “De-initialising code”-state

This is the fourth Zmist-state illustrated in the flow chart in figure 3.2 on page 57.

In this state, the registers saved in the “Initialising code”-state is restored and control
is transferred back to the host code. The transfer back is done by the corresponding
instruction in table 3.2 on page 54.

3.3.2 Code Examples of Decryptor

To illustrate the level of polymorphism Zmist incorporates in the decryptors, disassem-
bling excerpts of three infected files are given in table 3.4 on the following page. The
full disassembling outputs are found on the CD described in appendix A on page 125.

For each decryptor, the 45 first instructions are reproduced. D1 is an excerpt from the
file SNDREC32-5.VXE, D2 from the file HWINFO-5.VXE and D3 from the file PMTS-
5.VXE. Colours are added to illustrate different features within the code. The features
are explained in section 3.3.3.

The three examples are of the Zmist.A type. There are no significant differences be-
tween the decryptors found in Zmist.A, B, C or D and these examples represent a true
picture of a Zmist decryptor independent of version. The examples are produced with
the Gdasm tool described in section 3.1.4 on page 50. The three examples illustrated
are referred to as D1, D2 and D3. An individual instruction in the table is referred
to as a coordinate in the table matrix: (column, row). For instance (D1,3) is the third
instruction in D1: bsf ECX, EAX.

3.3.3 Polymorphic Techniques Employed

This section describes the polymorphic techniques employed in the Zmist code exam-
ples in table 3.4 on the following page. Descriptions of common polymorphic tech-
niques were given in section 2.4.7 on page 37.

EPO techniques

The EPO techniques employed in Zmist was previously described in table 3.2 on
page 54. In D1, the code receives control via an absolute indirect call. D2 employs the
UEP technique while D3 receives control via a relative call.
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Table 3.4: Code example of 3 Zmist decryptors

# Decryptor 1 (D1) Decryptor 2 (D2) Decryptor 3 (D3)
1 call [0x4082FE] mov [0x421634], edi call 0x00003090
2 mov [0x41B000], ECX mov [0x41FBFC], EBX push EAX
3 bsf ECX, EAX mov edi, 0x00421D90 pop [0x415E64]
4 and ECX, 0x9ACEDD96 push EAX mov al, 0x4B
5 mov [0x41BE98], EBX pop [edi] xadd EAX
6 mov ECX, esi mov [0x41FBF0], 0x00000000 adc EAX, 0x01D257DA
7 btr ECX, ECX mov edi, 0x004143E2 push esi
8 mov ECX, 0x5543994C push edi repnz neg EAX
9 mov EBX, 0x00426758 pop EAX imul esi, ECX, 0xCD32F179
10 imul ECX, EDX, 0xA461EDD1 mov EBX, [EAX] jmp 0x000030AF
11 movsx ECX, ax mov [0x4211B8], EBX repz mov EAX, 0x004167FC
12 mov [EBX], esi mov edi, [0x4035E5] not esi
13 test al, 0xBA mov EBX, edi lea esi, [-1587682296]
14 test edi, esi mov [0x41FBF8], EBX mov esi, esi
15 repnz imul ECX, esi mov edi, 0x0041FBF0 bsr esi, ECX
16 mov esi, 0x00000000 push [edi] push ECX
17 bswap EBX pop EAX test esi, EAX
18 mov [0x424C70], esi mov EBX, EAX pop [EAX]
19 mov EBX, edi push EBX mov esi, 0x60C25CE0
20 add ch, bl pop EAX bswap esi
21 mov esi, 0x0040A7E1 mov edi, 0x00421630 mov esi, EBX
22 mov ECX, [esi] push EAX movsx esi, bp
23 mov EBX, ECX pop [edi] xadd esi
24 shld esi, ECX, st(1) mov EAX, 0x00421630 adc esi, 0x52ED71CC
25 mov esi, 0x00423E40 mov EBX, [EAX] jmp 0x000030E0
26 dec cl add EBX, [0x4062A8] test EBX, ECX
27 inc ECX mov [0x421630], EBX mov ah, 0xF9
28 mov ECX, esi mov edi, [0x421630] mov esi, 0xFCA091F5
29 push EBX mov EBX, [edi] imul EAX, esi, 0x45285F96
30 mov esi, EBP mov EAX, EBX mov ECX, edi
31 xchg esi, esi mov [0x41FBF4], EAX test ah, bh
32 pop [ECX] push [0x41FBF4] bsf EAX, EDX
33 sal esi, 0x99 pop edi adc EAX, 0x86DDDCAD
34 mov esi, 0x49FEF735 mov EBX, 0x004211B8 sub esi, 0x2154A1C0
35 mov esi, 0x00416723 push [EBX] mov EAX, EBP
36 mov EBX, [esi] pop EAX rcl EAX, 0xA7
37 push EBX xor edi, EAX shrd ECX, EBP, 0x44
38 bts esi, 0x7D mov EBX, 0x0041FBF4 sub esi, 0xACEEC496
39 sub esi, edi mov EAX, EBX bts ECX, 0x44
40 pop ECX mov [EAX], edi shl EAX, 0x00000001
41 repnz push ECX push [0x41FBF8] xor esi, 0x2E5D2B9F
42 inc EBX pop EBX xadd ECX
43 mov bl, cl mov edi, EBX lea ECX, [0x5D46D419]
44 pop [0x424C6C] mov EAX, 0x004211B8 sal cl, 0x76
45 shrd EBX, esi, 0xE9 mov EBX, EAX mov [0x417CF0], esi
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Junk Instructions

There are several examples of junk instructions found in the decryptors. Examples of
junk instructions is marked in blue colour in D1. Note that there are lots of other junk
instructions in D1 and D3 not marked blue. D2 does not contain any junk instructions
at all.

It is possible when (D1,6) and (D1,13) has been evaluated to decide that the informa-
tion produced in (D1,3) and (D1,4) is overwritten and therefore junk. (D1,6) overwrites
the ECX register and (D1,13) overwrites the flags set by (D1,4).

(D1,13) is a junk instruction itself, because the flags set by (D1,13) is overwritten in
(D1,14).

Instruction Equivalence

In D2, there are no junk instructions as seen in D1 or D3. D2 illustrates the existence
of “ineffective” ways of propagating values in Zmist. The ineffective code is marked
in green and the example consists of instructions in the range (D2,15) to (D2,24).

No sane compiler would have generated the sequence of instructions marked in green,
but the sequence does not classify as junk. This is because the sequence affects the
decryption process. The following example illustrates why the sequence is consid-
ered ineffective. The transport of the value at memory address 0x0041fbf0 uses 9
instructions and 3 different registers before reaching the destination memory address
0x00421630. The following two instructions performs the same action using 2 instruc-
tions and 1 register:

mov EAX, [0x0041fbf0]
mov [0x00421630], EAX

Another example of “ineffective” code is illustrated in D3 with the following 5 in-
structions: (D3,28), (D3,34), (D3,38), (D3,41) and (D3,45). The instructions are
marked in red. Also note the instructions (D1,16),(D1,18) and (D2,6), all marked
in red. In D1 and D2, a 32-bit memory address is overwritten with the value 0.
In D3, there are no obvious instructions accomplishing the equivalent. However,
a closer examination of the 5 red instructions in D3 provides the equal operation:
(0xFCA091F5−0x2154A1C0−0xACEEC496)⊕0x2E5D2B9F = 0. A memory ad-
dress is therefore zeroed in D3 as well.

JMP islands

Because of the code integration technique employed, the code flow can be altered in
practically unlimited arbitrary ways. An arbitrary number of JMPs linking scattered
code islands together can be found in the decryptors. In D1 and D2 there are no
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JMP insertions while in D3 there are 2, coloured yellow. Counting the JMPs in the
decryptors listed on the CD described in appendix A on page 125, there are 6 JMPs in
D1, 0 JMPs in D2 and 10 JMPs in D3.

3.4 Detection of the Polymorphic Decryptor

From phase two described in the methodology section ( 3.1.2 on page 48), Zmist should
be investigated by using an “iterative trial and error” approach. Many iterations of trial
and error lead to two major detection attempts. These two are described in this section.

The following two problems arises when considering Zmist decryptor detection. The
first problem would be solved if a solution of problem 2 is found, but not vice-versa.

Problem 1 Detect the presence of a Zmist decryptor reliably.

Problem 2 Locate a Zmist decryptor reliably.

3.4.1 Geometric Properties

A Zmist-infected file has geometric properties which can indicate the presence of
Zmist. The properties described are a summary from [39]. Geometric properties were
described in section 2.5 on page 41.

One geometric property is the ‘Z’-sign in the Zmist.A version. For each file Zmist.A
infects, the character ‘Z’ is placed at offset 0x1C in the MZ header of the infected file.
This offset is not used in general by Windows applications. The ‘Z’-sign is used by
Zmist to avoid additional infections of an already infected file. From the changelog il-
lustrated in table 3.1 on page 52, the ‘Z’-signing of infected files is removed in Zmist.B.

Another geometric property of Zmist is the update of fixups. When Zmist infects a
host, the fixups of the infected file is updated by Zmist. Because the engine is placed in
.text, and the size of the encrypted engine is approximately 20KB, it would be possible
to detect such a 20KB gap between two fixup entries and use this to indicate a Zmist
infection. As it was with the ‘Z’-sign, fixups are removed in a later version of Zmist,
namely Zmist.C.

As the two examples illustrate, relying on geometric properties only is not reliable.
First of all, geometric properties does not solve problem 1. Other viruses can for in-
stance write a ‘Z’ at position 0x1C and the detection of Zmist would not be reliable. In
addition, the virus author can easily remove or improve some of the geometric prop-
erties and detection will fail. In both cases illustrated here, “Zombie” removed the
properties revealing the presence of Zmist, in later versions of the virus. The use of
geometric properties is however necessary to indicate the presence of a virus. Validat-
ing/invalidating geometric properties in a file is fast compared to scanning the whole
file and is often used in antivirus products to weed out the files to scan properly. In this
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thesis, the geometric properties are not used to confirm/deny the presence of Zmist in
a file. It is the Zmist decryptor that is difficult to detect. A detection algorithm must
therefore be found independent of geometric properties.

3.4.2 Detection by Instruction Statistic

After analysing a number of Zmist decryptors, it became possible to detect the decryp-
tor manually quickly. This was possible because Zmist uses instructions seldom found
in clean code. By a manual search for xchg or bswap, the presence of a decryptor was
confirmed. This lead to the first serious attempt on detecting the Zmist decryptor. The
assumption was that if the instruction statistic on Zmist was significant different than
the instruction statistic on clean code, instruction statistic would provide a solution to
problem 1.

The detection attempt by using instruction statistic did not lead to a working detection
algorithm. However, the results found, lead to another more detection attempt which
was more successful. The testing and results of the instruction statistic attempt is
described here instead of the testing chapter, because they provide a foundation for the
attempt described in section 3.4.3 on page 66.

Setup

The following files were used to conduct the instruction statistic experiment.

• 152 clean files from a Windows 98 installation.

• 46 Zmist.A infected files, manually confirmed infected with pd inf.type.

The statistic foundation were gathered and processed in three phases. First, a plugin
was written to Gdasm. This plugin extracts the instruction mnemonic and inserts this
into a MySQL database. Second, Gdasm was run on the files described in the setup and
the mnemonics extracted from each file were stored into the MySQL database. Finally,
OpenOffice was used to manipulate the mnemonics found in the MySQL base.

This procedure was applied to both clean and Zmist infected files.

Discussion

When analysing the results, the following observation were made: The number of
instructions (NOI) in the decryptor is independent of the NOI in the host program.
The location of the Zmist decryptor inside an arbitrary host is unknown. The whole
host must therefore be disassembled and processed. As a consequence of the NOI-
independence and the unknown location, the statistic produced is not precise enough.
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NOI WINHLP32-4.VXE INTERNAT-4.VXE
NOI in decryptor 342 227
NOI in whole host 40663 384

Table 3.5: Number of instruction (NOI) in two Zmist.A samples

Consider table 3.5 on the following page. In WINHLP32-4.VXE, the Zmist instruc-
tions contribute with 342/40633≈ 0,8% of the total instruction statistic. In INTERNAT-
4.VXE, the percentage is increased to 227/384≈ 59,1%. Unless the instructions used
in the Zmist decryptor are instructions seldom or never used in clean code, instruction
statistics is not a reliable detection method. If the instructions used in the Zmist de-
cryptor is different from clean code, instruction statistic could decide if a given file is
infected or not.

Figure 3.4.2 on the next page plots the instruction statistic of the file HWINFO-5.VXE
together with the clean code statistic. The figure shows that for each instruction found
in HWINFO-5.VXE, the infected file follows the clean code statistic. HWINFO-
5.VXE is a proof of the existence of Zmist decryptors that use the same instruction
mnemonics as clean code. It is therefore concluded that instruction statistic will not be
a successful approach to Zmist detection.
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Figure 3.3: Percentage of instructions found in HWINFO-5.VXE, plotted together
clean code percentage
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3.4.3 Detection by Decryptor Properties

Szor & Ferrie states the following in their Zmist paper.

Due to its extreme camouflage Zmist is clearly the perfect anti-heuristics
virus.

The statistical approach previously described confirms this quote. Another weakness
with the statistical approach is that the decryptor is not located precisely i.e. it doesn’t
solve problem 2. With this in mind, a new detection approach was constructed. This
approach uses the properties of the decryptor. This is a more tailored attempt at de-
tecting the decryptor, compared to the instruction statistic.

Common properties

After analysing several decryptors, a pattern of common properties became evident.
The properties are listed here.

• Register saves. This is described in the next section.

• The ESP register is not referenced explicitly in any of the observed decryptors.

• No other conditional jumps than the loop construct (described in section 3.3.1
on page 57) is present in any of the observed decryptors. The least observed dis-
tance measured in instructions from start to loop construct, was 84 instructions
(HWINFO-5.VXE).

• There are no call or ret instructions in any of the observed decryptors.

• Besides the loop construct jmp [reg*4 + offset], there are no occurrences
of the addressing type [reg+offset].

The hypothesis is that when combining the common properties listed, they are not fre-
quently found in clean code, and can therefore be used as “ingredients” in a detection
algorithm.
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# Not valid decryptor
1 push EAX
2 pop [mem]
3 mov [0x400000], EBX
4 mov ECX, EAX

Both EAX and EBX is saved correctly in instruction 1,2 and 3. In instruction 4, ECX is
overwritten before being saved. This is something not observed in the Zmist decryptors.

Table 3.6: Constructed example of an invalid decryptor considering register saves

Register saves

All decryptors observed save the registers used in the decryptor. This is done randomly
for each register using one of the three methods.

• push reg

• push reg; pop [mem/reg_2]

• mov [mem/reg2], reg

In the listing, reg2 is an already saved register by the decryptor. For the first register
save, an absolute memory address is used unless the stack-method is used. The regis-
ters saved are always 32-bit registers and the least amount of utilised registers observed
in a decryptor was 3.

This implies that in a valid decryptor, there are no register overwrites unless the register
has been saved first. Table 3.6 illustrates a constructed example of an invalid decryptor
considering register saves.

Assume all Zmist decryptors store the registers in the way described. Because register
saves is the first operation a Zmist decryptor performs, the start of a Zmist decryptor
can be located precisely (corresponding to problem 2).
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Figure 3.4: This figure is the flow chart of a plugin written for Gdasm. The Gdasm
flow chart was previously illustrated in figure 3.1 on page 51

Construction of the Detection Algorithm

The properties listed constitute the “ingredients” to a detection algorithm. A plugin
was written to Gdasm containing the detection algorithm. Figure 3.4 illustrates the
flow in the plugin.

1. The “property check”-state receives an instruction from the “Gdasm”-state. The
properties checked are the properties previously listed in 3.4.3 on page 66. The
regsave property discussed must be satisfied initially for the other properties to
be checked.

2. Violations of the properties result in a reset of the plugin. If there are no viola-
tions, the control reaches the “Enough instructions processed?”-question box.
This evaluates to “yes” if enough instructions since first regsave has passed
through the property check.

Testing of the decryptor detection is done in chapter 6 and the results are promising.
Of the decryptors tested, 94% were detected using the decryptor properties approach
described. The remaining 6% left undetected, are attributed to the choice of disassem-
bling algorithm (RT).

The source code of the Zmist Decryptor detection is found on the CD described in
appendix A on page 125.
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3.5 Summary

This chapter fulfils the first research goal posed in the introduction. The goal was to
“learn about polymorphic viruses through a case study”, and was extended to include
detection of the case study. In this chapter, the poly- and metamorphic virus Zmist has
been analysed and two detection approaches have been formulated.

As stated in the second research goal, from the knowledge acquired in the case study it
should be examined if it is possible to infer anything which could be used in detection
of polymorphic viruses. The next chapter assails the second research goal.
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Chapter 4

Analysis and Lessons Learnt

4.1 Case Study Aftermath

It took approximately 8 months from the start of the Zmist analysis, to a detection
algorithm was found. Assume having an undetectable botnet-communicating virus ex-
ecuting on a number of computers. Further assume a detection algorithm is developed
after 8 months of the virus initial release. The infected computers could contribute to
illegal activities such as illustrated in the blackmailing scheme for 8 months, before the
virus could be detected due the lack of a detection algorithm. This illustrates a desire
to reduce the analysis period, thus reducing the lifetime of a virus.

The following question was therefore posed: How can the time spent analysing a poly-
morphic virus be reduced? The common patterns tying the Zmist decryptors together
were found manually in 8 months. The majority of the time were spent comparing
a vast number of different decryptors, trying to find suitable common patterns which
could be used in a detection algorithm. Following from this acknowledgement, a new
question was posed: Is it possible to automatise or semi-automatise this comparison
process?

4.1.1 Comparison Program

As an answer to the last question, an idea of a comparison program was born. Such a
program would aid the virus analyst in finding the common patterns between different
instances of a polymorphic virus. The program would take as input a number of in-
fected files. The program would then apply a comparison algorithm on the input, and
finally output the common patterns.

Accurate location of virus code

The first problem with designing such a comparison program was: how to locate the
virus accurately in the infected files passed as input to the comparison program? If
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the virus is not located accurately, the foundation of the comparison is not valid and
erroneous results would be produced. Most virus analysts have environments for safely
analysing and running viruses, such as emulators and virtual machines (see the tools
section 3.1.3 on page 49). In such environments, it is easy to discover the set of files
which have been infected when a virus has been executed. The following paragraph
explains how to discover the infected files in a virtualised environment.

Assume there is a virus an analyst wish to analyse inside a virtual machine. Assume
further there exist a copy of the clean files found in the OS installed in the virtual
machine outside of the virtual machine, not reachable by the virus. The virus is exe-
cuted inside the virtual machine and files are infected with the virus. Which files have
been infected, can be discovered by a hash-comparison of the files inside the virtual
machine, to the set of clean files on the outside. This process can be repeated, thus
obtaining several infected files. To locate the virus in each infected file, consider the
following. Let xc denote a clean file and x1

v ,x
2
v , . . .,x

n
v the virus-infected versions of

xc. Using the recursive traversal disassembling algorithm, by comparing clean-file-
instructions to infected-file-instructions in xc to xi

v,1 ≤ i ≤ n, the entry point of the
virus can be found in xi

v.

The comparison program would then take as input the different infections and compare
them to each other: xi

v compared to xr
v, ∀i 6= r.

Comparison Algorithm

Having solved the problem of locating the virus, the next problem became apparent:
how should a comparison algorithm be designed?

The first step in a comparison algorithm would be to remove the detectable elements
from each of the infected files that are not common patterns. This would provide a
more homogeneous comparison foundation. Consider junk instructions, described in
section 2.4.7 on page 37 and illustrated in the Zmist decryptor examples 3.4 on page 60.
The junk instructions are not necessarily common patterns between the decryptors.
Because junk instructions don’t contribute to the semantics of the decryptors, they can
be inserted arbitrarily by the virus and vary syntactically in numerous ways. Junk
instructions should therefore be removed in each infected file prior to comparing them
to each other.

The decision of detecting junk instructions led to the problem statement of the thesis:
Is it possible to separate junk instructions from non-junk instructions in an executable
file?

4.2 Motivation for Junk Instruction Detection

From the previous discussion, the motivation for removing junk is to improve the re-
sults of a comparison algorithm. A process charting out the possibilities of detecting
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junk instructions was initiated. In the process, there were three main questions.

4.2.1 Independence

The first question posed was: Could a method for junk instruction detection exist as a
separate stand-alone function, as opposed to an implemented function in a comparison
program?

The answer to this question is yes. If junk instruction detection is developed as a
standalone application, it will work as an independent tool detecting junk instructions
in arbitrary programs. When junk instructions are detected and removed from a virus,
it will be easier for a virus analyst to examine the virus with or without a comparison
program. The junk instructions make the non-junk instructions more difficult to spot,
hence confusing the picture of the virus’ true function. The following quote is taken
from an analysis of the Bagle virus, done by Konstantin Rozinov [32].

In fact, while reverse engineering, you can spend up to 80% of your time
reading the values in registers and deducing what the code will do or is
doing as a result of these values.

If a junk instruction detection method can contribute to removing some of the instruc-
tions a virus analyst must read, the time spent analysing decreases. This conforms to
the initial goal of this chapter: How can analysis time be reduced?

4.2.2 Other Uses

The second question posed was: Are there any other uses for a junk instruction de-
tection method? The presence of junk instructions in an executable file can be an
indicator of an unknown virus. The junk instruction detection method can be used to
detect the amount of junk instructions present and can therefore act as a heuristic. Junk
instruction detection would therefore have other uses.

4.2.3 Similar work

The third question posed was: Is there done anything similar? The terms “junk code”
[13] , “garbage instructions”[23] and “garbage code” [5] are also popular terms for
junk instructions. The following databases were searched for the different terms.

• IEEE [3]

• ACM [1]

• Springerlink [8]
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IEEE returned no results, but ACM and Springerlink returned results. Some articles
contained an explanation of what junk instructions are. Others described virus detec-
tion approaches using some form for emulation or language normalising technique.
These techniques in conjunction with junk instruction detection are described next.

Emulation

Emulation as a virus detection method were described in section 2.5.2 on page 43.
Because emulation runs the virus code in a specific environment, there can exist code
segments which does not receive control when emulated. Emulation demands a high
amount of CPU cycles. Because of the possible use of junk instruction detection in
heuristics, emulation is not suitable for junk instruction detection.

Language Normalising

Language normalising were described in section 2.5.1 on page 42. This method re-
quires a mapping of the x86 assembler language, to the internal language used in the
normalising technique. This is a tedious task because of the vast amount of instruc-
tions found in the x86 assembler language. Language normalising also requires a high
amount of CPU time. Because all the virus code are processed, it is better suited for
junk instruction detection than emulation. The heuristic argument used in emulation
is however valid. Language normalising is a powerful technique, but it is believed that
junk instruction detection can be done in using simpler methods.

4.2.4 Conclusion

The three questions posed had answers pointing in the direction of developing a junk
instruction detection (JID) framework: First, developing a JID framework would have
a separate function even if the comparison program would not be developed. This is
important, because developing a JID framework could demand the rest of the dispos-
able time for the thesis. Second, a JID framework can be used in heuristics to indicate
the presence of an unknown virus. Third, there were no (published) similar work ad-
dressing junk instruction detection directly. The language normalising technique could
be used, but it is believed that junk instruction detection can be done without utilising
the full powers of language normalisation.

The main subject for the rest of this thesis is therefore detection of junk instructions.
The next chapter is devoted to the design and implementation of the JID framework.



Chapter 5

The JID Framework

This chapter contains the specification and design of the Junk Instruction Detection
(JID) framework and provides the foundation for an implementation of JID.

5.1 Methodology

The discussion in this section should work as a guideline, or a methodology further in
the development of the JID framework.

5.1.1 General Limitations

Initially, it is important to develop a framework capable of detecting the typical junk
code techniques used in the viruses of today. Rather than creating a framework capa-
ble of detecting all types of theoretical possible junk code techniques, the framework
should be simple and expandable. If the framework is developed such that it is possible
to do iterative expansions, then the initial design should focus on detecting the most
basic types of junk code insertions.

The limitation proposed is reasonable. Insertion of advanced types of junk code, such
as junk code propagating over several conditional jumps, is difficult for the virus writer
to achieve properly in the general case. It is therefore assumed that viruses utilising
the more advanced types of junk code appear less frequently, than viruses utilising the
more basic types.

5.1.2 Assumptions

The number of possible instruction sequences are enormous. If assumptions or rules
considering aspects of JID are made without having a sound foundation, there can
exist instruction sequences counter-proving the rules created. Any assumption or rule
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must therefore be justified, to ensure that JID performs as intended, on all forms of
instruction sequences.

5.1.3 Method for Junk Instruction Detection

Emulation and Language Normalisation

From the discussion in the previous chapter, emulation is not usable as a method for
JID. The language normalisation technique would perform badly when it comes to
heuristics. However, unless a simpler method is found, language normalisation would
be the preferred technique for junk instruction detection.

Static Instruction Information

In the search for a simpler method, the following question were posed: Is it possible
to detect the junk instructions without having an understanding of the instructions’ se-
mantics? For instance, can junk instructions be detected without understanding that the
function of the instruction add EAX, EBX is to add EBX to EAX? Can junk instructions
be detected, by only recognising that EBX is first read and then written to EAX, i.e. there
has been a flow of information from EBX to EAX? By only utilising this type of static
instruction information, it is not necessary to have an understanding of what each of
the instructions found in the x86 instruction set does. This has three implications.

First, a disassembler reporting the reads and writes between operands is the only tool
needed. Second, junk instructions present in programs written for other platforms can
be detected using the same method for JID, as long there exist a disassembler produc-
ing static instruction information for the executables running on the platform. Exam-
ples of other platforms are the 64 bit Intel Architecture (successor of the 32-bit Intel
Architecture) and ARM (often used in embedded devices such as mobile telephones).
Third, if it is possible to detect junk instructions by the static instruction information
produced in a recursive traversal (section 2.3.2 on page 29) or a linear sweep (sec-
tion 2.3.1 on page 29), then junk detection would run in O(n). O(n) is the lowest
achievable complexity when traversing all instructions found in a virus. Because all
instructions must be traversed in a heuristic scan to assure the absence of malicious
code, O(n) is the lowest complexity possible for a heuristic scan analysing code of an
arbitrary file. JID developed as described could therefore be included in a heuristic
scanner without notable performance faults.

5.1.4 Conclusion

The three implications previously discussed, motivates an attempt to detect junk in-
structions using a disassembler together with the static instruction information. The
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Figure 5.1: Illustrating the general flow of the junk detecting framework

remaining material in this chapter is devoted to the design/research and implementa-
tion of JID with the aid of a disassembler and static instruction information.

5.2 Introduction to JID

The following describes the layout of this section. First, a general overview of the
framework and how it is intended to work is given in section 5.2.1. Second, a dis-
cussion on how instructions can be classified junk (J) and non-junk (NJ) using static
instruction information is provided in section 5.2.2. Third, the fundamental elements
of the framework is described in section 5.2.3. Finally, a summary listing the most
important requirements found in this introduction is given in section 5.2.4. Section 5.3
on page 81 provides the detailed design of the framework, based on the discussion in
this introduction.

5.2.1 Framework Overview

The goal of the framework is the following: For each instruction presented to the
framework by the disassembler, the framework should classify the instruction into one
of the categories: junk (J), non-junk (NJ) or if it cannot obtain a classification: unclas-
sifiable (U). The unclassifiable category is equivalent to NJ except for the name. The
term unclassifiable suggests manual inspection by the virus analyst and must therefore
have a different name than NJ.

JID Developed as Plugin to Gdasm

Because junk code often are a sequence of several instructions, it is necessary to anal-
yse the sequence as whole, not each individual instruction. Recursive traversal should
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therefore be used, because the decoded instructions appear in the same order as if they
were executed on a CPU. The tool Gdasm 3.1.4 on page 50 is already written to use
the recursive traversal, so JID would be developed as a plugin to Gdasm. Figure 5.1
on the preceding page illustrates the flow of the framework.

The theory developed around JID would fit well in an object-oriented environment.
This implies that a object-oriented programming language should be chosen. C++ is
an object-oriented language with more or less the equivalent performance and control
as C. Because C is a subset of C++, and it is easy to integrate a C++ plugin to a C
application, C++ was the chosen language for implementing JID.

5.2.2 Classification

This section discusses aspects around junk (J) and non-junk (NJ) classification of in-
structions. J and NJ classification are described first, followed by a discussion on
misclassifications.

J Classification

How can instructions be classified as J? Junk instructions are featured heavily in the
Zmist decryptors found in section 3.4 on page 60. One feature making it possible to
identify the instructions as junk, is register overwrites. Data stored in a register alone
does not change the semantic of a program. Only using the registers in operations af-
fecting the program, justifies having data stored in registers. By detecting situations
where registers are overwritten without utilising the data in reasonable operations, junk
instructions can be identified. What is classified as “reasonable operations”, is de-
scribed in the next section on NJ Classification. The same argument can be used on
flag setting. Assume an instruction sets the flags (for instance one of the compare
instructions: cmp or test) and the same flags are overwritten by another compare in-
struction. The first compare instruction can then be classified as junk, because the
information it created is overwritten without being used.

There can exist other types of junk instructions not utilising registers or flags. An
example is junk instructions using memory. Resolving all memory addresses would
need emulation in the general case, because of several different addressing mode used
in the x86 assembler language. Consider the example in table 5.1 on the facing page.
Here, both value1 and value2 are written to the memory address 0x403204, and
instructions 1,2,3,4 and 5 is J. In the example, it is not possible to resolve the memory
location in instruction 5, by using static instruction information only. Therefore, J
propagating through memory is not detectable by the framework.
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# Instruction Explanation
1 mov EAX,0x1000 0x1000 is moved into EAX
2 xor EAX,0x5002 EAX is XOR’ed with 0x5000
3 shl EAX, 8 Value in EAX shifted left 8 bits
4 or EAX, 0x3004 EAX is OR’ed with 0x3200
5 mov [EAX], value1 value1 is moved to [EAX]
6 mov [0x403204], value2 value2 is moved to [0x403204]

Table 5.1: Value in EAX after instructions 1,2,3,4 has executed is:
(((0x1000⊕0x5002) << 8)|0x3004) = 0x403204

NJ Classification

How can instructions be classified as NJ? The opposite of J would be: if the regis-
ter/flag r has passed its information on to another register/flag o before being overwrit-
ten, the instructions operating on r can be classified NJ. However, o can be overwritten
as well. In that situation, the previous instructions operating on r should not automati-
cally be classified as NJ.

This situation illustrates a key point: Something which is predefined as NJ should
be found - a “safe haven” classifying everything that flows into it as NJ. In light of
the discussion on memory in the previous section 5.2.2, it is natural that when junk
instructions not utilising memory is not supported, memory should be predefined as
NJ. All the instructions in the example in table 5.1 would then be classified as NJ.

Misclassifications

It is necessary to examine the consequence of an erroneous classification of a sequence
of instructions. There are two cases of classification errors:

False negatives A sequence of instructions is classified as NJ, but it is known a’priori
to the classification to be J.

False positives Vice versa, a sequence of instructions is classified as J, but it is known
a’priori to the classification to be NJ.

When J code is classified as NJ, a heuristic scan would report the junk-code as non-
junk, resulting in false negatives. The time used by a virus analyst to understand/detect
the virus is increased, since the instructions reported as NJ would confuse the analysis.

When NJ code is classified as J, a heuristic scan would report the normal code as junk
resulting in false positives. If the virus analyst trust the framework, the instructions
reported as J would be ignored/discarded in the further inspection of the virus. When
this type of misclassification occurs, the picture of the virus’ true function is corrupted,
because NJ-instructions are missing and the semantic of the program is incorrect.
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False negatives are worse than false positives for heuristic scanning, but better for
manual analysis, and vice versa. It is more important to improve the manual analysis
of a virus than to improve a heuristic scan. Therefore, false positives must not occur
and the amount of false negatives should be minimised.

5.2.3 Elements of the Framework

As illustrated in figure 5.1 on the preceding page, the framework receives instructions
as input and outputs the classification of each instruction. From 2.2.2 on page 24, an
instruction is made from one opcode and zero or more operands. The two components
and their implications on the framework are discussed here.

Operands

From the initial discussion on static instruction information, the flows between the
operands should be used, to correctly determine the classification of the instruction
containing the operands. The information flows between all the explicit and implicit
operands found in a sequence of instructions, must be analysed to investigate what in-
formation is overwritten and what information is stored in a predefined NJ location.
The framework would need to recognise the operands and their accesses: For instance,
the framework must identify EAX from EBX to detect that there has been an informa-
tion flow from EBX to EAX in the instruction sub EAX,EBX. In the sub instruction,
EAX and EBX is read, then the result of the operation EAX-EBX is stored (write) in
EAX. A flow from EBX to EAX has therefore occurred.

The discussion on NJ revealed the need for predefined NJ locations, from now on
referenced as NJ-operands. What operand types should be defined NJ is discussed
further in the thesis.

Opcodes

Because of the initial goal to use only static instruction information, the opcode infor-
mation should not in general be used in the classification process. The result of the
previous subtraction, i.e. the outcome of the operation EAX-EBX is not necessary to
calculate to recognise that information in EBX has flowed into EAX. It is the pres-
ence/absence of a flow between operands that is important to record and analyse, not
the exact value of each operand and operation.

5.2.4 Summary

The requirements and key points discussed are summarised in this section. The fol-
lowing summary is used as a reference point in further discussions in the thesis.



5.3. DEFINITIONS, RULES AND PROPERTIES OF THE FRAMEWORK 81

J When an operand is overwritten, and the information found in the operand has not
been transferred to another operand or used in any other operation characterised
as non-junk, the instructions referring the operand can be classified as J.

NJ When the information found in an operand is transferred to a “NJ-operand”, or the
information is utilised in an operation which can be characterised as non-junk,
the instructions referring the operand can be classified as NJ.

False positives NJ classified as J must be avoided at all cost, because it will corrupt the
correct picture of the virus true function. This is termed the primary requirement.

False negatives J classified as NJ should be avoided if possible. This requirement is
termed the secondary requirement.

Linearity Unless there are situations which violate the primary requirement, or the
secondary requirement heavily, the framework must follow the recursive traver-
sal algorithm which runs in linear time, O(n). This requirement is termed the
linear requirement.

This section discussed the preliminaries of a JID framework. The following section
contains the building blocks and developed logic of the JID framework, making it
possible to adapt JID to the x86 assembler language.

5.3 Definitions, Rules and properties of the Framework

This section contains the theoretical foundation for creating the JID framework. The
definitions and rules in this section are used both in the adaption of JID to the x86
assembler language in section 5.4 on page 90, and in the development of the JID plugin
previously discussed.

The section is organised as follows. First, basic terminology is introduced. This is
terminology used in the more complex rules and definitions. Second, information flows
are defined. Third, instruction chains are defined. An instruction chain is a structure
for ordering multiple instructions based on certain properties. Fourth, the term entities
is defined. An entity is a structure uniting instruction chains and information flows.
Last, how to classify entities as J, NJ or U is discussed.

5.3.1 Basic Terminology

Classification

The term classification is used frequently, justifying the following shorthand defini-
tion: A classification of a classifiable element X is written as CL(X) = Y , meaning
X is classified as Y. For instance, instead of writing “. . . then the classification of
instruction i is NJ. . . ”, it will be written “. . . then CL(i)=NJ. . . ”.
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Instruction Index

Because each disassembled instruction is traversed only once by the recursive traversal
algorithm, each instruction has a unique position in the output of the algorithm. The
position is denoted the instruction index and uniquely identifies an instruction in the
output of the recursive traversal algorithm. Figure 5.2 on the next page explaining
instruction chains, also illustrates the concept of instruction indexes.

Current Instruction and Current Instruction Index

The current instruction is the instruction presented to the framework for classification
by the disassembler. The current instruction index is the instruction index of the current
instruction.

5.3.2 Information Flows

From the discussion in section 5.1.3 on page 76, information flows between operands
must be recorded and analysed, in order to classify instructions correctly. The follow-
ing definition contains the concept of information flows between the different operands
in a single instruction.

Definition 5.3.1 (Instruction Flows). An instruction i containing the set of operands R,
contains zero or more information flows.
Each r ∈ R with READ and/or EXECUTE access, flows to all w ∈ R with WRITE
access. This is written as: r→ w.
If w has OVERWRITE access, it is written as r⇒ w.

Because JID should be developed as a plugin to Gdasm, the disassembling library used
is libdisasm (section 3.1.4 on page 50). For each operand in a disassembled instruction,
libdisasm provides the access of the operand through the construct enum x86_op_access.
It is stated in libdis.h of libdisasm [4]: . . . by definition, Execute Access implies Read
Access and Not Write Access. Hence the EXECUTE-part in the definition. The OVER-
WRITE access is not defined as a separate access in libdisasm, but from the discussion
in section 5.2.2 on page 78, it is necessary to identify the OVERWRITE access. OVER-
WRITE is defined as a WRITE access together with a set of special opcodes described
in section 5.4 on page 90 and subsections. All definitions, rules, statements and proofs
are established using→ (WRITE), because⇒ (OVERWRITE) implies→ (WRITE).

5.3.3 Instruction Chains and Current Instruction

Most instructions do not contain an information flow classifying the instruction it-
self. For instance, there is no J- or NJ-classification operations in the instruction
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Figure 5.2: Each number to the left of the instruction is its index.

sub EAX, EBX. As seen in the Zmist decryptor D1 in section 3.4 on page 60, the in-
structions marked blue don’t contain an operation that could trigger a J classification.
For instance, (D1,3) and (D1,4) operate on the ECX register and the flags. Because
both (D1,3) and (D1,4) apply operations on ECX and flags which is overwritten in
respectively (D1,6) and (D1,13), both (D1,3) and (D1,4) is classified J. This motivates
the definition of an instruction chain with respect to an operand.

Definition 5.3.2 (IC). An instruction chain (IC) is a list of instruction indexes. Com-
mon for all the instructions referred to in an IC, is the occurrence of an operand r. The
notation IC(r,start,stop), defines the indexes to instructions which refers r, starting
with the instruction at index start and ending with the instruction referring r at index
stop. The inequality start ≤ stop is valid, because of the unique, auto-incrementing
indexing of each instruction in the recursive traversal algorithm, .

An example of an IC is illustrated in figure 5.2. If the start/stop instructions are implied
by the context or not important then IC(r,start,stop) can be referred to as IC(r). Rules
considering when an IC should start and stop is defined later in section 5.3.6 on page 89
about “Entity Lists”. For now, assume the start position of an IC is equal to the index
of the first instruction included in IC. Further assume the stop position of an IC is equal
to the index of the last instruction included in the IC when the RT algorithm exits.

IC Classification

One of the main ideas behind defining IC’s, is that all instruction indexes in an IC(r)
should receive the same classification. This is because classification is done based on
the “fate” of an operand in an instruction. The following rule establishes the classifi-
cation of an IC.

Rule 5.1. An IC(r) can be classified as X: CL(IC(r)) = X . This is equivalent to the
following logic: ∀i ∈ IC(r),CL(i) = X

Instruction inclusion in IC

The following rule defines how the current instruction index is included in an IC.
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Rule 5.2. When the current instruction i contains the flow v→ r for operands r, v, then
the index of i should be added to IC(r).

If there doesn’t exist any flow v→ r in i, then i doesn’t contribute to altering any
operand and CL(i) = NJ. i can be J itself, for instance the NOP instruction (no opera-
tion) can be inserted randomly, acting as J. Note that NOP is also used in clean code and
is not per definition a junk instruction. NOP can be detected as a separate junk instruc-
tion by searching for the instruction in the output of the recursive traversal algorithm.
This can easily be done without the use of the framework established in the thesis, and
is not considered further.

Prioritisation of Classifications in an IC

A problem could occur if the current instruction i contains operands v1,v2,r1,r2 with
flows such that r1→ v1 and r2→ v2. By the rule defined, the index of i would be added
to both IC(v1) and IC(v2). If CL(IC(v1)) 6= CL(IC(v2)), the classification would be
ambiguous, unless the different classifications are prioritised. With background in
the primary and secondary requirements and the discussion on U in section 5.2.1 on
page 77, the following rule establishes the prioritisation of the different classifications.

Rule 5.3. 1. If initially CL(IC(r)) = NJ, then the classification of IC(r) cannot be
changed to another classification.

2. If initially CL(IC(r)) = U , then the classification of IC(r) can be changed to NJ.

3. If initially CL(IC(r)) = J, then the classification of IC(r) can be changed to NJ
or U.

To illustrate the implications of this rule: Given an instruction i, CL(i) = J if and only
if ∀ operands v contained in i, CL(IC(v)) = J.

5.3.4 Flow set, FL

When classifying, it is not a particular instruction itself that is interesting, but the
presence/absence of a flow in an interval of instruction indexes. This motivates the
definition of a flow set, FL, and its uses becomes apparent when considering the J/NJ
classification rules.

Definition 5.3.3 (FL). Associated with IC(r,start,stop), there is a set FL(r). FL(r) is
the set of all information flows referencing r, found in the instructions pointed to by
the indexes in the interval [start,stop].

In an interval of instruction indexes [start,stop], FL(r) contains all flows found in the
instructions pointed to by the index interval. The flows are of the type x→ r and
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r→ x, where x is an arbitrary operand. Note that in FL(r), both flow directions are
present, but in IC(r) instruction only containing flows of the type v→ r are indexed.
The discussion on J/NJ classification in section 5.3.6 on the following page, reveals
why both flow directions must be present in FL(r).

5.3.5 Entities

The two elements IC and FL are bound together. Most of the time it is necessary to
reference flows in FL(r), but the context is lost unless the start/stop positions of IC(r)
is referenced together with FL(r) as well. An entity unites the IC and the FL together
in one element. The primary motivation for defining an entity is to simplify notation.
Another important motivation is that the definition of entities can be used directly in
the implementation of JID, namely a C++ class containing an IC and the associated
FL. Therefore, when entities are used throughout the thesis, it is easier to convert the
theory/design into a working implementation.

Definition and Properties

Definition 5.3.4 (Entity). Given an operand r, the entity re associated with r is defined
as an ordered pair re = (IC,FL), where IC is a instruction chain for the operand r,
IC(r,start,stop). FL is the set of all information flows referencing r, found in the
instructions pointed to by the indexes in the interval [start,stop].

The separate elements of an entity can be accessed in the following object-oriented
manner:

• The IC(r) of entity re can be accessed as re.IC

• The FL(r) of entity re can be accessed as re.FL

How instructions are added to re.IC was previously described in rule 5.2 on the pre-
ceding page. Note that in the definition of FL, not only the flows contained in the
instructions pointed to by the indexes in re.IC is included in re.FL, but all flows refer-
encing the operand r in the interval given by re.IC.

Entity Terminology

• CL(re) is defined as: CL(re) = CL(re.IC). In words, re can be classified as NJ, J
or U, meaning that it is re.IC which is classified as NJ, J or U.

• Because of the frequent use of the term information flow, the following short-
form is defined: re can be said to flow to another entity xe, denoted as re→ xe.
This is the equivalent to the following logic:
∃(r→ x) ∈ re.FL∩ xe.FL
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Figure 5.3: Illustrating corresponding entities to the IC created in figure 5.2 on page 83

# Instruction Flow equivalent
1 mov EAX, 4 4⇒ EAX
2 mov EBX, 3 3⇒ EBX
3 add EAX, EBX EBX → EAX
4 mov [mem], EAX EAX ⇒ NJ−operand

Table 5.2: Example illustrating NJ Classification and NJ recursion rule

To illustrate the use of entities, figure 5.3 illustrates the entities created from the in-
structions used in figure 5.2 on page 83.

5.3.6 J and NJ Classifications of an Entity

The following rule follows naturally from the discussion on NJ and the rule of instruc-
tion inclusion (rule 5.2 on page 84). Because of rule 5.2, the current instruction index
is not added to any IC and must be classified separately in the following rule.

Rule 5.4 (NJ classification of entities). Let r be an operand, v a NJ-operand and re the
entity associated with r. If the current instruction at index i contains the flow r→ v,
then CL(re) = NJ and CL(i) = NJ.

The NJ Classification Recursion rule takes into account classification of other “help-
ing” instructions when an entity has been classified as NJ. Table 5.2 is an example
motivating this rule. In the example, instruction 1,3 and 4 is classified NJ by rule 5.4.
Because EBX flows into something classified as NJ in instruction 3, it is natural that
instruction 2 is classified as NJ as well.

Rule 5.5 (NJ Classification Recursion). If an entity re is classified as NJ, then ∀we
such that we→ re, set CL(we) = NJ.

In conjunction with the discussion on FL(r) and flow inclusion in section 5.3.4 on
page 84, the NJ Classification Recursion rule illustrates why FL(r) always has to in-
clude flows referencing r of the type x→ r. Assume flows of the type x→ r is not
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included in FL(r), but r → x are. To classify IC(r) as NJ by the classification rule
defined, a search for the flow x→ r must be performed on all FL(x), where x refers
all operands recognised by the framework. This does not scale well, for instance if
detection of junk utilising memory should be implemented in the future. It is therefore
necessary to include flows of the type x→ r in FL(r).

U Classification

Because U is the classification category for special cases, how an entity is classified as
U is discussed further in the text. However, if an entity re is classified as U, then all
entities providing re with information must also be classified U. This is equal to the
NJ recursion rule 5.5 on the facing page, except that entities matching the condition is
classified as U instead of NJ.

J Classification

The following rule follows naturally from the discussion on J, and the rule of instruc-
tion inclusion 5.2 on page 84.

Rule 5.6 (J Classification of Entities). Let r, v be operands and re the entity associated
with r. If the current instruction contains flow v⇒ r and 6 ∃ xe such that (re→ xe), then
CL(re) = J.

The example in table 5.3 illustrates why there cannot exist a flow from re to xe for re
to be classified J.

# Instruction Flow equivalent
1 mov EAX, 4 4⇒ EAX
2 add EBX, EAX EAX → EBX
3 mov EAX, 5 5⇒ EAX

Table 5.3: Example illustrating J rule

In instruction 2, EAX flows to EBX. Instruction 1 cannot be classified as J in instruc-
tion 3, because the information is still “alive” in EBX, due to instruction 2.

In conjunction with the discussion on FL(r) and flow inclusion in section 5.3.4 on
page 84, the J rule illustrates why FL(r) has to include flows referencing r of the type
r→ x. The argument is equal to the previous argument on why flows of the type x→ r
must be included in FL(r), and is not repeated here.

J Classification Resolving

Consider the example in table 5.4 on the following page. This example is an expanded
version of the example given in table 5.3.
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# Instruction Flow equivalent
1 mov EAX, 4 4⇒ EAX
2 add EBX, EAX EAX → EBX
3 mov EAX, 5 5⇒ EAX
4 mov [mem], EAX EAX ⇒ NJ−operand
5 mov EBX, 6 6⇒ EBX

Table 5.4: Expanded example illustrating J rule

By examining the instructions intuitively, that is without using any classification rules,
it is obvious that instruction 1 and 2 is J, because instruction 3 and 5 overwrites the
information produced in 1 and 2. Instructions 3 and 4 is NJ. When applying the J/NJ
rules defined, the following outcome is observed.

Before instruction 3 is evaluated, the following IC’s exist: EAXe.IC = {1}, EBXe.IC =
{2}. When instruction 3 is evaluated, the J classification rule cannot classify EAXe as J
(as discussed in the previous example with table 5.3 on the preceding page). Instruction
3 is therefore included in EAXe.IC: EAXe.IC = {1,3}. At instruction 4, by NJ classi-
fication rule, EAXe and instruction 4 is NJ. This is erroneous, and by the classification
prioritisation (rule 5.3), the classification is irreversible.

The example illustrates two key points. First, multiple “versions” of an entity re must
exist, i.e. r1

e ,r
2
e and so on. Second, an additional rule for J classification similar to

the NJ Classification Recursion must be defined. Because this rule would rely on
the multiple entity versions, the definition of entity arrays is given before the rule is
defined.
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Entity Arrays

Definition 5.3.5 (Entity array). An entity array ELr is an ordered array of zero or more
re entities: ELr = {r1

e ,r
2
e , . . .,r

n
e}. The array is ordered such that for ri

e.IC(ri,start i,stopi),
where 1 < i ≤ n, the boundary stopi−1 < start i holds. stopi−1 is the stop index of
ri−1

e .IC(ri−1).

Each entity created by the framework is inserted into one entity array and one only.
A current entity is the last element added in ELr. There is one current entity for each
entity array. The IC(r,start, ..) component of a current entity, does not receive any stop
position until a new entity is added to the array.

When new entities are inserted in entity arrays

Because multiple IC’s of an operand r exist, a rule defining start/stop positions of the
different IC’s must be created.

Rule 5.7. A new entity rn+1
e is created, inserted into ELr and made the current entity

of ELr, when the current instruction i with index posi contains operands r and v with
the two properties listed under. In both properties, the current instruction index posi is
added to rn+1

e .IC and the start position of rn+1
e .IC is posi. The stop position of rn

e is the
index number, of the last instruction added to rn

e .

1. v⇒ r. r is overwritten and rn
e must be preserved to include the possibility of

delaying the classification. Because the information in rn
e is overwritten, the

flow rn
e → rn+1

e should not be inserted in the respective entities.

2. v→ r and the flow rn
e → xe for another entity xe exists. Because the information

in rn
e is modified and not overwritten, the flow rn

e → rn+1
e must be inserted in the

respective entities.

By including the pt. 1 in the rule, classification of rn
e can be delayed after i is processed.

This is beneficial in the implementation, because classification can be performed after
the current instruction is processed.

5.3.7 J Classification Resolving

Having established entity arrays, the following rule can be defined.

Rule 5.8 (J Classification Resolving). If an entity re is classified as J, then
∀xe such that xe→ re, xe isn’t the current entity of ELx and 6 ∃ ye(xe→ ye where ye is
not classified), set CL(xe) = J
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Because of the ordering in ELx (def 5.3.5), if xe isn’t the current entity, the information
contained in xe has been passed on or is overwritten (rule 5.7), hence the information
can be viewed as “obsolete”. If all the ye which xe passed information to is classified,
then xe can be classified as J. Because of the classification prioritisation (rule 5.3), if
CL(xe) is already classified and CL(xe) 6= J, then xe cannot be classified J.

Revisit example 5.4 on page 88 and consider the following. As previously, before
instruction 3 is evaluated, the following IC’s exist: EAX1

e .IC = {1} and EBX1
e .IC =

{2}. When instruction 3 is evaluated, because 5⇒ EAX , a new entity EAX2
e is created

and made current entity in the entity list ELEAX and EAX2
e .IC = {3}. When instruction

4 is evaluated, by NJ Classification rule 5.4 on page 86, EAX2
e and instruction 4 is NJ.

When instruction 5 is evaluated, by the J Classification rule 5.6 on page 87, EBX1
e

is J. By the J Classification Resolving rule 5.8 on the preceding page, EAX1
e is also

classified J. All elements in example 5.4 on page 88 have now been classified correctly
using the rules defined.

Classifying Instruction

From the definitions of the J Classification rule5.6 and the NJ Classification rule 5.4,
a single instruction is responsible for classifying one entity, which again by the NJ
Recursion rule 5.5 and the J Resolving rule 5.8 can classify several entities. All U
classification cases are also triggered by one single instruction as seen further in the
text.
It is therefore reasonable to use the term classifying instruction for an instruction which
triggers classification of one or many entities.

5.4 x86 Assembler Language and JID

In this section, details of the x86 assembler language concerning JID is enumerated and
discussed. As discussed in section 5.2.3 on page 80, the framework should recognise
the operands of an instruction. The list of operands is produced here [18].

• Immediate operands

• Memory operands

• Register operands

Immediate operands are discussed in section 5.4.1. Memory operands are discussed in
section 5.4.2. Register operands are split into several different types of registers and
are discussed in sections 5.4.3, 5.4.4, 5.4.5, 5.4.6 and 5.5.
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5.4.1 Immediate Operands

When the current instruction i contains an immediate value as operand, another operand
r with associated entity re, r 6= imm, is often present. The information flow contained
in i is often such that imm→ r. r→ imm is obviously not possible, and therefore it is
not necessary to maintain an entity associated with imm. The instruction referring imm
is by rule 5.2 on page 84, added to re.IC.

If there are instructions in which the immediate operand does not affect any other
operand, the instructions should by the discussion following rule 5.2 on page 84 be
classified NJ.

5.4.2 Memory Operands

Memory operands constitute of immediate values, segment registers and general-purpose
registers [18]. In the instruction sub [EAX+0x8],0x32, [EAX+0x8] is an example of
a memory operand. As discussed in 5.2.2 on page 78, the memory operand should be
defined as a NJ-operand.

Memory Operands containing Registers

The framework is not concerned about the content of a memory address (section 5.2.2
on page 78). Because immediate values are of no value to the framework, the only in-
formation interesting is whether a memory operand contains registers or not. The fol-
lowing rule establishes how registers contained in memory operands should be treated.

Rule 5.9. Let v be an operand with associated entity ve, r a register with associated
entity re, m a memory operand containing r. When the current instruction contains
flows v→m or m→ v, the flow r→ v should be added to re.FL and ve.FL, independent
of the flow direction between m and v.

The following discussion illustrates the reasoning behind the rule. Let v, r and m be
defined as in the rule. Assume v→ m. It is not correct to presume r→ m, since this
implies that information flows from r to m. Similar, assume m→ v. It is not correct to
presume m→ r, since this implies that information flows from m or to r. If v→ m, r
aids v pass data to a correct destination. If m→ v, r aids v retrieve data from a correct
source. Regardless of flow direction, r provides v with information and r→ v can be
added to re.FL and ve.FL.

Statement 5.4.1. Rule 5.9 doesn’t violate the primary or secondary classification re-
quirement
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# Instruction Flow equivalent
1 mov AX, value1 value1⇒ EAX
2 rol EAX, 16 value1 is rotated 16 bits left in EAX (16→ EAX)
3 mov AX, value2 value2⇒ AX
4 mov NJ-op, EAX EAX ⇒NJ-operand

Table 5.5: After instruction 3 is evaluated, value1 resides in the 16 msb of EAX while
value2 resides in the 16 lsb of EAX, see fig 5.4.

Figure 5.4: The layout of EAX from the example in table 5.5

Proof. Let v, r and m be defined as in the rule. There are two possible information
flows between v and m:

v→ m ve is by definition NJ. re would be classified as NJ by the NJ recursion rule 5.5.

m→ v ve can be classified as J or NJ. If ve is classified as NJ, then re would also be
NJ. If ve is classified as J, then re is not automatically classified as J, except if re
satisfies the conditions of the J resolving rule 5.8, and then re would properly be
J.

5.4.3 32-, 16- and 8-bit General-Purpose Registers

The general-purpose registers were described in section 2.2.3 on page 25. ESP and SP
are discussed separately in section 5.4.5 on page 94, and are ignored in this section.

Summed together, a total of 22 different registers with associated entities must be
identified by the framework. The following section discusses a solution which allows
the framework to recognise the 32-bit registers only.

The 8- and 16-bit Register problem

Definition 5.4.2. A subregister is a x-bit register r1 which addresses a part of an y-bit
register r2, x < y. When a register is not a subregister, it is termed superregister when
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# Instruction Flow equivalent
1 add EAX, value1 value1→ EAX
2 mov AL, value2 value2⇒ EAX
3 mov AL, value3 value3⇒ EAX
4 mov NJ-op, EAX EAX ⇒NJ-operand

Table 5.6: The “Flow equivalent” column contains the flow equivalent if AL is treated
as EAX. At instruction 4, the 24 msb of value1 and value3 is moved into a NJ entity.

the context requires separate identification of the two terms.

To illustrate the use of the term subregister: AL is a subregister of both AX and EAX,
and AX is a subregister of EAX. Of the three registers, only EAX is a superregister.
The example in table 5.5 on the preceding page illustrates the problem with subreg-
isters. When the instructions are run, both value1 and value2 are stored in the NJ-
operand. To detect that value1 has been rotated into the upper 16 msb of EAX, rol
must be emulated or logic handling subregisters must be defined. As previously dis-
cussed, emulation should be avoided, leaving the option of defining a logic handling
subregisters.

The 8- and 16-bit Register solution

The least complex rule would be to treat each subregister as the corresponding super-
register. Assume this rule is applied and consider the example in table 5.6. Instruction
2 leads to an overwrite of EAX and instruction 1 would be classified as J. Assume
the 24 msb of value1 is NJ and value3 is NJ. Then NJ is erroneously classified as J in
instruction 1 and this violates the primary classification requirement.

To avoid the misclassifications illustrated, the rule must be extended: treat each sub-
register as the corresponding superregister in all situations except for subregister over-
writes. In the case of subregister overwrites, the overwrite must be treated as a regular
write. Assuming this extended rule is applied, example 5.6 doesn’t violate the primary
classification requirement. Instead, the example violates the second requirement. This
is not optimal, but as discussed in section 5.2.2 on page 79, better than having false
positives. The following rule states what was found in the discussion.

Rule 5.10. Let rx be a subregister of a register. When the current instruction i refers
rx, then rx should be substituted in the framework with the superregister of rx. There
is exactly one exception: If i contains an operand v such that v⇒ rx, this flow should
be treated as v→ rx.

Statement 5.4.3. Rule 5.10 does not violate the primary classification requirement.

Proof. It must be proved that NJ cannot be classified as J. Let rx be a subregister. Let
r f be the superregister of rx. From rule 5.10, the register rx has associated entity r f

e .



94 CHAPTER 5. THE JID FRAMEWORK

# Instruction Flow equivalent
1 add ESP, value1 value1→ ESP
2 xor EAX, EBX EBX → EAX
3 sub ESP, value1 value1→ ESP
4 push EAX EAX ⇒ [ESP]

Table 5.7: Instructions 1 and 3 is J

Further assume the classification of r f
e is a’priori known as NJ. From rule 5.10, the only

operation recognised by the framework that overwrites rx, is the overwrite of r f and
such an overwrite will possibly classify r f

e as J. Because r f is the superregister of rx,
an overwrite of r f will also overwrite rx when the instructions are run on a processor.
This contradicts the assumption that r f

e was NJ and therefore r f
e cannot be classified J

if it is NJ.

5.4.4 Segment-, FPU-, MMX-, XMM-, Control-, Debug- and MSR-
registers

Segment-, FPU-, MMX-, XMM-, control-, debug- and MSR-registers are for the sake
of simplicity ignored. The framework will not be able to recognise junk-instructions
utilising these registers. It is possible to expand the framework with support for the
registers without breaking the framework’s logic. The following rule defines what
action must be taken when one of the unsupported registers is encountered.

Rule 5.11. Assume the current instruction i contains operands r and f. Let r be an
operand recognised by the framework with associated entity re. Let f be an operand
not recognised by the framework. If r→ f , then CL(re) = U .

In the rule, the correct classification of re cannot be determined because the information
flows to f, and cannot be tracked further. Therefore re must be classified U. If f → r,
then f can be viewed as an immediate operand and no special considerations apply.

5.4.5 ESP Register (Stack)

The stack can be viewed as a memory operand containing the ESP register. Each
instruction that pushes an operand r on the stack, contains the flow r⇒ [ESP]. Each
instruction that pops an element from the stack into an operand r, contains the flow
[ESP]⇒ r. The pop instruction must be recognised specifically by the framework,
because it contributes to defining the OVERWRITE access (as discussed in 5.3.2 on
page 82).
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# Instruction Flow equivalent
1 add EAX, 1 imm→ EAX
2 cmp EAX, 2
3 mov EAX, 3 imm⇒ EAX
4 jz location

Table 5.8: Flag usage

It is difficult for a virus programmer to both utilise ESP as a junk-register, and using the
stack simultaneously. There exist examples, and one constructed example is illustrated
in table 5.7 on the preceding page. Instructions 1 and 3 can be classified correctly by
the framework only if ESP is overwritten before the push instruction (4) occurs. It is
assumed that instructions overwriting ESP appears seldom because the ESP controls
the stack which is utilised frequently, and ESP is therefore defined as a NJ-operand.

The register SP is a subregister of the superregister ESP and would be a NJ-operand as
well.

5.4.6 EFLAGS Register

The EFLAGS register contains several flags. The seven flags listed in section 2.2.3 on
page 25 must be recognised by the framework because nearly all instructions set, clear
or test one or more of these flags. Table 5.8 gives an example of a situation where flags
not recognised by the framework result in a violation of the primary requirement. In the
example, instruction 4 is a control transfer instruction changing the flow of execution
to “location” if the zero flag is set (jump if zero). The compare in instruction 2 set,
amongst others, the zero flag if the subtraction EAX-2 is equivalent to 0. Unless flags
are recognised by the framework, instruction 1 and 2 would be classified as J when
instruction 3 is evaluated.

Instructions Setting/Testing Separate Flags

Flags can be viewed as implicit operands to instructions which are read/written. How
each instruction utilise the flags are hard-wired in the instruction and reported by lib-
disasm. For instance, the opcode ADD set/clear the OF, SF, ZF, AF, CF and PF flag
according to the result of the computation [16].

Rule 5.12. Let F be the set of the seven flags described and ∀ f ∈ F there is an associ-
ated entity fe. Let i be an instruction which contains operand set r and ∀r∈ R there is
an associated entity re.

Flag set/clear ∀ f ∈ F which i SET/CLEAR, and ∀r∈ R where r has READ or EXE-
CUTE access, the following flow is added to re.FL and fe.FL: r⇒ f .
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Flag testing ∀ f ∈ F which i TEST, and ∀r∈ R where r has WRITE access, the follow-
ing flow is added to re.FL and fe.FL: f → r.

When the rule defined is taken into account, the example in table 5.8 on the pre-
ceding page yields the following result. Instruction 2 contains the following flow:
EAX ⇒CMP-flags. In instruction 3, the J classification rule can therefore not classify
EAXe as J. Instruction 4 contains the following flow: CMP-flags→JZ. Assuming JZ is
defined as NJ (discussed in the following section), by the NJ recursion rule 5.5 EAXe
is NJ.

5.5 EIP Register and Control Transfer Instructions

Control transfer instructions have implications on the classification process, and each
control transfer instruction is therefore discussed separately. Control transfer instruc-
tions were explained in section 2.2.3 on page 27.

If the current instruction i contains an operand r, and i contains the information flow
r→ EIP, then r alters the execution of the program flow and should be classified as
NJ. EIP should therefore be defined as a NJ-operand. Because all control transfer
instructions modifies/writes to EIP, they are by the NJ Classification rule classified as
NJ.

5.5.1 Framework Limitations

Unresolvable Control Flows

Instructions containing an unresolvable control flow were described in section 2.3.2 on
page 29. When an unresolvable control flow occur, unclassified entities are affected.
Assume re is an unclassified entity when the current instruction contains an unresolv-
able control flow. The classifying instruction i which would classify re if the control
flow had been resolved, cannot be deterministically reached when the destination of
the control transfer instruction is unresolvable. The classification of re would then be
unknown and this leads to the following rule:

Rule 5.13. Let r be the set of all operands recognised by the framework, ELr an entity
list containing re entities. When the current instruction i is an instruction containing
an unresolvable control flow, the following action must take place: ∀ r ∈ r re ∈ ELr
where re is an unclassified current entity, set CL(re) = U .

Because U-classification is recursive (see section 5.3.6 on page 87), all entities flowing
into re is also classified U.
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Control transfer instructions pointing to visited positions in the RT algorithm

Assume the current instruction i is a control transfer instruction pointing to an instruc-
tion at pos j, previously disassembled and processed by the framework. The linearity
requirement would be violated if pos j was to be visited again and the framework would
need to communicate to the disassembler that it must process instructions from pos j
and further once more. The framework logic would be more complex and this feature
should be left out for now. Unclassified entities should therefore follow rule 5.13 on
the facing page when control transfer instructions pointing to visited positions in the
disassembling occur.

5.5.2 JMP, CALL, RET, IRET and End Of Disassembling

JMP

The classification process is not affected by instructions of the type jmp imm, because
the flow of the code is uniquely determined. If the instruction pointed to by imm has
previously been disassembled and processed, rule 5.13 on the preceding page covers
the classification of entities. Instructions like jmp [reg] and jmp reg are unresolv-
able and rule 5.13 on the facing page covers the classification of unclassified entities
when such instructions appear. Note that if jmp [r] or jmp r is encountered, then the
associated entity of r, re, is classified NJ because r→ EIP.

CALL

Except for the return address pushed on the stack, the call instruction works the same
way jmp instructions do. call imm is in this context equivalent with jmp imm dis-
cussed in the previous section. When call reg and call [reg] is encountered,
rule 5.13 on the preceding page covers the classification of unclassified entities.

RET/IRET

When a ret is encountered, the topmost element on the stack is popped into the EIP
register. In the framework, the stack is viewed as memory. It is therefore impossible
to determine the destination of the control transfer and rule 5.13 on the facing page
covers the classification of unclassified entities when a ret appears. A iret instruction
returns from interrupts and has additional tasks compared to a regular ret. However,
when considering the control transfer aspect of iret, it is equal to ret and should
follow the same procedure as ret.
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# Instruction
1 mov EAX, 1
2 cmp EAX, 1
3 je location

Table 5.9: Conditional jump in instruction 3 is always taken.

End Of Disassembling

When there are no more bytes left to disassemble, there can be unclassified entities.
However, end of disassembling is not equivalent to end of program execution. Because
of unresolvable control flows, an end of disassembling does not mean that the instruc-
tions executed on a processor would end at the same point the RT algorithm does.
Therefore, rule 5.13 on page 96 covers the classification of the remaining unclassified
entities when the RT algorithm has no more bytes to disassemble.

5.5.3 Conditional Jumps

Jccs are frequently used in program code and must be examined to investigate the
implications on the framework. The immediate operand is the only operand to all the
different Jcc instructions, and all Jccs are therefore resolvable.

Jccs are deterministic if it can be determined that the fall through branch or taken
branch is reached for each time the Jcc is executed. Non-deterministic Jccs are the
opposite of deterministic Jccs. Table 5.9 illustrates an example of a deterministic Jcc.
In this example, EAX is always 1 when the compare at instruction 2 is evaluated. The
result of the comparison is always true, and the branch in instruction 3 is always taken
(je = jump if equal).

Loop Instructions

The LOOP imm instruction compares the ECX register to 0 and jumps to imm if the
compare is false. Some versions of LOOP also compares the ZF flag in addition to the
ECX register [16]. The LOOP instruction does the same as a Jcc instruction: it falls
through or takes the branch, based on a comparison. LOOP is therefore not discussed
any further.

The Problem with Jccs and Classification

If the entity re is unclassified when a Jcc imm instruction occurs, both the fall through
branch and the branch taken must be evaluated to classify re. re can only be classified as
J if the evaluation of both branches would result in re being classified as J. This breaks
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the linearity requirement. Because Jcc instructions appear frequently in a program, the
subject should however be discussed thoroughly to examine if it is possible to resolve
the junk without breaking the linearity.

Problem Discussion

How frequently does junk instructions capable of utilising Jccs appear? It is difficult
for a virus to produce junk propagating through one or more non-deterministic Jccs.
The accounting of the registers that can be used for junk and those that are used for non-
junk operations, increases when the Jcc is non-deterministic. It is therefore assumed
that situations where J instructions propagate through non-deterministic Jccs seldom
appears, because creating such an engine would be extremely difficult.

Deterministic Jccs as illustrated in table 5.9 on the preceding page, can be utilised
easier in a virus than non-deterministic Jccs because in the context of the virus engine,
they are equal to jmp instructions. This suggest that the amount of undetectable J-
instructions propagating through Jccs could be high if the deterministic Jccs of the
type illustrated in table 5.9 on the facing page appear frequently in the virus.

Problem Conclusion

From the discussion, if it is possible to separate the deterministic Jccs from the non-
deterministic, resolving J over Jccs would not be a problem. This is so because if there
is a deterministic Jcc it is reduced to a JMP instruction. If the Jcc is non-deterministic,
it is assumed that no J instructions propagate over the Jcc. In the general case, deter-
mining if a Jcc is always taken or not is a variant of the Halting Problem. Consider the
following:

start
..
compare
Jcc start
halt

Determining if the fall through branch is always taken in the Jcc, is equivalent to de-
termining if the program will halt or not, i.e. the Halting Problem. It is therefore
not possible to separate the deterministic Jccs from the non-deterministic Jccs in the
general case.

What is left is the option of detecting junk propagating over Jccs, whether it is deter-
ministic or non-deterministic. The framework should for now not include the possibil-
ity to detect J propagating over Jccs, because it would violate the linearity requirement
and make the framework logic more complex. Rule 5.13 on page 96 covers the classi-
fication of unclassified entities when a Jcc occurs.
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5.6 Instruction Groups

Section 2.2.4 on page 27 lists the different instruction groups of the x86 assembly
language. This section enumerates this list and examines if each group is handled in
the framework.

Data Transfer Instructions The data transfer instructions move data between reg-
isters, and between registers and memory. The instruction mov is an example of a
data transfer instruction. The data transfer instructions overwrites their destinations
and should therefore be recognised as OVERWRITE instructions (as discussed in sec-
tion 5.3.2 on page 82 on information flows).

Binary-, Decimal-, Shift/Rotate-, Flag Control- and Bit/Byte-Instructions In-
structions falling under one of these groups are attended to by the framework. They
provide different operations on operands and are not special in any way. Instructions
falling under one of these groups might overwrite an operand. Because in general this
would require emulation, the overwrites would be ignored in the JID framework. This
could lead to a violation of the secondary requirement, but not the primary.

Control Transfer Instructions This group was covered in section 5.5 on page 96.

String Instructions The string instructions operate on memory using the registers as
pointers. This group requires no special considerations in the framework, because the
instructions only operate on memory and registers.

Enter and Leave Instructions The instructions enter and leave perform function
prologue and epilogue. In view of the framework, this is something accomplished
with a sequence of data transfer instructions and binary arithmetic instructions and this
group requires no special considerations in the framework.

I/O Instructions An I/O port should be defined as a NJ-operand. This is reasonable,
because it is not likely for J instructions to write to machine-dependant I/O ports. When
I/O ports are defined as NJ-operands, the I/O instruction group works like any other
group reading/writing to NJ-operands in the framework.

Segment Register Instructions All instructions found in the segment register in-
struction group loads a value from memory into a segment register and a general-
purpose (gp) register. The gp registers will be overwritten, and all instructions found
in this group should be recognised as OVERWRITE instructions (as discussed in sec-
tion 5.3.2 on page 82 on information flows).
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Miscellaneous Instructions The NOP instruction was previously discussed in sec-
tion 5.3.3 on page 83. CPUID and LEA should be defined as OVERWRITE instructions,
because they overwrite the registers given as implicit/explicit operands in the instruc-
tions. XLAT reads/writes AL and needs no special consideration by the framework.

5.6.1 Design of JID summary

With this discussion, the design of JID is finished. Operands and instructions found in
the x86 assembler language have been discussed, and this chapter provides the foun-
dation for the implementation of JID. The source code of JID is found on the CD
described in appendix A on page 125. Testing of JID is described in the next chap-
ter. Before discussing the tests and results, similar work discovered late in the thesis
progress is discussed in the following section.

5.7 Static Single Assignment

After completing the design of JID, a friend who has knowledge on the field of com-
piler design and optimisation, mentioned the equivalences between JID and techniques
in compiler optimisation. In compiler optimisation, there are techniques for dead code
elimination. Dead code is code that could be described as junk, but it is not placed
intentionally in the source code. One of the techniques which can be used to detect
such dead code is called static single assignment (SSA), and was developed by 5 IBM
researchers in the 1980s. This section explains SSA, dead code removal using SSA
(SSA/DCR) and the similarities and differences to JID. The material on SSA is taken
from Wikipedia [46] and a lecture note in Compiler Construction at the University of
Colorado [36].

SSA/DCR is also used to detect dead code propagating over conditional branches
(Jccs) by inserting dominance frontiers. The best algorithm for computing and insert-
ing the dominance frontiers runs in O(n2), so linearity is not possible with SSA/DCR
when considering dead code propagating over Jccs. Because detection of dead code
propagating over Jccs is a feature not present in JID (section 5.5.3 on page 98 discusses
why not), the theory for detecting dead code propagating over Jccs with SSA/DCR is
not discussed.

5.7.1 SSA/DCR

In SSA, each variable is subscripted. When a statement defining a variable is encoun-
tered, the variable subscript is increased. An example is given in table 5.10 on the next
page. In the example, each assignment/definition of a variable increases its subscript.
Note that usage of a variable does not increase its subscript. Each subscripted variable
is treated as a separate variable in SSA.
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Stm. # Regular code After SSA
s(1) y = 4 y1 = 4
s(2) x = 2 x1 = 2
s(3) x = y∗2 x2 = y1 ∗2
s(4) x = x+2 x3 = x2 +2
s(5) x = y+1 x4 = y1 +1
s(6) y = y+ x y2 = y1 + x4

Table 5.10: Each assignment of variable x and y increases the variable’s subscript. The
leftmost column contains the statement numbers.

UD-chains and DU-chains

To detect dead code, it is necessary to explain the terms use-definition chains (UD-
chains) and definition-use chains (DU-chains).

For each statement in SSA, there is a UD-chain. A UD-chain contains the statements
previously defining the variables used in the statement owning the UD-chain. Because
in SSA, all definitions/assignments of a variable increases its subscript, there is at
most n elements in a UD-chain of a statement s(x), where n is the number of different
variables used in s(x).

Also, for each statement in SSA, there is a DU-chain. The DU-chain consists of a all
the future statements using the variables defined in the statement. When all variables
defined in a statement has no uses, the DU-chain of the statement is also empty.

The UD- and DU-chains for the example in table 5.10 are listed in table 5.11.

Stm. # UD-Chain DU-chain
s(1) /0 s(3),s(5),s(6)
s(2) /0 /0

s(3) s(1) s(4)
s(4) s(3) /0

s(5) s(1) s(6)
s(6) s(1),s(5) /0

Table 5.11: UD- and DU-chains for example 5.10

5.7.2 Algorithm for Dead Code Elimination

The following illustrates an algorithm for eliminating dead code with the use of SSA,
DU- and UD-chains. The algorithm is taken from [36]. As input, the algorithm requires
a code-snippet (cs) containing the statements to evaluate, as well as the DU- and UD-
chains for each statement.



5.7. STATIC SINGLE ASSIGNMENT 103

Algorithm 5.7.1: DEAD CODE ELIMINATION USING SSA(cs)

while ∃ a variable v in cs with no uses whose def has no side effects

do


Delete the statement s that defines v
for each of s’s UD-chains

do Delete corresponding DU-chain that points to s

The algorithm runs as long there are variables in cs with no uses. Applying the al-
gorithm on the previous example, the following iterations occurs: In iteration 1, the
statement s(2) has no uses by its DU chain, and can be removed. Because s(2)UD is
empty, the algorithm continues. In iteration 2, the statement s(4) has no uses by its DU
chain, and can be removed. s(4)UD contains s(3) and s(4) is removed from s(3)DU .
Now, s(3)DU = { /0}. In iteration 3, the statement s(3) has no uses by its DU chain
(because of the previous iteration), and can be removed. s(3) is removed from s(1)DU .
In iteration 4, the only statement left with no uses is s(6) but because it is still alive at
the end of the cs, it should not be removed (corresponding to the “side effect” property
in the algorithm).

In total, statements s(2), s(3), and s(4) was removed by the algorithm.

5.7.3 Use of SSA/DCR as a method for JID

The major difference between SSA/DCR and JID, is that JID was designed for detect-
ing junk in malicious code, while SSA/DCR was designed for optimisation in high
level languages. That set aside, they are very similar. The variable subscripting found
in SSA is somewhat equivalent to the multiple versions of entities found in entity lists
in JID. The DU/UD-chains in SSA/DCR corresponds to flows between entities in JID.
The algorithm for detecting dead code enumerates the DU/UD-chains, JID enumerates
the flows searching for entities satisfying the same conditions as the DU/UD-chains in
dead code. The differences are minimal.

Admittedly, SSA/DCR would work perfectly as a method for detecting junk instruc-
tions. The output of the previous algorithm is equal to the output of the JID framework,
with the exception that the SSA/DCR algorithm removes the statements whereas JID
would classify them as J. The rules and definitions in “Definitions, Rules and proper-
ties of Framework” (section 5.3 on page 81) performs similar to SSA/DCR and they
perform both in O(n). Because SSA/DCR is designed to optimise high level languages
(HLLs), the discussion in “X86 Assembler Language and JID” (section 5.4 on page 90)
is still valid, because certain properties found in the x86 assembler language is different
from HLLs. The final conclusion is that something similar to JID has been developed
before, although it has not been used in the context of malicious code (at least to my
knowledge).
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Chapter 6

Testing

This chapter is devoted to testing the Zmist detection developed in section 3.4.3 on
page 66, and the JID framework developed in chapter 5. Before conducting the tests,
necessary discussions and motivations are given in the following section.

6.1 Test Foundation

6.1.1 The Reason for Testing JID

The reason for testing JID is to achieve a confidence that JID manages to separate
J instructions from NJ instructions. There is an a’priori known difference between
clean files and Zmist infected files considering J instructions: In clean files there are
no Zmist infections, while in infected files, Zmist is present with an arbitrary amount
of J instructions. If JID manages to detect this difference, one can assume that JID
manages to separate J instructions from NJ instructions.

6.1.2 How to measure J instructions

To be able to determine a method for measuring the amount of J instructions reported,
expected properties concerning J will be discussed in clean and infected files.

Clean Files

Clean files are assumed to contain a minimal amount of junk instructions. This is be-
cause after compiler optimisations (such as SSA), the junk/dead code is removed from
the code. However, programs not compiled with any optimisation can contain junk
instructions. SSA and other methods for detecting dead code are applied on the source
code and not the assembler code. Because of this, there can still be junk instructions
in the assembler code corresponding to the source code, even if there is no dead code
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present in the source code. It is therefore not expected that clean files are junk free, but
it is expected that the amount of J instructions is lower than the amount in virus code.
From this, it is reasonable to assume that the amount of J instructions scale linearly
with the total amount of instructions.

Infected Files

It is expected that the amount of J would be higher in Zmist infected files than the
amount of J found in clean files. There are two situations possibly corrupting the
percentage of J instructions found in Zmist. First, not all Zmist infections contain
junk instructions. The type “JMP after each host instruction” described in 3.2.3 on
page 54, contains no junk instructions inserted by Zmist. Also, there are infections of
the type “polymorphic decryptor” not containing junk instructions. The decryptor D2
illustrated in section 3.3.2 on page 59 is such an example. Second, a problem similar
to the problem with instruction statistic in section 3.4.2 on page 63 is present. With
clean code, it was assumed that the amount of J instructions scale with the total size
of the program. This is not a valid assumption when considering J code intentionally
inserted. Because the size of Zmist is relatively constant compared to the size of the
infected host, smaller programs will contribute more to the total J percentage than
larger programs.

A better indicator than the average amount of J code present in a Zmist infected file,
is the average spread or distance of the J code. Because the recursive traversal returns
the instructions sequence as executed on a CPU, the Zmist decryptor will be traversed
independent of location in the code. This yields a possibility to measure the distance
between each J instruction. Because Zmist potentially contains many J instructions, it
is expected that the average distance is small compared to clean files. It is therefore
assumed that in a significance test, the distance measure would yield a stronger sig-
nificant difference from clean code, than a measure using percentage of J code. When
measuring the average distance, median should be used instead of calculating a mean
distance. This is because the high probability of outliers corrupting an average. For in-
stance, assume between position 8 and 200, there are 48 J instructions with the average
distance of 4. If the next J instruction starting from position 200 is found at position
3000, the average distance would be: (4∗48+3000−200)/49≈ 61. In this example,
the median would be 4.

There are however some problems with the use of median as well. Assume the average
Zmist decryptor contains 200 J instructions. Further assume the total amount of J
instructions in a program is 3000. This implies that 2800 of the J instructions are
J instructions naturally found in clean code, and the median distance would then be
amongst the distances found in the J instructions of the clean code. How this turns out
in the statistics, depends on the amount of J found in clean code, similar to percentage.
However, median distance scales better than using percentage of J code and is chosen
in favour of percentage.
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6.2 Testing JID

From the discussion, a clean file is assumed to contain a relative fixed amount of J
code relative to its size. The same assumption cannot be applied to infected files.
Therefore, the median distance of J instructions are used as a measurement in the
clean and infected files when testing.

Before describing the results, the setup and tools used to gain the statistical information
are described.

6.2.1 Setup

Clean files

The testing involving clean files were performed at Norman ASA. They have a large
testbed containing several terabytes of clean files. In the testing, approximately 330GB
of clean files were processed in Gdasm. The clean sample set constitute of 39638
PE files, yielding the average file size of 8,5MB. In total, there were 263556432
disassembled instructions distributed over the 39638 files. Of the nearly 264 mil-
lion instructions, 156464 instructions were classified J. This yields a percentage of
156464/263556432≈ 0,000594≈ 0.06% J.

The PE files found in the sample set originate from all types of software and differ-
ent operating systems, and are collected from different sources by Norman ASA. The
sample set is therefore assumed to provide a random distribution.

Infected files

In the Zmist sample set, there are 74 Zmist.A files, 4 Zmist.B files, 3 Zmist.C files and
144 Zmist.D files, in total 225 Zmist infected files. There were 4471267 disassem-
bled instructions distributed over the 225 files. Of the nearly 4,5 million instructions,
132085 instructions were classified J. This yields a percentage of 132085/4471267≈
0,02954≈ 3% J.

Zmist.D contains all properties found in B and C. It is therefore not necessary to in-
clude several B and C samples in the sampleset. The B and C infections does not
contain any property not detectable in D.

6.2.2 Gdasm and R

Both the Zmist Decryptor Detection (ZD) and the JID framework were developed as
plugins to Gdasm. Gdasm was described in section 3.1.3 on page 49. The data output
from Gdasm in the different experiments were used as input to R to manipulate the data
there. R is a statistical tool described at the homepage as follows[7]: R is a language
and environment for statistical computing and graphics.
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For each file disassembled, Gdasm outputs the following 5 comma-separated values
(CSV).
No. J instructions; No. NJ instructions;
No. instructions; Median J distance; No. Zmist decryptors found.

For each file in each sample set disassembled, the CSV values were written to a datafile.
The two datafiles were then imported in R and manipulated there.

The CSV files are found on the CD described in appendix A on page 125

6.2.3 Results

This section provides the distributions found when applying Gdasm on the two sample
sets.

Clean files

Calculating distance requires at least 2 instructions. Therefore, clean files having less
than 2 instructions were discarded. This reduced the sample set from 39638 files to
16412 files, i.e. 23226 files had less than 2 J instructions.

Importing the 16412 median distances into R, the calculated mean of the distances
were µc ≈ 1299. The median distribution is illustrated in figure 6.1 on the next page.
The number of classes (bins) are set to 100.

Infected files

Similar to the clean files, calculating the distance requires at least 2 instructions. Re-
moving the infected files having less than 2 instructions resulted in a sample size of
194, i.e. 31 files had less than 2 J instructions.

Importing the 194 median distances into R, the calculated mean of the distances were
µi ≈ 20. The median distribution is illustrated in figure 6.2 on page 110. The number
of classes (bins) are set to 100.

Having provided the numeric foundation, a statistical method for comparing the two
sample sets should be discussed.

6.2.4 Choosing a Statistical Method

There are several different statistical hypothesis testing methods to choose from [47].
Summarised, they differ on whether the sample set is assumed to be normal or not,
and if the values in the different sample sets are independent or dependent. Prior to
choosing a statistical method, these two parameters must be discussed.
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Figure 6.1: J median distribution in Clean files
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Figure 6.2: J median distribution in Infected files
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Independent Variables

The variables of the clean sample set, is not correlated to the variables of the infected
sample set. They are selected from different sources and the clean samples are not
altered to obtain the infected sample set or vice-versa in any way. They are therefore
independent of each other.

Sample sets normality

As seen in the distributions of clean files (figure 6.1 on page 109) and infected files
(figure 6.2 on the facing page), both distributions are strongly skewed to the right. The
clean and the infected sample sets are not normally distributed. There is no need to
verify this using a normality test, because all the possible hypothesis testing methods
possible to use with non-normal distributions can also be applied to normal distribu-
tions.

Welch t-test

From the previous arguments, statistical hypothesis test capable of handling non-normal,
independent sample sets should be found. From [29, 47], the suggested test in that case
is the Welch t-test. There are two requirements when applying a Welch t-test on two
sample sets. The first is that the sample sets are normally distributed or the number
of samples summed together are larger than 40. The second is that the observations
(samples) are independent from each other. The two test sets comply to both these
requirements.

The Welch t-test gives a probability p, assuming the null hypothesis is true, that the
that values of the test statistic will be at least as extreme as what was observed. Setting
the null hypothesis to µi = µc is reasonable, because this would imply that JID doesn’t
manage to divide the infected files from the clean files when considering J instruction
distances. Because there are differences in the true population, a rejection of the null
hypothesis would provide confidence that JID actually manages to separate J from NJ
in the sample sets. More direct, the p value can be interpreted as the probability for
observing the value 1299 (µc) and the value 20 (µi) or even more extreme values, given
that µi = µc.

6.2.5 Applying the Welch t-test

R supports the Welch t-test, thus making it easy to apply the test on the sample sets.
The following is R output of the test applied on the clean and infected sample sets.
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Welch Two Sample t-test

data: clean and inf
t = 83.6742, df = 974.788, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:

1248.788 1308.771
sample estimates:

mean of x mean of y
1298.68157 19.90206

The p value of the test shows that the null hypothesis can be rejected at significance
level of 2.2e−16 = 2.2∗10−16, and it is concluded that JID manages to classify J and
NJ instructions correctly.

However, this test does not show if JID never violates the primary requirement (false
positives) or secondary requirement (false negatives). The requirements were de-
scribed in section 5.2.4 on page 80. The following two sections contains manual anal-
ysis of disassembler output, to investigate if there are violations of the requirements.

6.3 Testing for NJ as J, and J as NJ

As described, the significance testing between clean and infected files showed that JID
manages to classify J and NJ instructions correctly. The testing does not show that the
primary requirement is never violated. Because this was a strong requirement when
designing JID, it is inspected manually in this section. The secondary requirement
is not inspected in the files disassembled, because of the assumption that clean code
contains a relatively small amount of J instructions.

Inspecting the 39638 clean files manually is not achievable. Instead, the programs
containing significantly more J than others will be inspected manually. The number of
programs are determined when examining the J percentage distribution.

6.3.1 Junk Percentage Distribution

Of the 39638 programs disassembled, 32637 had 0% J instructions. The remaining
7001 programs had the junk percentage distribution illustrated in figure 6.3 on the
facing page. Rounding were applied up or down to the nearest thousandth. This implies
that a program containing 0.05% junk is rounded up to 0.1% and a program containing
0.049% junk is rounded down to 0%. Each class (bin) in the figure has a width of 0.1%,
resulting in 200 classes in the histogram. From the figure, 4355 programs contain
0.1% J, and 2646 programs contains a J percentage > 0.1%. There were 53 programs
containing more than 5% junk. 15 of these 53 programs contained 20% junk.
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Figure 6.3: Figure illustrating junk percentage distribution

# Sequence 1 Sequence 2
1 mov EAX, [EBP-0x320] test [ECX], EAX
2 mov [imm],0x10001 cmp EAX, 0x1000
3 mov EAX, [imm]

Table 6.1: Common sequences containing J

The J distribution shows that the amount of programs containing junk are declining
rapidly when the J percentage increases. This suggest that the distribution is rela-
tively constant and the value of the constant is approximately equal to the percentage
found. The large amount of programs containing 0% J and the rapid declination in the
distribution suggest that there are a few programs containing much J code. These pro-
grams contain perhaps hand-written code or are compiled without optimisation. The
53 programs containing more than 5% J were manually disassembled using Gdasm
to examine if there are any violations of the primary requirement. The results of this
manual disassembling is described in the following section.

6.3.2 Manual Disassembling

All the 53 programs disassembled contained both correct J classifications and false
positives, i.e. violations of the primary requirement. The files containing J classi-
fications which were correct, often had the same instruction sequences containing J.
The sequences listed in table 6.1 are two examples of sequences often encountered.
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For instance, 24 of the 53 clean files contained at least one occurrence of sequence 1.
Because the sequences were present in many different files, this suggest that there is a
common property, for instance the files were compiled with the same compiler or a stat-
ically linked library containing the sequence have been used in many of the files. There
were also many instructions of the type mov reg, reg, especially mov edi, edi.
There were a total of 8448 J instructions of the type mov edi, edi in the 53 clean
files. This suggest that there could be some problems with the compiler used.

Violations of Primary Requirement due to libdisasm

Every false positive reported were due to the disassembler library used in Gdasm (lib-
disasm [4]). When the library disassembles an instruction, JID depends on the dis-
assembler to produce correct information, especially considering the accesses of the
operands. The following table illustrates a misclassification due to libdisasm.

# Sequence 1 JID Classification Correct Classification
1 bt [esp],0x0 J NJ
2 cmc NJ NJ
3 ja imm NJ NJ

Table 6.2: libdisasm error

JID classified instruction 1 as J. From the Intel manual, the instruction bt does the
following:

Selects the bit in a bit string (specified with the first operand, called the
bit base) at the bit-position designated by the bit offset (specified by the
second operand) and stores the value of the bit in the CF flag.

When libdisasm disassembled the instruction cmc, libdisasm returned that the instruc-
tion set the carry flag (CF). From Intel’s manual, the instruction cmc complements CF.
This implies that CF must be tested before set, i.e. read before written. Because a
flag write implies overwrite in JID, instruction 1 was classified J. After patching and
recompiling libdisasm, the classification of instruction 1 was correct (NJ). There were
numerous other examples which revealed the lack of correct operand accesses in lib-
disasm.The discovery of libdisasm errors suggest that the J percentage would be lower
if the 39638 programs had been disassembled with Gdasm utilising the patched version
of libdisasm.

Having gained empirical confidence in that no violations of the primary requirement
occurs in clean files, violations of the primary requirement in infected files are investi-
gated in the next section.
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6.3.3 Infected Files

It is not necessary to analyse the J percentage found in the Zmist files to determine
which files to analyse manually, because almost every infected file contains J instruc-
tions produced by Zmist. To limit the scope of the testing, the number of Zmist files
to be manually disassembled and inspected were set to 30. The 30 Zmist files were
divided as follows: 12 files of the type Zmist.A, 3 of the type Zmist.B, 3 of the type
Zmist.C and 12 of the type Zmist.D. For each infection, JID was applied and the output
was manually analysed.

6.3.4 Evaluation

In most of the analysed files, there were J instructions classified as U because of unre-
solvable control flows. This was expected, because of the U rules defined in chapter 5.
There were no violations of the primary requirement or the secondary requirement in
the files analysed.

The decryptors D1, D2 and D3 were illustrated in section 3.3.2 on page 59 to illustrate
the Zmist decryptor and the level of polymorphism employed. In table 6.3 on the
next page, D1, D2 and D3 are listed after JID has been applied and the J instructions
removed. This is provided to illustrate that the level of polymorphism in each decryptor
has decreased when the J instructions are removed.

6.4 Testing of Zmist Decryptor Detection on Zmist Sam-
ples

This section describes the testing of the Zmist Decryptor Detection (ZD) plugin to
Gdasm (Gdasm/ZD). The ZD plugin is based on the algorithm described in section 3.4.3
on page 66. The amount of true positives vs false negatives, should be measured to in-
vestigate the detection rate of Gdasm/ZD.

6.4.1 Setup

Of the 225 Zmist files, there were 178 decryptor samples manually confirmed using
IDA Pro and Norman Sandbox Analyzer Pro. These two tools were described in sec-
tion 3.1.3 on page 49. The decryptor samples had the following distribution:

• 52 were infected with Zmist.A.

• 3 were infected with Zmist.B.

• 3 were infected with Zmist.C.

• 120 were infected with Zmist.D.
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# Decryptor 1 (D1) Decryptor 2 (D2) Decryptor 3 (D3)
1 call [0x4082FE] mov [0x421634], edi call 0x00003090
2 mov [0x41B000], ECX mov [0x41FBFC], EBX push EAX
3 mov [0x41BE98], EBX mov edi, 0x00421D90 pop [0x415E64]
4 mov EBX, 0x00426758 push EAX push esi
5 mov [EBX], esi pop [edi] jmp 0x000030AF
6 mov esi, 0x00000000 mov [0x41FBF0], 0x00000000 mov EAX, 0x004167FC
7 mov [0x424C70], esi mov edi, 0x004143E2 push ECX
8 mov esi, 0x0040A7E1 push edi pop [EAX]
9 mov ECX, [esi] pop EAX jmp 0x000030E0
10 mov EBX, ECX mov EBX, [EAX] mov esi, 0xFCA091F5
11 mov esi, 0x00423E40 mov [0x4211B8], EBX sub esi, 0x2154A1C0
12 mov ECX, esi mov edi, [0x4035E5] sub esi, 0xACEEC496
13 push EBX mov EBX, edi xor esi, 0x2E5D2B9F
14 pop [ECX] mov [0x41FBF8], EBX mov [0x417CF0], esi
15 mov esi, 0x00416723 mov edi, 0x0041FBF0 push [0x402A32]
16 mov EBX, [esi] push [edi] pop esi
17 push EBX pop EAX mov ECX, esi
18 pop ECX mov EBX, EAX push ECX
19 push ECX push EBX pop [0x415E6C]
20 pop [0x424C6C] pop EAX jmp 0x00003174
21 mov esi, 0x00424C70 mov edi, 0x00421630 push [0x40A9AB]
22 mov EBX, [esi] push EAX jmp 0x00003180
23 mov ECX, EBX pop [edi] pop EAX
24 mov esi, 0x0041B004 mov EAX, 0x00421630 push EAX
25 push ECX mov EBX, [EAX] pop [0x415E60]
26 pop [esi] add EBX, [0x4062A8] mov EAX, 0x00417CF0
27 push [0x41B004] mov [0x421630], EBX mov ECX, [EAX]
28 pop EBX mov edi, [0x421630] push ECX
29 mov esi, 0x00416559 mov EBX, [edi] pop esi
30 push [esi] mov EAX, EBX push esi
31 pop ECX mov [0x41FBF4], EAX pop EAX
32 mov esi, ECX push [0x41FBF4] mov esi, 0x00417CF4
33 add EBX, esi pop edi jmp 0x000031F1
34 mov esi, 0x0041B004 mov EBX, 0x004211B8 push EAX
35 mov [esi], EBX push [EBX] jmp 0x000031F5
36 jmp 0x00015968 pop EAX pop [esi]
37 push [0x41B004] xor edi, EAX mov EAX, 0x004040E6
38 pop EBX mov EBX, 0x0041FBF4 push [EAX]
39 mov esi, EBX mov EAX, EBX pop esi
40 push [esi] mov [EAX], edi mov ECX, 0x00417CF4
41 pop ECX push [0x41FBF8] add [ECX], esi
42 push ECX pop EBX jmp 0x0000203E
43 pop [0x424DCC] mov edi, EBX mov esi, 0x00417CF4
44 mov EBX, 0x00424DCC mov EAX, 0x004211B8 mov ECX, [esi]
45 mov esi, [EBX] mov EBX, EAX mov EAX, [ECX]

Table 6.3: Code example of 3 Zmist decryptors after applying JID
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6.4.2 Results

Of the 178 decryptors, Gdasm/ZD managed to detect a decryptor in 167 of the files.
This yields a detection percentage of 167/178≈ 0.94≈ 94%.

Of 11 files not detected, 2 were Zmist.A and 9 were Zmist.D.

6.4.3 Evaluation

A 94% detection rate is not good enough, but it indicates that Gdasm/ZD is a right step
on the way to 100% detection. A manual inspection of the 11 files revealed that the
recursive traversal was not able to reach the Zmist decryptors. Unresolvable addresses
were the most common reason for RT not reaching the decryptor. In one file, Zmist
had inserted itself in a function not used by the program.

To investigate if Gdasm/ZD would detect the decryptors if RT had found the decryp-
tors, the start addresses of the decryptors were found manually by inspecting the de-
cryptors in IDA Pro. For each of the 11 files, the start address were given as input
to the RT algorithm used in Gdasm/ZD. When explicitly using the start addresses as
input, Gdasm/ZD managed to detect the Zmist decryptors in all the 11 files.

The problem with false negatives is therefore attributed to the RT algorithm. To im-
prove the detection rate, the RT algorithm must be extended with possibilities for re-
solving more unresolvable control flows, or another disassembler algorithm must be
found. An option could be using LS and RT in a hybrid combination. A hybrid disas-
sembler algorithm using LS and RT is sketched by Schwarz et al in “Disassembly of
Executable Code Revisited” [33].
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Chapter 7

Conclusion and Future Work

7.1 Summary

The topic of this thesis was to explore if junk instructions can be detected in executable
files. There were two research goals defined in section 1.2 on page 16.

1. Learn about polymorphic viruses through a case study and detect the virus used
as a case study.

2. Examine if there is possible to infer any knowledge from the case study which
could be used in general detection of polymorphic viruses

The research conducted to achieve the two goals, led to the thesis’ problem statement:

Is it possible to separate junk instructions from non-junk instructions in an
executable file?

To be able to achieve the two goals stated and to answer the problem statement, several
topics had to be studied. Background knowledge related to the study of polymorphic
computer viruses were acquired. Conforming to the first research goal, the virus Zmist
was studied and a detection algorithm was devised. From the experiences made in
the case study came the idea of a comparison program, in which the first step would
be to detect junk instructions. Detection and removal of junk instructions would aid
the virus analyst in speeding up the analysis process of a virus. As a foundation for
answering the problem statement, the JID framework was designed and developed.
To achieve confidence in the detection algorithm and the JID framework, several tests
were conducted.

7.2 Results

The results presented in this section are related to the two research goals and the prob-
lem statement given in the introduction chapter.
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7.2.1 Research Goal 1

This goal can be viewed as a knowledge acquirement goal. When evaluating the re-
search conducted in the master thesis, I find that this goal has been reached. The ter-
minology used in the virus/antivirus business has been learnt, mainly through reading
literature. Extensive knowledge of the PE file format and the x86 assembler language
were gained through studying Zmist and writing Gdasm. Equivalently important is the
acquirement of a methodology foundation, which can be used in similar work in the
future. The information channels discovered, the knowledge and usage of tools, and a
more intuitive understanding of the art of reverse engineering, are examples found in
the methodology foundation.

The knowledge acquired, was used to design and develop a relatively successful Zmist
Decryptor detection algorithm. The algorithm managed to detect 100% of the 178
samples tested, although shortcomings in the chosen disassembling algorithm reduced
this amount to 94%. Detection of Zmist is still a problem for many antivirus companies
today and I consider the detection algorithm created a successful achievement. The
conclusion is therefore that the first research goal has been reached.

7.2.2 Research Goal 2

This goal was defined to initiate a process which could lead to a problem statement.
The knowledge acquired by achieving the first research goal was used in the discussion
in chapter 4. Chapter 4 can be viewed as the response or consequence to the second
research goal posed. When evaluating, I find that the second goal has been achieved,
because a reasonable problem statement has been given. The problem statement had its
origin in an idea of an automatised or semi-automatised comparison program. Others
are also examining this idea. For instance, at the Virus Bulletin conference in October
2008, Ismael Vilar of the antivirus company Panda is going to talk about “Graph,
entropy and grid computing: automatic comparison of malware”. This shows that
comparison is an ongoing topic.

The problem statement itself is detection of junk instructions. It is important to detect
junk instructions prior to an automatic comparison, because removing junk instructions
provides a more homogeneous comparison foundation. The conclusion is therefore
that the second research goal has been reached, because a sound problem statement
has been posed.

7.2.3 Problem Statement

Evaluating the question asked in the problem statement, the direct answer is that it is
possible to separate junk instructions from non-junk instructions in an executable file.
The theoretical foundation laid in chapter 5 resulted in an implementation managing
to separate J- from NJ-instructions.
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The tests of the JID framework showed that by using the median distance between J
instructions, JID is capable of dividing clean files from infected files. The significance
test showed that the null hypothesis JID cannot separate infected files from clean, can
be rejected at a significance level of 2.2e− 16 = 2.2 ∗ 10−16. This is a very strong
result and supports a positive answer to the problem statement.

Because the result doesn’t tell whether violations of the primary requirements and sec-
ondary requirements defined in chapter 5 never occur, further tests were conducted.
Although purely empirical, these tests showed that JID itself doesn’t violate the pri-
mary requirement. Based on the results of the statistics previously described and the
empirical results, it is reasonable to conclude that JID works as a tool for separating
junk instructions from non-junk instructions.

7.2.4 Similar Work

The approach of finding methods relating to junk detection could have been performed
more thoroughly. If the SSA/DCR method described in chapter 5 had been discovered
earlier in the thesis progress, the theory developed would have been unnecessary to
create. However, because SSA/DCR focuses on dead code removal in high level lan-
guages, the topics concerning the x86 assembler language vs junk/dead code removal
would still have had to be discussed.

I find that, although the theory I developed was new to me at the time it was created, it is
not as innovative as initially thought and SSA/DCR would also work well as a method
for junk instruction detection. However, the final conclusion is that the JID framework
developed provides a satisfiable answer to the question posed in the problem statement.

7.3 Other Results

This section describes a contribution made, not directly related to the topics of the
thesis.

7.3.1 Libdisasm Patches

When testing the JID framework, several misclassifications occurred. The errors were
related to the disassembler library used, namely libdisasm. There were several cases
of missing operand accesses defined for certain opcodes in the opcode tables
(ia32_opcode_tables.c and ia32_implicit.c). These were patched according to
the definitions of the different instructions found in the Intel manuals, and a patch were
submitted to the developers of libdisasm. The patch is currently under review and it is
expected that the patches are included in the next release of libdisasm.
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7.4 Future Work

The last topic in this chapter is suggestions for future work.

7.4.1 Detection of Zmist

There are several topics left unsolved before 100% detection of Zmist can be achieved.

Disassembler Algorithm

When testing the Zmist Decryptor detection, the choice of disassembler algorithm
proved unsatisfiable in 6% of the tested samples. As suggested in section 6.4.3 on
page 117, a hybrid algorithm could perhaps resolve the addresses not found by the
recursive traversal algorithm.

Other Infection Types

The Zmist Decryptor detection developed only detects the polymorphic decryptor in-
fection type (see section 3.3 on page 56). As discussed, this infection type is present
in about 80% of the Zmist infections. The “unencrypted metamorphic engine” and
“JMP after each host instruction” types found in 20% of the Zmist infections, are left
undetected. From the discussion in section 3.2.4 on page 55, a proposal was to detect
the metamorphic engine using byte-signatures. The instruction statistics could aid in
the detection of the JMP infection type. Detection of these two infection types were
outside of the scope of the thesis and are regarded as future work.

Geometric Properties

Before integrating the detection algorithm in a production system, the geometric prop-
erties of Zmist should be found. As discussed in 3.4.1 on page 62, the geometric
properties act as filter, separating the files given as input to a scanner in two groups:
suspicious and not-suspicious. The files in the suspicious category should be scanned
using a proper detection algorithm, and the not-suspicious files should not. This would
increase the performance of the scanner, because the geometric properties of a file are
very fast to compute compared to applying a detection algorithm on the file.

Szor lists some of the geometric properties in Zmist, but as discussed in section 3.4.1
on page 62, they are removed in later versions of Zmist. A search for the geometric
alterations done by Zmist.D, should therefore be conducted before implementing a
Zmist detection algorithm in a commerical virus scanner.
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7.4.2 Applying JID on Other Viruses

This thesis focused on Zmist primarily, although the methods developed in JID detects
J instructions in general. Concerning other viruses, there are two suggestions for future
work.

1. Does JID manage to detect J in other viruses?

2. To what extent are J instructions used as a polymorphic technique in other viruses?

Preliminary tests using JID on the virus Bagle, done as a last minute investigation,
shows that some versions of the Bagle are using J instructions to achieve polymor-
phism.

7.4.3 Comparison Program

JID is one of many building blocks used to construct an automated comparison pro-
gram. There are however many blocks left before an automated comparison program
is developed, and the following topics are suggested as future work.

Related Work

Related work is important to investigate prior to developing a comparison program. In
my opinion, the following list would be appropriate starting points.

• As previously mentioned, there is a presentation to be held at the Virus Bul-
letin conference in October 2008 termed “Graph, entropy and grid computing:
automatic comparison of malware”.

• Automatic comparison is applied in many fields. Examples are: automatic clas-
sification of books and images and sorting spam emails from non-spam emails.
It should be investigated if these methods are applicable on the field of automatic
comparison of computer viruses.
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Appendix A

Source Code, Zmist Listings and Files

Instead of reproducing the source code created and Zmist disassemblies in the ap-
pendix, this is collected on the appended CD. The file README on the root of the CD
explains the directory structure. The following are included on the CD.

• The source code of Gdasm.

• The source code of the patched version of libdisasm.

• The full disassembler listing of REGEDIT-4.VXE, SNDREC-5.VXE, HWINFO-
5.VXE, PMTS-5.VXE, WINHLP32-4.VXE and INTERNAT-4.VXE.

• The source code of the Zmist Decryptor detection.

• The source code of JID.

• The CSV files containing the numeric material which was the foundation of the
testing done in chapter 6.

• A PDF version of the thesis.
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