
UNIVERSITY OF OSLO
Department of Informatics

Extending Diffpack
with PETSc solvers
and Preconditioners

Mads Fredrik Skoge
Hoel

May 2, 2008

Extending Diffpack with PETSc solvers and

Preconditioners

Mads Fredrik Skoge Hoel

May 2, 2008

List of Figures

2.1 Elements affect the matrix pattern. The blue line defines the
elements within the local patch of elements where the product
of basis function belonging to node 5 is nonzero. A row in the
matrix corresponds to a single node in the grid. For example,
node 5 corresponds to row 5. 8

3.1 Where PETSc solvers are added to Diffpack hierarchy 14
3.2 Where PETSc preconditioners are added to Diffpack hierarchy . 15
3.3 Different levels of overlap. Figure on the left (no overlap), inter-

nal boundary nodes cannot be removed without loosing elements.
Figure on the right (1 level overlap), internal boundary nodes can
be safely removed. 17

3.4 Different orderings of Diffpack and PETSc 18
3.5 Diagonal and off diagonal portions of a PETSc matrix. d nnz

and o nnz are arrays specifying number of nonzeros per row on
the diagonal and off-diagonal portion of the matrix 21

4.1 Conjugate Gradient in both libraries without preconditioning . . 31
4.2 Conjugate Gradient with (S)SOR provided by both libraries. Time

is measured in seconds. Grid size is 1000x1000 triangle elements 33
4.3 Speedup of the conjugate gradient 35

1

List of Tables

4.1 Specification for each node in the Chilopodus cluster 28
4.2 Efficiency of conjugate gradient without preconditioning. Time

is measured in seconds. Solve time includes the time it takes to
convert the linear system. A scaling of 2 corresponds to linear
speedup. 31

4.3 Total time it takes to solve the system (inclusive) and the time
the PETSc library uses to solve the linear system (exclusive).
Time is measured in seconds. 32

4.4 Conjugate gradient with SOR preconditioning. Grid consists of
1000x1000 Triangle elements. Solve time includes conversion time
between Diffpack and PETSc. 33

4.5 Overhead of conversion between Diffpack and PETSc for the test
involving Conjugate Gradient with SOR preconditioning 34

4.6 Different kinds of combinations of preconditioners not available
in both libraries. The solver type used in both libraries is Conju-
gate Gradient. The RILU preconditioner is only available in the
Diffpack library. The BoomerAMG preconditioner is only avail-
able in PETSc. Time is reported in seconds. Solve time is the
time it takes to solve the linear system. Conv time involves any-
thing related to converting data structures between the libraries.
Tot is the total time used to convert and solve the linear system. 36

4.7 Different kinds of combinations of preconditioners not available
in both libraries. This table summarizes memory usage. Memory
usage is measured in MB. Memory usage is the average of all the
samples, which has been summed over all the CPUs in the test.
Grid size 1000x1000 is the same as in the previous tests 37

2

Contents

1 Introduction 5
1.1 Acknowledgments . 5
1.2 Organization of the thesis . 6

2 Background 7
2.1 Partial differential equations . 7

2.1.1 Finite element method . 7
2.1.2 MPI . 8

2.2 Krylov Subspace Methods . 8
2.2.1 Convergence criteria . 9

2.3 Partitioning . 9
2.4 Diffpack . 9

2.4.1 Diffpack simulator . 9
2.4.2 Parallel Diffpack . 10

2.5 PETSc . 10
2.6 PETSc Solvers . 10

2.6.1 Krylov subspace methods 10
2.7 Preconditioners of PETSc . 11

3 Extending Diffpack with PETSc 13
3.1 Using Diffpack with PETSc . 13
3.2 The Poisson1 Simulator . 13
3.3 New classes . 14

3.3.1 New class hierarchies . 14
3.3.2 Extending class hierarchy of Diffpack 15
3.3.3 PETSc in object oriented programming 15

3.4 Dealing with convergence monitors 15
3.5 Converting matrices and vectors 16

3.5.1 Removing overlapping boundary nodes 16
3.5.2 Renumbering the nodes 17
3.5.3 Creating a PETSc node numbering 18
3.5.4 Preallocating PETSc . 20
3.5.5 Constructing the PETSc matrix and vector 23
3.5.6 Converting vectors between Diffpack and PETSc 25

3

4 Experiments 27
4.1 Application example . 27
4.2 Test environment . 28
4.3 How testing is performed . 28

4.3.1 Test simulator . 28
4.3.2 Convergence criteria . 29
4.3.3 Measuring time with TAU 29

4.4 Reporting speedup . 30
4.5 Test A: Same solver/preconditioner 30

4.5.1 Conjugate gradient . 31
4.5.2 Conjugate Gradient with SOR preconditioning 32
4.5.3 Overhead . 32

4.6 Test B: Different kinds of preconditioners 33
4.6.1 RILU versus BoomerAMG 34
4.6.2 Memory . 35

5 Conclusion 38
5.1 Future work . 39

A Makefiles 41
A.1 Makefiles for parallel Diffpack with PETSc 41
A.2 Makefiles for parallel Diffpack with PETSc and TAU 42

B Installing PETSc 44

C Installing TAU 45

4

Chapter 1

Introduction

Parallel computing refers to solving a problem concurrently on multiple proces-
sors. This is motivated by increasing performance of a single computer. The
challenge with parallel computing is that it is more complicated to program, test
and debug in comparison with a sequential program. With parallel computing
becoming popular and available to the public, the demand for high level tools
to simplify program development exists and is increasing.

Diffpack and PETSc are two high level libraries that simplify development of
parallel numerical software, in particular software for solving partial differential
equations. The two libraries differ in features. Diffpack has tools for automating
the whole process of setting up the linear system, solving and report genera-
tion. PETSc has more emphasis on solving problems and have a lot of linear
solvers and preconditioners not available in Diffpack. By extending Diffpack
with PETSc linear solvers and preconditioners we get the best of both worlds,
the flexibility of Diffpack combined with the solvers and preconditioners offered
by PETSc.

In this master thesis we will look at how to extend Diffpack with paral-
lel linear algebra solvers (Krylov Subspace Methods) and preconditioners from
PETSc.

What we hope to answer the following questions:

1. Can Diffpack be extended with PETSc Krylov Subspace Solvers and Pre-
conditioners in such a way that no modification of the Diffpack library is
required?

2. Does application of PETSc solvers and preconditioners require modifica-
tion of an existing Diffpack Simulator?

3. Can the Krylov Subspace Solvers and Preconditioners of PETSc outper-
form those already existing in Diffpack?

1.1 Acknowledgments

Big thanks to Prof. Xing Cai for great counseling, support and particularly
for allowing me the opportunity of writing a master thesis at Simula Research
Laboratory. Thank you Simula staff and social committee for providing us

5

students, me included, with a great environment and making us a part of the
arrangements. I thank my fellow Simula students Anders Knatten, Guo Wei
Ma, Magnus Vikstrm, Martin Tingstad, Kim Kalland and Jacob Libak for good
company both socially and professionally.

1.2 Organization of the thesis

This thesis starts off in Chapter 2 with giving a brief introduction and overview
of features and concepts of parallel computing that will aid us in extending
Diffpack with PETSc.

In Chapter 3 we introduce new classes, discuss and define methods of convert-
ing matrices and vectors needed to use the PETSc solvers and preconditioners.

In Chapter 4 we look at the performance of the linear solvers and precon-
ditioners introduced along with the overhead of converting the matrices and
vectors.

Finally in Chapter 5 we summarize the work and answer the questions given
in the introduction based on the work done in Chapter 3 and the results we got
in Chapter 4.

6

Chapter 2

Background

This chapter present technical details needed in this thesis.

2.1 Partial differential equations

Partial differential equation is an equation where we want to find a function
describing/modeling an underlying physical problem. These kinds of problems
can be challenging, or even unsolvable by human means.

The numerical approach to solving the partial differential equation is to solve
an approximate problem, which ultimately leads to a linear system that can be
solved by a computer. This way, the original problem is simplified, with a likely
loss of quality in the solution. This way we are able to solve equations with
a higher order of dimensions, more parameters on more complicated domains,
with the bottleneck being the computers currently available.

2.1.1 Finite element method

The finite element method is good for solving PDEs having complicated do-
mains. But has several other benefits for our purpose in this thesis. There are
some considerations that must be done when running a parallel program using
the finite element method. We will in this section give an overview on the finite
element method. This overview is not meant to be a replacement to what can
be found in a book on the subject, like [9], but instead serve as aid in under-
standing what must be done when we integrate PETSc solvers into a parallel
program using Diffpacks finite element framework.

The finite element method is a method of turning a partial differential equa-
tion into an approximate problem that can be solved by a computer. A problem
such as the Poisson equation is first transformed into its weak form. This weak
form consist of a sum of basis functions and coefficients. By finding the coeffi-
cients in this weak form, we get an approximate solution to the original problem.

The weak form ultimately gets transformed into a linear system that can be
solved by a computer. The type of element affects the pattern of the matrix ,

The basis functions in the finite element method could in reality be any kind
of function as long as it fulfills certain requirements; it must be 1 in one node
and zero in all other nodes; it must be nonzero over the elements to which this

7

node belongs. This makes the product of the basis functions vanish except over
a local patch of elements. This effect in turn affects the entries of the matrix
in the corresponding linear system (Figure 2.1). This is one of the benefits to
the finite element method; the matrices from the finite element method become
sparse, very suitable for sparse matrices which in turn is highly suitable for
iterative solvers. That can utilize the number of non zeros to get excellent
performance.

1 2 3

4
5 6

7 8 9
1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

Produces

Element

Node

Grid Matrix

Figure 2.1: Elements affect the matrix pattern. The blue line defines the ele-
ments within the local patch of elements where the product of basis function
belonging to node 5 is nonzero. A row in the matrix corresponds to a single
node in the grid. For example, node 5 corresponds to row 5.

2.1.2 MPI

In parallel computing, as with other parallel programming, there is a need to
communicate between processors in a cluster. A standardized approach of doing
this is known as the Message Passing Interface (MPI).

While working with higher level libraries such as Diffpack and PETSc we
need not work directly with MPI.

2.2 Krylov Subspace Methods

Unlike direct solvers like gauss elimination, iterative solvers like the Krylov
Subspace Solvers are quite suitable for parallel computing[6]. With little com-
munication, when using the finite element method, these methods are suitable
for parallel applications.

Krylov subspace methods consist of three types of linear algebra operations:

• Matrix-vector multiplication: w = A·u
• Vector addition: w = u + αv

• Inner product: c = u·v
These operations require little to no communication and can be performed

in parallel[6].

8

2.2.1 Convergence criteria

Krylov subspace methods, as with other iterative methods, comes up with an
approximate solution after a series of iterations. The key to getting good results
is to know when to stop the iterations. And without knowing the analytical
solution in advance, this is likely to be challenging. For this purpose libraries
such as Diffpack and PETSc come with predefined convergence tests.

2.3 Partitioning

For good parallel performance the work load must be distributed as evenly as
possible among processors. Data is commonly divided into partitions at grid
level, preferably before the linear system is constructed as it is often based on
the grid.

There exists many different partitioning algorithms today; some are fast and
produce poor quality in partitions, others are slow but produce higher quality
partitions. A fine balance between the two is often sought.

Diffpack supports two different partitioning strategies, structured partition-
ing and unstructured partitioning (ParMETIS)[6]. The unstructured partition-
ing method uses ParMETIS which is preferred to the structured partitioning
method since it is fully automatic, and provide good work load balancing on
unstructured finite element grids.

For a full introduction and overview of partitioning algorithms and software
see [11].

2.4 Diffpack

Diffpack[2] is numerical library with an emphasis on solving partial differential
equations[9].

Diffpack allows the scientist to focus on solving the PDE and less on the
programming problem. The scientist is able to experiment with different kinds
of grids, elements, linear solvers, preconditioners etc. without having to edit and
recompile the code. This is possible by using a Diffpack simulators. By using a
Diffpack simulator the only things the scientist need to provide is problem spe-
cific information. Some predefined simulators come with the Diffpack software,
like the Poisson1 simulator, which we will be using in this thesis. The Pois-
son1 simulator is a standard Diffpack simulator, and has been used to introduce
Diffpack simulators in [9, ch. 3].

Diffpack has also several benefits for a programmer. Diffpack has predefined
classes to simplify the task of writing numerical applications, including new
Diffpack simulators. These classes can take care of tasks such as grid gener-
ation, assembly of elements, solving the linear system, error handling, report
generation.

2.4.1 Diffpack simulator

The Diffpack simulator is a user defined class inheriting from SimCase or one
of the SimCase base classes. The user provides problem specific informations
through this class, letting the Diffpack library do the rest. Running the program

9

the user is prompted with a menu to allow the user to experiment on how the
problem is solved.

Diffpack differentiates between two different Simulator classes, the finite dif-
ference simulator (FDM) and the finite element simulator (FEM). These behave
mostly in the same way, but the problem specific definitions are of course dif-
ferent.

2.4.2 Parallel Diffpack

Diffpack was originally a uniprocessor library. Some years later the Parallel
Toolbox [1] was created, to provide Diffpack with support for solving PDEs on
a parallel computer. For the moment, the parallel toolbox mainly supports the
finite element simulator.

Thanks to the object oriented design of Diffpack, parallel support was added
in an elegant way, with close to no modification to the original library [6]. The
way the Parallel Toolbox was designed allowed the user only to add only a few
lines to make their existing finite element simulator parallel.

2.5 PETSc

PETSc (Portable, Extensible Toolkit for Scientific Computation), features a
lot of solvers and preconditioners, with the intent of solving partial differential
equations. Though PETSc is written in the relatively low level language C, like
Diffpack it is designed at a high level to be easy to use, tweak and experiment
with. Some of these solvers work with both serial and parallel applications. The
Krylov subspace solvers of PETSc are among these.

Another attractive feature of PETSc is the interfaces to third party libraries.
PETSc has a lot of interfaces to third party libraries and tools. One of the
libraries, Hypre[?], is certainly of interest to us as it extends PETSc with high
performance preconditioners.

The Krylov solvers of PETSc provide support for both serial and parallel
applications.

2.6 PETSc Solvers

Though PETSc is lacking features that make Diffpack , it makes up for in variety
of solvers. PETSc separates between 3 classes of solvers; nonlinear solvers, time
steppers and Krylov subspace methods.

It would be interesting to investigate the nonlinear solver and time steppers
and see how them can extend Diffpack. But due to the size of the PETSc library,
we will be limiting this thesis we will consider the Krylov subspace solvers.

2.6.1 Krylov subspace methods

PETSc has a lot of Krylov type solvers, some are already a part of Diffpack.
Though a lot of them are variants of some Krylov method, it is easy to see
that Diffpack can be further enriched. The most interesting part will be on the
efficiency of the methods with the extra overhead of a Diffpack-PETSc interface.

10

Method PETSc Diffpack
BiCGStab X X

BiCGStabL X -
Chebychev X -
ConjGrad X X

CGS X X
GMRES X X

LGMRES X -
LSQR X -

MINRES X X
Orthomin - X

Richardson X -
RTCQMR X X

ConjRes X -
SymMinRes X X

Symmlq - X
RTCQMR X -

TFQMR X X

2.7 Preconditioners of PETSc

In this section we list the preconditioners that are accessible from PETSc.
PETSc has a lot of preconditioners, some are not true parallel precondition-
ers and some need some external package, and some are not supported by the
MATMPIAIJ format.

The listing presented below is based on[3]. Question marks in the table
indicates a feature that is currently not described in the documentation.

11

Preconditioners of PETSc
Method Ext.package Parallel MPIAIJ
PCASM - X X

PCBJACOBI - X -
PCCHOLESKY - X -
PCEISENSTAT - X X
PCGALERKIN - X X

PCHYPRE X X X
PCICC - - -
PCILU - - -

PCJACOBI - X X
PCKSP - X X
PCLU - - -

PCMAT - ? ?
PCMG - X X
PCML - X X
PCNN - X -

PCOPENMP - ? ?
PCPROMETHEUS X X -
PCREDUNDANT - X X

PCSAMG X ? ?
PCSOR - X X
PCSPAI X X X

12

Chapter 3

Extending Diffpack with
PETSc

In this chapter we will see how we can take advantage of Diffpack object ori-
ented design to extend Diffpack, in an elegant way with PETSc solvers and
preconditioners.

Extending Diffpack with PETSc allows us to increase the number of solvers
and preconditioners currently available in Diffpack. It is also attractive for a
Diffpack user to have a unified interface to both libraries, making it easier to
experiment with different kinds of solvers and preconditioners without having
to create a separate simulator for each library.

PETSc has a lot more to offer than just Krylov solvers and preconditioners,
but because of the size of the PETSc library, we are going to only add support
for the Krylov subspace methods and the preconditioners. But the ideas and
principles applied here, can be transferred to further extending Diffpack with
more features from PETSc.

3.1 Using Diffpack with PETSc

There are a few things to consider when using Diffpack with PETSc. On the
lower level we must consider how to convert matrices and vectors. On the more
higher level we must create classes that represent these solvers as well as figure
out where to place the PETSc solvers and preconditioners.

3.2 The Poisson1 Simulator

The Poisson1 simulator is one of many simulators accompanying the Diffpack
documentation, many of which have been described in the book [9]. They are
intended to work as examples on Diffpack usage. But because of their flexibility,
and object oriented design, they can be easily modified and extended to serve
as a basis to solve new problems.

The Poisson1 simulator is a finite element simulator solving the Poisson
problem. It makes use of the highest level of classes in Diffpack, the LinEqAdmFE
and the MenuSystem, among others.

13

Though Poisson1 is a sequential simulator it can be easily be made into a
parallel simulator by using the parallel toolbox, this has been done by X. Cai
in [6].

3.3 New classes

We want to be able to use PETSc solvers and preconditioners in the same fashion
as with Diffpacks solvers and preconditioners. To experiment with different
kinds of Diffpack solvers and preconditioners the user does not need to edit and
recompile the code. They are able to be easily changed between different solvers
and preconditioners at runtime via the MenuSystem.

When using Diffpack in this fashion, a preconditioner and solver of a par-
ticular type are never declared in the code. An object of a base class is used
instead. For preconditioners this is Precond, and LinEqSolver for solvers.

When the application is started, Diffpack reads the input from the standard
input, and with the aid of a parameter class creates the correct type of solver
and preconditioner based on the options specified.

3.3.1 New class hierarchies

To make the PETSc solvers and preconditioners compatible with Diffpack classes,
in particular the high level interfaces/classes such as LinEqAdmFE, we need to
extend one of the classes in the LinEqSolver and the Precond hierarchy.

class PetscSolver A natural base class to extend with the PETSc Krylov
Subspace methods is the KrylovItSolver, which defines the interface to Diff-
packs existing Krylov Subspace solvers. All the KSP solvers of PETSc are added
as sub classes of PetscSolver.

PetscBiCGStabL

KrylovItSolver

PetscSolver

PetscTFQMRPetscConjGrad

New classes

Figure 3.1: Where PETSc solvers are added to Diffpack hierarchy

class PetscPrecond Precond is the base class for the preconditioners of Diff-
pack. Here we introduce class PetscPrecond extending Precond, to serve as a
base class for the PETSc preconditioners.

14

New classes

Precond

PetscPrecond

PetscPCSOR PetscPCHYPRE PetscPCJACOBI

Figure 3.2: Where PETSc preconditioners are added to Diffpack hierarchy

3.3.2 Extending class hierarchy of Diffpack

In [8] H. P. Langtangen explains how to extend a class hierarchy in Diffpack,
without recompiling the libraries. To be able to do so, we need to create a param-
eter (prm) subclass for the base class in the hierarchy we want to add. We have
two hierarchies we want to add, PetscSolver and PetscPrecond. For this pur-
pose we create PetscSolver prm for the PETSc solvers and PetscPrecond prm
for the PETSc preconditioners.

The parameter classes for Precond preconditioners and LinEqSolver solvers
are Precond prm and LinEqSolver prm. For this purpose we introduce new
prm classes PetscSolver prm and PetscPrecond prm for our newly created
PetscSolver and PetscPrecond, respectively.

Each of these new prm classes will take care of creating the correct PETSc
solver and preconditioner based on runtime information.

3.3.3 PETSc in object oriented programming

The object oriented design of PETSc, for the most part, fits nicely into object
oriented programming. There is one subtle, yet important issue of PETSc that
needs to be taken care of.

PETSc needs to be initialized and finalized in the correct order, and PETSc
objects needs to be destroyed before PETSc is finalized. If PETSc is initial-
ized after MPI and parallel Diffpack, it needs to be finalized before MPI and
parallel Diffpack. This can be remedied by encapsulating the PETSc finalize
call in a finally clause. This however does not solve the issue with destruc-
tion of PETSc objects when used in destructors, because these objects may be
destroyed after main is exited.

One solution is to create a class which takes care of initializing and finalizing
the libraries, then create a global instance of this object.

For this purpose we introduce a new class SubSystemManager, a name and
idea borrowed from the Dolfin[7] project.

3.4 Dealing with convergence monitors

In the most interesting problems, we do not know the analytical solution, so
the more commonly used stopping criteria is based on the absolute and relative
residual[9, p. 815]. Diffpack gives us the ability to choose among a wide range

15

of convergence tests. PETSc on the other hand, has a default convergence
test, that is a mixture of two convergence tests; absolute and relative residual
convergence test [4, p. 71].

||rk||2 ≤ max(rtol ∗ ||b||2, atol) (3.1)

where rk = b−Axk

To truly incorporate PETSc solvers into Diffpack, instead of adding support
for this mixed convergence test, we will add support for Diffpacks most common
convergence monitors the CMRelResidual and CMAbsResidual. This way we
avoid adding a convergence monitor that does not work with Diffpack, and we
make the PETSc solver more compatible with Diffpack.

The way to do this is to check using a dynamic cast inside the PetscSolver
class if the convergence monitor is of type CMRelResidual and if it is not, we
will assume that it is of type CMAbsResidual.

If a CMAbsResidual is used we set the relative tolerance to zero. And if it is
a CMRelResidual we set the absolute tolerance to zero and use these functions to
make PETSc use KSPDefaultConvergedSetUIRNorm and KSPSetNormType(ksp,
KSP NORM UNPRECONDITIONED). KSPDefaultConvergedSetUIRNorm sets the de-
fault norm to be ||B∗(b−A∗(initialguess))|| and KSPDefaultConvergedSetUIRNorm
tells PETSc to use an unpreconditioned norm instead.

3.5 Converting matrices and vectors

To be able to call the solvers and preconditioners of PETSc we need to convert
the matrices and vectors that make up the linear system. But in order to
successfully convert the matrices and vectors we must first deal with two issues;
overlapping boundary nodes/ghost rows and renumbering the nodes.

Diffpack introduces some overlapping boundary nodes when setting up and
assembling the element matrices. In PETSc however these nodes can only be
represented in one process. So we must remove/drop all relation to these nodes
when constructing the linear system to PETSc.

PETSc uses a different node numbering as in Diffpack. There is currently
no way, at least not documented, to tell PETSc to use a different mapping. So
we must renumber the nodes to prevent PETSc from repartitioning the nodes.

3.5.1 Removing overlapping boundary nodes

When Diffpack has partitioned a grid among several processes there are nodes
that exist in several processes. These internal boundary nodes are necessary
when using the finite element method to get contributions from elements that
lie on the boundaries between two or more processes.

These boundary nodes are represented in at least two processes, however in
PETSc the nodes can only belong to one process. So we have to remove these
internal boundary nodes.

Removing the boundary nodes can be done once we have set the level of
overlapping elements to one. In this scenario the internal boundary nodes on
one process ends up in the grid belonging to its neighbor process. This way, we
do not lose any elements, and at the same time, we get internal boundary nodes
that can be removed, without loosing any elements (Figure 3.3).

16

Getting an exact overlap of one element, however, is not ensured when us-
ing the element based partitioning of Diffpack. But can be ensured by using
Tingstad’s version of class GridPartUnstruct [12].

No overlap One level overlap

Figure 3.3: Different levels of overlap. Figure on the left (no overlap), internal
boundary nodes cannot be removed without loosing elements. Figure on the
right (1 level overlap), internal boundary nodes can be safely removed.

With one level of overlapping elements the nodes that are not owned by a
given process are easily identified by the vector ib node ids, which is located
in the GridPart class. Each entry in ib node ids is a local node number of an
internal boundary node.

We can use the ib node ids vector to remove the interior boundary nodes,
a technique described in [10].

3.5.2 Renumbering the nodes

Diffpack has a natural ordering of the nodes in the grid. With natural or-
dering we mean nodes keep their existing global numbers after grid partition-
ing. PETSc on the other hand uses a different ordering, a so called PETSc
ordering (see fig. 3.4). In PETSc ordering, a grid with N nodes will be
evenly and continuously divided among P processes. The ownership, given by
PetscSplitOwnership, is determined by this simple formula: N/size + ((N %
size) > rank). For example if we are looking at N=1000 nodes, size=3 pro-
cesses, process 0 would own the 334 first nodes, process 1 the next 333 nodes,
and process 2 the remaining 333 nodes.

Now onto the problem of having different orderings. If values are entered
into the linear system using natural ordering, PETSc will start reshuffling the
data until the linear system has a PETSc ordering. This is totally unnecessary,
and is likely to lead to a different problem, as well as it might become a great
performance loss.

To be able to renumber the nodes, we must figure out what the global node
numbering in Diffpack corresponds to the global node numbering in PETSc.

17

3

21 22 23

0 1 2 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20

Diffpack ordering

3 4 5

6 7 8

9 10 11

12 13 14

15 16 17

18 19 20

21 22 23

0 1 2

PETSc ordering

Figure 3.4: Different orderings of Diffpack and PETSc

Diffpacks node numbering is contained in vector global nnrs, and like the
interior boundary nodes ib node ids they are located in class GridPart. Using
global nnrs we can construct the PETSc equivalent, petsc nnrs, which we
can use we to construct the global PETSc matrix.

3.5.3 Creating a PETSc node numbering

To generate the PETSc node numbering array petsc nnrs we can use a PETSc
object, named AO, short for application ordering. AO objects are created to
help map between different numberings of different applications and libraries.
This object is collectively created, which we use to change the ordering of
global nnrs, by constructing petsc nnrs. But in order to be able to prop-
erly create an AO, we must have an array of the global node numbers owned
by a given processor; global nnrs without the internal boundary nodes. Let
us call this index set diffpack ordering. Just to be sure, we make all the
Diffpack numbering have base 0, opposed to being base 1.

18

Generating Diffpack ordering
void SubSystemManager :: generateDiffpackNumbering(

const VecSimple(int)& global_nnrs,
const VecSimple(int)& ib_node_ids,
VecSimple(int)& dpack_order)

{
// In this code we are removing the overlap, to get a
// list of nodes that are uniquely owned by a process.
// global_nnrs and ib_node_ids are objects of type
// VecSimple(int) containing global node numbers and
// interior boundary nodes
int start = 0; int stop = ib_node_ids(1); int k = 1;
for(int i = 1; i < ib_node_ids.size(); i++)
{

for(int j = start + 1; j < stop; j++)
dpack_order(k++) = global_nnrs(j) - 1;

start = ib_node_ids(i);
stop = ib_node_ids(i+1);

}

for(int i = stop + 1; i <= global_nnrs.size(); i++)
dpack_order(k++) = global_nnrs(i) - 1;

}

Then once this is done, we use the function AOApplicationToPetsc, which
returns petsc nnrs, the PETSc equivalent of Diffpacks global nnrs. petsc nnrs
is really nothing more than a 1 to 1 mapping of global nnrs, and since a local
node maps onto a global node via global nnrs we have a one to one mapping
between local node number and petsc nnrs.

19

Generating petsc nnrs
int SubSystemManager:: generatePetscNnrs(

const VecSimple(int)& global_nnrs,
const VecSimple(int)& ib_node_ids,
VecSimple(int)& petsc_nnrs)

{
// This function generates petsc_nnrs, the equivalent
// of global_nnrs.
if(mappingIsDone)

return 1;

VecSimple(int) dpack_order;
generateDiffpackNumbering(global_nnrs, ib_node_ids,

dpack_order);
AO app_ordering;
AOCreateMapping(PETSC_COMM_WORLD, dpack_order.size(),

&dpack_order(1), PETSC_NULL, &app_ordering);

petsc_nnrs.redim(global_nnrs.size());
for(int i = 1; i <= petsc_nnrs.size(); i++)

petsc_nnrs(i) = global_nnrs(i) - 1;
AOApplicationToPetsc(app_ordering, petsc_nnrs.size(),

petsc_nnrs.getPtr0());

AODestroy(app_ordering);
return 0;

}

Using petsc nnrs we can start converting the linear system. But before we
do that we need to preallocate the data structures, which if not done correctly
might lead to a great performance loss.

3.5.4 Preallocating PETSc

Efficient use of PETSc requires preallocation of the matrices, this is to reduce
the amount of allocations and copies when we insert values into a matrix. We
will consider MATMPIAIJ, which is the format we will be using.

The MATMPIAIJ matrix has a diagonal and an off-diagonal portion for a given
process. The diagonal portion corresponds to the nodes owned by a given pro-
cess, while the off-diagonal portion corresponds to the nodes owned by another
process (Figure 3.5).

Preallocation of a MATMPIAIJ matrix is done when creating the matrix using
the function MatCreateMPIAIJ [5]. This function needs to know the number
of nonzeros on the diagonal and off-diagonal portion of the part of the matrix
owned by a given process. It leaves us with two options on specifying the
nonzeros. We can either specify the maximum number of nonzeros on any row.
Or we can pass an array with the exact number of nonzeros; one entry per row.
The first option is certainly the easiest, but to minimize the memory allocation
we will go for the latter option. The latter option is conceptually easy, but the
implementation details are complicated by the bookkeeping. As we will see it

20

is quite feasible since we already have a parallel Diffpack matrix we can use to
determine the number of nonzeros.

Figure 3.5 is an illustration of the format with the number of nonzeros.
The blue numbers represents entries on the diagonal, the red numbers on the
off-diagonal portion. d nnz and o nnz is the array specifying the number of
nonzeros on the diagonal and the off-diagonal portion. From the figure can see
here that CPU/process 0 on the diagonal portion has 2 nonzeros on the first and
1 nonzero on the second row, and on the off-diagonal portion 1 and 2 nonzeros
on the first and second row respectively.

Off diagonal portionDiagonal portion

20

0

0

17

3

0

0

6

0

50

0

0

1 2

4

0

7

10

0

12

08

11

9

13

0

0

NonzeroesPETSc MATMPIAIJ matrix

o_nnz = [3,2]

d_nnz = [1,1]

o_nnz = [2,2]

d_nnz = [1,2]

o_nnz = [1,2]

d_nnz = [2,1]

C
pu

0
C

pu
1

C
pu

2

0 19 0

16

18

15 014

Figure 3.5: Diagonal and off diagonal portions of a PETSc matrix. d nnz and
o nnz are arrays specifying number of nonzeros per row on the diagonal and
off-diagonal portion of the matrix

To determine the number of nonzeros we loop over the column array in
a Diffpack MatSparse matrix, counting the number of node numbers that is
not an interior boundary node as a diagonal nonzero and the number of node
numbers that is a interior boundary node. This is equivalent to checking the
columns in jcol array of the MatSparse matrix belonging to a row owned by a
given process for occurrences of local interior boundary node numbers defined
by ib node ids. Listed below is an algorithm that does this and demonstrated
in (figure TODO: figure).

21

Determine diagonal (d nnz) and off diagonal (o nnz) nonzeros

int MatVecHandler:: determineNNZ(

MatSparse(real)& dpMat,

VecSimple(int)& d_nnz,

VecSimple(int)& o_nnz) const

{

...

int start = 0; int stop = ib_node_ids(1);

int value = 0; int row = 1;

for(int i = 1; i < ib_node_ids.size(); i++)

{

for(int j = start + 1; j < stop; j++)

{

for(int k = pattern.irow(j); k < pattern.irow(j+1); k++)

{

value = pattern.jcol(k);

if(bsearch(&value, ib_node_ids.getPtr0(),

ib_node_ids.size(), sizeof(int), int_cmp))

{

++o_nnz(row);

}

else

++d_nnz(row);

}

row++;

}

start = ib_node_ids(i);

stop = ib_node_ids(i+1);

}

for(int j = stop + 1; j <= global_nnrs.size(); j++)

{

for(int k = pattern.irow(j); k < pattern.irow(j+1); k++)

{

value = pattern.jcol(k);

if(bsearch(&value, ib_node_ids.getPtr0(),

ib_node_ids.size(), sizeof(int), int_cmp))

{

++o_nnz(row);

}

else

++d_nnz(row);

}

row++;

}

}

}

In the code above we used the method bsearch(...), which is a function from
the C standard library, to perform binary search. An alternative method of
finding internal boundary nodes in the jcol ib node ids is using a hash map.
Though hash map takes up memory, it is a lot more efficient than binary search.
Which we can consider later if this code becomes a bottleneck.

22

Verifying that the preallocation is correct can be done when running an
application by passing -info to PETSc as described in the user manual.

3.5.5 Constructing the PETSc matrix and vector

After having created the PETSc global node numbering petsc nnrs, and counted
the number of nonzeros we can begin creating the PETSc matrix. First cre-
ating the matrix using MatCreateMPIAIJ using the arrays with diagonal and
off-diagonal nonzeros.

Filling the PETSc matrix with values we loop over the rows of the Diffpack
matrix, skipping interior boundary nodes. Using the mapping created earlier,
petsc nnrs, we map each column entry, filling a row buffer. The row buffer are
then inserted into the matrix into the correct global row. Inserting rows using
MatSetValues we are ensure that the values are put into the correct place: the
diagonal portion or the off diagonal portion of the matrix.

A finishing call to the functions MatAssemblyBegin and MatAssemblyEnd
and the matrix can be used.

In a similarly fashion the PETSc vector is created with VecCreateMPI. Val-
ues are inserted with VecSetValues, one row at a time. Finishing the construc-
tion with VecAssemblyBegin/VecAssemblyEnd.

See code on the next page for a demonstration.

23

Creation of Matrix and Vector
int MatVecHandler:: createPetscMatAndVec(LinEqSystem& system, Mat& A,

Vec& x, Vec& b)

...

// petsc_nnrs is the PETSc equivalent of global_nnrs

VecSimple(int) row_buffer(getMaxRowLength(pattern));

int row_start = 0, row_end = 0;

MatGetOwnershipRange(A, &row_start, &row_end);

int row_len = 0; int g_row = row_start;

for(int i = 1; i < ib_node_ids.size(); i++)

{

for(int j = start + 1; j < stop; j++)

{

row_len = pattern.irow(j+1) - pattern.irow(j);

row_ptr = pattern.irow(j);

for(int k = pattern.irow(j); k < pattern.irow(j+1); k++)

{

row_buffer(l++) = petsc_nnrs(pattern.jcol(k));

}

MatSetValues(A, 1, &g_row, row_len, row_buffer.getPtr0(),

&dpMat(row_ptr), INSERT_VALUES);

VecSetValues(b, 1, &g_row, &dpVec(j), INSERT_VALUES);

VecSetValues(x, 1, &g_row, &dpVecX(j), INSERT_VALUES);

g_row++; l=1;

}

start = ib_node_ids(i);

stop = ib_node_ids(i+1);

}

for(int j = stop + 1; j <= global_nnrs.size(); j++)

{

for(int k = pattern.irow(j); k < pattern.irow(j+1); k++)

{

row_len = pattern.irow(j+1) - pattern.irow(j);

row_ptr = pattern.irow(j);

for(int k = pattern.irow(j); k < pattern.irow(j+1); k++)

{

row_buffer(l++) = petsc_nnrs(pattern.jcol(k));

}

MatSetValues(A, 1, &g_row, row_len, row_buffer.getPtr0(),

&dpMat(row_ptr), INSERT_VALUES);

VecSetValues(b, 1, &g_row, &dpVec(j), INSERT_VALUES);

VecSetValues(x, 1, &g_row, &dpVecX(j), INSERT_VALUES);

g_row++; l=1;

}

}

...

As with getting info about the success of the preallocation we can pass the
command line argument -info to PETSc, to verify that values were put into the
correct process[4].

24

3.5.6 Converting vectors between Diffpack and PETSc

To be able to return the solution to the Diffpack simulator we need to be able
to convert the solution vector from the PETSc solver to the Diffpack solution
vector in the LinEqSystem. We also need to convert vectors when we apply a
PETSc preconditioner using a Diffpack solver, vica versa.

We can convert a PETSc vector to Diffpack by getting the pointer to the
underlying data, filling the vector in the right places, ie. ignoring the internal
boundary nodes. Finishing it off with a call to GridPartAdm::
updateInteriorBoundaryNodes(diffpackVec) to ensure that the interior bound-
ary nodes are update correctly.

Converting vectors from PETSc to Diffpack
void MatVecHandler:: petscToDiffpack(const Vec& petscVec,

Vec(real)& diffpackVec)

{

double* values = NULL;

int petsc_vec_size = -1;

VecGetArray(petscVec, &values);

VecGetSize(petscVec, &petsc_vec_size);

if(diffpackVec.size() != global_nnrs.size())

diffpackVec.redim(global_nnrs.size());

int start = 1, stop = ib_node_ids(1);

int petsc_row = 0;

for(int nnr = start; nnr < stop; nnr++)

diffpackVec(nnr) = values[petsc_row++];

for(int id = 1; id < ib_node_ids.size(); id++)

{

start = ib_node_ids(id) + 1;

stop = ib_node_ids(id + 1);

for(int nnr = start; nnr < stop; nnr++)

{

diffpackVec(nnr) = values[petsc_row++];

}

}

for(int nnr = stop + 1; nnr <= diffpackVec.size(); nnr++)

diffpackVec(nnr) = values[petsc_row++];

gp_adm->updateInteriorBoundaryNodes(diffpackVec);

VecRestoreArray(petscVec, &values);

}

Converting a Diffpack vector to a PETSc vector is done in almost the same
way, only this time we do not need to update the interior boundary nodes.

25

Converting vectors from Diffpack to PETSc
void MatVecHandler :: diffpackToPetsc(const Vec(real)& diffpackVec,

Vec& petscVec) const

{

TAU_PROFILE("Conversion", " ", CONVERSION);

if(petscVec == NULL)

createPetscVec(diffpackVec, petscVec);

PetscScalar* values;

VecGetArray(petscVec, &values);

int i = 0;

for(int nnr = 1; nnr <= ib_node_ids(1) - 1; nnr++)

{

values[i] = diffpackVec(nnr);

++i;

}

int nnr_start, nnr_stop;

for(int id_nr = 1; id_nr <= ib_node_ids.size() - 1; id_nr++)

{

nnr_start = ib_node_ids(id_nr) + 1;

nnr_stop = ib_node_ids(id_nr + 1);

for(int nnr = nnr_start; nnr < nnr_stop; nnr++)

{

values[i] = diffpackVec(nnr);

++i;

}

}

for(int nnr = nnr_stop + 1; nnr <= global_nnrs.size(); nnr++)

{

values[i] = diffpackVec(nnr);

++i;

}

VecRestoreArray(petscVec, &values);

}

26

Chapter 4

Experiments

In the previous chapter we have seen how Diffpack can be extended with Krylov
subspace methods and preconditioners of PETSc. We defined methods of con-
verting Diffpacks MatSparse(real) matrix and Vec(real) vector to the PETSc
MATMPIAIJ matrix and to VECMPI vector, respectively. We also introduced some
classes to make the PETSc solvers and preconditioners available to the Diffpack
user, with minimal user effort needed.

Our strategy in converting the linear system from Diffpack to PETSc before
solving it with a PETSc solver or applying a preconditioner results in little
modification of an existing parallel Diffpack simulator. This also introduces
some overhead, both in memory and with time it takes to solve the system.

In this chapter we will look at the performance of using Diffpack with PETSc.
More specifically we will look at the performance of two types of scenarios that
can occur:

Test A: Same solver/preconditioner If both libraries provide the same
linear solver and preconditioner, will the PETSc solver outperform the Diffpack
solver, or will it be dominated by the conversion time?

Test B: Different solver/preconditioner If there is significant overhead,
will PETSc still have a superior solver or preconditioner?

4.1 Application example

In this example we modify the Poisson1 simulator to gain access to the PETSc
solvers and preconditioner classes we defined in Chapter 3.

The first step is to make the Poisson1 simulator parallel, this has been
described in [6].

After making the simulator parallel, we can add the lines needed by the
PETSc extension.

In the file containing the Poisson1.cpp we first include the SubSystemManager.h
header file to gain access to the global instance of SubSystemManager, which is
namedglobal manager.

#include <SubSystemManager.h>

27

In the Poisson1 ::scan method we add the following line after gp adm has
been been initialized. This is needed to make global node numbering and the
internal boundary nodes accessible to the PETSc classes:

global_manager->attach(*gp_adm);

Then in the main.cpp file we include the header file initPETSc.h
Then we add a call to initPETSc() after Diffpack and Parallel Diffpack has

been initialized in the main method, this call initializes PETSc.
Then to make sure the libraries get destroyed in the correct order, we remove

the call to closeDpParallelLA that finalizes Parallel Diffpack.

4.2 Test environment

The tests in this thesis are conducted on a Linux cluster named Chilopodus. The
cluster consists of 24 nodes, with each node having the following characteristics.
The GNU g++ compiler version 4.2.3 with -O3 optimization flag was used to

CPU brand 2x Itanium 2 (Madison)
Clock 1300 Mhz
Cache 16 KiB L1, 256 KiB L2, 3 MiB L3
Memory 4 GB shared
Bus 400 Mhz
OS Linux/GNU
Network interface Gigabit Ethernet
MPI library MPICH v1.2.7
Queue system Torque (OpenPBS) v.2.2.1

Table 4.1: Specification for each node in the Chilopodus cluster

compile the libraries and the test programs.

4.3 How testing is performed

In the first scenario where we look at using the same solver and preconditioner
time will be measured during solve, which include exclusive time and inclusive.
The inclusive time is the time it takes to execute lineq->solve and exclu-
sive time will only involve the call to the PETSc solver KSPSolve. To make
sure timing has minimal overhead, we will only be using we will only be using
MPI Wtime.

In the other parts we will be using TAU[13] to measure the time spent
during solve and conversion. TAU is a profiling tool capable of profiling parallel
programs, measuring both time and memory usage.

4.3.1 Test simulator

In the tests we will be using the Poisson1 simulator we had a look at earlier in
this thesis. The Poisson1 simulator is a classic Diffpack simulator that accom-

28

panies Diffpack library and has been used in [9] to explain the how to program
Diffpack simulators.

4.3.2 Convergence criteria

Unless specified, in all the tests we will be using the default convergence criteria
of Diffpack. The default convergence criteria consists of the convergence monitor
CMRelResidual with a convergence tolerance of 1.0e− 4.

4.3.3 Measuring time with TAU

TAU provides us with lots of tools useful in profiling parallel programs and can
interface with third party libraries and tools such as PAPI. We, however, will
only be using it to measure the overall memory usage and the time of the three
stages we defined in the previous section: the setup stage, the solver stage, and
the conversion stage.

To measure the time we put TAU statements, that begin with TAU, into vari-
ous places in the code. The statements stack, so one can safely have statements
nested without having the time measurement overlap.

TAU is initialized with:

int main (int argc, const char* argv[])
{

...
TAU_PROFILE_INIT(arg_l,arg_s);
TAU_PROFILE_SET_NODE(myid);

Poisson1 simulator;
global_menu.multipleLoop(simulator);

}

The solve stage is measured by:

void Poisson1:: solveProblem () // main routine of class Poisson1
{

...
TAU_PROFILE_TIMER(t1, "Solve", " ", TAU_USER);
TAU_PROFILE_START(t1);
lineq->solve();
TAU_PROFILE_STOP(t1);
...

}

The conversion stage is measured by placing this statement at the begin-
ning of the functions converting the matrices and vectors between Diffpack and
PETSc.

TAU_PROFILE("Conversion", " ", CONVERSION);

To measure overall memory usage we use TAU TRACK MEMORY(). TAU TRACK MEMORY()
enables memory tracking of memory, and an interrupt is generated every 10 sec-
onds to measure the memory. The memory it measures is the memory allocated
on the heap.

29

int main (int argc, const char* argv[])
{

...
TAU_TRACK_MEMORY();
...

}

Just to make sure we get the memory involved in conversion, we do place a
TAU TRACK MEMORY HERE() at the end of PetscSolver:: solve(...)

4.4 Reporting speedup

In parallel computing there are two quantities, speedup and efficiency, that
indicate the quality of a parallel program[6]:

S(P) =
T (1)
T (P)

Speedup

η(P) =
S(P)

P
Efficiency

To be able to measure true speedup we need to have the execution time with
one CPU. In this thesis we have not developed support for converting Diffpack
matrices to PETSc sequential sparse matrices (MATSEQAIJ), so we have to be a
little creative. Though true speedup would be preferable.

The ideal situation is when we get linear speedup:

S(P) = P (4.1)

We could assume that S(1) ≈ T (2)/2. And calculate speedup, however if
the solver or preconditioner for some reason differs greatly between sequential
and parallel, our use of speedup would be totally wrong, and it could lead a
being confused or in a worse case misunderstanding.

Instead we chose to calculate the relative improvement when doubling the
CPUs, by calling it scaling. This would not be misunderstood with the usual
definition with speedup.

So in an ideal situation we get perfect speedup if we get a relative improve-
ment of 100%, and super linear speedup if more than that. For instance if the
execution time with 2 CPUs is 120 seconds and 4 CPUs is 60 seconds, then the
scaling becomes 2, indicating linear speedup.

4.5 Test A: Same solver/preconditioner

If a solver is present in both libraries, whom will be faster. Intuitively Diffpack
will be faster because with PETSc we will have the overhead of converting the
linear system.

For this test the choice is Conjugate Gradient, since it is part of both libraries
and performed best among the Krylov Subspace solvers we tested, and we tested
all solvers provided by both libraries. By best we mean; the solver that used the
least amount of time, with the fewest number of iterations and with the best
error. Though BiCGStab used fewer iterations to get a residual of 1.0e− 4 the
error in the solution was higher than with Conjugate Gradient.

30

Solve

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

PE
T

Sc

D
if

fp
ac

k

PE
T

Sc

D
if

fp
ac

k

PE
T

Sc

D
if

fp
ac

k

PE
T

Sc

D
if

fp
ac

k

D
if

fp
ac

k

T
im

e
in

 s
ec

on
ds

2 cpus 4 cpus 8 cpus 16 cpus1 cpu

Figure 4.1: Conjugate Gradient in both libraries without preconditioning

4.5.1 Conjugate gradient

Test Time Result

Cpus Solv Solve Scaling Iter Error

1 Diffpack 402.9 N/A 1406 9.78e-05

2
Diffpack 203.5 1.98 1406 9.79e-05
PETSc 293.4 N/A 1406 9.79e-05

4
Diffpack 104.3 1.95 1406 9.78e-05
PETSc 146.5 2.0 1406 9.78e-05

8
Diffpack 49.0 2.12 1406 9.78e-05
PETSc 74.7 1.96 1406 9.78e-05

16
Diffpack 23.7 2.07 1406 9.78e-05
PETSc 34.9 2.14 1406 9.77e-05

Table 4.2: Efficiency of conjugate gradient without preconditioning. Time is
measured in seconds. Solve time includes the time it takes to convert the linear
system. A scaling of 2 corresponds to linear speedup.

From the test results we can see that both libraries scales perfectly, however
Diffpack is considerably faster compared to PETSc. Both libraries have close
to theoretical speedup, and in some cases super-linear speedup, which can be
explained by improved cache performance due to increased number of processors.

The error and number of iterations give an indication that both implemen-
tations are quite similar, if not equal. The execution time however is not, with
PETSc being approximately 50% slower. Exactly why PETSc performed much
worse than Diffpack in this test is hard to tell, however by placing MPIW time
inside the solve function of class PetscSolver:

double t1, t2, total_time; t1 = t2 = total_time = 0.0;
t1 = MPI_Wtime();
ierr = KSPSolve(ksp, petscVec, petscLinsolVec); CHKERRQ(ierr);

t2 = MPI_Wtime() - t1;

31

MPI_Reduce(&t2, &total_time, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

, we were able to measure the exclusive time used by the PETSc library. Thus
eliminating the doubt that our work is being responsible for the poor perfor-
mance.

CPUs Preconditioner
Time

Inclusive Exclusive Overhead

4
None 297.68 295.44 2.24
SOR 77.25 75.12 2.12

8
None 148.96 147.16 1.8
SOR 42.61 40.98 1.63

16
None 74.96 73.55 1.44
SOR 22.38 21.12 1.26

16
None 35.99 34.87 1.12
SOR 11.52 10.51 1.01

Table 4.3: Total time it takes to solve the system (inclusive) and the time the
PETSc library uses to solve the linear system (exclusive). Time is measured in
seconds.

4.5.2 Conjugate Gradient with SOR preconditioning

In this test we will compare the performance of preconditioned Conjugate Gra-
dient. Preconditioning method used in this test is SOR which is also part of
both libraries.

Listed below in table 4.4 we observe that Diffpack and PETSc have nearly
equal performance in runtime. It is quite interesting to note that while Diffpack
outperformed PETSc in the previous test without preconditioning, they are
quite on par with SOR preconditioning. PETSc use a few iterations less than
Diffpack, which is due to PETSc applying the preconditioner before solving the
linear system. Though PETSc uses fewer iterations, it has bigger error.

The poor scaling in comparison to the uniprocessor gives an indication that
none of the libraries has a true parallel SOR preconditioner. In PETSc case this
can be confirmed by the documentation for SOR[5], stating that parallel SOR in
PETSc corresponds to a block Jacobi with SOR preconditioning on each block.
However by looking at the parallel performance comparing it to the case with
2 processors we notice that they scale equally well.

4.5.3 Overhead

Here we give an overview on the overhead of the preconditioning in the pre-
vious test with Conjugate Gradient and SOR preconditioning. This has been
measured as described earlier by using TAU.

From the measurements listed in table 4.5 we notice that though the over-
head on each processor decreases, the relative difference increases. Though the
relative overhead increases, it can still be considered small.

32

Solve

 0

 20

 40

 60

 80

 100

 120

 140

D
if

fp
ac

k

D
if

fp
ac

k

PE
T

Sc

D
if

fp
ac

k

PE
T

Sc

D
if

fp
ac

k

PE
T

Sc

D
if

fp
ac

k

PE
T

Sc

T
im

e
in

 s
ec

on
ds

2 cpus 4 cpus 8 cpus 16 cpus1 cpu

Figure 4.2: Conjugate Gradient with (S)SOR provided by both libraries. Time
is measured in seconds. Grid size is 1000x1000 triangle elements

Test Time Result

Cpus Solv Solve Scaling Iter Error

1 Diffpack 120.2 N/A 172 8.55e-04

2
Diffpack 78.2 1.54 215 7.05e-03
PETSc 78.7 2 214 7.17e-03

4
Diffpack 41.5 1.88 233 3.65e-03
PETSc 42.7 1.84 230 4.05e-03

8
Diffpack 21.6 1.92 244 3.40e-03
PETSc 22.4 1.9 240 3.90e-03

16
Diffpack 10.8 2.0 253 3.09e-03
PETSc 11.4 1.96 249 3.51e-03

Table 4.4: Conjugate gradient with SOR preconditioning. Grid consists of
1000x1000 Triangle elements. Solve time includes conversion time between Diff-
pack and PETSc.

4.6 Test B: Different kinds of preconditioners

A more realistic scenario is to use a preconditioner that is not available in both
libraries. In this test we will look at the performance of using Conjugate Gra-
dient with preconditioners that are not available in both Diffpack and PETSc.
Among those we choose a preconditioner that has good performance. The pre-
conditioners chosen are based on trying out the various preconditioners selecting
those that yielded the best results.

Selecting a PETSc preconditioner Some of the preconditioners were not
tested as they, either did not support the MATMPIAIJ format, or simply were
not parallel. We also did not test all the preconditioners from external pack-
ages, such as FFTW (Fastest Fourier Transform in the West) which could have
yielded superb results. The one package we did test was HYPRE, where we got
superior performance from the HYPRE BoomerAMG compared to the other

33

CPUs Total time Overhead Relative

2 76.99 2.09 2.7%

4 42.54 1.64 3.8%

8 22.1 1.31 5.9%

16 11.43 1.03 9%

Table 4.5: Overhead of conversion between Diffpack and PETSc for the test
involving Conjugate Gradient with SOR preconditioning

preconditioners we did test in PETSc and Diffpack.

Selecting a Diffpack preconditioner In Diffpack, the preconditioner of
those tested, the RILU with a relaxation parameter of 0.8 performed best.
Though SSOR preconditioner with a relaxation parameter of 1.8 had a nice
performance, it did not scale as well in parallel compared to the RILU precon-
ditioner.

ILU is one of the preconditioners in PETSc that is not supported in parallel.
The RILU preconditioner in Diffpack is supported in parallel, so it will be
interesting to see how it performs when we apply it to a PETSc linear system.

Of the preconditioners available from PETSc, the BoomerAMG precondi-
tioner in the HYPRE package performed superior to the ones we did test.

4.6.1 RILU versus BoomerAMG

In this test we compare the performance of the BoomerAMG preconditioner
to the RILU preconditioner, we also compare the performance and overhead of
applying the preconditioners of one library to the solver of the other library.
Time measurements for this test was done using TAU.

Listed below in table 4.6 are the test results.
From looking at the results we can safely say that BoomerAMG is superior

in any way, it has superior execution time, error and iterations in comparison to
the performance of the RILU preconditioner. BoomerAMG scales nicely with
a close to halving of execution time when doubling the number of processors.
However error increases a little with increasing number of CPUs, though this is
negligible since the number of iterations is so low.

While the execution time with Diffpack/BoomerAMG had the lowest exe-
cution time and iterations, it used one less iteration but bigger error compared
to PETSc/BoomerAMG. However if we view the iterations per time we notice
that PETSc/BoomerAMG has slightly higher iterations/second. Though this
difference is negligible when compared to the overall time.

RILU preconditioner performed nicely with almost perfect scaling. However
the iterations increases as the number of processors increase. On the other hand
the error decreases, so this is no indication loss of accuracy with increasing
number of processors.

The execution time of PETSc/RILU is a lot worse execution time than
Diffpack/RILU, however PETSc/RILU uses a lot more iterations, especially
on 2 CPUs where the difference in iterations are as high as 10.6%. But this
difference diminishes with increasing number of processors where time becomes

34

more comparable. This is not surprising since vectors are converted within
the preconditioner with each iteration. The overhead in conversion time in
PETSc/RILU is also highest among the other combination, but is still small
and greatly reduced with increasing number of processors. On 2 CPUs the
overhead accounts for 7.1%, still relatively small. The error is slightly better
with PETSc/RILU, but this is likely due to PETSc/RILU using more iterations.

Conversion
Solve

 0

 20

 40

 60

 80

 100

 120

Pc
+

R
IL

U
Pc

+
B

A
M

G
D

p+
R

IL
U

D
p+

B
A

M
G

Pc
+

R
IL

U
Pc

+
B

A
M

G
D

p+
R

IL
U

D
p+

B
A

M
G

Pc
+

R
IL

U
Pc

+
B

A
M

G
D

p+
R

IL
U

Pc
+

R
IL

U
Pc

+
B

A
M

G

D
p+

B
A

M
G

Pc
+

R
IL

U
Pc

+
B

A
M

G
D

p+
R

IL
U

D
p+

B
A

M
G

T
im

e
in

 s
ec

on
ds

D
p+

R
IL

U

2 cpus

D
p+

B
A

M
G

4 cpus 8 cpus 16 cpus1 cpu

Figure 4.3: Speedup of the conjugate gradient

4.6.2 Memory

To get an overview on the memory usage in using PETSc with Diffpack we use
TAU. TAU has the capability of sampling the memory on the heap. Triggering
TAU to take a sample of the heap memory can be done in two ways; Periodic
triggering with TAU TRACK MEMORY and explicit triggering at a given execution
point with TAU TRACK MEMORY HERE. The last statement is preferable since we
get more control over where the memory is tracked. However, since we do not
have access to the source code of Diffpack we will rely on using the periodic
memory tracking mainly.

The periodic memory tracking, defaults to sampling the memory every 10
seconds, which can be modified with TAU SET INTERRUPT INTERVAL(value).
We will be using both TAU triggering options, and we will set the periodic
memory tracking down to 1 second, which was the lowest we could set.

The explicit triggering points are placed in before and after lineq->solve.
The problem with the periodic tracking, it is kind of unreliable since there

is limited we can do to control when and where memory is tracked. This is
especially true with the superior performance we got with CG/BoomerAMG.
We had to set the convergence tolerance down to 1.0e− 30 to get more than 20
iterations. One thing we could do though, is control where the periodic tracking
starts, so we place TAU TRACK MEMORY right before lineq->solve.

The full input files can be seen in the appendix. But we give a summary in

35

Test Time Result

CPUs Solver Preconditioner Solve Conv Total Iter Error

1 Diffpack RILU 104.0 N/A 104.0 178 5.87e-04

2

Diffpack RILU 56.1 N/A 56.1 187 6.44e-03
PETSc RILU 75.2 5.8 81.0 207 4.40e-03
PETSc BoomerAMG 17.0 2.2 19.2 4 1.61e-05

Diffpack BoomerAMG 15.2 2.1 17.3 3 3.08e-04

4

Diffpack RILU 31.5 N/A 31.5 199 4.30e-03
PETSc RILU 40.6 3.8 44.5 216 2.22e-03
PETSc BoomerAMG 9.1 1.7 10.8 4 4.44e-05

Diffpack BoomerAMG 7.9 1.7 9.6 3 5.63e-04

8

Diffpack RILU 15.8 N/A 15.8 207 3.68e-03
PETSc RILU 20.6 2.2 22.8 220 2.13e-03
PETSc BoomerAMG 4.7 1.3 6.0 4 2.02e-05

Diffpack BoomerAMG 4.2 1.3 5.4 3 4.67e-04

16

Diffpack RILU 7.9 N/A 7.9 215 3.28e-03
PETSc RILU 10.2 1.5 11.7 226 2.03e-03
PETSc BoomerAMG 3.1 1.0 4.1 4 4.60e-05

Diffpack BoomerAMG 2.8 1.0 3.8 3 7.32e-04

Table 4.6: Different kinds of combinations of preconditioners not available in
both libraries. The solver type used in both libraries is Conjugate Gradient. The
RILU preconditioner is only available in the Diffpack library. The BoomerAMG
preconditioner is only available in PETSc. Time is reported in seconds. Solve
time is the time it takes to solve the linear system. Conv time involves anything
related to converting data structures between the libraries. Tot is the total time
used to convert and solve the linear system.

In this test we have not conducted any time measurements to avoid them
being affected by the memory tracking. Though it is not the purpose of this
test, an indication of performance can be viewed at the number of samples taken
between the tests.

In table 4.7 we can view the results of the memory test. The measurements
with BoomerAMG may deviate some because of the few samples in particular
with 16 processors. But the measurements give an estimate about the memory
usage of the various combinations of library solvers and preconditioners.

From the table, we can see that as the number of CPUs increase, so does
memory. The memory leap between one and two CPUs is the highest, giving
an indication that not all memory usage is distributed evenly, most likely with
objects that are needed by all the CPUs. Aside from the leap from a single
CPU to two CPUs , the memory is close to constant with increasing number of
CPUs.

Diffpack/RILU had the least amount of memory usage. This is to be ex-
pected as no extra matrices and vectors are introduced than are already present
in the simulator.

What is kind of surprising is that PETSc/RILU uses less memory than
PETSc/BoomerAMG, since the PETSc/RILU involves more data structures;
including a Diffpack linear system, a PETSc linear system and the Diffpack and
PETSc preconditioner data structures. Though it may be that BoomerAMG

36

uses more memory than RILU. PETSc/BoomerAMG is the only one whose
memory decreases with increasing number of CPUs, though not by much, but
the number of samples are so low that this cannot be confirmed.

Diffpack/BoomerAMG used the most memory of those tested. This may be
a confirmation that BoomerAMG generally uses more memory than RILU.

A summary of the memory usage is given in Figure

Test Memory

CPUs Solver Preconditioner #Samples Memory

1 Diffpack RILU 455 336

2

Diffpack RILU 243 429
PETSc RILU 319 567
PETSc BoomerAMG 70 678

Diffpack BoomerAMG 72 669

4

Diffpack RILU 123 433
PETSc RILU 161 573
PETSc BoomerAMG 38 662

Diffpack BoomerAMG 61 717

8

Diffpack RILU 65 440
PETSc RILU 83 577
PETSc BoomerAMG 22 627

Diffpack BoomerAMG 46 722

16

Diffpack RILU 32 452
PETSc RILU 43 584
PETSc BoomerAMG 15 609

Diffpack BoomerAMG 40 742

Table 4.7: Different kinds of combinations of preconditioners not available in
both libraries. This table summarizes memory usage. Memory usage is mea-
sured in MB. Memory usage is the average of all the samples, which has been
summed over all the CPUs in the test. Grid size 1000x1000 is the same as in
the previous tests

37

Chapter 5

Conclusion

In this master thesis we wanted to investigate the possibility of extending Diff-
pack with PETSc. We were faced with these questions:

1. Can Diffpack be extended with PETSc Krylov Subspace Solvers and Pre-
conditioners in such a way that no modification of the Diffpack library is
required?

2. Does application of PETSc solvers and preconditioners require modifica-
tion of an existing Diffpack simulator?

3. Can the Krylov Subspace Solvers and Preconditioners of PETSc outper-
form those already existing in Diffpack?

To answer these questions we defined and introduced new class hierarchies
PetscSolver and PetscPrecond. These new classes were added to the Diffpack
class hierarchy.

To make these new solvers and preconditioners compatible with the Diffpack
library we developed algorithms on how to convert the matrices and vectors
between Diffpack and PETSc.

We increased the user experience by not only making PETSc’s precondition-
ers available to Diffpack solvers, but also the ability to use Diffpack precondi-
tioners with the PETSc solvers, thus allowing the user to further experiment
with different kinds of combinations of solvers and preconditioners. Because ex-
perimentation with different kinds of options is an important aspect of Diffpack.

By the same philosophy we changed the default convergence criteria of
PETSc Krylov Subspace methods to support the most common convergence
criteria of Diffpack Krylov Subspace methods.

After which we tested and compared the performance of CG from both
libraries without preconditioning, with the same preconditioner (SOR) and with
different preconditioners when used with both libraries. Where we found that
with CG without preconditioning that PETSc was much slower than Diffpack.
We also discovered that CG with (S)SOR preconditioning were equally good,
including the overhead. We tested different combinations of preconditioners
with CG and measured the time it took to solve and convert the system, in
addition to the memory usage.

Can Diffpack be extended with PETSc Krylov Subspace Solvers and Precon-
ditioners in such a way that no modification of the Diffpack library is required? -

38

Yes, Diffpack can be extended with PETSc solvers and preconditioners without
having to modify the libraries.

Does application of PETSc solvers and preconditioners require modification
of an existing Diffpack Simulator? - To be able to successfully use the PETSc
solvers and preconditioners after extending Diffpacks class hierarchy requires
removal of one statement and addition of two statements and one include pre-
processor directive.

Can the Krylov Subspace Solvers and Preconditioners of PETSc outperform
those already existing in Diffpack? - In some cases, if both libraries supply the
same preconditioner and solver the efficiency is at best on par with Diffpack.
But if PETSc has a solver and preconditioner that is not part of Diffpack, - then
yes PETSc can out perform Diffpack, despite the extra overhead of converting
the linear system. The over head can be considered low; in our experiments the
overhead was between 1-3 seconds and less than 15%.

5.1 Future work

Future work to be done is to add support for uniprocessor PETSc with Diffpack
and add support for vector PDEs, the work in this thesis only covers parallel
and scalar PDEs.

Adding support for uniprocessor, is equivalent of adding support for the
PETSc serial sparse matrix, MATSEQAIJ. Algorithms to convert the Diffpack
matrix to this format needs to be developed. Since MATSEQAIJ is just a simpler
version of MATMPIAIJ, the algorithms developed in this thesis can be simplified
for this purpose:

Preallocation of the MATSEQAIJ matrix we need only count the number of
non zeros per row in the Diffpack matrix; there is no off-diagonal portion to
consider.

Transferring data from a Diffpack matrix to a MATSEQAIJ can be done di-
rectly as there is no need to drop internal boundary nodes as they do not exist
for uniprocessor simulations.

This is a minor issue, but should be done; implement the solvers and pre-
conditioners from third party PETSc libraries as stand alone classes. For ex-
ample the Hypre package was added to Diffpack as a standalone preconditioner
PetscPCHYPRE. It would be better to provide a separate preconditioner class
for each of the preconditioners.

39

Bibliography

[1] Diffpack parallel toolbox. http://diffpack.com/products/parallel1/
para1_main.html.

[2] Diffpack software package. http://www.diffpack.com.

[3] Summary of sparse linear solvers available from PETSc. http://www-
unix.mcs.anl.gov/petsc/petsc-2/documentation/linearsolvertable.html.

[4] Satish Balay, Kris Buschelman, Victor Eijkhout, William D. Gropp, Dinesh
Kaushik, Matthew G. Knepley, Lois Curfman McInnes, Barry F. Smith,
and Hong Zhang. PETSc users manual. Technical Report ANL-95/11 -
Revision 2.1.5, Argonne National Laboratory, 2004.

[5] Satish Balay, Kris Buschelman, William D. Gropp, Dinesh Kaushik,
Matthew G. Knepley, Lois Curfman McInnes, Barry F. Smith, and Hong
Zhang. Online Documentation for PETSc. http://www-unix.mcs.anl.
gov/petsc/petsc-as/snapshots/petsc-current/docs/. 10. Jan. 2008.

[6] X. Cai, E. Acklam, H. P. Langtangen, and A. Tveito. Advanced Topics in
Compuational Partial Differential Equations, chapter 1. Springer, 2003.

[7] Johan Hoffman, Johan Jansson, Anders Logg, and Garth N. Wells. Dolfin
homepage, 2008. http://www.fenics.org/wiki/DOLFIN.

[8] H. P. Langtangen. Tips and frequently asked questions about diffpack.
Technical Report 1, Numerical Objects, 1991.

[9] Hans Petter Langtangen. Computational Partial Differential Equations -
Numerical Methods and Diffpack Programming. Textbooks in Computa-
tional Science and Engineering. Springer, 2nd edition, 2003.

[10] Guo Wei Ma. An Extension of Parallel Diffpack with Trilinos, 2007.

[11] James D. Teresco, Karen D. Devine, and Joseph E. Flaherty. Partitioning
and dynamic load balancing for the numerical solution of partial differential
equations.

[12] Martin Burheim Tingstad. Improving Inter-subdomain Communication
and Load-balancing for the Parallel Diffpack Library, 2007.

[13] Los Alamos National Laboratory University of Oregon and Re-
search Centre Jlich. TAU (tuning and analysis utilities), 2008.
http://www.cs.uoregon.edu/research/tau/home.php.

40

Appendix A

Makefiles

The standard Diffpack Makefiles can be created with the Mkdir command.
Mkdir mydirectory populates the specified directory mydirectory with these
files: Makefile, cmake1 and cmake2.

The file Makefile is the main Makefile, it includes the two other Make-
files, .cmake1 and .cmake2. The easiest way of affecting the way the Makefile
compiles and links is through .cmake1 and .cmake2.

.cmake1 is used to specify additional compile flags, while .cmake2 is used
to specify additional libraries to compile and link against.

Provided in the next two sections are examples of .cmake1 and .cmake2,
used in this thesis to compile and link with PETSc and TAU.

A.1 Makefiles for parallel Diffpack with PETSc
.cmake1

This .cmake1 file contains application specific customization of

the general Makefile. Additional customization is found in .cmake2

The packages to be used by this application/library:

PACKAGES = $(DPR) $(LAR) $(BTR)

PROJECTROOT = $(PDPR)

CXXUF += -fPIC

41

.cmake1
This .cmake2 file contains application specific customization of

the general Makefile. Additional customization is found in .cmake1

Name of the executable file:

APPL := app

Modifications of .cmake1/.cmake2 are intended to be performed by

advanced users. Some make variables (e.g. NUMT) must be set in

.cmake1.

First .cmake1 is included, then MakeHeaders, then MakeFlags and then

.cmake2.

#

#

The line below includes a PETSc make file that defines variables needed to

compile and link with PETSc. We need access to two of them: $PETSC_INCLUDE

and ${PETSC_KSP_LIB}. The contents of these two variables can be entered here

manually, however by including the make file below this Makefile will be

A. Platform independant

B. Easy to change between different installations of PETSc: for instance with

or without optimalization

C. Likely to be compatible with future releases of PETSc

include ${PETSC_DIR}/bmake/common/variables

Compile and link with some external software packages:

INCLUDEDIRS += ${PETSC_INCLUDE}

LDPATH += -L/usr/lib/mpich/lib ${PETSC_KSP_LIB}

LIBS += ${PETSC_KSP_LIB}

A.2 Makefiles for parallel Diffpack with PETSc
and TAU

.cmake1
This .cmake1 file contains application specific customization of

the general Makefile. Additional customization is found in .cmake2

The packages to be used by this application/library:

PACKAGES = $(DPR) $(LAR) $(BTR)

PROJECTROOT = $(PDPR)

CXXUF += -fPIC -DPROFILING_ON -DTAU_STDCXXLIB -DTAU_GNU

CXXUF += -DTAU_DOT_H_LESS_HEADERS -fPIC -DTAU_MPI

CXXUF += -DTAU_MPI_THREADED -DTAU_LARGEFILE -D_LARGEFILE64_SOURCE

CXXUF += -DTAU_WEAK_MPI_INIT -DMPICH_IGNORE_CXX_SEEK

42

.cmake1
This .cmake2 file contains application specific customization of

the general Makefile. Additional customization is found in .cmake1

Name of the executable file:

APPL := app

Modifications of .cmake1/.cmake2 are intended to be performed by

advanced users. Some make variables (e.g. NUMT) must be set in

.cmake1.

First .cmake1 is included, then MakeHeaders, then MakeFlags and then

.cmake2.

#

#

include ${PETSC_DIR}/bmake/common/variables

Compile and link with some external software packages:

INCLUDEDIRS += ${PETSC_INCLUDE} -I/home/mfhoel/src/tau-2.17/include

LDPATH += -L/usr/lib/mpich/lib ${PETSC_KSP_LIB}

LDPATH += -L/home/mfhoel/src/tau-2.17/ia64/lib

LIBS += ${PETSC_KSP_LIB} -lTauMpi-mpi-pdt -ltau-mpi-pdt

43

Appendix B

Installing PETSc

PETSc was installed with HYPRE in a few steps: First set this system variable (and
put them in /.bashrc):

export PETSC_DIR=/home/yourusername/petsc-2.3.3-p12-opt

Now one may have to log out and in for the variable to be loaded or enter source

/.bashrc. Finally PETSc can be installed:

yourusername@chilopodus:~/petsc-2.3.3-p12-opt$./configure \

--with-mpi-dir=/usr/lib/mpich/ \

--download-f-blas-lapack=1 \

--with-clanguage=cxx --with-debugging=0 CXXOPTFLAGS=-O3 COPTFLAGS=-O3 \

FOPTFLAGS=- O3 --shared=0 --with-shared=0 --download-hypre=1

mfhoel@chilopodus:~/petsc-2.3.3-p12-opt$ make all test

You may run into trouble with using the Makefile in Appendix A now that PETSc
was installed using MPICXX. Edit the which is located in
$PETSC DIR/bmake/$PETSC ARCH/petsc conf file and change mpicxx with g++.

You may want to make a backup copy of the petsc conf file.
In this section we have a command that may be used to change mpicxx to g++.

First to ensure that it will work this command will print the proposed changes (from
inside the directory with the petsc conf file):

sed -n "\|mpicxx| s|\(^[^=]*\).*mpicxx|\1 = "‘which g++‘"|p" petscconf

Now execute the next command if you are satisfied with the proposed changes:

sed -i "\|mpicxx| s|\(^[^=]*\).*mpicxx|\1 = "‘which g++‘"|" petscconf

44

Appendix C

Installing TAU

TAU was installed on Simulas Linux cluster Chilopodus, which is an ia64 architecture.
Before installing TAU, it is necessary to install Program Database Toolkit (PDT),

a package some of TAUs functionality depends on. PDT was installed in
/home/mfhoel/src/pdtoolkit-3.12.

Installing TAU is pretty straightforward. We ran into a problem though with
MPICH version 1, which ended in hanging application on more than 2 cpus. TAU
caught SIGUSR1 signals generated from MPICH. MPICH uses SIGUSR1 to for internal
communication. To fix this, it was necessary to comment out these lines inside
tau-2.17/src/Profile/MetaData.cpp:

/* register SIGUSR1 handler */

// if (signal(SIGUSR1, tauSignalHandler) == SIG_ERR) {

// perror("failed to register TAU profile dump signal handler");

// }

//

// if (signal(SIGUSR2, tauToggleInstrumentationHandler) == SIG_ERR) {

// perror("failed to register TAU instrumentation toggle signal handler");

// }

On Chilopodus TAU was successfully installed in two steps:

./configure -mpi -c++=g++ -fortran=gnu -pdt=/home/mfhoel/src/pdtoolkit-3.12

make clean install

45

