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Relative species abundance and population densities of the past:
developing multispecies occupancy models for fossil data

Trond Reitan* , Torbjørn H. Ergon , and Lee Hsiang Liow

Abstract.—The number of individuals of species varies, but estimating abundance, given incomplete and
biased sampling in both contemporary and fossilized communities, is challenging. Here, we describe a
new occupancy model in a hierarchical Bayesian framework with random effects, in which multispecies
occupancy and detection are modeled as a means to estimate relative species abundance and relative
population densities. The modeling framework is suited for temporal samples of fossil communities
with repeated sampling including multiple species with similar preservation potential. We demonstrate
our modeling framework using a fossil community of benthic organisms to estimate relative species abun-
dance dynamics and changing relative population densities of focal species in nine (geological) time inter-
vals over 2.3 Myr. We also explore potential explanatory factors (paleoenvironmental proxies) and
temporal autocorrelation that could provide extra information on unsampled time intervals. Themodeling
framework is applicable across a wide range of questions on species-level dynamics in paleoecological
community settings.
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Introduction

Understanding past and contemporary pat-
terns and dynamics of populations and com-
munities requires robust estimates of variation
in abundance of organisms (Williams et al.
2002; Sutherland et al. 2013). While it is notori-
ously difficult to estimate absolute population
sizes or densities due to the imperfect detection
of individuals (Schwarz and Seber 1999), it is
generally much easier to estimate relative dif-
ferences/changes in population sizes/densities
(Williams et al. 2002). Fortunately, such relative
estimates are often sufficient for ecological
inference. For example, community ecologists
and paleoecologists have long been interested
in measuring and explaining distributions of
relative species abundance (RSA; i.e., the abun-
dance of a species relative to the abundance of
all species) in communities (Fisher et al. 1943;
MacArthur and Wilson 1967; Kidwell 2001).

Likewise, it is often sufficient to model changes
in population density (hereafter “relative popu-
lation density” [RPD]) over time (Royama 1992;
Caswell 2001) relative to the same population
from a given reference point, for example, the
start of population monitoring.
While contemporary ecological and fossil

data reflect ecological and evolutionary pro-
cesses at vastly different timescales, sampling
strategies and data structure may be similar.
Like contemporary ecological data, fossil data
often consist of detection records (i.e., observa-
tions of the presence) of species. Fossil records
are often associated with geological formations
(time intervals) of different ages, where low or
zero detection frequencies in certain formations
may be due to low (then) extant population
densities and/or low preservation probabil-
ities. When detection and nondetection of
focal species in replicated samples have been
recorded, it is possible to estimate both

© The Author(s), 2022. Published by Cambridge University Press on behalf of The Paleontological Society. This is an Open
Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in anymedium, provided the original
work is properly cited. 0094-8373/22

Paleobiology, 2022, pp. 1–16
DOI: 10.1017/pab.2022.17

https://doi.org/10.1017/pab.2022.17 Published online by Cambridge University Press

https://orcid.org/0000-0003-0793-8731
https://orcid.org/0000-0002-9298-4152
https://orcid.org/0000-0002-3732-6069
mailto:trond.reitan@ibv.uio.no
mailto:t.h.ergon@ibv.uio.no
mailto:trond.reitan@ibv.uio.no
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/pab.2022.17&domain=pdf
https://doi.org/10.1017/pab.2022.17


occupancy and the probability of detection
given occupancy (MacKenzie et al. 2002).
Over the past decades, a rich literature on
such “site occupancy models” or “species occu-
pancy models” has emerged in ecology (King
2014; MacKenzie et al. 2017). Parenthetically,
note that these models are not equivalent to
those involving occupancy in the older pale-
ontological literature, as they do not explicitly
model unobserved presences (Jernvall and For-
telius 2004; Raia et al. 2006; Foote et al. 2007).
Site occupancy models were developed to esti-
mate the probability of true species presence,
for example, as a function of habitat variables.
Later developments also linked detection
probabilities to species abundance (Royle and
Nichols 2003). Multispecies expansions of these
models have facilitated studies of community
composition and species richness (Dorazio et al.
2006; Yamaura et al. 2011; Iknayan et al. 2014;
Devarajan et al. 2020).
Site occupancy models (hereafter “occu-

pancy models”) were first used to address
paleoecological questions in a study of Ordovi-
cian brachiopods (Liow 2013). Briefly, a
bare-bones site occupancy model aims at esti-
mating the probability that any randomly
selected site in an area where a given species
lives (or lived) will be occupied by that species.
However, individuals of that species are not
always detectable, even if they live in the sites
selected for survey. They could be camouflaged
(e.g., frogs or stick-insects), stealthy (e.g., lynx),
nocturnal (hard to detect in daytime surveys),
or in the case of the fossil record, present in
the site in question in the deep past, but with
no preserved or recognizable remains to be
sampled by the paleontologist in the same
physical location. The general approach in
occupancy modeling is to replicate sampling
in each site to tease apart the probability of
occupancy (for the area as a whole) and detec-
tion probability. Given the extra layers of the
challenges of detecting individuals that lived
in the deep past, as their past presence may
be masked by taphonomic, geological, and
sampling processes, occupancy models could
benefit from specific tailoring to fossil data.
Here, we develop a multispecies occupancy

model, tailored for fossil occupancy data,
aimed at estimating temporal patterns (over

millions of years) of RSA and RPD. As is typical
for fossil data, preservation also influences
detection probability, and the preservation
can vary substantially among formations
(Behrensmeyer et al. 2000). One way of tackling
temporal variation in preservation is by incorp-
orating random effects for formations. By
incorporating data from multiple species, we
aim to reduce the influence of preservation on
abundance estimates by “filtering out”
formation-specific random effects on detection
probability common to all species. Importantly,
random effects also allow us to estimate
formation-specific RSA and RPD when data
consist of multiple samples (sites) and subsam-
ples (replicates). In addition to formation-
specific random effects to capture dynamics
(perceptible temporal changes) common to all
species, we also use those that capture the
dynamics of individual species. All of these
random effects allow us to “borrow strength”
across species (e.g., Zipkin et al. 2010).
Using simulated data, we ask whether our

multispecies occupancy model provides more
accurate estimates of relative abundance than
detection ratios traditionally used in paleoecol-
ogy as an estimate for relative abundance. Here,
“relative abundance” (what we call detection
ratios) is estimated as the number of indivi-
duals of the focal species observed divided by
the total number of all fossil individuals of
the focal group observed in the sample or for-
mation. We then apply this model to a dataset
of marine invertebrates (cheilostome bryozo-
ans) that attach to hard substrates (shells) over
nine time intervals (geological formations)
spanning 2.3 Myr from a marine basin in
New Zealand. We discuss the general utility
of our model in paleoecological settings and
suggest venues for further development.

Materials and Methods

Study System
The empirical example we use is a commu-

nity of fossilized benthic organisms, namely
encrusting cheilostome bryozoans found in
the Wanganui Basin (Carter and Naish 1998;
Proust et al. 2005; Pillans 2017). Cheilostome
bryozoans are a common component of both
fossil and living marine benthic environments,

TROND REITAN ET AL.2

https://doi.org/10.1017/pab.2022.17 Published online by Cambridge University Press

https://doi.org/10.1017/pab.2022.17


and the majority are encrusters on hard sub-
strates, with a minority being attached, erect
species, and only a handful being free-living
species. We examined subsamples (= shells,
typical substrates for bryozoans) for encrusting
cheilostomes in 119 sites within 9 geological
formations rich in fossil marine deposits repre-
senting time intervals from 2.29 to 0.30 Myr
(Fig. 1), in which the number of shells varied
between 30 and 50 (Supplementary Table S1).
We focused on transgressive system track
shell beds that reflect similar depositional con-
ditions (facies) to increase the comparability of
the biological habitats represented by our fossil
material. By assuming that cheilostome species’
abundances in sampled sites are representative
for the region at the time they were preserved,
we can make regional estimates for each time
interval. We tabulated the observed presence
of any fossilized individuals of three focal chei-
lostome species, namely, Antharcthoa tongima,
Escharoides excavata, and Arachnopusia unicornis

(Supplementary Fig. S1) on each shell. There is
ample among-formation, within-formation,
and among-species variation in the detection
ratio, that is, the number of shells with focal
species of encrusting bryozoans observed
divided by the total number of shells examined
(Supplementary Fig. S2). We also introduce a
fourth “species,” the superspecies, which repre-
sents all other encrusting bryozoan species in
the community, excluding the three focal spe-
cies (e.g., the open circles in Fig. 1 could illus-
trate the superspecies in our empirical
example). In doing so, we can utilize observa-
tions from other species in the same commu-
nity without collecting detailed species-level
data in a species-rich system to improve param-
eter estimates (see “Building the Model”). In
addition, including the superspecies ensures
that estimated species abundances will be rela-
tive to all bryozoan species, rather than only the
sum of the included focal species. The forma-
tions were chosen because they are known to

FIGURE 1. A schematic diagram to show the sampling scheme. Each thick-bordered open rectangle represents a time inter-
val (only two are illustrated for the first time interval, T1, and the nth time interval, Tn). Within each time interval, sites
(dotted rectangles, only two represented in each) are sampled. Note that any given site is rarely if ever in the same past
physical locations, the common situation in paleontological data, hence the sites have unique labels. Within each site,
there are subsamples (smaller, solid-bordered rectangles) in which different species (solid shapes) are observed. The
arrow between the time intervals represents the flow of time.
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harbor bryozoans, so our superspecies is
assumed to always be present, that is, occu-
pancy probability = 1. In other applications, a
superspecies can be excluded or the occupancy
probability of the superspecies can be esti-
mated within the model.

Overview of Modeling Approach
Our main objective is to estimate the tem-

poral (i.e., formation-to-formation) dynamics
of RSA and RPD. We refer to both RSA and
RPD as “relative abundance” for short until
the “Estimating RSA and RPD” section. Our
data are the detection/nondetection observa-
tions on subsamples (shells in our empirical
example) from different sites (Fig.1, Supple-
mentary Fig. S1). A species has the potential
of being observed in a given subsample if it is
truly present in a given site. On the contrary,
if a given site does not have any evidence of a
given species on any of its subsamples, it
could mean that the site was truly devoid of
that species or that the species was present
but just not sampled in any of the subsamples
belonging to that site. A basic single-species
occupancy model teases apart observations
within sites into true occupancy and detection

components by capitalizing on replicate sam-
ples within sites. In the modeling approach
we describe here, we begin with a basic single-
species occupancy model, then add random
effects to account for site variation, and finally
account for random variation among species
and formations. Once this full model has been
set up (Fig. 2), we use it to link the inferred
detection and occupancy probabilities to rela-
tive abundance.

Building the Model
The Basic Occupancy Model for Number of

Detections per Site.—A basic occupancy model
(MacKenzie et al. 2002) presents the probability
that a species occupied a given site, that is, the
occupancy probability, Ψ, and the probability
that a subsample has at least one observation of
the focal species, given occupancy, that is, the
detection probability, p. The probability that a
species is found on a given subsample is thus
Ψp, where Ψ operates on the site level while p
operates on the subsample level. The occupancy
and detection probabilities will be functions of
various parameters and random effects and can
be specific to the site i belonging to a specific
time interval, f, and the species, s. Thus, we

FIGURE 2. This figure summarizes our full hierarchical occupancy model for estimating relative abundance (relative spe-
cies abundance [RSA] or relative population density [RPD]) composed of top-level parameters and random effects that
describe their overdispersion. Data are denoted as triangles where M is the number of sites and y the shells from site i,
where species s is observed. Black circles denote occupancy parameters, white circles denote detection parameters, and
the gray circle denotes the overdispersion parameter. An arrow from an element A (i.e., circle, triangle, or rectangle) to
another B, denotes that B is conditioned on A either by a function or a distribution (see text for details).

TROND REITAN ET AL.4

https://doi.org/10.1017/pab.2022.17 Published online by Cambridge University Press

https://doi.org/10.1017/pab.2022.17


write Ψi,s(θ) and pi,s(θ) for the occupancy and
detection probabilities, respectively, where θ is
the set of top-level parameters and random vari-
ables of the model in question (Fig. 2). The rela-
tive abundances for each focal species will be
derived from these two sets of probabilities.
We need to take non-occupied sites into

account when constructing our models. The
consideration of non-occupied sites leads to
the phenomenon of zero inflation, that is, an
increased chance of zeros in our data. We
define the zero-inflated binomial distribution

as Pzbin(y|n, p, C) = (1−C)I(y = 0)+C
n
y

( )

py(1− p)n−y, where
n
y

( )
py(1− p)n−y is the

binomial probability of independently detect-
ing y out of n with detection probability p.
Focusing on the observations, yi,s is the number
of subsamples at site iwith observations of spe-
cies s. For subsamples in occupied sites, some
may have observations of species s, while others
do not (independently of each other), hence, yi,s
is a zero-inflated binomial random variable:

yi,s � zbin (Ni, pi,s(u) = logit−1(bs), Ci,s(u)

= I(s = S)+ I(s , S)logit−1(as)),
(1)

where Ni is the total number of subsamples
examined at site i. I() stands for the indicator
function, which takes value 1 when the state-
ment inside is true and 0 if false. S is the total
number of species under analysis (in our
example, this includes our 3 focal species plus
the superspecies). We let the last species be
the superspecies. If there is no superspecies
assigned in the system, then equation (1) will
take the simpler form yi,s∼ zbin (Ni, pi,s(θ) =
logit−1(βs), Ψi,s(θ) = logit−1(αs)).
The unconditional probability of detection is

pi,s(θ)Ψi,s(θ), that is, detection, regardless of
whether a site is actually occupied (Royle and
Nichols 2003). We express both occupancy
and detection probabilities using a logit-
transform, that is, logit(r) ; log r

1−r

( )
, where r

is a probability, for the convenience of expand-
ing the model (see next sections). The two para-
meters, αs and βs (Fig. 2), give regional (i.e.,
within the Wanganui Basin in our application)

occupancy and detection probabilities for each
species, regardless of time interval (formation).
The parameter set is hence θ = {α1, ⋅ ⋅ ⋅ , αS−1, β1,
⋅ ⋅ ⋅ , βS}. The subscript i is included for clarity,
although sites are not considered in this section.
αs=S does not appear, as we assume that the
superspecies is always present.
Now thatwehave described a basic occupancy

model, we continue the model description in a
stepwise fashion by considering variation at
site, species, and formation levels until the
model has enough elements for relative abun-
dance estimates. We do this for three reasons.
Thefirst is to put focus on each of themodel com-
ponents. Second, Markov chain Monte Carlo
(MCMC) convergence was achieved only when
we used the parameter estimates from a simpler
model as the starting points for the next, more
complex model. Third, wewanted to justify add-
ing model complexity, using the Bayes factor as
measure of evidence (Jeffreys 1998).

Including Site-Dependent Random Effects for
Number of Detections per Site through Overdisper-
sion.—Variation in abundance among sites is
expected in natural systems. Because detection
is linked to true abundance, the detection prob-
ability of a given species is expected to fluctuate
from site to site. Fossil preservation can also
influence detection probabilities on the site-
level. Observations in our dataset consist of
one summary data point per site (tabulated
from the subsample replicates) per species.
We use overdispersion for modeling sites
instead of a per-observation random effect
(Harrison 2014), as these two modeling
choices are equivalent, but the former is
computationally easier. This is because includ-
ing random effects for each of the sites would
radically and unnecessarily increase model
complexity. Hence, to facilitate extensive simu-
lations, we use the beta-binomial distribution,
which has an analytical expression, namely:

Pb bin(y|n, p, k)

=
G(n+1)G y+ p

k

( )
G n−y+1−p

k

( )
G

1
k

( )

G(y+1)G(n−y+1)G n+ 1
k

( )
G

p
k

( )
G

1−p
k

( ) ,

(2)
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where y out of n is the outcome, p the detection
probability, and κ the overdispersion param-
eter where κ = 0 means no overdispersion
(see Supplementary Material for details).
This specifies the distribution of detections
given occupancy. Thus, the zero-inflated
(un-conditioned on occupancy) beta-binomial
distribution is:

Pzbbin(y|n,p,k,C)= (1−C)I(y= 0)

+C

G(n+1)G y+ p
k

( )
G n−y+1−p

k

( )
G

1
k

( )

G(y+1)G(n−y+1)G n+1
k

( )
G

p
k

( )
G

1−p
k

( ),

(3)

where Ψ is the zero inflation of the number of
detections per site and the likelihood is:

yi,s � zb bin (Ni, pi,s(u) = logit−1(bs), ks,

Ci,s(u) = I(s = S)+ I(s , S)logit−1(as))
(4)

κs describes the species-dependent overdisper-
sion, while the other terms are as in equation
(1). The parameter set is now θ = {α1, ⋅ ⋅ ⋅ , αS−1,
β1, ⋅ ⋅ ⋅ , βS, κ1, ⋅ ⋅ ⋅ , κS}. The detection and occu-
pancy probabilities depend on the identity of
the time interval that the site belongs to, rather
than the site itself, as the beta-binomial distri-
bution accounts for overdispersion among
sites. At this point, no time-interval depend-
ency in occupancy or detection has been
added.

Including Species- and Formation-Dependent
Random Effects.—We now introduce temporal
dynamics by using time interval–dependent
random effects that are species independent,
that is, they summarize dynamics common to
all species in the community. For the detection
probability, the random effects imply fluctua-
tions in the preservation as well as in average
abundance of all species in the community.
For occupancy, the random effects allow fluc-
tuations in the overall presence of the set of
species in question. The time intervals with
richer data, by contributing to estimates of
overall probabilities and the standard devia-
tions of the random effects, can thus inform

estimates for those with sparser data. The
model is now:

yi,s � zb bin (Ni, pi,s(u) = logit−1(bs + u f (i)), ks,

Ci,s(u) = I(s = S)+ I(s , S)logit−1(as + v f (i)))

(5a)

uf � N(0, s2
u), vf � N(0, s2

v), (5b)
where f (i) is the time interval that site i belongs
to, uf and vf are the new time interval–
dependent random effects, and σv and σu are
the standard deviations of these effects
for detection and occupancy respectively.
Now, θ = {α1, ⋅ ⋅ ⋅ , αS−1, β1, ⋅ ⋅ ⋅ , βS, κ1, ⋅ ⋅ ⋅ , κS,
σu, σv, u1, ⋅ ⋅ ⋅ , uF, v1, ⋅ ⋅ ⋅ , uF}, where F is the
number of time intervals.
While equation (5) does allow for dynamics

due to time variations in all species in the region,
the species probabilities are in sync. To facilitate
dynamics that permit fluctuations in the relative
abundances for each species, we need random
effects that depend on species and formation
combinations. When doing so, we have:

yi,s � zb bin(Ni, pi,s(u) = logit−1

(bs + u f (i) + 1 f (i),s), ks,

Ci,s(u) = I(s = S)+ I(s , S)logit−1

(as + v f (i) + d f (i),s)) (6a)

uf � N(0, s2
u), vf � N(0, s2

v), d f ,s

� N(0, s2
d,s), 1 f ,s � N(0, s2

1,s), (6b)

where εf,s and δf,s are the new time interval– and
species-dependent random effects and σε,s and
σδ,s are the standard deviations of these effects,
for detection and occupancy, respectively. As
pi,s and Ψi,s only depend on the time period, f,
we label them as pf,s and Ψf,s in the following
sections.
The parameter set is now = {α1, ⋅ ⋅ ⋅ , αS−1, β1,

⋅ ⋅ ⋅ , βS, κ1, ⋅ ⋅ ⋅ , κS, σu, σv, σδ,1, ⋅ ⋅ ⋅ , σδ,S−1, σε,1,
⋅ ⋅ ⋅ , σε,S, u1, ⋅ ⋅ ⋅ , uF, v1, ⋅ ⋅ ⋅ , uF, δ1,1, ⋅ ⋅ ⋅ , δF,S−1,
ε1,1, ⋅ ⋅ ⋅ , εF,S}. We choose independent and
wide priors for each parameter (see Supple-
mentary Material section “Prior Distribution
for the Full Model”). All positive-value para-
meters, including the standard deviations and
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overdispersion parameters, are log trans-
formed so that on re-parametrization, they fall
on the real number line. The top-level para-
meters (these exclude random variables,
because their distribution depends on other
parameters) are {α1, ⋅ ⋅ ⋅ , αS−1, β1, ⋅ ⋅ ⋅ , βS, κ1, ⋅ ⋅ ⋅ ,
κS, σu, σv, σδ,1, ⋅ ⋅ ⋅ , σδ,S−1, σε,1, ⋅ ⋅ ⋅ , σε,S}; see
Fig. 2 (top row). With 3 species and 1 superspe-
cies, we now have 20 (5× S) top-level para-
meters and 81 ((2S + 1) × F) random variables
(eq. 6b). We call equation (6) the “full model,”
because it has all the necessary components
for estimating relative abundance dynamics
(Fig. 2), which we detail in the “Estimating
RSA and RPD” section.

A Stepwise Approach for Improving Estima-
tion.—Because the full model is fairly complex
and required hierarchically arranged random
effects, we utilized MCMC sampling for infer-
ence (see Supplementary Material section
“MCMC for Statistical Inference”). We used
common estimated parameter values from a
simpler model when starting a more complex
model, while gradually increasing the model
complexity in a stepwise fashion (i.e., from eq.
1 to 4, 5, then 6), as preliminary analyses often
failed when starting from a random place in
the parameter space. In doing so, we also tested
whether each increasingly complex model
explained the data better, using Bayes factors.

Incorporating Explanatory Variables.—We
expanded equation (6) in two different ways,
motivated by our aim to predict relative abun-
dances in unmeasured time intervals with more
precision than just using the time interval–inde-
pendent median values derived from αs and βs.
First, we included temporal explanatory

variables in our empirical example pertaining
to paleoclimate. Specifically, as each species
should thrive in a different optimal climate,
with a given tolerance width, we impose a
quadratic term for our explanatory variables
(on detection probability, occupancy probabil-
ity, or both). We use two related but different
paleoclimate proxies, namely the global δ18O
data (data from Lisiecki and Raymo 2005)
and the North Atlantic magnesium/calcium
(Mg/Ca) ratios (data from Sosdian and
Rosenthal 2009), both based on measurements
from benthic foraminifera, as explanatory
variables. These contain complex signals of

sea-temperature, ice-volume, and sea-level
changes, all of which potentially affect both
the population growth rates (through optimal
temperatures and the availability of substrate
species) and detection probabilities (through
sea-level changes) of our focal species.
Second, we explored autocorrelated pro-

cesses, that is, statistical dependencies in a
given variable between one time interval and
the next time interval, by using an Ornstein–
Uhlenbeck process (Supplementary Material
sections “Model Expansions That Include
Explanatory Variables” and “Introducing Cor-
relations in the Random Effects”). The idea
here is that the state of the population will
depend on a previous time interval.

Estimating RSA and RPD
In this section, we use the full multispecies

occupancy model described earlier (see also
Fig. 2) to estimate relative abundance. Detec-
tion entails observing a species that is present,
so the more sites that are occupied, the higher
the regional abundance. Within a site, it is
also reasonable to assume that detection prob-
ability increases with higher true abundance.
In typical fossil data, detection additionally
requires preservation and successful sampling
and taxonomic identification of fossilized
organisms. Preservation and hence taxonomic
identifiability are often strongly associated
with the formation to which the sample
belongs (Behrensmeyer et al. 2000). For the pur-
pose of estimating RSA and RPD in the fossil
record, we introduce corrected probabilities
C∗

f ,s and p∗f ,s. We let p∗f ,s(u) ; logit−1(bs + 1f ,s),
where the purely time interval–dependent ran-
dom factor, uf, is subtracted from the detection
probability estimate. This is done with the
assumption that the uf (i) term is mainly affected
by preservation rather than by common bio-
logical dynamics among species. That is,
p∗f ,s(u) is our reconstruction of how the detection
probabilities would be if preservation was the
same for all formations, and thus should
depend only on the abundance of each species.
On the other hand, for our empirical data, pres-
ervation is unlikely to affect the time interval–
dependent random factor for occupancy, vf,
thus we assume C∗

f ,s;Cf ,s. When detection
probabilities are low, moderate correlations
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between detection and occupancy probabilities
in the joint posterior distribution could mean
that preservation dynamics influenced inferred
occupancy probabilities. However, we expect
these indirect effects on such inferred occu-
pancy probabilities to be small compared
with common occupancy dynamics.
We link the average observable abundance per

subsample given occupancy, λf,s, to the corrected
detection probability. Assuming that individuals
are distributed independently of each other, p∗f ,s
is then given by the Poisson distribution:

p∗f ,s = P(number of preserved individuals . 0)

= 1− e−l f ,s (7)

We can therefore derive λf,s from an estimate of
p∗f ,s (main analyses) or derive p∗f ,s from λf,s (simu-
lations and Supplementary Material). In our
case, breaking the Poisson distribution assump-
tion due to overdispersion of number of col-
onies per subsample only imperceptibly
affects the abundance estimates (see Supple-
mentary Material). Note that Yamaura et al.
(2011) assumed detection to be the result of
sampling from a binomial distribution, and
the Poisson distribution is a limit of the bino-
mial distribution, and equation (7) is in fact
equivalent to equation (1) in Yamaura et al.
(2011), given a re-parametrization, see Supple-
mentary Material.
While we subtract the random factors repre-

senting the common preservation dynamics in
detection, the average preservation rate over
time is unknown. Thus, there is a proportional-
ity coefficient, kf,s, between the average true and
observable abundance per subsample given
occupancy, such that

l f ,s = k f ,sL f ,s, (8)

where Λf,s is the average true abundance per
subsample.
We first assign both species- and time-

interval dependency on kf,s to make explicit
the assumptions we later use. In an ideal
world, our subtraction of the effects of preser-
vation dynamics when constructing p∗f ,s makes
the proportionality coefficient both species-
and time interval–independent, that is, kf,s = k.

The average true abundance per subsample
(unconditioned on occupancy) Af,s is

Af ,s = C∗
f ,sL f ,s = C f ,sl f ,s/k f ,s (9)

We can now define the RSA as the true abun-
dance per subsample of a species normalized to
the sum over all species of a given time interval
(Rf,s). Under the assumption that preservation is
the same for all species in question and that noth-
ing else affects kf,s, then the proportionality coeffi-
cients will be species independent, that is, kf,s = kf.
kf then drops out when calculating the RSA:

Rf ,s ;
Af ,s∑S

s′=1 Af ,s′
= C f ,sl f ,s/kf∑S

s′=1 C f ,s′l f ,s′/kf

= C f ,sl f ,s∑S
s′=1 C f ,s′l f ,s′

=
C f ,slog(1− p∗f ,s)∑S

s′=1 C f ,s′ log(1− p∗f ,s)
(10)

For an alternative modeling approach, built up
from the average observable abundance per
subsample given occupancy, λf,s, rather than
detection probabilities, see Supplementary
Material “Description of the Abundance-focused
Model.”
Wedefine the RPD,Qf,s, as the true abundance

for the species at a given time interval relative
to the true abundance of the same species
averaged over all time intervals. We normalize
Qf,s to the temporal mean rather than to a
specific time interval (e.g., the first available),
as it is less sensitive to uncertainty and estimates
near zero. As long as the proportionality coeffi-
cients are independent of time interval, kf,s = ks,
we can relate this to observed quantities, such
that:

Qf ,s ;
Af ,s

1
F

∑F

f ′=1
Af ′,s

=
C f ,sl f ,s

ks
1
F

∑F

f ′=1

C f ′,sl f ′,s

ks

= C f ,sl f ,s

1
F

∑F

f ′=1
C f ′,sl f ′,s

=
C f ,slog(1− p∗f ,s)

1
F

∑F

f ′=1
C f ′,slog(1− p∗f ,s)

(11)
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Qf ,s will vary around the value 1 and is compar-
able within species, but not among species
(unlike Rf ,s). Note that assumptions for RSA
and RPD are different and that the choice of
RSA or RPD will be context dependent. In
cases for which it is desirable to consider RSA
and RPD for the same system, we require that
kf ,s = k for both relative abundances to be valid
simultaneously.

Simulations
We performed two sets of simulations. The

“abundance-specified simulation study” demon-
strates howwell occupancy probabilities, abun-
dance per subsample, and other variables (e.g.,
detection probabilities and relative abun-
dances) can be estimated. The “occupancy
dynamics–focused simulation study” presents
the sampling regimes under which we might
plausibly detect occupancy probability dynam-
ics (i.e., non-overlapping 95% credibility inter-
vals) when the parameters were as estimated
in our empirical data.
The simulated data of the abundance-

specified simulation study were generated by
specifying the Cf ,s

′s and lf ,s
′s. Equation (7) was

used for back-transforming into detection prob-
abilities, and the data were then generated
using equation (3). We let species 1 have dynam-
ics in Ψ and species 2 have dynamics in λ.
For the occupancy dynamics–focused simula-

tion study, we generated data under different
sampling intensities (10, 20, 30, 50, 100, and 1000
sites per formation and 60, 100, 200, 400, and
1000 shells per site) and analyzed these data
using the model and parameter estimates from
our empirical data. See Supplementary Material
for more details on both sets of simulations.

Results

Empirical Findings
We found that including both the time inter-

val–dependent (eq. 5) and the time interval–
and species-dependent random effects (eq. 6)
improved the description of our empirical
data (Supplementary Material Table S2). In
other words, the full model (eq. 6, illustrated
in Fig. 2) was preferred over simpler models,
based on Bayes factors (see Supplementary
Material section on “MCMC for Statistical

Inference” for details), implying that the occu-
pancy and detectability of the different bryo-
zoan species varied significantly with time
intervals (formation). However, including
paleoclimate explanatory variables or autocor-
related random effects did not improve our
model (Supplementary Material Table S2). In
other words, for our current data, we are not
able to predict relative abundance for unmeas-
ured time intervals beyond the median. The
Bayes factor did not resolve the choice between
the alternative “abundance-focused model”
and equation (6), and the models gave highly
similar estimates of RSAs (see Supplementary
Fig. S5).
The overdispersion parameters, {κs}s∈{1,⋅⋅⋅,S},

were estimated to 0.09, 0.05, 0.04, and 0.07 for
Antharcthoa tongima, Escharoides excavata, and
Arachnopusia unicornis and the superspecies,
respectively (see Supplementary Table S3 for
credibility bands), where κs = 0 means no over-
dispersion. While the estimates of the overdis-
persion parameters κs are small, they
represent overdispersion that effectively dou-
bles the variance of the number of detections
per site, compared with no overdispersion
(see Supplementary Fig. S6).
The standard deviation parameters of the

random effects have large uncertainty (Supple-
mentary Table S3), except for the formation-
dependent but species-independent random
effect (σu) used for detection probability. How-
ever, themodel testing suggests that all random
effects were necessary to obtain an acceptable
model fit.
The uncertainty surrounding the occupancy

probability of each of the focal species is quite
large (Fig. 3); we cannot establish that occu-
pancy is well below 1.0 for any combination
of species and formation. We performed a
simulation study to check how much data we
would need for the uncertainty to be smaller
than the estimated dynamics; see “Occupancy
Dynamics-focused Simulation Study” in the
Supplementary Material for details. Note that
the relative changes inmodeled detection prob-
abilities (Fig. 3) are similar to the dynamics of
detection ratios (Supplementary Fig. S2),
implying that the latter, commonly used as an
estimate for relative abundance, is not an
appropriate estimate for its purpose.
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The RSA (Rf,s) of the superspecies and
A. tongima are estimated with relatively high
precision and vary significantly over time,
while those of E. excavata and A. unicornis are
estimated with greater uncertainty (Fig. 4; see
Supplementary Figs. S5 and S11 for alternative
RSAs). The RPD (Qf,s) estimates (Fig. 5) are also
fairly uncertain, but some patterns are evident.
Although the RSA of the superspecies fluctu-
ates noticeably over time (Fig. 4), its RPD is
remarkably constant (Fig. 5). This suggests
that even though the abundance of any single
species may fluctuate substantially over long
timescales, the abundance of the bryozoan
community is rather stable, at least during the
time frame of this study (spanning ca. 2 Myr).
Note that A. tongima and E. excavata are about
equally abundant in the oldest formations
(Fig. 4), but E. excavata becomes noticeably
less abundant in the younger formations, at
least relative to its own average abundance
over time (Fig. 5). The abundance of A. unicor-
nis is reduced from the first to the second time
interval and then remains relatively low. For
our system, we explicitly assume that kf,s = k
(see “Materials and Methods”).

Simulation Results
The abundance-specified simulation study

shows a spread of the estimates around the true
values for the input parameters (Supplementary
Figs. S12–S15). As a consequence, there is also a
spread in the quantities that, in our modeling,
are derived, namely occupancy probabilities
(SupplementaryFig. S16), detectionprobabilities
(Supplementary Fig. S17), and RSAs (see Fig. 6
and Supplementary Fig. S18; the latter shows
inferred dynamics for a few simulations). These
estimates are distributed quite evenly around
both sides of the actual values. Minute biases
were expected (and found)givenour informative
priors and nonlinear transformations but were
no cause for worry (see “Abundance-specified
Simulation Study” in the Supplementary Mater-
ial). RSA has traditionally been estimated as the
number of detections of a species in a formation
divided by the sum over species of the number
of detections in the formation (e.g., Kidwell
2001; Peters 2004; Harnik 2011). Such detection
ratio–based R estimates seem to deviate more
from the actual values (Fig. 6), where averaged
root mean-squared error (RMSE) for our model
estimates equals 0.011 and 0.063 for detection

FIGURE 3. Estimated occupancy and detection probabilities. Estimates are from our full model, where black lines join the
species posterior median occupancy for each formation (time interval) plotted in the middle of the age range of the given
formation. Gray lines show 95%posterior credibility intervals for the estimates. Note that the occupancy for superspecies is
not plotted, as it is assumed to be 1 throughout, and that the y-axes for occupancy and detection are different.
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FIGURE 5. Estimated relative population density (RPD). Estimates are from our full model, where black lines join the spe-
ciesmean relative population density, Q, for each formation (time interval). Gray lines show 95% posterior credibility inter-
vals for the estimates. Formation-specific values are divided by the mean across formations. Hence, a value of 0.1 means
that the abundance is 10% of the mean across formations for the given species (horizontal stippled lines at value 1).

FIGURE 4. Estimated RSA. Estimates are fromour full model, where black lines join the speciesmeanRSA, (plotted on a log
scale, except for the superspecies for visibility) for each formation (time interval). Gray lines show 95% posterior credibility
intervals for the estimates and medians. A relative species abundance of 0.1 (for a given species in a time interval given)
means that every 10th bryozoan in the region was of this species. The inset on the right (“Combined”) shows the estimates
combined for the four species/superspecies from their separate plots (note the different scale used for visual clarity).
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ratio–based estimates. Thus our impression from
the figure is reinforced by these numbers. When
decomposing into bias and standard error, we
found that biases and standard deviations were
smaller for full model estimates than for detec-
tion ratio–based estimates for all species–time
period combinations.

Discussion

Ecologists are interested in estimating chan-
ging RSA and RPD because these values
provide a prime window into population
dynamics (Sutherland et al. 2013). On a shorter
timescale, understanding how environmental
attributes and species traits affect population
changes within communities are not only key
to ecological understanding but also conserva-
tion management (Bowler et al. 2018). On a
longer timescale, relative abundances of fossil
taxa give us baselines for conservation
(Barnosky et al. 2017), ecological backdrops

for evolution of phenotypes (Hannisdal 2006),
and changing ecological interactions (e.g.,
Liow et al. 2019) so that we can better link
paleoecological dynamics to evolutionary
changes. However, estimating numbers of indi-
viduals in nature is challenging, regardless of
the characteristics of an organism (e.g., sessile
or motile, small-bodied or large-bodied), the
type of data (e.g., direct counts, capture–recap-
ture data), or the timescale involved (e.g.,
seasonal, yearly, or paleoecological data).
Occupancy modeling, which explicitly models
detection probabilities when estimating para-
meters of biological interest, including changes
in relative abundance, is one powerful way of
incorporating different sources of data hetero-
geneity and uncertainty. While occupancy
modeling is increasingly widespread in “trad-
itional” ecological studies (Bailey et al. 2014),
it has yet to be applied regularly in paleoecology.
To briefly elaborate on the applicability of

occupancy modeling in general, including our

FIGURE 6. RSA from the abundance-specified simulation study. Dashed black lines show the true relative species abun-
dances for the various species and formations, dark gray dots show the inferred dynamics using the full model estimates,
and light gray dots show detection ratio–based estimates. The full model estimates are offset slightly to the left of each for-
mation, and the detection ratio–based estimates are offset slightly to the right.
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modeling framework for relative abundance
(RSA) or density (RPD) in paleoecological set-
tings, we emphasize that fossil detection prob-
ability is far from perfect (i.e., 1), not least
because preservation is far from guaranteed
(Kidwell and Holland 2002). Traditionally in
paleoecology, however, there is an underlying
assumption, usually implicit, that preservation
(and hence the detection of preserved organ-
isms) is comparable across samples and sites,
sometimes even across time intervals, as long
as sampling is standardized. Here, detection
ratios (see “Materials and Methods: Study Sys-
tem”) are usually presented as estimates of RSA
(Kidwell 2002; Currano et al. 2008; Espinosa
et al. 2020). However, we know from simula-
tions and ecological studies, and the observa-
tions made in this study (compare Fig. 3 and
Supplementary Fig. S2), that this assumption
is problematic (Iknayan et al. 2014; MacKenzie
et al. 2017). Not only is it important to progress
beyond tabulations of paleoecological data for
improved inferences, but parameters estimated
using fossil data should be as comparable as
possible with those estimated using living
organisms. This will allow us to infer historical
baselines for conservation applications and to
gain a better understanding of changing biota
over longer timescales for which we may have
analogous crisis situations (Harnik et al. 2012;
Barnosky et al. 2017).
Occupancy modeling is generally applicable

to the fossil record where replicates within sites
can be surveyed to estimate regional para-
meters. In the multispecies modeling frame-
work we presented for encrusting bryozoans,
we used shells within sites (sections of out-
crops) as site replicates. In other applications
of occupancy modeling in the fossil record
using either more basic occupancy models or
our multispecies framework, we envisage the
use of subsamples of outcrops (e.g., replicated
slabs of outcrops; Liow 2013), bulk material,
age-constrained lake or deep-sea core samples
as site replicates. If these subsamples and the
“sites” from which they are extracted have con-
stant areas/volumes, the estimated occupancy,
RSA, and RPD are straightforward to interpret
without increasing complexity (unlike in our
system, see below). Note that sites (and their
subsamples) should be randomly selected and

representative of the region that is the focal
realm of the given study. In addition, to pick
up temporal dynamics rather than habitat
dynamics, we explicitly assumed that the sam-
ples (i.e., the habitats and environments they
represent) are comparable across time. While
selected sites will be heterogenous with respect
to both preservation and true species occu-
pancy, site-specific covariates can be used to
improve parameter estimation (MacKenzie
et al. 2017), or when there is no suitable covari-
ate that can be used, using site-specific random
effects as demonstrated is also a good solution
to site heterogeneity. As already mentioned,
the “superspecies” is not required if one’s
empirical system is not particularly species
rich (unlike our empirical example). If all
observed individuals are potentially assignable
to a species in a group of interest, the estimated
RSA and RPD will be relative to the group as a
whole. As in all statistical modeling, the idio-
syncrasies of the empirical system should be
carefully considered, given the assumptions
of the given model to help with both modeling
and interpretation of the estimates. Below, we
discuss some details of our own empirical system
to illustrate such considerations and give exam-
ples of other empirical data that may be common
in paleontology to highlight any differences.
Rather than using the observed detection or

nondetection of species, we could have used
the counts of the number of individuals of a
given species in each subsample. If we used
the latter, we would have built a model similar
to an N-mixture model (Royle 2004). However,
the subsamples in our example (shells or frag-
ments thereof) varied in size, and these differ-
ences are expected to affect the number of
individuals (colonies in our case). As shell
size was not quantified, a random effect for
subsamples would be needed to account for
this variation. This inclusion would massively
increase model complexity while introducing
an uncertainty that would make the extra infor-
mation (counts per subsample in our case) of
little use. Because the computational cost
would increase dramatically, while the outcome
was not expected to improve significantly, we
decided against this route for our empirical
demonstration. However, in other applications,
subsample size can be accounted for.
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The accuracy of the RSA and RPD estimates
depends on how close the assumptions con-
cerning the proportionality coefficients are to
reality. The estimates of RSA assume that the
proportionality coefficients do not vary
among species, and the estimates of RPD
assume that the coefficients do not vary
among formations for each species (i.e., both
RSA and RPD are only accurate at the same
time if the proportionality coefficients are
constant across both species and formations,
kf,s = k). As already mentioned, we assume
that both RSA and RPD are valid in our empir-
ical system (as described in our results). How-
ever, it might not be necessary to estimate
both RPD and RSA in another research context,
nor might it be appropriate. For example, if tree
pollen preserved in lake sediments is used to
estimate relative abundance of tree species,
and if some tree species are ecologically rare
but highly prolific when producing pollen,
RPD will be valid in our model, but RSA
will not.
Our estimates of RSA apply only to the shell

substrates that we have sampled; likewise the
unit for our RPD is density per shell. Hence, if
it is desirable to interpret the estimates given
a different unit (e.g., per area sea bottom), one
would have to make additional assumptions.
Such assumptions depend on the application.
For our data, the recruitment of encrusting
bryozoans to substrates is thought to be largely
limited by the availability of adults, although
substrate orientation, the presence of biofilms,
and substrate types (e.g., hard substrates vs.
soft substrates like sea grass or kelp) may also
influence larval attachment and subsequent
growth (Taylor and Wilson 2003) and may
have species specificity. We have purposefully
limited our data collection to bivalve shells,
the most abundantly available and preserved
substrate, which is always represented in our
Pleistocene system (Beu 2012). In addition,
while bryozoans might be selective of habitats,
for example, the strength of currents and
coarseness of sediments in the habitat affects
their filter-feeding abilities, (Wood et al. 2013),
the same bryozoan species can be found on var-
ied substrates, that is, different species of
bivalves, rocks, gastropods, and echinoderms
(Rust and Gordon 2011). This empirical

knowledge encouraged us to estimate RPD
(Qf,s) assuming that the availability of suitable
substrate for any bryozoan species in our data-
set is not limiting.
When estimating RPD, we removed the

formation-specific random effects on detection
probability belonging to all species. This has a
strong impact on the RPD estimates, as the
standard deviations of these random effects are
estimated to be quite substantial. Our assump-
tion (see the paragraphs preceding eq. 7) is that
these random effects reflect variation in preser-
vation in our study system, with similar bryo-
zoan species encrusting similar shells (e.g.,
Liow et al. 2019). In other applications, however,
the time-specific random effects may reflect true
fluctuations in the community-level abundance,
and hence should not be removed.
For our study, the biggest driver of relative

abundance is the dynamics of detection and
thus of average observable abundance per
subsample given occupancy, while inferred
occupancy probability and its estimated un-
certainty are estimated to be quite high for all
species and formations, thus revealing little
dynamics (Fig. 3). This is because site observa-
tions are high for all three focal species, even
though subsample detection probabilities are
relatively low. The occupancy dynamics–
focused simulations study (see “Occupancy
Dynamics-focused Simulation Study” and
Table S4 in the Supplementary Material for
details) showed that reliably getting occupancy
estimates that vary from formation to forma-
tion requires intense sampling protocols in
our empirical system for our choice of species,
with the possible exception of Escharoides exca-
vata. Luckily, detecting occupancy dynamics
was not the primary goal of our study. How-
ever, this potential issue of data insufficiency
illustrates the importance of collecting pilot
data and having some prior information
about the empirical system inwhich occupancy
modeling, with or without the added wish for
relative abundance modeling, is to be per-
formed, for instance, by running simulations
such as those we suggested, before extensive
data collection.
We note several extensions to our models

that can be considered with regard to our
empirical system. First, other sources of
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system-specific variation might be taken into
account. In our example, this includes the spe-
cies of the shell substrate (e.g., some were
cockles and others were scallops) and their
body size, both of which may be selected by
the bryozoan species involved and/or prefer-
entially preserved. Second, we could poten-
tially handle the number of colonies of each
species observed for each subsample, because
this could give an extra indication of the local
average abundance per shell, although this is
demanding data collection-wise aswell as com-
putationally for our dataset (as mentioned earl-
ier). Third, in typical paleontological datasets,
there are often time intervals in which we are
not able to sample fossils because suitable
material was not deposited. In our empirical
example, we used two paleoenvironmental
proxies (δ18O and Mg/Ca ratios) as covariates
in expanded models (Supplementary Material)
in the hope that they contained predictive infor-
mation we could use on unsampled time inter-
vals.While neither of the twowe had published
data for were informative, it is possible that
other paleoenvironmental proxies, given other
paleoecological occupancy datasets, could be
explored for this purpose. Alternatively, if pos-
sible, it is more appropriate to use paleoclimate
proxies obtained from space and time samples
matching the fossil occupancy data to more
accurately describe the paleoenvironment in
which the organisms lived, an option we did
not have in our empirical example.
We hope that more paleoecologists will con-

sider occupancy modeling as a means to esti-
mate relevant ecological parameters and that
modelers will pick up where we left off to
improve the inference of biologically relevant
parameters using a challenging but rich fossil
record.

Data Availability Statement

The code and data for all analyses are pro-
vided at https://github.com/trondreitan/
TRAMPOline. The code package is called
TRAMPOline, based on an earlier acronym
for the project, Temporal Relative Abundance-
focused Multi-sPecies Occupancy model. Sup-
plementary Material is available at https://
github.com/trondreitan/TRAMPOline/blob/

main/Reitan%20Ergon%20Liow%20occupancy_
SI.docx.
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