
divide et impera

A Computational
Framework for Verifying
Object Component
Substitutability

Else K. Nordhagen

Dr Scient thesis 16
November 1998

UNIVERSITY OF OSLO
Department of Informatics

Department of Informatics
Dr Scient thesis 16
ISBN 82-7368-200-5
ISSN 0809-3857

 • divide et impera •

A Computational Framework for

Verifying

Object Component Substitutability

by
Else K. Nordhagen

 • divide et impera •
A Computational Framework for

Verifying

Object Component Substitutability

by
Else K. Nordhagen

Abstract:

This thesis presents a formal model of object-oriented concepts; in particular
we focus on the concepts found useful by experienced designers of reusable
software components. The value of the formal model is shown by studying
safe substitution of sets of objects in a software system. Safe substitution
means that sets of objects may be substituted with similar sets, while the rest
of the objects in the system will observe no difference. The conclusion is that
safe substitution can be ensured by setting sufficient requirements on the sets
of objects and on the similarity relations between such sets. Many of these
requirements correspond with common design practice. However, the study
has shown that some requirements traditionally considered necessary are not
needed, and that new requirements must be added to ensure safe substitution.
If or when these new requirements are incorporated into common practice, the
result will, hopefully, be more efficient system development and maintenance.

Submitted for the partial fulfillment of the degree Doctor Scientiarum
November 1998

Supervisors: Olaf Owe and Bjørn Kirkerud

Department of Informatics
Faculty of Mathematics and Natural Sciences

University of Oslo
Norway

i

Short Overview

The most promising way to efficiently and safely create computer applications is by composing software
components. Component composition is more efficient than traditional programming. When software
components already exist they do not need to be designed, programmed and tested for each application.
Component composition is also safer when the components have been used in other applications where they
have been tested and where errors have been removed.

Existing applications and systems composed from software components can also be extended by substituting
existing components with new ones. Such systems are called extensible. According to Pountain in Byte May
1994 it is "the software engineers nirvana" when functionality can be changed or added to an existing system by
substituting components at runtime.

In this tradition, experienced designers' classify components by their collaborative behaviour. Similarity of
components is based on the principle that two similar components can be substituted without the rest of the
software in the system observing any difference in behaviour. Additionally, to avoid new errors, a component
must behave in a similar way even when other components in the system are substituted with components with
similar behaviour. We say that when this additional requirement holds for similar components, then one
component can safely substitute for the other. Safe substitution is formally expressed by a substitution
proposition.

At present the most successful extensible systems are built using object-oriented components. To support
reasoning about such object-oriented components this thesis introduces an object-oriented calculus. The calculus,
called Omicron, is based on a simple object-oriented language and gives a formal definition of the semantics of
this language. The calculus directly models the concepts used by experienced designers of reusable object-oriented
components: object identity, object creation, encapsulation, inheritance and message sending. The calculus is
used to reason about properties of components typically consisting of more than one object.

The main result of the thesis is a formal definition of safe substitution of components. This result is derived at
by proving the substitution proposition for components expressed in Omicron. The result includes a list of
requirements on component and similarity definitions that are necessary and sufficient to formally prove safe
substitution. It is shown that many of these requirements correspond with component designers'
recommendations on how to design reusable components. It is also shown that some traditional requirements are
unnecessary, while other requirements are previously unknown, but should be incorporated into design notations
and practices. Using the new results will, hopefully, better support the design of reusable and maintainable
components and give more efficient system development and maintenance.

The title "divide et impera" is motivated by the idea of splitting a large system into manageable components.
One of the main results of this thesis is a description of how to create components so that systems work as
planned when building and maintaining them by manipulating their manageable components.

ii

Preface

The work presented in this thesis, submitted to the University of Oslo for the degree "Doctor Scientiarum", has
been carried out at the Department of Informatics at the University of Oslo.

The work has been done by a practitioner who resorted to theory. After more than 15 years of program
development, maintenance and use of object-oriented libraries and Frameworks1 I saw the need for a more formal
basis for defining similarity of software.

This experience started in 1978 with the use of Simula libraries for DEC 10 developed by Jackob Palme at FOA,
the Swedish defence research centre. The next step was the use of Smalltalk-78 at Centre for Industrial Research
(SI) in Oslo in 1980, one of the first Smalltalk systems outside Xerox PARC, installed at SI in 1979. In
1982/84 Apple Computer developed the Lisa computer including a library of reusable components in Object
Pascal. This library was the first commercially available Framework. At SI we used the Lisa Framework for
making a document production system. In 1985 the first commercial Smalltalk systems was delivered by
Tektronix. We used several of these systems for the initial development of the object components which now are
further developed and sold by Taskon Exie AS in Oslo. We also developed initial versions of the object-oriented
development method Ooram, later documented in (Reenskaug et al. 1995).

The presented work was rooted in practical problems encountered during years of system development trying to
make more maintainable and reusable software. To help solve some of these problems I hoped that there were
formal models available which easily could be used to describe and reason about software components as found
in, eg, Smalltalk. After several attempts at using existing formalisms, the conclusion was that it was very
difficult to make intuitive formal models which described such software component. I therefore found it necessary
to make my own formalism which was more in line with the object-oriented modelling concepts I knew and
where I could make definitions and draw conclusions which I intuitively understood. This made it necessary to do
more basic formal work than originally expected.

I had clear ideas of what I wanted to prove - in the thesis represented by characteristics of object component
systems and the substitutability proposition - and the formalism was developed to be able to prove such
properties. To create a formal model making the proofs manageable, I developed the formal model and the proofs
in close relationship to each other. I have therefore chosen to present the work as a monograph, as the results
were not arrived at one by one, but developed together. A paper on the Omicron calculus was accepted for an
IFIP-conference in 1996. The main idea of the formal model and Omicron was developed in 1993 while most of
the present work was written in the autumn of 1995 and the spring of 1996. Later work has mainly been
revisions of the structure of the propositions leading up to the main theorem.

Acknowledgements
This work could not have been done without inspiring years from 1980 to 1990 at Centre for Industrial Research
(SI2) in Oslo. Professor Trygve Reenskaug was an encouraging mentor and teacher of system development in
general and object-oriented technology in particular. At SI he developed a group of enthusiastic, creative and
humorous people and initiated interesting research projects for us to indulge in and learn from.

Ivar Jacobson gave me economical support for starting the thesis work in 1990 when his firm Objective
Systems3 hired me as a part time consultant. OS housed a group of dedicated and knowledgeable object-oriented
programmers and working with them gave me new and better understanding of object-oriented design.

From the end of 1990 I got a grant from NTNF4, which made is possible to concentrate more on thesis work
and less on consulting.

1Not to be confused with "Computational Framework". The term Framework was first introduced in
(Deutsch 1989), but was used many year prior to 1989 to denote a set of classes designed to be used for
creating extensible systems.

2Now part of the SINTEF group, Norway
3Now part of Rational : http://www.rational.com
4NTNF grant number 13220, NTNF was The Royal Norwegian Council for Scientific Research, later

merged to form NFR: The Research Council of Norway

iii

Olaf Owe came to my rescue when I tried to find a supervisor for a doctoral degree. He believed in my ideas and
has patiently and carefully corrected my more and (lately) less hopeless attempts at expressing myself formally.
Olaf's ability to comprehend complex formal models such as the present work and thereby be able to point out
inconsistencies and errors and suggest alternative formulations has been essential.

Bjørn Kirkerud was an excellent teacher and a helpful supervisor until cancer took him away. He was the best
teacher I had in computer science when I took his courses 20 years ago. During my thesis work he thought me
symbolic mathematics and showed me how to use strange symbols such as ∀ and ⇒ and then helped me make
the results intelligible to a wider audience. In the later years I also had the pleasure of collaborating with him on
giving the departments beginning course and discussing various aspects of education in programming with him.

Fellow doctoral student Bjørn Kristoffersen made a crucial contribution to this work when he introduced me to
the π-calculus of Milner et.al. This was a breakthrough in my struggle to find appropriate ways to formalise
objects. The π-calculus could not be used directly, unfortunately, but acted as an example of how to create a
formal framework. We also had many interesting discussions comparing theory with practice and functions with
objects.

I also want to thank earlier co-workers and discussion partners which helped me broaden my view of objects:
Anne Lise Skaar, Pål Stenslet, Anne Hurlen, Arne-Jørgen Berre, Per Wold, Anton Landmark, Aleks Rokic, Tone
Bratteteig, Arne Maus, Ragnar Normann, Ole Smørdal, Jan-Erik Ressem and Gerhard Skagestein. In particular I
want to thank Eivind Nordby for reading a previous version of this thesis and returning it with clear signs of
thorough reading: a large number of useful comments, questions and suggestions.

My current employer, Håkon Gundersen at Animagic System AS, has shown generous flexibility in the last two
years when I have been ill, doing the final corrections of my thesis while also trying to fulfil my obligations as
an employee.

There are many reasons why I do research in computer science. First off all I owe a great deal to my father. He
took me and my sister to play space war on "his" PDP 7 in 1966. This showed the two small girls that
computers are fun. He also gave me an article about Smalltalk in 1972 that sparked my interest in programming.
To my mother I am grateful for her belief in what I can achieve and therefore always telling me "If you really
want to - of course you can do it".

Finally, I want to thank my husband, Helge Bukkvold, and the rest of my family for their support of my work,
helping me though illnesses and keeping my feet on the ground.

Oslo, November 1998
Else K. Nordhagen

iv

This document was created using various MacIntosh computers running Microsoft Word 5.1a and EndNote Plus 2.1.

v

Contents
CHAPTER 1 : Object Component Substitutability, An Introduction...1
1.1 Object Component Substitution ...2
1.2 Reliable Substitution ..7
1.3 Applicability of Reliability Properties..11
1.4 Goal and Document Structure ..15
1.4 The Contributions of this Thesis ..19

CHAPTER 2 : Model-View-Controller - The Classical Example ..21
2.1 The Model-View-Controller Framework..22
2.2 A Simple Model-View Contract...27
2.3 Observable Behaviour ..30

2.3.1 The observable behaviour of the model...30
2.3.2 Hidden behaviour ..31
2.3.3 Observability of actions stemming from execution of sentences in the context...32
2.3.4 New objects can be added to observers ...32
2.3.5 The observable behaviour of boundary objects may be non-deterministic ..33

2.4 Observable Similarity ...34
2.4.1 Observably similar actions...34
2.4.2 Observable similarity from execution of sentences in the component and in the context............................36
2.4.3 Similar observable behaviour to non-deterministic behaviour ..36
2.4.4 Observing termination and sequences of hidden actions ...37

2.5 Reliability Requirements ..38

CHAPTER 3 : Modelling OCS Properties Using Omicron..41
3.1 A Simple Object-Oriented Language..42

3.1.1 Why the new language Omicron is created..42
3.1.2 Advantages of limiting the number of concepts...43
3.1.3 Names, slots, objects and methods ..43
3.1.4 Object systems and components ..44

3.2 Execution of Omicron Systems ..46
3.2.1 Executing sentences in Omicron..46
3.2.2 Objects as templates for object creation ..47
3.2.3 Inheritance between objects: Extension objects...48
3.2.4 Objects and methods in one concept ...48
3.2.5 Self reference...50
3.2.6 Error actions ..50
3.2.7 Summary of Omicron's object-oriented concepts ..51

3.3 Defining Part of the Model-View Contract Using Omicron...52
3.4 Formal Definition of Omicron..54

3.4.1 Omicron syntax..54
3.4.2 Formalisation of configurations...55
3.4.3 Formal operational semantics of sentences..57
3.4.4 Basic notations and definitions..60
3.4.5 Some properties of configurations of objects ..61
3.4.6 Combined configurations ..62

3.5 Alternative Semantic Descriptions ...65

CHAPTER 4 : Observable Behaviour and Refinement Relations ..67
4.1 Observable and Hidden Actions ..68

4.1.1 Observable actions and action sequences ..68
4.2 Observable Equality ...72

4.2.1 Definition of observably equal actions ..72
4.2.2 Observably equal action sequences ...74

4.3 A Refinement Relation ...75

vi

CHAPTER 5 : Reliability Requirements ..79
5.1 Reliability of Refinements..80
5.2 Configuration Specialisation ..82

5.2.1 Name substitutions ..82
5.2.2 Substitution of observer names..82
5.2.3 Substitution of slot names..83

5.3 Reliability Requirements ..86
5.3.1 Inheritance slots...86
5.3.2 If-sentences..88
5.3.3 "Message not understood" errors...89
5.3.4 External methods ...91
5.3.5 Summing up requirements on reliable configurations ...92

5.4 Observable Similarity ...93
5.4.1 Observably equal names as parameters..93
5.4.2 Slot names as parameters in messages ...95
5.4.3 Observable similarity of actions ..97
5.4.4 Reliability of configuration specialisation ...98
5.4.5 Observably similar action sequences ...100
5.4.6 Reliable names in refinement configurations...102
5.4.7 Reliability is preserved by substitutions ..102
5.4.8 An equivalent definition of observable similarity..104

5.5 A Reliable Refinement Relation ...106
5.5.1 The prime of a substitution..106
5.5.2 Observably similar actions and prime substitutions...107
5.5.3 A reliable refinement relation ..110
5.5.4 Equal actions from different context sentences ...111
5.5.5 Limitations on visible objects in refinements ..112
5.5.6 Relationships between the refinement relations...112

CHAPTER 6 : Proving Reliable Substitution...115
6.1 Reliability Properties..116

6.1.1 Reliability of specialised configurations..117
6.1.2 Derived substitutions and configurations ..121

6.2 The Simple Substitution Theorem..123
6.2.1 The simple substitution theorem..123
6.2.2 The induction base of the theorem...124
6.2.3 The induction step of the theorem ...125

6.3 Replacing configurations..134
6.4 The General Substitutability Theorem..139
6.5 Reliable Substitution ..142
6.6 A Library of Objects...143

CHAPTER 7 : A Sequential Version of Omicron ..145
7.1 Syntax and Semantics...146

7.1.1 Sequential Omicron syntax..146
7.1.2 Sequential Omicron Semantics..147
7.1.3 Basic notations and definitions..150
7.1.4 Some properties of configurations of objects ..151
7.1.5 Combined configurations ..152

7.2 Observable Actions ..154
7.2.1 Observable and hidden actions ..154
7.2.2 Observable equality and refinements...155

7.3 Reliability Requirements ..157
7.4 Discussion ..161

7.4.1 Sufficiency of reliability requirements for sequential Omicron...161
7.4.2 Reliability requirements for other versions of Omicron and similar languages ...161

CHAPTER 8 : How to Make Reliable Specifications and Reliable Refinements...163
8.1 Overview of the Chapter...164
8.2 Controlling Visible Object Names..166

8.2.1 Reliability and visible object names ..166
8.2.2 Related work..167
8.2.3 Further work ..169
8.2.4 So why not only have one visible object ?...170

8.3 Practical Implications ...171
8.3.1 No external inheritance..171
8.3.2 Reliable method lookup...172
8.3.3 Reliable message selectors as parameters ..175

vii

8.3.4 Reliable if-sentences..176
8.3.5 Reliable message sending ..176

8.4 Use of Classes in Reliable Code...179
8.4.1 An example..179
8.4.2 Related work..180
8.4.3 Conclusion...181

8.5 Reliable Substitution in Practice ..183
8.5.1 How to make reliable refinements ...183
8.5.2 How to make reliable specifications ..183
8.5.3 Ensuring correctness of specifications...185
8.5.4 Ensuring reliability of refinements ..187
8.5.7 Reliability and reusability of components ...189
8.5.7 Summary of lessons learned ..190

CHAPTER 9 : Related Work..193
9.1 Models of Distributed Systems...194

9.1.1 Discussion of distributed system models ...194
9.1.2 The actor model ...197
9.1.3 The p-calculus and Omicron..198

9.2 State Based Functional Models ..201
9.2.1 Objects as collections of functions ..201
9.2.2 Examples of functional object models...201
9.2.3 Traditional functional models are not sufficient for modelling object behaviours202

9.3 Other Formal Object Models..204
9.3.1 Approaches using specialised logics..204
9.3.2 Approaches using traces ..204
9.3.3 Demeter-Contracts...205
9.3.4 ABEL...205
9.3.5 POBL (or pobl) ..205
9.3.6 Other approaches...205
9.3.7 Object-oriented languages ...205

9.4 Assumption / Guarantee Specifications ..207
9.4.1 The composition principle ...207
9.4.2 Composition and decomposition ...209

CHAPTER 10 : Conclusions and Further Work...211
10.1 Main Conclusions...212
10.2 Further Work ..217

10.2.1 Other languages and rules of action...217
10.2.2 Other refinement relations and substitution propositions ..217
10.2.3 Omicron's relationships to other models..219
10.2.4 Applications of the theoretic results ..220

10.3 Summary of Conclusions..223

Bibliography...227

Appendixes...235
Appendix A : Basic Definitions..237

1 BNF ...237
2 Map notation and formal definitions ...237
3 Object name substitutions..238
4 New form for Case statements ...239

Appendix B: Translations between the p-calculus and Omicron..241
1 The p-calculus and Omicron..242

Appendix C: References...249
1 Object-oriented languages ...250
2 Object-oriented methods..250
3 Related publications ..252

Index:..253

viii

List of Definitions
Definition: The substitution proposition ... 9
Definition: Reliable refinement relations... 10
Definition: The reliable substitution proposition... 10
Definition: An object system... 44
Definition: Components .. 45
Definition: Transition .. 58
Definition: Transition relation and rules of action... 58

Definition: Sequences of transitions and actions: a

¾ ®¾ , a .. 60
Definition: Derivation of a configuration .. 60
Definition: The traces of a configuration... 61
Definition: Description and execution parts of actions.. 61
Definition: Terminal configurations .. 62
Definition: The NewNames function... 63
Definition: The prime of a configuration... 63
Definition: Combinable configurations ... 63
Definition: Visible object names ... 63
Definition: Observable Action... 69
Definition: Observable trace of a sequence of actions... 69
Definition: Hidden actions relation ... 69
Definition: Silent actions... 70
Definition: Observable equality relative to a set of object names.. 72
Definition: Observably equal action sequences... 74
Definition: Ending collaboration... 76
Definition: Refinement relation... 76
Definition: A name substitution .. 82
Definition: Reliable substitution relative to configurations... 83
Definition: Configurations with safe names .. 84
Definition: Reliable if-sentences in a configuration C when combined with a configuration B.. 89
Definition: Reliable message sending from a configuration A when combined with a configuration D90
Definition: Reliable method lookup in a configuration A when combined with a configuration D 91
Definition: Reliable (A, D).. 92
Definition: Reliable(A, D, a).. 92
Definition: Reliable substitution relative to a set of object names... 95
Definition: Observable similarity relative to a set of object names and a reliable substitution.. 97
Definition: Observably similar action sequences relative to a substitution ... 100
Definition: RelNames in A, B and C ... 102
Definition: The prime of a substitution: prime(s, a, b, A, B, D) ... 106
Definition: Refinement relation with specialisation .. 110
Definition: Alternative refinement relation.. 129
Sequential Omicron:
Definition: Transition and action... 147
Definition: Transition relation and rules of action... 148

Definition: Sequences of transitions and actions: a¾ ®¾ , a .. 150
Definition: Derivation of a configuration .. 151
Definition: The traces of a configuration... 151
Definition: Description and execution parts of actions.. 151
Definition: Terminal configurations .. 151
Definition: The NewNames function... 152
Definition: The prime of a configuration... 153
Definition: Observable Action... 154
Definition: Observable equality relative to a set of object names.. 155
Definition: Refinement relation... 156
Definition: Observably similar actions relative to a substitution... 158
Definition: Observably similar action sequences relative to a substitution ... 159
Definition: Refinement relation with specialisation .. 159
Basic definitions:
Definition: An object name substitution.. 236
Definition: Keys and values of a substitution.. 236
Definition: Applying a substitution to a configuration : Cs .. 236
Definition: Applying a substitution to an action : as.. 236
Definition: Combining substitutions ... 237

ix

List of Propositions, Lemmas and Theorems
Observations:
Observation O.3.1 A derived configuration is uniquely determined by the action ..61
Observation O.3.2 Each object is deterministic and gives equal derived configurations...61
Observation O.4.1.1 Non-observed actions are either silent or from execution of a sentence in observers..................70
Observation O.4.3.1 The refinement relation is neither an equivalence relation nor monotonic77
Observation O.4.3.2 Simplifying assumption about names of created objects ...78
Observation O.5.2.1 Observing objects' names are never keys in the substitution ...83
Observation O.5.2.2 Reliable substitutions do not change slot names in configurations with safe names85
Observation O.5.3.1 In configurations with no external inheritance, an action can only update slots

within the configuration where the executed sentence is found...87
Observation O.5.4.1 Reliable substitutions relative to configurations are also reliable relative to sets

of object names..95
Observation O.5.4.2 Properties of names in actions which are equal relative to a reliable substitution98
Observation O.5.4.3 Equal actions relative to a substitution are observably similar ..98
Observation O.5.4.4 Observability of observably similar actions...101
Observation O.5.4.5 Properties of similar observable action sequences...101
Observation O.5.5.1 Non-observed actions give equal substitutions and primed substitutions..................................107
Observation O.6.1 About combining reliable substitutions ...125
Observation O.6.2 The definitions of reliable refinements are equivalent ...130
Observation O.6.3 Components can be combined arbitrarily and refinement is preserved......................................138

Propositions:
Proposition P.3.1 The rules of action preserve syntactic correctness ...60
Proposition P.3.2 A configuration is terminal iff no rules of action are applicable..62
Proposition P.4.1.1 Silent actions are hidden actions..70
Proposition P.4.1.2 Hidden actions are silent actions except for trivial assignment ...70
Proposition P.4.2.1 Observable equality is an equivalence relation..73
Proposition P.4.2.3 The observably equal action sequences relation is an equivalence relation.................................74
Proposition P.4.3.2 The refinement relation is a pre-order..77
Proposition P.5.2.1 Reliable substitutions preserve substitution reliability ..83
Proposition P.5.3.1 Reliable substitutions give same slots and preserve "No external inheritance"88
Proposition P.5.3.2 The same method is found in a configuration and its specialisation..92
Proposition P.5.4.1 Observable similarity is transitive..97
Proposition P.5.4.2 The "Observably similar action sequence relation" is transitive ..100
Proposition P.5.4.3 Equal domains of derived configurations ..101
Proposition P.5.4.4 Reliable names in configurations and reliable substitutions preserve

configuration names...102
Proposition P.5.4.5 Same result of if-test when applying a reliable substitution...103
Proposition P.5.4.6 Reliable substitutions preserve reliable if sentences..103
Proposition P.5.4.7 Equivalent definition of observably similar action sequences from reliable

configurations ..104
Proposition P.5.5.1 Observably similar actions ensure reliable primed substitution for derived

configurations ..108
Proposition P.5.5.2 Pair wise concatenation of two observably similar action sequences gives

observably similar sequences...109
Proposition P.5.5.3 The refinement relation with specialisation is transitive..110
Proposition P.5.5.4 Observably similar actions are also observably equal..112
Proposition P.5.5.5 Refinements with specialisation are also refinements..113
Proposition P.6.1 Reliable refinements ensure safe names and reliable substitutions for

specialised refinements ..116
Proposition P.6.2 Specialisation is complete for reliable refinements..117
Proposition P.6.3 Reliable refinements ensures reliable message sending in specialised refinements117
Proposition P.6.4 Reliability gives equal actions relative to a reliable substitution ...118
Proposition P.6.5 Reliable method lookup is preserved by reliable substitutions ..119
Proposition P.6.6 Specialised reliable refinements are reliable configurations ..120
Proposition P.6.7 Observably similar actions give a common derived configuration ..121

Lemmas:
Lemma L.6.2.1 Property of equal and observably similar actions ..126
Lemma L.6.2.2 Reliable refinements give observably similar actions and common derived

configurations ..127
Lemma L.6.2.3 Observable similarity of actions and refinement configurations..130
Lemma L.6.3.1 Refinements are observably similar to parts of the observing configuration134

x

Theorems:
Theorem T.6.1 The simple substitution theorem..123
Theorem T.6.2 The component combination theorem..137
Theorem T.6.3 The general substitutability theorem..139
Theorem T.6.4 The reliable substitution theorem ..142

Sequential Omicron:
Proposition P.7.1 The rules of action preserve syntactic correctness ...150
Proposition P.7.2 A configuration is terminal iff no rules of action are applicable..152
Proposition P.7.2.1 Silent actions are hidden actions..154
Proposition P.7.2.2 Hidden actions are silent actions except for trivial assignment ...155

CHAPTER 1

Object Component

Substitutability

An Introduction

This chapter presents the theme of the thesis: object component systems and
substitutability of object components.

Section 1.1 presents the background of the work: the need for a formalisation of object-
oriented components. Furthermore it presents those characteristics of the models of object
component systems which distinguish them from other models, such as communicating
processes and functional models.

Section 1.2 introduces refinement relations between components. These are used to
express substitutability properties of components. The central concept in relation to
substitutability is that of reliable refinements. Simply and informally expressed, the
important substitutability property of reliable refinements is:

The context of some component will not note any difference if it collaborates with
the component or if the component is replaced by a component which is a reliable
refinement of itself.

Properties required by refinement relations in order to ensure reliability of refinements are
expressed through the central proposition of the thesis: the substitution proposition.

Section 1.3 discusses applicability of the reliability property. It presents some examples
of situations where it is useful to have components with substitutability properties.

Section 1.4 presents the goals of the presented work: to give a formal framework to reason
about object component substitutability. This section also gives an introduction to the
remaining chapters.

Section 1.5 summarises the main contributions of the thesis.

2

1.1 Object Component Substitution
This section will give an introduction to object component substitution and related concepts. First, the history
of object-oriented systems is briefly described and the terms object component system (OCS) and component
developer are introduced. Next, the motivation for the present work is given. In short this is to create a formal
framework for reasoning about substitutability of OCS components. After the subsection on motivation,
characteristics of object component systems are presented. Here concepts such as system, object, component and
refinement are defined in accordance with the OCS tradition. Section 1.2 introduces the main theme of the thesis:
reliable substitution of components.

Object-oriented Systems
Object-oriented technology stems from the programming language Simula (Dahl et al. 1968). However the term
"object-oriented" was coined by Alan Key's Smalltalk group at Xerox PARC in Palo Alto, California in the
period from 1970 to 1980. A paper referring to "Object-oriented systems" was first published in Byte August
1981 by the Xerox PARC group.

Smalltalk was the first object-oriented system, meaning that Smalltalk is not just a language, but a standardised
set of object-oriented libraries covering such things as file system, windowing system, text editing and process
switching. Well structured libraries created with subclassing and component substitution in mind, are called
Frameworks, the first being the Smalltalk-80 Model-View-Controller5 user interface Framework, documented in
(Krasner and Pope 1988), (Deutsch 1989), (Goldberg 1990).

Apart from a very rudimentary version of Smalltalk, called Methods, the first commercial object-oriented
Frameworks were found in the Lisa toolkit written in Classcal (an object oriented version of Pascal). These
Frameworks were delivered with the Lisa Computer from Apple Computer in 1982/84. Lisa was discontinued
when the MacIntosh was introduced. The work on the Lisa Toolkit and Classcal was continued in the MacIntosh
project and was reworked and reappeared as the MacIntosh Toolkit and Object Pascal.

In 1984 Tektronix made Smalltalk-80 (Goldberg and Robson 1983) commercially available, but this
implementation did not become widely spread. The language C++ (Stroustrup 1986) also appeared in the middle
80s, something which contributed greatly to the spreading of object-oriented technology. Another contribution
was Tektronix's decision to discontinue their Smalltalk development. This created a number of laid off
Smalltalkers which started to work outside Tektronix and thereby spreading object-oriented ideas across the USA.

The number of object-oriented programming languages today is large and new languages and object-oriented
extensions to existing languages are steadily being published. The book (Blair et al. 1991) gives a general
introduction and discussion of object-oriented concepts.

The latest development in commercial object-oriented technology is the explosion of Java (see, eg,
http://www.javasoft.com). The Java language has combined many of the good features from all previous
commercial object-oriented languages. Gosling, the "father" of Java, said in his talk at OOPSLA'96 that Java
owes much to Simula and that "Java is a stealth attack on C++ from Smalltalk programmers".

While C++ was just a programming language, Java, with its large standard libraries, is a complete object-
oriented system, just as Smalltalk is. However, compared to Smalltalk, Java programming is less interactive and
more rigid, but Java libraries give better support for the creation of distributed and multi process systems. It also
has a much larger and greatly increasing user community and considerable commercial push.

Object component systems - OCS
Dividing a system into components is an idea advocated by most grand old men of computer science, eg, Dahl,
Dijkstra and Hoare in (Dahl et al. 1972). The advantages of software composition have in the middle 90s again
come into focus and are underlined by a number of papers and books, for instance (Udell 1994), (Hölzle 1993)
and (Gamma et al. 1994). As (Henderson-Sellers 1993) points out, component composition is more efficient
than traditional programming when the software components already exist and therefore do not have to be
designed, programmed and tested for each application and system. Component composition is also safer when the
components have been used in other applications and systems where they have been tested and errors removed.

5Designing a system using the Model-View-Controller ideas were first done by Trygve Reenskaug and
others when developing a CAD/CAM ship-modelling system in the 1970'ies. They did not publish
their invention, but Model-View-Controller was introduced to the Smalltalk group at Xerox PARC in
1978/79 by Reenskaug on a one year visit to the Smalltalk group.

3

Applications and distributed systems composed from software components can also be extended by substituting
existing components with new ones. The term extensible systems is used for such systems. According to
Pountain in (Pountain and Szyperski 1994) it is "the software engineers nirvana" when functionality can be
changed or added to an extensible systems at runtime by substituting components. Smalltalk is an extensible
system, and new additions to Java make it possible to create extensible systems in Java. Extensible systems can
not be created in more traditional languages such as Simula and C++. However, Active X from Microsoft,
allows programming of extensible systems in C++, Visual Basic and other languages.

Extensible component based object-oriented systems will in the following be referred to as object component
systems, or OCS. The term component developer is used to refer to people designing and implementing object
component systems.

Object-oriented technology has been widely applied to the design and implementation of components and
extensible systems, typically advanced network applications with reactive user interfaces. General design
strategies which exploit software components have been published, eg, (Johnson 1992), (Gamma et al. 1994),
(Nordhagen 1989). Rules for creating good component designs, including how to create Frameworks, have also
been published, see for instance (Johnson and Foot 1988). There are also a number of object-oriented system
development methods which support the creation of object-oriented systems. Some examples are RDD (Wirfs-
Brock et al. 1990), Objectory (Jacobson et al. 1992), BON (Waldén and Nerson 1995) and OOram (Reenskaug et
al. 1995) (first report on OOram (Reenskaug and Nordhagen 1989), article (Reenskaug et al. 1992)). Lately,
UML (the Unified Modelling Language see http://www.rational.com) has appeared and created a lot of activity
and attracted much interest. Several of the central people which created their own development methods in the
late 80ies and early 90ies have joined forces and merged their ideas into UML.

Various standards which support the creation and extension of OCS has been developed. Examples of such
standards are COM, SOM, CORBA, OpenDoc and OLE, see Dr.Dobb's Journal of January 1995 for an
overview. Lately the focus has been set on two competing solutions, namely ActiveX from Microsoft and "Java
beans" from the group of companies supporting Java (see http://www.javasoft.com).

A huge number of formal models have been created based on object-oriented ideas. Some extend algebraic models
with ideas taken from object-oriented languages, while other base their work on process models. The chapter on
related work, chapter 9 refers to many such works. Lately there has been efforts comparing the various
approaches such as (Bruce et al. 1997).

During the last two decades a large number of different object-oriented languages, systems, and model have
emerged. As is shown above, lately there has been a clear trend towards consolidation and merging of ideas
related to object component systems. The OCS view of systems, components and objects is presented further
below.

Motivation
As an increasing number of object component systems are created and maintained, there is an increasing
awareness that formal component descriptions are needed. The formal descriptions are needed to ensure that no
errors are introduced when component systems are manipulated. System manipulation includes substituting an
existing component with a new component and replacing a general design of a component with a more detailed
design. If such manipulations can be done and it is ensured that no errors will be introduced, we say that we have
reliable substitution of components. When we have reliable substitution, the old and new components/designs
are similar in some sense. Formally defined relations which define similarity in ways which give properties like
reliable substitution, are called monotonic relations. Many monotonic relations are defined for various formal
models such as functional and process models. The relationship between reliable substitution and monotonicity
is discussed further below while chapter 9 presents various models of systems and components.

Along with the growing awareness of the need for a formal definition of similarity based on the object-oriented
system view, the component developers get frustrated with existing formalisms. The frustration is caused by the
formal models and monotonic relation definitions not conforming with the developers intuitive understanding of
components and similarity between components. Discrepancies between component developers' and formalists'
concepts are presented in chapter 9. There may be different reasons for this discrepancy. One reason may be that
some formalists use many of the same concepts, but do not focus on substitutability of OCS components, while
this is the main concern of the component developers. Other formalisms are based on concepts which are very
different from the concepts used in component system designs. It is therefore difficult to see if the monotonic
relations are related to the component developers' concept of similar components and reliable substitution.

It is recognised by many researchers and expressed in, eg, (Wegner 1994) and (Pountain and Szyperski 1994) that
at present there is weak support for formal reasoning about components in object component systems while at
the same time there is a need for such support.

4

The main motivation for the present work is the usefulness of OCS components and the lack of and need for
formal support for reasoning about such components.

Object Component System Design Characteristics
In order to make a formal framework for reasoning about object component systems, it is necessary to capture
the characteristics of such systems. These characteristics are found by looking at object-oriented programming
and design languages and by studying, using or developing the designs of preferably large and successful object
component systems.

Many of the characteristics found in object-oriented languages have been adopted into formal models to varying
degrees. These characteristics include the idea of an object as an entity which combines state and functionality
and where an object has an identity independent of its state. Other ideas taken from object-oriented languages are
encapsulation, classes and inheritance, virtual procedures and dynamic binding.

The characteristics which are only found by studying, using or developing the designs have been added to formal
models to a much lesser extent than those explicitly found in object-oriented languages. The following list
summarises the characteristics of object component system designs. The list has been created based on experience
with different programming libraries and systems, mainly applications in different versions of Smalltalk-80 from
1984 to 1994, but also libraries and systems in Simula, Smalltalk-78 (substantially different from Smalltalk-
80), Smalltalk-V, Object Pascal, C++ and Java. The characteristics are also found in examples in books and
papers on object-oriented design such as (Cook and Daniels 1994), (Cox and Novobilski 1991), (Deutsch 1989),
(Gamma et al. 1994), (Jacobson et al. 1992), (Reenskaug et al. 1995), (Waldén and Nerson 1995), (Wirfs-Brock
et al. 1990). Chapter 2 illustrates in detail the below characteristics by presenting an example design. For a full
introduction to OCS design, the reader should consult one or more of the above mentioned books. In the
description of the characteristics below, it is assumed that the reader is familiar with concepts from object-
oriented programming languages such as variable, message and class. Formal definitions of the concepts used to
describe characteristics of OCS designs are given in later chapters of this thesis.

Objects, Components and Systems:

A system: A system is a part of the real world which we choose to regard as a whole, separate from the
rest of the world during some period of consideration. This definition is from (Holbækk-Hansen et
al. 1975), a report on the first object-oriented system analysis method named Delta.

A system consists of objects: The system is viewed as consisting of objects, where each object is
associated with a name distinguishing it from all other objects in the system. An object has
variables and methods.

Object behaviour: When a system executes, the result is a sequence of actions (trace). We call the actions
which stem from execution of an object for the object's behaviour. The actions are of three kinds:
sending messages to objects, creating new objects and updating variables.

An object may be a component, but a component may consist of several objects: To make a system of
objects more manageable, the system is partitioned into a number of collaborating parts. The
partitioning is done by grouping objects into components. In some cases a single object will be a
component, but in many cases a component will consist of several objects. Each object is found in
one and only one component and will never move from one component to another.

Observable behaviour and component collaboration:

Observable behaviour: Components perform actions which involve themselves or other components in
the system. We call the sequences of actions involving other components the component's
observable behaviour. Components are characterised by their observable behaviour which typically
include actions which send messages to objects in other components, actions which create new
objects from templates in other components and actions which update shared variables.

Components form dynamic graph-like collaboration structures: If there are actions in one component
which involve another component, we say that the two components collaborate. The components in
a system will in this way form a collaboration structure. The collaboration structure is not just
callers and callees forming tree-like structures, but a general graph of collaborating components.
Since one component may get to know of new components through collaborations with other
components, the collaboration structure can change during the components' existence. A component
may be a client of the other components, the server for other components or both a client and a
server.

5

Refinements:

Similar observable behaviour: A component has similar observable behaviour to another component if
the other objects in the system observe similar behaviours from both components. The behaviour is
similar if the same objects are involved in sequences of similar actions. For a full definition of
similar actions refer to chapter 2.4. When two actions are similar they are typically two actions of
the same kind. Two actions are similar if they send the same message to the same object, create
objects from the same template or update the same variable.

Refinements of specifications: We call a component whose observable behaviour is similar to the
observable behaviour described in a specification a refinement of the specification. In presence of
non-deterministic behaviour, a refinement may have a more deterministic behaviour than the
specification and still be seen as having a similar6 observable behaviour.

Closed systems with boundary objects

The boundary between the inside and the outside of a system is found in objects with non-deterministic
observable behaviour: A computer system is rarely closed since most systems communicates with
users and external devices. The system-relevant behaviour of users and external devices are modelled
as objects. Often these objects have a non-deterministic behaviour. Thus a deterministic description
of the object's behaviour would be outside the scope of the modelling effort.

In object-oriented system development methods there are special names for such objects which
model behaviour of users and external devices. In Objectory (Jacobson et al. 1992) these objects are
called actors and in OOram (Reenskaug et al. 1995) they are called environment roles. In the
following, such objects are called boundary objects.

An object system is a closed system: A system specification form a closed system when using boundary
objects to model users and external devices. The system is closed in the sense that the objects in the
system specification only collaborate with each other.

Operational specifications:

Operational specifications: In general, a component can be specified by stating the characteristics of the
component explicitly, or by making an implementation (or implementation-like model) of a
component where the implementation will displays the desired characteristics when executed. When
specification is done by implementing a component with the desired characteristics, the
specification is operational rather than declarative. The operational specification approach agrees
with object-oriented design traditions such as Objectory, OOram and UML. An example of
operational specifications in the form of a contract (Helm et al. 1990) is given in chapter 2.

There is no clear distinction between an operational specification and an implementation of a
component since both are executable models. This agrees with object-oriented reuse-traditions where
an implementation is seen as a specification. A system developer is allowed to replace the current
component implementation with an alternative implementation if the two implementations have
similar observable behaviour. In such cases the current component implementation functions as an
operational specification, ie, a model which displays the desired properties. When implementations
are seen as specifications, there may be refinements of implementations.

Design of components and contexts:

Single components are seldom designed in total isolation: Usually all parts in a collaboration are designed
simultaneously. This is done since the quality of a component's design is judged by the flexibility
and simplicity of the total collaboration pattern, not just the design of an individual component.

Context dependent specifications: A component's observable behaviour is specified for a given context.
The context consists of other components. (Wegner 1995) calls such specifications partial
specifications. A partial specification does not specify a component's observable behaviour for all
possible contexts. Instead it specifies the component's behaviour in contexts which have similar
observable behaviours to a given context. Therefore, a component's specification will also include
the specification of the observable behaviour of the component's context. The observable behaviour
of the context is also a partial specification in that it will only specify the observable behaviour of

6 "similar" is here used to denote a non-symmetric relation. This is also done in (Milner et al. 1989a) and
others. "bisimilar" is in this tradition used to denote a symmetric relation.

6

the context relative to the component, ie, the behaviour of the context as observed by the
component.

Symmetry of component and context: When a design specifies the observable behaviour of both the
component, and of the context of the component, then the design contains the specification of all
parties in a collaboration. A component specification may then be viewed as both a specification of
the component and as the specification of the context. In the latter case the objects which were
originally found in the context are viewed as one or more components and the objects in the
original component becomes a part of these components' context. There is therefore a symmetry of
component and context.

There is component and context symmetry also in that both the component and the context may be
substituted with components / contexts which have similar observable behaviour.

Separate development of new versions of component and context: When creating a design it is
presupposed that new versions of the components will in general be created separately from each
other in space and/or time. The underlying idea is that it should be possible to define standards and
have a market for components. This idea is advocated by (Cox and Novobilski 1991), by (Meyer
1988) and (Meyer 1989) and others. Component standards are defined by specifying the components'
observable behaviours.

7

1.2 Reliable Substitution
Specification of components relative to a context
Object specifications are usually done by defining object types. There are many substantially different approaches
to defining types for objects (see chapter 9 on related work). In OCS design, object types are created in order to
define categories of objects which may replace each other without introducing what is perceived as errors into a
software system. In type-terminology, a category is formed by a type and its subtypes. In (Wegner and Zdonick
1988) the principle behind categorisation and typing of objects is formulated as the principle of substitutability:

An instance of a subtype can always be used in any context in which an instance of a supertype was expected.

Subtype relationships are usually written:

C ≤ D meaning that C is a subtype of D

The principle of substitutability is formulated for designs and specifications which describe a component by its
behaviour in any context. OCS components are specified by their behaviour for a given context. This has to be
taken into account when defining categories of substitutable components. Therefore, a refinement relation
between OCS components must be expressed so that the context is included in the relation. We let

C ≤B D denote that C is a refinement of D in the context B.

A note on type specifications and components:
A type is defined by a specification expressing common properties of all elements of the type. The elements of a
type form a set.

Often a relation is defined in order to identify all elements of a type. Such a relation is typically defined between
a component and a type specification so that if a component stands in the specific relation to a given type
specification, then the component will be included in the set of components of the type.

An OCS component can be viewed as a type specification. Then, all components which are refinements of the
type specification can form the set of components of the type.

When OCS component are used as type specifications, there is no clear distinction between a component and a
type specification. This is the view taken in this thesis. This is different from many traditional type systems,
where a type specification and instance of a type are seen as two fundamentally different things.

Refinements have similar observable behaviour
When C ≤B D then B should be involved in similar sequences of actions when collaborating with C as when
collaborating with D. This means that the sequences of actions involving B in B||C should be similar to the
action sequences involving B in B||D. The set of all sequences of actions involving B which come from
execution of B||C is called the observable traces of the system B||C relative to B. The objects in B are called
observers. We can informally define the observable traces of a system relative to an observing component as
follows:

Let B||C denote the system consisting of the components B and C. The observable traces of this system
relative to B will be the set of all possible sequences of actions which involve B objects and which occur
when the system B||C executes. The observable traces of B||C relative to B is denoted Traces(B||C)/Obs(B).

If both components have deterministic behaviour, the observable traces can be viewed as a single sequence
of actions (one trace). If the components have non-deterministic behaviour, the observable traces can be
viewed as a set of sequences of actions.

A full formal definition of observable behaviour is found in chapter 4. We say that Traces(B||C)/Obs(B) is the
observable behaviour of C relative to B, thus understanding it as the observable behaviour we get from
combining B and C, ie, B||C, not just the observable behaviour from only executing C.

When C is a refinement of D relative to B then C||B has similar observable behaviour to B||D relative to B, ie,
C ≤B D == Traces(B||C)/Obs(B) ≈ Traces(B||D)/Obs(B)

where ≈ denotes similarity of traces. Similarity of observable traces is defined in chapter 4.

8

Monotonicity and reliable substitution of components
For the subtype relation, the requirement is that the subtype relation is a monotonic. Monotonicity can be
formally stated, where ∀ B : Γ means "for all types B":

∀ B, C, D : Γ • C ≤ D ⇒ B||C ≤ B||D

This means that when C is combined with a context B, then the combination of B and C, denoted B||C, will be a
subtype of the combination B||D. To be true to the type idea where types and elements of the type are seen as
two fundamentally different things, this property is more correctly formulated as follows:

∀ B, C, D, E, F : Γ , c : C, d : D, b : B •

C ≤ D ⇒ ((b||d ∈ E ∧ b||c ∈ F) ⇒ F ≤ E)

where c ∈ C means that c is an instance of type C
b is some context for c and d, and
(b||d ∈ E ∧ b||c ∈ F) ⇒ F ≤ E means that if b||d is of type E and b||c is of type F

then F is a subtype of E.

Intuitively, this means that any element of a subtype of D can reliably substitute any element of type D.

When (b||d ∈ E ∧ b||c ∈ F) ⇒ F ≤ E for any b, then we also have ∀ f : (f||b||d ∈ G ∧ f||b||c ∈ H) ⇒ H ≤ G.
This can again be repeated adding more and more components. This property reflects the idea that subtype
relations and the principle of substitutability is formulated with an open system in mind; a system which can
expand by adding new observing and observable components to the existing components. A component must
then be designed with all possible contexts in mind. This is as opposed to OCS design, where components are
designed with a context with a certain observable behaviour in mind.

To get reliable substitution of similar OCS components, a property corresponding to monotonicity must be
defined for the OCS refinement relation. When defining a monotonic-like property for refinement relations
between OCS components it must take into account that the refinement relation is defined relative to a context
with a specified observable behaviour. It must also be taken into account that each OCS system is closed. Then
all components are defined in a specification and therefore no new components will be added. Instead, any
component in the specification may be substituted with a refinement. Therefore, not only a single component
may be substituted with a refinement, but components in the component's context may also be substituted with
refinements.

Because the refinement relation is defined relative to a context and because an OCS system is closed and all
components may be substituted, the OCS property corresponding to monotonicity will be quite different from
traditional monotonicity. The OCS monotonicity-like property can be illustrated by considering a system with
two components. If there is a system specification B||D and the following hold:

A is a refinement of B relative to D, ie, A ≤D B and
C is a refinement of D relative to B, ie, C ≤B D

then we want to have a system A||C without any unanticipated effects or erroneous functionality. To avoid such
effects and errors, the systems A||C and A||D must have the same A-observable behaviour, and likewise, the
systems A||C and B||C must have the same C-observable behaviour. This can be stated:

A should have similar observable behaviour to B relative to C, ie, A ≤C B and
C should have similar observable behaviour to D relative to A, ie, C ≤A D

The monotonicity-like property can be expressed as follows for a system which is divided into only two
components (examples are given in chapter 2):

(*) A ≤D B ∧ C ≤B D ⇒ A ≤C B ∧ C ≤A D

The components and component combinations can be illustrated as shown in figure F.1.1 below.

The conclusion A ≤C B ∧ C ≤A D ensures that A in A||C will only observe actions which are similar to actions
found in A||D and C in A||C will only observe actions which are similar to actions found in B||C. Therefore it
can be assumed that nothing new and unexpected will happen in A||C.

9

The refinement relation can be compared to an assumption/guarantee specification, introduced in (Jones 1983).
Such a specification asserts that a system ∏ provides a guarantee M if its environment F satisfies an assumption
E. This corresponds to the following expression using the refinement relation:

∏ ≤E M ∧ F ≤M E ⇒ ∏ ≤F M

More on the relationship between the refinement relation and assumption/guarantee specification in chapter 9 on
related work.

B||D

A||C

B||CA||D

specification

D combined with
refinement of B

B combined with
refinement of D

The two refinements combined

Figure F.1.1 Illustration of how specifications and refinements of components
and contexts are combined. B and D are specifications, while A and C are refinements of

B and D respectively. B may be viewed as a specification of a component and D as a
specification of a context, or vice versa.

The OCS refinement relation has relationships with the refinement relation of CSP (Hoare 1985). The main
difference between CSP and the present work, is that CSP describes processes communicating names over
channels while the present work describe objects sending messages to other objects. The difference between these
two models is discussed in chapter 9 on related work.

Both CSP and the present work define refinement relations based on observable actions. The behaviour of the
context is also taken into account in the CSP refinement relation. However, instead of explicitly describing the
expected context behaviour, Hoare uses a set of refusals to describe what a context should not do. The set of
refusals is part of a component description.

The two refinement relations differ in that the CSP refinement relation is a binary relation between a component
specification and a possible refinement while the present refinement relation is a trinary relation between a
component specification, a possible refinement of this specification and a specification of the context's
behaviour.

The substitution proposition
OCS designs create systems consisting of several components which all may be substituted. To ensure that
similar observable behaviour is maintained when components are substituted and combined the proposition
defined below must hold. This proposition is a generalised version of (*) and is called the substitution
proposition. This proposition defines a monotonicity-like property of a refinement relation which is defined
relative to a context:

Definition: The substitution proposition

(∀ i ∈ {1..n} : Ci ≤D-i Di) ⇒ (∀ i ∈ {1..n} : Ci ≤C-i Di)

where D is the system consisting of the n components D1,..,Dn
Ci is the refinement of Di and C denotes C1||…||Cn
D-i denotes all D's components except Di, ie, D-i = D1||..||Di-1||Di+1||..||Dn and
C-i denotes all C's components except Ci.

10

The substitution proposition says that
when each components Ci is a refinements of Di relative to the other components in D,
then Ci is also a refinement of Di relative to the other components in C.

Such a property is typically interesting when creating a new system where each component is to be a refinement
of some component in the specification. When combined, it is then necessary that each of the new components
both are refinements of their specifications and that the new component observes that the other new components
have similar behaviour to the specification components they are refinements of.

We use the word "reliable" in connection with this property. Reliability is used since it can be associated with
the property that a refinement can be expected to have similar observable behaviour in each context with a certain
observable behaviour, ie, the refinement has reliable behaviour. We define a reliable refinement relation as
follows:

Definition: Reliable refinement relations
 A reliable refinement relation is a refinement relation for which the substitution proposition can be
proven.

We also say that when A ≤D B and the refinement relation is reliable, then A is a reliable refinement of B. We
define the term reliable specification to cover the class of component descriptions for which it is possible to
make reliable refinements. If there exists some B and D so that A ≤D B, we say that A is a reliable component.

Reliable substitution
When we have reliable substitution, then any number of components can be substituted with their reliable
refinements while all the components in the system will observe similar behaviour of their contexts. If we divide
D into three sets of components, denoted Dx, Dy and Dz, and similarly we have Cx, Cy and Cz where the
indexes of, eg, Dx and Cx are equal so that Ci ∈ Cx ⇔ Di ∈ Dx, then we can express reliable substitution in an
even more general form then the general substitution proposition as follows:

Definition: The reliable substitution proposition

(∀ i ∈ {1..n} : Ci ≤D-i Di) ⇒ Cx ≤CyDz Dx

The proposition says that if Dx, ie, some arbitrary number of components, are substituted with their reliable
refinements Cx, then the other components, CyDz, will not observe any difference. The other components may
be both "old" components, here denoted Dz, or reliable refinements of old components, here denoted Cy. This is
typically the case when maintaining systems, since in such cases just some of the components are replaced with
new versions.

The reliable substitution proposition gives a formal definition of reliable substitution. In chapter 9 on related
work it is shown how the reliable substitution property of refinement relations is linked to composition and
decomposition properties of assumption/guarantee specifications.

Strong focus on the objects in the observing context
A central idea in the formulation of the substitution proposition is that similarity of components is defined
relative to a context of observers with a given behaviour. The idea is that when two components have observably
similar behaviour, then the observing context will not note any difference in the actions they observe. Therefore
it is not only the component which is in focus when defining observably similar behaviour. There is an equally
strong focus on the observing context and the actions which the objects in the context observe.

In many of the definitions in this thesis the context objects are actually more in focus than the component
objects. This is because it is the similarity of the actions the context objects observe which determine if two
components have similar observable behaviour. Definition of observability and observable similarity are
therefore done relative to a set of observing objects. Therefore the objects in the components play a minor role in
these definitions.

Such a strong focus on the observing context objects is not common in most definitions of similarity or
monotonic relations between components. In most cases, all objects referred to in these definitions are
component objects. This change of focus from component objects to context objects is important to note when
reading the rest of this thesis since it might be counter to the readers' expectations.

11

1.3 Applicability of Reliability
Properties

System evolution and change
A system is changed by changing the objects in the system. Depending on the underlying runtime system,
changes may in some cases be done directly on the running objects. In other cases, all or part of the system has
to be recompiled from new versions of the system code.

One important property of a good system design is that it will simplify the realisation of often occurring kinds
of system changes. Examples of often occurring kinds are changes in interest rates and new extensions
(PluggIns) to internet WorldWideWeb browsers. Simplifying realisation of changes means minimising the
number of objects which have to be changed. A good software designer is therefore a designer who is able to
make designs which require few objects to change for common kinds of changes in the requirements and/or the
environment of the application.

To make it as simple as possible to manage a system, objects which tend to change at the same time should be
grouped into components. The objects should be grouped into components so as to keep the observable
behaviour of the components stable, while the objects may change. This is a challenge to software designers.

System changes are often initiated by changes in user needs and in external devices. Such changes require
changing the boundary objects which model the users and devices. A goal for a designer is then to create objects
which collaborate with the boundary objects in ways which limit the propagation of changes. The ideal is to
have a design where a change in a boundary object only leads to changes in the objects within the same
component, thus keeping the observable behaviour of the component stable.

One reason why Frameworks and Patterns (Gamma et al. 1994) have growing popularity is because they help
find designs which give components with a more stable observable behaviour. This gives more reusable code and
programs that are easier to maintain than when the observable behaviour changes.

However, there is a need for methods and tools which can help a developer to verify that one version of a
component is a reliable refinement of another version relative to the other components in the collaboration. In
practice, there is no verification of reliable refinements. Behaviour properties of OCS components are only
checked informally by reading designs and code and by testing a component when it is inserted into a system. To
be able to verify that a component is a reliable refinement, it is necessary to have a formal definition of what it
means to be a reliable refinement. In the previous section it was defined what it means to be a reliable refinement
in rather general terms. Later chapters will give detailed definitions and define the exact properties a component
must have in order to be a reliable refinement of a specification. We denote theses properties for reliability
properties.

When a definition of what it means to be a reliable refinement exists, it can be applied to many aspects of
system development and maintenance. A short general discussion of how the reliability properties can be applied
is found below. Some examples of how the properties can be applied to reuse and system maintenance are found
in chapter 2. Chapter 8 discusses some practical consequences of the reliability properties.

A market for reusable components
Reliability properties can be important in specification and implementation of components in relation to selling
and buying software components. When a customer buys a component, it is important to the customer that there
are reliable specifications of both the component and the component's context. It is also important to the
customer that the implementation of the component is a reliable refinement of the component's specification. If
we let ComS and CtxS be the specifications of the component and its context respectively, and let ComI be the
component implementation, then it is important to the customer that:

ComI ≤CtxS ComS, ie,
the implementation is a reliable refinement of the specification relative to the context specification

It is also important that customer knows how to make a reliable refinement of the component's context. This
makes it possible to implement a context, CtxI, which is a reliable refinement of the context specification CtxS
relative to the component specification ComS, ie, create CtxI such that CtxI ≤ComS CtxS.

12

Reliability will then ensure that when the component and context implementations are combined, they will have
observable behaviour as specified and thus function as planned. If reliability is not present in such a situation,
the customer might experience unanticipated errors or unanticipated system behaviour.

In practise there is a lack of knowledge on how to make reliable specifications of a component and its context,
and how to make a reliable refinement of a specification. Customers of components therefore tend to experience
unanticipated behaviour from systems with reused components. One solution which customers feel necessary
when errors appear, is to get or buy the source code of the components they use. Then the customer can read the
code and find sources of unanticipated behaviour. Some companies have experience so much trouble with bought
components that they require source code to be delivered.

New versions of components
When a customer gets a new version of some component, it is important for the customer that the new version
is a reliable refinement of the older version. If not, the customer may need to do substantial testing and rewriting
to port their code to the new versions. In this case let ComN be the new version of the old component ComI.
CtxS is a specification of the context of the components and CtxI the old components context. When CtxI is a
reliable refinement of CtxS relative to ComI, ie, CtxI ≤ComI CtxS, and the new component is a reliable
refinement of the old component relative to the context specification, ie, ComN ≤CtxS ComI, reliability
properties ensure that CtxI ≤ComN CtxS and ComN ≤CtxI ComI, ie, when the new component replaces the old
component the system will continue to function as planned.

As in the reuse example, it is important that a component is delivered together with a reliable specification of its
collaborators and that the customer knows how to make reliable refinements of the specification. This enables
the customer to implement the collaborators of the old version so that they will not change behaviour in
unanticipated ways when the old component is replaced by a new version.

It is a problem with many component libraries today that they do not give reliable specifications of components'
collaborators. Also, components are changed by library vendors but the new versions are not reliable refinements
of older versions of the library. When new versions are not reliable refinements of the older versions, the
customer often experience unanticipated behaviour when their existing self made components get new
collaborators from the new versions of the library.

Maintenance of extensible systems
Reliability properties are also applicable to maintenance of extensible system. Reliable substitution allows any
component in the system to be substituted with a reliable refinement while it is guaranteed that the system will
continue to function without creating unanticipated behaviour of existing components. In this case, the
components denoted Di in the general substitution proposition are the existing components, while Ci denote a
component which is to replace Di. We then want the following property:

(∀ i ∈ {1..n} : Ci ≤D-i Di) ⇒ C-x ≤Dx D-x

where D is the system consisting of the n components D1,..,Dn
Ci is the refinement of Di and C denotes C1||…||Cn
D-i denotes all D's components except Di, ie, D-i = D1||..||Di-1||Di+1||..||Dn and
C-i denotes all C's components except Ci.
Dx is some combination Di||Dj||..||Dk||Dl for i ≠ j ≠ k ≠ l etc. and
D-x is all D except i,j,..,k,l and similar for C-x.

From this we can conclude that when we replace any number of components with their reliable refinements, the
objects in the other configurations will not observe any difference in behaviours. The component combination
theorem T.6.2 shows properties which ensure that the above property hold for reliable refinements.

Development of large systems
Reliability properties are also applicable when large systems are designed by splitting a design into subdesigns
and letting different teams detail each subdesign. If it can be verified that each team has created a reliable
refinement of the initial component they were assigned, then reliability ensures that the combined refinements
behave as planned in the overall design.

Refer to figure F.1.2 below. The overall design is denoted S. There are three components in S which are named
B, D and G. There are three subdesigns named A, C and F where each subdesign is created by a different team.
The final step of, eg, the A-team is to verify that A is a refinement of B: A ≤D||G B. Similarly the other teams
verify their designs. This gives C ≤B||G D ∧ F ≤D||B G.

13

The substitution proposition for a system consisting of three components can be formulated as follows:

A ≤D||G B ∧ C ≤B||G D ∧ F ≤D||B G ⇒ A ≤C||F B ∧ C ≤A||F D ∧ F ≤C||A G

If this premiss holds (A ≤D||G B ∧ C ≤B||G D ∧ F ≤D||B G), then the collaboration between A, C and F will be
similar to the collaboration between B, D and G. This allows separate refinement tests to be performed. When A,
C and F are reliable refinements it is ensured that the refinement components collaborate as planned. When
separate refinement tests ensure collaboration as planned, there is no need for an extra verification of the
behaviour of the complete system composed of A, C and F.

S
B

D
G

A
X Y

C

P
R

Q

F
N

K
M

O

component

collaboration

Figure F.1.2 : A hierarchy of designs

Design methods and support tools can be devised to ensure that a subdesign is a reliable refinement of a
component in a superdesign. Method and tool development is left for further work.

A design may either be created top down (S first and then A, C and F) or bottom up (A, C and F first and then
S). Bottom up designs are often found when reusing libraries and frameworks, while top down is more common
when making totally new systems.

A result of a design process may also form a directed graph with multiple roots, since one subdesign may be
refinements of components in more than one superdesign. A simplified example of this is illustrated in figure
F.1.3 where we have a situation where there are two super designs, with components B1||D1 and B2||D2, and one
subdesign, below denoted A. The superdesign B1||D1 can for instance describe the components of a database
system where B1 can be the component holding the data and D1 the component doing the storage of this data.
The other superdesign B2||D2 can describe the components of an editor where B2 is the component holding the
data and D2 the component interacting with the user. A subdesign may be a refinement of both B1 and B2 so
that the data it contains can both be stored in the database and edited by the user.

In OOram the designs, above denoted A, Database and User Interface, are described as role models. The round
rects in the figure are roles representing objects. The OOram view of this situation is that objects in A have one
set of roles in the collaboration with D1 and another set of roles in the collaboration with D2. These roles are
described by B1 and B2 respectively. The role models can be combined to describe how the objects in A play
different roles in the two superdesigns. Combining role models in this way is called synthesis. This is a very
practical way to stitch together systems when more than one Framework is used. In OOram terms, A ≤D1 B1
and A ≤D2 B2 would ensure safe synthesis of the role models. Safe synthesis is introduced in the book
(Reenskaug et al. 1995) where it says:

"Synthesis is called safe when the static and dynamic correctness of the base models is retained in the
derived model, and unsafe if we retain only the static correctness and have to study the derived model to
determine its dynamic correctness."

The authors of the OOram book emphasises the importance of safe synthesis and give some guidelines on how
to ensure it. However, a complete formal proof of safe synthesis do not exist. Applying the reliability

14

requirements to OOram could be one way of formally proving safe synthesis. A formal definition of safe
synthesis is left for further work.

Database
B1 D1

A
X Y

User interface
B2 D2

Z

A ≤ B2
D2

A ≤ B1
D1

Figure F.1.3 : One component being the refinement of two components

As the above examples show, there are many application areas for reliability properties. It would be very useful
to have methods and tools which give system developers maximum benefits from the reliability properties
presented in this thesis. However, a significant amount of work must be done before such methods and tools
exist. The hope is that the presented formalism and results can form a basis for creating such methods and tools
through the deeper understanding it gives of the pit falls and possibilities related to the design and creation of
object component systems.

15

1.4 Goal and Document Structure
The goal of the thesis
The main goal of this thesis is to give a definition of "similar components" which is in accordance with the
OCS design tradition. Also, similar components should be defined in a way which ensures that a component can
be substituted with similar components without the component's context notifying any difference. This property
was expressed in the substitutability proposition presented in section 1.2.

In order to reach this goal, several steps have to be taken to formally define, express and show various properties
of object component systems. The different steps are described below with reference to the chapters which present
the results.

Defining key concepts in object component design
There are many definitions of object-oriented programming and modelling, see eg (Blair et al. 1991) for an
overview. Some have common concepts with different names, while others use the same name for different
concepts. The first step in reaching the main goal was therefore to find a consistent set of concepts which is used
by most communities successful in designing reusable object-oriented components, and to eliminate concepts
which are not used by these developers.

It was of particular interest to formalise the component developers' definition of similarity between components,
ie, what properties are considered in order to establish that a component may substitute some other component.
This is a necessary basis for defining a refinement relation in accordance with the component developers'
tradition.

Many existing OCS designs were studied in order to find the concepts and definitions which are in accordance
with OCS design tradition. Chapter 2 presents a version of a widely used and simple example of component
specifications, namely a version of the Model-View-Controller design.

A search for applicable formalisms
There are no good reasons to create new formalisms if existing formalisms have sufficient reasoning power, and
when results of such reasoning can intuitively be transferred to practice. Therefore, most existing formalisms
were studied in search of an appropriate formalisation of OCS concepts.

The study of existing formalisms included models of distributed systems, functional models, trace based models,
temporal logic based formalisations and various other approaches to describe objects. In order to use existing
formalisms to reason about components, a translation from OCS concepts to the concepts of the relevant
formalisms is necessary. Some attempts were made at translating from OCS concepts to the most similar
formalisms, see, eg, (Nordhagen 1992). In the translation process concepts were changed to the unrecognisable.
It was therefore hard to translate the results of the reasoning back to the realm of object components, similarity
definitions and reliable substitution. The conclusion was that none of the existing formalisms modelled OCS
concepts directly and/or did not have sufficient reasoning powers to show properties as expressed in the
substitution proposition.

The results of this search for existing formalisms is summed up in chapter 9 on related work. The chapter is
found after the chapters describing the concepts used in the thesis. This is done in order to be able to compare the
concepts defined in this thesis with the concepts found in other related works.

A computational framework for OCS components
OCS developers are used to think, model and express their designs using object-oriented programming languages
or some graphical notation based on such languages. Specifications of the designed OCS components and the
reasoning about them are done informally since object-oriented design method notations and object-oriented
programming languages are not supported by formal reasoning tools.

A language used for reasoning about OCS components must be able to express the designs so that component
developers will trust that the object descriptions and proofs actually correspond to his or her intentions. A
specification should therefore be intuitive to the developer. The formalism must therefore be based on concepts
familiar to component developers.

Component developers tend to make operational specifications of components using design notations and object-
oriented programming languages. Therefore the specification language should resemble an object-oriented
programming language, but allowing reasoning.

16

Chapter 3 introduces a new language created for reasoning about OCS components. The language is called
Omicron after the Greek letter "o". Omicron is a minimal language with properties and semantics both
corresponding to the OCS design concepts and suitable for formal reasoning . The Omicron language allows
components to be specified operationally and therefore corresponds with the operational specification tradition of
component designers. When the specifications are expressed operationally, there is no clear distinction between
specification and implementation of components. Both are configurations of objects.

The Omicron language is not particularly user friendly since the programmer has to describe, and manually
control, details which are usually handled by an underlying runtime system. This has been done since the
Omicron language is defined primarily for being a formal basis for reasoning about similarity of components.
Priority has therefore been given to making a language with simple formal semantics. However, the language
makes it possible to describe objects in a manner which is familiar to component developers.

The Omicron calculus
The first sections of chapter 3 leave out details in the formal definition of Omicron, since these parts of the
chapter focus on explaining and motivating definitions and should be readable for people without too much
experience in theoretic computer science. However, to create a calculus for reasoning about object components,
the language must be formally defined. This is done in section 3.4.

Section 3.4 first gives the syntax of Omicron through the use of extended BNF. Next, the Omicron language's
semantics is defined through the Omicron calculus. The calculus gives an operational definition of the Omicron
language's semantics along the lines of Plotkin's work (Plotkin 1981).

Definition of similar components
Chapter 4 gives a formal definition of "similar components" as perceived by component developers. The
definition of similarity is explained and motivated by referring to the examples in chapter 2. Component
similarity is defined by a refinement relation which holds when a component is "similar" to another component.

Finding reliability requirements
As mentioned, the definition of similar components should have the properties expressed in the substitutability
proposition presented in section 1.2. Chapter 5 shows that it is not possible to show the substitution
proposition for the refinement relation of chapter 4, a relation defined based on component developers view of
similar components. Because the proposition can not be shown for this relation, there was obviously a lack in
component designers' understanding of what must be specified to get reliable substitution when combining
"similar" components. This created an additional goal:

To define a refinement relation which makes it possible to prove the substitution proposition and thereby
ensure reliable substitution in component systems.

To get reliability it is necessary to introduce requirements on expressions defining object component and
implementations and to strengthen the definition of refinement. The requirements on object component
expressions are denoted reliability requirements.

Chapter 5 introduces a set of reliability requirements and gives the definition of a reliable refinement relation.

The necessity of the reliability requirements
There are different alternative reliability requirements. The alternative requirements can set requirements either on
the Omicron configuration expressions or on relations involving actions or on both. As concluded in chapter 2,
the preferred alternatives are those which avoid setting requirements on configuration expressions since this will
restrict how implementations and specifications of behaviours are done. This means that it is preferred to set
requirements on relations involving actions. However, it is shown that to get reliability, there is no way to
avoid some requirements to be set on configuration expressions. The necessity of such requirements is shown by
examples in chapter 5. This chapter should be readable without too much training in formal reasoning. It is more
important to have a good intuition of object-oriented concepts.

The reliability requirements are sufficient
The sufficiency of the reliability requirements is shown by theorem 6.3 in chapter 6. This theorem shows the
substitution proposition presented in chapter 1 for the reliable refinement relation defined in chapter 5. The proof
of the theorem builds on a number of propositions, lemmas and theorems and is not easy reading. In the hope of
helping the reader, each proposition, lemma and theorem is accompanied by an intuitive explanation.

17

Not taking reliability requirements for granted
It is interesting to find only the necessary reliability requirements, and not take traditional ideas related to
reliability requirements for granted. As noted above, the traditional belief is that a reliable refinement of a
specification must be of the same type or a subtype of the specification, while this is actually not true as shown
in chapter 9.

In order to find only necessary reliability requirements it is important that no reliability requirements are taken
for granted. It is therefore important to avoid traditional object-oriented typing and other such ideas which are
introduced to help developers write correct code since such ideas have strong relations to reliability requirement
assumptions.

One reason Omicron is not very user friendly is because of this lack of language support for creating reliable
components. Using the reliability requirements as a basis for defining a language can give a much more user
friendly language. However, creating a language which supports the creation of reliable components is a huge
task and is therefore left for further study.

Parallel and sequential object component systems
When formalising object component systems, the model will have different properties depending on weather the
system allows object to execute in parallel or only allows sequential execution of objects.

In a sequential object component system, objects are passive, in that they are only activated when they receive a
message. When the receiver of a message is active, the sender waits for a reply and is passive. Passive objects are
common in systems created from, eg, C++ and Smalltalk programs. However, a certain degree of parallelism has
been present in most object systems. Simula has co-routines allowing objects to executed in quasi parallel.
Smalltalk also have quasi parallel execution of objects. Java includes treads which makes it possible to create
objects which execute in parallel. Distributed systems are also implemented using OCS design, and such objects
are truly executing in parallel.

When developing the formal model of object component systems, it became evident that a language for
describing objects executing in parallel was simpler than a language for describing a sequential system. The
parallel language is therefore the main language of this thesis. However, a sequential version of the language has
also been made. This version is presented in chapter 7.

When making formal frameworks for reasoning about object component systems, one run into many of the same
problems encountered when making frameworks for parallel systems. This might be caused by object systems
having graph-like collaboration structures. This causes passive objects to get messages while waiting for a reply.
This creates similar complexities and instability problems as experienced when objects execute in parallel. It
might therefore be expected that the reliability requirements for both parallel and sequential systems will be quite
similar. The similarity is shown in chapter 7. The chapter ends with the conclusion that the reliability
requirements are, for all practical uses, equal for parallel and sequential object component systems.

The reliability requirements correspond to component development practice
When the reliability requirements are defined, it is possible to see if the formalisation of the component
developers concepts has been correct in the following sense:

If the reliability requirements correspond to what is considered good practice among experienced object
component system designers then the formalisation of object-oriented concepts has been done in
accordance to the tradition of these designers.

Examples of "good practice" can be found in existing libraries of reusable components and to some extent in the
design of object-oriented programming languages. "Good practice" have also been published as rules of thumb
(Johnson and Foot 1988), or in other informal forms, for instance Patterns (Gamma et al. 1994).

Chapter 8 presents such correspondence between practical consequences of the theoretically founded reliability
requirements and the practitioners' view of good design practice. The correspondence is shown by translating the
theoretically expressed reliability requirements of chapter 5 to practical advice for making reliable refinements and
reliable specifications. These advice are then compared to the "good practises". The conclusion is that there are
many similarities, while there are also some reliability requirements which are not covered by "good practises".
This is in line with the findings that the component designers definition of "similar components" do not have
the properties expressed by the substitution proposition.

Object-oriented programming languages and design notations include some features which are supposed to give
reliability properties. A typical such feature is compile time typing. Chapter 8 shows that these features are far

18

from sufficient to get reliability. For example it is shown that a reliable refinement often is of a supertype of the
specification. This is counterintuitive to the type and subtype idea.

New advice for component designers
As mentioned, there are some reliability requirements which are not covered by "good practises". The last section
of chapter 8 gives a summary of the lessons learned from the reliability requirements. It sums up how to make
reliable refinements and reliable specifications. The most important new lesson is that a reliable specification
must include descriptions of objects, not just types of objects. A reliable specification must define the maximum
number of objects one component sees from its context. The reliable specification must also specify which
messages are used to send references to each of the identified objects. A reliable refinement of the context can
have no more objects seen by the component, but may have fewer. Details of this is given in section 8.

Conclusions
Chapter 10 presents the conclusions drawn from the formalisation of object component system designs and the
results of finding a definition of a reliable refinement relation. The work on finding reliability requirements has
also given some ideas on how to develop the Omicron framework to cover a wider range of concepts and models
of object components. These ideas are also given in chapter 10.

A long term goal: Better support for component development and exploitation
A long term goal is to design development tools and processes which better support the design of substitutable
components and will help in utilising such components in system development and maintenance. The definition
of a reliable refinement relation is a step on the road to meeting this long term goal. The reliability requirements
apply to a whole range of topics related to software development, eg, component and system design,
programming language design, system development methods, component specification and testing and software
development processes and organisations. Such ideas are elaborated on in chapters 8 and 10.

The long term goal is ambitious and there is major and/or mature previous work in the gap between practical
OCS design and formal theories. The presented work is therefore a small contribution in bridging this gap and
reaching the long term goal.

Document style
In the following chapters there are many references to object-oriented programming languages and analysis and
design methods. These references are made by using the name of the languages and methods, while references to
literature about the languages and methods are given in appendix D. The languages are Beta, C++, CLOS,
Dylan, Eiffel, Java, SELF, Simula and Smalltalk. The methods are BON, Foundation, Fusion, Objectory,
OMT, OOram, RDD, Catalysis, Syntropy and UML. Some Design Patterns are also referenced by name and
literature references to these patterns are found in appendix D.

Chapters 3 to 6 show some properties of object component systems. The most important properties are given
through theorems while less important properties are given as propositions. Interesting properties which do not
need to be shown through formal proofs are stated as observations.

19

1.4 The Contributions of this Thesis
Reliable substitution
The main contribution of the presented work is the idea expressed in the substitution proposition for a dynamic
language. This idea is related to the characteristics of object component system designs where components are
specified by their observable behaviours relative to a context and where all components may be substituted with
components with similar observable behaviour. No formal framework has previously taken these characteristics
as a starting point, and therefore no formal definitions of these ideas have previously existed.

The reliability requirements
Formalists often focus on typing and functional aspects of objects. As is shown in the chapter on related work
(chapter 9), this is very different from the kind of properties focused on in the definition of "similar components"
presented in chapter 4 and the reliability requirements presented in chapter 5. As shown in chapter 8, just one of
many reliability requirements is slightly related to traditional typing of objects. However, the traditions focusing
on giving informal advice on how to make reusable components have many ideas which are similar to the
reliability requirements. The correspondence between the reliability requirements and the informal rules for
making reusable components, shown in chapter 8, is an indication that the Omicron framework formalises some
important aspects of object component systems.

Previous formal works have not presented results which may correspond to reliability requirements in line with
state of the art design practice. This indicates that the presented work is more in line with OCS design concepts
than previous formalisations.

Identification of component developers' key concepts
In theoretical computer science there are a few fundamental models of computation. The three most widely
studied are:

- the logic model based on predicate calculus
- the functional model based on the lambda calculus and
- the process model formalised through for example the π-calculus

Identification and formalisation of the key concepts used by OCS component developers and comparing them to
concepts in other models of computation, contribute to a better understanding of the differences, weaknesses and
strengths of the various concepts. This in turn may lead to more fruitful discussions and integration of the
various approaches, without missing out important concepts from the component developers as has been the case
for several previous attempts. The OCS concepts are presented in chapter 2 and their relation to other models of
computation is discussed in chapter 9.

The Omicron computational framework
The most generally applicable result of the presented work is the Omicron computational framework itself. The
definition of a reliable substitution is an important example of results which may be derived with calculations
with the Omicron framework. This may even be applied to many other aspects and problem areas related to
object-oriented programming, systems, languages and applications. Some examples are given in the last chapter
where there is a section on further work.

Abstract specifications vs. irrelevant details
Hoare in (Dahl et al. 1972) describes abstraction as follows:

In the development of our understanding of complex phenomena, the most powerful tool available to
the human intellect is abstraction. Abstraction arises from a recognition of similarities between certain
objects, situations, or processes in the real world, and the decision to concentrate on these similarities,
and to ignore for the time being the differences. As soon as we have discovered which similarities are
relevant to the prediction and control of future events, we will tend to regard the similarities as
fundamental and the differences as trivial.

In these terms we can say that abstract specifications leave out all irrelevant details. It is not obvious, however,
which details in a component's behaviour are relevant and would be included in the specification of an OCS
design and which are not and should be left out. This is one of the topics which may be studied further once a
computational framework like Omicron exists.

It can be argued that the relevant behaviour consists of the properties which have to be specified to ensure
reliable substitution. The reliable refinement relation presented in chapter 5 gives in this view a definition of

20

relevant behaviour. The definition of relevant behaviour can lead to a better understanding of what abstract and
reliable specifications are. This means that the reliable refinement relation and the reliability requirements can
define limits on abstraction, ie, what must be included and can not be left out in order to ensure reliable
substitution. Such limits have not been formally studied before in relation to OCS components.

Differences in the typing of components and of the elements within a component
The presented work shows that there are lessons to be learned about how to type substitutable components as
opposed to how to type elements used within a component. More complex relations may be acceptable within a
component than between generally substitutable components. Previous work on typing and categorising objects
have not made such distinction between typing modelling elements within a component and typing substitutable
components.

It has been known for a long time that using encapsulation gives more maintainable code, but at the same time
encapsulation can creates problems with fragmentation of an algorithm. Fragmentation makes more complex
code and creates the feeling that "everything happens somewhere else" when reading such code. These problems
with encapsulation exemplifies the trade-off between simple/complex specification, reusability and the
distribution of code and data in the objects. The presented work gives a basis for a more well-founded
understanding of such relationships and trade-offs.

Possible results from applying the reliability requirements
The explicit and formal definitions of the reliability requirements can be used to make better system development
methods and more extensible systems. The reliability requirements apply to component and system design,
programming language design and system development methods. The requirements may be used to create
development tools and processes which better support the design of substitutable components and help in
utilising such components in system development and maintenance. This in turn can hopefully lead to more
efficient development processes, easier maintainable systems and less errors in users' systems.

21

CHAPTER 2

Model-View-Controller

-

The Classical Example

Section 1.1 briefly listed the characteristics of OCS models which distinguish them from
other models, such as communicating processes and functional models. This chapter will
exemplify and present these characteristics in more detail.

The chapter starts by presenting an existing OCS design. This is done in order to illustrate
the OCS characteristics. The example is the classical example of object-oriented design, the
Model-View-Controller Framework (MVC).

The presentation of the example is done in two steps. First the general design and its
implementations are discussed in section 2.1. In section 2.2 an example of a specific
version of the MVC design is presented. This is the model-view contract which was first
published in (Helm et al. 1990).

Observable behaviour was loosely described in section 1.1 under characteristics of object
component systems. Section 2.3 describes observable behaviour in detail and uses the MVC
Framework to exemplify the descriptions. Similarly, section 1.1 mentioned observably
similar behaviour and section 2.4 gives a description of it. Sections 2.3 and 2.4 give
informal descriptions while chapter 4 gives the formal definitions of observable behaviour
and observably similar behaviour.

Section 2.5 gives two simple and informal examples of reliability requirements and
motivates them by giving examples of problems related to reliability in MVC designs and
implementations.

After having read this section, the reader will hopefully have an intuitive understanding of
object component systems, including those aspects of these systems which are central when
defining similarity of components and reliable substitution. The reader should also have
understood what it means for one component to have observably behaviour similar to some
other component. Furthermore, the reader should have understood that in order to ensure
reliable substitution of OCS components it is necessary to do a rigorous study of the
similarity of components' observable behaviour relative to a set of observing objects.

22

2.1 The Model-View-Controller
Framework

This section presents a version of the classical example of object-oriented design, the Model-View-Controller
Framework (MVC). Various versions of MVC is documented in (Krasner and Pope 1988), (Deutsch 1989) and
(Goldberg 1990). MVC is also implemented in different programming languages and is used in the literature to
exemplify aspects of object behaviour which is not easily specifyable by existing formal specification methods.
This is pointed out in, eg, (Helm et al. 1990), (Holland 1992) and (Eliëns 1994).

After the presentation of the MVC example, the characteristics of object component systems are illustrated by
referring to the example. It is expected that the reader is familiar with concepts such as object, instance variable,
method and message as defined in (Blair et al. 1991) and used in relation to most object-oriented programming
languages.

Overview of the components in MVC
The main idea of MVC is to divide an application's tasks into three parts or components. Each component is
assigned some of the functionality the application is to have. Also, each of the application's functions is
assigned to one of the three components. The three components and their delegated task are:

The model component is assigned the task of holding the data.
The view component is assigned the task of displaying at all times a correct presentation of the data
The controller component handles user input and initiates actions which will change the held data and

update the displayed presentation.

The MVC interface Framework describe how to structure and define the collaboration between the components in
order to get a well functioning system. The collaboration is concerned with updating data and notifying the view
component about the changes so that the displayed presentation gets updated along with the data.

Typically there will be a set of data which is held in a model and where the data is presented to the user in several
ways simultaneously. In such a case there will be several views and controllers which interact with the same
model component. Figure F.1 illustrates such a situation with one model and three view/controller pairs. The
lines indicate that the connected components collaborate.

MODEL

VIEW

CONTROLLER

VIEW

CONTROLLER

VIEW

CONTROLLER

Figure F.1
One model component is collaborating with three view components and three controller components. The
rectangle, triangle and oval represent the components and the lines show how the components collaborate.

The design is done so that the view/controller pairs do not know of each other. Instead, the presentations in the
views are co-ordinated through functionality in the model. The focus of the MVC design is on how this co-
ordination is done. The co-ordination functionality is intended to ensure that all views are updated when the

23

model is changed by actions originating in one of the controllers. Keeping the view/controllers ignorant of each
others existence makes a system more flexible in that it simplifies the task of adding and removing
view/controllers. Section 2.2 below presents how the views are co-ordinated by the model in the classical way;
the way this has been implemented in versions of Smalltalk since 1980 and in other programming languages in
later years.

Design for combining and substituting components
The functionality of the system is divided into three components since this has simplified the maintenance and
reuse of the programs making up the system. Each component is implemented by a set of objects and each
component may be substituted with a component which collaborates with the other components in a similar
way. Similar collaboration is described and exemplified in a section further below.

To change applications and/or reuse components, new components may be added and/or components may be
substituted or changed. For instance, a view/controller pair may be added if the model is to be viewed in a new
way. If a user of an application wants the presentation of some data to change, a good design would allow such a
change to only affect the view component. Also the controller may be substituted or changed. This happens
when the user is to get new commands, or the number of commands should be restricted. Typically, there is a
controller for each view which handles the full set of user commands and then there is a common default
controller which does not allow the user to give commands. This last controller (in some versions of Smalltalk
called NoController) is used when the user is only allowed to view a presentation of the model. New systems can
be created by combining the different versions of controllers with the same model and combining the model with
different view/controller pairs. It is therefore possible to create quite different systems just by combining or
replacing components.

Replacing a component can be done when components have similar observable behaviour. Combining
components can be done when each component has the observable behaviour expected by the implementors of
the other components.

Components form dynamic graph-like collaboration structures:
The MVC design gives an example of objects which form a simple graph-like collaboration structure. The graph
is formed by the collaboration structure shown by the lines in figure 1. The collaboration structure may also
change during the components existence as, eg, new view/controller pairs are added or one of the controllers is
replaced with a new controller.

The model component is both a client and a server of the other objects in the system. It is a server since the
other objects sends it messages. Messages sent to the model component are for example messages to tell the
model about new views. It is a client since it sends messages to objects in its context. Such messages are
typically messages to the views notifying them about a change in the data stored in the model. Components
with such a double role as both a client and a server is often found in object component designs.

Single components are seldom designed in total isolation:
As previously mentioned, one important property of a good system design is that it will simplify the realisation
of often occurring kinds of system changes. A good advice which will simplify system changes is to group
objects which tend to change at the same time into components. One aim is then to keep the observable
behaviour of the components stable, while the objects may change. One reason why MVC is popular is because
this is a design which leads to components with a more stable observable behaviour.

To see and judge how design decisions for the different components will influence this important property of the
design, it is necessary to see how the components function together. For instance it must be possible to see if a
probable change in a view will affect the observable behaviour of the view relative to the other two components.
Because of such considerations when designing components, single components are seldom designed in isolation.

Context dependent specifications:
The MVC design describe how the three components collaborate with each other. It does not specify how each
component will collaborate with components with observable behaviour different from the two other
components.

The MVC components are active and take initiative and send messages to the other components. Components
collaborating with active components might not function properly if their partners do not take the initiative they
are expected to take. For instance, a view may not present a correct picture of the model to the user unless the
model component takes the initiative and notifies the view when the data in the model changes. The views
functionality is therefore dependent on the observable behaviour of components in its context, in this example
the model component.

24

Symmetry of component and context
The MVC design is an example of a system design where all parts of the system may be viewed as components.
Also, each component forms the context of the other components. Depending on point of view, a part of the
system may either be viewed as a component or as a context. The view point is determined by what part of the
system is being manipulated. If, for instance, a controller is to be replaced, the model and view components are
viewed as the context. On the other hand, if a new view/controller pair is added to a system, the new
view/controller pair is the component, and the model and other existing views and controllers make up the
context. Through its existence, a controller may then be viewed both as a component and as part of a context.

Separate development of new versions of component and context
Components can be developed separately in space or time. Separation in space is typically when different parts of
a system is developed in parallel. Separation in time is typically when a new component is developed and shall
replace some existing component which has been used in different systems.

We first illustrate how the refinement relation applies to separate development of components in time. To
illustrate this we use the Smalltalk text editor as a reference. The text editor (the classes TextView and
TextController) is a much used component is the Smalltalk system. A huge number of models have been created
which interacts with the text editor. All models have similar observable behaviour relative to the text editor. The
Smalltalk vendors' implementations of the text editor have differed substantially in the different versions of the
Smalltalk-80 (later ParcPlace Smalltak) from 1980 until present. Even with these variations, the observable
behaviour of the (most reused version of the) TextView/Controller as observed by the model has remained the
same since 1980. Similarly, the observable behaviour of the model relative to the TextView/Controller has
remained the same for the same number of years. It is very common to make new versions of the model while it
is not very common to replace the Smalltalk text editor by non-vendors. However, it this has been done, see, eg,
(Nordhagen 1987) and (Hohan 1988).

The creation of the new version of the Smalltalk text editor documented in (Nordhagen 1987) is one of the
practical experiences on which the theoretical work in this thesis builds. The new version of the editor totally
replaced the existing version which was delivered with and heavily used in the standard Smalltalk 2.5 system.

Below, reliable substitution is illustrated by giving an example of how various components in a Smalltak
system can be replaced.

In all Smalltalk systems there are different versions of model components collaborating with the text editor.
Assume that ParcPlace delivers, or you create, a new version of the Smalltalk text editor called NewTextEditor.
It must then be ensured that all existing systems will continue to function when the NewTextEditor replaces the
old text editor. There are two alternative ways of Ensuring this. One alternative is to ensure this, is to let the
developers check that each model in every Smalltalk system collaborates with NewTextEditor as planned. This is
rather impractical since it would require a substantial effort. The other alternative is to have a reliable
specification of the model and text editor collaboration and then make reliable refinements of the components.
This would ensure reliable substitution of components, meaning that the new text editor can replace the old
version without creating unanticipated side effects.

The model-editor collaboration is informally described in the Smalltalk documentation. There have been attempts
at formally defining the model component's behaviour, see, eg, the example in the next section. However, there
have been little or no work in defining appropriate refinement relations and monotonicity properties of such
relations so that reliable substitution is ensured.

To ensure reliable substitution it is necessary to show that NewTextEditor is a reliable refinement of the text
editor. It must also be shown that existing text models are reliable refinements of some ideal text model. This
means that every text model must have similar observable behaviour to the specified ideal text model. The
observers are the objects in the text editor component. If we call the specified ideal text model for TextModel, the
existing text editor for TextEditor and an arbitrary text model for MyModel, we must then have:

MyModel has similar observable behaviour to TextModel as observed by the TextEditor

The new text editor NewTextEditor, must have similar observable behaviour to the old text editor as observed by
TextModel. This means that we have the following:

25

NewTextEditor has similar observable behaviour to TextEditor as observed by the TextModel

To get a correct functioning system when installing the NewTextEditor into an existing Smalltalk system and
combining it with MyModel, the following must hold:

NewTextEditor has similar observable behaviour to TextEditor as observed by MyModel and
MyModel has similar observable behaviour to TextModel as observed by the NewTextEditor

The different components can be pictured as in figure F.2 below.

TextModel||TextEditor
specification

The two refinements combined

MyModel||TextEditor TextModel||NewTextEditor

MyModel||NewTextEditor

Figure F.2
Illustration of how the different text models and text editors are combined.

|| is used to indicate that components are combined into a system.

The above statements about similar observable behaviour can be restated using the refinement relation notation
as follows:

NewTextEditor ≤TextModel TextEditor ∧ MyModel ≤TextEditor TextModel
⇒
NewTextEditor ≤MyModel TextEditor ∧ MyModel ≤NewTextEditor TextModel

This is the substitution proposition expressed for the TextModel and TextEditor components. Since both the
TextModel and the TextEditor can be substituted there is no distinctions between components - which may be
substituted, and context - which stay unchanged.

In what follows, the term configuration is sometimes used when referring to a set of objects in a system. This is
to avoid referring to the set of objects as either component or context. Configuration is therefore used when the
set of objects may be viewed both as component and as context. For instance in relation to the above
substitution proposition, the TextModel is viewed as both component and context. A TextModel may therefore
also be referred to as a configuration, eg, the TextModel configuration.

Reuse, maintenance and reliability properties
The substitution proposition can be applied to practical problems such as reuse of components and maintenance
of systems. Some examples are given below.

Reuse
In relation to reuse, the substitution proposition says that a component which is to be reused must have a
reliable specification, and the implementation must be a reliable refinement of the specification. If not, the
implementation might not function as planned when the component is collaborating with some new context.

To illustrate this we let the TESpec be a reliable specification of the TextEditor and TextModel be a reliable
specification of the models behaviour. Then TextEditor must be a reliable specification of TESpec, ie,

TextEditor ≤TextModel TESpec.

26

The context with which the reused component is to collaborate, need only be a refinement of the context
specification since the reused component is not substituted by another component. In this case the context is
implementations of TextModel. Therefore, for the collaboration between the reused TextEditor component and
new model components to function as planned, it is necessary that all new models are refinements of TextModel.
They need not be reliable refinements, since TextEditor is not replaced by another component. However, if it is a
possibility that TextEditor will be replaced, then new models must be reliable refinements. This is discussed
below under maintenance.

Maintenance by replacing components with new versions
In relation to maintenance, the substitution proposition says that a component which is to replace some old
component must be a reliable refinement of the old component relative to the rest of the system under
maintenance. To be able to create a reliable refinement, there must be a reliable specification, and the rest of the
system under maintenance must consist of components which are reliable refinements of their respective
specifications.

The reason for making a new version of the Smalltalk text editor was that the implementation had some internal
errors and the current implementation was difficult to understand. The errors were therefore difficult to correct and
also, the implementation was difficult to expand with new functionality. It was therefore decided to replace the
old implementation with a new one.

In this case, there were simple and informal specifications of the collaboration between a text editor and a text
model. The observable behaviour of the components were quite simple, and thus the implementations of all the
text models in the system could be expected to be reliable refinements of the specification. Therefore, installing a
new version of text editor into the Smalltalk system created few or no problems in getting the models to
collaborate correctly with the new text editor.

27

2.2 A Simple Model-View Contract
Many notations have been developed for describing object behaviour in a formal way. Most of these notations
are developed from notations used for describing functional aspects of systems. They therefore focus on how
values are handled when a single object receives messages. Many such approaches are referred to in chapter 9 on
related work.

The observable behaviour of the model component in the MVC Framework can not be directly specified using
most of these approaches. This is because most of the other notations do not cover object behaviour which
include sending messages as a result of receiving messages while such message sending is the key feature of the
model's observable behaviour. This key feature is sending a special message to a dynamically changeable set of
objects. Chapter 9 gives more detail on why this kind of behaviour can not be directly specified using algebraic
specifications and process models.

One approach which takes formalisation of message sending more seriously is that of the group of people
working on what they call contracts, see, eg, (Helm et al. 1990). The work on contracts is often referred to in the
literature, but since the publishing of (Holland 1992), no significant developments have been reported. The
group has changed its focus. However, the paper (Helm et al. 1990) presents a version of MVC which specify
the key feature of the behaviour of the components in the MVC Framework. In their example the controller is
not explicitly included. This is done to simplify the example. The contract in the paper (Helm et al. 1990) is
called the model-view contract and is presented below.

Operational specifications
The contract notation makes it possible to specify object collaboration by using a semiformal notation. A
contract lists the objects that participate in the task and characterises dependencies and constraints imposed on
their collaboration. The contract is an operational specification of a model's observable behaviour relative to a
context consisting of zero or more view objects and maybe also some other objects (the model's context is
discussed below). A slightly modified version of model-view contract using a simplified notation used in (Eliëns
1994) pages 348 - 149 is shown below. First the contract is given and then the notation is explained.

contract model-view (V) {
subject : model supports [
state : V;
setvalue(val : V) → [state = val]; notify();
getvalue() → return state;
notify() → ∀ v ∈ views • v. update ();
attach(v : view) → v ∈ views;
detach(v : view) → v ∉ views;
]
views : set<view> where view supports [
update() → draw();
draw() → subject.getvalue; [view reflects subject.state];
subject(m : model) → subject = m;
]
invariant:
∀ v ∈ views • [v reflects subject.state]
Instantiation:
∀ v ∈ views • subject.attach(v) & v.subject(subject);
}

To indicate the type of variables, the notation v : type is used expressing that variable v is of type
type. The subject of type model has an instance variable state of type V that represents (in an
abstract fashion) the value of the model object. Methods are defined using the notation

method(…) → action

Actions may consist either of other method calls or conditions that are considered to be satisfied
after calling the method. Quantifications as for example in

∀ v ∈ views • v. update ();

is used to express that the method update() is to be called for all elements in views.

28

The actual protocol of interaction between a model and its view objects is quite straightforward.
Each view object may be considered as a handler that must minimally have a method to install a
model and a method update which is invoked, as the result of the model object calling notify(),
whenever the information contained in the model changes. The effect of calling notify() is
abstractly characterized as a universal quantification over the collection of view objects. Calling
notify() of subject results in calling update() for each view. The meaning of update() is abstractly
represented as

update() → [view reflects subject.state];

which tells us that the state of the subject is adequately reflected by the view object.
The invariant clause of the model-view contract states that every change of the (state of the) model
will be reflected by each view. The instantiation clause describes, in a rather operational way, how
to initialize each object participating in the contract.

An object may be a component, but a component may consist of several objects
Since the number of pages in a paper is limited, design examples are often simplified to the extent that
components are reduced to single objects. Also, most papers do not focus on the design as such. Instead the
focus is on some new notation or language where the design is used as an illustration. This is also the case with
the above example. However, in the contract example above and other examples in papers about contracts,
component and object are synonyms. It is not just a simplification. Components and objects as synonyms is
also reflected in the naming used in the contracts and by the reference to a single class as implementation of an
abstract counterpart in a contract. In practise, eg, in Smalltalk, the model component is not just a single object,
but several objects. For instance, it is usually not the model object itself which holds the set of views, but rather
an object of a Collection class. The collection object is viewed as part of the model component.

There are some published design examples which are more extensive and give examples of components
consisting of more than one object. For example, the article (Jacobson et al. 1995), and other work by the same
authors, show many examples of OCS designs. These examples are not related to Smalltalk, as the MVC
example is, but still presents designs with similar characteristics. The article (Jacobson et al. 1995) describes a
simplified design of a telecom switching system. This example illustrates how objects are grouped into
components. Figure F.3 below is taken from this article. It shows how the objects of a system are grouped into
four components. The components can consist of more than one object. For instance, the Network handling
component consists of three objects: the Network, Coordinator and Digit Information objects.

The observers of a component form the component's context
In the model-view contract there are two named components: the model and the view. However, there are more
methods found in the classes than those corresponding to the messages sent from these two components. It is
therefore obvious that the context of the model is expected to send more messages than those found in the view
component. When viewing the contract as having two components, the components may be:

- the model component and
- a component including the view objects and other objects in the model's context

This interpretation of the components in the contract is based on the fact that the methods attach(), detach();
setvalue() and getvalue() are included in the description of the model component. Neither the model component
itself nor the view component are specified to send these messages. Also, the view component has methods not
called by itself or the model component, namely draw() and subject(). One can then assume that the model can
receive the messages attach(), detach(); notify(), setvalue() and getvalue() from its context and the view can
receive the messages draw() and subject() from other objects in the context. In other words, the contract states
that the context of the model component can send more messages than the messages explicitly found in the
model and view components.

The objects which form the context of a component are called the observers of the component.

The different kinds of actions
In the model-view contract there are two kinds of actions, namely message-send actions and assignment actions.
In object component systems there may also be two other kinds of actions, namely actions which create new
objects and there may be errors.

A message-send action can be described by giving the name of the receiving object, the message selector and the
parameters of the message. For example, model!setvalue(123) can describe an action to some object named
model. The message selector is setvalue and the value is 123.

29

An assignment action can be described by giving the name of the updated slot and the name of the object holding
the slot and also the new value of the slot after the action is finished. For instance, model.state:=123 can describe
an assignment action which assigns the value 123 to the slot names state in the object named model.

An object creation action can be described by the template used to create the new object and an error action can be
described by naming the object where the error occurred. Such actions are further discussed below and defined in
more detail in chapter 3.

Subscriber line

Network Digital Information

A-subscriber
call handler B-subscriber

call handler

Coordinator

Subscriber

depends On

depends On

depends Ondepends On

Network handling

A-subscriber
handling

B-subscriber
handling

Subscriber handling

Figure F.3: Subsystem partitioning of the telecom example
The rectangles define subsystems grouping the enclosed objects into components.

The arrows define abstract relations between the components.
Figure from (Jacobson et al. 1995).

Refinements of contract parts
(Helm et al. 1990) uses a contract specification to specify how classes are related to their abstract counterparts in
a contract. There are no theoretic or automatic support to show that a class actually implements a part of a
contract. The relation between a part of a contract and a class implementing the part would correspond to the
refinement relation introduced in chapter 1. A class implementing the model part of the model-view contract
would then be a refinement of the model part relative to the context described in the contract.

30

2.3 Observable Behaviour

2.3.1 The observable behaviour of the model
The model-view contract of the previous section focuses on the behaviour of the model as observed by the view
objects. The contract states that the observable behaviour of a model is as follows:

 - a model has the ability to hold a set of objects, here denoted views
 - a view object is added to views by sending the message attach(v) where v is the name of the view object
 - a view object is removed from views by sending the message detach(v) where v is the name of the view object
 - when the model receives the value() message all objects in the receiver's set of views will receive
 an update()- message

What follows is a more general discussion of the observability of the different kinds of actions in a component.

The observability of message-send actions:
A message-send action is observed by the receiver of the message. Observable message-send action is the focus
of contracts as shown in the model-view contract example above. Observable message sending is also the focus
of interaction diagrams found in many design notations. Both, Objectory, UML, OOram and others include such
diagrams. An example describing message sending in the model-view contract follows:

Context object model view

attach(view)

changed()

setvalue(val)

object

Observable message

Time flows downwards
in the picture.

Figure F.4
An example of an interaction diagram which shows how

objects collaborate by sending messages.

The observability of assignment actions
Observable assignment actions are not very common in OCS designs. Therefore, the various design notations
rarely have syntax for describing variable access. Instead, data is transferred between objects by sending messages.
This is also true for the contracts notation.

The model-view contract does not specify observable assignment actions since all assignment actions are only
assignments to variables which are local to the object performing the action. Contracts only state properties of
observable message-send actions and relations between the values of variables. If collaboration between objects
which may access each others variables are to be described, the contract notation has to allow the description of
observable assignment actions.

Observability of assignment actions is defined so that an assignment action is observed by the object holding the
updated slot. If assignment actions are to be observed by one component while the assignment is done by an
object in another component, objects have to be allowed to access variables in other objects. This is allowed in,

31

eg, C++ and Java by declaring variables as "public". It is also possible in languages like CLOS and SELF where
one object may inherit, and thereby access, variables in another object.

The observability of object creation actions:
Object creation is not included in the contract example above. Most design methods do not include observable
object creation actions in the various diagrams and notations. However, in many existing object-oriented
systems, components create objects as part of their observable behaviour. For example, Smalltalk view objects
create controller objects in a well documented way. Programmers can use this feature to make a view create the
kind of controller they want.

In this thesis, observability of object creation actions are handled as described below. Other alternatives are left
for further study.

If the creation action is to be observed, this is modelled by placing the template object in the context and thereby
including the template in the observers of the component. In relation to the example with a view component
having an observable object creation action, this corresponds to placing the template for controller creation as an
object in the view's context.

If creation of some objects is not to be observed, this is modelled by placing the template in the component
creating the object.

The observability of errors
The choice of an error model for a formalism will influence the results stemming from use of the formalism.
The following error model is used in this thesis:

an error action is observed if the error occurs when executing a sentence in the observing configuration
otherwise, the action is not observed

This corresponds to the following error models in parallel and sequential systems:

Error model in a parallel systems:
Each method is seen as executing separately from the rest of the system. Then if one method terminates
because there has been an attempt at performing an erroneous operation, the rest of the system may
continue to execute. In such a case an error action in one component is only observed by other
components as the absence of actions.

Error model in a sequential systems:
If there is an error in one part of the system no more operations are executed. Then the whole system
stops since the execution of the program terminates. The last action in such a system will then be an
error action. Usually, in practice, this error action is just indirectly observed by the fact that no more
actions occur in the system or that the program stops and an error message is displayed.

The choice of error model for a formalism will influence the results stemming from the use of the formalism.
This means that another error model which, eg, differentiates errors depending on what went wrong, might lead
to another definition of observability of error actions. This in turn will lead to a different definition of similar
observable actions. This might lead to other reliability requirements etc. and thereby give quite different results
from what is presented in this thesis. Other error models is left for further study. However, as discussions below
show, the reliability requirements seems to cover many other error models as well.

2.3.2 Hidden behaviour
The messages sent from an object in a component to another object in the same component are internal, and are
part of the component's operational specification, the implementation, of a component. These details are
therefore not part of the observable behaviour of the component. For example, the model sends itself the
message notify(), and this will not be observed by the context. This action is therefore a hidden action which is
not part of the model component's observable behaviour.

An action updating a variable in a component and where the action stem from execution of sentences in the
component itself, is a hidden action. For example, when the model component updates its views variable, this is
hidden from the context. Therefore, an implementation of the model part of this contract can delegate to some
other object to hold the views. If the assignment action was observed, it would mean that a variable
corresponding to views had to be present in all model implementations.

32

Creation of new objects by using templates which are considered to be within the component are not observed by
objects outside the component. For instance, if the model component creates an object which is to handle the set
of views, this creation action should not be observed by the context. If this action was observed, this would lead
to restrictions on how the model component could be implemented. It would then be impossible to have
components with more objects than described in a specification.

Error actions which are not observed are hidden. This means that actions which stem from execution of a
sentence within the component is not observed by the component's context. This means that even when an error
occurs in the model component, the model might still fulfil the model-view contract. The contract is fulfilled as
long as the error does not influence the models collaboration with the objects observing the messages specified
in the model-view contract. Therefore, from the perspective of the observers of the model-view contract, such an
error action is hidden.

2.3.3 Observability of actions stemming from
execution of sentences in the context

When sentences in the observing context are executed, the resulting actions may be observable to the context or
not. It is not obvious how to categorise such actions stemming from execution of sentences in the observing
objects. The solution presented in this thesis is based on practical experience with extensible object systems. In
relation to observability of actions, the selected solution is to treat actions stemming from execution of
sentences in the context in the same way as actions from sentences in the component.

A simple example which illustrates the consequences of this solution is found in the model-view contract above.
The view component (the context of the model component) sends itself the message draw(). This message is
observed by the view component since the view is part of the observers of the model. On the other hand, if the
view is viewed as a component and the model and the other objects are the view's context, the draw() action is
not observed.

For the next example we let the model be the component. Assume that the context of the model sends the model
a message, eg, the setvalue() message. This action is not observed by the context since the receiver is not found
among the observers of the model component, but rather in the model component itself. Since the model is the
component, it is not part of the observing context. Therefore the setvalue() message is not observed. If the
component/context is switched, ie, when the model is the observer of the context, the setvalue() message is
observed.

2.3.4 New objects can be added to observers
According to the definition of an object system, each object is part of exactly one component. When new objects
are created they must therefore be placed in some component. The question is then where to place new objects.
There are three obvious alternative places to put the new objects:

In the component where the template object was found
In the component where the executed sentence which created the object was found
Somewhere else

The placement of new objects will influence the definition of observable behaviour because it will influence the
choice of which objects make up a component and which objects will make up the observers of a component.

In the designs which have been studied as the background for the definitions of this thesis, the observability of
an object creation action and the placement of a created object are always linked in the following way:

an object created by an observable object creation action is placed in the observing context and
an object created by hidden object creation action is placed in the component

where the executed sentence is found.

33

2.3.5 The observable behaviour of boundary
objects may be non-deterministic

The view's observable behaviour is simply:
the view may send the message getvalue() to the model

The observable behaviour of the other objects in the context is indirectly specified by the list of methods defined
for the model and view components. These are:

the context can send the model the messages:
attach(), detach(); setvalue() and getvalue() and maybe notify() (see discussion below)

the context can send the view the messages:
subject() and maybe draw() and update() (see discussion below)

It is normal to interpret the contract so that the methods listed can be called in any sequence any number of
times. In other words, it is not determined in what order the methods will be called, ie, the context has non-
deterministic behaviour. The context's behaviour will reflect the users behaviour and may then be seen as
modelling aspects of the systems users. The context can therefore be viewed as a boundary component with non-
deterministic behaviour.

In many OCS design methods, non-deterministic behaviour is used when a component's behaviour should not or
can not be specified in detail, eg, a user has non-deterministic behaviour when it is not known in which sequence
the user chooses to give commands to an application. In many designs the user's behaviour is therefore modelled
by the non-deterministic behaviour of a user component, and the rest of the system should function without
errors independently of which sequence of commands a particular user chooses.

Some OCS design methods expect the designer to specify boundary component behaviour more explicit than
done in the above contract specification. For instance, Objectory focuses on giving exact specifications of actor
objects' non-deterministic behaviour since this defines the system's functionality as seen from the users' point of
view.

34

2.4 Observable Similarity
This section gives an informal, but detailed description of similar observable behaviour. First observably similar
actions are described. Then it is described how actions from execution of sentences in the context as well as
actions from execution of sentences in the component, are viewed relative to observable similarity. Next, it is
described how similarity of behaviour is viewed when the specification has non-deterministic behaviour. The
topic of the last part of this section is observable similarity of terminated components and components with
sequences of hidden actions.

2.4.1 Observably similar actions
This section describe what it means for two actions to be observably similar. This is used in defining similar
observable behaviour of components. Similar observable behaviour means sequences of observable actions which
are pairwise observably similar.

Assume that the two actions to be compared are both observable actions. To be similar, the two actions must be
of the same kind. This means that only message-send actions are similar to message-send actions, assignment
actions are similar to assignment actions, etc. Furthermore we have:

Two message-send actions are observably similar to each other when they are messages to the same
object. Also, the message selector is the same in the two actions. The parameters which are names of
observing objects are equal. Parameters which are not found as the name of an object in the context may
be different. However, both parameters must be different from context object names.

Two assignment actions are observably similar when they update the same slot in the same object. If, in
either of the actions, the new value of the updated slot is the name of an observing object then the new
value is the same in the two actions. If the new value is not found as the name of an object in the
context, then both actions must have values which are different from context object names.

Two object creation actions are observably similar when they create objects from the same template.

Two error actions are equal when they are errors in the same object.

Below some examples are used to illustrate the consequences of this definition.

Message-send actions:
Consequences of requiring message selectors to be equal in message-send actions:

In the definition of object-oriented systems in (Blair et al. 1991) it is said that an important characteristic
of object-oriented systems is that execution is controlled through message passing, in (Blair et al. 1991)
termed "dynamic binding". When there is dynamic binding in a system, the mechanism which selects
what method to perform in response to an object receiving a message, is the basic mechanism to select
alternative execution paths in a program. This selection mechanism is therefore the basic control
mechanism in the system. Therefore, if the message selectors were different in two otherwise equal
actions sent to, eg TextEditor in the two systems MyModel||TextEditor and TextModel||TextEditor, then
TextEditor's execution may proceed differently in the two systems.

One intention of defining observable equality is that when two message-send actions are observably
similar, the receiving observer is expected to behave similarly. When the system has dynamic binding and
we have this intention with our definition of observable equality, it is therefore natural to require that two
observably similar actions have equal message selectors.

It is also a common perception among component designers that message selectors are equal in two
observably similar actions. Therefore this alternative is used in the present work while the alternative:
allowing message selectors to differ, is left for further study.

Consequences of requiring receivers to be equal in message-send actions:
If receivers were allowed to be different in two observably similar actions, the two receivers may respond
in different ways. We would then also get as a consequence that TextEditor's execution would proceed
differently in the two systems MyModel||TextEditor and TextModel||TextEditor after two observably
similar actions with different receivers.

35

It is also a common perception among component designers that receivers are equal in two observably
similar actions. Therefore this alternative is used in the present work while the alternative: allowing
receivers selectors to differ, is left for further study.

Consequences of requiring parameters, which are context object names, to be equal:
One consequence of requiring parameters which are names of context objects to be equal, is that a context
will receive the same context object names in the same parameter positions from a specification and its
refinements.

The model-view contract does not give examples of messages from a component with parameters which
are names of objects in the context. Such examples are not very common in OCS designs. In the
Smalltalk system there are a few examples of messages which have such a functionality. Most uses of
these messages are found in the class named Dictionary. The messages are used for retrieving objects
which are stored in Dictionaries. For instance the Dictionary class has the following interface:

Dictionary:
at: index put: item "Stores the object referred to in the variable item under index"
get: index "Returns the object stored under index"

The consequence of the definition of observably similar actions, would in this case be that a context
would find two versions of Dictionary observably similar if the same object name was returned after equal
sequences of at:put: and get: messages. If one Dictionary would return a different object than the other,
after the same get:-message with the same index as parameter, the two Dictionaries will not have the
same observable behaviour.

Consequences of allowing parameters to be different when they are not the names of context objects:
Allowing parameters to differ when they are not names of objects in the context, allows a refinement to
use different object names than the specification. It also allows a refinement to contain a different number
of objects than the specification. In this way, the names of the objects used in a specification and the
number of objects in the specification are not part of the observable behaviour of a specified component.

It is possible to make an illustration of this case based on the model-view contract. We let the view be
the observing context and we let the model and the other objects in the system be the component called
model. The view will receive one or more subject() messages with a parameter, namely the name of some
model object. The view would observe two subject() messages as equal even when the parameters were
different. This difference means that the name of the model object might vary in two versions of the
model component.

The model-view contract does not give any examples of components with more than one object. It is
therefore not straightforward to use this example to give an illustration of how the definition of
observably similar message-send actions allows a refinement component to have a different number of
objects than the specification. However, in the example referred to in figure 7 there are components with
more than one object. For instance, the Network handling component consists of three object. The
definition of observable equality would allow a refinement of the Network handling component to have
one, two, three or any number of objects. However, there is a limit to the number of objects which a
component can let the context know of. Such objects are called visible objects and are further discussed in
the section on reliability requirements later in this chapter.

Assignment actions:
Let the view in the model-view contract be an observer of the other objects in a system. There is only one
possibility for observable assignment actions when the view is the observer, namely assignment to the
subject variable. Two observed assignment actions will assign values which are the names of some model
objects. These names may vary. This allows two model components to have different object names for
the objects representing the model component in the model-view collaboration.

Object creation actions:
Consider the case in Smalltalk where the view component creates a controller object. Two view
components have observably similar object creation actions if they create a controller from the same
class.

36

Error actions:
If TextEditor observes an error action, the error action is the result of executing a sentence in one of the
objects in TextEditor. Two observably similar error actions from TextEditor will then be errors which are
the results of executing the same sentence in TextEditor, one error when the sentence is executed in
TextModel||TextEditor and one error when the sentence is executed in MyModel||TextEditor.

Chapter 4 gives a formal definition of observably similar actions as defined above. This formal definition is
given by a relation called the observably equal actions relation. The relation has a name with "equal" in it since
it is an equality relation. This is shown in a proposition in chapter 4.

In chapter 5 it is shown that this definition of observable equality does not give reliability when used as a basis
in the definition of a refinement relation. Chapter 5 therefore includes a modified version of the observably equal
actions relation which can be used as a basis for defining a reliable refinement relation. This modified version is
called the observably similar actions relation. The word "equal" is not used in the name of the modified definition
since the new relation is just a pre-order.

2.4.2 Observable similarity from execution of
sentences in the component and in the
context

In what follows, an action stemming from a sentence in the context is seen as observably unequal to an action
stemming from a sentence in the component. Using the model-view contract as an example, this means that, eg,
a notify() message to the model sent from the model itself is viewed as observably different from a notify()
message sent from the model's context.

The consequence of this decision can be illustrated using the two systems MyModel||TextEditor and
TextModel||TextEditor where TextEditor is the observing context. The traces of the two systems are compared.
Assume that there is one action from each system and the two actions are observably similar.

If there are two message-send actions, eg, two update() messages, which are observably similar relative to
TextEditor, then either both actions stem from execution of a sentence in the TextEditor, or both stem from
execution of sentences in the components MyModel and TextModel.

If the system is sequential, at most one sentence is executable at any one time. This means that if update() came
from execution of a sentence in TextEditor, then both the observably similar actions must stem from execution
of the same sentence in TextEditor.

If the system was a parallel system where objects can execute in parallel, then an update() message from the
component TextEditor can stem from different sentences. This can happen if there are two sentences which can
be executed and one is executed in TextModel||TextEditor and the other in the MyModel||TextEditor. In what
follows it is assumed that two actions stemming from different sentences in the context are seen as observably
unequal. This means that either both actions stem from execution of the same sentence in the observing context
TextEditor, or both stem from execution of sentences in the components.

The consequences of choosing actions from different sentences in the context to be unequal is further discussed in
the chapter 5. The conclusion is that when "clean and tidy" specifications of reliable refinements are made, an
action from a sentence in the context will always be observably equal to the action from execution of the same
sentence, no matter which component it is collaborating with. Therefore, this will not in practise make any
difference in relation to determining whether or not a component is a refinement of some other component.

It is left for further study to look at the consequences of choosing an alternative definition of similarity of
actions relative to where the executed sentences is found.

2.4.3 Similar observable behaviour to non-
deterministic behaviour

The context's observable behaviour was specified above as being non-deterministic. Objects' behaviours are
specified to be non-deterministic when the behaviour should not or can not be specified exactly.

A refinement of the context must have observable behaviour corresponding with some or all of the alternative
behaviours given by the non-determinism of the context specification. In this view, a context which only

37

displays one of the alternative observable behaviours will be seen as having similar observable behaviour to the
specification. This means that a user which always gives the same sequence of commands to an application is
seen as a refinement of some actor (or environment role) describing what users can do in general.

Example:
The behaviour of the context towards the model is not specified in detail in the model-view contract. The context
behaviour is perceived as being non-deterministic. Any implementation of the context which display one or more
of the possible behaviours fulfils the specification since the model is expected to function without errors
independently of which of the non-deterministic behaviours is displayed.

Another way of viewing this is that every sequence of observable actions displayed by the refinement must also
be a possible sequence of observable actions given by the specification.

When a refinement only displays some of the alternative behaviours of the specification, then no new errors
should be introduced in the rest of the system when combined with the refinement. One consequence of this is
that if there are no error when the rest of the system is combined with the specification, it is expected to function
without errors no matter which of the alternative behaviours is displayed.

2.4.4 Observing termination and sequences of
hidden actions

Components which have terminated and components which execute giving a possibly infinite sequence of hidden
actions are seen as equivalent in that none will give observable actions. There are alternatives to this view, but
they are left for further study.

38

2.5 Reliability Requirements;
Two Examples

To illustrate what is meant by reliability and reliability requirements, this section presents, very informally, two
simplified reliability requirements:

A specification must specify all messages sent from the context to the component.
A specification must specify a component's visible objects.

The first example requirement does not apply to systems with non-deterministic behaviour. To describe the
details of why this is so would be outside the scope of this section. However, the situation arises since a
component can respond in different ways and thus control which messages it later will receive. The word "all" is
therefore too general in such a case. This is further discussed in chapter 8 in the section discussing the reliability
requirement "reliable message sending" in relation to traditional subtyping.

The other example requirement applies to all reliable specifications.

A specification must specify all messages sent from the context to the
component
In order to know what a refinement must include and what a designer of a refinement may change, a contract
must include something indicating the availability of methods. A small example illustrating this problem
follows:

In the model-view contract, it is not clear whether the context is also allowed to call the model-method notify().
Knowing if notify() can be called from the context or not is important. If notify() is only used as part of
expressing the model-view contract, an implementation need not include a notify()-method. However, if notify()
is sent from the context, leaving a corresponding method out would lead to unwanted errors.

Choosing to leave out a method for notify() in the implementation of model might not create errors when
combined with "nice" contexts not calling notify(). When a "nice" context is later replaced with a context made
from the same contract, but which calls notify(), then an error will occur and the system does not function as
planned. Therefore, the model-view contract's specification of the context's observable behaviour is not reliable
in that it is possible to interpreted the contract in different ways which can lead to unanticipated behaviour.

Summing up this discussion: If the context specification is not reliable, the result is that it is possible to make
an implementation of a model which works without errors when collaborating with a "nice" context. When the
same model is used in another context, there is a chance of previously unseen errors appearing.

To avoid such errors it is therefore necessary that a specification specify all messages a context may send to the
specified component.

This reliability problem is well known. Programming languages such as C++ and Java allow the programmer to
define the availability of methods, and thereby specify the expected observable behaviour of the context of the
objects of the class. This is done by marking the methods with a label indicating if the methods are private (only
to be called from the component itself) or public (can be called from the context). A label named friend is used to
limit the availability of methods, so that they can only be called from objects of some explicitly named classes.

Type checking is then used to ensure that only implemented methods are called - or is it to ensure that all called
methods are implemented. This would depend on point of view. For instance it can be discussed whether it is the
context or the component which put requirements on the other. If the component sets the requirements it must
be checked that the context only calls implemented methods. If the context gives the requirements, it must be
checked that the component implements all called methods. This thesis presents a context centred view where it
is the context which sets the requirements. This is motivated by the fact that it is the context which is to
function as planned, also when the component it replaced. Therefore a component must behave as expected by
the context. This is as opposed to the common component centred view often presented in relation to type
checking. In this view a component define what methods its context may call. A component can then be placed
in all context which only call the specified set of methods.

These different views can also be exemplified by the following two statements concerning how components can
be used when they have observable message-send actions:

39

Context centred view:
A component can replace another component if the component implements all the methods called by the context
and send all the messages expected by the context.
Component centred view:
A component can be placed in any context which only calls the set of methods found in the component.

Because this thesis represents a component centred view, as opposed to the more common component centred
view, this thesis has a stronger focus on the context than what is found in most related work which is usually
based on the component centred view.

A specification must specify a component's visible objects.
Objects are message receivers, components are not:
In object component systems, objects are the receivers of messages while components can not receive messages.
If there are more than one object in a component, the context can send messages to more than one object. For
instance, if the model component consists of two objects, for instance called model and collection, the context
could send messages both to the collection object and to the model object.

For example we might have a case where the collection object has methods to add and remove elements in a set,
ie, the attach() and detach() methods are only found in the Collection class. The context must then send messages
to the collection object to add and remove views. An error will then occur if the messages are sent to the model
object. The error occurs since there are no corresponding methods in the model object. Furthermore, if the
setvalue() and getvalue() messages should be sent to the model object, the context must be able to distinguish
between the two objects in the model component.

Visible objects:
In a specification of a component with more than one object, it is therefore necessary to identify the different
objects which will receive messages from the context. Objects which receive messages from the context are
visible objects. If the context sends messages to the collection object, then the collection object is visible. We
say that the collection object is visible to the context. We also say that the collection object is one of the visible
objects from the model component.

In order to specify the model's observable behaviour it is also necessary to specify objects which are visible to
the model, not only the model objects which are visible to the context. If the context's visible objects were not
specified, it would be difficult, if not impossible, to specify which objects the model is expected to send
messages to. That is why there are expressions for instantiating objects in the language used to define contracts.
In the model-view context the view objects are visible from the model's context to the model since these objects
get messages from the model component.

Hidden objects:
If there are objects in a component which do not receive messages from the context, but only receives messages
from other objects in the same component, the objects are not visible. Such objects are hidden objects. If hidden
objects occur in a specification of observable behaviours, the hidden objects are only used to express the
observable behaviour. A refinement and its specification, therefore, need not have similar hidden objects as long
as the refinement and specification have the same observable behaviour.

Examples of observers, visible and hidden objects:
In the model-view contract the following hold:

- The view objects and the other objects in the model's context are the observers of the model.
- The view named "someview" is visible to the model after the message attach(someview) is
 sent to the model and the attach-method executed. someview is visible from the context.
- The model named somemodel is visible from the model component after
 the view has received the subject(somemodel) message and the subject-method executed.
 somemodel is visible to the context.

There may be components with no visible objects. Such components usually model the environment which
interacts with the system. Visible and hidden objects are formally defined in later chapters.

Observers, visible objects and component encapsulation:
The number of visible objects from a component may be used as part of a measure of a component
encapsulation. We can say that a components functionality is more encapsulated the fewer visible objects there
are from the component. Chapter 8 discusses component encapsulation and other results from the theoretic work
which are relevant to practical OCS design.

Encapsulation as defined in the object-oriented tradition usually emphasises the encapsulation of the variables in
single objects. Encapsulation of components consisting of more than one visible object is rarely discussed. With

40

the division of a component's objects into visible and hidden objects, and also in hidden and observed actions, it
is possible to define various degrees of component encapsulation.

The conclusion from this small discussion is: since it is objects which are the receivers of messages, and not
components, it is necessary to specify which object in a component should receive the different messages. The
objects receiving messages from the context are visible objects.

Other reliability requirements
The first example of a reliability requirement is related to a well known problem which occurs when methods are
missing from component implementations and/or when contexts send messages which components do not
understand. Compile time type checking in object-oriented languages are done to help avoid this problem.
However, as mentioned above and discussed in chapter 8, traditional type checking does not solve this problem
for all systems.

The second example of a reliability requirement is not related to a well known problem in the same way as the
first example requirement. However, there are some relationships between this second example requirement and
some related work. This is also discussed in chapter 8. However, the related works do not argue for their
solutions from a formal basis, but argue based on what are practical solutions when designing systems.

No related works focus on requirements for component specifications and implementations in order to get reliable
substitution of components. There are some works which present solutions which touch the same area of
concern, but no work presents the problem in general based on the characteristics of object component systems.

Compile time type checking is done to ensure reliable substitution for components in functional systems.
Characteristics of functional systems and object component systems are quite different. Therefore, it is not
surprising that traditional type checking does not ensure reliable substitution for OCS components. The
interesting question is then: what is necessary to ensure reliable substitution of OCS components ?

Type checking of functional systems is a topic which has been and still is studied by many groups of
researchers. There are many details to be sorted out in order to do type checking correctly so that it is ensured that
no unanticipated errors will occur. Similarly, many details must be sorted out to find out how to ensure reliable
substitution of OCS components.

This thesis is a first step in finding the necessary requirements on specifications and implementations in order to
avoid unanticipated system behaviour when components are combined. In this first step, certain alternative views
on objects, components and object behaviour have been chosen. The choices have influenced the results and
different choices might give different answer to the question of what is necessary to ensure reliable substitution.
Further work will show how different choices will influence the answer and perhaps show which choices will be
the best alternatives for creating reliably substitutable components.

Chapter 5 presents a set of requirements necessary to get reliable substitution. The requirements are based on the
definition of object-oriented concepts presented in chapters 3 and 4 and should therefore be read after these two
chapters.

41

CHAPTER 3

Modelling OCS Properties

Using Omicron

This chapter presents a simple object-oriented language for describing systems and components with behaviour
as described in chapter 1. Since it is small and is used to define objects, the language is called Omicron after the
short o of the Greek alphabet.

The Omicron language is a simple prototype-based language and therefore has only a very limited set of
concepts, mainly name, slot, object and executable sentence. Most other concepts found in object-oriented
languages can be modelled by using the Omicron concepts. Examples of how Omicron is used to model
methods, templates for object creation, inheritance and some other object-oriented language features are explained
below. For more examples see Ungar et. al. (Ungar et al. 1991) which gives a good overview of how traditional
object-oriented language features can be simulated by constructs in more simple prototype-based languages.

Section 3.1 gives an informal introduction to the Omicron language. This section shows examples of how
object-oriented concepts such as objects, methods, systems, and components, are represented in the Omicron
language. It is shown how the object concepts of Omicron are used to model both objects and methods.

Section 3.2 shows how Omicron systems are executed. The result of executing an Omicron system is a sequence
of actions. The actions describe the behaviour of the objects in the system. An Omicron expression is both the
code of a system which a programmer writes and the representation of an executing system. How this is done is
shown through examples in section 3.2. This section also shows how executing methods, self-reference and class
features such as inheritance and templates for object creation are modelled in Omicron.

Section 3.3 shows how the model-view contract of chapter 2 can be defined using Omicron.

The complete syntax of Omicron is summed up in section 3.4. This section gives the formal semantics of the
language. The formal semantics is given operationally through a set of transition rules. This gives the Omicron
calculus which is used when reasoning about components' observable behaviour. The Omicron language and
calculus is also called the Omicron formal framework, or just the Omicron framework.

A reader who is familiar with BNF syntax and language definition through operational semantics may read
section 3.4 to get a complete understanding of the language. A reader with little training in BNF and formal
language definitions may skip this section, except for the introduction. Section 3.4 also defines some basic
notations for describing sequences of actions and the trace of an execution. This notation is used throughout the
rest of the thesis. The notation is defined both informally and formally. This is done in the hope that both
readers with and without training in formalisms can understand what is necessary in order to follow the
discussions and conclusions in the rest of the thesis at an appropriate level.

Section 3.5 explains why the formal definition of the Omicron semantics was done as presented in section 3.4.

This chapter does not give an introduction to object-oriented concepts. It is assumed that the reader is familiar
with object-oriented concepts such as object, method and message. Instead, the chapter presents how the object-
oriented concepts central to the formalisation of object component system designs are modelled in the Omicron
language. For definitions of object-oriented concepts see, eg, (Blair et al. 1991).

42

3.1 A Simple Object-Oriented Language
This section first gives some arguments for why Omicron is created. Then it argues for limiting the number of
concepts in the language before presenting how object-oriented concepts such as objects and methods are
represented in the Omicron language. This section also gives a formal definition of a system and a component.
The presentation of Omicron will be developed further in later sections, where section 3.2 gives examples on
how Omicron systems are executed, and section 3.4 gives a complete formal definition of Omicron.

3.1.1 Why the new language Omicron is created
Object-oriented technology featuring the concepts of object identity, instance creation, encapsulation, dynamic
binding and inheritance is increasingly popular when designing systems. However, there is a lack of
formalisation tools. As shown in chapter 9 on related work, the common way to make formal models of objects
is to base them on models which are supported by existing calculi, ie, functional models (eg, lambda calculus) or
models of communicating processes (eg, π-calculus (Milner et al. 1989a)). As discussed in chapter 9, this is not
an ideal way to formalise objects as found in object component systems. This is mainly because it is not
intuitive how definitions and proofs done in these calculi map to OCS concepts. The mapping is not intuitive
since the concepts in these calculi and the OCS concepts are fundamentally different. The Omicron calculus
differs from these calculi in that it is based on the OCS concepts. Definitions and proofs of properties of OCS
components and systems can therefore be done by directly using OCS concepts.

There are a few formal models of objects which have concepts which are more in line with the OCS concepts.
However, as said in chapter 9 on related work, all of them have some serious weakness in relation to showing
reliable substitution of components with characteristics as described in chapters 1 and 2. Several of these formal
models were studied and attempts were made to eliminate the weaknesses. However, as work progressed it
became obvious that the weaknesses were due to fundamental properties in the models and were therefore quite
inherent to the models. Each model would therefore need substantial rework to eliminate its weakness. It would
therefore be much simpler to define a new formal model specially suited to reason about substitutability of OCS
components. Consequently, a new formal model was created and it was named Omicron. Actually two formal
models were made. Why two models is explained below.

When working to find a way to formalise OCS components, many alternative languages and rules for describing
the semantics of the language were attempted before the two presented versions were selected. Most of the
alternatives became unnecessary complex without being sufficiently better, or more interesting to justify
presentation, except for these two alternatives.

The main reason most alternatives became unnecessary complex and only two versions were interesting to
present is that there are basically two different ways to view the execution of a sentence in a program. A sentence
may be seen as an atomic operation to be performed, or as an expression which is to be evaluated. The first
alternative is found in process languages like CCS (Milner 1989) and the π-calculus, while the latter is found in
functional languages such as ML (Milner et al. 1990). OCS designs have relationships to both of the these
traditions. When defining the language for describing objects, one or the other alternative should be selected to
keep the syntax and semantics simple. Therefore this thesis presents two versions of Omicron. In chapter 7 a
language with expression evaluation semantics is presented, while the present chapter describes a language with
atomic operation semantics. When the two alternatives are compared, it is clear that in many ways the atomic
operation semantics gives the simplest calculus. The simplest version is therefore chosen as the main version
and is presented below.

The formalist traditions of Europe (eg, the π-calculus), the pragmatic traditions of California (eg, SELF and
Smalltalk) and the C tradition (eg, C++ and Java) have different concrete syntax preferences. Since the work
presented here is strictly formal, the Omicron syntax follows the formalist tradition, thus easing the
formalisation work. However, it has also taken some inspiration from the syntax of SELF. (This is the syntax
for inheritance and input slots since there is no formalist tradition for the syntax of such slots.)

Omicron is not meant to be a practically usable object-oriented programming language in itself, since many
features which usually are handled by runtime systems have to be handled manually in Omicron. When
developing object-oriented systems, the specification, design and implementation may be done using more user
friendly notations such as an object-oriented programming language or design notation. Examples of such
notations are OOram, Syntropy and UML. Formal proofs can then be done by translating from the more user
friendly form to Omicron. In this way proofs of, eg, refinement relations between specifications and realisations
can be done.

43

3.1.2 Advantages of limiting the number of concepts
An advantage of limiting the number of concepts is that it reduces the number of concepts which must be
defined. The number of concepts can be defined by for instance having a single concept to represent both object
and method. This eliminates the need for a special syntax to distinguish between them and this reduce the
number of syntactic elements whose semantics must be formally defined. Similarly, using objects as templates
for other objects and allowing inheritance between objects eliminates the need for special syntax to distinguish
classes and objects, while still retaining the class properties related to inheritance and object creation.

One reason for creating Omicron is to understand more about categorisation (typing) of objects by studying
monotonic relations between OCS components. Therefore it is important to avoid traditional object-oriented
typing and other such concepts which are introduced to help developers write correct code. Such concepts must be
avoided since they have strong relations to equivalence and monotonic relation definitions. The formal language
will therefore have no distinction between type, class and object.

In traditional object-oriented systems, objects are both described by sentences in a program and represented by
bits in memory when the program is executed. This distinction between the program-description and the
representation of an executing system is eliminated in Omicron and many other similar languages such as π and
λ. This is done by having the language expressions represent both a program-description and an executable
representation. How this is done is explained in section 3.2.

3.1.3 Names, slots, objects and methods
This section gives definitions of the OCS concepts name, slot and object as found in the Omicron language. For
each defined concept, the Omicron syntax is shown. The definitions and syntax are illustrated by referring to the
model-view contract in chapter 2. Below it is also shown how a traditional method is represented as an Omicron
object.

Name
In the Omicron language there is no distinctions between what traditionally is the name of a variable, the name
of a method and the name of an object (ie, the identity, key, unique name etc. of an object). All of these are just
names. The set of names is denoted by N.

Limiting the number of concepts in this way is an element in the basic assumption of not taking the reliability
requirements for granted, as described in chapter 1. Limiting the number of concepts in this way also helps to
simplify the formal definition of the Omicron syntax and thereby the reasoning done based on this definition.

However, when names are used in certain positions in Omicron expressions they are referred to as object names,
slot names and slot values even if there is no syntactic difference. See below for details.

Slot
A slot is a pair of names denoted s→o. s is called the name of the slot and o is the slot value. As shown below,
slots are both used as what is traditionally known as variables and sequences of slots are used as method
dictionaries. This is similar to, eg, SELF.

Object
In Omicron an object may be defined as follows:

Example of an object description: e : ([s→o, w→m, t→j], s!w(t); s:=t; s := t clone;)

In this example e, s, o, w, m, t and j are all names. The example defines an object named e with three slots
named s, w and t. Slots hold values which are names. In the example, the value of the s slot is the name o, the
value of slot w is m and the value of t is j. The names found as slot values may also be found as object names
and slot names in this or other objects in a system. The slot values may also be names which are neither found
as object nor slot names in a system. Such names may for instance be used to represent constants.

The defined object has a body consisting of three sentences:

a message-send sentence s!w(t)
an assignment sentence s := t
a clone sentence s := t clone

These sentences define actions the object performs when it executes. How sentences are executed is described in
section 3.2.

44

Omicron slots are used as variables and sets of slots as method dictionaries. For example the model-object of the
model-view contract of chapter 2 can be modelled in Omicron as follows:

model : ([state → v; views → o, setvalue → s, getvalue → g, attach → a, detach → d, notify → n])

where
the slots state and views correspond to the variables state and views as defined in the contract,
the rest of the slots correspond to the methods named attach(), detach(); setvalue(), getvalue() and notify().

Also we have:
model is a name, referred to as the object name
s, g, a, d and n are names referring to objects modelling the actual methods,
v is a name representing the state of the model and
o is a reference to an object holding a set of views.

A complete Omicron description of the model-view contract is found further below in section 3.3.

In the operational specification of the model-view contract, there are executable sentences in methods, but not in
the objects themselves. For instance there are sentences in the attach() and detach() methods which will change
the views variable when they are executed.

Sentences in objects are not common in object-oriented languages, and even less used, although found in, eg,
Simula and Beta objects. See, eg, (Birtwistle et al. 1973) for examples. In Omicron objects may have sentences.
The main reason for this is that when objects can have sentences then methods can be objects as explained next.

A method is also an object
The example object named e above, could also be a method. The following example shows how a method in the
model in the operational description of the model-view contract of chapter 2 can be defined using Omicron. The
method is the one with the name setvalue and which has the parameter val of type V. Using Omicron, this
method can be defined as follows:

s : ([selfI → model, :val → nil] state := val; views!notify();)
where:

s is the name of the method, ie, an object name
the star (I) in selfI means that the method inherits slots from the object named model

(notation taken from SELF)
the colon in :val means that val is an input parameter (notation taken from SELF)
state := val; views!notify(); is a sequence of sentences defining the actions the object is

to perform when executed. Sentences will be further discussed in section 3.2 below

More examples of methods are given in section 3.2, subsection 3.2.4. Details of how methods and object
executions are handled is described informally, but in more detail in section 3.2. A full formal definition is given
in section 3.4.

The decision to have no syntactic distinction between an object and a method in Omicron was inspired by Beta.
In Beta, classes and procedures are given a common syntax and are called Patterns.

3.1.4 Object systems and components

Object Systems
Definition: An object system

An object system is a set of objects where each object has a unique name.

Object systems are closed. With this we mean that the objects in the system only collaborate with each
other.

Associating a unique name with each object is identified as a key property of objects in (Khoshafian and
Copeland 1986). The unique name is seen as something different from the object's variable values (state) and the
object's behaviour.

45

We let S.Dom denote the set of all object names in the object system S. This means that if 'model' is the name
of an object in an object system S, then model ∈ S.Dom is true. If model is not the name of an object in S,
then model ∉ S.Dom. When there can be no misunderstandings, we let n ∈ S denote n ∈ S.Dom and n ∉ S
denote n ∉ S.Dom for any name n.

Object names in theory and practise:
In practice there is a reuse of object names in that objects which do not exist at the same time can have the same
name. This strategy gives some advantages in practise, mainly limiting the size of systems. To limit the size of
systems, old unused objects are removed from the system in order to recover used memory space. The names of
such removed objects can then be reused, while the uniqueness of object names at each instance in time is
retained. Reuse of names is practical in that it limits the number of different object names which are necessary to
ensure uniqueness. When the number of names is limited, then the size of the names is also limited. This in turn
will also limit the size of object systems.

System size and memory use is not a primary concern when making theories. In theory it is simpler to assume
that no object is ever removed from a system and all objects have unique names. This assumption is done in
Omicron since it gives simpler definitions of the semantics of the language, ie, how systems are executed. It
simplifies the descriptions of system execution since it is not necessary to describe how old unused objects are
detected and removed or how names are recycled.

A component is a subsystem
A component consists of one or more objects. A component is a subset of the objects in a system and defines a
subsystem:

Definition: Components
The objects in a system can be partitioned into components. A component, C, in an object system, S, is
a non-empty subset of the objects in the object system, ie, C ⊆ S ∧ C ≠ Ø.

An object in a system is part of one and only one of the components in the system. This means that the
system S can be divided into the components C1,...,Ci if and only if the following holds:

∀ n : N , k,j : 1,…,i • n ∈ Cj ⇔ n ∈ S ∧ (n ∈ Ck ⇒ k = j)

A component is an open system in that it interacts with its environment which is comprised of the
objects in the other components in the system.

46

3.2 Execution of Omicron Systems
This section starts by presenting examples of how Omicron sentences are executed, something which results in
sequences of actions. Then it shows how objects are used as templates for object creation and how inheritance is
represented and handled. It also shows how methods are modelled as Omicron objects and how self reference is
done. The last topic of this section is system errors.

Executing an Omicron sentence results in an action. The actions are of four kinds:

e->o!m(j1,…,jn)/k a message-send action from a sentence in the object named e:
 o gets the message m with j1,…,jn as a parameters and where

k is the name of the new method to be executed
e->o1.s1,…,on.sn:=j an assignment action from a sentence in the object named e:

for i = 1..n, the slot si in the object oi gets the value j
e->i.s:=k/o a clone action from a sentence in the object named e:
 the object o is copied and given a new name k and

the slot s in the object i gets the value k
e->error an error action from execution of a sentence in the object

named e.

These actions are explained below through examples. This section only presents examples of executing Omicron
expressions and does not give all the details. All the details and possibilities are presented in the section 3.4
which gives a complete formal definition of the Omicron language.

3.2.1 Executing sentences in Omicron
In section 3.1 an object was defined as follows:

Example of an object description: e : ([s→o, w→m, t→j], s!w(t); s:=t; s := t clone;)

This object has a body consisting of three sentences:

a message-send sentence s!w(t)
an assignment sentence s := t
a clone sentence s := t clone

These sentences results in actions which the object performs when it executes. To model execution in Omicron,
an execution mark, denoted $, is introduced. The execution mark is placed in an object's body to show where the
execution control is. By introducing the execution mark, Omicron configurations can represent both a program-
description and an executable representation.

To make the above object an executing system, an execution mark can be placed in front of the object's
sentences as follows:

e : ([s→o, w→m, t→j], $ s!w(t); s:=t; s := t clone;)

The next sentence executed is the one following the execution mark. After a sentence has been executed, the
execution mark is advanced to the right of the executed sentence. Therefore, after execution of the first sentence,
the object is described as follows:

e : ([s→o, w→m, t→j], s!w(t); $ s:=t; s := t clone;)

In this case, the next sentence to execute is s:=t.

The semantics of executing a sentence is described by an action. If error situations are ignored, the actions from
execution of the example object above are:

47

e->o!m(j)/k a message-send action from a sentence in the object named e:
 o gets the message m with j as a parameter, k is the name of the executing method

which is the result of the message, this is explained in detail below
e->e.s:=j an assignment action from a sentence in the object named e:

the slot s in the object e gets the value j
e->e.s:=k/j a clone action from a sentence in the object named e:
 the object j is copied and given a new name k and

the slot s in the object e gets the value k

In general, a message-send action may have zero or more parameters. We then have a general form for message-
send actions as follows:

e->o!m(j1,…,jn)/k

Also, an assignment action may assign a value to one or more slots. We then have the following general form
for assignment actions:

e->o1.s1,…,on.sn := j

When the execution of a sentence results in some actions, we say that the actions stem from the sentence.

Omicron has three kinds of sentences: message-send sentences, object creation sentences and if-sentences. The
sentence s := t presented above was a simple version of the Omicron if-sentence. An if-sentences is written as
follows:

s:=(v=w t f)
This reads: if the v and w slots hold the same name then s gets the name in t, if not, s gets the name in f. The
sentence s := t may therefore be seen as a special case of the if-sentence: s := (t=t t t).

An example of an object with an if-sentence where the slot values of v and w are equal is:

e : ([s→j, v→k, w→k, t→i, f→j], $ s:=(v=w t f))

This will lead to the action

e->e.s:=i

If the object is defined as follows where the slot values of v and w are unequal:

e : ([s→j, v→k, w→l, t→i, f→j], $ s:=(v=w t f))

the action will be:

e->e.s:=j

Note that the names in the sentences are always slot names. This is also true for message selectors in message-
send sentences. This is done in order to be able to model message selectors as slot values, something which is
found in, eg, Smalltalk (Goldberg and Robson 1983).

It is not common to only use slot names in sentences. Particularly, syntax for message-send-sentences usually
allow the programmer to explicitly write the message selector instead of the name of a slot whose value is the
message selector. In this latter case, as found in Omicron, the programmer has to define a slot whose value is the
message selector and then refer to this slot in the message-send sentence. This more cumbersome alternative does
not limit the expressability of the language. Expressability is not limited since it is always possible to define a
slot holding the message selector instead of writing the selector explicitly in the sentence.

3.2.2 Objects as templates for object creation
There are two ways of creating an object; one is to define the object explicitly and the other is to clone another
object. Both alternatives are available in Omicron.

In all the examples above, objects were explicitly defined. However, in Omicron an existing object may be used
as a template, usually denoted prototype, for the creation of other objects. Creating an object from a prototype
object is usually called cloning the prototype. When an object is cloned, the new object is equal to the prototype
object, except that the new object gets its own unique name.

48

By functioning as prototype objects, Omicron objects also function as classes do in languages like Simula, C++
and Smalltalk in that they are templates for object creation. This limits the number of concepts but does not
limit the expressability.

In several object-oriented languages it is possible to send references to templates for object creation as parameters
in a message. This is possible in languages like, eg, Smalltalk and SELF. In Smalltalk classes are templates as
well as objects, and references to the templates may therefore be passed as parameters. In SELF, as in Omicron,
objects are templates for other objects and their names may therefore be passed as parameters.

3.2.3 Inheritance between objects: Extension objects
By using extension objects a system can be designed so that certain objects can be used to represent classes and
extension objects represent subclasses. Extension objects are described in (Blair et al. 1991) as follows:

Extension objects : In class based systems, a subclass defines some specialised structure and behaviour
and inherits default structure and behaviour from its superclasses. How are such elements shared in
classless systems ? Similarly, an extension object can be created that can share with one or more
original prototypes. These objects, declared as shared from the view point of the extension objects, act
as surrogates or proxies to which the extension objects will turn for assistance. More specifically,
extension objects do not just share behaviour; they can share knowledge contained in their prototypes
in a more general way; that is, the value of state variables can be shared between objects.

In (Blair et al. 1991) the behaviour is not seen as the sentences in the body of an object, but rather as the set of
methods available to the object. Extension objects directly correspond to Omicron objects with inheritance.
Omicron objects can inherit slots from each other and slots are used both as traditional variables and for holding
methods. Note that in Omicron and most other object-oriented languages, only slots (variables and methods) are
inherited, not sentences.

To specify inheritance a special kind of slot is introduced: an inheritance slot. In SELF an inheritance slot is
specified by a trailing star (in SELF syntax: slotName*). This is adopted in Omicron using slotNameP.

An example of a configuration of two objects with an inheritance slot:

p : ([x→o, w→m, t→j],) ||
e : ([hP →p], x!w(t); x:=t; x := t clone;)

where h is the name of the inheritance slot. The object named e will then inherit all slots of the object
named p. The object e therefore inherits the slots x, w and t and the sentences in e may refer to these
slots in p.

In Omicron there may be more than one inheritance slot in an object and the value of the inheritance slots may
be changed just like any other slot's value. An example of how to make an exact definition of inheritance
between objects is given in section 3.4.

3.2.4 Objects and methods in one concept
In Omicron methods are objects which are extensions of other objects, ie, they inherit from the object they
operate on.

In Omicron a method is not executed by sending it a message in order to evoke its response. The execution of a
method is initiated by what corresponds to a runtime system, which selects a method. A method is selected by
checking that the selector of the message matches a slot name in the receiving object. If a match is found, the
object referenced in the matching slot will be executed giving the method's response.

Methods may have any number of parameters. For this purpose the Omicron language includes syntax for
defining input-slots. Such input-slots are defined by starting the slot name with colon (:), eg, :slotName as in
SELF.

49

An example showing how messages are sent and received:
We have three objects, a sender, a receiver and a method defined as follows:

sender : ([x→receiver, w→m], $x!w(x);) ||
receiver : ([m→method, y→o, t→j],) ||
method : ([:sP→nil], y:=t;)

When the sentence in the sender is executed, a message is sent to the receiver. The action will be:

sender->receiver!m(receiver)/method-copy

meaning that the receiver gets the message m with the object name 'receiver' as parameter
and the object which is created as explained below is given the name 'method-copy'

When the message m is sent to the receiver, the underlying execution mechanism looks for a slot named m. In
this case the receiver has an m-slot with value 'method'. To model the execution of a method the method object
is then copied and a $ inserted at the beginning of the sentences in the method copy:

method-copy : ([:sP→receiver], $y:=t;)

If there were execution marks in the original method, these are removed so that there will only be one execution
mark at the time in an object. In the method-copy the value of the input-slot named s has been updated to be
equal to the parameter to the message, here 'receiver'. In addition to being an input-slot, the s-slot is an
inheritance slot. This combination of input and inheritance slot models how a method executes on behalf of the
object who received the message. Therefore the method is an extension object to the receiver.

The s-slot in the example method is used to model what is a pseudo-variable in most object-oriented languages,
eg, the pseudo-variable 'self' in Smalltalk, the implicit 'self' in SELF and 'this' in C++ and Simula. The main
difference between Omicron and the mentioned languages on the matter of the 'self/this'-variable is that slots used
as self/this must be explicitly defined as a parameter in Omicron methods. This is done automatically in the
other languages.

As the message-send-sentence in the sender-object is executed, the execution mark is moved to the right. The
execution mark will then be at the end of the sequence of actions. Then the sender becomes a terminated object
which has no more sentences to execute:

sender : ([x→receiver, w→m], x!w(x); $)

After the message has been sent and the method copied, the configuration of objects looks like this:

sender : ([x→receiver, w→m], x!w(x); $) ||
receiver : ([m→method, y→o, t→j],) ||
method : ([:sP→nil], y:=t;) ||
method-copy : ([:sP→receiver], $y:=t;)

where the sender has terminated since there are no more sentences to execute and the method-copy is ready to
execute its assignment sentence since this is preceded by $. Making method-copies accommodates recursion.
This gives expression power which includes while-constructions.

As mentioned above, the method-copy executes on behalf of the receiver. This means that the method-copy has
access to the slots in the receiver so that these slots may be read and set by sentences in the method-copy. This
access is given by the definition of the s slot which is both an input and inheritance slot. Therefore, after
execution of y:=t in the method-copy the configuration of objects will look like this:

sender : ([x→receiver, w→m], x!w(x); $) ||
receiver : ([m→method, y→j, t→j],) ||
method : ([:sP→nil], y:=t;) ||
method-copy : ([:sP→receiver], y := t; $)

There are now two terminated objects and the slot y in the receiver has the value j.

Method-copies are extension objects
The method-copy objects are extensions to other objects in that they manipulate the other objects state. If the
method-copies are not extension objects, there is no way to influence an object's state by sending it a message.

50

This is because sending a message can not result in the execution of sentences which change the values of the
object since a non-extension method-copy can not inherit slots from the object and is therefore not allowed to
access the object's slots.

Methods and executing methods are Omicron objects
As shown above, when objects are allowed to inherit from other objects and when object can have input-slots, it
is not necessary to have different syntax for defining methods, executing methods and objects. Methods are
modelled as extension objects with a particular inheritance slot. When some object receives a message resulting
in the execution of a copy of a method, the executing method's particular inheritance slot will hold a value which
is the name of the receiver of the message. This models the automatic self-binding found in most object-oriented
languages.

3.2.5 Self reference
It is common for objects to send messages to themselves. In a programming language, the object itself is
usually referred to by a pseudo variable, for instance in C++ it is named this and in Smalltalk self. When self
reference to an object is done in a method of the object, the reference is done by using inheritance slots which are
also parameters as shown above. However, this does not allow self references within an object, particularly when
it is created from a clone action and it does not make it possible to refer to the executing method itself from
within the method. To get such a feature in Omicron, the special name this is introduced. This special name
this is an alias for the name of the object where this is found. this may be viewed as a relative object name
representing the object name of the surrounding object. For example (note how this is a different use of self-
reference than what happens in a method where there is automatic self-binding of the receiver of a message):

sender : ([x→receiver, w→m], $ x!w(x);) ||
receiver : ([m→method],) ||
method : ([:sP→nil, self→this, w→m, n→method], self!n(self))

Here a new object is first created and then sent the message m with the receiver's name as the first parameter. We
then get the action:

receiver!m(receiver)/method-copy

When the method is executed a method copy is created and we get a situation as follows:

sender : ([x→receiver, w→m], x!w(x); $) ||
receiver : ([m→method],) ||
method : ([:sP→nil, self→this, w→m], self!w(self)) ||
method-copy : ([:sP→receiver, self→this, w→m], $ self!w(self))

When the method copy is executed it will send itself the message m with its own name as parameter and we get
the action:

method-copy!m(method-copy)/method-copy2

Since the object named method-copy will inherit the slot named m from the object named receiver, this action
will result in the creation of a new method copy:

method-copy2 : ([:sP→method-copy, self→this, w→m], self!w(self))

When this new copy is executed it will send itself the message m with its own names as parameter - etc. etc.

3.2.6 Error actions
Errors actions occur when sentences can not be executed. For example, when a message-send-sentences is
executed it will give an error action when the receiver of the message is not found in the system and when the
message is not understood, ie, there is no method corresponding to the received message. Error actions also occur
when one or more slots referred to in an executed sentence does not exist and when the prototype object referred
to in an executed object creation sentences does not exist.

An error action is described:

e->error

51

where e is the name of the object which has reached a sentence which is not executable

When an error occurs, the execution mark is removed from the object where the non-executable sentence was
found. This terminates the execution of the object.

It is possible to define more than one kind of error actions, where the error actions will somehow reflect what
went wrong. Defining and using such error actions in the reasoning about reliable substitution might lead to
different results than what is presented in this thesis. However, as discussed in chapters 5 and 10, it seems that
other, not too exotic, error models give quite similar results as presented in this thesis. More exotic error models
is left for further study.

3.2.7 Summary of Omicron's object-oriented
concepts

The concepts in the Omicron-language reflect a system view where a system is a configuration of objects. Each
object has a state and a unique name within the configuration which is independent of the object's state. An
object's state is divided into two parts: a set of slots and a body. A slot can store a reference to an object, i.e. the
name of an object. Each slot has a unique name within the object. The set of slots both function as what is
traditionally known as the object's variables and as the object's method dictionary. An object's body consists of a
list of sentences. When the object is executed these sentences are executed and the execution of a sentence results
in actions. An object can do the following:

- store names in slots,
- test names in slots,
- make clones of objects and
- send messages to objects.

An object can send messages to the objects referenced in the object's slots or slots the object inherits from other
objects. A message has a selector and may contain parameters. The parameters are names which may or may not
be names of objects. An object responds to receiving a message by copying the object named in the slot with the
same name as the message selector. The sentences in the copy's body is then executed. The copied object
functions as what is traditionally called a method. Some of a method-object's slots may be input slots where the
message parameters will be stored in the copy before the copy is executed. Also, some slots are inheritance slots
defining object inheritance.

52

3.3 Defining Part of the Model-View
Contract Using Omicron

This section shows how the model-view contract can be expressed using Omicron. It also discusses some
expressions and syntactic sugar which may be added to Omicron in order to make it easier to express designs
such as the model-view contract from chapter 2.

Using Omicron, the model's behaviour can be expressed as follows. Note that there are no execution mark as the
model does not have any behaviour unless the context sends it some message:

model : ([state → v, views → o, setvalue → s, getvalue → g, attach → a, detach → d, notify → n]) ||
s : ([thisI → model, :val → nil] state := val; this!notify();) ||
g : ([thisI → model, :return → nil] return!return(state);) ||
n : ([thisI → model] views!update();) ||
a : ([thisI → model, :v → nil] views!add(v);) ||
d : ([thisI → model, :v → nil] views!remove(v);)

To make the model definition complete it is also necessary to define how object names are stored in the object
named o. The object named o is the visible object of a component which can store object names. There are many
ways to define such a component. They all include implementing functions to add and remove names from the
set or sequence. In addition, the component needs to implement an update-method. To implement such
functionality in Omicron it is necessary to describe a large number of objects and it would be rather difficult to
convince oneself and others that this was a correct implementation of set/sequence. This complexity in defining a
set/sequence component in Omicron is mainly due to the lack of set and sequence notations.

To simplify the description of model's behaviour we can include a simple sequence-notation in Omicron. We can
let all slot values be sequences and use s := +v to add the value of v to the sequence in s, and use s := -v to
remove the value of v from the sequence in s. We can also define the message-send action so that all objects
named in the receiver sequence will receive the message. The model can then be defined as above, but where the a
and d objects are replaced with the following objects:

a : ([thisI → model, :v → nil] views := +v;) ||
d : ([thisI → model, :v → nil] views := -v;)

Then we do not need a separate component for storing object names. It is also easy to convince oneself that
views actually is a sequence.

The above sequence notation has, as an experiment, been included in a version of Omicron not included in this
thesis. In the experiment version of Omicron rules defining the semantics of the add and remove notation were
added to the rules of action in section 3.4.3. The existing rules of action were also modified to incorporate the
sequence notation. This gave more complex rules of actions and also more rules of action. It also gave more
complex versions of the definitions and proofs in later parts of this thesis. Therefore it was left out in the
presented version of Omicron. However, incorporating the sequence notation was not difficult and showing the
propositions in later part of the thesis seemed to be straightforward. However, everything became more complex
and detailed. Therefore, reading (and writing) definitions became more time-consuming and all formal definitions,
propositions and proofs of the propositions became much more difficult to understand. It is therefore left for
further work and/or for the particularly interested reader to include sequence notation to the formal definition of
Omicron.

Other functions such as integer addition has also been tried incorporated into Omicron in order to simplify the
expression of certain kinds of models. This was also straightforward to do, but also introduced details which
distracted from the focus of the present work.

The views' behaviour can be defined as follows:

view : ([viewstate → nil, update → u, draw → d, subject → su, return → r]) ||
u : ([thisI → view] this!draw();) ||
d : ([thisI → view] subject!getvalue(this);) ||
r : ([thisI → view, :st → nil] viewstate := st;) ||

53

su : ([thisI → view , :m → nil] subject := m;)

In chapter 2 the following invariant was presented (where reflects is some informal relation):
∀ v ∈ views • [v reflects subject.state]

and also the instantiation rule:
∀ v ∈ views • subject.attach(v) & v.subject(subject);

These do not express properties of object behaviour which the Omicron framework is meant to handle. Instead,
Omicron is created for reasoning about similarity of the observable behaviour of components. In this case
reasoning with Omicron would be used to find out if a refinement and the specification of model will have the
same observable behaviour. If they have the same observable behaviour, both would send update() messages to
the same objects. A refinement and its specification should send the same objects the update() message for each
possible sequence of other messages sent to the model and view objects.

Note that there are no type information in Omicron, since this is linked to reliability requirements, which in
Omicron is not supposed to be part of the language.

Also note how the return from the getvalue() message of the model is handled. A return is done as a message-
send, and is therefore not a special kind of action.

Part of the context's non-deterministic behaviour can be described as is done below. For simplification, we here
introduce a special notation to avoid having to define very many slots. In stead of defining a slot to hold a name
to be used in a sentence, the value of the (not defined) slot can be explicitly stated in the sentences by writing a #
symbol in front of it. This is a way of introducing name constants into the language. For instance sending the
message hithere() to some object named in the rec-slot is written:

sender : ([rec->someobj] rec!#hithere();)

and we can also write:

sender : ([] #someobj!#hithere();)

which would give the same action as when executing the object above. This simplification means that the
objects need only name the slots which hold variables and methods and inheritance slots.

p : ([v→nil, met1→m1, met2→m2, met3→m3, met4→m4]) ||
m1 : ([sI→p] $ v := #view clone; #p!#met1();) ||
m2 : ([sI→p] $ #model!#attach(v); #p!#met2();) ||
m3 : ([sI→p] $ #model!#detach(v); #p!#met3();) ||
m4: ([x → 123] $ #model!#setvalue(x); #p!#met4();)

This defines a context which will create new view objects and send the messages attach(), detach(), and setvalue()
to the model in an arbitrary sequence infinitely many times. A refinement of this context may therefore create
any number of views and send the three different messages in any sequence and send the messages any number of
times.

54

3.4 Formal Definition of Omicron
This section gives a formal definition of the simple object-oriented language Omicron introduced in the previous
sections.

Section 3.4.1 defines the syntax and formal semantics of the Omicron language. Section 3.4.2 gives formal
definitions of inheritance between objects and present functions which are used in later sections and chapters.

The formal semantics is given operationally through a set of transition rules in section 3.4.3. Omicron actions are
formally defined in this section through the definition of a transition relation of the form:

C α → C'

Intuitively, this transition means that the configuration C can evolve into C', and in doing so perform the action
α. To define this transition relation, many helpful functions and notations are defined in section 3.4.2. These
include many finer details which are not necessary to comprehend in order to get the general ideas of Omicron.

Section 3.4.4 defines some basic notation for describing sequences of actions, derivations of configurations and
the traces from execution of a configuration.

Section 3.4.5 shows some properties of Omicron configurations. It is also shown that a derived configuration is
uniquely determined by the action, that actions from execution of the same sentence will be equal every time it is
executed and no rules of action are applicable to a terminal configuration and at least one rule of action is
applicable if the configuration is not terminal.

Section 3.4.6 includes notation which is used when describing configurations defined by combining other
configurations. This is used in definitions and proof leading up to the formally stated substitution proposition.

 3.4.1 Omicron syntax
This section describes the syntax of the Omicron language through the use of extended BNF (BNF is defined in
appendix A). Terminal symbols are given in bold font.

Configuration ::= Object*||

Object ::= name : (Slots, Body) -- Definition of an object

Slots ::= [,*SlotDef]

Body ::= ;
*Sentence | ;

*Sentence $;
*Sentence

Sentence ::= name := name clone | -- Clone sentence

,+name := (name = name name name) | -- If-sentence

name ! name (,
*name) -- Message-send sentence

SlotDef ::= slotName → Val
Val ::= name | this
slotName ::= name | -- Plain slot

:name | -- Input slot
nameIIII | -- Inheritance slot
:nameIIII -- Input and Inheritance slot

name ::= char+ but no colon (:) first and no IIII last and not equal to 'this'
char ::= a | … | z | A | … | Z | 0 | … | 9 | + | - | * | / | _ | : | =

where Object*|| means Object1 || … || Objectn and ,+name means one or more names separated by comma. The

symbol $ is called the execution mark. Since objects may be executing in parallel, there may be more than one
execution mark in the system, but only one in each object. The transition rules of section 3.2.3 define how
execution marks are handled. The special word this is a special name which is an alias for the name of the
object where this is found. this may be viewed as a relative object name representing the object name of the
surrounding object.

55

Note that there may be three types of slots: plain slots, input slots and inheritance slots. A slot may be both an
input slot and an inheritance slot. The plain slots have no other purpose than to store names. Input slots are
slots for storing input names (parameters) when the object is executed as a result of some object receiving some
message. The third type of slots are inheritance slots.

A syntactically correct configuration is well-formed if each object in the configuration has a unique name and the
slot names within each object are unique.

A system is a configuration which is closed in that the objects in the system only collaborate with each other.

3.4.2 Formalisation of configurations
The set of all configurations is denoted C. The set of all Slots is denoted M (also referred to as slot maps), the

set of all names is denoted N. The following syntactic conventions are used:

e,f,i,j,o,p ∈ N - object names

k,l ∈ N - names used as new object names

v,w,s,t,u ∈ N - slot names

m ∈ N - name used as message selector

v ∈ N * - a list of input slot names

p ∈ N * - a list of object names used as parameters (slot values)

A,B,C,D ∈ C - well-formed configurations of objects

M ∈ M - slot map, ie, the Slots part of an Object
S - object bodies, ie, sequences of sentences and possibly $

A configuration may be seen as a mapping from object names to object definitions and Slots as a mapping from
slot names to names. To simplify the definition of the formal semantics of Omicron this fact is used in that the
configuration and slot definitions are expressed in a Map-type notation defined in appendix A. The following
meta function defines the translation from Omicron syntax to Map-type notation:

Translation function signature:
[[Omicron Slot Map or Configuration]] == Omicron syntax in Map type notation

Translation function definition:
Slot Map translation:

[[[s1→t1, …, sn→tn]]] == init()[s1→t1]…[sn→tn]
Configuration translation:

[[e1 : (M1, S1) || …|| en : (Mn, Sn)]] == init()[e1→ ([[M1]], S1)]…[en→ ([[M n]], Sn)]

In a mapping the right most pair is the most significant and it gives ⊥ outside its domain. Note that ⊥ is not a legal
character in Omicron expressions.

In addition the following map notation is used:

C.Dom = the domain of the configuration C, ie, the object names mapped from in C
 C == e : (Me, Se) || f : (Mf, Sf) gives C.Dom == {e, f}

C.Names = all names found in C
 C == e : ([x→i],) || f : ([y→e, w→m], y!w()) gives C.Names == {e, x, i, f, y, w, m}

C.Values = the set of values of the slots in configuration C
 C == e : ([:xI→i, :z→j], Se) || f : ([yI→j, w→k], Sf) gives C.Values == {i, j, k}

C(o) = the (Slot, Body)-part of the object o in the configuration C
 C == e : (Me, Se) || f : (Mf, Sf) gives C(e) == (Me, Se)

C(o).Slots = the slot map of the object named o
 C == e : (Me, Se) || f : (Mf, Sf) gives C(e).Slots == Me

C(o).Slots(s) = the value of the slot s in the slot map of the object named o
This is referred to as getting the value of the slot s in the object o. If o is not in
C.Dom or s is not found in the slot map, the result is the object name ⊥ .
C == e : ([x→i], Se) || f : (Mf, Sf) gives C(e).Slots(x) == i and C(e).Slots(y) == ⊥

56

C(o).inputs = the sequence of input slot names in the slot map of the object named o
 C == e : ([:xI→i, y→j, :z→j], Se) || f : (Mf, Sf) gives C(e).inputs = <x, z>

C(o).Body = the Body of the object named o
 C == e : (Me, Se) || f : (Mf, Sf) gives C(e).Body == Se

We also define notation for expressing that a name is in the domain of a configuration as follows:
o ∈ D == o ∈ D.Dom

A special definition of Map-lookup is needed to handle this as slot value. In appendix A maps are defined so
that we have:

C(o).Slots(s) == if the value found in slot s is this then o is returned
else the value of the slot s is returned.

The following sequence notation is used:

<a1, …, an> a sequence of the n items a1 to an
is a function whose value is the length of a sequence
sq1 & sq2 denote sequence sq1 concatenated with sequence sq2
sqi denote the i'th element of the sequence sq

The notation C(o).Slots(s) is extended to sequences of slot names by:

C(o).Slots(<s1, …, sn>) == < C(o).Slots(s1), ..., C(o).Slots(sn) >

 The following function, denoted @, is used to test if the result of one or more slot lookups succeeds or not. It
is defined as follows:

@⊥ == false
@v == true if v ≠ ⊥
@<v1,..,vn> == @v1 ∧ ... ∧ @vn

For example @(C(o).Slots(s)) returns true if o is an object name in C and s is a slot name in o's Slot map, false
otherwise.

Updating a slot is defined as follows using the Map notation and the @-function:

C[p.s:=j] == if @(C(p).Slots(s)) then C[p→(C(p).Slots[s→j], C(p).Body)] else C.

If the slot s is found in the slot map of the object named p in C, then the s-slot is updated with the value j. This
is denoted setting the value of the slot named s in the object named p to the value j. If s is not found in a slot
map of p, then the result is no change to C.

The above functions are lifted to sequences of slot names as follows:

@C(o:<s1,…,sn>) == @C(o:s1) ∧ …∧ @C(o:sn)
C[<o1.s1,…,on.sn >:=j] == <C[o1:s1:=j],…,C[on:sn:=j]>

Inheritance:

If an object has an inheritance slot it will inherit slots of the object referred to in the inheritance slot. To inherit
slots means that sentences in the body of the object may use the names of the slots in the inherited slot map. An
object may have several inheritance slots in its slot map, and also an inherited slot map may contain inheritance
slots. One object's total slots is therefore all the slots found in the slot maps in the map graph defined by the
values in the inheritance slots of the maps. This is referred to as an object's inheritance graph.

Example:
a: ([],) ||
b: ([],) ||
c: ([s1I → a, s2I → b, t→e],) ||
d: ([sI → c, w→m], t!w()) ||
e: ([],)

57

The inheritance graph of the object named d is:

a's Slots b's Slots
c's Slots
d's Slots

When looking up a given slot name in a Slot map the search is always started in the Slot map of the object
where the slot name is referenced. E.g. for the slot t in d the lookup is started in d's Slot map. If the slot name is
not found in the first Slot map the search is continued at the next level in the graph, ie, in c's map.

We let C(o).supers denote a function returning the sequence of the values of the inheritance slots in the slot map
of the object named o. When

C == o : ([:xI→i, yI→j, :z→j], Se) || f : (Mf, Sf) then we have
C(o).supers = <i, j>

An owner-function is used to find the owner of a particular slot in the inheritance graph of an object. If there is
no owner in the inheritance structure, the owner function returns ⊥ .

In general there are many alternative ways to traverse an inheritance graph and some versions are discussed in
(Chambers et al. 1991). The variations mostly stem from how Slot maps on the same level in a graph are
traversed, how Slot maps which are included several times in a single graph are handled and how cyclic structures
are tackled. In the example above owner(C, d, t) would return the c independently of which traversing algorithm
is chosen. The owner-function definition found below uses a breadth first and leftmost first version. This
definition of the owner-function will never terminate for cyclic inheritance structures where the slot is not found
before a cycle is traversed once. In general it is possible to define owner-functions which will terminate for cyclic
inheritance graphs.

owner(C,<>,s) == ⊥

owner(C,<o>,s) == if o ∉ C.Dom then ⊥ else
if @C(o).Slots(s) then o else owner(C, C(o).supers, s)

owner(C,<o1, ..., on>,s) == let x = owner(C, <o1>, s) in
if x = ⊥ then owner(C, <o2, ..., on>, s) else x

This definition of the owner-function says that owner(C,<o>,s) returns the name of the object in the inheritance
graph of o where s is found or ⊥ when s is not defined anywhere in the inheritance graph of o. When the list of
object names only contain a single name we write owner(C, o, s) instead of owner(C, <o>, s).

In Omicron the inheritance graph of an object may be changed during execution since inheritance slots may get
new values just like all other slots. An inheritance slot may also be an input-slot which then is defined by the
syntax: :slotNameI.

Next, we introduce some short-hand notations where o:s is used to denote a slot s in an object named o or in an
object in the inheritance graph of o:

C(o:s) == C(owner(C, o, s)).Slots(s)

We say that when @C(o:s) is true then the slot s has an owner. This functions is lifted to sequences of slot
names as follows:

C(o:<s1,…,sn>) == <C(o:s1),…,C(o:sn)>

Below the notation o.s is used to denote o1.s1, ..., on.sn.

3.4.3 Formal operational semantics of sentences
The formal semantics of Omicron sentences is defined by a set of transition rules creating an operational
semantic definition following the tradition started by (Plotkin 1981) and also used in describing the semantics of
the π-language, eg, in (Milner et al. 1989b).

58

The syntax of the transitions is given below together with an informal description of the semantics. The
operational semantics is defined through a transition relation where a transition rule is given for each type of
Omicron sentence.

Definition: Transition
A transition is of the form:

C α → C'

Intuitively, this transition means that the configuration C can evolve into C', and in doing so performs the
action α. The set of all such actions is denoted A. In Omicron there are four types of actions a configuration can
perform. The actions are described formally through the transition system below.

The transitions may be applied to a configuration in any order, as long as the transition is legal by the premises
in the rules of action below. The rules of action are not confluent, ie, the result configuration after applying a set
of transitions to a configuration may depend on the order in which the transitions are applied. This is in
correspondence with the intuition that the result of executing a parallel program depends on the execution order.

By definition || is ACI (associative, commutative and has the empty configuration as identity), ie, C1||C2 is
equal to C2||C1 for any configurations C1 and C2.

Definition: Transition relation and rules of action

The transition relation, denoted α → , is the smallest relation between Omicron configuration expressions
satisfying the rules of action given below. All the names in the rules are meta-variables. Informal descriptions of
the rules are given below and the rules are given in the frame on the following page.

The rules are given by transition for the three different kinds of sentences which may be found after the execution
mark $: if-sentence (s:=(v=w t u)), clone sentence (s := t clone) and message-send sentence (s!w(t)).

Comments to the rules and actions:
The system denoted C in the rules has the form C == C'||e:(M,S1$sentence;S2) where S1 and S2 are sequences
of sentences, possibly empty.

The difference between the original and derived configurations common in all rules, except the error rule, is the
movement of the execution mark. The rules do not imply much difference in the initial and derived version of the
part of the configuration denoted C'. The only rules which might affect C' are the CLONE and IF rules which
update slots. The CLONE and SEND rules create new objects, something which does not affect C'.

All rules except the error rule have relatively weak requirements, requiring that the slots referred to in the
executed sentence have owners. In addition the rules make requirements on the values of the different slots. These
requirements depend on the kind of sentence they apply to. This is further discussed below.

The IF-rules:
The IF-rules are applicable when there is an execution mark in front of an if-sentence and all the slots have
owners. The IF-true rule is applicable if the slots referred to as v and w in the rule have equal values and the IF-
false rule is applicable if the values are different.

Executing an if-sentence gives an assignment action of the form e->o1.s1,…,on.sn := i, meaning that this action
stems from execution of a sentence in an object named e and the slots s1,…,sn in the respective objects
o1,…,on are updated with the value i. The set of all assignment actions is denoted A:=.

The CLONE-rule:
The rule is applicable when there is an execution mark in front of a clone sentence, all the slots have owners and
the slot referred to as t in the rule has a value which is the name of an object in the configuration. The execution
of a clone sentence gives a clone action of the form e->o.s := k / j, which means that the action stem from
execution of a sentence in an object named e, the object j is copied and the copy is given a new name k and the
slot s in the object o gets the value k. The set of all clone actions is denoted Aclone.

The SEND-rule:
Execution of a message-send sentence gives a message-send action of the form e->o!m(i1,…,in)/k, meaning that
the actions stem from execution of a sentence in an object named e and o gets the message m(i1,…,in) and k is
the name of a new object created as result of the message send. The set of all message-send actions is denoted
A!.

59

A message-send action creates a new object and the new object will have an execution mark. Also, no object or
execution mark is removed from the existing configuration. The new object will therefore execute in parallel
with all objects which executed in the initial configuration C.

In an action e->o!m(p)/k, o is called the receiver of the message, m is called the selector of the message and p
is a list of names called the parameters of the message. The object named j in the SEND rule denoting C(o:m) is
called a method.

The rule is applicable when there is an execution mark in front of a message-send sentence, all the slots have
owners and both a receiver object and a method object is found. It is also required that the m-slot of the receiver
(o) holds the name of an object having the same number of input slots as there are parameters in the message.

The rule models the reception of a message as follows:
The method is copied, resulting in a method copy which is given a new name (k) and its input slots (C[k].inputs
= v) are updated with the message's parameters p (ie, (v→ p)). Also, any old execution marks are removed
and a new execution mark, $, is inserted into the body of the method-copy.

Note that there are never more than one $ in any object body since
- when an object is copied then $ is removed from the body before $ inserted in the beginning and
- the SEND rule is the only rule that inserts execution marks.

 IF-true rule:
@C(e:s & < v, w, t >) ∧ C(e:v) = C(e:w)

C' || e:(M,S1$s:= (v = w t f);S2) e->o.s:= j → (C' || e:(M,S1; s:= (v = w t f)$S2))[o.s:= j]

where j=C(e:t) and oi = owner(C,e,si) for each oi.si in o.s

 IF-false rule:
@C(e:s & < v, w, f >) ∧ C(e:v) ≠ C(e:w)

C' || e:(M,S1$s:= (v = w t f);S2) e->o.s:= j → (C' || e:(M,S1; s:= (v = w t f)$S2))[o.s:= j]

where j=C(e:f) and oi = owner(C,e,si) for all oi.si in o.s

 CLONE rule:
@C(e:s) ∧ C(e: t) ∈ C

C' || e:(M,S1$s:= t clone;S2) e->o.s:=k / j → (C' || e:(M,S1;s:= t clone$S2)|| k:C(j))[o.s:= k]

where j = C(e:t), o = owner(C,e,s) and k is any name such that k ∉ C.Names

 SEND rule:
@C(e: t) ∧ C(e:s) ∈ C ∧ C(o:m) ∈ C ∧ # C(j). inputs =# t

C' || e:(M,S1$s!w(t);S2) e->o!m(p)/ k → C' || e:(M,S1;s!w(t)$S2)|| k:(C(j).Slots[v → p], $C(j).Body-$)

where o = C(e:s), m = C(e:w), j = C(o:m), v = C(j).inputs,p = C(e:t),
k is any name such that k ∉ C.Names and

C(j).Body-$ means that any existing $ in the body is removed

 ERROR rule:
no other rule of action is applicable to the e - object

C' || e:(M,S1$sentence;S2) e->error → C' || e:(M,S1;sentence;S2)

The rules of action

60

The ERROR-rule:
The ERROR rule is applicable when there is an execution mark in front of a sentence and no other rules apply to
this sentence. One reason for an error is that there are slots which do not have owners. Another reason is that
there are slots which should have values which are names of objects in the configuration, but which are not.
This would create erroneous actions such as messages to non-existent object or cloning of non-existent object.

Error actions have the form e->error where e denote the name of an object with an execution mark but where
none of the rules of action apply. The set of all error actions is denoted Aerror.

The error rule says that the execution mark is removed from the object holding the erroneous sentence. This
reflect a system-view where an object with an erroneous sentence terminates. Each object is seen as executing
separately from the rest of the system in that only the object with the erroneous sentence terminates and the rest
of the system continues execution.

The error rule with the informal requirement "no other rule of action is applicable to the e-object" can be replaced
by a set of rules with formal requirements. The rules in the set replacing the informally expressed error rule
would be equal to the IF, CLONE and SEND rules except that the requirements would be negated and the actions
would be error actions instead of assignment, clone and message-send actions.

The rules of action preserve syntactic correctness
The following proposition shows that the rules of action preserve syntactic correctness. This is an important
property since it ensures that execution of a system does not give syntactically incorrect expressions.

Proposition P.3.1 : The rules of action preserve syntactic correctness
Applying a rule of action to a syntactic correct configuration gives a syntactic correct configuration.

Proof:
Done by cases for the different rules:
IF-rules : The new version of the object named e has legal syntax since only the execution mark is moved and a
slot gets a new value which is a name.
CLONE rule : The new version of the object named e has legal syntax since only the execution mark is moved
and a slot gets a new value which is a name. The new clone has legal syntax since the original is assumed to
have legal syntax and the new name is unique within the configuration.
SEND rule : The new version of the object named e has legal syntax since only the execution mark is moved.
The new method-copy has legal syntax since it is assumed that the method was syntactically correct and any
existing execution mark is removed before an execution mark is placed in the beginning of the body and the
input slots get new values which are names. Also, the method copy gets a new name which is unique within the
configuration.
ERROR rule : The new version of the object named e has legal syntax since only the execution mark is
removed.
o

3.4.4 Basic notations and definitions
This section gives some basic definitions and notations which are used when expressing properties of and
reasoning about Omicron configurations.

The first definition formally defines the notation previously used for sequences of action.

Definition: Sequences of transitions and actions: α → , α ,

C α → C' denotes a sequence of zero or more transitions α1 → … αn → from C to C' as defined by
the rules of action and α i ∈ A.

The next definition defines the term "derivations of a configuration". The derivations of a configuration C are all
configurations which can be the result of executing zero, one or more sentences in C.

Definition: Derivation of a configuration
The configurations derived by one or more transitions from a configuration C, are denoted the derivations
of C.

Derivations(C) == { C' | ∃ α : C α → C' }

61

For this parallel version of Omicron the convention of interleaving semantics is followed. This means that the
execution of different objects (or machines) are interleaved, ie, the effect of (a pair of machines) executing one
operation each simultaneously is the same as executing the two operations in some arbitrary order.

Also, each action is seen as atomic. Therefore the result of executing a parallel Omicron system may be correctly
described by a sequence of (atomic) actions. All possible executions of a parallel system can be described by a set
of sequences of actions. We call this set the traces of the configuration. The traces can be formally defined as
follows:

Definition: The traces of a configuration

The traces of a configuration C is the set of all sequences of zero or more transitions α1 → … α n →
from C to some C' as defined by the rules of action and αi ∈ A.

Traces(C) == { α | ∃ C' : C α → C' }

We let α ∈ Traces(C) abbreviate < α > ∈ Traces(C).

In the above definition, the traces of a system is defined as the prefix closed set of sequences of actions from
executions of the system. This means that each sequence of actions in a trace contains zero or more actions. Each
sequence describes the actions resulting from execution of the system from the start of "execution time" until
some arbitrary later "time" in the execution of the system.

Definition: Description and execution parts of actions
In the following, actions are denoted by small Greek letters, typically α and β, and an action is seen as
consisting of two parts:

α = α.exe -> α.dcs
where α.exe is the name of the object where the executed sentence

 which gave the action was found and
α.dsc is the rest of the action - the description part of the action.

If α .exe ∈ C then C is said to be the owner of the executed sentence. It is also said that α is from
execution of a sentence in C, or just α from C.

We let o ∈ α.dsc mean that o is a name found in the description part of the action α, and
<o1, …, on> = α.names

means that the names o1, …, on are the names found in α in the sequence they occur in α.dsc.

3.4.5 Some properties of configurations of objects
The two next observations state properties which relate actions and derived configurations. They state different
aspect of the fact that equal actions give equal derived configurations.

Observation O.3.1 : A derived configuration is uniquely determined by the action
When two transitions from the same configuration are equal then the result configurations are equal, ie,
the resulting configuration is uniquely determined by the action. This can be formally stated:

 C α → C' ∧ C α → C'' ⇒ C' ≡ C''

Observation O.3.2 : Each object is deterministic and gives equal derived configurations
When the exe-part of two actions from the same configuration are equal then they are actions from
execution of the same sentence. This is because there is only one sentence with an execution mark in
front of it in each object and therefore at most one rule of action is applicable to any object. Then the
actions are equal and the transitions are equal. This can formally be stated:

C α → C' ∧ C β → C'' ∧ α .exe = β.exe ⇒ α ≡ β ∧ C' ≡ C''

This property expresses that each object has a deterministic behaviour.

Next we show that no rules of action are applicable to a configuration which has terminated, and at least one rule
of action is applicable if the configuration has an execution mark in front of a sentence. This shows that the
rules of action may be viewed as describing execution of Omicron systems in an appropriate way. First we
formally define termination by giving a definition of terminal configurations.

62

Definition: Terminal configurations
A configuration is terminal if all object bodies either have an execution mark at the end of its sentences or
have no execution mark. This means that there are no object bodies of the form S1 $ S2 where S2 is non-
empty. The set of all terminal configurations is denoted CTerm.

Proposition P.3.2 A configuration is terminal iff no rules of action are applicable
C ∈ CTerm ⇔ Traces(C) = {<>}

Proofs:
Proof of ⇒ : When all objects in C either have the form e: (M, S $) or when $ is not in the body of the object, then
there are no actions from execution of sentences in the configuration and then the traces of the configuration only
include the empty action sequence <> and the proposition holds.
Proof of ⇐ :
We show that when there are non-empty action sequences in Traces(C) then C is not a terminal configuration.
When C ∉ CTerm then there exists one or more objects with an execution marks in front of a list of sentences. It
must therefore have one of the following forms and then a rule of action is applicable:

Alternative Applicable rules
(M, S1 $ s := t clone; S2) The CLONE rule or the ERROR rule is applicable.
(M, S1 $ s1…sn := (v=w t u); S2) One of the IF rules or the ERROR rule is applicable.
(M, S1 $ s!w(t1…tn); S2) The SEND rule or the ERROR rule is applicable.

o

3.4.6 Combined configurations
This subsection presents definitions which are used to express and prove the substitution proposition. In the

substitution proposition there are transitions from composed configurations, say B||D β → B'||D'. The derived
configuration is also seen as being a composition of configurations, here B'||D' where B' and D' are called the
primed versions of B and D respectively.

To simplify the expression of derivations of composed configurations, we define how the prime configurations
are derived from some initial composed configurations and a related action.

When some action from B||D creates a new object, the definition of primed configurations specifies whether the
new object is to be found in B' or D'. For example we can have a configuration as follows:

B = b : ([s->nil, t->o], $s := t clone;)

D = o : ([m->p],)

After an action β = b->b.s := k/o from execution of the sentence in B in B||D the derived configuration will be:

b : ([s->k, t->o], s := t clone; $) || o : ([m->p],) || k : ([m->p],)

where a new object, in this case named k, is added to the configuration. A question is then if the new object is
considered part of D' or part of B'. In general, if we have some action β ∈ action(B||D) and

β.dsc = i.s := k/o or β.dsc = o!m(p)/k

the question is whether k ∈ D' or k ∈ B'. We choose the following convention which models the ideas described
in chapter 2:

i.s := k/o : o ∈ D ⇒ k ∈ D'
o!m(p)/k : o ∈ D ⇒ k ∈ D'

which says that
if an object is a clone of an object in D, then the object is part of D', and
if the object is a method copy created as result of some object in D getting a message,

then the new object is part of D'.

In all other respects, D' is equal to D except that it is updated according to the rules of action. This means that if
β is from execution of a sentence in an object in D, ie β.exe ∈ D, the corresponding object in D' has the

63

execution mark one sentence to the right. Also, if the action updates slots in D, the corresponding slots in D'
have the new values.

Correspondingly, this is also the case for objects in B and the objects found in B'.

Below, the prime of a configuration is formally defined. In this definition, and also in definitions in later
chapters, the following function is used:

Definition: The NewNames function

Given an action sequence α and a set of object names O. We define the new names function to return the
set of names of all objects created by the actions in α and which are

- created by cloning objects in O, or created by cloning clones of objects in O,
or cloning clones of clones of objects in O etc. and

- method copies which are created when the receiver is an object in O or a clone of an object in O,
or a clone of a clone of an object in O etc.

The function is formally defined as follows:

NewNames(<>, O) == Ø

NewNames(<α> & α , O) ==

case α.dsc of
i.s:=k/o, o!m(p)/k : if o ∈ O then NewNames(α , O∪ {k}) ∪ {k}

 else NewNames(α , O)
otherwise : NewNames(α , O)

We let NewNames(α , D) abbreviate NewNames(α , D.Dom)

Definition: The prime of a configuration

The prime of D, denoted D', is defined relative to a configuration B and an action sequence β ∈
Traces(B||D). We define it as follows:

prime(D, B, β) == D' ⇔ B||D β → B'||D' ∧ D'.Dom = (D.Dom ∪ NewNames(β , D))

This notation is used in the rest of this thesis in order to denote derivations of the different parts of a
configuration.

If the object names in a configuration are not unique, then the configuration is not well formed as defined above.
Therefore, when composing configurations, the names of the objects in the configurations must not overlap. We
say that configurations with non-overlapping domains are combinable and define this formally as follows:

Definition: Combinable configurations
Given a set of configurations C1,…, Cn, The configurations are combinable if they have non-overlapping
domains, ie, ∀ i,j ∈ {1…n} • i ≠ j ⇒ Ci.Dom ∩ Cj.Dom = Ø. This ensures that the combined
configuration C1||…||Cn is well-formed and we have:

C1||…||Cn ∈ C

When configurations are compared, it is usually expected that objects in one configuration, say, D can be able to
send messages to or clone objects in another configuration, say, B or vice versa. To be able to have such actions
it is necessary that slots in D hold values which are names of objects in B, and vice versa. We say that the B
object names which are found as D slot values are visible to D. As the system of composed configurations is
executed, B can send messages to D with B object names as parameters and D can clone B objects. In this way,
new B object names can become visible to D. Visible object names are formally defined as follows:

Definition: Visible object names
The set of visible object names of a configuration B relative to a configuration D are those object names
in B or derivations of B which, at some point during an execution from B||D, will occur as slot values in
D or some derivation of D:

Visible(B, D) == { o | ∃ B',D', β : B||D β → B'||D' ∧ ο ∈ B'.Dom ∧ o ∈ D'.Values }

64

We say that an object with name o in a configuration B or derivations of B is visible to an other configuration D
if o ∈ Visible(B, D). We also say that o is one of the visible objects of B and we say that o is visible from B to
D.

65

3.5 Alternative Semantic Descriptions
This subsection presents some alternative to formally define Omicron's semantics along the lines of Plotkin's
work (Plotkin 1981). However, before presenting the alternatives, a comment is made about why the rules of
action refer to a complete system and not parts of such systems.

External and internal actions
In most definitions of language semantics using the Plotkin-style, the rules of action are usually organised as
follows:

Typically there are three and three rules grouped together. In a group of three there are two rules which may be
applied to parts of a system and therefore define what is perceived as internal actions in the part. For example
there is one rule for receiving a message and one for sending a message - schematically written:

requirement 1 requirement 2
___________ __________

 A -x-> A' B -y->B'

which says that when requirement 1 holds then a legal transition will be A -x-> A' where x denote some internal
action. Similar for the other schematic rule. The third rule then defines an external action which occur when the
two parts are combined:

requirement 3

A||B -z-> A''||B''

where requirement 3 is typically that the transitions A -x-> A' and B -y->B' are legal. Then A'' and B'' are defined
based on A' and B'. z defines the external action.

This approach was also originally taken when defining the semantics of Omicron. For instance there was a rule
quite similar to the SEND-rule which defined an internal action with an "unsent message" and where the rule
stopped the execution of the object which sent the message. Then another rule said that if there was some object
in another component which was willing to receive such a message, then the execution will continue and the
result would be an "external message-send action". The message-send action in the first rule would then be seen
as an internal error action if there were no willing receiver. There would also be a rule defining internal message-
send actions where the sender is allowed to continue execution. There would also be rules describing reception of
messages. One would define the reception of a message where the receiver and method is found and the number of
input slots correspond with the number of parameters in the message. This rule would not say that the method
copy will start executing. Based on this example, the SEND-rule above would then be replaced by at least 4
transition rules.

Other complexities in the modular rules of actions were the result of inheritance between objects. When there are
inheritance, the receiver might not be possible to describe by only looking at a part of the system since this part
might not include the slot references in the message-send sentence. Then the possible transitions from some
configurations would include actions with all possible objects as receivers. Then there would be rules such as "If
A can send a message to any object, and the slot name in the executed sentence in A which gave this action is
found in a configuration which A is combined with, then the only legal transition of the combined configuration
will be a message to the object named in the slot". This would correspond to a requirement 3 as shown above
and in this case the requirement 3 refer to the slot names in A which are involved in defining the x-transition.
This became quite similar to stating requirement 1 as part of requirement 3, and in this way most of the
requirements in rules of type 1 and 2 above were repeated in the requirements in rules of type 3. This gave
substantially more complex requirements of type 3 then the requirements in the above present rules of actions.

The result of organising the rules of action in this more modular manner was, as the small examples show, more
rules of actions and more complex requirements in the rules. This way of organising the transition rules was
therefore not followed. In addition, the definition of internal and external actions which usually helps in
simplifying definitions, propositions and proofs were not a similar help in relation to defining and showing
reliable substitution. This might be because the formalism is in this thesis used in a situation where the focus is
on sets of components forming complete systems, and not as in the more common situation where the focus is
on single components which are to be placed in some system together with unspecified components.

66

Denotational semantics
When defining Omicron, one attempt was made at using denotational semantics to define what the language
expressions mean. This was rather simple for the sequential version of Omicron. However, for the parallel
version of Omicron it involved using power sets of states. The introduction of power sets adds complexity to the
definitions and to propositions and proofs. Also, denotational semantics are better suited for expressing objects'
state and reasoning about such states, rather than expressing and reasoning about object behaviour.

Temporal logic
In the initial stages of the work presented in this theses, some attempts were made at using temporal logic to
express and reason about object behaviour. However, when Plotkin style operational definition of languages'
semantics were tried, the Plotkin style gave much simpler expressions and proofs. It also allowed a more direct
and intuitive relationship between objects as described in object-oriented languages and objects in the formal
model.

Other alternatives
Other formal basis such as, evolving algebras and dynamic algebras, could be used. However, this would mean
that the concepts in the language must be translated to concepts used in relation to evolving/dynamic algebras.
Also, reasoning would have to be done based on the algebras.

Conclusion
The advantage of using Plotkin style formalisation of Omicron, is that it is a nice way to get a direct and
intuitive model of the concepts of the language. It is not necessary to rewrite or translate from objects, methods,
messages, object creation etc. to something else. Also, it is not necessary to introduce any concepts which are
not modelled in the language. In addition, reasoning can be done directly based on the concepts in the language.

If one of the other alternatives were used, it would give a less direct and intuitive relationships between objects
and similarity of objects as found in object component systems and in objects and similarity as found in the
present formal model.

67

CHAPTER 4

Observable behaviour

and

Refinement relations

Previous chapters have just used the term "similar observable behaviour" informally. This
section will elaborate on this topic and give a formal definition of observable behaviour and of
observably equal action sequences. This chapter also defines similarity of components through
a refinement relation between components.

This chapter argues that the defined refinement relation is in line with the intuitive
understanding of similar components as presented in chapter 2. In chapter 5 it is shown that
the defined refinement relation does not give reliable substitution. How the definition must be
strengthened in order to get reliable substitution is the topic of the next chapter, chapter 5.

In the previous chapter, Omicron actions were defined as follows:

e->o!m(j1,…,jn)/k a message-send action from a sentence in the object named e:
 o gets the message m with j1,…,jn as a parameters and where

k is the name of the new method object to be executed
e->o1.s1,…,on.sn:=j an assignment action from a sentence in the object named e:

for i = 1..n, the slot si in the object oi gets the value j
e->i.s:=k/o a clone action from a sentence in the object named e:
 the object o is copied and given a new name k and

the slot s in the object i gets the value k
e->error an error action from execution of a sentence in the object

named e.

In the following, actions are denoted by small Greek letters, typically α and β, and an action is
seen as consisting of two parts:

α = α.exe -> α.dcs
where α.exe is the name of the object where the executed sentence

giving the action was found and
α.dsc is the rest of the action.

Section 4.1 defines observable and hidden actions.

Section 4.2 defines observable equality actions.

Section 4.3 defines a refinement relation between configurations.

68

4.1 Observable and Hidden Actions
Actions stemming from the execution of a sentence in a component are either hidden or observed. These aspects
are defined relative to the set of observers, where the observers are the objects making up the context of the
component. This section gives formal definition of observable and hidden actions.

The definitions might be easier to understand if the text editor example of chapter 2 is kept in mind. This
example can be depicted as follows:

TextModel||TextEditor
specification

The two refinements combined

MyModel||TextEditor TextModel||NewTextEditor

MyModel||NewTextEditor

The below definitions may be viewed as focusing on MyModel as a component and TextEditor as the observing
context.

Observable actions are defined relative to a context consisting of one or more objects. The definition of
observability of actions may therefore be viewed as focusing on the observability of the actions from
MyModel||TextEditor relative to the observers in TextEditor. These actions may stem from execution of
sentences in any part of the system. If MyModel is to be a refinement of TextModel, it is these observable
actions of MyModel||TextEditor which must be similar to the observable actions in TextModel||TextEditor
relative to TextEditor. Similarity of observed actions is defined in section 4.2.

Below the configuration denoted D, is used to represent an observing context of objects. This would correspond
to TextEditor in the above example. The configuration denoted A||D can be exemplified by MyModel||TextEditor
and the action α and the action sequence α can be thought of as being actions from execution of
MyModel||TextEditor. A set of object names O is used to denote the set of observing objects in a context, where
the set O corresponds to the names of the objects found in TextEditor. Below we say that an object is named in
O if the name of the object is an element in the set O.

4.1.1 Observable actions and action sequences

Observable actions
Section 2.3 motivated a definition of observable actions and gave an informal definition. Below a formal
definition of observable Omicron actions is given based on the definitions in section 2.3.

 In the definition of observable actions, actions stemming from execution of sentences in the context and actions
stemming from execution of sentences in the component are treated equally with respect to observability.
Observable actions can therefore stem from execution of sentences in any part of a system. An observing context
will therefore observe actions from execution of sentences in both the component and the context itself.

69

Definition: Observable Action
Given an action α and a set of object names O. The action α is observable from the objects named in O
if the action changes slots in an object named in O, clones an object named in O, is a message send to an
object named in O or an error action from an object named in O. The set of actions observable from the
objects named in O is denoted obs(O) and is formally defined7:

obs(O) == { e->o!m(p)/k | o ∈ O } ∪
 { e->o1.s1,…,on.sn := j | ∃ i ∈ {1…n} : oi ∈ O } ∪

{ e->o.s := k/j | o ∈ O ∨ j ∈ O } ∪
{ e->error | e ∈ O }

Given a configuration C, then obs(C) abbreviates obs(C.Dom). We say that "α is observable from C" if
α ∈ obs(C). Similarly, we say "α is not observable from C" if α ∉ obs(C). Note that C will have
observable actions α ∈ obs(C) where α.exe ∈ C, while there may also be actions where α.exe ∈ C such
that α ∉ obs(C). This is in line with the informal definition of section 2.3.

By definition, observable actions will always be observable from some object. An object is always a part of one
and only one component and, therefore, an action will always be observable from some component. This also
means that an action can not be unobserved from all components in a system. Message-send actions and error
actions will be observable to one object and will therefore only be observable from one component. Assignment
actions can be observable to n objects where n is between 1 and m and where m is the number of slots assigned
to by the action. Such actions can therefore be observable from both the component itself and to the objects in
the context making up the observers of the component. Object creation actions is observable from one or two
components. It is observable from one component if the updated slot and the copied template object are found in
the same component. It is observable from two components if the object with the updated slot and the copied
template object are in two different components. Object creation actions can therefore also be observable from
both the component and the context of the component.

Below the observable trace of a sequence of actions is defined. The observable trace is defined relative to a set of
object names O. The defined function will return all the actions in the actions sequence α observable from
objects named in the set O.

Definition: Observable trace of a sequence of actions
Given a sequence of actions α and a set of object names O. The observable trace of the action sequence
α is the sequence of actions observable from the objects named in O. This is denoted α /obs(O).

The notation α /Obs(O) is taken from (Dahl 1992) and denote all O-observed actions in the action sequence α
in the same order as they are found in α .

Hidden behaviour and silent actions
The messages sent from an object in a component to another object in the same component are not part of the
observable behaviour of the component. They are only part of the component's operational specification, the
implementation of a component. Such actions are called hidden actions. In general, hidden actions are those
actions which do not change any objects in the context.

Next we formally define when an action is hidden as seen from some observing objects. A hidden action does not
change the objects from which it is hidden. We formally define this as follows:

Definition: Hidden actions relation
Given an action α and a configuration of objects A||D and where α ∈ Traces(A||D). We define the hidden
actions relative to a configuration D, denoted α ⊕ D, as a relation such that

∀ A, D, α • A||D α → A'||D' ∧ α ⊕ D ⇒ D' ≡ D

where ≡ denotes textual equality

7 This definition of observable actions is different from, eg, Hoare's definition of observable actions. In
(Hoare 1978) Hoare defines obs(C) as those actions from C which are observed by others. This
definition, however, defines obs(C) as those action which are observable from C. With the definition
given here it is possible to distinguish between different observers, something which Hoare's definition
does not. The distinction in necessary when considering systems consisting of more than two parts, ie,
systems created by composing three or more components.

70

This definition says that an action α from A||D is hidden to D, denoted α ⊕ D, if and only if the execution of
the sentence giving α do not lead to any changes in the objects in D, ie, that D' ≡ D when D' is given by

A||D α → A'||D'.

An action is silent if it is an action from execution of a sentence in a component and the action is not observable
from the component's context. This means that an action which updates a variable in the component of the
executed sentence is silent. Also, an assignment action which updates a slot in the component of the executed
sentence is silent. A silent object creation action will update a slot and create an object from a template in the
component of the executed sentence. Error actions are silent if they stem from execution of a sentence which is
not in an observing object.

What follows is a formal definition of a silent action. It is then shown that a silent action is also a hidden
action.

Definition: Silent actions
We say that an action α is silent relative to a configuration D, denoted α ⊗ D, if it is not observable
from the configuration and the action stems from execution of a sentence in an object not in the
configuration. This can be formally defined:

α ⊗ D == α.exe ∉ D ∧ α ∉ obs(D)

This notation can be lifted to sequences of actions as follows:
<α1, ..., αn> ⊗ D = α1 ⊗ D ∧ ... ∧ α n ⊗ D

Observation O.4.1.1 : Non-observed actions are either silent or from execution of a sentence in observers
When we have <α>/obs(O) = Ø then we have α ⊗ O ∨ α .exe ∈ O. This means that an action which is
not observed is either a silent action or an action from execution of a sentence in an observing object.

We have that silent actions are observably equal to an empty action sequence, ie,:

α ⊗ O ⇔ α /obs(O) = <>

Proposition P.4.1.1 Silent actions are hidden actions

∀ A, D, α •
α ∈ Traces(A||D) ⇒ (α ⊗ D ⇒ α ⊕ D)

Proof:

Assume α ⊗ D and A||D α → A'||D'. We show that D' ≡ D and then by definition of hidden actions this
gives α ⊕ D.
Cases for the different kinds of actions α:

e->o!m(p)/k : Since the action is not observable from D then o ∈ A
Since the action came from a send sentence in A and the receiver is an A-object, the method-copy
will be placed in A by definition of primed configurations, and then there will be no change in D.

e->o.s:=k/j : Since the action is not observable from D then o ∈ A and j ∈ A
Since o ∈ A the updated slot is in A. Because the clone original is an object in A, then by the
definition of primed configurations, the new clone is placed in A. Then both the update slot and
the new clone is in A and then D is not changed.

e->o1.s1,…,on.sn:=j : Since the action is not observable from D then for i ∈ {1..n} we have oi ∈ A
Since oi ∈ A, the updated slots are in A, and then D is not changed.

e->error : Since the action is not observable from D then e ∈ A
Since the action came from A, the terminated object is in A and this will not change D.

o

Proposition P.4.1.2 Hidden actions are silent actions except for trivial assignment

For all configurations A and D and action α where α ∈ Traces(A||D) and where α is not a trivial
assignment action, ie, where the slots in D get the same values as they had, we have that if α is a hidden
action, then α is a silent action, ie, we have :

(α ⊗ D ⇐ α ⊕ D)

71

Proof:
We can then show that except for trivial assignment we have for all cases where α ⊗ D do not explicitly hold
we have D' ≠ D where ≠ denote textual inequality. This means showing

¬ (α ⊗ D) ⇒ ¬ (α ⊕ D)
This gives α ⊕ D ⇒ α ⊗ D. By definition of silent action we have

¬ (α ⊗ D) = ¬ (α.exe ∉ D ∧ α ∉ obs(D)) = α.exe ∈ D ∨ α ∈ obs(D)
We therefore show:

α.exe ∈ D ∨ α ∈ obs(D) ⇒ D' ≠ D where ≠ denote textual inequality.

If α.exe ∈ D then the execution mark is moved and we do not have D' ≡ D and then D' ≠ D.

Cases for different actions when α ∈ obs(D):
e->o!m(p)/k : Since the action is observable from D then o ∈ D

Since the receiver is a D-object, the method-copy will be placed in D by definition of primed
configurations, the new method copy will be added to D giving D' ≠ D.

e->o.s:=k/j : Since the action is observable from D then o ∈ D or j ∈ D
If o ∈ D the updated slot is in D giving D' ≠ D. Because the clone original is an object in D, then
by the definition of primed configurations, the new clone is placed in D giving D' ≠ D.

e->o1.s1,…,on.sn:=j : Since the action is observable from D then for i ∈ {1..n} we have oi ∈ D
Since oi ∈ D, the updated slots are in D giving D' ≠ D provided the values of o1.s1,…,on.sn
where different from j.

e->error : Since the action is observable from D then e ∈ D
Since the terminated object is in D the execution mark in the object is removed from D giving D' ≠ D.

o

Note that when an action is non-observed, it is not generally a hidden or silent action. This is because when an
action α is hidden or silent relative to an observing configuration D, then by definition of silent and hidden
actions we have α.exe ∉ D. However, by definition of observable actions we may have actions α where α.exe ∈
D which are non-observed, ie, α ∉ obs(D).

72

4.2 Observable Equality
This section gives a definition of observably equal actions. First the definition is given and then the definition is
compared with the definitions in chapter 2.4.

As in the previous section, the definitions in this section may also be easier to understand if the text editor
example is kept in mind. The definitions below may then be viewed as focusing on the observable equality of
TextModel and MyModel relative to TextEditor. The big letter O is used to denote the set of observer objects. In
the example this corresponds to the objects found in TextEditor. In the following, two action names are used.
These are α and β. Referring to the above example, α can be thought of as stemming from execution of a
sentence in MyModel||TextEditor and β from execution of a sentence in TextModel||TextEditor. In general, β is
then an action from execution of a configuration consisting of two component specifications and α is from
execution of a sentence in a configuration consisting of a specification configuration combined with a possible
refinement of the other specification.

4.2.1 Definition of observably equal actions
Below we define observably equal actions. The motivation for the definition is found in section 2.4. The below
formal definitions are compared with these definitions further below. This formal definition is given by a relation
called the observably equal actions relation. The relation is an equivalence relation. This is shown in proposition
P.4.2.1 below.

Definition: Observable equality relative to a set of object names; ∼ O
Two object names, e,f, are observably equal relative to a set of object names O, denoted e ∼ O f, if:

- either they are equal
- or none of them are names in O

This can be formally defined:

e ∼ O f == e ∈ O ∨ f ∈ O ⇒ e = f

The definition of observable equality can be lifted to sequences of names as follows:

<e1,..,en> ∼ O <f1,..,fm> == n = m ∧ ∀ i : {1..n} • ei ∼ O fi

An action α is said to be observably equal to an action β relative to a set of object names O, denoted α
∼ O β, iff α.exe ∼ O β.exe and α.dsc ∼ O β.dsc. This is formally stated:

α ∼ O β == α.exe ∼ O β.exe ∧ α.dsc ∼ O β.dsc

where observable equality of the description part of actions is defined as follows:

o!x(q)/k ∼ O p!y(p)/l == o ∈ O ∨ p ∈ O ⇒ <o, x, k> = <p, y, l> ∧ q ∼ O p

o.s := i ∼ O p.t := j == # o.s= #p.t ∧
∀ n ≤ #o.s • on ∈ O ∨ pn ∈ O ⇒ on.sn = pn.tn ∧ i ∼ O j

i.s:=k/o ∼ O j.t:=l/p == (i ∈ O ∨ j ∈ O ⇒ i.s = j.t ∧ k ∼ O l) ∧
(o ∈ O ∨ p ∈ O ⇒ <o, k> = <p, l>)

error ∼ O error == true

The definition of observable equality of actions relative to a set of object names can be lifted to sequences
of actions as follows:

α ∼ O β == ∀ i ≤ #α • α i ∼ O βi

If two actions are observably equal and one of the actions observable, then both must be observable. This is so
because it is required that all the names in the actions which are related to the observability of the actions, must
be equal. For instance, it is required that the receivers in message-send actions are equal, and it is the receiver

73

which determines whether an action is observable or hidden. This corresponds with how observability is defined
in chapter 2.

The consequence of this definition is that an observable action and a hidden action are never observably equal. If
this was not so, we would have a situation where two actions, one observable from a context and the other
hidden to the context, would be observably equal. This would somewhat contradicts the idea of distinguishing
between observable and hidden actions.

Proposition P.4.2.1: Observable equality is an equivalence relation

Observable equality is an equivalence relation since we have that the relation is:
reflexive: x ∼ O x
commutative: x ∼ O y ⇒ y ∼ O x
transitive: x ∼ O y ∧ y ∼ O z ⇒ x ∼ O z

for any x, y, z which denote either three names, three name sequences, three description parts of actions
or three actions

Proof:
First we show the case when x, y and z are names:
Reflexive:

e ∼ O e is true since e is always equal to e and then we have e ∈ O ∨ e ∈ O ⇒ e = e
Commutative:

e ∼ O f ⇒ f ∼ O e is true since the definition is symmetric with respect to e and f.
Transitive:

e ∼ O f ∧ f ∼ O g ⇒ e ∼ O g holds since we have:
e ∈ O ∨ f ∈ O ⇒ e = f and f ∈ O ∨ g ∈ O ⇒ f = g
and then if f ∈ O then we have e = f and f = g and then e = g which gives e ∼ O g,
and if f ∉ O then e,g ∉ O, since if e and/or g is in O and the premise holds, then
we would have e = f and f = g which can not be true if f is not in O while the others are.
Thus, when e,g ∉ O then we have e ∼ O g.

The proof of equivalence for name sequences, the description parts of actions and actions follows straight forward
from the definitions.
o

Below the formal definition of observably equal actions is compared with the informal definition of observable
similarity given in section 2.4. This is done by repeating a part of the formal definition and comparing this with
the corresponding part of the presentation in section 2.4. Note that in section 2.4 it was assumed that the actions
were observed. In the below this means that it is assumed that typically o, p ∈ O.

Observably equal message-send actions
The formal definition of observably equal actions says:

o!x(q)/k ∼ O p!y(p)/l == o ∈ O ∨ p ∈ O ⇒ <o, x, k> = <p, y, l> ∧ q ∼ O p

The informal presentation of observably similar actions given in section 2.4 says (with references to the formal
definition in parenthesis):

Two message-send actions are observably similar to each other if they are messages to the same object
(o = p). Also, the message selector is the same in the two actions (x = y). The parameters which are
names of observing objects are equal (qi = pi). Parameters which are names of object in the component
may be different (qi ∉ O ∧ pi ∉ O).

We also require that the names of the method copies are equal if the message-send action is observed. This is
further discussed in relation to observation O.4.3.2 in a later section in this chapter.

Observably equal assignment actions:
The formal definition of observably equal assignment actions says:

(o.s := i) ∼ O (p.t := j) == # o.s= #p.t ∧
∀ n ≤ #o.s • on ∈ O ∨ pn ∈ O ⇒ on.sn = pn.tn ∧ i ∼ O j

The informal presentation of observably similar actions given in section 2.4 says (with references to the formal
definition in parenthesis):

74

Two assignment actions are observably similar when they update the same slot in the same object
(on.sn = pn.tn for all n ≤ #o.s). If, in either of the actions, the new value of the updated slot is the name
of an observing object then the new value is the same in the two actions (i = j). If the new value is not
found as the name of an object in the context, then both actions must have new values which are different
from context object names (i ∉ O ∧ j ∉ O).

Observably equal object creation actions:
The formal definition of observably equal object creation actions says:

i.s:=k/o ∼ O j.t:=l/p == (i ∈ O ∨ j ∈ O ⇒ i.s = j.t ∧ k ∼ O l) ∧
(o ∈ O ∨ p ∈ O ⇒ <o, k> = <p, l>)

The informal presentation of observably similar actions given in section 2.4 says (with references to the formal
definition in parenthesis):

Two object creation actions are observably similar if they create objects from the same template (In the
formal definition, templates are objects in observers and we therefore get the following:

o ∈ O ∨ p ∈ O ⇒ o = p).

In addition, the Omicron object creation actions update slots. Similarity of this part of the actions are handled as
observably similar assignment actions. Therefore it is required that k = l when o ∈ O ∨ p ∈ O. This requirement
is also discussed in relation to observation O.4.3.2 in a later section in this chapter.

Observably equal error actions:
Two error actions are observably equal if they stem from execution of sentences in the same observer object.
They are also observably equal if they are from execution of sentences in objects which are not observers. This
corresponds with the description of similarity of error actions in section 2.4 which says:

Two error actions are equal when they are errors in the same object (α.exe ∼ O β.exe).

4.2.2 Observably equal action sequences
This subsection defines a relation between sequences of actions. The relation is called the observably equal action

sequence relation, and α =O β denotes that the action sequence α is observably equal to the action sequence β
relative to a set of object names O.

Definition: Observably equal action sequences

Given two action sequences α and β and a set of object names O. We define a binary relation called an

observable equality between action sequences, denoted =O, for any two sequences α and β as follows:

α =O β == α /obs(O) ∼ O β /obs(O)

This definition says that for each O-observed action in α there must be an observably equal action in β .

Below, α =O β is used as short hand notation for <α> =O β . Also we let

α =D' β
denote α =O β where O = D'.Dom = D.Dom ∪ NewNames(α , D)

Proposition P.4.2.3 The observably equal action sequences relation is an equivalence relation

The observably equal action sequences relation defines an equivalence relation since we have that the relation is:
reflexive: α =O α
commutative: α =O β ⇒ β =O α

transitive: α =O β ∧ β =O γ ⇒ α =O γ
Proof:
The proposition holds by the definition of the relation and since the observably equal actions relation is an
equivalence relation as shown in proposition P.4.2.1.
o

75

4.3 A Refinement Relation
This section defines a refinement relation between two Omicron configurations which are viewed as components.
The refinement relation is defined relative to a third configuration containing the observers of the component
configurations.

The motivation for the formal definitions below is the refinement relation presented in chapter 1 and 2. As
defined in chapter 1, a refinement relation relative to a context is said to hold between two configurations, for
example MyModel and TextModel, when MyModel will not display any observable behaviour which is not also
displayed by TextModel as observable from TextEditor. Therefore, to check this, the two systems
MyModel||TextEditor and TextModel||TextEditor are compared by the sequences of observable actions they
display when executed. The Traces()-function defined in chapter 3 returns the set of all sequences of actions from
execution of a system. This function is therefore used in the below formal definition of the refinement relation.
For the refinement relation to hold between MyModel and TextModel then for each action sequence in the traces
from MyModel||TextEditor there must be an action sequence in the traces from TextModel||TextEditor which is
observably equal. This seems like a straight forward definition. However, there are some aspects to consider in
order to make a relation which is not too strict and not too weak. These aspects are discussed below before the
formal definition of the refinement relation is presented.

Adding new objects to observers
New objects may be placed in the component or in the observing context. If new objects are placed into the set
of observing objects, this will have consequences for which actions in the traces are observed. This in turn will
influence whether or not a component will be seen as refinements of an other components. Therefore positioning
of newly created objects is essential when defining refinement relations.

In what follows, the link between observability of action and placement of new object presented in chapter 2
was:

an object created by an observable object creation actions is placed in the observing context and
an object created by hidden object creation actions is placed in the component

where the executed sentence is found.

This link was taken into account in the definitions of the NewNames and prime configuration functions found in
section 3.4.6. The NewNames function is used in the definition of the refinement relation for traces in order to
add new objects to the set of observers. The objects which are added to observers are all the clones of observers
and method copies when the receiver is an observer.

Note that when two action sequences are observably equal relative to both O and the objects created by the

actions in the sequences (here denoted Q), ie, α =O∪ Q β where Q = NewNames(α , O), then all names of new

objects in O are equal in the two action sequences, ie, NewNames(α , O) = NewNames(β , O).

Non-deterministic behaviour
As explained in chapter 2, objects' behaviours are specified to be non-deterministic when the behaviour should
not or can not be specified exactly. In parallel systems, such as Omicron configurations, objects performing
actions in parallel is also a source for non-determinism. This is because the relative execution speed of the
objects may vary non-deterministically. Because of this non-determinism, the traces of some specification B||D,
ie, Traces(B||D), may contain several different sequences of actions since a component may have non-
deterministic behaviour.

As also explained in chapter 2, a refinement does not have to display all the alternative behaviours of a
specification. The consequence of this is that we must require that for each action sequences from the system
consisting of a refinement, eg, A, and the context, eg, D, there must be an observably equal action sequence
from the system consisting of specifications, eg, B||D, ie,

∀ α : Traces(A||D) ∃ β : Traces(B||D) • α =O β

where O = D.Dom ∪ NewNames(α , D)

76

Ending collaboration between components and their contexts
A component which has terminated or which executes giving a possibly infinite sequence of hidden actions is
said to have ended collaboration with the context. When A ends its collaboration with D in a system A||D this
means that A does not have any actions which are observable from D. We can formally define this as follows:

Definition: Ending collaboration
Given two configurations A and D. Then we say that A has ended collaboration with D, denoted
endColab(A, D) when A does not have any actions which are observable from D, ie, all actions from A
are hidden to D. This if formally defined as follows:

endColab(A, D) == ∀ α : Traces(A||D) • # α > 0 ∧ α .exe ∈ A ⇒ α ⊗ D

where α .exe ∈ A means ∀ α : α • α .exe ∈ A

and we also define ending collaboration after some initial action sequence α as follows:

endColab(A, D, α) == endColab(A', D')
where A' = prime(A, D, α) and D' = prime(D, A, α)

In most component developer's view as presented in chapter 2 components which have terminated and
components which execute giving a possibly infinite sequence of hidden actions are seen as equivalent in that
none will give observable actions. This means that a refinement should not end collaboration with the context
before the specification terminates. This is motivated by the requirement that a specification will not specify
actions which the refinement does not display. If we require for A to be a refinement of B relative to D that:

∀ α : Traces(A||D) ∃ β : Traces(B||D) • α =O β

where O = D.Dom ∪ NewNames(α , D)

then A may end collaboration with D before B does. This is because when A has ended collaboration with D then

we have α /Obs(O) = <> and then we can always find some β such that α =O β . This is done by letting β
be the empty action sequence which is found in the traces of every configuration. This is not in line with
component developers view of similar components as described in chapter 2. It must therefore be required that if
a refinement ends collaboration with the context, then the specification component should have an alternative
behaviour which ends collaboration with the context. This is formally stated:

 endColab(A, D, α) ⇒ endColab(B, D, β) where α ∈ Traces(A||D) and β ∈ Traces(B||D) and α =D' β .

A refinement relation
Based on the above discussion, the refinement relation between configurations is defined as follows:

Definition: Refinement relation; A ≤D B
Given two systems A||D and B||D. The configuration A is a refinement of B relative to D, denoted
A ≤D B, if the traces of A||D is a refinement of the traces of B||D relative to D. This can be formally
defined as follows:

A ≤D B == ∀ α : Traces(A||D) ∃ β : Traces(B||D) •

α =D' β ∧ (endColab(A, D, α) ⇒ endColab(B, D, β))

This definition says that for all action sequences in the traces Traces(A||D), there is an observably equal action
sequence in the traces Traces(B||D) relative to the object names in D and the names of the new observing objects.
Also, if A ends collaborating with D after the action sequences α , then B can end collaboration with D after the

action sequence β .

In the way Omicron configurations can be defined, there may be an infinite number of action sequences in the
traces of the configuration. Also, an action sequence may have an infinite number of actions. If such infinity is
found in the traces, then it would take infinite time to decide by execution or simulation of execution if a
component with infinity in its traces is a refinement of some other component. However, if the component with
infinity in its traces is not a refinement of some other component, then this is decideable by comparing
executions or simulations of executions in finite time since it takes a finite time to find the action for which no
observably equal action is found. Refinement is therefore not in general testable by execution of components or
simulations of such components, since such a test might take infinite time. Since refinement is not in general

77

testable for OCS components, it is important to have a formal theory for such components which can be used in
showing properties such as refinement. It is then important that proofs in the theory of properties such as
refinement can be done in finite time.

When defining OCS components using Omicron, the possible traces of a component is deterministically defined.
For instance it is deterministic weather the execution of a component will give new actions or if the component
has stopped and therefore will give no new actions. In the first case there is one or more sentences in the
component which has an execution mark in from of it. In the latter case, there are no such sentences in the
configuration. Because of this deterministic property, a function such as endColab() can be defined by a prefix
closed set of finite sequences of actions. This allows proofs of properties, such as refinement of Omicron
configurations, typically to be done by induction which are proofs which can be done in finite time.

Proposition P.4.3.2: The refinement relation is a pre-order
The refinement relation is a pre-order because the relation is:

reflexive: A ≤D A
transitive: A ≤D B ∧ B ≤D E ⇒ A ≤D E

Proof:
Reflexive: Obvious since the observably equal action sequence relation is reflexive (by P.4.2.3).
Transitive: We have by definition of the refinement relation:

 ∀ α : Traces(A||D) ∃ β : Traces(B||D) • α =D' β ∧ (endColab(A, D, α) ⇒ endColab(B, D, β))

and

∀ β : Traces(B||D) ∃ γ : Traces(E||D) • β =D'' γ ∧ (endColab(B, D, β) ⇒ endColab(E, D, γ))

where D'' = D.Dom ∪ NewNames(β , D)

Trivially we then have endColab(A, D, α) ⇒ endColab(E, D, γ). Next we show α =D' γ .

Since the action sequences α and β are observably equal, then by definition of NewNames, we have D'.Dom =
D''.Dom. Then we have

∀ α : Traces(A||D) ∃ β : Traces(B||D), γ : Traces(E||D) • α =D' β ∧ β =D' γ .

Since the observably equal action sequence relation is transitive (by P.4.2.3) we have α =D' β ∧ β =D' γ ⇒
α =D' γ and we then have

∀ α : Traces(A||D) ∃ γ : Traces(E||D) • α =D' γ
and the proposition holds for this case.
o

Observation O.4.3.1 : The refinement relation is neither an equivalence relation nor monotonic
The refinement relation is not symmetric since all sequences of actions in Traces(A||D) are considered, while only
a selected set of the action sequences in Traces(B||D) are used to establish the relation between the two traces.

An equivalence relation could be defined as follows:

A =D B == A ≤D B ∧ B ≤D A

This relation is left for further study, while the refinement relation is the focus of the present work since this
relation is more used in practice.

Also, we do not have:

A ≤D B ⇒ ∀ C : A||C ≤D B||C
or
 A =D B ⇒ ∀ C : A||C =D B||C

Therefore the refinement relation and an equivalence relation based on the refinement relation are not monotonic
relations.

78

A simplifying assumption concerning names of new objects:
The actions include the names of new objects. For two actions to be observably equal, the names of new objects
must be equal. For example we have α = e->i.s:=k/o from A||D where o is the name of an object in D. If an
action β is to be observably equal to α relative to D we must have β = f->j.t:=k/o. When we require:

∀ α : Traces(A||Dσ) ∃ β : Traces(B||D) • α =D β

for A to be a refinement of B, then there will never be any refinement of B if there are D-observable message-
send and clone actions in A||D. This is due to the requirement that for every action from A||D there must be an
observably equal action in B||D. For example if there is a clone action in A||D which clones an object in D, then
there will be infinitely many possible actions from A||D since there are infinitely many unique object names.
One or more of these actions would then be an action where the name of the new object is equal to an object
named in B, since it is only required that names of new objects in A||D are not found as object names or slot
values in A||D. When we have α =O β, we require that the names of new objects are equal and then β will hold a
new object name which is a name already in B. Then β will not be a legal action from B||D. Therefore we do not
have a β for all α, and then never A ≤D B if A sends messages to D or clones objects in D.

There are several alternative ways of making definitions and proofs which eliminates this problem. One example
is allowing differences in new object names in observably equal actions. This would not complicate the
definition of observably equal actions. However, the extra complications are found in relation to expressing and
proving properties which are necessary when making inductive proofs of properties of reliable refinements. The
complications will occur in the proofs in chapters 5 and 6 which refer to the below observation, O.4.3.2.

One other way to avoid this problem is to require a refinement to have the same number of objects as the
specification configuration and that the object names are equal. This is not in accordance with the intuitive
understanding of refinements we have presented previously where a refinement and its specification should be
able to have different numbers of objects. As mentioned, there are also several other ways of avoiding the above
problem. However, each alternative contribute with complexity in the definitions and proofs. Therefore, a
simplifying assumption is introduced:

Observation O.4.3.2 : Simplifying assumption about names of created objects

Names of new objects found in actions are assumed to be different from every object name, slot name
and slot value in the configurations associated with the expression where the new names are found.

This means that if we, eg, have as above ∀ α : Traces(A||Dσ) ∃ β : Traces(B||D) • α =O β, then we assume that
all names of new objects in actions in α and β are not found as object names, slot names or slot values in A, B
or D. Obviously, since there are infinitely many names, it is always possible to find new names which are not
used as object name or slot value in any of the involved configurations. Making this assumption therefore
ensures that all names of new object which are found in α from A||D can also be used as names of new objects
in B||D.

The main reason for choosing the above alternative and thereby leave some of the complexity out, is that it
corresponds well with what happens in practice. In practice, the difference in new objects' names is not
considered when comparing equality of components as long as the object names are unique. The uniqueness of
names are taken care of by the underlying runtime system, thus removing the burden of naming object from the
programmer. By our simplifying assumption, an equal burden is removed from the person doing the proofs of
propositions and lemmas used in showing the substitution proposition.

79

CHAPTER 5

Reliability Requirements

The definitions in chapter 4 were based on the intuitive notions of similar observable behaviour
found among component developers as described in chapter 2. This leads to a refinement relation
which is not reliable as defined in chapter 1. The present chapter shows how and why this
definition of configuration refinement is not reliable. This chapter defines a set of reliability
requirements for Omicron configurations and shows how the refinement relation defined in chapter
4 can be strengthened so that we get a reliable refinement relation which ensures reliable
substitution of components.

Section 5.1 gives an introduction to reliability of Omicron configurations while section 5.2
introduces name substitutions which are used to specialise a configuration when combining it
with different other configurations. This allows components to have different object names, while
still having observably equal behaviour.

The lack of reliability is shown by giving examples of components where the properties expressed
in the substitution proposition do not hold. The examples are given in sections 5.3 and 5.4. From
the problems related to showing reliability properties for the simple examples in section 5.3,
certain requirements on configuration expressions are introduced. There requirements are denoted
reliability requirements.

In section 5.4 the examples show how the definition of observable equality as defined in chapter 4
must be modified to get reliability. This is summed up in the definition of observable similarity.
The observably similar actions relation is transitive and not an equivalence relation like the
observably equal actions relation. This is because the observably similar actions relation is not
reflexive or commutative. However, the relation is reflexive in what might be considered normal
cases.

Observable similarity is used to define a reliable refinement relation, something which is done in
section 5.5. This section also shows that the reliable refinement relation is in line with the
developers notion of similarity, but in addition sets new requirements on components if they are
to be reliable.

In chapter 6 it is shown that the reliability requirements combined with the new refinement
relation are sufficient to show the substitution proposition of chapter 1.

More practical consequences of the reliability requirements and the reliable refinement relation
with specialisation are presented in chapter 8. The consequences are discussed and they are summed
up as a set of rules for making reliable specifications and reliable refinements of such
specifications.

80

5.1 Reliability of Refinements
The proof that the refinement relation is a reliable refinement relation is done by showing the substitution
proposition of chapter 1. This means that, eg, it is possible to prove the simple version of the substitution
proposition:

∀ A, B, C, D • A ≤D B ∧ C ≤B D ⇒ A ≤C B ∧ C ≤A D

where A ≤D B means that A is a refinement of B relative to D, etc. Because of the universal form of the above
proposition it is only necessary to prove:

∀ A, B, C, D • A ≤D B ∧ C ≤B D ⇒ A ≤C B

as C ≤A D follows by symmetry. The configurations denoted B and D may be viewed as specifications. The
configuration denoted A is a refinement of B and C is a refinement of D.

Because of the form of the substitutability proposition, we can say that the configurations denoted A and C "play
equal roles" and B and D "play equal roles" in the sense that A and C are refinements and B and D are
specifications. Configurations playing equal roles will have to meet the same reliability requirements and take
the same place in propositions and proofs in relation to proving the substitution proposition. Remembering this
symmetry will help in understanding the formalisations and discussions in the following sections as, eg,
something which is stated for A will also hold for C and statements about B relative to A and C could just as
well be statements about D relative to C and A.

To show that A is a refinement of B relative to D, ie, A ≤D B, the traces of the two configurations A||D and B||D
are compared. It is then shown that for every action sequences in traces of A||D there is an observably similar
action sequence in traces of B||D. Similarly, to show C ≤B D the traces of B||C and B||D are compared. When the
conclusion of the substitution proposition holds then for every action sequences in traces of A||C there is an
observably similar action sequence in traces of A||D. Observational similarity of C and D is then defined relative
to the objects in A. Note that the premise states properties of the traces of B||D, A||D and B||C, while the
conclusion states properties of the traces of A||D, B||C and A||C. This means that properties of the traces of the
configuration A||C is only stated in the conclusion of the proposition. Remembering this will also help in
understanding the formalisations and discussions in the following sections.

To simplify, the following discussions, definitions and propositions are based on the simple version of the
substitution proposition shown above, in which four configuration names are used: A, B, C and D. This naming
scheme will be followed below in that whenever some property is defined and that property is typically relevant
for specifications, the configurations are denoted B or D. If the property is typically relevant for refinements, the
configurations are denoted A and C. There are no a priory assumptions on configurations with these names. The
consistent use of names is only meant to help in understanding the definitions, discussions, propositions and
theorems.

Keeping the definition of reliable refinements as abstract as possible
In the definition of the refinement relation in chapter 4 there are no restrictions on how to make operational
specifications of observable behaviour. The operational specifications are Omicron configurations and this creates
total freedom in using Omicron when expressing observable behaviours. All details in the operational
specifications which are irrelevant to the observers are not taken into account when determining whether a
component is a refinement of some other component. The resulting definition of similar components may
therefore be seen as abstracting away details of components which are irrelevant to the observers.

There are different alternative requirements which may be added to make the definition of the refinement relation
reliable. The different alternative reliability requirements can put restrictions on

- Omicron configurations and/or
- on relations involving actions

If restrictions are put on Omicron configurations then this will restrict how implementations and specifications
of behaviours are done. To get as much freedom as possible when expressing observable behaviours, it is
therefore best to put requirements on relations involving actions rather than on the Omicron configurations
which operationally describe the actions. The reliability requirements preferred in this thesis are therefore those
which avoid putting restrictions on Omicron configuration. In other words, it is preferred to set requirements on
relations involving actions.

81

However, this chapter shows that in order to that to get reliability, there is no way to avoid some restrictions on
configurations. These are found in section 5.3 below. In chapter 8 it is shown that many of these restrictions
correspond with published advice on how to make good object-oriented designs while other restrictions introduce
and motivate new design advice. The restrictions on Omicron configurations may be supported by a properly
defined language where the restrictions can be statically checked. However, as discussed in this chapter and in
chapter 8 it is not trivial to define such a language and it is not evident that all the reliability requirements can be
statically checked even with a properly defined language. Defining such a language is therefore left for further
study. It can also be noted that traditional class based languages ensure several of the reliability requirements, but
on the other hand put unnecessary restrictions on configuration expressions.

Some reliability requirements can be avoided by establishing properties of the configurations which are formed
by combining refinement configurations. Referring to the above named configurations, this means establishing
properties of A||C. By using this alternative we would loose the property found and expressed in the
substitutions proposition. This property is that the refinement relation can be established separately for each
refinement configuration, and when these relations have been established, the refinements can be safely
combined. This is often called the compositionality property of components. However, as explained in section
5.4 there are a few simple requirements which must be put on A and C in order to get reliability. This is the
requirement called reliable names formally defined by the RelNames-function.

82

5.2 Configuration Specialisation
This section introduces name substitutions which are used to specialise a configuration when combining it with
different other configurations allowing components to have different object names, while still having observably
equal behaviour. This section also define what it means to be a reliable substitution and a configuration with safe
names are defined. These properties are necessary in order to ensure predictable behaviour when configurations are
specialised and combined with other specialised configurations.

5.2.1 Name substitutions
The following configurations give an example of a situation where it is useful to have name substitutions and
configuration specialisation:

B = b : ([m->p],) || p: ([:y->j, v->n], y!v();)
A = a : ([m->p],) || p: ([:y->j, v->n], y!v();)
D = d : ([s->b, w->m, x->d, n->q], $s!w(x);) || q : ([],)

In this case we have:
Traces(B||D) = < d->b!m(d); kp ->d!n() >
Traces(A||D) = < d->error>

This does not give A ≤D B. The only difference between A and B is the name of one of the objects. In general
we then get that we do not have A ≤D B if the names of visible objects from A and B to D differ, ie, when

D.Values ∩ A.Dom ≠ D.Values ∩ B.Dom
In order to specialise D to collaborate with A instead of B we introduce name substitutions:

Definition: A name substitution
A name substitution8 is an operation mapping names to names. Name substitutions are denoted by small
Greek letters and the set of all name substitutions is denoted Su.
The substitution operation is written post fix, eg, Cσ, and binds stronger than the other operations so
that, eg, A||Cσ means A || (Cσ).

A name substitution has the form {a1/b1}…{a n/bn} where {a/b} means 'b' is replaced by 'a'. For b-names
not listed in the {a/b}-sequence the substitution mapping is equal to the identity function. For the
substitution to be well-defined, all bi in the sequence must be unique. {a/b}* denote a sequence of {a/b}.

Given a substitution σ = {a1/b1}…{a n/bn} then
keys(σ) = {b1…bn}, values(σ) = {a1…an} and names(σ) = keys(σ) ∪ values(σ).

To make D have A-names in stead of B-names we specialise D by applying a name substitution which substitute
B-names with A-names, eg, we have A||Dσ where σ ∈ (B.Dom → A.Dom). Similarly we use a substitution
ρ ∈ (D.Dom → C.Dom) to specialise B to collaborate with C instead of D.

For short we write σ ∈ B → A for σ ∈ (B.Dom → A.Dom).

The role of configurations and substitutions which will be used when expressing a reliable version of the
substitution proposition is illustrated in figure F.5.1 below.

5.2.2 Substitution of observer names
If a substitution σ has keys which are equal to names of the observers, ie, D.Dom in the above example, and the
keys are new names, then the names of observers are changed when D is specialised with σ. If observer names
are changed when configurations are specialised, then this must be taken into account when defining observable
equality of actions. This creates extra complexity in the definition of observable equality. However, by requiring
that we have B||D ∈ C, ie, B.Dom ∩ D.Dom = Ø, and that the substitution substitute from B-names to A-
names, ie, σ ∈ B.Dom → A.Dom, then the D-names will never be changed.

8 Name substitutions are defined in some more detail in appendix A.

83

B||D

A ||C

B ||CA||D

specification

D combined with
refinement of B

B combined with
refinement of D

The two refinements combined

ρ

ρ

σ

σ

Figure F.5.1 : Configurations and substitutions which will give reliable behaviour provided
the reliability requirements presented in this chapter hold.

Observation O.5.2.1 : Observing objects' names are never keys in the substitution
When we have

B||D ∈ C which gives B.Dom ∩ D.Dom = Ø
and when we have

σ ∈ B → A,
then we have

(∀ i • i ∈ D ⇒ i = iσ)
since when i ∈ D and B.Dom ∩ D.Dom = Ø then i ∉ B and then i ∉ keys(σ) since σ ∈ B → A.
We then also have, eg,

D.Dom = Dσ.Dom and (∀ i • i ∈ D.Values ∧ i ∈ D ⇒ i = iσ)
and we also have

E||D ∈ C ⇔ E||Dσ ∈ C for any configuration E since when
D.Dom = Dσ.Dom then E.Dom ∩ D.Dom = E.Dom ∩ Dσ.Dom

When A and Dσ are combined, then we must require safe names in the configuration A||Dσ. By observation
O.5.2.1 (observing objects' names are never keys in the substitution) then A||D ∈ C gives A||Dσ ∈ C.

Definition: Reliable substitution relative to configurations
When we have A||Dσ, B||D ∈ C and σ ∈ B → A then we say that the substitution σ is reliable relative to
A, B and D and we denote this RelSubst(σ, A, B, D).

Proposition P.5.2.1 Reliable substitutions preserve substitution reliability

∀ A, B, C, D, σ, ρ •
A||D, B||D ∈ C ∧ σ ∈ A → B ∧ ρ ∈ D → C
⇒
Bρ||D, Aρ||Dσ ∈ C ∧ σ ∈ Aρ → Bρ

Proof:
By proposition O.5.2.1 (observing objects' names are never keys in the substitution) we have
A.Dom = Aρ.Dom, B.Dom = Bρ.Dom and D.Dom = Dσ.Dom. B||D ∈ C gives B.Dom ∩ D.Dom = Ø, and we

have A||D, B||D ∈ C ∧ σ ∈ A → B, this gives Bρ||D, Aρ||Dσ ∈ C ∧ σ ∈ Aρ → Bρ.
o

5.2.3 Substitution of slot names
In Omicron configurations there is no syntactic difference between slot names and object names. Therefore, there
may be slot names in D which are equal to object names in B. If such a slot name was found as a key in the
substitution this would create unintentional change in behaviour. Here is an example:

What would have been observably equal messages from A and B to D will be a message
send from B to D and an error action in A||Dσ as the name of the receivers method-slot was changed
by the substitution.

84

This is demonstrated by the following example:

B = b : ([m->p],) || p: ([:y->j, v->n], y!v();)
A = a : ([m->p],) || p: ([:y->j, v->n], y!v();)
D = d : ([a->b, b->m, x->d, n->q], $a!b(x);) || q : ([],)

Consider the substitution {a/b}. Here a and b are also found as slot names in the object named d and we then get
Dσ = d : ([a->a, a->m, x->d, n->q], $a!a(x);) || q : ([],)

and we then have
Traces(B||D) = < d->b!m(d); kp ->d!n() >
Traces(A||Dσ) = < d->error>

because the slot name b was replaced with a. In this case there are two slots with the same name in a single
object, but in general such a substitution may lead to two slots with the same name in an inheritance graph of
an object. When there are two slots with the same name, then the slot which comes first in the lookup sequence
will be used in all cases. In the case above we will therefore get the value b from D(d:a). We may then get
differences in behaviour as in the above case and then not A ≤D B, even if the difference in behaviour has
nothing to do with the definitions of A and B.

This problem with slot name substitution may be viewed as a problem related to how substitutions are used
when specialising configurations. The problem arises when the substitution is applied to a configuration, such
as is done by Dσ. There are several ways of getting around this problem. Here are some examples:

- Define how substitutions are applied to configurations, and in the definition say that slot names are not
changed. The problem with this approach is that it is not statically decideable whether a slot value is a
slot name or an object name and therefore should not or should be changed. Typically, a slot value
could both be the name of a slot in D and the name of an object in B.

- Require that slot names in D are not equal to B and A names found in σ, ie,
D.SlotNames ∩ names(σ) = Ø

Similarly for slot names in B relative to the substitution from D-names to C-names. The drawback
with this solution is that it will complicate many definitions which the reliable refinement definition
builds on. These extra elements in the definitions do not actually correspond to problems which are
found in practice, but are mainly of theoretical interest since it stems from the use of substitutions to
specialise configurations.

- A simple solution is to require disjoint sets of names for slots and objects, ie, splitting the set of
names N into the sets ON for object names and SN for slot names. We then require:

ON ∩ SN = Ø and N = ON ∪ SN

Naturally, we require that the object names used in the configurations are in ON, for instance that all

object names in B are in ON, ie, B.Dom ⊆ ON . Slot names in the configurations will then be in

SN.

The advantage of this approach is that it simplifies the definition of a reliable refinement relation while
it sets a restriction which is found in almost every object-oriented system. It is common in all object-
oriented programming languages such as C++ and Smalltalk9. In such systems the object names are
created and maintained by the underlying runtime system, while slot names correspond to variable
names and procedure names which are defined by programmers.

An important property of this approach is that it does not restrict the values of slots to only contain
object names; slot values may also be slot names.

To avoid such slot name substitution and with as little extra complexity as possible, but without making
unnecessary restrictions in practice, the last approach is chosen.

Definition: Configurations with safe names
Given a set of configurations C1,…, Cn, The configurations have safe names if they have non-
overlapping object names and the set of slot names and the set of object names of the configuration are

9 In Smalltalk there is a tradition for sending what corresponds to slot names as parameters. This is
further commented on in chapter 8.

85

disjoint, ie, C1||…||Cn ∈ CS ∧ ON(C1||…||Cn) ∩ SN(C1||…||Cn) = Ø where ON() and SN() is defined as
follows:

ON(C) == C.Dom
SN(C1 || C2) == SN(C1) ∪ SN(C2)
SN(i : M, S) == SN(M) ∪ SN(S)
SN([s1->i1, … , sn->in) == {s1,…,sn}
SN(S1 $ S2) == SN(S1) ∪ SN(S2)
SN(S1 ; S2) == SN(S1) ∪ SN(S2)
SN(s!w(p1,…,pn)) == {s, w, p1,…,pn}
SN(s := v = w t f) == {s, v, w, t, f }
SN(s := t clone) == {s, t}

When the configurations have safe names we write this as follows:

C1||…||Cn ∈ CSafe

When the configurations have safe names, and the substitution is reliable, then slot names are not changed by
the substitution:

Observation O.5.2.2 : Reliable substitutions do not change slot names in configurations with safe names
When we have configurations A, B, and D where

A||D, B||D ∈ CSafe
and a substitution σ where

σ ∈ B → A
then we have that

all object names in the configurations are in ON, and

slot names are in SN where SN ∩ ON = Ø,
and then only B-names will be substituted, while all slot names are unchanged by the substitution σ in
Dσ.

The following is the BNF-syntax definition for Omicron configurations with safe names. Oname is used for
object names while Sname is used for slot name. The difference between this definition and the definition in
chapter 3 is that all occurrences of "name" is replaced by "Sname" except in the line marked (*). In this line,
"name" is replaced by "Oname". In the line marked (!). Oname is added to the definition of Val. The line marked
(+) defines Oname.

Configuration ::= Object*||

(*) Object ::= Oname : (Slots, Body) -- Definition of an object

Slots ::= [,*SlotDef]

Body ::= ;
*Sentence | ;

*Sentence $;
*Sentence

Sentence ::= Sname := Sname clone | -- Clone sentence

Sname,
+ := (Sname = Sname Sname Sname) | -- If-sentence

Sname ! Sname (,
*Sname) -- Message-send sentence

SlotDef ::= slotName → Val
(!) Val ::= Oname | Sname | this

slotName ::= Sname | -- Plain slot
:Sname | -- Input slot
SnameIIII | -- Inheritance slot
:SnameIIII -- Input and Inheritance slot

Sname ::= char+ but no colon (:) first and no IIII last and not equal to 'this'
(+) Oname ::= char+ not equal to 'this'

char ::= a | … | z | A | … | Z | 0 | … | 9 | + | - | * | / | _ | : | =

86

5.3 Reliability Requirements
This section presents and motivates a set of reliability requirements. Each subsection presents some simple
configurations and attempts to prove the substitution proposition for each simple case. However, we are able to
show that in each of the examples there is a property or lack of property in the configurations which leads us to
conclude that the proposition does not hold.

Each case starts by presenting the configurations. Then the actions from the configurations are presented before
the case is discussed. The configurations are named A, B, C and D and the actions from these configurations are
named as follows:

α ∈ action(A||D) and β ∈ action(B||D) and γ ∈ action(B||C) and δ ∈ action(A||C)

We assume A ≤D B and C ≤B D and then check if we have A ≤C B and C ≤A D. In the examples below we do
not have A ≤C B and C ≤A D. To get reliable substitution we must therefore add requirements on how to define
reliable Omicron configurations. Each subsection concludes by describing necessary requirements which must be
fulfilled in order to prove the substitution proposition for situations similar to the subsection's example.

The sufficiency of the requirements is shown by the propositions and the theorems in chapter 6.

5.3.1 Inheritance slots
External inheritance in a refinement configuration means that an object in a refinement configuration inherits
from an object in a specification configuration. For example an object in A inherits from an object in D as
follows:

B = b : ([s->o, w->m, x->i], $s!w(x);)
A = a : ([q*->d], $s!w(x);)
D = d : ([s->o, w->m, x->i],) || o: ([m->p],) || p: ([:y->j],)
C = o: ([m->p],) || p: ([:y->j],)

In the above case we have
α = a->o!m(i), β = b->o!m(i) and γ = b->o!m(i)

which gives α .dsc = β.dsc = γ.dsc and, α ∈ obs(D), β ∈ obs(D) and γ ∈ obs(C). This gives A ≤D B and
C ≤B D. Since A inherits from D there will also be inheritance from A to C. The action δ comes from A||C and
we have δ = a->error since there is no object named "d" in A||C and therefore the slots are not found. To be able
to ensure C ≤A D, we must be able to ensure that δ will be an action which is not observable from A.

In this case it can not be ensured that δ will be an action observably similar to γ when α is observably similar
to β. This is because the result of executing a sentence in A in A||C where there is inheritance from A to C, can
not be known unless the internals of C is known. This is because we do not know where the slots referred to in
the sentence in the object named "a" will be found unless the internals of C are known. The proposition
assumption involving C is C ≤B D. This only gives properties of the actions from C observable from B in B||C
and not any information about C's internals. It is therefore not in general possible to determine what the action δ
from execution of the sentence in the object named "a" will be. In the case when A is combined with C, δ will
be an error action since there is no object named in C.

To show the substitution proposition in such cases where there is inheritance from A to D we have two choices:
- to disallow A to inherit from D. We call this no external inheritance in A.

- to state properties of internals of C which are used in relation to A inheriting from C in the premise of
the substitution proposition. These properties must be stated relative to the internals of D which are
used in relation to A inheriting from D.

The first property formally stated:

NoExt*(A, D) == ∀ A', D' • A||D * → A'||D' ⇒ noExt(A', D')

where noExt is defined by
noExt(A) == ∀ o, s • @A(o:s) ⇒ owner(A, o, s) ∈ A

87

where owner(A, o ,s) returns the name of the object in the inheritance graph of o
 where a slot named s is found (defined in chapter 3).

Note that when there is no external inheritance in A, then all inheritance slots hold names of objects in A. Then
A will not inherit from objects in C or any other objects not in A. However, since slot values can be changed
during execution of the configurations, then NoExt*(A) can not be checked by looking at static properties of A.

The second property formally stated:

SafeInheritance*(A, C, D) == ∀ A', C', D', A'', C'', D'', α , δ , α , δ •
A||D α → A'||D' ∧ A'||D' α → A''||D'' ∧ A||C δ → A'||C' ∧ A'||C' δ → A''||C'' ∧
α.exe = δ.exe ⇒ SafeInheritance(A', C', D')

where SafeInheritance is defined by
SafeInheritance(A, C, D) == ∀ i, s • i ∈ A ∧ s ∈ A.Slots(i) ⇒ (A||D)(i:s) = (A||C)(i:s)

where A.Slots(i) denote the names of the slots in the object named i in A
and (A||C)(i:s) denote the value of the slot names s as found in the inheritance graph of the object

named i.

Both these formal definitions are a bit more general than strictly necessary, since they cover all slots, and not
only those slots which are actually used in a given case. Even in the more specific cases, establishing
SafeInheritance* would require knowledge of both A and C. We would then loose the compositionality property
found and expressed in the substitution proposition. This property allows A and C (refinements) to be safely
combined without first having to establish properties of the combined configuration A||C. However, by
introducing the SafeInheritance* property this is no longer true, and the basic intention is broken. Therefore, this
alternative is not taken as a reliability requirement. Instead the noExt()-function is taken as a reliability
requirement for configurations which are to be reliable refinements.

The no external inheritance alternative means that objects in refinements cannot inherit from objects in
specification configurations. This might at first glance be associated with inheritance from classes in class
libraries. However, we talk here about object inheritance and not class inheritance. When classes are not changed
during execution, then one may eliminate the problem with external inheritance. The problem is eliminated by
considering any classes which are inherited between specifications and refinements as copied into the different
configurations; one copy for each configuration.

We have then established that a requirement such as NoExt* is necessary if we want reliability without having to
establish properties of the combined configuration A||C.

Observation O.5.3.1 : In configurations with no external inheritance, an action can only update slots within the
configuration where the executed sentence is found

Observe that when we have no external inheritance in a configuration, all assignment actions from if-
sentences in the configuration will be silent actions. This is because all owners of a slot referred to in a
sentence will be found within the configuration where the sentence is found.

A consequence of this is that observable traces will not include assignment action from execution of
sentences in refinement configurations.

Similarly clone actions from execution of sentences in configurations with no external inheritance will
only update slots in the configuration. Such actions are observed only if they clone objects which are in
the observer configuration. Otherwise, they are hidden.

When we have an action α ∈ Traces(A||D) and there is no external inheritance A and the action α is from
execution of a sentence in A and is observable from objects in D, ie,

α ∈ Traces(A||D) ∧ noExt(A) ∧ α .exe ∈ A ∧ α ∈ obs(D)
then the only kinds of action α can be is

a message-send action to an object in D or
an action which creates an object in D and updates a slot in A.

This is because there is no external inheritance, and therefore we can not have actions which update slots
in other configurations.

88

Observation O.5.3.2 and shorthand notation : All updated slots come from the same part of the configuration

By observation O.5.3.1 (observed actions from a configuration with no external inheritance), an if-
sentence in a configuration with no external inheritance can not update slots outside the configuration.
This means that when we have actions of the form

α = e->o1.s1…on.sn := j
and e ∈ A and there is no external inheritance in the configuration A, then all oi will be object names in
the same configuration, ie, o1…on ∈ A. Since all oi are names in the same configuration then the
notation may be simplified by denoting the actions e->o.s := j where o.s corresponds to o1.s1…on.sn.

The next proposition shows an important property of applying a reliable substitution to a configuration with no
external inheritance. It shows that no external inheritance is preserved when a configuration is specialised with a
reliable refinement, eg, if we have noExt(C) and a reliable substitution σ, then we also have noExt(Cσ). The
next proposition also shows that the same owner of a slot will be found in C and Cσ, ie, owner(C, i, s) =
owner(Cσ, iσ, sσ). The proposition also shows that the value of a given slot will be equal whether the
substitution is applied to the configuration as a whole, or to the value found in C, ie, Cσ(i:s) = (C(i:s))σ for all
object names i in C and all slot names s in C.

Proposition P.5.3.1 Reliable substitutions give same slots and preserve "No external inheritance"

∀ A, B, C, i, s, σ •
noExt(C) ∧ σ ∈ B → A ∧ B||C, A||C ∈ CSafe ∧ @C(i:s)
⇒
noExt(Cσ) ∧
owner(C, i, s) ∈ C ∧ owner(C, i, s) = owner(Cσ, iσ, sσ) = owner(Cσ, i, s) ∧
Cσ(i:s) = (C(i:s))σ

Proof:
Observation O.5.2.1 (observing objects' names are never keys in the substitution) and observation O.5.2.2
(reliable substitutions do not change slot names in configurations) give:

since i is an object name in C then i = iσ and
since s is a slot name in C then s = sσ.

This gives
owner(Cσ, iσ, sσ) = owner(Cσ, i, s).

noExt(C) gives that all object names in the inheritance graph of the object named i are objects in C. By
observation O.5.2.1, these names are not changed by the substitution. We then have

owner(C, i, s) ∈ C and owner(C, i, s) = owner(Cσ, i, s) and noExt(Cσ)
Then, by definition of slot lookup, the same slot is found for C(i:s) and Cσ(i:s). We then have

Cσ(i:s) = (C(i:s))σ
o

5.3.2 If-sentences
Assume that we have the following case where we have an if-sentence in a method in C:

B = b1 : ([m->p],) || p : ([],) ||
b2 : ([],)

A = a : ([m->p],) || p : ([],)

D = d : ([s->b1, t->b2, w->m], $ s!w();)

C = c : ([s->b1, t->b2, w->m, x->q], $ s := (s=t x s); s!w();) ||
q : ([m->r],) ||
r : ([],)

The substitution:
σ = {a/b1} {a/b2}

is used to specialise C and D for combination with A, and the configurations fulfil the reliability requirements of
all previous sections in this chapter.

When executing the configurations we then get the following actions and action sequences:

89

α = < d->a!m() >
β = < d->b1!m() >
γ = < c->c.s:=b1, c->b2!m() >

δ = < c->c.s:=q, c->q!m() >

In γ we have the action c->c.s:=b1 because b1 ≠ b2 and then c.s get the value of s which is b1.

In δ we have the action c->c.s:=q because a = a and then c.s get the value of x which is q.

We then have δ ≤C γ , γ ≤B β and α ≤D β, but we do not have δ ≤A α. To avoid situations such as this we
must require that every if-test in C will give the same result both when combined with A and B. This must also
hold for derivations of C from A||Cσ and B||C.

Assume that we have an if-sentence s := (v=w t f). If C(i:t) = C(i:f) then it is not necessary to consider the values
of C(i:v)σ and C(i:w)σ in order to ensure reliability. In the case where C(i:v) = C(i:w), applying the substitution
will by definition give C(i:v)σ = C(i:w)σ something which ensures reliability. This leaves one case where it is
necessary to set extra requirements to get reliability, namely when C(i:t) ≠ C(i:f) and C(i:v) ≠ C(i:w). To get
reliability we must then require that C(i:v)σ ≠ C(i:w)σ.

To ensure C(i:v)σ ≠ C(i:w)σ we can either put requirements on the substitution σ or put requirements on the
values of the v and w slots. If we put requirements on the substitution we must require that all values must be
unique, since we have that all keys are unique. The result of this is that a refinement configuration must have the
same number of visible objects as the specification configuration. This is not a preferred solution since it gives
unnecessary restrictions on refinement configurations.

The requirement on slot values must ensure that when C(i:t) ≠ C(i:f) and C(i:v) ≠ C(i:w) then C(i:v)σ ≠
C(i:w)σ. We have that the substitution only substitutes, in this case, B object names and the values of the
substitution are all A object names. If we also require that each slot values in C are either not the name of an
object in A or it is the name of both an object in A and an object in B, then C(i:v)σ ≠ C(i:w)σ can be ensured
by requiring that at least one of the values of v and w in C is different from object names in B, ie,

C(i:v) ∉ B ∨ C(i:w) ∉ B

This reliability requirement can then be formulated as follows:

Definition: Reliable if-sentences in a configuration C when combined with a configuration B
We say that a configuration C has reliable if-sentences when combined with a configuration B if there are
no executable if-sentences in C which will compare two slot values in C which are object names in B.
This means that there are no if-sentences of the form s1,…, sn := (v=w t f) after an execution mark $
where the values of both v and w are object names which are found in the configuration B. This can
formally be defined:

RelIfSentence(C, B) ==
 ∀ i : C, v, w : N •

(∃ s1,..., sn, t, f, S1, S2 •
C(i).Body ≡ S1 $ s1,…, sn := (v=w t f); S2) ⇒

(C(i:t) ≠ C(i:f) ∨ C(i:v) ≠ C(i:w)) ⇒ (C(i:v) ∉ B ∨ C(i:w) ∉ B)

This must also hold for all derivations of B||C. This is handled below.

In practice this requirement means that if-sentences in a configuration should only compare names of objects
which are found within the configuration itself. This requirement is not commonly used when making object
oriented systems. Use and checking of this requirement is discussed in chapter 9 on related work.

5.3.3 "Message not understood" errors
Assume that we have a case where D gets a message with a message selector not matching any slot name in its
inheritance graph:

B = b : ([s->o, w->n], $s!w();)
A = a : ([s->o, w->m], $s!w();)
D = o : ([],)
C = o: ([n->p],) || p : ([],)

90

This is often called a message not understood error.

In this case we have the actions α = a->error, β = b->error and γ = b->error. This gives A ≤D B and C ≤B D.
We also have δ = a->o!n() which stem from execution of a sentence in A and is observable from C. Since γ is
not observable from C, we do not have A ≤C B and the proposition do not hold for this case.

This problem is caused by an object in D receiving a message with a selector which does not match with a slot
name in the inheritance graph of the receiver, while there in C is a matching slot. To avoid this problem, we can
require that there will never be an error action in A||D caused by "method not found" when the receiver is an
object in D. This means that an appropriate method will always be found when an object in D receives a
message. We call this reliable message sending from A to D and define it formally as follows:

Definition: Reliable message sending from a configuration A when combined with a configuration D
We say that A has reliable message sending relative to D if, when an executing sentence is found in A in
a system A||D, there will never be errors because a method object can not be found when the receiver is an
object in D. This can formally be defined by

RelMessageSend(A, D) ==
∀ i : A, t, w : N •
((∃ S1, S2, p •

A(i).Body ≡ S1 $ t!w(p); S2) ∧ A(i:t) ∈ D) ⇒ D(A(i:t):A(i:w)) ∈ D

where A(i).Body means the sentences in the object named i in A.

An alternative to requiring reliable message sending would be to look at all message sends from A to D and
compare them with message sends from A to C. This would mean that actions from A||C have to be considered
in order to establish A ≤C B. This means that we would have to check the collaboration properties of A||C
explicitly. As discussed in chapters 1 and 2, this is something we want to avoid so that components can be
developed separately in space or time. This is one of the motivations for having reliable refinements and defining
the substitution proposition. We therefore prefer the reliable message sending requirement.

The reliable message send requirement is linked with the error model. The error model defined for Omicron
defines "message not understood" errors as not observed, even when the receiver is an observer. Alternative error
models can eliminate the need for the reliable message send requirement. We have considered several alternatives
which eliminate the need for this requirement. A typical example of such an error model is a model where error
actions hold all information about the erroneous actions. In the case of message-send actions this means data
about the receiver, the message selector and parameters corresponding to the names which would be found in a
corresponding successful message send action, eg, the action e->error(o!m(p). Observability of such erroneous
actions is defined as for observability of successful actions. In relation to the reliable message send requirement,
an action where the receiver is an object in D would be observed by D. Observable equality of erroneous actions
is defined as for non-error actions in order to get reliable behaviour of refinements and avoid the reliable message
send requirement. This means that an error action from A which is a "message not understood" error with a
receiver in D, is observably similar to an error action from B provided the receiver is the same D object and the
message selector is equal in the two actions. Also, similarity requirements for the parameters must be the same
as for message-send actions. This gives:

error(o!x(q)) ∼ O error(p!y(p)) == o ∈ O ∨ p ∈ O ⇒ <o, x> = <p, y> ∧ q ∼ O p

The consequence of this is that reliable refinements of B and B must have observably equal "message not
understood" error actions, particularly try to send messages with the same erroneous message selector to the same
D objects. Viewing B as a specification, this would means that a specification will define what "message not
understood" errors reliable refinements should create. In practice, such specification would not be very common.
It can be assumed that it is more common to actually require also reliable message sending from the specification
configuration B, ie, RelMessageSend(B, D), meaning that there will never be error actions in B due to method
not found in D. However, note that requiring RelMessageSend(B, D) does not eliminate the need for requiring
RelMessageSend(A, D) for a reliable refinement A. However, by the above definition of error actions and
similarity of such actions, RelMessageSend(A, D) is ensured when the refinement relation holds and therefore
does not have to be separately established.

The conclusion from trying other error models is that there are two alternatives to ensuring reliable behaviour in
the case of "message not understood" errors. The first alternative is to require reliable message sending in reliable
refinements. The other is to have specifications which specifies what "message not understood" errors reliable
refinements should create, and this is usually none. It is then necessary to define an error model and define
observability and observable equality of error actions in such a way that it is ensured that a specification and its

91

refinements create corresponding "message not understood" errors where the receiver is the same object and the
message selectors are equal. Compared to the first alternative, the latter alternative gives much more complex
definitions of error actions, observability and observable equality. Since the latter alternative also seems to be
very uncommon in practise and rather seen as peculiar, the first alternative was chosen for the present work.

5.3.4 External methods
An external method for an action is a method which is found in an other configuration than the configuration
where the receiver object of the action is found. For example an object in C receives a message and the method is
found in A as follows:

B = p : ([],)
A = p : ([x->a, y->n], x!y()) || a : ([n->q],) || q : ([],)
D = d : ([],)
C = c : ([s->o, w->m], $s!w();) || o : ([m->p],)

Here we have A ≤D B and C ≤B D. We have A ≤D B since A||D and B||D have no action and we have C ≤B D
since D||B has no actions and B||C has a single action, γ = c->o!m()/kp, which is silent in that is it from
execution of a sentence in C and only observable from C.

We will also have an action δ = c->o!m()/kp from A||C, which is not observable from A. The configuration
derived from C and γ will be:

C' = c : ([s->o, w->m], s!w();$) || o : ([m->p],) || kp : ([], $)

where kp is a copy of the object names p in B. The configuration derived from C and δ will be:

C'' = c : ([s->o, w->m], s!w();$) || o : ([m->p],) || kp : ([x->a, y->n], $x!y())

where kp is a copy of the object named p in A.

There will be no next action from B||C', nor from B||D or A||D. However from A||C'' there will be a next action.
In this case it will be a message-send-action, kp->a!n()/kq, which is observable from A. We would then not have
C ≤A D, even if we have A ≤D B and C ≤B D. We can then conclude that the substitution proposition does not
hold in this case.

This problem is created by the refinement C having external methods, ie, methods which are found in the context
and not in the component itself. In order to avoid such problems, and thereby be able to prove the substitution
proposition, we must require that all methods which are copied as result of an object receiving similar messages
are similar in some way. One simple way to achieve this is to require that the methods are found locally in the
component. This ensures that the methods are equal. We call this reliable method lookup and define it formally
as follows:

Definition: Reliable method lookup in a configuration A when combined with a configuration D
We say that a configuration A has reliable method lookup when combined with a configuration D if for
every message-send action from A||D where the receiver is in A, the method-object to be copied is an
object in A. This can formally be defined by

RelMethodLookup(A, D) ==
∀ e, o, m, p • e->o!m(p) ∈ Traces(A||D) ∧ ο ∈ A ⇒ A(o:m) ∈ A

where e->o!m(p)/k ∈ Traces(A||D) means that e->o!m(p)/k is an action which is the result of
executing a message-send sentence in the object named e in the configuration A||D

To get reliable substitution, we must also have reliable method lookup for all derivations of A||D. This is
included in below definitions leading up to the definition of the refinement relation.

Other alternatives which will ensure that the methods are "similar enough" to ensure reliable substitution is left
for further study.

The next proposition shows that when we have a message-send action where the receiver is an object in a
configuration with reliable method lookup, below denoted A, the same method object is found in A and in Aρ
when ρ is a reliable substitution.

92

Proposition P.5.3.2 The same method is found in a configuration and its specialisation

∀ A, D, ρ, e, o, m, k, p •
RelMessageSend(A, D) ∧ RelMethodLookup(A, D) ∧ noExt(A) ∧ A||D ∈ CSafe ∧ ρ ∈ D → C ∧
e->o!m(p)/k ∈ Traces(A||D) ∧ o ∈ A ⇒ A(o:m) ∈ A ∧ Aρ(o:m) = A(o:m)

Proof:
Since we have noExt(A) ∧ A||D ∈ CSafe ∧ ρ ∈ D → C then proposition P.5.3.1 gives

@A(o:m) ⇒ Aρ(o:s) = (A(o:m))ρ.
o ∈ A ∧ RelMessageSend(A, D) gives by definition of reliable message sending @A(o:m) and we then have

Aρ(o:s) = (A(o:m))ρ.
o ∈ A ∧ RelMethodLookup(A, D) gives by definition

A(o:m) ∈ A.
A(o:m) ∈ A ∧ noExt(A) ∧ A||D ∈ CSafe ∧ σ ∈ D → C gives A(o:m) = (A(o:m))ρ
and we then have

Aρ(o:s) = A(o:m)
ie, the same method object is found in both A and Aρ and the proposition holds.
o

5.3.5 Summing up requirements on reliable
configurations

The reliability requirements are named no external inheritance, reliable method lookup, reliable if-sentences and
reliable message sending. How these relate to common practice is discussed in chapter 8. A brief summary is:

The two first are commonly found in class-based languages, where classes can not change during runtime.
"Reliable if-sentences" are not supported by any language or notation, but is common practice in, eg,
Smalltalk and SELF. Reliable message sending is partially supported in most object-oriented
programming languages.

If the language for defining configurations does not include statements for assigning values to inheritance
slots and slots referring to methods, then noExt and RelMethodLookup can be checked statically. If they
hold in the initial configuration, the reliability requirements will continue to hold for the primed
configurations since the inheritance and method slots can not be changed by execution of sentences in the
objects. However, Omicron allows update of inheritance and method slots, so external inheritance and
non-local methods can be introduced by execution of sentences. Reliability of message sending and if-
sentences is not simple to check statically in a system where the slot values change as result of executing
sentences. Results such as the work presented in (Palsberg and Schwartzback 1994), suggest that it might
be possible to ensure reliable message sending by type inference. It may also be possible to check
reliability of if-sentences through some form of inference and/or typing of slots. This is left for further
study.

 The reliability requirement on a possible refinement configuration is summed up in the following definition:

Definition: Reliable (A, D)

Reliable(A, D) ==
noExt(A) ∧ RelIfSentence(A, D) ∧
RelMessageSend(A, D) ∧ RelMethodLookup(A, D)

The following predicate is introduced in order to be able to assert reliability for configurations which are the
results of transitions from a configuration:

Definition: Reliable(A, D, α)

Reliable(A, D, α) == (A||D α → A'||D' ⇒ Reliable(A', D')

93

5.4 Observable Similarity
This section defines observable similarity of actions and action sequences. This observable similarity is not an
equality relation since it is not commutative. We use the word similar to denote a non-commutative relation.
This is how the word is used in definition of relations in the π-calculus by Miner et.al. The commutative
relation is called bisimilar in the π-calculus tradition.

Observable similarity of action sequences will in a following section be used in the definition of a reliable
refinement relation between configurations.

5.4.1 Observably equal names as parameters
What follows is an example of objects sending messages with object names as parameters. In the example the
configuration named A sends more names to D and C than B does. This means that a possible refinement sends
more names to the objects in the context then the specification component does. This makes it impossible to
prove the substitution proposition and must therefore be avoided. The problem is avoided by strengthening the
definition of observable equality as shown below.

Here is an example where the refinement A send more names to the contexts D and C than the specification B:

B = x : ([s->o, w->m, v->n, x->b], $s!w(x, x);) ||
b : ([m->p],) || p : ([],)

A = y : ([s->o, w->m, x->a, y->b], $s!w(x, y);) ||
a : ([m->p],) || p : ([],) ||
b : ([m->r],) || r : ([i*->y], s!w(x))

D = o : ([x->i, y->j, m->q],) ||
q : ([w->m, :v->nil, :w->nil], v!w(); v!w();)

C = o : ([x->i, m->q,],) ||
q : ([w->m, :v->nil, :w->nil], x!v(); x!w();)

Here A sends two names, a and b, where B sends only one, b.
The action sequence from A||D is:

α = < y->o!m(a, b)/kq, kq->a!m()/kp, kq->a!m()/k'p, >

and from B||D:

β = < x->o!m(b, b)/kq, kq->b!m()/kp, kq->b!m()/k'p, >

and from B||C:
γ = < x->o!m(b, b)/kq, kq->b!m()/kp, kq->b!m()/k'p, >

This gives A ≤D B as both α and β have one action which is from execution of A and B sentences which are

observable from D and the bodies of the actions are observably equal. This also gives C ≤B D as both γ and β
have two action which is from execution of C and D sentences which are observable from B and the bodies of the
actions are observably equal.

The action sequence from A||C is infinite:

δ = < y->o!m(a, b)/kq, kq->a!m()/kp, kq->b!m()/kr,
kr->o!m(a,b)/k'q, k'q->a!m()/k'p, k'q->b!m()/k'r,
k'r->o!m(a,b)/k''q,..... >

and we do not have A ≤C B or C ≤A D. Therefore the assumptions of the substitution proposition hold, while
the conclusion does not hold for these configurations. The reason for this problem is that A sends more object
names to C and D than B does. Thereby, A gets more visible object names than B relative to C.

94

As in some previous sections, we have two alternative approaches to get around this problem. One is to put
requirements on the relations between internals of C and D and the other is to change the requirements on
observably equal actions and action sequences. As argued previously, the preferred alternative is to put
requirements on relations involving actions, rather than put requirements on configuration internals.

We therefore solve the problem by changing the definition of observably equal actions. The weak point in the
current definition is the requirement on object names as parameters and new slot values. It is required that such
objects names are observably equal relative to the names of the objects in the observing configuration.
Particularly we have:

α =O β ∧ α .dsc = o!x(q)/k ⇒ β .dsc = o!x(p)/k ∧ q ∼ O p

and the weak point is q ∼ O p stating that parameters must be observably equal. In the above case we had:

y->o!m(a, b)/kq and x->o!m(b, b)/kq and this gives <a,b> ∼ D <b, b> and therefore α =D β

Requiring all parameters to be equal would have the effect that the proposition could be shown to hold for the
above cases. Another effect would be that C and D would have to interact with the same number of A and B
objects, because when the parameters are to be equal, then we require that a refinement has the same number of
visible objects as the specification.

The question is then if we need such a strong requirement. As shown below, it is possible to have a weaker
requirement than the requirement for all parameters to be equal. However, the weaker requirement is strong
enough to ensure that the substitution proposition holds for cases as the ones shown above.

The conclusion is that to be able to prove the proposition, a reliable refinement can not have more visible
objects than the specification. However, as is shown by theorem T.6.1 and the propositions and proof leading up
to this theorem, a refinement may have the same or fewer visible objects than the specification. Also, a
refinement can have more, or less, objects as long as any additional objects are not visible. We could then have a
situation where B has visible object names b2 and b3, while A has a single visible object name a.

However, we need more restrictions than this. We also need to require that whenever a given B-name appears as a
parameter, then the corresponding A-name will appear. For example, whenever b2 occurs as parameter then the
A-name a2 must occur in b2's position. If we did not have this requirement we could have the following
situation:

B = x : ([s->z, w->m, x->b1, y-b2, z->b2], $s!w(x, y, z); ||
b1 : ([m->p],) || p : ([],) ||
b2 : ([m->r],) || r : ([],)

A = y : ([s->z, w->m, x->a1, y->a1, z->a2], $s!w(x, y, z); ||
a1 : ([m->p],) || p : ([],) ||
a2 : ([m->r],) || r : [s->o, w->m], s!w())

D = z : ([m->q],) ||
q : ([:s->nil, :t->nil, :u->nil, w->m], s!w(); t!w())

C = z : ([m->q],) ||
q : ([:s->nil, :t->nil, :u->nil, w->m], s!w(); u!w())
o : ([m->s]) || s : ([],)

Then we would have:

α = < y->z!m(a1, a1, a2)/kq, kq>a1!m()/kp, kq->a1!m()/k'p >

β = < x->z!m(b1, b2, b2)/kq, kq->b1!m()/kp, kq->b2!m()/kr >
γ = < x->z!m(b1, b2, b2)/kq, kq->b1!m()/kp, kq->b2!m()/kr >

δ = < y->z!m(a1, a1, a2)/kq, kq->a1!m()/kp, kq->a2!m()/kr, kr->o!m() >

and we have δ =C γ , γ =B β and α =D β but we do not have δ =A α since the last action in δ is from
a sentence in A and observable from C and there is no corresponding observably equal action in α . In this case

we must require that whenever b1 is a parameter in an action in β then we will always find a1 in the

95

corresponding position in α . Also, a1 will not be found in any other positions than the positions were b1 is
found. This relation between visible object names can be expressed by a name substitution.

We will then have a substitution associated with the definition of observably similar actions given below. This
relation is an alternative to the observably equal actions relation. The name substitution associated with D will,
as previously, be a function from B-object names to A-object names, eg, σ ∈ (B.Dom → A.Dom). Before we
define observable similarity of actions, we define what it means for a substitution to be reliable relative to a set
of object names.

Definition: Reliable substitution relative to a set of object names
We say that the substitution σ is reliable relative to a set of names O, denoted RelSubst(σ, O), if the
following hold:

RelSubst(σ, O) == O ∩ names(σ) = Ø

This definition says that a reliable substitution will never substitute a name in O and will never have a value
which is a name in O.

Next we observe that a reliable substitution relative to three configurations, as defined in section 5.2.2 is also
reliable relative to a set of object names which are the names of the objects in the observing context. This shows
that the definition of observably similar actions found below, which refer to a substitution which is reliable
relative to a set of object names, will also be applicable when the set of object names are replaced with the
names of objects in the observing context.

Observation O.5.4.1 : Reliable substitutions relative to configurations are also reliable relative to sets of object
names

When we have configurations B, D and A, D with safe names, ie, A||D, B||D ∈ CSafe, and a substitution
which is reliable relative to A, B and D, ie, σ ∈ B → A then we also have RelSubst(σ, D.Dom) because:

RelSubst(σ, A, B, D) gives σ ∈ B → A and
B||D ∈ CSafe gives B.Dom ∩ D.Dom = Ø and

A||D ∈ CSafe gives A.Dom ∩ D.Dom = Ø.
Then we have D.Dom ∩ names(σ) = Ø which gives RelSubst(σ, D.Dom).

5.4.2 Slot names as parameters in messages
In this section we will look at an example where the objects send messages with parameters values which are
slot names. It is shown that if such parameter values may differ in observably equal action then either we have to
put complex requirements on the use of names in refinements of configurations or it is impossible to prove the
substitution proposition. For instance will this problem occur when we have the following configurations
sending messages with slot names as parameters:

B = b1 : ([s->o, w->m, x->b2, y->m], $s!w(x, y); ||
b2 : ([m->p],) || p : ([],) ||
m : ([],)

A = a1 : ([s->o, w->m, x->a2, y->n], $s!w(x, y); ||
a2 : ([m->p, n->q],) || p : ([],) || q : ([],)

D = o : ([m->p],) ||
p : ([:s->nil, :t->nil, w->m], s!w();)

C = o : ([m->p],) ||
p : ([:s->nil, :w->nil,], s!w();)

We would then get the action sequences where the parameter values m and n are also slot names:

α = < a1->o!m(a2, n)/kp, kp->a2!m()/k >

β = < b1->o!m(b2,m)/kp, kp->b2!m()/k >
γ = < b1->o!m(b2, m)/kp, kp->b2!m()/k >

δ = < a1->o!m(a2, n)/kp, kp->a2!n()/k >

96

We then have δ =C γ , γ =B β and α =D β , but we do not have δ =A α since we have the last action
kp->a2!m()/k and kp->a2!n()/k with different message selectors. This does not give reliable substitution.

One alternative to ensure reliability is to require that for each pair of message selectors m, n which are found as
parameters in corresponding positions in corresponding messages from A in A||D and B in B||D respectively (or
in any derivations of A||D and B||D) and where n ≠ m, then n and m can not be names in C. This requirement on
C is expressed by the configurations A, B and D. This requires looking at all message sends from A to D and
compare them with message sends from A to C. This would mean that actions from A||C have to be considered
in order to establish A ≤C B. This means that we would have to check the collaboration properties of A||C
explicitly. As discussed in chapters 1 and 2, this is something we want to avoid so that components can be
developed separately in space or time. This is one of the motivations for having reliable refinements and defining
the substitution proposition. This alternative is therefore not chosen in the present work.

The alternative requirement which does not involve C is:
any name used as parameter in message-send actions from B,
and which are not names of objects in B or C
must not be found as slot name or slot value in C.

If this holds and the requirement on names from the above subsection holds, all parameters which are not
C-names can differ in messages from B and its reliable refinements. Differences in message parameters must
comply with rules similar to those for differences in A and B object names as parameters. This means that we
need to require that whenever a given name from B appears, then the corresponding name from A will appear.
This can be expressed by using a substitution as is done for differences in object names. A may then send the
same number or fewer different names to C than B does. It is also necessary to require that such names are never
used in if-sentences if A may send fewer different names to C than B does.

To include the above requirement in the definitions and proofs leading up to the theorem showing the
substitution proposition would mean introducing a new substitution or expand the object name substitution to
also include other names which are found as parameters in messages from B to C. It also means making a change
in the definition of reliable if-sentences. Some attempts at including this in the definitions and proofs were done
in relation to this thesis. The definitions and proofs became substantially more complex with the expansion than
without. Since it seemed that the proof of reliable substitution could be done by adding these requirements, and
these requirements very similar to the requirements for differences in object names, while they added substantially
more complexity, this requirement was left for further study. In stead the simple requirement:

Two parameters must be equal if
they are found in corresponding positions in corresponding observed message send actions from B and A
and
the parameters are not names of objects in B and A respectively.

This will be taken into account when we define a reliable version of observable equality of actions. The drawback
of this solution is only that different message selectors can not be sent from B and A to D and C in order to get
different messages back at a later stage in the execution of the system. In practise this is used in creating so
called pluggable editors, originally developed and much used in Smalltalk. Later it has also been possible to
make pluggable editors in Java. Pluggable editors are discussed further in chapter 8.

This is an example of the trade-off between complex reliability requirements and flexible components. This is
further discussed in chapter 8.

97

5.4.3 Observable similarity of actions
Observable similarity of actions, denoted α ∼ O,σ β, is defined as follows:

Definition: Observable similarity relative to a set of object names and a reliable substitution
Given a set of object names O and a substitution σ which is reliable relative to the set of object names O,
denoted, RelSubst(σ, O), we define observable similarity as follows:

o!x(q)/k ∼ O,σ p!y(p)/l == o ∈ O ∨ p ∈ O ⇒ <o, x, k> = <p, y, l> ∧ q = pσ

o.s := i ∼ O,σ p.t := j == # o.s= #p.t ∧
∀ i ≤ #o.s • oi ∈ O ∨ pi ∈ O ⇒ oi.si = pi.ti ∧ i = jσ

i.s:=k/o ∼ O,σ j.t:=l/p == (i ∈ O ∨ j ∈ O ⇒ i.s = j.t ∧ k = lσ) ∧
(o ∈ O ∨ p ∈ O ⇒ <o, k> = <p, l>)

error ∼ O,σ error == true

α ∼ O,σ β == α.exe ∼ O β.exe ∧ α.dsc ∼ O,σ β.dsc

Note that we only require weak equality for the .exe-parts of observably similar actions.

Compared to the definition of observably equal actions we here have q = pσ instead of q ∼ O p , i = jσ instead
of i ∼ O j and k = lσ instead of k ∼ O l. This means that names in observably similar actions which are not slot
names are equal relative to the substitution σ.

Note that this relation is not an equality relation since it is not commutative in that
we do not have <α> ≤O,σ <β> ⇒ <β> ≤O,σ <α>

This is because we will not necessarily have, eg, q = pσ ⇒ p = qσ.

Proposition P.5.4.1 : Observable similarity is transitive
Observable similarity is transitive in that

 α ∼ O,σ β ∧ β ∼ O,ρ γ ⇒ α ∼ O,ρσ γ
Proof:
The relation is transitive because it is defined using equivalence relations and we have for any names e, f and g:

e = fσ ∧ f = gρ ⇒ e = gρσ
Then we have for all names in α and γ which are parameters, new slot values or names of new clones are equal
relative to the substitutions ρσ, and the proposition holds.
o

Note that the relation is reflexive, ie, α ∼ O,σ α , provided the substitution is empty or the names in α are not
found as keys in the substitution σ.

What follows are some observations related to observably similar actions and actions which are equal relative to
a reliable substitution. These observations are used later in proofs leading up to the proof of the substitution
proposition in chapter 6.

98

Observation O.5.4.2 : Properties of names in actions which are equal relative to a reliable substitution
Given three configurations with safe names, A||D, B||D ∈ CSafe, and a reliable substitution σ ∈ B → A
and two actions α ∈ Traces(A||D) and β ∈ Traces(B||D).

When we have α ∼ D,σ β or α ≡ βσ, then by definition of the relations, the following holds for names in
the actions:

When <p1,…,pn> = α.names and <q1,…,qn> = β.names, then

(*) all names which are not A or B-names are equal pi ∉ A ∨ qi ∉ B ⇒ pi = qi
all A-names in α are B-names in β and vice versa: pi ∈ A ⇔ qi ∈ B

Since we have (*), then particularly we have:
all D-names are equal in the actions pi ∈ D ∨ qi ∈ D ⇒ pi = qi

Observation O.5.4.3 : Equal actions relative to a substitution are observably similar
Given two actions α and β, a substitution σ and a set of object names O. By looking at the definition of
observably similar actions we see that when we have equal actions α ≡ βσ and we have RelSubst(σ, O),
ie, σ does not substitute object names in the set of object names O or give values which are in the set,
then the two actions are observably similar relative to the object names in O and the substitution σ.
Provided the substitution does not substitute slot names, we then have:

RelSubst(σ, O) ∧ α ≡ βσ ⇒ α ∼ O,σ β.

When we have O = D.Dom and A||D, B||D ∈ CSafe, and σ ∈ B → A then by observation O.5.4.1
(reliable substitutions relative to a configuration are also reliable relative to sets of object names) we also
have RelSubst(σ, D.Dom) which gives

α ≡ βσ ⇒ α ∼ D,σ β.

5.4.4 Reliability of configuration specialisation
Assume that we have the following configurations with observably similar actions and where the parameters are
equal relative to a substitution σ = {a/b} (which gives σ ∈ B → A):

B = b : ([m->q],) || q : ([],)
A = a : ([m->q],) || q : ([],)
D = o : ([x->b, w->m], $x!w();)
C = p : ([y->b, w->m], $x!w();)

Then we get the following action sequences:

Traces(B||D) = < o->b!m()/kq >
Traces(A||Dσ) = < o->a!m()/kq >
Traces(B||C) = < o->b!m()/kq >
Traces(A||Cσ) = < o->a!m()/kq >

We then have C ≤B D, A ≤D B, C ≤A D and A ≤C B. However, if we did not use the same substitution to
specialise both D and C to collaborate with A, then we would not be able to prove that C ≤B D ∧ A ≤D B ⇒
C ≤A D ∧ A ≤C B since the relationship between the A-names in D and C would not be known. When we use
the same substitution we will in the above case have:

D(o:x) ∈ B ∧ D(o:x) = C(p:y) ∧ Dσ(o:x) ∈ A ⇒ Dσ(o:x) = Cσ(p:y)

To be able to prove this, we must show that all A-names in Cσ are related to the B-names in C as follows:

(*) ∀ i, s • @C(i:s) ⇒ Cσ(i:s) = (C(i:s))σ

When we have no external inheritance in C, configurations with safe names and a reliable substitution, this
holds by proposition P.5.3.1. However, there are cases when it is not enough that P.5.3.1 holds in order to
prove C ≤B D ∧ A ≤D B ⇒ C ≤A D ∧ A ≤C B. An example is the following configurations where there are
errors due to unknown message receivers in B||D, A||Dσ and B||D, while a receiver is found in A||Cσ:

99

B = b : ([m->q],) || q : ([],)
A = a : ([m->q],) || q : ([],)
D = o : ([x->r, w->m], $x!w();)
C = p : ([y->a, w->m], $x!w();)

we get the following actions:

Traces(B||D) = < o->error >
Traces(A||Dσ) = < o->error >
Traces(B||C) = < p->error >
Traces(B||D) = < p->a!m()/kq >

We then have C ≤B D, A ≤D B. However, we do not have C ≤A D since the actions p->a!m() and o->error are
not observably similar, and we do not have A ≤C B since the actions p->a!m()/kq and p->error are not observably
similar.

In order to ensure that the substitution proposition holds, we must set requirements on the A and B object names
in C and D. This means that there must be some relationship between the object names in a specification D and
the refinements of D, if the refinements are to be reliable refinements such that the substitution proposition
holds. The object names which must be related are those names which are names of objects in other
configurations. In this case these are the A- and B-names found in C and D.

This problem emerges from the fact that C knows more A-names than B-names. In this case we have
Cσ(i:s) = (C(i:s))σ as above, we even have Cσ(i:s) = C(i:s), but we also have:

C(p:y) ∉ Bρ||C giving p->error
Cσ(p:y) ∈ A giving p->a!m()/kq

To get C ≤A D and A ≤C B we must ensure that
when D(o:x) ∉ B||D, C(p:y) ∉ Bρ||C and Dσ(o:x) ∉ A||Dσ, as in the above case,
then Cσ(p:y) ∉ A.

This can only be achieved by knowing the relationships between the B-names in C and D and the A-names in
Cσ and Dσ. To show this, all A-names in actions from Cσ must be the result of substituting the B-names in
actions from C, ie, δ ≡ γσ, and also requiring that all A-names in actions from Dσ are substitutions from B-
names, ie, α ≡ βσ, where the B-names in the actions from C and D are equal since the actions are observably
equal relative to B, ie, γ ∼ B β. This means showing α ≡ βσ and δ ≡ γσ, which gives δ ∼ A α, ie, we must
show:

∀ α : Traces(A||Dσ), β : Traces(B||D), γ : Traces(B||C), δ : Traces(A||Cσ) •

α.exe = β.exe ∈ D ∧ γ .exe = δ.exe ∈ C ∧ γ ∼ B β ∧ γ, β ∈ obs(B) ∧ α ∈ obs(A)

⇒ α ≡ βσ ∧ δ ≡ γσ

To show this, the definitions of a relation which is a reliable version of observable equality of configurations has
to take into account the A- and B-names which are found in C, and correspondingly, the C- and D-names found
in A.

First we discuss how to show α ≡ βσ while further below, after the definition of observable similarity of action
sequences, we discuss showing δ ≡ γσ.

Instead of redefining observable equality, requirements can be put on the use of A and B names in D. These
requirements must be strong enough to ensure α ≡ βσ for all actions from D. As discussed before, it is preferred
to strengthen the definition of the relations rather than putting requirements on configurations. Therefore, the
new version of observable equality will include a case:

α ∈ Traces(A||Dσ) ∧ β ∈ Traces(B||D) ∧ α .exe = β.exe ∈ D ∧ α ∈ obs(A) ⇒ α ≡ βσ

When α.exe = β.exe ∈ D ∧ α ∈ obs(A), this is a case where α and β are not observable from D. We then require
for reliable observable similarity of actions that:

if α.exe ∈ D ∧ α ∈ obs(O) then α ∼ O,σ β else α ≡ βσ

100

When we filter out all observed actions, as is done in α /obs(O) in the definition of observable equality, then
such actions will not be included in the result action sequence. Therefore, in order to define a reliable refinement
relation we do not filter out when comparing action sequences. We avoid filtering them out by including the
actions which are from execution of sentences in the observers in the compared action sequences. In the
definition of the relation we therefore use the following notation:

α /obs&exe(O) where obs&exe(O) = obs(O) ∪ { α | α.exe ∈ O}

This denotes a sequence of actions which consists of all the action in α which are O-observed and/or from O and
where the actions are found in the same order as in α .

5.4.5 Observably similar action sequences
Based in the preceding discussions we get the following definition of observably similar action sequences:

Definition: Observably similar action sequences relative to a substitution; α ≤O,σ β

An action sequence α is said to be observably similar to an action sequence β relative to a set of object

names O and a substitution σ, denoted α ≤O,σ β , if the following holds:

α ≤O,σ β == α /obs&exe(O) ≈O,σ β /obs&exe(O)

where α ≈O,σ β == ∀ i ≤ #α • if α i ∈ obs(O) then α i ∼ O,σ βi else α i ≡ βiσ

In the rest of this thesis α ≤O,σ β is used as short hand notation for <α> ≤O,σ β while α ≤O,σ β is used as
short hand notation for <α> ≤O,σ <β>.

We let priming the observer names in the relation, eg, α ≤O',σ β mean that the prime O' is the object names
in O and all new names in the action sequences relative to the object names in O, eg, in the example we have
O' = O ∪ NewNames(α , O) .

Furthermore, α ≤D,σ β is used as short hand for α ≤D.Dom,σ β where D is the name of some configuration

and α ≤D',σ β means that the observers are D' = D.Dom ∪ NewNames(α , D).

Proposition P.5.4.2 The "Observably similar action sequence relation" is transitive
The Observably similar action relation is transitive since:

∀ α , β , γ , O, σ, ρ • α ≤O,σ β ∧ β ≤O,ρ γ ⇒ α ≤O,ρσ γ

Proof:
This proposition follows directly from the definition and transitivity of the underlying relations.
o

Note that when the substitution σ does not substitute any of the names in an action sequence α then we
trivially have:

α ≤D,σ α

which gives reflexivity of the relation in this special case. When the observably similar action sequence relation
is used to define a reliable refinement relation between configurations, then the normal case where reflexivity is
expected, the substitution will not substitute names in the action sequences. See the discussion in relation to
reflexivity of the reliable refinement relation defined in section 5.5.

Observation O.5.4.4 below shows relationships between two observably similar actions and their observability.

101

Observation O.5.4.4 : Observability of observably similar actions
Assume that we have σ ∈ B → A and α ≤O,σ β, α ∼ O,σ β or α = βσ and A||D, B||D ∈ CSafe. Then by
observation O.5.4.2 (properties of names in observably similar action sequences) and by the definition of
observably similar action sequences we have:

If either one of the actions are observed, then so is the other : α ∈ obs(O) ⇔ β ∈ obs(O)
If one of the actions is from execution of a sentence in an observing object, then so is the other, and they
are from execution of a sentence in the same object : α.exe ∈ O ∨ β .exe ∈ O ⇔ α.exe = β.exe

Next we observe that when α ≤D,σ β then there is only one action in β which is observably similar to α, and
the other actions are hidden.

Observation O.5.4.5 : Properties of similar observable action sequences

Assume that we have α ≤D,σ β where β = <β1,...,βn>, σ ∈ B → A and

A||D, B||D ∈ CSafe. Then by definition of observable similarity of action sequences we have:
 ∃ i • <β1,...,βi-1> ⊗ D ∧ α ≤D,σ βi ∧ <β i+1,...,βn> ⊗ D

When we have <α> ∈ Traces(A||Dσ) and ∃ β : Traces(B||D) • α ≤D,σ β then we can assume that
<β1,...,βi> ∈ Traces(B||D) ∧ α ≤D,σ <β1,...,βi>

and
<β1,...,βi-1> ⊗ D ∧ α ≤D,σ βi

By observation O.5.4.4 (observability of observably similar actions) we also have:
α ∈ obs(D) ⇔ βi ∈ obs(D)
α ∉ obs(D) ⇔ βi ∉ obs(D)

Next we show that when we have observably similar actions, then the names of the objects in the two different
derived context configuration are equal.

Proposition P.5.4.3 : Equal domains of derived configurations

∀ α , β , A, B, D, σ • α ≤D,σ' β ∧ A||Dσ α → A'||D' ∧ B||D β → B'||D'' ⇒ D'.Dom = D''.Dom

Proof:
Case α ∉ obs(D) :

Observation O.5.4.5 (properties of similar observable action sequences) gives β ∉ obs(D). Thus there is
no creation of any object in D and this gives D.Dom = D'.Dom = D''.Dom.

Case α ∈ obs(D) :

Observation O.5.4.5 (properties of similar observable action sequences) gives for β = <β1,...,βn> :
 ∃ i • <β1,...,βi-1> ⊗ D ∧ α ≤D,σ βi ∧ <β i+1,...,βn> ⊗ D ∧ βn ∈ obs(D)

Any new objects in D' and D'' are created by D-observable actions. Then, the names of the new objects
are found in the actions α and βi.

If the actions are clone actions: By definition of observably similar actions, these D-names must be equal
in the two actions. Then the names of the new objects in D' and D'' must be equal, and this gives
D'.Dom = D''.Dom.

If the actions are message-send actions to an object in D: Then there will be α and βi actions which meet
the above requirements and where the name of the new method copy in D' and D'' is the same name. Then
the names of the new objects in D' and D'' are equal, and this gives D'.Dom = D''.Dom.

o

102

5.4.6 Reliable names in refinement configurations
The next step in showing δ ∼ A α is to show δ ≡ γσ when we assume the same properties of actions as in the
above example:

α.exe = β.exe ∈ D ∧ γ .exe = δ.exe ∈ C ∧ γ ∼ B β ∧ γ, β ∈ obs(B) ∧ α ∈ obs(A) ∧ α ≡ βσ
Since we assume γ.exe = δ.exe ∈ C and also noExt(C), the same slot values will be found and as shown in the
above case we then have Cσ(i:s) = C(i:s). However, the problem with showing δ ≡ γσ came from cases where
the action from C was an error action while the action from Cσ in A||Cσ gave a message-send action. This was
because we had:

C(p:y) ∉ Bρ||C giving p->error
Cσ(p:y) ∈ A giving p->a!m()/kq

Note that we could also have a corresponding case where γ from C is an error action and where the action δ from
Cσ is a clone action, eg, c.s:=k/a. To avoid such problems we must ensure that all A-names from Cσ are results
of substituting B-names in C or equal to B-names. Therefore we must require that all values in C which are
A-names are also B-names, ie,

C.Values ∩ A.Dom ⊆ C.Values ∩ B.Dom

When combining C and A we must therefore require that they have reliable names which is defined as follows:

Definition: RelNames in A, B and C
Given three configurations A, B and C. We say that these configurations have reliable names if A and C
have safe names and all A-names found as values in C are also names of objects in B. This can formally
be defined:

RelNames(A, B, C) ==
A||C ∈ CSafe ∧ C.Values ∩ A.Dom ⊆ C.Values ∩ B.Dom

This requirement, which concerns two refinement configurations and a specification, will be used as a necessary
assumption in the final formulation of the substitution proposition, however, it will not be used in the
definition of a reliable refinement relation.

The next proposition shows that each B-names in every actions from execution of sentences in C in B||C will be
equal to or replaced by an A-name when the same sentence is executed in A||Cσ. We also have that every name
in C which is not in B will be equal in Cσ and it will not be a name in A. We call this a complete
specialisation of C with σ relative to A.

Proposition P.5.4.4 Reliable names in configurations and reliable substitutions preserve configuration names

∀ A, B, C, o, s, σ • RelNames(A, B, C) ∧ σ ∈ B → D ∧ @C(o:s) ∧
(C(o:s) ∉ B ⇒ (C(o:s))σ ∉ A ∧ C(o:s) = (C(o:s))σ)

Proof:
RelNames(A, B, C) gives C.Values ∩ A.Dom ⊆ C.Values ∩ B.Dom. Then any value C(o:s) which is not a B-
name will neither be an A-name. Then, since the substitution only maps from B-names to A-names, (C(o:s))σ
will not be an A-name. Also when C(o:s) is not in B, then it is not a key in the substitution and we then have
C(o:s) = (C(o:s))σ and the proposition holds.
o

5.4.7 Reliability is preserved by substitutions
This section shows that when configurations have reliable names, then reliability of if-sentences is preserved
when specialising with a reliable substitution.

The first proposition shows that we will get the same result of an if-test before and after the application of a
reliable substitution to a reliable configuration.

103

Proposition P.5.4.5 Same result of if-test when applying a reliable substitution

When C(i).Body has the form S1 $ s1,…, sn := (v=w t f); S2 then

∀ A, B, C, i, v, w, σ •
B||C, A||C ∈ CSafe ∧ noExt(C) ∧ σ ∈ B → A ∧ RelNames(A, B, C) ∧ RelIfSentences(C, B) ∧

@C(i:v) ∧ @C(i:w) ⇒ (C(i:v) = C(i:w) ⇔ Cσ(i:v) = Cσ(i:w))

Proof:
By proposition P.5.3.1 (reliable substitutions give same slots and preserve "No external inheritance") we have

Cσ(i:v) = C(i:v)σ.
Similarly for w. To prove the proposition we show that the v=w test gives the same results in both C and Cσ.
We have reliable if-sentences in A which gives C(i:v) ∉ B ∨ C(i:w) ∉ B. We must then show:

(*) (C(i:v) ∉ B ∨ C(i:w) ∉ B) ⇒ (C(i:v) = C(i:w) ⇔ C(i:v)σ = C(i:w)σ)

We then show
(1) (C(i:v) ∉ B ∨ C(i:w) ∉ B) ∧ C(i:v) = C(i:w) ⇒ C(i:v)σ = C(i:w)σ
and
(2) (C(i:v) ∉ B ∨ C(i:w) ∉ B) ∧ C(i:v) ≠ C(i:w) ⇒ C(i:v)σ ≠ C(i:w)σ

Proof of (1):
Since all keys in σ are B-names, and since C(i:v) = C(i:w) and at least one of the values is not in B, then neither
is in B and then we have C(i:v) = C(i:v)σ and C(i:w) = C(i:w)σ which gives C(i:v)σ = C(i:w)σ. Then (1) holds.

Proof of (2):
Cases:

2a) C(i:v) ∉ B ∧ C(i:w) ∉ B
2b) C(i:v) ∈ B ∧ C(i:w) ∉ B, by symmetry this also shows the case where C(i:v) ∉ B ∧ C(i:w) ∈ B

2a)
If neither of the actions are names in B, then since all keys in σ are B-names we then get C(i:v) = C(i:v)σ and
C(i:w) = C(i:w)σ. Then when C(i:v) ≠ C(i:w) we also have C(i:v)σ ≠ C(i:w)σ and then (2) holds.

2b)
Assume that C(i:v) ∈ B and C(i:w) ∉ B. We then have, as argued above C(i:w) = C(i:w)σ . Since
RelNames(A, B, C) gives that all A-names in C are also B-names we then have C(i:w)σ ∉ A.
When C(i:v) ∈ B then we have one of the following two cases:

C(i:v) is not a key in σ
then we have C(i:v) = C(i:v)σ and then C(i:v)σ ≠ C(i:w)σ. Then (2) holds.

C(i:v) is a key in σ
Then we have C(i:v) ≠ C(i:v)σ and C(i:v)σ ∈ A. Since C(i:w) is not an A-name, then we
have C(i:v)σ ≠ C(i:w)σ and then (2) holds.

o

Next we show that when we have RelNames(C, D, A) and there is no external inheritance in A, the substitution
ρ substitutes from D names to C names and also A and D have safe names, then RelIfSentences(A, D) implies
RelIfSentences(Aρ, Cσ).

Proposition P.5.4.6 Reliable substitutions preserve reliable if sentences

∀ A, B, C, D, σ, ρ •
RelNames(C, D, A) ∧ noExt(A) ∧ σ ∈ B → A ∧ ρ ∈ D → C ∧ A||D, B||C ∈ CSafe ∧

RelIfSentences(A, D) ⇒ RelIfSentences(Aρ, Cσ)
Proof:
By definition of reliable if-sentences we must show:

∀ i : A, v, w : N •
(∃ s1,..., sn, t, f, S1, S2 • A(i).Body = S1 $ s1,…, sn := (v=w t f); S2) ∧ (A(i:v) ∉ D ∨ A(i:w) ∉ D)
⇒ (Aρ(i:v) ∉ C ∨ Aρ(i:w) ∉ C)

104

Proposition P.5.4.4 gives A(i:v) ∉ D ⇒ (A(i:v))ρ ∉ C and similar for A(i:w). Proposition P.5.3.1 gives
Aρ(i:v) = (A(i:v))ρ and we then have A(i:v) ∉ D ⇒ Aρ(i:v) ∉ C and A(i:v) ∉ D ⇒ Aρ(i:w) ∉ C and the
proposition holds.
o

5.4.8 An equivalent definition of observable similarity
The proposition in this section shows that observable similarity of action sequences can be formulated in an
alternative way. The proposition was formulated in order to get some insight into similar observable behaviour
of reliable refinements. The conclusion of the proposition is also used in a later proof.

This definition is based on the assumption that any action from execution of a sentence not in the observing
configuration, is from execution of a sentence in a configuration with no external inheritance. Assume that there
is an action sequence α ∈ Traces(C) and the set of observers is O. Then, by observation O.5.3.1, we have that
any clone and assignment action α i such that α i.exe ∉ O will have slot owners not in O. This means that for
any slot s in α i where α i.exe ∉ O we will have that owner(α i.exe, s, C) ∉ O.

In this alternative version the following hold:

Two action sequences are observably similar if for each action in (α)/obs&exe(O), where the i'th action is

denoted α i, there is an i'th action βi in β /obs&exe(O), such that the .exe-parts of the actions are observably
equal (αi.exe ∼ O βi.exe) and

- if α i is an action cloning an observing object and updates a slot in a non observing object,
 ie, α i.dsc = l.s:=k/o ∧ l ∉ O, then βi clones the same object and updates some slot not
 in an observing object, ie, βi.dsc = j.t:=k/o ∧ j ∉ O

- otherwise the description parts of the actions are equal relative to the substitution σ,
 ie, α i.dsc ≡ βiσ.dsc.

In short, when two actions are observably similar and not hidden, then either they are clone actions cloning the
same observer object and updates slots not in observers or the description parts of the actions are equal relative to
a substitution.

The following proposition shows that this is equivalent to observable similarity as defined above.

Proposition P.5.4.7 Equivalent definition of observably similar action sequences from reliable configurations
Given

a set of object names O,
(*) an action sequence α where each action α i such that α i .exe ∉ O stem from execution of a

sentence in an object not named in O and where the configuration where the sentence is found
has no external inheritance.

a substitution σ where RelSubst(σ, O)
and where slot names are not changed by the substitution

We can then show that :

∀ β • α ≤O,σ β ⇔ α /obs&exe(O) ≅ O,σ β /obs&exe(O)

where ≅ O,σ β == ∀ i ≤ #α • α i ≅ O,σ β i

and α ≅ O,σ β == α.exe ∼ O β.exe ∧
 if α .dsc ≡ l.s:=k/o ∧ l ∉ O

then β.dsc ≡ j.t:=k/o ∧ j ∉ O
else α.dsc ≡ βσ.dsc

105

Proof:

We let <α1,…, αn> = α /obs&exe(O) and <β1,…, βm> = β /obs&exe(O). By observation O.5.3.1 (*) gives
that any clone and assignment action α i such that α i.exe ∉ O will have slot owners not in O. This means that
if we have α ∈ Traces(C) then for any slot s in α i where α i.exe ∉ O we will have owner(α i.exe, s, C) ∉ O.

We divide the proof in two cases: αi ∈ obs(O) and αi ∉ obs(O).

Case 1) α i ∈ obs(O)
Then we show

α i ∼ O,σ βi
⇔
βi.exe ∼ D α i.exe ∧ if α i.dsc ≡ l.s:=k/o ∧ l ∉ O then βi.dsc ≡ j.t:=k/o ∧ j ∉ O else α i.dsc ≡ βiσ.dsc

We prove this by two subcases 1a) αi.dsc ≡ l.s:=k/o ∧ l ∉ O and 1b) all other subcases of case 1)

Case 1a)
Proof of ⇒

When α i.dsc ≡ l.s:=k/o ∧ l ∉ O then by (*) we have that when l ∉ O, then α i.exe ∉ O. Then, since
α i ∈ α /obs&exe(O) we must have that o, k ∈ O. Then α i ∼ O,σ βi gives βi .dsc ≡ j.t:=k/o and the
proposition holds for this case.

Proof of ⇐
When α i.dsc ≡ l.s:=k/o ∧ l ∉ O then βi.dsc ≡ j.t:=k/o ∧ j ∉ O. By (*) we have that when l ∉ O and
j ∉ O, then α i.exe ∉ O and βi.exe ∉ O. Then by definition of observable similarity we have α i ∼ O,σ βi
and the proposition holds for this case.

Case 1b)
Then we have α i ∼ O,σ βi ⇔ βi.exe ∼ D α i.exe ∧ α i.dsc ≡ βiσ.dsc.
Proof of ⇒

From α i ∼ O,σ βi we have βi.exe ∼ D α i.exe. We then have the following cases for the description part of
the actions when α i ∼ O,σ βi and α i ∈ obs(O) and when α i is not a clone action updating a slot in
another configuration:

α.dsc ≡ o!x(pσ)/k ∧ β.dsc ≡ o!x(p)/k where o ∈ O
∨
α.dsc ≡ o.s:=kσ/iσ ∧ β.dsc ≡ o.s:=k/i where o ∈ O
∨
α.dsc ≡ o.s:= jσ ∧ β.dsc ≡ o.s:=j where o ∈ O

which gives α.dsc ≡ βσ.dsc and the proposition holds for this case.
Proof of ⇐

We have the following cases for the description part of the actions when α i .dsc ≡ βiσ.dsc and
αi ∈ obs(O) and when α i is not a clone action updating a slot in another configuration:

α i.dsc ≡ o!x(pσ)/k ∧ βi.dsc ≡ o!x(p)/k where o ∈ O
∨
α i.dsc ≡ o.s:=kσ/iσ ∧ βi.dsc ≡ o.s:=k/i where o ∈ O
∨
α i.dsc ≡ o.s:= jσ ∧ βi.dsc ≡ o.s:=j where o ∈ O

When we have βi.exe ∼ D α i.exe, then this gives α i ∼ O,σ βi and the proposition holds for this case.

Case 2) α i ∉ obs(O)
Then we show:

α i ≡ βiσ
⇔
βi.exe ∼ D α i.exe ∧ if α i.dsc ≡ l.s:=k/o ∧ l ∉ O then βi.dsc ≡ j.t:=k/o ∧ j ∉ O else α i.dsc ≡ βiσ.dsc

When α i = α /obs&exe(O) then the only case when αi ∉ obs(O) is:
α ≡ e->o!x(p)/k where e ∈ O

This is different from αi.dsc ≡ l.s:=k/o and we must therefore show:
α i ≡ βiσ ⇔ βi.exe ≡ α i.exe ∧ α i.dsc ≡ βiσ.dsc

This holds trivially and the proposition holds for this case.
o

106

5.5 A Reliable Refinement Relation
A refinement relation between configurations was defined in chapter 4. The definition was done based on a
definition of the observably equal action sequence relation. Making similar refinement definitions based on the
observably similar action sequence relation is not straight forward. The observable similarity relation definitions
include a substitution and the complexity is related to getting the specification of the substitution right.

The most simple solution is to specify one reliable substitution and require that all the observable actions in the
traces are observably similar relative to a reliable substitution. We would then get a definition of refinement
configurations as follows (briefly sketched):

A ≤D,σ B == ∀ α : Traces(A||Dσ) ∃ β : Traces(B||D) •

α ≤D',σ β ∧ (endColab(A, D, α) ⇒ endColab(B, D, β))

where we have RelSubst(σ, A, B, D)

This definition is unnecessarily strict. This is because A ≤D,σ B holds also when pairs of sequences of actions

are similar relative to different substitutions in α ≤D',σ β , ie, different σ. These different σ-substitutions must
all be reliable and they can be defined based on the pair of action sequences they are associated with. When this is
done right, the result will be a definition of a reliable refinement relation sufficiently strict, but not too strict, as
far as the substitution is concerned. In order to define such a relation we first define "the prime of a substitution".
This is done in the next subsection.

5.5.1 The prime of a substitution
The prime of a substitution is used in a definition of a reliable refinement relation sufficiently strict, but not too
strict, as far as the substitution is concerned. The prime of a substitution is used in relation to defining a
sufficiently restricting, but not too restricting, substitution to be used in the definition of configuration
refinements. The prime of a substitution is created when there are two action sequences, eg, α from A||Dσ and

β from B||D, which are observably similar, ie, α ≤D',σ β . Assume that we have a function prime(σ, α , β ,
A, B, D) which define the necessary and sufficient requirements on substitutions. For A ≤D,σ B to hold we then
require that action sequences are observably similar relative to a prime substitution as follows:

α ≤D',σ' β where σ' = prime(σ, α , β , A, B, D)

This will define A ≤D,σ B in such a way that it holds also when pairs of sequences of actions are similar relative

to different substitutions in α ≤D',σ β , ie, different σ'.

The prime of the substitution σ is created from the old substitution σ and the object names found in the action

sequences α and β . The prime of a substitution is formally defined as follows (note that when the two actions
are observably similar they are, by definition, of the same kind):

Definition: The prime of a substitution: prime(σ, α, β, A, B, D)
The function is defined using the multiple case-notation presented in appendix A, which allows casing on
more than one item:

prime(σ, α, β, A, B, D) ==
 case α , β of

 e->o.s := k/i, f->o.s := l/j : if o ∈ D ∧ i,j ∉ D then σ + { k / l } else σ
 e->o!m(p1…pn)/k, f->o!m(q1…qn)/k : if o ∈ D then σn else σ
 otherwise σ

where σn is defined as follows:
σ0 = σ

and for i ∈ {1..n}
σi = if qi ∉ keys(σi-1) ∧ qi ∈ B ∧ pi ∈ A then σi-1 + {p i / qi} else σi-1

107

σi is defined by adding zero or more key/value pairs to σi-1. Key/value pairs {pi / qi} are only added to σi-1
when the key qi is not a key in σi-1, ie, qi ∉ keys(σi-1) and the key qi is an object name in B, ie, qi ∈ B. In
addition, a new pair is only added when the value pi is a name of an object in A, ie, pi ∈ A.

The new substitution σ' = prime(σ, α , β, A, B, D) is created by adding substitutions for all B-object names
which for the first time will appear as slot values in D after the action β. Such B-names stem from message send
to objects in D and cloning of objects in B where the owner of the updated slot is in D.

Examples:
If the two actions are message-send actions, eg, α is e->o!m(p1…pn)/k and β is f->(o!m(q1…qn)/k, then new
key/value pairs {pi / qi} are added if qi is not found as a key in σ and qi is an object name in B and pi is an object
name in A. Note that when the two actions are observably similar, it must hold that

qj ≠ qi or (qj = qi and pj = pi) where j < i.
If this does not hold, there will be {pi / qi} substitutions which have the same B-name but different A-names.
This will not give α ≤D,σ β and it will neither give reliability.

If the two actions are clone actions, eg, α is e->o.s := k/i and β is f->o.s := l/j, then a new key/value pair {k/l}
is added to σ if i and j are names of objects in A and B, respectively.

The prime function is extended to sequences of actions as follows:

prime(σ, α, <β1…βn>, A, B, D) == if n = 0 then σ else
prime(prime(σ, α, <β1…βn-1>, A, B, D), α, βn, A, B, D)

prime(σ, <α1…αn>, β , A, B, D) == if n = 0 then σ else

prime(prime(σ, <α1…αn-1>, β , A, B, D), αn, β , A, B, D)

Next we observe that σ and prime(σ, α, β , A, B, D) are equal when all the actions are not observed.

Observation O.5.5.1 : Non-observed actions give equal substitutions and primed substitutions
When we have an action α, then we have that

α ∉ obs(D) ⇒ σ = prime(σ, α, β , A, B, D)

for any substitution σ, any action sequence β = <β1,...,βn> and any configurations A, B, D.
This holds because if the substitution and the substitution's prime were different, then we must have had
one of the two cases:

α = e->i.s := k/o ∧ o ∈ D or
α = e->o!m(p)/k ∧ o ∈ D.

When o ∈ D then by definition of observable actions, we have α ∈ obs(D), and then the initial
assumption α ∉ obs(D) does not hold.

5.5.2 Observably similar actions and prime
substitutions

Primed substitutions is used in conjunction with defining a reliable refinement relation. Typically, when

α ∈ Traces(A||Dσ) andβ ∈ Traces(B||D)
then we require

α ≤D',σ' β where σ' = prime(σ, α , β , A, B, D)
where ≤D',σ' denote observable similarity defined above.

The following propositions show that by the way primed substitutions, observably similar actions and primed
configurations are defined, observably similar actions ensure reliable primed substitutions if the original
substitution was reliable. This property is important since the primed substitution must be reliable if it is to be
used in the definition of a reliable refinement relation.

108

Proposition P.5.5.1 Observably similar actions ensure reliable primed substitution for derived configurations
∀ A, B, D, σ, α , β •
σ ∈ B → A ∧ A||D, B||D ∈ CSafe ∧
α ∈ Traces(A||Dσ) ∧ β ∈ Traces(B||D) ∧ α ≤D',σ' β

⇒ σ' ∈ B' → A' ∧ A'||D', B'||D'' ∈ CSafe

where σ' = prime(σ, α, β, A, B, D)
and A' = prime(A, Dσ, α), D' = prime(Dσ, A, α), B' = prime(B, D, β) and D'' = prime(D, B, β)

Proof:
For any new objects created by cloning B-objects or D-objects in B||D, the rules of actions give that the names
of the new objects are not found as names in B or D. This means neither as object names nor slot names. We
then have B'.Dom ∩ D''. Dom = Ø, and all new object names are different from slot names in the
configurations, ie, ON(B'||D'') ∩ SN(B'||D'') = Ø. This gives B'||D'' ∈ CSafe. For corresponding reasons we have

A'||D' ∈ CSafe.

By definition of the prime function, σ differs from σ' when either:
α ∈ obs(D) and the action is a message-send action from a sentence in A or
α is a clone action cloning an object in A and the action is from a sentence in D

The proof of the lemma is done by these two cases:

Case 1) α ∈ obs(D) and the action is a message-send action from a sentence in A
Because the requirement qi ∉ keys(σ) ∧ qi ∉ B in the definition of prime(σ, α, β, A, B, D) only B-names
will be added as keys to σ. This ensures keys(σ') ⊆ B when keys(σ) ⊆ B. The requirement that pi ∈ A in
the definition of prime(σ, α, β, A, B, D) ensures values(σ') ⊆ A when values(σ) ⊆ A and we then have σ'
∈ B' → A'.

Case 2) α is a clone action cloning an object in A and the action is from a sentence in D
In the definition of the prime function the name denoted k will be an element in keys(σ'). This name is
the name of a new object in B' as compared to B, since it is required that k ∉ D. Then we have
keys(σ') ⊆ B when keys(σ) ⊆ B. Similarly, the name denoted l will be an element in values(σ') and this
is the name of an object in A'. Then we have values(σ') ⊆ A' when values(σ) ⊆ A and we then have
σ' ∈ B' → A'.

o

Next we show an important property of observably similar action sequences, namely that pair wise concatenation
of two observably similar action sequences gives observably similar sequences. This means that if we have the

action sequences α 1, β 1, α 2 and β 2 and a set of object names O and a substitution σ, and where the
sequences are pairwise observably similar as follows:

α 1 ≤O,σ' β 1 ∧ α 2 ≤O∪ Q,σ'' β 2

where σ' includes the new names in the first pair of action sequences and σ'' is a prime of σ' and σ'' includes the
new names in the second pair of action sequences. In this case we will then have that if we concatenate α 1 and

α 2 then this sequences will be observably equal to the action sequences which is the concatenation of β 1 and

β 2. We also have that when the concatenated sequences are observably similar, then there exists pairs of sub-
sequences which are observably similar.

109

Proposition P.5.5.2 Pair wise concatenation of two observably similar action sequences gives observably similar
sequences

(*) ∀ A, B, D,α 1, α 2, β 1, β 2, O, σ • σ ∈ B → A ∧

α 1 ≤O,σ' β 1 ∧ α 2 ≤O∪ Q,σ'' β 2 ⇒ (α 1 & α 2) ≤O∪ Q,σ'' (β 1 & β 2)

∧

(**) ∀ α , β , O, σ •

α ≤O∪ Q,σ'' β ⇒ ∃ α 1, α 2, β 1, β 2 • α 1 ≤O,σ' β 1 ∧ α 2 ≤O∪ Q,σ'' β 2 ∧

α ≡ α 1 & α 2 ∧ β ≡ β 1 & β 2

where Q = NewNames(α 1) and

σ' = prime(σ, α 1, β 1, A, B, D) ∧

σ'' = prime(σ', α 2, β 2, A', B', D') where

A' = prime(A, Dσ, α 1), D' = prime(Dσ, A, α 1), B' = prime(B, D, β 1)
Proof:
Proof of (*):

When we have Q = NewNames(α 1) then Q only holds names not found in α 1 and β 1.

When σ' = prime(σ, α 1, β 1, A, B, D), then the difference between the two substitutions is that σ' will

substitute some names which are not found in β 1. Then we have α 1 ≤O∪ Q,σ'' β 1.

By definition of obs&exe(O) we have
(α 1)/obs&exe(O∪ Q) & (α 2)/obs&exe(O∪ Q) = (α 1 & α 2)/obs&exe(O∪ Q)

and similar for the β-actions. Then, by definition of the observable similarity for action sequences we have

α 1 ≤O,σ'' β 1 ∧ α 2 ≤O∪ Q,σ'' β 2 ⇒ α 1 & α 2 ≤O∪ Q,σ'' β 1 & β 2
and the proposition holds for this case.

Proof of (**):

When we have α ≤O∪ Q,σ' β then by definition of observable similarity for action sequences this gives that

there exists some sequences α 1, α 2, β 1, β 2, such that α 1 ≤O,σ'' β 1 ∧ α 2 ≤O∪ Q,σ'' β 2. Since we have

Q = NewNames(α 1) then Q only holds names not found in α 1 and β 1.

When σ' = prime(σ, α 1, β 1, A, B, D), then the difference between the two substitutions is that σ' will

substitute some names which are not found in β 1. Then we have α 1 ≤O,σ ' β 1 and the proposition holds for
this case.
o

110

5.5.3 A reliable refinement relation
Based on the prime of substitutions, observable similarity of action sequences and the reliability requirements of
previous sections, we can define a reliable refinement relation between configurations as follows:

Definition: Refinement relation with specialisation; A ≤D,σ B

Given configurations A, B, D ∈ C and a substitution σ. We define a binary relation called a refinement
relation with specialisation, denoted A ≤D,σ B, as follows:

A ≤D,σ B == ∀ α : Traces(A||Dσ) ∃ β : Traces(B||D) •

 A||D, B||D ∈ CSafe ∧ σ ∈ B → A ∧ Reliable(A, Dσ, α) ∧

α ≤D',σ' β ∧ (endColab(A, Dσ, α) ⇒ endColab(B, D, β))

where D' = prime(D, A, α) and σ' = prime(σ, α , β , A, B, D)

The following proposition shows that the refinement relation with specialisation is transitive. In the proposition
it is assumed that D is the observing configuration. D is defined for collaboration with E. D is specialised for
collaboration with B by substitution ρ and Dρ is specialised for collaboration with A by substitution σ.

Proposition P.5.5.3 : The refinement relation with specialisation is transitive

The refinement relation with specialisation is transitive, ie, we have:

∀ A, B, D, E, σ, ρ • A||E ∈ CSafe ∧ A ≤Dρ,σ B ∧ B ≤D,ρ E ⇒ A ≤D,ρσ E

Proof:
A ≤Dρ,σ B gives that we for each α ∈ Traces(A||Dρσ) have:

∃ β : Traces(B||Dρ) •
A||Dρσ, B||Dρ ∈ CSafe ∧ σ ∈ B → A ∧ Reliable(A, Dρσ, α) ∧

α ≤(Dρ)',σ' β ∧ (endColab(A, Dρσ, α) ⇒ endColab(B, Dρ, β))

where σ' = prime(σ, α , β , A, B, Dρ)

and for this β we have some γ ∈ Traces(E||D) where

B||D, E||D ∈ CSafe ∧ ρ ∈ E → B ∧ Reliable(B, Dρ, β) ∧

β ≤D',ρ' γ ∧ (endColab(B, Dρ, β) ⇒ endColab(E, D, γ))

where ρ' = prime(ρ, β , γ , B, E, D)

To prove the proposition we must then show:
∀ α : Traces(A||Dσ) ∃ γ : Traces(E||D) •
A||Dρσ, E||D ∈ CSafe ∧ ρσ ∈ E → A ∧ Reliable(A, Dρσ, α) ∧

α ≤(Dρ)',ρσ' γ ∧ (endColab(A, Dρσ, α) ⇒ endColab(E, D, γ))

where ρσ' = prime(ρσ, α , β , A, B, D)

Trivially we have (endColab(A, Dρσ, α) ⇒ endColab(E, D, γ)). From A ≤Dρ,σ B we have A||Dρσ ∈ CSafe,

σ ∈ B →A and Reliable(A, Dρσ, α). From B ≤D,ρ E we have E||D ∈ CSafe and ρ ∈ E → B.

From safe names-requirements we have that all configurations have non-overlapping names. This gives
ρσ ∈ E → A and also by observation O.5.2.1 (observing objects' names are never keys in the substitution) the
substitutions do not change D-object names. We can therefore use proposition P.5.4.2 and conclude that
α ≤(Dρ)',ρσ' γ . This shows that the refinement relation with specialisation is transitive.
o

111

By proposition P.5.5.3 the refinement relation with specialisation is a monotonous partial order. Note that in
the special case where the substitution σ does not substitute any object names in A, ie, A.Dom ∩ σ.keys, then
we have:

A ≤D,σ A

and the refinement relation with specialisation is reflexive and then a complete partial order for this special case.
Such a situation might be viewed as a normal case since the same context should collaborate with A both when
A is viewed as a specification and as a refinement. If there were keys in σ which substituted an A-name, then
this name would be substituted with another A-name. In such a case, the objects in A would change roles, and
then the A with changed object roles might or might not be a refinement of the A without such role changes.
This seems intuitively correct and should therefore be reflected in the fact that the refinement relation should not
be reflexive in the general case with some specialisation of the context.

5.5.4 Equal actions from different context
sentences

By definition of observable equality and similarity, two actions stemming from different sentences in the context
are seen as observably unequal. To see the consequence of this decision incorporating the reliability requirements,
consider a situation where there are two actions, α1 from A||D and β1 from B||D both legal at a given point in an
execution. The actions are observably equal or similar as defined above, except that they stem from the execution
of different sentences in D, ie, we have α1.exe ≠ β1.exe. Then there are at least two sentences which may be
executed in D, ie, have a $-sign to their left.

Assume that α1 is from execution of a sentence in D in A||D and β1 is from execution of a sentence in D in
B||D. Also assume that the two executed sentences are found in objects e and f where e = α1.exe and f = β1.exe.
By the way Omicron is defined, and also in most practical implementations of object systems, the two sentences
can then be executed in any order. The alternative actions from A||D and B||D when there are executable sentences
in the objects named e and f are then:

<α1, α2 > ∈ Traces(A||D) where e = α1.exe and f = α2.exe
<β1, β2 > ∈ Traces(B||D) where f = β1.exe and e = β2.exe
<γ1, γ2 > ∈ Traces(A||D) where f = γ1.exe and e = γ2.exe
<δ1, δ2 > ∈ Traces(B||D) where e = δ1.exe and f = δ2.exe

Let O denote the object names in D. When A is a refinement of B relative to D and we ignore differences in the
.exe-parts of the actions we have:

α1 =O β1 ∧ α2 =O β2 and
γ1 =O δ1 ∧ γ2 =O δ2

If α1 = γ1 except for the .exe-parts, then we also have γ1 = β1 where the .exe parts are equal. We then have
γ1 =O β1. Since β1 is from the same sentence in f as γ1, the only way there may be differences in β1 and γ1 are
if objects in D inherit slots from objects in A and B. When we have the reliability requirement "no external
inheritance", it is still reliable to let D inherit from A and B. However, such inheritance is "dirty" or it is
difficult to find a good reason for it, since a reliable refinement of D will not do the same. A "clean and tidy"
specification would therefore not be expected to have such inheritance. Therefore, if D was a clean and tidy
specification we would always have γ1 = β1. The consequence of this is that if we have the above situations,
then we would also have:

γ1 =O β1 ∧ γ2 =O β2 and
α1 =O δ1 ∧ α2 =O δ2

where the .exe-parts of the actions are pairwise equal as defined for observably equal actions. Therefore, requiring
the .exe-parts to be equal for actions from the observing configuration has no influence on similarity relations
for "nice and tidy" specifications with no external inheritance since this requirement will always be met. And
since observable similarity implies observable equality, this also holds for observably similar action sequences.

112

5.5.5 Limitations on visible objects in refinements
When it is required that:

α ≤D,σ' β where σ' = prime(σ, α, β, A, B, D)

for A ≤D,σ B to hold, then this allows variations in the use of A-names and B-names in the actions.
However, the use of A-names in message-send actions to D-objects from sentences in A are limited. The
limitation applies to D-observable message-send actions from sentences in A. The limits are set by the
corresponding observably similar message-send actions from sentences in B. Denote the observably similar
D-observable actions from sentences in A and B by α and β respectively. The variation in A-names in α is then
limited as follows for each observably similar β:

- the number of different A-names in α is limited by the number of different B-names in β and
- the placement of the A-names in α is restricted to the positions where B-names are found in β and
- new A-names can only be introduced to C and D when new B-names are introduced
- the same A-name is always found in corresponding positions for a given B-name, eg, whenever the

B-name p is found in a β-action then the A-name q will be found in the corresponding position in the
corresponding α -action. Also, in any corresponding α ' and β' actions occurring after α and β
respectively, q will always be found in α ' in the position where p is found in β'.

This sets a limit on the number of visible object names of the refinement A to the number of visible object
names of the specification B. Formally stated this says:

#Visible(A, Dσ) ≤ #Visible(B, D)

The consequence of this is that specification configurations such as B and D specify a maximum number of
visible object names of refinements of B and D. Note that this does not restrict the total number of objects in a
refinement of a specification, it only limits the number of visible objects. How limits on the number of visible
objects relates to design practices is discussed in chapter 8.

5.5.6 Relationships between the refinement
relations

In chapter 4 a refinement relation between configurations was defined based on component developers intuitive
notion of similarity as described in chapter 2. As the examples in this chapter have shown, the component
developers notion of similarity does not ensure reliable substitution. Therefore the definition of the refinement
relation found in chapter 4 was modified to give a reliable refinement relation as defined in chapter 1. The reliable
refinement relation was called "refinement with specialisation". Below we show that when a configuration is a
refinement with specialisation of some other configuration, then it is also a refinement of the configuration as
defined in chapter 4.

We first show that when two actions are observably similar relative to a reliable substitution, then they are also
observably equal.

Proposition P.5.5.4 Observably similar actions are also observably equal
Given a substitution σ and a set of object names O such that RelSubst(σ, O). We then have for any two
actions α and β:

α ∼ O,σ β ⇒ α ∼ O β
Proof:
When we have α ∼ O,σ β, then by observation O.5.4.2 we have that all O-names in the actions are equal and the
slot names are equal. By definition of observable equality, this gives α ∼ O β.
o

Next we show A ≤D,σ B ⇒ A ≤D B where we let σ be empty. This is because if the substitution is non-empty,
then the actions from A||Dσ and A||D may be substantially different and it is therefore not possible to show the
proposition. To make it possible to prove the proposition with a non-empty substitution, the refinement
relation of chapter 4 has to be redefined to allow different contexts to be combined with the refinement and the
specification so that the behaviour of A||Dσ is compared with the behaviour of B||D. This is left for further
study, as it does not seem to give any important insights into the problem area of reliable substitution.

113

Proposition P.5.5.5 Refinements with specialisation are also refinements

Then refinement with specialisation implies refinement, ie,

∀ A, B, D • A ≤D,{} B ⇒ A ≤D B

where {} denote an empty substitution.
Proof:
A ≤D,{} B gives that we for each α ∈ Traces(A||D) have:

∃ β : Traces(B||D) •
 A||Dσ, B||D ∈ CSafe ∧ {} ∈ B → A ∧ Reliable(A, D, α) ∧

α ≤D',σ' β ∧ (endColab(A, D, α) ⇒ endColab(B, D, β))

where σ' = prime({} , α , β , A, B, D)

To prove the proposition we must then show:

∀ α : Traces(A||D) ∃ β : Traces(B||D) •

α =D' β ∧ (endColab(A, D, α) ⇒ endColab(B, D, β))
Since this by definition of observable equality gives A ≤D B.

When we have α ≤D',σ' β , then by definition of observably similar action sequences we have:

When <α1, α2,...> = α /obs&exe(D') ≈D',σ' β /obs&exe(D')

and by definition of ≈D',σ' this gives for <α1, α2,...> = α /obs&exe(D') and

<β1, β2,...> = β /obs&exe(D') that:

∀ i ≤ #α • if α i ∈ obs(D') then α i ∼ D',σ' βi else α i = βiσ

Since this gives α i ∼ D',σ' βi for all actions which are in obs(D'), then we have by proposition P.5.5.4:

When <α1, α2,...> = α /obs(D') and <β1, β2,...> = β /obs(D') then ∀ i ≤ #α • α i ∼ D' βi

Then, by definition of observably equal action sequences this gives α =D' β .

Since we also have (endColab(A, D, α) ⇒ endColab(B, D, β)) from A ≤D,{} B, then we have A ≤D B and the
proposition holds.
o

114

115

CHAPTER 6

Proving

Reliable Substitution

This chapter shows properties of combinations of configurations which meet the
reliability requirements presented in chapter 5. The final theorem, T.6.4, shows that the
refinement relation with specialisation as defined in chapter 5 is reliable as defined in
chapter 1. This shows that the reliability requirements and the definition of refinement
with specialisation give reliable substitution of components.

Section 2.1 shows important properties of reliable configurations and specialisations of
such configurations. Proposition P.6.4 shows relations between actions from
corresponding sentences in a reliable configuration and a specialised version of the same
configuration. Proposition P.6.6 shows that a specialised versions of a reliable
configuration is also reliable while proposition P.6.7 shows properties of configurations
derived from reliable configurations and specialisations of such configurations. These are
central properties in showing the substitution proposition.

Section 6.2 shows the simple substitution theorem T.6.1. This theorem states the
substitution proposition for systems having two parts: one component and one context.

Section 6.3 shows another substitution property related to combining new and old
versions of components in a system. It is assumed that we have a set of existing
components. For some of these components there are reliable refinements. It is then
shown that independently of how many components are replaced by their reliable
refinements, the existing components will observe no difference in behaviours.

In section 6.4 the general substitution proposition for any number of components is
shown to hold for the reliable refinement relation defined in chapter 5. This is theorem
T.6.3.

Section 6.5 shows that the reliability requirements and the refinement relation with
specialisation give reliable substitution. This means that if some arbitrary number of
components are substituted with their reliable refinement, then the other components will
not observe any difference. The other components may be either "old" components or
reliable refinements of old components. This is shown in theorem T.6.4.

The last section, section 6.6, discusses various alternative reliability requirements in
relation to a library of objects, ie, objects which are assumed to always be present in the
system and therefore never be substituted.

116

6.1 Reliability Properties
The substitution proposition for a system consisting of two parts is formulated as follows when using the
refinement relation with specialisation defined in chapter 5:

RelNames(A, B, C) ∧ A ≤D, σ B ∧ C ≤B, ρ D ⇒ Aρ ≤C, σ Bρ ∧ Cσ ≤A, ρ Dσ

The following figure shows the configurations and substitutions found in the simple substitution proposition
and illustrates the relations between these configurations and substitutions.

B||D

A ||C

B ||CA||D

specification

D combined with
refinement of B

B combined with
refinement of D

The two refinements combined

ρ

ρ

σ

σ

Because of the symmetric form of the conclusion of the proposition, it is necessary and sufficient to show
Aρ ≤C, σ Bρ.

in order to prove the proposition.

By definition of the refinement relation with specialisation defined in chapter 5, we must then, among other
things, show:

Aρ||Cσ ∈ CSafe ∧ σ ∈ Bρ → Aρ ∧ Reliable(Aρ, Cσ).

Proposition P.6.1 shows Aρ||Cσ ∈ CSafe ∧ σ ∈ Bρ → Aρ while P.6.6 shows that Reliable(Aρ, Cσ) holds.

When we have A ≤D, σ B ∧ C ≤B, ρ D then we also have σ ∈ B → A ∧ ρ ∈ D → C ∧ B||C ∈ CSafe. This is
used in the premise of P.6.1.

Proposition P.6.1 Reliable refinements ensure safe names and reliable substitutions for specialised refinements

∀ A, B, C, D, ρ, σ • RelNames(A, B, C) ∧ σ ∈ B → A ∧ ρ ∈ D → C ∧

B||C ∈ CSafe ⇒ Aρ||Cσ ∈ CSafe ∧ σ ∈ Bρ → Aρ

Proof:
RelNames(A, B, C) gives A||C ∈ CSafe. Since we have A||C, B||C ∈ CSafe giving A.Dom ∩ C.Dom = Ø and
B.Dom ∩ C-Dom = Ø, and when we have ρ ∈ D → C then O.5.2.1 (observing objects' names are never keys in
the substitution) then we have A.Dom = Aρ.Dom and B.Dom = Bρ.Dom. Then we also have σ ∈ Bρ → Aρ.
Since σ ∈ B → A then we also get C.Dom = Cσ.Dom. Since the substitutions are reliable, then by observation
O.5.2.2 (reliable substitution do not change slot names in configurations with safe names) slot names in the
configurations are not changed by the substitutions. We then have Aρ||Cσ ∈ CSafe.
o

117

6.1.1 Reliability of specialised configurations
The next proposition shows that each D-name in every action from execution of sentences in A in A||D will be
equal to or replaced by a C-name when the same sentence is executed in Aρ||C. We call this a complete
specialisation of A relative to C.

Proposition P.6.2 : Specialisation is complete for reliable refinements

∀ A, B, C, D, o, s, ρ, σ, α •
A ≤D,σ B ∧ C ≤B,ρ D ∧ α ∈ Traces(A||Dσ) ∧ α .exe ∈ A ∧ α ∈ obs(D) ∧ @A(o:s) ∧

A(o:s) ∈ α .names ∧ A(o:s) ∈ D ⇒ (A(o:s))ρ ∈ C

Proof:
Since α ∈ obs(D) and A ≤D,σ B then there is an action β ∈ Traces(B||D) where α ∼ D,σ' β. Then, by observation
O.5.4.2 (properties of names in actions which are equal relative to a reliable substitution) all D-names in the
actions are equal.
By observation O.5.4.4 (observability of observably similar actions) we have β ∈ obs(D) ∧ β.exe ∈ B. Since
C ≤B,ρ D, then, by definition of observably similar action sequences, there is some action γ such that γ ≡ βρ'
and then O.5.4.4 gives γ ∈ obs(C) ∧ γ.exe ∈ B. If ρ ≠ ρ' then a pair is added to ρ to give ρ'. The pair is added if
the actions are clone actions creating new D and C-objects and the new pair is then from the name of a new
object in D to the name of a new object in C.

Since γ ≡ βρ', then by observation O.5.4.2 (properties of names in actions which are equal relative to a reliable
substitution) each D-name in β will have a corresponding C-name in γ according to the mappings in ρ'.
Therefore, when all D-names in β are mapped to C-names in γ and we also have that all D-names in α and β are
equal, then all D-names in α are mapped to C-names in δ by the substitution ρ'. Ie, we have:

if j ∈ α ∧ j ∈ D then j ∈ β and then jρ' ∈ γ ∧ jρ' ∈ C

This gives (A(o:s))ρ ∈ C, since ρ ≠ ρ' only when a pair is added to ρ to give ρ' where the pair defines a
substitution of a D-name with a C-name. This gives Aρ(o:s) ∈ C and the proposition holds.
o

For the substitution proposition to hold we must have RelMessageSend(Aρ, Cσ) and RelMethodLookup(Aρ,
Cσ). Proposition P.6.3 and P.6.5 show that observably similar actions from A||Dσ and Aρ||Cσ ensure reliable
message sending and reliable method lookup from Aρ when combined with C provided A has reliable message
sending when combined with D. If these were not true then RelMessageSend(Aρ , Cσ) and
RelMethodLookup(Aρ, Cσ) have to be checked explicitly and that would ruin the basic intention of the
substitutability proposition: that A and C can be developed separately both in space and time while retaining
reliable substitution.

Proposition P.6.3 Reliable refinements ensures reliable message sending in specialised refinements

∀ A, B, C, D, ρ, σ •
RelNames(A, B, C) ∧ RelNames(C, D, A) ∧ A ≤D, σ B ∧ C ≤B, ρ D ⇒ RelMessageSend(Aρ, Cσ)

Proof:
To show RelMessageSend(Aρ, Cσ) we must show that no send sentence in A will give an error action due to no
appropriate method found in Cσ, ie, we must show:

∀ i, t, w • i ∈ A ∧
((∃ S1, S2, p1,…,pn •

Aρ(i).Body ≡ S1 $ t!w(p1,…,pn); S2) ∧ A(i:t)ρ ∈ Cσ ⇒ C(A(i:t)ρ:A(i:w)ρ)σ ∈ Cσ

A ≤D,σ B gives RelMessageSend(A, Dσ) which gives A(i:t) ∈ Dσ ⇒ Dσ(A(i:t):A(i:w)) ∈ D. The action from
the message-send sentence will therefore be a message-send action, never an error action in A||Dσ.

Proposition P.6.2 gives A(i:t) ∈ Dσ ⇒ A(i:t)ρ ∈ Cσ for all i, t where A(i:t) ∈ Dσ.

Assume that the message-send action from the object named i in A in A||Dσ is α ≡ i->o!m(p). Since this action
is observable from D, then by definition of A ≤D,σ B there will be some β from B||D such that α ∼ D,σ β. Then
we have

118

β ≡ j -> o!m(pσ) where j ∈ B

By definition of C ≤B, ρ D there is some action γ from Bρ||C such that
γ ≡ j -> oρ!m(pσρ) where oρ ∈ C

By proposition P.5.3.1 we have Aρ(i:t) = (A(i:t))ρ, and then since the receiver in α is o which was the value of
A(i:t) and o ∉ Dσ, then the receiver in the action from execution of the corresponding sentence in Aρ will be oρ.
Also, by O.5.2.2 (reliable substitutions do not change slot names) the method selector will be m since
Aρ(i:w) = A(i:w). Also, the same number of parameters will be found in all actions.

By proposition P.5.3.2 we have C(oρ, m) = Cσ(oρ, m), ie, the same method object will be found in C and Cσ.
Then we have C(A(i:t)ρ:A(i:w)ρ)σ ∈ Cσ and the proposition hods.
o

The next proposition shows an important property of complete specialisation which is a result of the reliability
requirements. The proposition shows that we can deduce the action α which will come from execution of a
sentence in a reliable configuration, eg, A in A||Dσ, from the action δ from execution of the corresponding
sentence in Aρ||C. The proposition shows that when the actions come from execution of a sentence in A, then
the actions are observably similar relative to C.

Proposition P.6.4 Reliability gives equal actions relative to a reliable substitution

∀ A, B, C, D, ρ, σ, δ •
RelNames(A, B, C) ∧ RelNames(C, D, A) ∧ A ≤D,σ B ∧ C ≤B,ρ D ∧

δ ∈ Traces(Aρ||Cσ) ∧ δ .exe ∈ A ⇒ ∃ α : Traces(A||Dσ) • δ ≡ αρ'

where ρ' = ρ + {k/l} when δ has the form a->i.s := k/oρ,
 α has the form a->i.s := l/o where o ∈ D and

 ρ' = ρ in all other cases
Proof:
Since there is some action δ.exe ∈ Aρ, there is an executable sentence in Aρ. Since the substitution does not
change execution marks, there is also an executable sentence in A. Then we have ∃ α : Traces(A||D). By
observation O.5.2.1 (observing objects' names are never keys in the substitution) we have

∃ α : Traces(A||D) • δ.exe = α.exe

If both actions are error actions, we have δ ≡ αρ.

Since the symbols in the sentences such as ! and := are not changed by the substitution, and by observation
O.5.2.2 (reliable substitutions do not change slot names in configurations) we have that all sentences will be
equal in the two configurations A and Aρ. Since δ.exe = α.exe. The two actions are from execution of the same
sentence since there is only one executable sentence in each object. Then we have

either both actions are error actions and then we have δ ≡ αρ,
or none are error actions and therefore both are the same kind of action, and then we must show δ ≡ αρ',
or one is an error action and the other is not, in which case the proposition does not hold

We first show that if none of the actions are error actions then we have δ ≡ αρ '. Then we show that we will
never have a case where only one of the actions are error actions.

When equal sentences are executed in A and Aρ, then by proposition P.5.3.1 (reliable substitutions give same
slots and preserve "No external inheritance") and P.5.4.5 (same result of if-test when applying a reliable
substitution) the same slots will be found in both cases and any differences in slot values is adjusted for by ρ.
We then have δ ≡ αρ for all cases except one: The only case when ρ does not adjust for differences in names in
the actions, is when the actions are clone actions cloning objects not in A. We then have a case where there is
some i, s, k, l and o such that

δ ≡ e->i.s := k/oρ, α ≡ e->i.s := l/o and o ∈ D.
The difference in names of new objects is then adjusted for by adding {k/l} to the substitution ρ. We then have

δ ≡ αρ '
where ρ' = ρ + {k/l}

In all other cases the names in the actions are slot values in A and Aρ and proposition P.5.3.1 gives δ ≡ αρ and
the proposition holds.

119

We next show that we will never have a case where one action is an error action and the other is not. The actions
can come from different kinds of sentences which give different causes for errors as follows:
 assignment no slot owner

clone no slot owner and unknown clone original
message-send no slot owner , unknown message receiver and no appropriate method for a

 message receiver in A

The proof for this case is done by the following subcases:
Case 1) Error due to no slot owner
Case 2) Error due to unknown clone original or unknown message receiver
Case 3) Error due to no appropriate method for a message receiver

Case 1) Error due to no slot owner
Since there is no external inheritance in A and the action is from execution of a sentence in A we have for all
objects i and slots s in A : that owner(A, i, s) ∈ A holds.
Proposition P.5.3.1 gives owner(A, i, s) = owner(Aρ, iρ, sρ). We then have owner(Aρ, iρ, sρ) ∈ A. Then
neither of the actions will be error actions due to slot not found.

Case 2) Error due to unknown clone original or unknown message receiver
Assume that the clone original or receiver is given by A(i:s) and we have A(i:s) ∉ A||Dσ. By P.5.3.1 (reliable
substitutions give same slots and preserve "No external inheritance") we have Aρ(i:s) = A(i:s)ρ.

If we have A(i:s) ∉ A||D then P.5.4.4 gives A(i:s)ρ ∉ C. Since ρ ∈ D → C and A||D, A||C ∈ CSafe, we have
A(i:s)ρ ∉ Aρ. We then have A(i:s)ρ ∉ Aρ||C. Thus both actions will be error actions due to unknown clone
original or unknown message receiver.

If A(i:s) ∈ D, then by proposition P.6.2 we have A(i:s)ρ ∈ C. Thus none of them are error actions due to
unknown clone original or unknown message receiver.

If A(i:s) ∈ A, then by observation O.5.2.1 (observing objects' names are never keys in the substitution) we have
A(i:s)ρ ∈ A. Then A-names are not changed and this gives A(i:s) = A(i:s)ρ. Thus none of the actions are error
actions due to unknown clone original or unknown message receiver.

Case 3) Error due to no appropriate method for a message receiver
As shown above under Case 2) we have that if A(i:s) gives the receiver of the message then we have:

if A(i:s) ∈ D then Aρ(i:s) ∈ C and
if A(i:s) ∈ A then Aρ(i:s) ∈ A and A(i:s) = Aρ(i:s), ie, the same A-object is the receiver

If the receiver of the two actions are objects in D and C, then there might be errors due to no appropriate method
for the message. However, we have RelMessageSend(A, D) and by proposition P.6.3 we have
RelMessageSend(Aρ, Cσ). Therefore, there can be no errors due to no appropriate method for a message receiver
in D and C. Therefore both actions can not be error actions due to no method found.

By proposition P.5.3.2 the same method object will be found in A and Aρ. Then, if the correct number of input-
slots is found in the method in A, then the correct number of input-slots will also be found in Aρ. Therefore
both actions will be error actions or both will be message-send actions.

We have then showed that either the two actions must be error actions or none of them are and then the
proposition holds.
o

Note that when we have δ ∈ action(Aρ||C) ∧ δ .exe ∈ A ∧ α ∈ Traces(A||D) ∧ δ ≡ αρ ' and the substitution is
reliable, then by observation O.5.4.3 (equal actions relative to a substitution are observably similar) we have
δ ∼ C,ρ' α and then also δ ≤C,ρ' α .

Proposition P.6.5 Reliable method lookup is preserved by reliable substitutions

∀ A, B, C, D, σ, ρ •
RelNames(A, B, C) ∧ RelNames(C, D, A) ∧ A ≤D, σ B ∧ C ≤B, ρ D ∧
RelMethodLookup(A, Dσ) ⇒ RelMethodLookup(Aρ, Cσ)

120

Proof:
To show RelMethodLookup(Aρ, Cσ) we must show that for every A-observable message-send action from
Aρ||C there will be a method which is found in Aρ. The implication is therefore only necessary to show when
we have actions such that δ ∈ Traces(Aρ||Cσ) ∧ δ ∈ obs(A).

We consider all cases of where the executed sentence is found.
Case δ.exe ∈ A:

Proposition P.6.4 (reliability gives equal actions relative to a reliable substitution) gives that there is
some α such that α ∈ Traces(A||Dσ) ∧ δ ≡ αρ.

By observation O.5.4.2 (properties of names in actions which are equal relative to a reliable substitution)
the actions describe the same message to the same A-object. By proposition P.5.3.2 the same method
object will be found in A and Aρ giving RelMethodLookup(Aρ, Cσ) for this case.

Case δ.exe ∈ C
Proposition P.6.4 (reliability gives equal actions relative to a reliable substitution) gives that there is
some γ such that γ ∈ Traces(Bρ||C) ∧ δ ≡ γσ.

Assume that the receiver in δ is an object in A named o. Since we have RelNames(C, D, A) giving that
all A-names in C are also B-names and since the substitution σ substitutes from B-names to A-names,
then the receiver in γ is either an object in B named o or an object named p where o = pσ, ie, γ ∈ obs(B).
Then the two actions have receivers not in C. By observation O.5.2.2 (reliable substitutions do not
change slot names in configurations) the substitution does not substitute slot names, the actions have the
same selector.

Since C ≤B, ρ D there is some β ∈ Traces(B||D) where γ ≤B,ρ' β. Since γ.exe ∈ C and γ ∈ obs(B) and
the action is a message-send action, then β.exe ∈ D and by definition of observable similarity we have
γ.dsc ≡ βρ'.dsc. Since the substitution ρ' is reliable relative to B, then observation O.5.4.2 (properties of
names in actions which are equal relative to a reliable substitution) gives that the B-names are not
changed and we then have β ∈ obs(B) and the message selector and the receiver are the same in both
actions.

Since β.exe ∈ D and since we have A ≤D, σ B, then there is some α ∈ Traces(A||Dσ) where α ≡ βσ'. By
observation O.5.4.2 then α ∈ obs(A) and the message selector is the same in both actions. Also, since
the receiver is an object in A, we will have the same receiver in both δ and α since we have the same B-
receiver and the same substitution is applied to both actions. Then, by proposition P.5.3.2 the same
method object will be found in both A and Aρ, giving RelMethodLookup(Aρ, Cσ) for this case.

o

The next proposition shows that refinement configurations are reliable configurations when specialised with
reliable substitutions.

Proposition P.6.6 Specialised reliable refinements are reliable configurations

∀ A, B, C, D, σ, ρ •
 RelNames(A, B, C) ∧ RelNames(C, D, A) ∧ A ≤D, σ B ∧ C ≤B, ρ D ⇒ Reliable(Aρ, Cσ)

Proof:
To show Reliable(Aρ, Cσ) we must show noExt(Aρ), RelIfSentence(Aρ, Cσ), RelMessageSend(Aρ, Cσ) and
RelMethodLookup(Aρ, Cσ).

Proposition P.5.3.1 (reliable substitutions give same slots and preserve "No external inheritance") gives
noExt(Aρ).
Proposition P.5.4.6 (reliable if-sentences is preserved by reliable substitutions) gives RelIfSentence(Aρ, Cσ),
Proposition P.6.3 (reliable refinements ensures reliable message sending in specialised refinements) gives
RelMessageSend(Aρ, Cσ) and
Proposition P.6.5 (reliable method lookup is preserved by reliable substitutions) gives RelMethodLookup(Aρ,
Cσ).
This shows that the proposition holds.
o

121

6.1.2 Derived substitutions and configurations
The next proposition shows that when we have two actions from execution of the corresponding sentences in A
and Aρ and where the actions are observably similar relative to a substitution, then there are common derived
configurations. The transitions for actions δ ∈ Traces(Aρ||C) ∧ α ∈ Traces(A||D) ∧ δ ≤ A,ρ' α can then be
written

A||Dσ α → A'||D' ∧ Aρ||C δ → A'ρ'||C'

This property is important when proving the substitution proposition by induction, as is done in theorem T.6.1.
Intuitively, this property reflects the necessity of having reliable substitutions, reliable method lookup and no
external inheritance in order to be able to show properties of refinement configurations.

Proposition P.6.7 Observably similar actions give a common derived configuration
∀ A, C, D, δ, ρ, α , β •
noExt(A) ∧ ρ ∈ D → C ∧ A||D, Aρ||C ∈ CSafe ∧
RelMethodLookup(Aρ, C) ∧

δ ∈ Traces(Aρ||C) ∧ α ∈ Traces(A||D) ∧ δ ≤ A,ρ' α
⇒
∃ A' • A||Dσ α → A'||D' ∧ Aρ||C δ → A'ρ'||C'

where ρ' = prime(ρ, δ, α, C, D, A)

Proof:
Cases:

Case 1) δ ∉ obs(A) and then by definition of observable equality we have δ ≡ αρ'
Case 2) δ ∈ obs(A) and then by definition of observable equality we have δ ∼ A,ρ' α

For all cases we have that when δ ∼ A,ρ' α or δ ≡ αρ' then α.exe ∼ A δ.exe. Then
If δ.exe ∉ A then also α .exe ∉ A. Then none of the actions are from execution of sentences in A and
there will therefore be no movement of execution marks in any of the A-configurations.
If δ.exe ∈ A then α.exe = δ.exe ∈ Aρ. Then, as argued in observation O.3.2 (equal actions from the same
configuration give equal derived configurations) the corresponding sentences in A and Aρ will be executed
and the execution mark moved correspondingly in the two configurations. Therefore the execution mark
are found in corresponding places in A' and A'ρ'.

Case 1) δ ∉ obs(A) and δ ≡ αρ'

Case 1a) δ.exe ∈ C
Then δ ⊗ A and then by proposition P.4.1.1 (silent actions are hidden actions and therefore do not change
the observing configuration) we have A' ≡ A. Also, when δ ∉ obs(A), then by observation O.5.5.1 (non-
observed actions give equal substitutions and primed substitutions) we have ρ' = ρ and the proposition
holds for this case.

Case 1b) δ.exe ∈ A
Since there is no external inheritance in A, then by observation O.5.3.1 (in configurations with no
external inheritance, an action can only update slots within the configuration where the executed sentence
is found) we only have the following case:

δ ≡ e->o!m(q)/k where o ∉ A
Then δ ≡ αρ' gives α ≡ e->oρ!m(pρ)/k. Then no new objects will be created in A and no slots updated.
The only difference between A and derivations of A is the movement of the execution mark. As shown
above, the execution mark is moved correspondingly in the two configurations. Therefore the execution
marks are found in corresponding places in A' and A'ρ'. Thus the proposition holds for this case.

Case 2) δ ∈ obs(A)
Cases of δ:

message send to an object in A
update of a slot in A

assignment
clone of an object in A
clone of an object not in A

clone of an object in A and update of a slot not in A
error action in a sentence in A

122

Case 2A) message send to an object in A. Let δ ≡ f->o!m(q)/k
By definition of observably similar actions we then have:

α ≡ e->o!m(p)/k where q = pρ'.
By proposition P.5.3.2 the same method object will be found in both A and Aρ. This object will be
copied and placed in A'. By definition of observably similar actions, the new objects will get equal names
in A' and A'ρ. The substitution ρ will adjust for any differences in parameter names in the two actions and
then the proposition holds for this case.

Case 2B) update slot in A
Since there is no external inheritance in A, then by observation O.5.3.1 (in configurations with no
external inheritance, an action can only update slots within the configuration where the executed sentence
is found) we have one of the following cases of δ:

case 2B i) δ has the form e->l.s := j where l ∈ A
case 2B ii) δ has the form e->l.s := k/o where l ∈ A

Case 2B i) Assume δ ≡ e->l.s :≡ j where l ∈ A
We then have α ≡ e->(l.s := j) ∧ i = jρ
Then the same slot will be updated by both actions and ρ will adjust for the difference in slot values, and
the proposition holds for this case.

Case 2B ii) Assume δ ≡ e->l.s := k/o where l ∈ A
The action will either clone an objet in A or an object in C. In both cases the same slot will be updated
by both actions and ρ' will adjust for the difference in names of new objects and slot values.
If an object in A is cloned, ie, o ∈ A, then both actions clone the same A-object and we have:

α ≡ e->(l.s:=k/o)
The same object will be cloned and the same slot will be updated by both actions, and the name of the
new object is the same in both actions. This will give the same slot value for both actions, and the
proposition holds for this case.
If δ clones an object in C, then we have:

α ≡ e->(l.s:=r/p) ∧ p ∉ A ∧ o = pρ ∧ k = rρ'
Then both actions are clones of objects not in A as ρ' only substitute from D-names to C-names. Then
there will be no new object in derivations of A, and ρ' will adjust for the difference in slot values, and the
proposition holds for this case.

Case 2C) δ clones an object in A and update a slot not in A, thus assuming δ ≡ e->l.s := k/o where o ∈ A and l ∉ A
By definition of observably similar actions we then have:

α.dsc ≡ j.t:=k/o ∧ j ∉ O
Then the same A-object (the object named o) is copied as result of both actions. Also, the new objects get
equal names. No slot is updated in A and ρ' = ρ. Therefore, a common A' can be found, and the
proposition holds for this case.

Case 2D) error in a sentence in A, assuming δ ≡ e->error where e ∈ A
By definition of observably similar actions we then have α ≡ e->error. Then it will be the same object in
A which terminated, and the proposition holds for this case.

o

123

6.2 The Simple Substitution Theorem

 6.2.1 The simple substitution theorem
The substitution proposition expressed for systems consisting of two configurations is stated as follows:

Theorem T.6.1: The simple substitution theorem

∀ A, B, C, D, σ, ρ • RelNames(A, B, C) ∧ RelNames(C, D, A) ∧

A ≤D,σ B ∧ C ≤B,ρ D ⇒ Aρ ≤C,σ Bρ ∧ Cσ ≤A,ρ Dσ

Because of symmetry it is only necessary to prove:

∀ A, B, C, D, σ, ρ • RelNames(A, B, C) ∧ RelNames(C, D, A) ∧

A ≤D,σ B ∧ C ≤B,ρ D ⇒ Aρ ≤C,σ Bρ

By definition of Aρ ≤C,σ Bρ, we can reformulate the simple substitution theorem as follows:

∀ A, B, C, D, σ, ρ •
RelNames(A, B, C) ∧ RelNames(C, D, A) ∧ A ≤D,σ B ∧ C ≤B,ρ D
⇒
(∀ δ : Traces(Aρ||Cσ) ∃ γ : Traces(Bρ||C) •

Aρ||Cσ, Bρ||C ∈ CSafe ∧ σ ∈ Bρ → Aρ ∧ Reliable(Aρ, Cσ, δ)

∧ δ ≤C',σ' γ ∧ (endColab(Aρ, Cσ, δ) ⇒ endColab(Bρ, C, γ)))

where σ' = prime(σ, δ , γ , Aρ, Bρ, C)

For the conclusion to hold we must show that for all A, B, C, D, σ and ρ such that the premise of the theorem

holds, then for every action sequences δ in Traces(Aρ||Cσ) there is an action sequence γ in Traces(Bρ||C) such

that Reliable(Aρ, Cσ, δ) ∧ δ ≤O,σ γ ∧ (endColab(Aρ, Cσ, δ) ⇒ endColab(Bρ, C, γ)).

We prove this by induction over the length of δ , ie, induction over the length of δ (written #δ). Since the

induction is done on the length of δ , δ is moved to the front and the proposition is restated as follows:

∀ δ , A, B, C, D, σ, ρ •
δ ∈ Traces(Aρ||Cσ) ∧ RelNames(A, B, C) ∧ A ≤D,σ B ∧ C ≤B,ρ D
⇒
(Aρ||Cσ, Bρ||C ∈ CSafe ∧ σ ∈ Bρ → Aρ ∧ Reliable(Aρ, Cσ, δ) ∧

∃ γ : Traces(Bρ||C) • δ ≤C',σ' γ ∧ (endColab(Aρ, Cσ, δ) ⇒ endColab(Bρ, C, γ)))

where σ' = prime(σ, δ , γ , Aρ, Bρ, C)

The induction base is #δ = 0 and the induction hypothesis says that the proposition holds for all action

sequences in traces which are shorter than #δ where #δ = n + 1. The induction base is shown in section 6.2.2
while the induction step is shown in section 6.2.3.

124

6.2.2 The induction base of the theorem
When #δ = 0, then since the empty action sequence is found in all traces, the definition of the refinement
relation gives that we must show the following for the induction base:

 (Aρ||Cσ, Bρ||C ∈ CSafe ∧ σ ∈ Bρ → Aρ ∧ Reliable(Aρ, Cσ) ∧ (endColab(Aρ, Cσ) ⇒ endColab(Bρ, C)))
⇒ Aρ ≤C,σ Bρ

By this we prove the induction base of the theorem as follows:

Induction base of theorem T.6.1: #δ = 0
To show Aρ ≤C,σ Bρ when #δ = 0 then by definition of ≤C,σ it suffices to show:

∀ A, B, C, D, σ, ρ •
Aρ||Cσ ∈ CSafe ∧ RelNames(A, B, C) ∧ RelNames(C, D, A) ∧ A ≤D,σ B ∧ C ≤B,ρ D
⇒
(Aρ||Cσ, Bρ||C ∈ CSafe ∧ σ ∈ Bρ → Aρ ∧ Reliable(Aρ, Cσ) ∧

(endColab(Aρ, Cσ) ⇒ endColab(Bρ, C)))

Proof:
Proposition P.6.1 (reliable refinements ensure safe names and reliable substitutions for specialised refinements)
gives σ ∈ Bρ → Aρ ∧ Aρ||Cσ ∈ CSafe. From C ≤B,ρ D we have Bρ||C ∈ CSafe.

A ≤D,σ B ∧ C ≤B,ρ D and proposition P.6.6 (specialised reliable refinements are reliable configurations) gives
Reliable(Aρ, Cσ).

When endColab(Aρ, Cσ) we have by definition:

∀ δ ' : Traces(Aσ||Cρ) • δ '.exe ∈ A ⇒ δ ' ⊗ C

Next we show (endColab(Aρ, Cσ) ⇒ endColab(Bρ, C)) when A ≤D,σ B ∧ C ≤B,ρ D. First we show that we

have endColab(A, Dσ) by induction on the length of the longest δ '.

Base : #δ ' = 0
We the longest action sequence from Aρ||Cσ is the empty action sequence, then the longest action sequence from
Aρ will also be empty. We then have endColab(A, Dσ).

Step: #δ ' = m

Induction hypothesis: we have endColab(A, Dσ) when the length of the longest δ ' is shorter than m.

Assume δ ' = δ & δ ''. We have δ.exe ∈ A, δ ⊗ C and endColab(A'ρ, Cσ), where A' is A after δ, from
definition of endColab(). The induction hypothesis then gives endColab(A', Dσ). By proposition P.6.4 we have
some α from A in A||D where δ ≡ αρ. By observation O.5.4.4 (observability of observably similar actions) we
then have α ⊗ D. This gives endColab(A, Dσ).

We have then shown endColab(A, Dσ) for any length of the longest δ '. From A ≤D, σ B we then have
endColab(B, D) which gives:

∀ β : Traces(B||D) • β .exe ∈ B ⇒ β ⊗ D

By definition of the refinement relation with specialisation and since we have C ≤B,ρ D and by proposition
P.5.4.7 we have that each action from a sentence in Bρ in Bρ||C will be equal to an action from the
corresponding sentence in B in B||D relative to the substitution ρ. We then have:

 ∀ γ : Traces(Bρ||C) • γ .exe ∈ B ⇒ γ ≡ β ρ

Then by observation O.5.4.4 (observability of observably similar actions) we have γ ⊗ C. We then have
endColab(Bρ, C) which shows the induction base of the theorem.
o

125

6.2.3 The induction step of the theorem
For the induction step assume #δ > 0. We next show two lemmas related to proving properties of the first

action in an action sequence in Traces(Bρ||C) based on assumptions about the first action in δ from

Traces(Aρ||Cσ) where #δ > 0.

The next lemma, L.6.2.1 is a special case of lemma L.6.2.2. By this lemma we avoid a very long proof of
lemma L.6.2.2. The part shown in L.6.2.1 is an important part of showing the substitution proposition. The
lemma shows that when a sentence in A gives an action which is similar to an action from a sentence in B as
observed from D (ie, we have α ∼ D,σ' β), then the same sentences executed in Aρ and Bρ will give observably
similar actions as observable from C (ie, we have δ ≤C,σ ' γ). To show this, actions from B which are
observable from D and C have to be taken into account. The proposition and the proof are therefore quite
complicated in that actions from all four configurations are involved. Two and two of the actions are from
execution of the same sentence, two are observably similar and then each of these actions are equal to one of the
other actions relative to the appropriate substitutions, ie, we have a situation as follows:

α ∈ Traces(A||Dσ) ∧ β ∈ Traces(B||D) ∧ γ ∈ Traces(Bρ||C) ∧ δ ∈ Traces(Aρ||Cσ) ∧

α.exe = δ.exe ∈ A ∧ α ∈ obs(D) ∧ β .exe = γ.exe ∈ D ∧

α ∼ D,σ' β ∧ δ ≡ αρ ' ∧ γ ≡ βρ''

where ρ' = prime(ρ, δ, α, Cσ, Dσ, A), ρ'' = prime(ρ, γ, β, C, D, B) and σ' = prime(σ, α, β, A, B, D)

Lemma L.6.2.1 then concludes δ ≤C,σ' γ. This lemma also shows that the prime of the substitution ρ as found
when creating it from ρ and the actions from B, is equal to the prime of the substitution ρ as found when
creating it from ρ and the actions from A, ie,

prime(ρ, δ, α, Cσ, Dσ, A) = prime(ρ, γ, β, C, D, B).

The assumptions in the proposition will hold when the reliability requirements hold and when the premise of the
substitution proposition holds. We have that:

α ∼ D,σ' β where σ' = prime(σ, α, β, A, B, D),
when A is a reliable refinement to B relative to D with σ and α ∈ obs(D), ie, A ≤D,σ B

δ ≡ αρ' where ρ' = prime(ρ, δ, α, Cσ, Dσ, A),
when the two actions stem from execution of the same sentence in A and Aρ respectively

γ ≡ βρ'' where ρ'' = prime(ρ, γ, β, C, D, B),
when the two actions stem from execution of the same sentence in B and Bρ respectively, and C
is a reliable refinement of D relative to B with the substitution ρ, ie, C ≤B, ρ D

The conclusion of the lemma is necessary in order to show that Aρ is a reliable refinement of Bρ relative to Cσ,
ie, Aρ ≤C,σ Bρ, which is part of the conclusion of the substitution proposition.

In the proof of the next lemma, the substitutions are combined and the equality βσρ ≡ βρσ is used. Then it must
be possible to distinguish which names come from which parts of the configurations so that the proper
substitution is used, and that just one substitution is used for each free name. The following observation
explains why βσρ ≡ βρσ can be used in the proof of the next lemma.

Observation O.6.1 : About combining reliable substitutions
When we have

A||D, B||D, B||C, A||C ∈ CSafe ∧ σ ∈ B → A ∧ ρ ∈ D → C
 the following restrictions on the substitutions σ and ρ hold:

keys(σ)∩keys(ρ) = Ø ∧ values(σ)∩keys(ρ) = Ø ∧ values(ρ)∩keys(σ) = Ø
Because we then have that keys in one substitution are never found as values in the other substitution,
and the substitutions have separate keys, then for any action β from B||D we have

βσρ ≡ βρσ

126

Lemma L.6.2.1 Property of equal and observably similar actions
∀ A, B, C, D, α , δ, β, δ, γ, σ, ρ •

A||D, B||D, B||C, A||C ∈ CSafe ∧
σ ∈ B → A ∧ ρ ∈ D → C ∧ Reliable(A, Dσ) ∧ Reliable(C, Bρ) ∧ RelMessageSend(Aρ, Cσ) ∧
δ ∈ Traces(Aρ||Cσ) ∧ β ∈ Traces(B||D) ∧ α ∈ Traces(A||Dσ) ∧ γ ∈ Traces(Bρ||C) ∧

δ.exe ∈ A ∧ δ ∈ obs(C) ∧ α .exe = δ.exe ∈ A ∧ α ∈ obs(D) ∧ α ∼ D,σ' β ∧ δ ≡ αρ' ∧ γ ≡ βρ''

 ⇒ ρ' = ρ'' ∧ δ ≤C,σ' γ

where ρ' = prime(ρ, δ, α, C, D, A), ρ'' = prime(ρ, γ, β, C, D, B) and σ' = prime(σ, α, β, A, B, D)
Proof:
First we show that δ.exe ∈ A and γ.exe ∈ B gives δ.exe ∼ C γ.exe:
We have α .exe ∈ A. By O.5.4.2 (properties of names in actions which are equal relative to a reliable
substitution) we then have β.exe ∈ B, δ.exe ∈ A and γ.exe ∈ B. This gives δ.exe ∼ C γ.exe since σ' substitute
from B names to A names.

Next we show ρ' = ρ'' and δ ≤C,σ' γ for the description parts of the actions.

Since we have γ ≡ βρ'', then by observation O.5.4.3 (equal actions relative to a substitution are observably
similar) we have γ ∼ B,ρ'' β which gives γ ≤B,ρ'' β.

Since we have no external inheritance in A and α ∈ obs(D) and α .exe ∈ A then by observation O.5.3.1 (in
configurations with no external inheritance, an action can only update slots within the configuration where the
executed sentence is found) one of the following two cases must occur:

Case 1)α.dsc ≡ o!x(q)/k ∧ o ∈ D
Case 2)α.dsc ≡ (i.s:=k/o) ∧ o ∈ D

Case 1) α.dsc ≡ o!x(q)/k
By definition of α ∼ D,σ' β we then have β.dsc ≡ o!x(p)/k ∧ q = pσ ' and β ∉ obs(B). We then have
α.dsc ≡ βσ'.dsc.
When β ∉ obs(B) and γ.dsc ≡ βρ''.dsc then O.5.4.2 (properties of names in actions which are equal relative to a
reliable substitution) gives γ ∉ obs(B). When γ ∉ obs(B) then O.5.5.1 (non-observed actions give equal
substitutions and primed substitutions) gives ρ = prime(ρ, γ, β, C, D, B).
Similarly we have ρ = prime(ρ, δ, α, C, D, A). We then have ρ' = ρ'' = ρ for this case. We then have:

α.dsc ≡ βσ'.dsc ∧ δ .dsc ≡ αρ.dsc ∧ γ .dsc ≡ βρ.dsc
Since there are safe names and reliable substitutions, we can replace α with βσ' in δ.dsc ≡ αρ.dsc and get

δ.dsc ≡ βσ'ρ.dsc.
Observation O.6.1 (about combining reliable substitutions) gives βσ'ρ ≡ βρσ' and then δ.dsc ≡ βρσ'.dsc. When
δ.dsc ≡ βρσ'.dsc and γ.dsc ≡ βρ.dsc, then βρ'.dsc can be replaced with γ.dsc which gives δ.dsc ≡ γσ'.dsc. When
we then have δ ∈ obs(C), δ.exe ∼ C γσ'.exe and δ.dsc ≡ γσ'.dsc, this gives δ ≤C,σ' γ for this case.

Case 2) α.dsc ≡ i.s:=k/o ∧ o ∈ D
By definition of observably similar actions we then have βσ'.dsc ≡ j.t:=k/o ∧ i,j ∉ D ∧ o ∈ D
From δ ≡ αρ', reliable substitution and the definition of prime substitutions we have δ.dsc ≡ i.s:=kρ'/oρ'.
Similarly we have γ.dsc ≡ j.t:=kρ''/oρ''.

By observation O.4.3.2 (simplifying assumption about names of new objects), the name k is not found in any
of the configurations A, B, C or D. This gives

δ.dsc ≡ i.s:=l/p is a legal transition from Aρ||Cσ and
γ.dsc ≡ j.t:=l/p is a legal transition from Bρ||C,
where {p/o} is an element in ρ and {l/k} is the new element in the prime substitutions.

By definition of prime substitutions we have ρ' = ρ''.
This also gives p ∈ C and then δ, γ ∈ obs(C). Since δ.exe ∼ C γ.exe was shown above and by definition of
observably similar actions, this gives δ ∼ C,σ' γ. This gives δ ≤C,σ' γ and the lemma holds for this case.
o

The next lemma is used to show the induction step of the substitution theorem T.6.1. This lemma shows
properties of the actions in Bρ||C when properties of actions from sentences in A in Aρ||Cσ and A||Dσ are
known. Particularly it is shown that there is an action sequence γ from Bρ||C which is observably similar to an
action δ from Aρ||Cσ, ie, δ ≤C γ σ'. In addition various properties of the primed substitutions and derived
configurations are shown. It would be possible to split this lemma into smaller lemmas, where each lemma

127

concluded part of the conclusions of this lemma. This is not done since to prove one part of the conclusion, it
would be necessary to prove many of the same properties as stated in the other parts. Therefore the parts are all
shown at the same time in the same lemma:

Lemma L.6.2.2 Reliable refinements give observably similar actions and common derived configurations

∀ A, B, C, D, σ, ρ, δ • RelNames(A, B, C) ∧ RelNames(C, D, A) ∧
A ≤D,σ B ∧ C ≤B,ρ D ∧ δ ∈ Traces(Aρ||Cσ) ∧ δ.exe ∈ A
⇒
∃ α : Traces(A||Dσ), γ : Traces(Bρ||C),β : Traces(B||D) •

(i) δ ≤C,σ' γ ∧ δ ≤ A,ρ' α ∧ α ≤D,σ' β ∧ γ ≤B,ρ' β ∧

(ii) prime(ρ, γ , β , C, D, B) = prime(ρ, δ, α, C, D, A) ∧

prime(σ, α, β , A, B, D) = prime(σ, δ, γ , A, B, C) ∧
(iii) ∃ A', B', C' D', B'', D'' •

Aρ||Cσ δ → A'ρ||C'σ' ∧ A||Dσ α → A'||D' ∧ Bρ||C γ → B'||C' ∧ B||D β → B''||D'' ∧

(iv) D'.Dom = D''.Dom ∧ B'.Dom = B''.Dom

 where σ' = prime(σ, δ, γ , A, B, C) and ρ' = prime(ρ, δ, α, C, D, A)

Point (iii) states that there are common derived configurations A' and C' resulting from actions α, β , γ and δ.

Proof:
Small roman numbers in parenthesis, ie, (ii), in the beginning of a line indicate that the line states the
corresponding part of the conclusion of the lemma.

Proposition P.6.4 (reliability gives equal actions relative to a reliable substitution) gives:

∃ α : Traces(A||Dσ) • δ ≡ αρ' where ρ' = prime(ρ, δ, α, C, D, A)

By observation O.5.4.1 (reliable substitutions relative to configurations are also reliable relative to sets of object
names) we have RelSubst(ρ, A.Dom). Then, by observation O.5.4.3 (equal actions relative to a substitution are
observably similar) we have δ ∼ A,ρ α. Then by definition of observably similar action sequences, we have:
(i) δ ≤A,ρ' α

Proposition P.6.7 (observably similar actions give a common derived configuration) gives

∃ A', C', D' • A||Dσ α → A'||D' ∧ Aρ||Cσ δ → A'ρ'||C'

The rest of the proof is divided in two cases:
Case 1) δ ∉ obs(C), in which case we have δ ∈ obs(A)
Case 2) δ ∈ obs(C)

Case 1) δ ∉ obs(C) ∧ δ ∈ obs(A)

Let β = <> and let γ = <>. Then we have

(i) δ ≤C,σ' γ ∧ α ≤D,σ' β ∧ γ ≤B,ρ' β
When the action sequences are empty, they are not observable, and when δ ∉ obs(C), then observation O.5.5.1
(non-observed actions give equal substitutions and primed substitutions) gives:

(ii) prime(σ, α, β , A, B, D) = prime(σ, δ, γ , A, B, C) = σ and

(ii) prime(ρ, γ , β , C, D, B) = prime(ρ, δ, α, C, D, A) = ρ

When δ.exe = α .exe ∈ A, α ∉ obs(D), δ ∉ obs(C),β = <> and γ = <> then proposition P.4.1.1 (silent
actions are hidden actions and therefore do not change the observing configuration) gives:

(iii) A ρ||Cσ δ → A'ρ||Cσ ∧ A||Dσ α → A'||Dσ ∧ Bρ||C γ → B||C ∧ B||D β → B||D

Obviously part (iv) of the lemma holds since we have D' = D, D'' = D, B' = B and B'' = B.

We have then shown all parts, and the lemma holds for this case.

128

Case 2) δ ∈ obs(C)
When δ ≤A,ρ' α and δ ∈ obs(C) then observation O.5.4.4 (observability of observably similar actions) gives

α ∈ obs(D).

When α ∈ Traces(A||Dσ) and since A ≤D,σ B holds then we also have

(i) ∃ β : Traces(B||D) • α ≤D,σ' β
where β = <β1,..., βn> where n ≥ 1 and since α ∈ obs(D) and α .exe ∈ A then by observation O.5.4.5
(properties of similar observable action sequences) we can assume:

<β1,..., βn-1> ⊗ D ∧ α ≤ D,σ' βn ∧ β n ∈ obs(D) ∧ β n.exe ∈ B for i ∈ 1..n

Since C ≤B,ρ D holds then

(i) ∃ γ : Traces(Bρ||C) • γ ≤B,ρ'' β where ρ'' = prime(ρ, γ , β , C, D, B)

Let γ = <γ1, .., γm> . Since β from execution of sentences in B, then m = n. Then observation O.5.4.4
(observability of observably similar actions) gives γj .exe ∈ B, <γ1,...,γn-1> ⊗ C and γn ∈ obs(C). Then
observation O.5.5.1 (non-observed actions give equal substitutions and primed substitutions) gives:

prime(ρ, <γ1,..,γn-1 >, <β1,..,βn-1 >, C, D, B) = ρ

Since the n-1 first actions do not affect the substitutions, then

ρ'' = prime(ρ, γ , β , C, D, B) = prime(ρ, γn, βn, C, D, A)
By observation O.5.4.5 (properties of similar observable action sequences) we have γn ≤B,ρ'' βn.
 Since γn ∈ obs(C) and γn.exe ∈ B, then the definition of observably similar actions gives γn ≡ βnρ''.

We now have α .exe ∈ A ∧ α ∈ obs(D) ∧ α ≤D,σ' βn ∧ δ ≡ αρ ' ∧ γn ≡ βnρ''. Since α ∈ obs(D) then by
definition of observably similar action sequences we have α ∼ D,σ' βn. Proposition L.6.2.1 (property of equal and
observably similar actions) gives:

δ ≤C,σ' γn ∧ prime(ρ, γn, βn, C, D, B) = prime(ρ, δ, α , C, D, A)

Since <γ1,...,γn-1> ⊗ C and δ ≤C,σ' γn, then γ is such that:
(i) δ ≤C,σ' γ

Above prime(ρ, γn, βn, C, D, B) = prime(ρ, δ, α, C, D, A) and

prime(σ, γ , β , A, B, D) = prime(σ, γn, βn, A, B, D) were shown. Then we can conclude:

(ii) prime(ρ, γ , β , C, D, B) = prime(ρ, δ, α, C, D, A)

Observation O.5.5.1 (non-observed actions give equal substitutions and primed substitutions) gives
σ = prime(σ, α , <β1,.. ,βn-1 >, A, B, D) and σ = prime(σ, δ, <γ1,.. ,γn-1 >, A, B, D).

Any differences in prime(σ, α, β , A, B, D) and prime(σ, δ, γ , A, B, D) would then be caused by different B-
names in βn and γn or different A-names in α and βn. Since γn ≡ βnρ'' as shown above, then by observation
O.5.4.2 (properties of names in actions which are equal relative to a reliable substitution) the B-names must be
equal in this case. Since δ ≡ αρ ' then by observation O.5.4.2 (properties of names in actions which are equal
relative to a reliable substitution) the A-names in these two actions are equal. This gives:

(ii) prime(σ, α, β , A, B, D) = prime(σ, δ, γ , A, B, C)

We will now show part iii: there are common derived configurations:
Initially we showed that

(iii) ∃ A', C', D' • Aρ||Cσ δ → A'ρ'||C'σ' ∧ A||Dσ α → A'||D'.

We also have:

Bρ||C γ → B'||C'' ∧ B||D β → B''||D''

129

We must then show that we have a common derived configuration from δ and γ . Since γ1,...,γn-1 are silent
actions, then by proposition P.4.1.1 (silent actions are hidden actions and therefore do not change the observing
configuration) the actions do not affect C. Since we have δ ≤C,σ' γn, then by P.6.7 (observably similar actions
give a common derived configuration) we have common derived configurations from δ and γn and we have
C'' ≡ C' and

(iii) ∃ C' • Aρ||Cσ δ → A'ρ'||C'σ' ∧ Bρ||C γ → B'||C'.

We have then found common derived configurations (part iii).

Next we show part (iv):

Since we have α ≤D,σ' β , then proposition P.5.4.3 gives

(iv) D'.Dom = D''.Dom.

Since we have γi ≡ βiρ'' for all actions from sentences in B. By proposition P.5.5.1 we have that the
substitution is reliable for all derived configurations and then observation O.5.4.3 (equal actions relative to a
substitution are observably similar) gives γi ≤B',ρ'' βi. Then proposition P.5.4.3 gives:

(iv) B'.Dom = B''.Dom

We have then shown all parts of the proposition for all cases, and the lemma holds.
o

Note that there are no common derived configurations B' and D' such that:

A||Dσ α → A'||D'σ' ∧ B||D β → B'||D' ∧ Aρ||Cσ δ → A'ρ'||C'σ' ∧ Bρ||C γ 1 → B'ρ'||C'

The reason for this is that, eg, the method found for a message to a D-object might be different in A||Dσ and
B||D since we do not require reliable method lookup in D. Then the methods can be found in A and B, and the
methods can therefore have, eg, different slot names and slot values. Also, if the execution of sentences give
error actions, the kind of sentences in the body of the methods can be quite different, while still giving
observably equal actions.

Since there are no common derived configurations B' and D' we can not make use of an induction hypothesis
with:

A' ≤D',σ' B' ∧ C' ≤B',ρ' D'

as, eg, A'||D'σ' might not be the result of the α action. Then we do not know if A' ≤D',σ' B' holds even if A
≤D,σ B holds. In order to be able to state a suitable induction hypothesis when we do induction on the length of

δ where δ ∈ Traces(Aρ||Cσ), we use a more explicit version of the definition of the refinement relation. In this
version, the configuration which collaborate with A is explicitly found in the relation expression, so that we, eg,
can state A' ≤D'', D',σ' B' where D' and D'' stem from actions as follows:

A||Dσ α → A'||D'' and B||D β → B'||D'.

Definition: Alternative refinement relation; A ≤D,E,σ B

Given two configuration D,E ∈ C where D.Dom = E.Dom and a substitution σ. We define a binary
relation called an alternative refinement relation, denoted A ≤D,E,σ B, as follows:

A ≤D,E,σ B ==

A||D, B||D ∈ CSafe ∧ σ ∈ B → A ∧ Reliable(A, Dσ) ∧

∀ α : Traces(A||D) ∃ β : Traces(B||E) •

Reliable(A, D, α) ∧ α ≤D',σ' β ∧ (endColab(A, D, α) ⇒ endColab(B, E, β))

 where σ' = prime(σ, α , β , A, B, D)

130

Observation O.6.2: The definitions of reliable refinements are equivalent
We have the following relations between the two versions of the refinement relation:

A ≤D,σ B ⇔ A ≤Dσ,D,σ B

This is evident from the definitions of the two relations.

Lemmas L.6.2.3 shows an other important relationships between the two definitions of the reliable refinement
relation. This relationship is used in the proof of the induction step of the theorem.

Lemma L.6.2.3: Observable similarity of actions and refinement configurations
∀ A, B, D, σ • A ≤D,σ B
⇔
∃ A', B', D', D'', α ,β • α ∈ Traces(A||Dσ) ∧ β ∈ Traces(B||D) ∧ Reliable(A, Dσ) ∧

A||Dσ α → A'||D' ∧ B||D β → B'||D'' ∧ α ≤D,σ' β ∧ A' ≤D',D'',σ' B'

where σ' = prime(σ, α, β , A, B, D)

Proof:
Proof of ⇒ :
By definition of A ≤D,σ B we have Reliable(A, Dσ) and we also have:

∀ α : Traces(A||Dσ) ∃ β : Traces(B||D) • α ≤O,σ'' β
where O = D.Dom ∪ NewNames(α , D) and σ'' = prime(σ, α , β , A, B, D)

We will then have:
∀ α 1, α 2 • α 1 & α 2 ∈ Traces(A||Dσ)

∃ β 1, β 2 • β 1 & β 2 ∈ Traces(B||D) ∧ α 1 & α 2 ≤O,σ'' β 1 & β 2

By proposition P.5.5.2 this will also hold when <α> = α 1 and for all α 2 ∈ Traces(A'||D''). Then there is

some β 1 where α ≤D,σ ' β 1 and we let β 1 = β . By definition of prime substitutions we have

σ'' = prime(σ', α 2, β 2, A', B', D'') and we have α 2 ≤O,σ'' β 2.

By proposition P.5.4.3 we have D'.Dom = D''.Dom. By proposition P.5.5.1 we have σ' ∈ B' → A' ∧ A'||D',
B'||D'' ∈ CSafe. Trivially we have

(endColab(A, Dσ, α) ⇒ endColab(B, D, β)) ⇒ (endColab(A, D', α 2) ⇒ endColab(B, D'', β 2))
Then we have A' ≤D',D'',σ' B' and the proposition holds for this case.

Proof of ⇐ :
A' ≤D',D' ' ,σ ' B' gives Reliable(A', D'') which gives Reliable(A, D, α). A' ≤D',D' ' ,σ ' B' gives

A'||D', B'||D'' ∈ CSafe ∧ σ ' ∈ B' → A'. Then, by definition of safe configurations and prime substitutions we

also have A||D, B||D ∈ CSafe ∧ σ ∈ B → A.

By definition of A' ≤D',D'',σ' B' we have:

∀ α : Traces(A'||D') ∃ β 2 : Traces(B'||D'') •

α ≤O,σ'' β 2 ∧ (endColab(A', D', α) ⇒ endColab(B, D, β 2))

where O = D'.Dom ∪ NewNames(α , D') and σ'' = prime(σ, α , β , A', B', D')

Then by proposition P.5.5.2 we have α & α ≤O,σ'' β & β 2 for all α ∈ Traces(A||Dσ).
We trivially have

(endColab(A, D', α) ⇒ endColab(B, D'', β 2)) ∧ α ∈ Traces(A||Dσ) ∧ β ∈ Traces(A||D)

⇒ (endColab(A, Dσ, α & α) ⇒ endColab(B, D, β & β 2))

131

Since we have Reliable(A, Dσ) and A||D, B||D ∈ CSafe ∧ σ ∈ B → A, then, by the way observably similar
action sequences and the refinement relation are defined, we have A ≤D,σ B when the premise of the proposition
holds.
o

We can then prove the induction step as follows:

Induction step of theorem T.6.1: At least one executable sentence in Aρ||Cσ
By observation O.6.2 the simple substitution theorem can be restated for the induction step as follows:

∀ δ , A, B, C, D, σ, ρ • RelNames(A, B, C) ∧ RelNames(C, D, A) ∧

δ ∈ Traces(Aρ||Cσ) ∧ A ≤Dσ,D,σ B ∧ C ≤Bρ,B,ρ D
⇒

(Aρ||Cσ, Bρ||C ∈ CSafe ∧ σ ∈ Bρ → Aρ ∧ Reliable(Aρ, Cσ, δ) ∧
∃ γ : Traces(Bρ||C) • δ ≤C',σ' γ ∧ (endColab(Aρ, Cσ, δ) ⇒ endColab(Bρ, C, γ)))

where σ' = prime(σ, δ , γ , Aρ, Bρ, C)

Assuming that δ is one of the longest action sequences in Traces(Aρ||Cσ) and the first action in δ is δ we
have:

A||Dσ α → A'||D' ∧ B||D β → B''||D'' ∧ Aρ||Cσ δ → A''||C'' ∧ Bρ||C γ → B'||C'

for some A', B', B'', C', D', D''

Let σ' = prime(σ, α , β , A, B, D) and σ'' = prime(σ, δ, γ , Aρ, Bρ, C) and ρ' = prime(ρ, γ , β , C, D, B)

If we can show:

(a) D'.Dom = D''.Dom ∧ B'.Dom = B''.Dom and

(b) σ' = σ'' and C'' ≡ C'σ' and A'' ≡ A'ρ' for all δ ≤C,σ' γ and α ≤D,σ' β and γ ≤B,ρ' β

then we can instatiate the instance hypothesis for some δ '' where #δ > #δ '' as follows:

RelNames(A', B'', C') ∧ RelNames(C', D', B') ∧

δ '' ∈ Traces(A'ρ'||C'σ') ∧ A' ≤D',D'',σ' B'' ∧ C' ≤B',B'',ρ' D'
⇒

(A'ρ'||C'σ', B'ρ'||C' ∈ CSafe ∧ σ ' ∈ B'ρ' → A'ρ' ∧ Reliable(A'ρ', C'σ', δ '') ∧
∃ γ ' : Traces(B'ρ'||C') • δ '' ≤C'',σ'' γ ' ∧ (endColab(A'ρ', C'σ', δ '') ⇒ endColab(B'ρ', C', γ ')))

where σ'' = prime(σ', δ '', γ ', A'ρ', B'ρ', C')

Since δ is one of the longest action sequences in Traces(A||C) and δ = δ & δ ' then the length of all possible

δ ' is less than #δ . Thus, this instance of the induction hypothesis shows A'ρ' ≤C'σ',C',σ' B'ρ'.

132

If we can show:

(c) ∃ γ : Traces(Bρ||C) • δ ≤C,σ' γ and

(d) Aρ||Cσ ∈ CSafe ∧ σ ∈ Bρ → Aρ ∧ Reliable(Aρ, Cσ) and
(e) that the premise of out instance of the induction hypothesis holds

then, by the conclusion of induction hypothesis, A'ρ' ≤C'σ',C',σ' B'ρ', and by lemma L.6.2.3 (observable
similarity of actions and refinement configurations) we can conclude:

Aρ ≤C,σ Bρ

Below some properties are shown in two cases10:
Case 1) the action δ is from a sentence in A and
Case 2) the action δ is from a sentence in C.

The shown properties are later used to prove (a) to (e).

1) δ.exe ∈ A
Lemma L.6.2.2 (observably similar actions and common derived configurations) gives:

∃ α : Traces(A||Dσ), γ : Traces(Bρ||C), β ∈ Traces(B||D) •

(1.1) δ ≤C,σ' γ ∧ δ ≤ A,ρ' α ∧ α ≤D,σ' β ∧ γ ≤B,ρ' β ∧

(1.2) prime(σ, α, β , A, B, D) = prime(σ, δ, γ , A, B, C) ∧

(1.3) prime(ρ, γ , β , C, D, B) = prime(ρ, δ, α, C, D, A) ∧

(1.4) ∃ A', B', C', D', B'', D'' •
Aρ||Cσ δ → A'ρ'||C'σ' ∧ A||Dσ α → A'||D' ∧ Bρ||C γ → B'||C' ∧ B||D β → B''||D'' ∧

(1.5) D'.Dom = D''.Dom ∧ B'.Dom = B''.Dom

2) δ.exe ∈ C
Lemma L.6.2.2 (observably similar actions and common derived configurations) where A takes the role of C etc.
gives:

∃ γ : Traces(Bρ||C), α : Traces(A||Dσ), β : Traces(B||D) •

(2.1) δ ≤A,ρ' α ∧ δ ≤ C,σ ' γ ∧ γ ≤B,ρ' β ∧ α ≤D,σ' β ∧ γ ≤B,ρ' β ∧

(2.3) prime(ρ, γ, β , C, D, B) = prime(ρ, δ, α , C, D, A) ∧

(2.2) prime(σ, α , β , A, B, D) = prime(σ, δ, γ, A, B, C) ∧

(2.4) ∃ C', D', A', B', D'', B'' •
Aρ||Cσ δ → A'ρ'||C'σ' ∧ Bρ||C γ → B'||C' ∧ A||Dσ α → A'||D' ∧ B||D β → B''||D'' ∧

(2.5) B'.Dom = B''.Dom ∧ D'.Dom = D''.Dom

Proof of (a):
Given by (1.5) and (2.5).

Proof of (b).
Given by (1.2), (1.4), (2.3) and (2.4)

10 It may seem like the proofs of the two cases are similar, and that there is some symmetry which could
make proving one of the cases unnecessary. However, by looking at the proof of lemma L.6.2.2 and by
noting that part 1.1 and 2.1 in lemma L.6.2.2 have two parts, and one part is used in case 1) and the
other in case 2), it should be clear that there is no such symmetry.

 Two different lemmas could be created, one for each case. However, to prove one case it is necessary to
also establish facts which must be proven for the other case. In other words, two lemmas, one for each
case would have to prove the same things, even if the lemmas' conclusions may differ. Therefore, a
single lemma is used to prove both cases, namely lemma L.6.2.2. The "unnecessary" part of the
conclusion for case 1) is the last part of part 1.1, namely δ ≤A,ρ' α and the "unnecessary" part of the
conclusion for case 2) is the first part of part 2.1, namely δ ≤A,ρ' α . This difference is due to the fact
that A and C and their associated actions change roles in the two cases.

133

Proof of (c):
Let γ = <γ> in (2.1). Then (1.1) and (2.1) shows δ ≤C,σ' γ .

Proof of (d):
The premise of the theorem gives

RelNames(A, B, C) which gives A.Dom ∩ C.Dom = Ø and
A ≤Dσ, D,σ B which gives σ ∈ B → A and
C ≤Bρ, B,ρ D which gives ρ ∈ D → C and B.Dom ∩ C.Dom = Ø

Then by proposition P.6.1 (reliable refinements ensure sage names and reliable substitutions for
specialised refinements) we have Aρ||Cσ ∈ CSafe ∧ σ ∈ Bρ → Aρ.

The premise of the theorem gives A ≤Dσ, D,σ B ∧ C ≤Bρ, B,ρ D which by observation 6.2 gives
A ≤D,σ B ∧ C ≤B,ρ D. By this and since we also have RelNames(A, B, C) and RelNames(C, D, A) the
proposition P.6.6 (specialised reliable refinements are reliable configurations) gives Reliable(Aρ, Cσ).

Proof of (e):
RelNames(A, B, C) gives A||C ∈ CSafe ∧ C.Values ∩ A.Dom ⊆ C.Values ∩ B.Dom.

The rules of action give A'||C' ∈ CSafe. By the rules of action, and since the actions are observably
similar, any new values in C' compared with C will be B'-names. We then have:

C'.Values ∩ A'.Dom ⊆ C'.Values ∩ B'.Dom
and then we have RelNames(A', B', C'). Similarly we have RelNames(C', D', B').

By lemma L.6.2.3 (observable similarity of actions and refinement configurations) we have
A' ≤D', D'',σ' B' ∧ C' ≤B', B'',ρ' D'.

We have then shown the induction base and the induction step for all cases and the theorem holds.
o

134

6.3 Replacing Configurations
The refinement relation is defined so that a refinement and its specification have similar observable behaviour
relative to a context of observing objects. It was defined for a system consisting of two components. In the
general case we may have more than two components. A nice property would then be that an observing context
of objects would observe similar behaviour when an arbitrary number of its collaborators were substituted with
reliable refinements.

For example there might be a system with three components, eg, B||D||F. Consider two configurations A and C
which are reliable refinements of B and D, respectively, ie, we have

A ≤D||F,σ B ∧ C ≤B||F,ρ D

where the substitutions are reliable substitutions. It would then be nice to be able to conclude that the
combination of the refinements, ie, Aρ||Cσ is a refinement of the combination of specifications B||D relative to
the last specification component F, ie, Aρ||Cσ ≤F,σρ B||D. This property is shown in the next lemma. A general
version of this lemma, where a system may have any number of components, is shown in theorem T.6.2.

Lemma L.6.3.1 Refinements are observably similar to parts of the observing configuration

∀ A, B, C, D, F, σ, ρ •

RelNames(A, B, C) ∧ RelNames(C, D, A) ∧
A ≤D||F,σ B ∧ C ≤B||F,ρ D ⇒ Aρ||Cσ ≤F,σρ B||D

Proof:
By definition of the refinement relation the conclusion can be restated

Aρ||Cσ||F, B||D||F ∈ CSafe ∧ σρ ∈ B||D → A||C ∧
Reliable(Aρ||Cσ, F) ∧ Reliable(Aρ||Cσ, Fσρ, δ) ∧
∀ δ : Traces(Aρ||Cσ||Fσρ) ∃ β : Traces(B||D||F) •

δ ≤F,σρ β ∧ (endColab(Aρ||Cσ, Fσρ, δ) ⇒ endColab(B||D, F, β))

By the premise of the lemma and the definition of the refinement relation we have:
A||D||F ∈ CSafe which gives A.Dom ∩ D.Dom ∩ F.Dom = Ø and SN(A||D||F) ∩ ON(A||D||F) = Ø

C||B||F ∈ CSafe which gives C.Dom ∩ B.Dom ∩ F.Dom = Ø and SN(C||B||F) ∩ ON(C||B||F) = Ø

RelNames(A, B, C) gives A||C ∈ CSafe which gives:
A.Dom ∩ C.Dom = Ø and SN(A||C) ∩ ON(A||C) = Ø

We then have
A.Dom ∩ C.Dom ∩ F.Dom = Ø and SN(A||C||F) ∩ ON(A||C||F) = Ø

which gives A||C||F ∈ CSafe. By the premise of the lemma and the definition of the refinement relation we also
have:

σ ∈ B → A and ρ ∈ D → C
Since the configurations have safe names, ie, they have non-overlapping domains, then we have

σρ ∈ B||D → A||C and Aρ||Cσ||F ∈ CSafe

B||D||F ∈ CSafe is given by A ≤D||F,σ B.

The premise of the lemma and the definition of the refinement relation also give:
Reliable(A, Dσ||Fσ) and Reliable(C, Bρ||Fρ).
This gives:

noExt(A) ∧ RelMethodLookup(A, Dσ||Fσ) ∧ RelIfSentence(A, Dσ||Fσ) ∧ RelMessageSend(A, Dσ||Fσ)
noExt(C) ∧ RelMethodLookup(C, Bρ||Fρ) ∧ RelIfSentence(C, Bρ||Fρ) ∧ RelMessageSend(C, Bρ||Fρ)

We then have:
noExt(A||C) and by proposition P.5.3.1 (reliable substitutions give same slots and preserve "No external
inheritance") we have noExt(Aρ||Cσ).
RelIfSentence(Aρ||Cσ, Fσρ) by definition of RelIfSentence and reliable configurations and substitutions.
RelMessageSend(Aρ||Cσ, Fσρ) by definition of RelMessageSend and reliable configurations and substitutions.

135

RelMethodLookup(Aρ||Cσ, Fσρ) by definition of RelMessageSend and reliable configurations and substitutions.

Since the configurations have non-overlapping domains and σρ ∈ B||D → A||C and Aρ||Cσ||F ∈ CSafe, this
gives Reliable(Aρ||Cσ, F).
The same arguments can be given for all derivations of Aρ||Cσ||Fσρ and we then have

Reliable(Aρ||Cσ, Fσρ, δ).

The premise of the lemma gives:

∀ α : Traces(A||Dσ||Fσ) ∃ β : Traces(B||D||F) •

α ≤D||F,σ β ∧ (endColab(A, Dσ||Fσ, α) ⇒ endColab(B, D||F, β)) and

∀ γ : Traces(C||Bρ||Fρ) ∃ β : Traces(B||D||F) •

γ ≤B||F,ρ β ∧ (endColab(C, Bρ||Fρ, α) ⇒ endColab(D, B||F, β))

For Aρ||Cσ ≤F,σρ B||D to hold we must show:

∀ δ : Traces(Aρ||Cσ||Fσρ) ∃ β : Traces(B||D||F) •

δ ≤F,σρ β ∧ (endColab(Aρ||Cσ, Fσρ, δ) ⇒ endColab(B||D, F, β))

Next we prove this by induction on the length of δ .

Induction base: #δ = 0
The lemma holds for this case if we can show:

endColab(Aρ||Cσ, Fσρ) ⇒ endColab(B||D, F) when A ≤D||F,σ B ∧ C ≤B||F,ρ D.

When endColab(Aρ||Cσ, Fσρ) we have by definition:

∀ δ ' : Traces(Aρ||Cσ||Fσρ) • δ '.exe ∈ Aσ||Cσ ⇒ δ ' ⊗ F

First we show that we have endColab(A, Dσ||Fσ) by induction on the length of the longest δ '.

Base : #δ ' = 0
We the longest action sequence from Aρ||Cσ is the empty action sequence, then the longest action
sequence from A will also be empty. We then have endColab(A, Dσ||Fσ).

Step: #δ ' = m

Induction hypothesis: we have endColab(A, Dσ||Fσ) when the length of the longest δ ' is shorter than m.

Assume δ ' = δ & δ ''. We have δ.exe ∈ A, δ ⊗ Cσ||Fσρ and endColab(A'ρ, Cσ||Fσρ), where A' is A
after δ, from definition of endColab(). The induction hypothesis then gives endColab(A', Dσ||Fσ). By
proposition P.6.4 we have some α from A in A||D||F where δ ≡ αρ . By observation O.5.4.4
(observability of observably similar actions) we then have α ⊗ D||F. This gives

endColab(A, Dσ||Fσ).

Similarly, because of symmetry, we can show that endColab(Aρ||Cσ, Fσρ) also gives

endColab(C, Bρ||Fρ).

We have then shown endColab(A, Dσ||Fσ) and endColab(C, Bρ||Fρ) for any length of the longest δ '.
From A ≤D||F, σ B we then have endColab(B, D||F) which gives:

∀ β : Traces(B||D||F) • β .exe ∈ B ⇒ β ⊗ D||F

and from C ≤B||F,ρ D we have endColab(D, B||F) which gives:

∀ β : Traces(B||D||F) • β .exe ∈ D ⇒ β ⊗ B||F

We then have ∀ β : Traces(B||D||F) • β .exe ∈ B||D ⇒ β ⊗ F

By definition we then have endColab(B||D, F) which shows that the induction base holds.

136

Induction step: #δ = n+1:

We consider the different cases for where the first action in δ comes from. Let δ be the first action in δ .
Because of symmetry between A and C it is only necessary to make the proof for the two cases δ.exe ∈ A and
δ.exe ∈ F. If we can show

∃ <β 1,..,βn> : Traces(B||D||F) • δ ≤F,σ'ρ' <β1,..,βn>
where σ' = prime(σ, δ, <β1,..,βn>, A, B, C||F) and ρ' = prime(ρ, δ, <β1,..,βn>, C, D, A||F)

then the induction hypothesis gives that we have δ ' ≤F',σρ β ' where δ ' is the rest of the action sequence δ

after the first action and β ' is the rest of β after the initial actions <β1,..,βn> and F' is the derived
configuration after δ.

Case 1) δ.exe ∈ A
Since δ.exe ∈ A, then proposition P.6.4 (reliability gives equal actions relative to a reliable substitution) gives
∃ α : action(Aρ||Cσ||Fσρ) • δ ≡ αρ'' where ρ'' = prime(ρ, δ, α, C, D, A||F). Then

∃ <β1,..,βn> : Traces(B||D||F) • α ≤D||F,σ' <β1,..,βn> where βi.exe ∈ B.
This gives <β1,..,βn-1> ⊗ D||F and α ≤D||F,σ ' βn. Cases by observability of α gives three cases: not
observable from D||F, observable from D, and observable from F:

Case α ⊗ F.

Then βn ⊗ F and also δ ⊗ F. This gives δ ≤F,σ'ρ' <β1,..,βn> and δ ≤F,σρ β holds for this case.
Case α ∈ obs(F)

Then βn ∈ obs(F) and also δ ∈ obs(F). We then have the following cases for the different kinds of actions
for observably similar α and βn actions and possible F-observable actions from execution of a sentence in
A:

(α ≡ e->o!x(q1,…,qm)/k ∧ β n-1 ≡ f->o!x(p1,…,pm)/k ∧ ∀ 1 ≤ i ≤ m • qi = piσ') or
(α ≡ e->(i.s:=k/o) ∧ β n-1 ≡ f->(j.t:=k/o) ∧ i,j ∉ F ∧ o ∈ F)

Since we have δ ≡ αρ'' the action δ for these cases will be:
δ ≡ e->o!x(r1,…,rm)/k ∧ ∀ 1 ≤ i ≤ m • ri = qiρ''
δ ≡ e->(i.s:=k/oρ')

This gives δ ≤F,σ'ρ' βn which gives δ ≤F,σ'ρ' <β1,..,βn> and δ ≤F,σρ β holds for this case.

Case 2) δ.exe ∈ F
We must then show:

∃ <β> : Traces(B||D||F) • δ ≡ βσ'ρ' where σ' = prime(σ, δ, β, A, B, F) and ρ' = prime(ρ, δ, β, C, D, F)
By definition of observably similar action sequences and observably similar actions we have that the sentence
which gave α in A||Dσ||Fσ will allow an action β in B||D||F such that

α ≡ βσ' where σ' = prime(σ, α, β, A, B, D||F)
Also, the sentence will give an action γ in C||Bρ||Fρ such that

γ ≡ βρ' where ρ' = prime(σ, α, β, C, D, B||F)
For each slot name in the executed sentence in F which gave δ we show that we have:
* (slot not found in Aρ||Cσ||Fσρ ⇒ slot not found in B||D||F) and
** (slot found in Aρ||Cσ||Fσρ and assume the value of the slot is i ⇒

a slot is found in B||D||F and the value is iσ'ρ')
Then we have that in the *-case both actions are error actions and in case ** we have δ ≡ βσ'ρ'.

Case slot not found:
Cases by where the slot in the executed sentence in F in B||D||F giving β is found. Because of symmetry we have
the following cases:

slot found in F or
slot found in B
Also because of symmetry we only consider cases with inheritance through B when the slot is found in
F in the cases below.
Case slot found in F without external inheritance:

Can not hold since we then would also find the slot in Aρ||Cσ||Fσρ.
Case slot found in F with external inheritance through B:

Can not have inheritance through A since noExt(A). Then no slot will be found in A||Dσ||Fσ and
we will not have α ≡ βσ'. This case will therefore never occur.

Case slot found in B:
Can not find the slot in A since no slot was found in Aρ||Cσ||Fσρ. Then no slot will be found in
A||Dσ||Fσ and we will not have α ≡ βσ'. This case will therefore never occur.

137

We then have δ ≡ f->error and β ≡ f->error which gives δ ≡ βσ'ρ' for this case.

Case slot found:
We denote the value from the different actions by i and a subscript naming the action where the value is found.
For example iδ denote the i-value in the action δ.
Cases by where the slot in the executed sentence in F in Aρ||Cσ||Fσρ giving δ is found. Because of symmetry
we have the following cases:

slot found in F or
slot found in Aρ

Also because of symmetry we only consider cases with inheritance through Aρ when the slot is found in F in
the cases below.
Case slot is found in F :

- no external inheritance: then
iδ ∈ A ⇒ iδ = iβσ'
iδ ∈ C ⇒ iδ = iβρ'
iδ ∉ A||C ⇒ iδ = iβ
this gives δ ≡ βσ'ρ'

- inheritance through A :
Can not have inheritance through A since noExt(A). Thus this case will never occur.

Case slot found in A :
- directly found in A: we then have iδ = iαρ' and :

iδ ∈ A ⇒ iα = iβσ' which gives iδ = iβσ'
iδ ∈ C ⇒ iα = iβ ∈ D and iγ = iβρ' ∈ C. This gives iδ = iβρ'
iδ ∉ A||C ⇒ iδ = iα = iγ = iβ. This gives iδ = iβρ'
We then have δ ≡ βσ'ρ' for this case.

- inheritance through C:
Can not have inheritance through C since noExt(C). Thus this case will never occur.

We then have δ ≡ βσ'ρ' for all possible cases which gives δ ≤F,σ'ρ' β and δ ≤F,σρ β holds for this case.

If we have endColab(Aρ||Cσ, Fσρ, δ) and δ ≤F,σρ β then because of safe names, reliable names and reliable

substitutions and all actions in δ which are hidden to Fσρ are from sentences in reliable configurations, we also

have endColab(B||D, F, β) and the lemma holds.
o

In the above case the system had three components. In the general case there may be more than three
components, but we still want the same property. This is shown in the next theorem. The theorem is formulated
for a system D ≡ D1||..||Dn, which plays the role of a specification and n configurations C1..Cn where
configuration Ci is a refinement of the specification component Di. For each specification component there is a
corresponding substitution, denoted σi, which substitute from Di names to Ci names.

Theorem T.6.2 The component combination theorem

∀ D1,..,Dn,C1,.., Cn : C, σ1..σn : Su •

(∀ i ∈ {1..n} • RelNames(Ci, Di, C-i) ∧ Ci ≤D− i,σ i
 Di)

⇒ ∀ i ∈ {1..n} • C-i σi ≤Di ,σ − i D-i

where σ is the substitutions σ1..σn
D ≡ D1||..||Dn and C ≡ C1||..||Cn
D-i denote all Dj except Di and
σ-i denote all σ except σi and
Cσ-i denote C1σ1 || ... || Ci-1σi-1 || Ci+1σi+1 || … || Cnσn

138

Proof:
To show the theorem we show that C-i σi ≤Di ,σ − i D-i holds for any i.

By applying L.6.3.1 (refinements are observably similar to parts of the observing configuration) letting A ≡ C1
and C ≡ C2 and F ≡ D3,..,Dn, the lemma concludes (to simplify the expressions below, the substitutions are
not included):

C1||C2 ≤D-{1,2} D1||D2

From the premise of the proposition we have ∀ i ∈ {3..n} • Ci ≤D− i,σ i
 Di . We can then apply L.6.3.1 once

more and let A ≡ C1C2, C ≡ C3 and F ≡ D4,..,Dn and get:

C1||C2||C3 ≤D-{1,2,3} D1||D2||D3

In this way we can re-apply L.6.3.1 until we have:

C1||..||Cn-1 ≤Dn
 D1||...||Dn-1

Similarly we can show this for any configuration Dj where j ∈ {1…n} since || by definition is associative, and
commutative and therefore the theorem holds.
o

Observation O.6.3 : Components can be combined arbitrarily and refinement is preserved
By the proof of theorem T.6.2 it is obvious that it can be shown that if we have:

∀ i ∈ {1..n} • RelNames(Ci, Di, C-i) ∧ Ci ≤D− i,σ i
 Di

then for any combinations of D-configurations, here denoted Dx, we have

C-x ≤Dx ,σ −x D-x

where Dx is some combination Di||Dj||..||Dk||Dl for i ≠ j ≠ k ≠ l etc. and D-x is all D except i,j,..,k,l and
similar for C-x.

From this we can conclude that when we replace any number of components with their reliable
refinements, the objects in the other configurations will not observe any difference in behaviours.

139

6.4 The General Substitutability
Theorem

The following theorem shows the general substitution proposition of chapter 1 for the reliable refinement
relation.

In theorem T.6.2 the observers in the conclusion were specification components, ie,
Di is the observer in ∀ i ∈ {1..n} • C-i σi ≤Di ,σ − i D-i.

Observation O.6.3 concluded from T.6.2 that any number of specification components may be substituted by
their reliable refinements while the remaining specification components do not observe any difference. In the
substitution proposition of chapter 1, the conclusion said that reliable refinements will not observe any
difference when any number of specification components are substituted with their reliable refinements. In this
last case it is the refinements which are the observers in the conclusion of the proposition. Theorem T.6.3 is a
reformulation of the substitution proposition using the reliable refinement relation and the difference from T.6.2
is that it has refinement components as observers in the conclusion, ie,

C-i are the observers in ∀ i ∈ {1..n} • Ci σ-i ≤C− i,σ i
 Di σ-i

Theorem T.6.3 The general substitutability theorem

∀ D1,..,Dn,C1,..,Cn : C, σ1..σn : Su •

∀ i ∈ {1..n} • RelNames(Ci, Di, C-i) ∧ Ci ≤D− i,σ i
 Di

 ⇒ ∀ i ∈ {1..n} • Ci σ-i ≤C− i,σ i
 Di σ-i

where σ is the combined substitution σ1..σn
D ≡ D1||..||Dn and C ≡ C1||..||Cn
D-i denote all Dj except Di and
σ-i denote all σ except σi and
Cσ-i denote C1σ1 || ... || Ci-1σi-1 || Ci+1σi+1 || … || Cnσn

Proof:
First we show that the substitutions can be applied in any order without changing the result. From
RelNames(Ci, Di, C-i) we have ∀ i ∈ {1..n} • Ci.Dom∩C-i.Dom = Ø. This gives:

∀ i ∈ {1..n} • C-i.Dom ∩ D-i.Dom = Ø
From ∀ i ∈ {1..n} • Ci ≤D− i,σ i

 Di we have ∀ i ∈ {1..n} • Ci.Dom∩D-i.Dom = Ø ∧ Di.Dom∩D-i.Dom = Ø.

Since σi ∈ Di → Ci and the object names in the configurations do not overlap, the substitutions can be
combined and the order of application can be changed without changing the result of applying a given
substitution to a name in the configuration.

The rest of the proof is done by induction on the number of components in the system, that is induction over n.

Induction Basis: There are two components in the system, ie, n=2. This is shown in theorem T.6.1.

Induction step: The system has n components where n > 2.
The induction hypothesis gives that the theorem holds for n-1 components.

Let the n-1'th and n'th component of a system with n components together form a component. We will then
have a system with only n-1 component. An example situation is shown in figure F.6.1. Here we have a system
which originally had four components (n = 4), but where the 3rd and 4th components are combined. This is
illustrated by the thick outline around component 3 and 4. The thickest arrows in the figure show which
collaborations are proven to be observably similar by the induction hypothesis when the third and fourth
components are combined into one component.

The general substitution theorem for n components where the configurations n-1 and n are combined is stated:

140

∀ i ∈ {1..n-2} • RelNames(Ci, Di, C-i) ∧ RelNames(Ci, Di, Cn-1 || Cn,) ∧
Ci ≤D− i,σ i

 Di ∧ Cn-1 || Cn ≤D−{n−1,n},σ n−1σ n
 Dn-1 || Dn

⇒
∀ i ∈ {1..n-2} • Ci σ−i ≤C− i,σ i

 Di ∧
 Cn-1 || Cn σ−{n-1,n} ≤C−{n−1,n},σ n−1σ n

 Dn-1 || Dn σ−{n-1,n}

When two components are combined, as expressed above, the induction hypothesis gives that the conclusions
hold, provided we can show the premise.

1

2

43

Figure F.6.1: Illustration of what is shown by the induction hypothesis when n-1=3 and n = 4. The 3'rd and 4th
components form together a component. This is illustrated by the box with the thick border.

The thickest arrows show which collaborations are assumed to be observably similar by the induction
hypothesis.

The premise holds because:

The definition of RelNames() ensures that all objects in the two configurations have unique names.
Then ∀ i ∈ {1..n} • RelNames(Ci, Di, C-i) gives

∀ i ∈ {1..n} • Ci||C-i ∈ CSafe ∧ Ci.Values ∩ C-i.Dom ⊆ Di.Values ∩ C-i.Values

This gives in particular:
∀ i ∈ {1..n-2} •
Ci||Cn-1, Ci||Cn ∈ CSafe ∧
Ci.Values ∩ Cn-1.Dom ⊆ Di.Values ∩ Cn-1.Values ∧
Ci.Values ∩ Cn.Dom ⊆ Di.Values ∩ Cn.Values

which gives
∀ i ∈ {1..n-2} • RelNames(Ci, Di, C-i) ∧ RelNames(Ci, Di, Cn-1 || Cn)

Next we have that ∀ i ∈ {1..n} • Ci ≤D− i,σ i
 Di gives

∀ i ∈ {1..n-2} • Ci ≤D− i,σ i
Di.

We then need to show Cn-1 || Cn ≤D−{n−1,n},σ n−1σ n
 Dn-1 || Dn from ∀ i ∈ {1..n} • Ci ≤D− i,σ i

 Di . The

premise of the theorem and lemma L.6.3.1 (refinements are observably similar to parts of the observing
configuration) where A ≡ Cn-1, C ≡ Cn and F ≡ D-{n-1,n}, gives:

Cn-1 ≤D−(n−1),σ n−1
 Dn-1 ∧ Cn ≤D−n,σ n

 Dn ⇒ Cn-1 || Cn ≤D−{n−1,n},σ n−1σ n
 Dn-1 || Dn

141

and then the premise holds. The conclusion then gives ∀ i ∈ {1..n-2} • Ci σ−i ≤C− i,σ i
 Di.

For the general substitution proposition to hold for n components, it must be shown that the n-1'st and n'th
configurations are refinements too. This can be illustrated as in figure F.6.2 where the thickest arrows show
which collaborations have to be proved observably similar for configuration 4. Similarly, the corresponding
collaborations have to be proved observably similar for configuration 3. This is expressed as

C3 ≤C-3 D3 ∧ C4 ≤C-4 D4

To prove the theorem we must then also show:

Cn-1σ-(n-1) ≤C−(n−1),σ n−1
 Dn-1σ-(n-1) ∧ Cnσ-n ≤Cn ,σ −n Dnσ-n

Because of symmetry between components numbered n-1 and n it is only necessary to prove observably
similarity for one of the configurations. The premise of the theorem gives Cn ≤D−n,σ n

 Dn. By the premise of

the theorem and theorem T.6.2 we have C-n ≤Dn ,σ −n D-n. We can then use theorem T.6.1 letting

B ≡ Dn A ≡ Cn D ≡ D-n C ≡ C-n

and conclude

Cn ≤D−n,σ n
 Dn ∧ C-n ≤Dn ,σ −n D-n

⇒ Cnσ-n ≤C−n,σ n
 Dnσ-n ∧ C-n σn ≤Cn ,σ −n D-n σn

This gives Cnσ-n ≤Cn ,σ −n Dnσ-n and then theorem holds.

1

2

4
3

Figure F.6.2: The thickest arrows show which collaborations have to be proven observably similar for
configuration 3 in order to prove the theorem for four components, given the induction hypothesis illustrated in

F.6.1.

o

We have now shown the general substitution proposition and thereby shown that the reliability requirements
from chapter 5 are sufficient to ensure reliable substitution. Chapter 7 shows that similar reliability requirements
are sufficient to show the substitution proposition for sequential object component systems.

142

6.5 Reliable Substitution
When we have reliable substitution, then any number of components can be substituted with their reliable
refinements while all other components will observe the same behaviour of the system. Let D be divided into
three sets of components, denoted Dx, Dy and Dz. Similarly we have Cx, Cy and Cz where the indexes of, eg,
Dx and Cx are equal so that Ci ∈ Cx ⇔ Di ∈ Dx. We can then express reliable substitution in an even more
general form then the general substitution proposition as follows:

Theorem T.6.4 The reliable substitution theorem

∀ D1,..,Dn,C1,..,Cn : C, σ1..σn : Su •

∀ i ∈ {1..n} • RelNames(Ci, Di, C-i) ∧ Ci ≤D− i,σ i
 Di ⇒ Cx σy ≤(CyDz)σy,σx Dx σy

Where
D1,..,Dn is divided into three sets, denoted Dx, Dy and Dz and
similarly C1,..,Cn is divided into Cx, Cy and Cz where the indexes of, eg, Dx and Cx are equal
so that

Ci ∈ Cx ⇔ Di ∈ Dx.
σy is a set of substitutions, one σi for each Ci in CyDz
A substitution σi in the set σy is applied to all components Cj and Dk where j ≠ i and k ≠ i.
σy is a set of substitutions, one σj for each Cj not in Cy.

Proof:
From observation O.6.3 (components can be combined arbitrarily and refinement is preserved) and the proof of
theorem T.6.3 we see that the theorem holds.
o

The theorem says that if Dx, ie, some arbitrary number of components, are substituted with their reliable
refinements Cx, then the other components, CyDz, will not observe any difference. The other components may
be both "old" components, here denoted Dz, or reliable refinements of old components, here denoted Cy.

This shows that the reliability requirements and the refinement relation with specialisation gives reliable
substitution. Chapter 8 shows some examples of how the properties which give reliable substitution can benefit
system development practices. Chapter 9 shows how reliable substitution is linked to composition and
decomposition properties of assumption/guarantee specifications.

143

6.6 A Library of Objects
The idea behind the substitution proposition was that each component could be substituted with a reliable
refinement while all other components will observe the same behaviour of the rest of the system. The price to
pay for this was that no object in one component could inherit from an object in another component or find a
method in another component. This means that a component can not be what is traditionally seen as a program
library. Typically an object will inherit shared data from a library and find methods there. For example, a
common library L is used both by a refinement of B and a refinement of D, ie, we would like to be able to
show:

The library proposition:

A||L ≤D,σ B ∧ C||L ≤B,ρ D ⇒ Aρ||L ≤C,σ Bρ ∧ Cσ||L ≤A,ρ Dσ

when A and C can inherit and find methods in L, ie, the reliability requirements NoExt(A), NoExt(C),
RelMethodLookup(A, L) and RelMethodLookup(C, L) do not hold.

The central proposition in showing the refinement relation, which is based in the reliability requirements, is
proposition P.6.4 "Reliability gives equal actions relative to a reliable substitution". This proposition shows:

∀ A, B, C, D, L, ρ, σ, δ •
RelNames(A||L, B, C) ∧ RelNames(C||L, D, A) ∧ A||L ≤D,σ B ∧ C||L ≤B,ρ D ∧

δ ∈ Traces(Aρ||L||Cσ) ∧ δ .exe ∈ A||L ⇒ ∃ α : Traces(A||L||Dσ) • δ ≡ αρ'

where ρ' = ρ + {k/l} when δ has the form a->i.s := k/oρ,
 α has the form a->i.s := l/o where o ∈ D and

 ρ' = ρ in all other cases

In this case all the reliability requirements have to hold for L, ie, we require:

NoExt(L, B||D), RelMethodLookup(L, B||D), RelMessageSend(L, B||D) and RelIfSentences(L, B||D)

Another central proposition is P.6.7 "Observably similar actions give a common derived configuration". This
shows an important property in order to be able to do the inductive proofs of the above theorems. However, from
the premise of the library proposition we do not know if L gets observably similar actions from, eg, C and D.
We would need to know that L gets observably similar actions to show that we have a common L' after actions
from Aρ||L||C and Aρ||L||D, ie:

δ ∈ Traces(Aρ||L||C) ∧ α ∈ Traces(A||L||D) ∧ δ ≤ A,ρ' α
⇒
∃ A' • A||L||Dσ α → A'||L'||D' ∧ Aρ||L||C δ → A'ρ'||L'||C'

There are two main alternatives which allow us to show that we have a common L'. Either we restate the library
proposition as follows, ie, require all L observed actions to be observably similar in the premise of the
proposition:

A ≤D||L,σ B ∧ C ≤B||L,ρ D ⇒ Aρ||L ≤C,σ Bρ ∧ Cσ||L ≤A,ρ Dσ
or

we require that there are no L-observable actions in any of the systems. Then L ≡ L' for all actions.

This latter alternative is perhaps the most common way to treat program libraries, typically sets of classes. This
is further discussed in chapter 8.

If it is assumed that no actions are observed by L, it is not necessary to require RelMethodLookup(L, B||D).
However, when A and C can inherit from L, it is necessary to require RelMethodLookup(A||L, D) and
RelMethodLookup(C||L, B) in order to be able to show properties as expressed in proposition P.6.4. Similarly
for no external inheritance and reliable if-sentences.

Reliable message sending from L is required if L itself executes sentences. It is more typical that a library only
keeps inactive methods, and the methods are only executed when they are copied into one of the components.
When there are no methods which are executed while they are part of the library, ie, there are no objects with
execution marks in the library, then there will be no message sending from the library. Then the reliable

144

message sending requirement will always be met. In practice it is then only necessary to require reliable message
sending from the components and not the library.

From the above discussions it can be concluded that traditional class libraries are reliable since they are not
changed or substituted during runtime.

145

CHAPTER 7

A Sequential Version of Omicron

As mentioned in chapter 3 there are basically two different ways to view the execution of a
sentence in a program. A sentence may be seen as an atomic operation to be performed, or as an
expression which is to be evaluated. Chapter 3 presented a version of the Omicron language with
atomic operation semantics. This chapter will present a version with expression evaluation
semantics.

The Omicron version with atomic operational semantics is called parallel Omicron since several
objects can execute in parallel. The Omicron version with expression evaluation semantics is
called sequential Omicron since only one object can execute at the time. This is modelled by only
having one execution mark in any configuration. The main difference between parallel and
sequential Omicron is that in sequential Omicron a sender of a message waits for a return before
it continues to execute. The return include a value: an object name. In contrast, in parallel
Omicron a sender of a message does not wait for a return, but continues to execute right after the
message is sent.

When the two alternatives are compared, it is clear that in many ways the atomic operation
semantics gives the simplest calculus. The simplest version is therefore chosen as the main
version and was presented in chapter 3, used in the discussions in chapter 5 on reliability
requirements and used when showing reliable substitution in chapter 6. The motivation behind
also presenting the sequential version of Omicron is to argue that the reliability requirements are
of the same kinds for both parallel and sequential object-oriented systems.

To avoid repeating what has been said in chapter 3 to 6, this chapter just concentrates on those
formal aspects of sequential Omicron which diverge from the definitions and proofs done for
parallel Omicron.

Section 7.1 presents the syntax and formal semantics of sequential Omicron.

Section 7.2 presents a definition of observable similarity which are of the same kinds as those
found in chapter 4.

Section 7.3 argues that the same reliability requirements are necessary for both versions of
Omicron.

Section 7.4 argues that the reliability requirements are equal for sequential and parallel Omicron,
and also for some other versions of Omicron which have been made to model different features of
object component systems and languages.

146

7.1 Syntax and Semantics
The syntax of sequential Omicron is a version of the syntax of parallel Omicron in chapter 3. The formal
semantics of sequential Omicron is defined by the same techniques as used to define parallel Omicron's formal
semantics in chapter 3.

The main difference between parallel and sequential Omicron objects is the semantics of the sentences. Parallel
Omicron has atomic action semantics while sequential Omicron sentences have expression evaluation semantics.
This means that sequential Omicron sentences are expressions which are evaluated to a value, ie, an object name.
There are five kinds of expressions:

- slot lookup - evaluates to the value of a slot
- message send - evaluates to the returned value
- clone - evaluates to the name of the new object
- if-test - v=w t f evaluates "if v = w then t else f"
- assignment - evaluates to the assigned value

Message sending in sequential Omicron is like a function call in that a sender waits for a return. The return
include a value: an object name.

The syntax is created to give a model of a sequential object-oriented configuration where there is a deterministic
choice as to which expression is executed. This is modelled by only having one execution mark in any
configuration.

7.1.1 Sequential Omicron syntax
The syntax of sequential Omicron is defined through the use of extended BNF. Terminal symbols are given in
bold font.

Configuration ::= Object*||

Object ::= name : (Slots, Body)

Slots ::= [,*SlotDef]

Body ::= ;
*exp | expression list

exeBody Body with execution or return marks

exp ::= name | slot lookup

name .name (,
*name) | Send message

name clone | the value of the exp is the name of the new object
 name = name name name | If-test: v=w t f =>"x := if v == w then t else f. ^x"

exp => name Assign the value of exp to the slot with name 'name'

exeBody ::= name* Mark { => name } ;
*exp

Mark ::= ReturnMark | ExeMark
ReturnMark ::= ?n
ExeMark ::= $n

SlotDef ::= SlotName → Val
Val ::= name | this
SlotName ::= name | :name | nameIIII | :nameIIII

name ::= { char+ }
char ::= a | … | z | A | … | Z | 0 | … | 9 | + | - | * | / | _ | :

147

The syntax is close to the syntax of parallel Omicron, with the most notable exceptions being the execution and
return marks and the assignment expression. The semantics is also very similar in the two versions of Omicron,
but parallel Omicron has an atomic action semantic for the expressions, while the sequential version has an
expression evaluation semantics. This is shown by the rules of action.

As hinted above, the execution and return marks in sequential Omicron are handled differently than the execution
mark in parallel Omicron. Each execution mark has an integer subscript. This is used to keep track of where to
return to after an object is finished executing and the execution mark has come to the end of the object's body.
Initially there must be one and only one object body with an execution mark $1 in a configuration. The
execution mark $1 defines where the execution is to start. Other system expressions are created by the transition
rules and should not be part of the initial configuration.

When a message is sent an execution mark is placed in the beginning of the body of the newly created method
object and the execution mark in the sender is replaced by a return mark. If the execution mark in the sending
object was $n, the execution mark in the new method object will be $n+1 and the return mark will be ?n. When
the execution mark is $n+1 and a return is made, the execution mark will be removed and the return mark ?n will
be replaced by an execution mark $n.

The meta functions for getting values from the Omicron expressions, what is called map notation in parallel
Omicron, is similar in sequential Omicron. This means that the function for selecting an object in a
configuration, eg, C(o), the slots of objects, eg, C(o).Slots, the body of an object, eg, C(o).Body, the owners of
a slot, eg, owner(C,o,s), assigning a value to a slot, eg, C(o:s:=j) etc. are defined as for the parallel version of
Omicron. The translation of these functions from parallel Omicron to sequential Omicron is intuitive since the
representations of slots and objects in a configuration are equal in the two versions of Omicron. The only
difference is the sentences / expressions in the bodies of the objects and these are not involved in the definitions
of these functions.

Syntactically correct configurations
A syntactically correct configuration is a configuration which could be derived at by using the syntax rules and
where each object has a unique name and where there is maximum one execution mark $n and the return marks
?1..?n-1. Also, any object-body has at most one execution mark or return mark.

7.1.2 Sequential Omicron Semantics
Definition: Transition and action

A transition is of the form:

A α → A'

Intuitively, this transition means that the configuration A can evolve into A', and in doing so performs the
action α. The set of all such actions is denoted A.

Sequential Omicron have more different kinds of actions than parallel Omicron in that there are there are six
types of actions a configuration can perform as opposed to four in the parallel version of Omicron. The kinds of
actions which can come from execution of a sequential Omicron system are:

e->o.s a lookup action from a sentence in the object named e:
the slot s in the object o is looked up

e->o.m(j)/k a message-send action from a sentence in the object named e:
 o gets the message m with j as a parameter, k is the name of the executing method

which is the result of the message
e->return(o, j) a return action from a sentence in the object named e where
 the value j returned to the object named o.
e->(o.s):=j an assignment action from a sentence in the object named e where

the slot s in the object e gets the value j
e->clone(k/j) a clone action from a sentence in the object named e where
 the object j is copied and given a new name k
e->error an error action from a sentence in the object named e.

The actions are described formally through a transition system found below.

The rules of action of parallel Omicron were not confluent, ie, the configuration resulting from applying a set of
transitions to a configuration may depend on the order in which the transitions are applied. This is in

148

correspondence with the intuition that the result of executing a parallel program depends on the execution order.
The transitions may also be applied to a configuration in any order, as long as the transition is legal by the
premises in the rules of action below. However, due to the way the execution and return marks are handled, the
rules of action are confluent since there is always only one or no rule applicable to a configuration.

Definition: Transition relation and rules of action

The transition relation, denoted α → , is the smallest relation between object configuration expressions
satisfying the below rules of action. All the names in the rules are meta-variables. Informal descriptions of the
rules are given before each rule.

We here consider a system e:(M, S1 $n sentence; S2) || C where S1 and S2 are sequences of sentences, possibly
empty. For the return rule the system is a little bit different in that the execution mark is the last element in the
body of the executing object. Note that || is ACI (Associative, commutative and has the empty configuration as
identity). The rules are given by transitions for the different kinds of symbols and expressions which may come
after an execution mark: slot value, message-send expression, end of body, assignment expression, if-
expressions, clone expression or none of the listed symbols or expressions.

Comments to the rules and actions:
Compared to the rules of action for parallel Omicron, the sequential Omicron rules change the derived
configurations more. In parallel Omicron, sentences were not changed since the only change to the body of the
executed object was the movement of the execution mark. In sequential Omicron, an executed expression is
replaced with the result of evaluating the expression.

All rules except the error rule have relatively weak requirements, requiring that the slots referred to in the
executed sentence have owners. In addition the rules make requirements on the values of the different slots. These
requirements depend on the kind of sentence they apply to. This is further discussed below.

There are six kinds of actions, while there are seven rules. This is because both the LOOKUP-rule and the test
rules give lookup actions. The test rules for evaluating if-expressions says that the result of executing such an
expression is three lookup actions.

The lookup rule:
The first rule defines how the simple expressions consisting of just a slot name is handled. The slot name
expression creates a slot lookup action of the form e->o.s where e is the object holding the slot lookup
expression, o is the name of the owner of the slot and s is the slot name. The rule is defined so that the value in
the specified slot replaces the slot name in the list of expressions and the execution mark is advanced to stand
behind the new value.

LOOKUP-rule:
@C(e:s)

 _

 e: (M, S1$n s; S2) || C e->o.s → e : (M, S1 j $n+1S2) || C

where j = C(e:s) and o = owner(C,e,s)

The message-send rule:
The next rule models message sending. The sending of a message gives a message-send action of the form e-
>o.m(p), where e is the name of the object with the executed expression, o is the object receiving the message
with selector m and parameters p . For this rule to be applicable there must be an object named o. o is denoted
the receiver of the message. Also, a slot named m must be found in the receiver and this slot must hold the name
of some object which has as many input slots as there are parameters in the message (# v = #t). This object is
copied and the copy is updated with the parameter values in the input slots (ie, the C(j).Slots[v → p] part).

The message rule replaces the original execution mark $n with a return mark ?n and inserts an execution mark
($n+1) into the new copy. The new execution mark gets a new value in its index (n+1) to control which return-
mark to return to. The message rule models that the sender will wait for a return.

149

MESSAGE-rule:
@C(e:t) ∧ C(e:s) ∈ C.Dom ∧ C(o:m) ∈ C.Dom ∧ #C(j).inputs = #t

 _

e: (M, S1 $n s.w(t); S2) || C e->o.m(p)/k˜ → e: (M, S1 ?n S2) || k: (C(j).Slots[v → p], $n+1 C(j).Body-$?) ||
C

where j = C(o:m), v = C(j).inputs, p = C(e:t), m = C(e:w), o = C(e:s) and k is a fresh name and

 C(j).Body-$? means that any existing execution or return mark is removed

The return rule:
This rule shows how return is done from an execution mark at the end of an object body to a return mark. When
the return rule is applied then a return action of the form e->return(o, j) is created. e is the name of the object
returned from, o is the name of the object returned to and j is the returned value. The object which is returned
from is changed into an object with no body, while the last value in the old body is placed in the position of the
return mark and an execution mark is inserted behind it.

RETURN-rule:
_

 _

e: (M, j1…jm $n+1) || o: (N, S1 ?n S2) || C e->return(o, j)m → e: (M,) || o: (N, S1 jm $n S2) || C

The assignment rule:
This rule models slot update. The assignment of a value to a slot gives an assignment action of the form e-
>o.s:=j, where e is the object where the executed expression is found, o is the owner of the updated slot, s is the
name of the updated slot and j the new value of the slot. The result of evaluating the assignment expression is
that the slot named s is updated to hold the value j. The value j replaces the assignment expression and the
execution mark is advanced passed this expression.

@C(e:s)
 _ _

e: (M, S1 j $n => s; S2) || C e->(o s):= j → (e: (M, S1 j j $n S2) || C) [e:s := j]

where o = owner(C,e,s)

The IF-test rules:
The below rules define tests of equality. If the test is true, the value of the third slot will be returned, and if false
the value of the last slot will be returned. All rules create three slot lookup actions. The rules only change the
internals of the executing objects' bodies.

IF-true rule:

@C(e:<v,w,t>) ∧ C(e:v) = C(e:w)
 _

e: (M, S1 $n v=w t f; S2) || C e->o .vv → e->o .ww → e->o .tt → e: (M, S1 j $n S2) || C

where j=C(e:t), ov = owner(C,e,v), ow = owner(C,e,w) and ot = owner(C,e,t)

IF-false rule:

@C(e:<v,w,f>) ∧ C(e:v) ≠ C(e:w)
 _

e: (M, S1 $n v=w t f; S2) || C e->o .vv → e->o .ww → e->o .ff → e: (M, S1 j $n S2) || C

where j=C(e:f), ov = owner(C,e,v), ow = owner(C,e,w) and of = owner(C,e,f)

150

The clone rule:
The next rule defines object creation by cloning. Object creation gives a clone action of the form e-
>clone(k/l), where e is the object where the executed expression is found and k / l means that an object named l
is copied and the new copy gets the name k. k is a new unique name within the configuration. The new object is
inserted into the configuration. The rule is applicable when the slot t holds the name of an object in C. A new
object is then created with the same definition as the referenced object. The clone expression is replaced with the
name of the new object.

@C(e:t) ∧ C(e:t) ∈ C.Dom

 _

e: (M, S1 $n t clone; S2) || C e->clone(k/l) → e: (M, S1 k $n S2) || k: C(l)-$? || C

where l = C(e:t) and k is fresh and
 C(l)-$? means that any existing execution or return mark is removed

The error rule:
When no other rules of action are applicable to an object which has an execution mark in its body, then an error
action is given. The error action has the form e->error where e is the name of the object holding the erroneous
sentence. The object named e is removed from the configuration. This models termination of the object.

 no other rule applicable to the first sentence in S2 _

e: (M, S1 $n S2) || C
e−>error → C

The informal requirement "no other rule of action is applicable to the first sentence in S2" can be replaced by a
set of rules with formal requirements. The rules in the set replacing the error rule would be equal to the premises
of the other rules except that the requirements would be negated and the actions would be error actions instead of
lookup, clone, return, assign and message-send actions.

Proposition P.7.1 : The rules of action preserve syntactic correctness
Applying a rule of action to a syntactic correct configuration gives a syntactic correct configuration.

Proof:
Done by cases for the different rules:

LOOKUP: The change in the object comply with executing body syntax
MESSAGE: The change in the object old object comply with executing body syntax and

the new object comply with the defined syntax.
RETURN: The returning object comply with object definition syntax and the changes in

the receiving object comply with executing body syntax
ASSIGN: The change in the object comply with executing body syntax
IF-rules: The change in the object comply with executing body syntax
CLONE-rule: The new object comply with object definition syntax and the change in the

old object comply with executing body syntax
ERROR-rule: The object with the erroneous sentence is removed. The resulting

configuration comply with configuration definition syntax.
o

7.1.3 Basic notations and definitions
This section gives some basic definitions and notations which are used when expressing properties of and
reasoning about sequential Omicron configurations. Some of the concepts have been defined in chapters 1 and 2,
and here they are defined specifically for sequential Omicron expressions. The following definitions are equal to
the notation and definitions of parallel Omicron given in chapter 3.

Definition: Sequences of transitions and actions: α → , α , α i

C α → C' denotes a sequence of zero or more transitions α1 → … αn → from C to C' as defined by
the rules of action and α i ∈ A.

151

Definition: Derivation of a configuration
The configurations derived by one or more transitions from a configuration C, are denoted the derivations
of C.

Derivations(C) = { C' | C * → C' }

The traces of a configuration are the sequences of actions derived from execution of a configuration. This can be
formally defined as follows:

Definition: The traces of a configuration

The traces of a configuration C is the set of all sequences of zero or more transitions α1 → … α n →
from C to some C' as defined by the rules of action and αi ∈ A.

Traces(C) == { α | ∃ C' : C α → C' }

We let α ∈ Traces(C) abbreviate < α > ∈ Traces(C).

The result of executing a sequential system is a possibly infinite sequence of actions. Therefore, in sequential
Omicron each action sequence in a system's traces will be equal to the head of some other action sequence in the
traces or it will be the longest action sequence in the prefix closed set. This is true because there will always be
only zero or one execution mark in any given configuration.

Definition: Description and execution parts of actions
an action is seen as consisting of two parts:

α = α.exe -> α.dcs
where α.exe is the name of the object where the executed sentence

 which gave the action was found and
α.dsc is the rest of the action - the description part of the action.

If α .exe ∈ C then C is said to be the owner of the executed sentence. It is also said that α is from
execution of a sentence in C, or just α from C.

7.1.4 Some properties of configurations of objects
The two next observations state properties which relate actions and derived configurations. They state different
aspect of the fact that equal actions give equal derived configurations. These properties are the same as for parallel
Omicron.

Observation O.7.1 : A derived configuration is uniquely determined by the action

When two transitions from the same configuration are equal then the result configurations are equal, ie,
the resulting configuration is uniquely determined by the action. This can be formally stated:

 C α → C' ∧ C α → C'' ⇒ C' ≡ C''

Observation O.7.2 : Each object is deterministic and gives equal derived configurations

When the exe-part of two actions from the same configuration are equal then they are actions from
execution of the same sentence. This is because there is only one sentence with an execution mark in
front of it in each object and then only one rule of action is applicable to an object with an execution
mark. Then the actions are equal and the transitions are equal. This can formally be stated:

C α → C' ∧ C β → C'' ∧ α .exe = β.exe ⇒ α ≡ β ∧ C' ≡ C''

This property implies that each object has a deterministic behaviour.

Next we show that no rules of action are applicable to a configuration with no execution marks and at least one
rule of action is applicable if the configuration has an execution mark. This shows that the rules of action may
be viewed as describing execution of Omicron systems in an appropriate way. First we formally define
termination by giving a definition of terminal configurations.

Definition: Terminal configurations
A configuration is terminal if there are no execution marks in any of the objects in the configuration. The
set of all terminal configurations is denoted CTerm.

152

Proposition P.7.2 A configuration is terminal iff no rules of action are applicable
C ∈ CTerm ⇔ Traces(C) = {<>}

Proofs:
Proof of ⇒ : Since $n is not in the body of any object in the configuration, then there are no actions from
execution of sentences in the configuration and then the traces of the configuration only include the empty action
sequence <> and the proposition holds.
Proof of ⇐ :
We show then when there are non-empty action sequences in Traces(C) then C is not a terminal configuration.
Since C ∉ CTerm then there exists one object with an execution marks in front of a list of sentences. It must
therefore have one of the following forms and then a rule of action is applicable:
Form Applicable rule
Ref expressions:
…$ns… - LOOKUP rule or ERROR rule
Send expression:

…$ns.w(t̃)… - MESSAGE or ERROR rule
Assignment expression:
… j $n => s … - ASSIGN rule or ERROR rule
End of object body expression:
… j1…jm $n > - RETURN rule or ERROR rule
If expression:
$n v=w t f - one of the IF-rules or ERROR rule
Clone expression:
$n t clone - CLONE rule or ERROR rule

Thus $n is in the body of some object in the configuration, and then the configuration is not terminal and the
proposition holds for this case.
o

7.1.5 Combined configurations
Below, the prime of a configuration is formally defined. This definition repeats some of what is defined in the
rules of action, in order to precisely describe what D' means. The definition is quite similar to the definition of
the prime of parallel Omicron configurations. The only difference is that the NewNames function refer to
sequential Omicron actions.

Definition: The NewNames function
Given an action sequence α and a set of object names O. We define the new names function to return the
set of names of all objects created by the actions in α and which are

- created by cloning objects in O, or created by cloning clones of objects in O,
or cloning clones of clones of objects in O etc. and

- method copies which are created when the receiver is an object in O or a clone of an object in O,
or a clone of a clone of an object in O etc.

The function is formally defined as follows:

NewNames(<>, O) == Ø

NewNames(<α> & α , O) ==

case α.dsc of
clone(k/o), o.m(p)/k : if o ∈ O then NewNames(α , O∪ {k}) ∪ {k}

 else NewNames(α , O)
otherwise : NewNames(α , O)

We let NewNames(α , D) abbreviate NewNames(α , D.Dom)

153

Definition: The prime of a configuration

The prime of D, denoted D', is defined relative to a configuration B and an action sequence β ∈
Traces(B||D). We define it as follows:

prime(D, B, β) == D' ⇔ B||D β → B'||D' ∧ D'.Dom = (D.Dom ∪ NewNames(β , D))

This notation is used in the rest of this thesis in order to denote derivations of the different parts of a
configuration.

Combinable configurations and visible object names are defined as for the parallel version of Omicron.

154

7.2 Observable Actions
This section defines and proves the same things for sequential Omicron as was defined for parallel Omicron in
chapter 4.

7.2.1 Observable and hidden actions
Definition: Observable Action

Given an action α and a configuration of objects C. The action α is observable from the configuration C
if the action change slots in an object in C, clone an object in C or is a message send to an object in C.
The actions observable from the objects in C is denoted obs(C) and is formally defined:

obs(C) =
{ e->o.s := j | o ∈ C } ∪
{ e->clone(k/j) | j ∈ C } ∪
{ e->o.m(p)/k | o ∈ C } ∪
{ e->o.s | o ∈ C } ∪
{ e->return(o, p) | o ∈ C } ∪
{ e->error | e ∈ C }

Given a configuration C, then obs(C) abbreviates obs(C.Dom). We say that, "α is observable from C"
when α ∈ obs(C). Similarly, "α is not observable from C" means α ∉ obs(C). Note that there are
observable actions α ∈ obs(C) where α.exe ∈ C, while there may also be actions where α.exe ∈ C such
that α ∉ obs(C).

Observable action sequences obs(α , C), hidden action α ⊗ D and silent action α ⊗ D are as defined for parallel
Omicron. There will be no difference in the definitions, except that for sequential Omicron the term obs(C) will
refer to the above definition instead of the obs(C) definition given in chapter 4.

Proposition P.7.2.1 Silent actions are hidden actions

∀ A, D, α:
α ∈ actions(A||D) ⇒ (α ⊗ D ⇒ α ⊕ D)

Proof:

Assume α ⊗ D and A||D α → A'||D'. We show that D' ≡ D and then by definition of hidden actions this
gives α ⊕ D.
Cases for the different kinds of actions α:

e->o.s : Since the action is not observable from D then o ∈ A
Since e ∈ A the executed sentence is in A and then D is not changed.

e->o.m(p)/k : Since the action is not observable from D then o ∈ A
Since the action came from a send sentence in A and the receiver is an A-object, the method-copy
will be placed in A by definition of primed configurations, and then there will be no change in D.

e->return(o i): Since the action is not observable from D then o ∈ A
Since e, o ∈ A the changes to execution and return marks only apply to objects in A and then D is
not changed.

e->o.s:=j : Since the action is not observable from D then we have o ∈ A
Since o ∈ A, the updated slot is in A, and then D is not changed.

e->clone(k/j) : Since the action is not observable from D then j ∈ A
Because the clone original is an object in A, then by the definition of primed configurations, the
new clone is placed in A and then D is not changed.

e->error : Since the action is not observable from D then e ∈ A
Since the action came from A, the terminated object is in A and this will not change D.

155

Proposition P.7.2.2 Hidden actions are silent actions except for trivial assignment

For all configurations A and D and action α where α ∈ Traces(A||D) and where α is not a trivial
assignment action, ie, where the slots in D get the same values as they had, we have that if α is a hidden
action, then α is a silent action, ie, we have :

∀ A, D, α • α ∈ Traces(A||D) ⇒ (α ⊗ D ⇐ α ⊕ D)

Proof:
We can then show that except for trivial assignment we have for all cases where α ⊗ D do not explicitly hold
we have D' ≠ D where ≠ denote textual inequality. This means showing

¬ (α ⊗ D) ⇒ ¬ (α ⊕ D)
This gives α ⊕ D ⇒ α ⊗ D. By definition of silent action we have

¬ (α ⊗ D) = ¬ (α.exe ∉ D ∧ α ∉ obs(D)) = α.exe ∈ D ∨ α ∈ obs(D)
We therefore show:

α.exe ∈ D ∨ α ∈ obs(D) ⇒ D' ≠ D where ≠ denote textual inequality.

If α.exe ∈ D then the execution mark is moved and we do not have D' ≡ D and then D' ≠ D.

Cases for different actions when α ∈ obs(D):
e->o.s : Since the action is observable from D then o ∈ D

Since o ∈ D the updated slot is in D giving D' ≠ D.
e->o.m(p)/k : Since the action is observable from D then o ∈ D

Since the receiver is a D-object, the method-copy will be placed in D by definition of primed
configurations, the new method copy will be added to D giving D' ≠ D.

e->return(o, i): Since the action is observable from D then o ∈ D
Since o ∈ D the changes to the return marks applies to an objects in D and then D giving D' ≠ D.

e->clone(k/j) : Since the action is observable from D then j ∈ D
Because the clone original is an object in D, then by the definition of primed configurations, the
new clone is placed in D giving D' ≠ D.

e->o.s:=j : Since the action is observable from D then o ∈ D
Since o ∈ D, the updated slot is in D giving D' ≠ D provided the value of o.s was different from j.

e->error : Since the action is observable from D then e ∈ D
Since the terminated object is in D this object is removed from D giving D' ≠ D.

o

7.2.2 Observable equality and refinements
Below the observably equal actions relation definition of chapter 1 is reformulated for Sequential Omicron
actions. This relation is similar to the observably equal actions relation for parallel Omicron, except that the
below relation is expressed for sequential Omicron actions.

Definition: Observable equality relative to a set of object names; ∼ O
Two object names, e,f, are observably equal relative to a set of object names O, denoted e ∼ O f, if:

- either both are equal
- or none of them are names in O

This can be formally defined:

e ∼ O f == e ∈ O ∨ f ∈ O ⇒ e = f

The definition of observable equality can be lifted to sequences of names as follows:

<e1,..,en> ∼ O <f1,..,fm> == n = m ∧ ∀ i ∈ {1..n} : ei ∼ O fi

An action α is said to be observably equal to an action β relative to a set of object names O, denoted α
∼ O β, iff α.exe ∼ O β.exe and α.dsc ∼ O β.dsc. This is formally stated:

α ∼ O β == α.exe ∼ O β.exe ∧ α.dsc ∼ O β.dsc

156

where observable equality of the description part of actions is defined as follows:

o.x(q)/k ∼ O p.y(p)/l == o ∈ O ∨ p ∈ O ⇒ <o, x, k> = <p, y, l> ∧ q ∼ O p)

o.s := i ∼ O p.t := j == o ∈ O ∨ p ∈ O ⇒ o.s = p.t ∧ i ∼ O j

clone(k/o) ∼ O clone(l/p) == o ∈ O ∨ p ∈ O ⇒ <o, k> = <p, l>

(o.s) ∼ O (p.t) == o ∈ O ∨ p ∈ O ⇒ o.s = p.t

return(o i) ∼ O return(p j) == o ∈ O ∨ p ∈ O ⇒ o = p ∧ i ∼ O j

error ∼ O error == true

The definition of observable equality of actions relative to a set of object names can be lifted to sequences
of actions as follows:

α ∼ O β == ∀ i ≤ #α • α i ∼ O βi

These observable sequential relations for parallel and sequential Omicron have the same properties with respect to
equivalence and concatenation properties. A refinement relation between sequential Omicron configurations can
be defined as the refinement relation for parallel Omicron:

Definition: Refinement relation; A ≤D B
Given two systems A||D and B||D. The configuration A is a refinement of B relative to D, denoted
A ≤D B, if the traces of A||D is a refinement of the traces of B||D relative to D. This can be formally
defined as follows:

∀ α : α ∈ Traces(A||D) ∃ β : β ∈ Traces(B||D) ∧

α =D' β ∧ (endColab(A, D, α) ⇒ endColab(B, D, β))

where also observably equal action sequences α =D' β and the endColab()-function is defined equally
for the two versions of Omicron.

157

7.3 Reliability Requirements
This section argues that the same reliability requirements are necessary for both parallel and sequential Omicron.
All the examples of chapter 5 do not show properties which are particular to the parallel properties of parallel
Omicron. Instead they are related to properties which are common to both the sequential and parallel versions of
Omicron. To avoid repeating examples and text from chapter 5 here in this section, this section refers heavily to
what is written in chapter 5. The subsections are named and listed in the same order as in chapter 5):

Name substitutions:
Name substitutions apply to configurations in parallel and sequential Omicron in corresponding ways. The
problem with substitution of slot names will be equal in both versions of Omicron. Therefore the definition of
safe names in sequential Omicron configurations will be similar to the definition for parallel Omicron. The only
difference will be that the definition will refer to sequential Omicron sentences instead of the parallel Omicron
sentences used in the definition in chapter 5. This will lead to reliable substitutions applied to configurations
with safe names having the same properties as observed in chapter 5.

Cases with external inheritance
The examples in section 5.3.1 used inheritance and input slots together with message sending to illustrate
problems with reliability when there is external inheritance. Inheritance and message sending is found in both
versions of Omicron. We can therefore conclude that the requirement "no external inheritance" is also a reliability
requirement for sequential Omicron. The formal definition of this requirement, in particular the noExt()-function
will be equal for both versions of Omicron.

Cases with if-sentences
Assume that we have the following case where we have an if-sentence in a method in C:

B = b1 : ([m->p],) || p : ([],) ||
b2 : ([],)

A = a : ([m->p],) || p : ([],)

D = d : ([s->b1, t->b2, w->m], $ s.w();)

C = c : ([s->b1, t->b2, w->m, x->q], $ s=t x s => s; s.w();) ||
q : ([m->r],) ||
r : ([],)

The substitution:
σ = {a/b1} {a/b2}

is used to specialise C and D for combination with A, and the configurations fulfil the reliability requirements of
all previous sections in this chapter.

When executing the configurations we then get the actions and action sequences reusing the conventions for α,

β, γ and δ from chapter 5 except the reliable if-sentence requirement:
α = < d->a.m() >
β = < d->b1.m() >
γ = <c->p.s, c->p.t, c->p.s, c->p.s:=b2, c->b2.m() >

δ = < c->p.s, c->p.t, c->p.x, c->p.s:=q, c->q.m() >

In γ we have the action c->c.s:=b2 because b1 ≠ b2 and then c.s get the value of s which is b1.

In δ we have the action c->c.s:=q because a = a and then c.s get the value of x which is q.

We then have δ ≤C γ , γ ≤B β and α ≤D β, but we do not have δ ≤A α. To avoid situations such as this we
must require that every if-test in C will give the same result both when combined with A and B. This must also
hold for derivations of C from A||Cσ and B||C.

 We then see that even though the semantics for if-sentences in parallel Omicron and if-expressions in sequential
Omicron are quite different, the problems related to reliability are the same. In the example in chapter 5, the
critical expression was the if-sentence with a following message-send expression which resulted in an unreliable
observable action due to the unreliability of the if-sentence:

158

s := (s=t x y); s.w();

In sequential Omicron, and in the example above, this corresponds to:

s = t x y => s; s.w();

Both versions will result in the s-slot getting a new value depending on the result of the if-test The problem is
related to the value of the s-slot after the execution of the if-sentence/expression, and the problem is then similar
in both cases. We will therefore have the same reliability requirements associated with if-sentences/expressions
in both cases.

From this we can conclude that the same reliability requirements on reliable if-sentences is necessary for both
parallel and sequential Omicron. The formal definition of reliable if-sentences in the sequential version of
Omicron is done as follows:

RelIfSentence(C, B) ==
 ∀ i : C, ∀ v, w : N •

(∃ t, f, v, w, s S1, S2 •
C(i).Body ≡ (S1 $n v=w t f => s; S2) ⇒

(C(i:t) ≠ C(i:f) ∨ C(i:v) ≠ C(i:w)) ⇒ (C(i:v) ∉ B ∨ C(i:w) ∉ B)

Case with message not understood errors
The example in section 5.3.3 only used message sending to illustrate problems with reliability and errors from
execution of message-send sentences. Corresponding message send errors can also occur in sequential Omicron.
We can therefore conclude that the requirement "reliable message sending" is also a reliability requirement for
sequential Omicron and it is formally written:

RelMessageSend(A, D) ==
∀ i ∈ A : ∀ t, w:
((∃ S1, S2, p :

A(i).Body ≡ S1 $n t.w(p); S2) ∧ A(i:t) ∈ D) ⇒ D(A(i:t):A(i:w)) ∈ D

Cases with external methods
The example in section5.3.4 used inheritance slots and message-send actions which are found in both versions of
Omicron. We can then conclude that the requirement "reliable method lookup" is also a reliability requirement
for sequential Omicron and its formal expression is similar for both versions of Omicron.

Cases with slot names as parameters
This example only used message sending which is found in both versions of Omicron. We can therefore conclude
that the reliability requirements associated with slot names as parameters also apply to the sequential version of
Omicron.

Cases with observably equal names as parameters
As in previous examples, this example used input slots and message-send actions which are found in both
versions of Omicron. We can then conclude that it is necessary to make a stronger requirement on names than
that the names are weakly equal. For parallel Omicron we defined an observably similar actions relation relative
to a reliable substitution. This we must do for sequential Omicron as well in order to define a reliable refinement
relation. We define this relation as follows:

Definition: Observably similar actions relative to a substitution; α ≤O,σ β
Given a set of object names O and a substitution σ which is reliable relative to the set of object names O,
denoted, RelSubst(σ, O), we define observable similarity as follows:

o.x(q)/k ∼ O,σ p.y(p)/l == o ∈ O ∨ p ∈ O ⇒ <o, x, k> = <p, y, l> ∧ q = pσ)

o.s := i ∼ O,σ p.t := j == o ∈ O ∨ p ∈ O ⇒ o.s = p.t ∧ i = jσ

clone(k/o) ∼ O,σ clone(l/p) == o ∈ O ∨ p ∈ O ⇒ <o, k> = <p, l>

(o.s) ∼ O,σ (p.t) == o ∈ O ∨ p ∈ O ⇒ o.s = p.t

return(o, i) ∼ O,σ return(p, j) == o ∈ O ∨ p ∈ O ⇒ o = p ∧ i = jσ

159

error ∼ O,σ error == true

α ∼ O,σ β == α.exe ∼ O β.exe ∧ α.dsc ∼ O β.dsc

Compared to the definition of observably similar actions we here have q = pσ instead of q ∼ O p and i = jσ
instead of i ∼ O j .

Note that this relation is not an equality relation as it is not commutative in that
we do not have α ∼ O,σ β ⇒ β ∼ O,σ α

This is because we will not necessarily have q = pσ ⇒ p = qσ.

Observably similar action sequences and the refinement relation with specialisation for sequential Omicron
configurations are also defined as for parallel Omicron. In the definition of the relation we use the following
notation:

α /obs&exe(O) where obs&exe(O) = obs(O) ∪ { α | α.exe ∈ O}

This denotes a sequence of actions which consists of all the action in α which are O-observed and/or from O and
where the actions are found in the same order as in α .

Definition: Observably similar action sequences relative to a substitution; α ≤O,σ β

An action sequence α is said to be observably similar to an action sequence β relative to a set of object

names O and a substitution σ, denoted α ≤O,σ β , if the following holds:

α ≤O,σ β == α /obs&exe(O) ≈O,σ β /obs&exe(O)

where α ≈O,σ β == ∀ i ≤ #α : if α i ∈ obs(O) then α i ∼ O,σ βi else α i = βiσ

For sequential Omicron we also use the abbreviations α ≤O,σ β for <α> ≤O,σ β and α ≤O,σ β for
<α> ≤O,σ <β>.

The Reliable()-function used in the below definition of refinement with specialisation is defined as the
corresponding function for parallel Omicron.

Definition: Refinement relation with specialisation; A ≤D,σ B

Given configurations A, B, D ∈ C and a substitution σ. We define a binary relation called a refinement
relation with specialisation, denoted A ≤D,σ B, as follows:

A ≤D,σ B == ∀ α : α ∈ Traces(A||Dσ) ∃ β : β ∈ Traces(B||D) ∧

 A||D, B||D ∈ CSafe ∧ σ ∈ B → A ∧ Reliable(A, Dσ, α) ∧

α ≤D',σ' β ∧ (endColab(A, Dσ, α) ⇒ endColab(B, D, β))

where D' = prime(D, A, α) and σ' = prime(σ, α , β , A, B, D)

and a prime substitution relative to sequential Omicron configurations and actions is defined as follows (the only
difference from the previous definition is the change from parallel Omicron clone action to sequential Omicron
clone action):

160

prime(σ, α, β, A, B, D) ==
 case α , β of

 e->clone(k/i), f->clone(l/j) : if o ∈ D ∧ i,j ∉ D then σ + { k / l } else σ
 e->o.m(p1…pn)/k, f->o.m(q1…qn)/k : if o ∈ D then σn else σ
 otherwise σ

where σn is defined as follows:
σ0 = σ

and for i ∈ {1..n}
σi = if qi ∉ keys(σi-1) ∧ qi ∈ B ∧ pi ∈ A then σi-1 + {p i / qi} else σi-1

prime(σ, α, <β1…βn>, A, B, D) == if n = 0 then σ else
prime(prime(σ, α, <β1…βn-1>, A, B, D), α, βn, A, B, D)

prime(σ, <α1…αn>, β , A, B, D) == if n = 0 then σ else

prime(prime(σ, <α1…αn-1>, β , A, B, D), αn, β , A, B, D)

161

7.4 Discussion

7.4.1 Sufficiency of reliability requirements for
sequential Omicron

No part of the proofs of the substitution proposition for parallel Omicron will be different if it was assumed that
there is only one execution mark in any configuration, creating a deterministic system - as is the case in
sequential Omicron. Also, from the above discussion it is evident that the reliability requirements do not have
any relation to the parallel properties of the configurations expressed in parallel Omicron. It can therefore be
assumed that the same kinds of requirements are necessary in a sequential configuration with deterministic
selection of which expression to execute as in parallel configurations with non-deterministic selection of
expressions to execute. The only difference in requirements is that return values have to be taken into account.
This difference is not major in that the return values must be considered in the same way as parameters to
messages in order to ensure reliable substitutions.

No formal proofs are given for the necessity and sufficiency of the reliability requirements for sequential
Omicron. This is left for further study. However, the above observations indicate that such proofs can also be
done for the sequential version of Omicron and that the reliability requirements will be necessary and sufficient
also for sequential Omicron.

To see relations between reliability requirements it would also be interesting to define a translation from
sequential to parallel Omicron. If the reliability requirements are similar, it should be possible to show that
when the reliable refinement relation hold between the parallel Omicron versions of the configurations then this
implies that a reliable refinement relation will hold between the sequential Omicron versions of the
configurations as well.

7.4.2 Reliability requirements for other versions of
Omicron and similar languages

To make Omicron more user friendly, ie, make it easier to translate from an object-oriented programming
language or design notation to Omicron, a new version of Omicron could be created. The author has created
several versions of Omicron which include statements commonly found in object-oriented languages and
notations. Examples are:

- syntax for defining block-objects directly in sentences,
- automatic assignment of self-variables in methods

(similar to how it is done in, eg, Smalltalk and SELF, C++, Java and others),
- system defined object names so that the programmer need not define object names.

When such versions of Omicron exist, then the same rewriting from the higher level language to the more
primitive Omicron does not have to be done for each translation of a new language or notation. Instead the
higher level Omicron can be used as a common formal language. However, for all the tested languages, it was
always possible to translate to the parallel version of Omicron.

As the above discussion argues, and as have been seen by studying different versions of Omicron not presented
here, it seems like the reliability requirements will be similar as long as the language and refinement relations
model the object component concepts presented in chapters 1 and 2. The important properties which lead to the
necessity for the reliability requirements are:

- objects as entities where the state and the name of the object is separated and where an object has
 an independent existence, typically existence independently of method executions (and function calls)

- message sending, where the receiver is an object and where the method to execute is decided at
 runtime, ie, there is dynamic binding

- object names as parameters in messages so that the collaboration structure of the objects can
 change during execution of the system

- inheritance between objects where the inherited elements can change during execution of the system

162

- if-sentence-like expressions where object behaviour depend on similarity of object names

The three first properties in combination gives the requirements on visible object names and the "reliable method
lookup" and "reliable message-send" requirements. The inheritance properties gives the "no external inheritance"
requirement, while the last properties gives the "reliable if-sentence" requirement.

It seems to be true that the reliability requirements of chapter 5 must hold for configurations expressed in all
object-oriented languages and therefore language notation is not a major concern to us.

163

CHAPTER 8

How to Make

Reliable Specifications

and

Reliable Refinements

This chapter has two purposes. One is presenting examples of how the work presented in
this thesis can be used to give theoretic support to more informal work such as published
advice for designing components, examples of Framework designs and practical solutions
to implementing components. The other is presenting new practical advice for designing
components. When the advice is used, we can hope to get more efficient development
processes, easier maintainable systems and less errors in users' systems.

In the introduction chapter of this thesis, it was said that if the reliability requirements
correspond to what is considered good practice among experienced object component
system designers, this will be an indication that the presented formalisation captures
important aspects of OCS design. Examples of "good practice" can be found in existing
libraries of reusable components and to some extent in the design of object-oriented
programming languages. "Good practice" are also described in various papers and books.

This chapter presents correspondences between the theoretically founded reliability
properties and the practitioners view of good design practice. In this chapter the
correspondences are shown by reformulating the theoretically expressed reliability
requirements of chapter 5 to advice for making reliable refinements and reliable
specifications. These advice are then compared to related work, ie, advice and practical
solutions used by component designers.

One conclusion is that there are many similarities between the presented theoretic work
and related practical advice. Another conclusion is that there are also some reliability
requirements which are not covered by "good practises". This is in line with the findings
that the component designers definition of "similar components", as presented in chapter
4, does not have the properties expressed by the substitution proposition. A third
conclusion is that quite a lot of further theoretic and practical work is necessary to ensure
reliable refinements in a general, practical case. However, there are also some simple
lessons to be learned which can help create reliable systems and which should be easy to
incorporate into existing development methods and OCS design practises.

Further details on the structure of this chapter are given in section 8.1: Overview of the
chapter.

164

8.1 Overview of the Chapter
The following sections present the various reliability requirements and their practical consequences. The sections
also present published advice for designing components, examples of Framework designs and practical solutions
to implementing components. For most of the reliability requirements there are such existing work which draw
conclusions similar to the practical consequences of the reliability requirement. The reliability requirements also
introduce new properties which components must satisfy in order to get reliable substitution.

The reliability requirements can be used to give theoretic support for arguing that following many of the
previously published advice and practical solutions actually enhances OCS design. An interesting thing to note
in this relation is that the conclusions from existing work are not drawn as the result of theoretic reasoning.
Instead they are the results of decades of practical experience with developing object component systems. This
similarity in conclusions from the presented theoretic work and from practical experience can be seen as an
indication that the Omicron framework and the substitution proposition capture and formalise important
properties of OCS design practises.

If it is assumed that important OCS properties are captured by the presented formalisation, it can also be
assumed that those theoretic rules which do not correspond to existing work, also could be useful in practise.
Therefore, this chapter also presents new advice for how to specify and implement components based on the
reliability requirements. It can then be hoped that this advice can be used to enhance methods and tools so that
they give better support to developers of object component systems.

The advice is related to making reliable specifications and reliable refinements. A reliable specification was
defined in chapter 1 as follows:

We define the term reliable specification to cover the class of component descriptions for which
it is possible to make reliable refinements.

Reliable refinement was also defined in chapter 1:

We also say that when A ≤D B, ie, A is a refinement of B relative to D, and the refinement relation
is reliable, then A is a reliable refinement of B.

The relation is reliable if the substitution proposition can be shown for the relation. The substitution
proposition in the most simple form, says that if there is a system specification consisting of two parts, eg,
B||D and:

the component A is a refinement of B relative to D, ie, A ≤D B and
the component C is a refinement of D relative to B, ie, C ≤B D

then we want the systems A||C and A||D to have the same A-observable behaviour, and likewise, the systems
A||C and B||C to have the same C-observable behaviour. This can be stated:

A should have similar observable behaviour to B relative to C, ie, A ≤C B and
C should have similar observable behaviour to D relative to A, ie, C ≤A D

Then the system A||C will not have any unanticipated effects or erroneous functionality when compared to B||D.

Section 8.2 presents a new and important advice for making reliable specifications. The advice says that a
reliable specification must define the maximum number of visible objects any reliable refinement can have. A
specification must also define how the visible objects are used. This means describing which parameters in
which observed messages can hold the names of the visible objects. This advice is a consequence of the
requirements on reliable substitutions and the requirement that observably similar actions must have equal object
names relative to a reliable substitution.

In section 8.3 each subsection restates one of the reliability requirements for reliable refinements. Instead of
using Omicron concepts, the requirements are restated using the more common concepts of classes, objects and
methods. This will hopefully help readers who are not experienced in mathematical formalisms and/or very
simplified object-oriented prototype based languages. For the benefit of the less mathematically inclined readers,
this chapter also gives some intuition on why the requirements are necessary. However, a proof for the
requirements' necessity and sufficiency can not be given without the mathematical rigour of the previous
chapters.

165

Section 8.3 also presents some new, not previously published, advice on how to make reliable refinements.
These are: message selectors should not be parameters in messages to a component's context and a component
should not compare the values of variables holding names of objects in the context.

Section 8.4 discusses the use of class names in object component systems. The conclusions are that classes as
parameters in observed messages should be treated as visible objects, and class names in the code should be
treated as possibly shared variables.

Section 8.5 discusses how to get reliable substitution in practise. The first subsection sums up the requirements
for making reliable refinements, while the second subsection presents advice for making reliable specifications.
Then comes a subsection discussing how to make correct specifications, as opposed to reliable specifications.
The following subsection makes some comments on how to check that a component is a reliable refinement of a
reliable specification. The conclusion from this section is that there is a lot to be done before there are practical
tools for helping developers ensure that they have reliable substitution of components. However, results such as
the reliability requirements and the definition of the reliable refinement relation, must be available before such
tools can be made. The results of this thesis can therefore be viewed as a small, necessary first step in the
process of making such tools.

Section 8.5 ends by summing up some of the most important lessons learned in relation to practical use of the
results of this thesis.

166

8.2 Controlling Visible Object Names
The reliability requirements introduce new knowledge into the OCS component design. This section presents
new and important advice for making reliable specifications and refinements.

The new advice presented in this section stems from the requirements which together say that it is necessary to
control the number of visible objects in a component. This knowledge can be used in relation to designing and
specifying object components.

The visible objects in a component are those objects in the component of which other components has
knowledge, eg, pointers or references to.

8.2.1 Reliability and visible object names
The definition of observably similar actions says that when an action α from a possible refinement component
is observably similar to an action β from a specification, then the object names in α are equal to the names in β
relative to a reliable substitution. This is written: α = βσ. This means that the object names in the two actions
are either equal, or the substitution σ replace a name in β with the corresponding name in α.

The practical consequence of this is that a reliable refinement must have no more visible object names than the
specification. In addition, the visible object names have to be introduced to the observing component by the
observably similar message-send actions and in the same parameter positions. When making a reliable
refinement, it must also be described how each of the visible objects in the specification is replaced by an object
in the refinement.

Applying this requirement to the example of chapter 4, means that if MyModel is to be a reliable refinement of
TextModel then MyModel can not have more visible objects than TextModel. However, MyModel may have
fewer visible objects than TextModel.

This requirement might seem quite different - or even contrary to - how refinement in the form of more detailed
implementations, are done. When making more detailed implementations it is common to add new collaborators
to an object. However, it is quite safe to add new collaborators to the objects of a component when making a
reliable refinement, but it is unreliable to make any new collaborator visible to the rest of the system. In other
words: a reliable refinement can have more objects than its specification. However, the number of visible objects
must not exceed that of the specification.

To support reliability, a reliable specification of a component must describe the maximum number of visible
object names of the component and which are known to other components. A reliable specification must also
describe how the visible object names are used in actions observable from the component's collaborators. For
each component in the system, the specification must also describe which visible objects are initially known to
the component's context.

The intuitive understanding of the requirement on reliable specifications, is that the maximum number of visible
objects must be known so that a programmer can use the correct number of different variables to hold references
to the different objects and thereby distinguish correctly between them. If a correct distinction is not made, it is
not predictable which objects gets which messages.

One way of explaining why a reliable refinement must have no more visible objects than a specification is as
follows: If a component has more visible objects than a given specification, there might be too few variables in
a refinement of the component's context. When there are too few variables, the different visible objects are not
distinguished. Then, when a component is inserted with more visible objects, this can cause errors when an
object in the component gets a message some other objects was intended to get.

A similar way of explaining why a reliable refinement may have fewer visible object than a specification is as
follows: If there are fewer visible object names from a refinement, there will maybe be variables in the context /
context's refinement which hold the same object name. However, this does not create any problems in relation to
distinguishing between the different visible objects.

An example of unreliability when the number of visible objects is not known:
Assume that there are more visible objects in MyModel than in TextModel. Relative to TextEditor, MyModel
and TextModel have observably equal behaviour. When TextEditor collaborates with MyModel, TextEditor gets

167

to know of more visible objects from TextModel. We also have that NewTextEditor is a refinement of
TextEditor and has similar observable behaviour as observable from TextModel.

The names of the visible objects are stored in slots in TextEditor and in NewTextEditor. May be NewTextEditor
has the same number of slots to store visible object names in as there were visible object names in TextModel.
Then, when MyModel starts sending more visible object names some of the slots are reused. How these slots are
used is not specified by NewTextEditor's observable behaviour relative to TextEditor. It is therefore no way to
show properties of NewTextEditor's behaviour when it collaborates with a component with more visible objects
than TextModel.

 Another simple, but extreme example of this is: assume that you have tested a component with a collaborator
with a finite set of visible objects. Then you replace the collaborator with a new one with infinitely many
visible objects. The component may then use up all available memory and the system stops. This is a different
observable behaviour than the component displayed when collaborating with a collaborator with a finite set of
visible objects. The difference in behaviour is caused by the new collaborator having more visible objects than
the first one had.

The bottom line is that the number of and use of visible objects from a component must be specified and under
control. If not, components may display unanticipated behaviour when combined.

8.2.2 Related work
This section presents related work on specification of visible objects. It first presents two patterns concerning the
control of visible objects. Then the law of Demeter is presented, which says that each component should only
have one visible object. Next, various software engineering methods are presented.

Facade and Mediator patterns:
The problem with components consisting of many visible objects has also been the focus for some of the
patterns in the book on Design Patterns. As the visible objects requirement has not been known, the tackling of
such problems have been given some simple solutions, namely reducing the number of visible objects to one.
This is done in the Facade pattern.

The Mediator pattern is also concerned with visible objects. It describes how a component's dependency on a
particular number of visible objects can be reduced by creating a single object which all other objects
communicate through. The Mediator Pattern is described as follows:

"Define an object that encapsulates how a set of objects interact. Mediator promotes loose coupling by
keeping objects from referring to each other explicitly, and it lets you vary their interaction
independently."

Keeping objects from referring to each other explicitly means that the objects' reliability on a particular number
of visible objects is eliminated. In the Mediator pattern, the number of collaborators is reduced to a single visible
object, the Mediator object.

The Mediator object is however dependent on a particular number of visible object, but this is easier to handle
since a change in the number of visible objects will only result in the change of the Mediator component and all
other components can stay unchanged.

The law of Demeter
The Law of Demeter is presented in various forms in (Lieberherr et al. 1988) and promoted as a law to be
followed in order to achieve good object-oriented programming style which in turn gives easily maintainable
systems. A brief but adequate description of the law is given in (Wirfs-Brock and Johnson 1990) as follows:

One should not retrieve a part of an object and then perform an operation on that part, but should instead
perform the operation on the object, which can implement the operation by delegating it to the part. The
result of following the Law of Demeter is that a method depends only on the interfaces of its arguments
and its instance variables, but it does not depend on their structure.

This law (particularly the object version in (Lieberherr et al. 1988)) controls and restricts the number of visible
objects. The number of visible object names of a component is restricted to one, ie, the object mentioned in the
definition of the law above. The object names visible to a method in a component is limited in the Law of
Demeter. The object names visible to an executing method are the parameters to the method and the instance
variables of the object the method is executing on.

168

(Lieberherr et al. 1988) also mentions three key constraints enforcing good programming style, ie, better
maintainable and reusable code. These constraints require minimising code duplication, minimise the number of
arguments passed to methods and minimising the number of methods per class. The two latter requirements are
arguments for minimising the number of visible object names.

Software engineering methods:
There is a rich set of software engineering methods for developing object component systems. This includes
object-oriented design methods such as Objectory, OOram, RDD, OMT, Catalysis and UML. The methods'
component specifications are not used as a basis for formal reasoning about component behaviour. They are
mainly used for documenting such behaviour. The notations can support intuitive thinking about OCS
components, but not formal reasoning as presented in this thesis.

The different methods support the definition of visible objects to varying degrees. This means that they support
the definition of reliable refinements to varying degrees.

Some development methods such as Syntropy and Foundation do not seriously address many problems related to
reliable substitutions such as system maintenance, the design of substitutable components and the design of
larger systems where the whole system can not be specified at ones. They present the development of a
specification as a one to one mapping between objects in the specification to objects in the final system. The
number of visible objects in an implementation is therefore given by the specification. The specification does
not give any room for flexibility in the code. In this view the specification is not abstract. The method can
therefore be seen as a method for detailed design and implementation of a system rather than one for abstract
specification of programs.

The Fusion method has a concept called visibility, meaning that one object knows of another object. Such
object visibility is documented by stating which objects are visible to which other objects and how the objects
become visible to each other. As argued here, this is important for making reliable refinements. The method
presents details on how to make an implementation of a given specification by a one-to-one mapping of objects
in the specification to objects in the implementation. The specification of visible objects is therefore not
presented as an important aspect for specifications of substitutable components, but just as part of a single
program's specification. It is presented as the initial step in the implementation of a complete system. This may
then also be seen as a concrete, rather than an abstract specification of a program.

Other object-oriented methods, eg, Objectory and RDD, introduce a concept called subsystem to denote a part of
the specification which might be substituted with some refinement at some later stage. These methods assume
that the system to be designed is so large that a single design model is not enough. Instead, the design is divided
into several subsystems which are developed separately. A subsystem is therefore meant to be an abstract
specification of a component in OCS terms.

In these methods a subsystem may be replaced by one or more objects in the final system. However, subsystems
are specified by giving the type of the component, ie, a specification of the available methods in the subsystem
and the types of the parameters. Since the subsystem specifications do not describe the number of visible objects
and how these objects are presented to other components, the subsystem specifications are not reliable
specifications. Therefore, the refinements of the subsystems can not be reliable in our sense. This means that the
different parts of the system can not be separately developed while at the same time knowing that the combined
subsystems will behave as specified. To make separate development possible, the methods should include
specifications of visible objects in their notations. The methods must also include support for making reliable
refinements as discussed in section 8.5.

(Jacobson et al. 1995) has taken the Objectory notation of subsystems a step further in the direction of dividing a
subsystem specification into different parts. In this paper the set of messages a component can receive is divided
into separate contracts (figure 6 in (Jacobson et al. 1995)). However, the contracts do no describe objects, but
types of objects. So the introduced notation defines how many types of visible objects there are in a component,
but does not define the number of visible objects. However, with a supplementing view of the participating
objects (figure 3 in the article) it is possible to deduce how many visible objects there are. However, the method
does not give any attention to definition of visible objects. In addition to defining visible objets, the notation
should be able to describe how object names are passed between the components and thereby become visible.
This is also lacking in Objectory. Work on Objectory has now continued in the joint UML effort and the ideas
presented in the cited paper has been worked into UML. It should be quite simple to adjust some of the UML and
Objectory diagrams to incorporate the specification of visible objects and how they are handled. This would
allow Objectory and UML to support the creation of reliable specifications.

The OOram method has given attention to how large system descriptions can be split into smaller descriptions
and then how such small descriptions can be merged to create large system descriptions. Their solution is a
technique denoted synthesis. The synthesis technique is based on OOram role models where each role represent

169

one object or a set of objects which will observe and display the same behaviour. A role model gives a complete
picture of the behaviour of the objects in the roles in the role model. The role model describe all actions which
these objects observe from each other. Also, a role model describe the visible objects which an object in a role
must know of and which reliable refinements of the role must be able to distinguish between. Large system
descriptions are created by assembling role models though the synthesis technique. A synthesis of two role
models means merging one or more roles in one role model with one or more roles in the other role model.

Details of the synthesis technique is documented in the OOram book and also discussed in (Andersen and
Reenskaug 1992) and (Andersen 1997). What is denoted safe synthesis is an operation corresponding to reliable
substitution, as is explained in chapter 1 of this thesis. Andersen uses LTS (Labelled Transition Systems) with
variations, to describe objects. Most of this work is focused on Ensuring safe synthesis operations with respect
to avoiding interaction errors. Interaction errors are message-not-understood errors and illegal termination errors
where an object has entered into a deadlock or a livelock. With Andersen's approach to modelling objects it is
difficult to reason about liveness properties and reliable substitution as is done in the present thesis. As noted by
Andersen in his thesis, the requirements for safe synthesis defined in his thesis are therefore only necessary, but
not sufficient requirements for safe synthesis. As shown in the present thesis, it is also necessary to make
requirements corresponding to the presented reliability requirements of chapter 5 to achieve safe synthesis.
Further work is necessary to merge the reliability requirements with role modelling and synthesis, and also to see
if these requirements are sufficient to ensure safe synthesis.

Catalysis (D'Souza and Wills 1995) is different to most object-oriented software engineering methods in that it
has some reasoning power. It allows precise description of behaviour. However, at the time this text here is
written, behaviour does not include message sending and instance creation behaviour, but only describe how data
is handled. Typical examples of types of objects specified using (the formal parts of) Catalysis are stacks and
lists and their operations such as push(), pop() and addFirst(), removeLast(). The behaviours are specified using
pre- and post-conditions written in predicate logic. Pre- and post-conditions can refer to methods in the
specifications, thus the specifications become quite similar to algebraic definitions of types (Abstract Data
Types). The variables used in the specifications are seen as abstract in that they need not be found in
implementations. Catalysis introduces the idea of a retrieval to describe how a specified behaviour is
implemented by a given class. There are some tools to help in verifying that a class implements a type as
described in a retrieval. Catalysis also define refinement. They define it as follows on page 11 in (D'Souza and
Wills 1997):

Refinement means creating or choosing a conforment type or class, and documenting why you believe it
is conforment. ... Documenting a refinement means writing down:

 The reasons you believe the supposed abstraction really does describe the implementation
accurately and
the reasons for choosing this implementation from alternatives.

Catalysis refinements are therefore informal definitions of similarity. On page 13 they further write:

Refinements and retrievals give a precise basis for traceability (aiding understanding, reverse engineering,
and system maintenance and extensions), and substitutability (aiding team-work and parallel
development). In addition, they solve a very real problem in software development today, particularly in
light of the move towards iterative development and incremental delivery.

As this shows, Catalysis addresses many of the same problems as this thesis. The three main differences being
that 1) Catalysis has a user-friendly notation and language, while Omicron is created for formal reasoning and
therefore user-friendliness was sacrificed 2) Catalysis is able to reason about how classes of objects manipulate
data while the work in this thesis reasons about how components send messages and create objects and 3)
Catalysis is aimed at specifying the behaviour of an object of a given type while the substitution proposition is
aimed at specifications of the behaviour of components consisting of one or more objects. Catalysis also has
many features not covered in this thesis, like abstract behaviour specifications which are too abstract in the sense
that they are far to vague to be reliable specifications. Even with these differences, Catalysis is the method
which, at present, has most similarities to the present work. The creators of Catalysis is now incorporating their
ideas into UML.

8.2.3 Further work
A practical useful topic to pursue, is how to enhance software engineering methods with processes and notations
which help developers select and specify the visible objects of components. This would help developers of large
systems and reusable components since it allows them to make reliable specifications. This in turn paves the
way for reliable substitution which again can lead to less problems with component integration and system
maintenance.

170

The understanding of the importance of the number of visible objects may also help in the development and/or
description of particular patterns and other designs for reusable components. When "the number of visible
objects" becomes part of the description, it might not be necessary to resort to simpler solutions such as
limiting the number of visible objects to one. However, limiting the number of visible objects is important to
make a component description more comprehensible for human readers.

8.2.4 So why not only have one visible object ?
The number of visible object names indicates to what extent a component's functionality may be seen as
encapsulated. Many visible object names may be seen as poor encapsulation while few visible object name may
be seen as good encapsulation of a components functionality.

The different informal component design rules cited above agree that there are advantages of minimising the
number of visible objects. However, having a small number of visible objects means that the handling of
incoming messages can only be delegated to a small number of visible objects. This might lead to less
comprehensible designs of refinements. The refinement becomes less comprehensive when a larger numbers of
messages are sent to a few visible objects and/or there are larger numbers of parameters in the messages. This is
related to the problem outlined in (Liskov and Guttag 1986) which states that there can be too many operations
on a type, ie, too many messages to an object. This problem is also pointed out as a disadvantage of the Law of
Demeter in (Lieberherr et al. 1988).

Therefore, if having more than one, or a few, visible objects makes a specification easier to comprehend and/or
gives simpler implementation and design of refinements, then more visible objects should be used. One example
of this is a design where there are many similar objects, ie, many objects in the same role as seen relative to the
collaborating component. If a single visible object should be used while it is necessary to distinguish between
the objects, some kind of parameter value must be used to distinguish between the objects. This would give a
more complex design. Also, the parameter values might just be representatives for the object names. Then these
names must be carefully handled11 by the programmer him/herself. This might cause a more time-consuming
and error prone implementation process, one reason being that the run time system's support for handling object
names catch some types of errors and such errors are not detected by the run time system when parameter values
are used to distinguish between objects and these values are handled by the programmer herself.

Another example is when, in some cases, one wants to view the visible objects as components themselves. One
example is the text editor design presented previously in chapter 4. The TextEditor component can sometimes be
seen as consisting of the two objects: a view and a controller. Viewing the TextEditor as a single component can
be useful when replacing the TextEditor. Viewing it as two components can be useful, eg, when the underlying
software related to views change while things related to controller like menus, mouse and keyboard handling
remain the same. In this case only the view component needs to be changed. In this case, it is then a good idea
to let the TextEditor have two visible objects; the view and the controller.

Both (Johnson and Foot 1988), (Gamma et al. 1994) and others give similar arguments for splitting a
component into many objects and argues that this gives more flexible and reusable code. At the same time, the
same authors in (Gamma et al. 1994) give patterns for avoiding problems related to the number of visible
objects. This reflects the fact that there are trade-offs between specification complexities and refinement
flexibility related to the number of visible objects of components. Such trade-offs is an interesting topic to
pursue, but is beyond the scope of this thesis. Presumably this is a less theoretically and more practically
oriented topic as humans' abilities to cope with complex descriptions will influence decisions maybe even more
than theoretic limitations.

11Presumably these parameter values must be handled as object names in order to get reliability, ie, the
number of different parameter values is limited by the specification in the same way as the number of
visible object names are limited.

171

8.3 Practical Implications
Each subsection below presents one of the reliability requirements from chapter 5 and relate them to practice in
object component system design. In each subsection a conclusion is drawn. The conclusions give advice on how
to make reliable specifications and reliable refinements. Section 8.5 will sum up and elaborate on the advice
related to making reliable specifications and reliable refinements.

8.3.1 No external inheritance
In Omicron, objects share variables by inheriting from other objects. This is similar to how variable sharing is
done in SELF. The reliability requirement "no external inheritance" says that no object in a component which is
a reliable refinement can inherit from an object outside the component. This means that a reliable refinement can
not share variables with its context.

Reliability properties ensure that no unanticipated errors may occur when a component is substituted with a
reliable refinement component. In relation to inherited variables, unanticipated errors may occur when

- a context refers to variables inherited from, and then shared with, objects outside
the context, ie, variables in the component is inherited by the context, and

- these variables are not part of the component's specification and/or
- the refinement component does not have variables corresponding to the ones

referenced by the context

By the way "similar components" is defined, a specification only defines a component's observable behaviours.
Therefore, variables are not part of a component specification and it is not explicitly checked if a refinement has
variables corresponding to the ones referenced by the context. Therefore, there are no guarantee that the shared
variables are found in a refinement. The conclusion is that a reliable substitution of components holding shared
variables is not possible.

If one wants objects to be able to share variables with objects in other components, and at the same time have
reliable substitution, it is necessary to specify which variables a component is expected to have. Then more than
the components observable behaviour is specified. It must also be ensured that each reliable refinement of the
specification contains the specified variables

Specifying both variables and the observable behaviour of a component will complicate the specification. This
added complexity reduce the readability of a specification.

Requiring that a reliable refinement contains certain variables puts obligations on the implementers of the
components. The developer must implement the components' behaviours by using the specified variables in
specified ways. Such obligations reduce reusability since the implementers gets less freedom to choose
implementation strategies.

Related work
The drawbacks with using shared variables have been used as an argument for introducing object-oriented
techniques such as encapsulation of variables. Examples of such arguments are found below.

Designers of object component systems take the consequences of the problems with external inheritance by
hiding shared variables (often denoted state) behind the message interfaces of components instead of accessing
variables directly. This is widely applied to object-oriented designs and implementations and is termed
encapsulation which (Blair et al. 1991) defines as follows:

p. 60: encapsulation : the protection of state behind a procedural interface

p.13: Encapsulation is used as a generic term for techniques which realise data abstraction.
Encapsulation therefore implies the provision of mechanisms to support both modularity and
information hiding.…

The Smalltalk language is defined with strict encapsulation of objects so that it is impossible for one object to
access the variables of another object. In languages such as Java, C++ and Simula, objects are allowed to access
other objects' (public) variables and there is a clear distinction between calling a procedure (or function) and

172

accessing a variable. This gives unreliable configurations if not the access of variables of objects in other
components are added as part of the specification of a component's observable behaviour.

(Bollay 1992a) gives guidance on how to create reusable CLOS code and presents a number of rules. The third
reuse rule says:

Do not imbed explicit paths to objects throughout your code. Write an accessor and use it. This will
make your code independent of the structure of relationships between objects.

This is a warning against directly accessing variables if the goal is substitutable components and corresponds to
the no external inheritance requirement. Encapsulation features have also been added to SELF and its use is
recommended in (Chambers et al. 1991). Dylan also has extra encapsulation features as compared with CLOS
(Bollay 1992b).

Abstract Data Types (Guttag 1980) is also a technique for hiding variables behind an interface and has inspired
many later approaches. This is done to achieve implementation independent specifications and to support reliable
substitution under certain circumstances, eg, when objects are collections of functions. The difference between
Abstract Data Types and Omicron is discussed in the chapter on related formal work.

Instead of accessing variables, the general advice from component developers is that components should share
data by sending messages. Variable access should be replaced by what would be two message-send actions in
Omicron: one message to ask for data and an other message which return data. Both actions will form part of the
components' observable behaviour.

In Beta an object may also access the variables of another object. However, Beta has its own way of reducing
problems with variable access. In Beta variables can be declared as virtual and then accessing the virtual variable
becomes the same as sending a message and returning a value.

The CLOS reusability rules in (Bollay 1992a) include the rules:

Reuse Rule 1 - Always use accessors to woze12 information
Reuse Rule 2 - Separate state information (slots) from class operations (methods)

It is argued that the definitions of methods and the definitions of variables should be separated. Then the class
operations (methods) become independent of the state information (slots or variables). This means that the
variables are hidden behind an interface, ie, encapsulated, even as viewed from the object's methods. This is a
further step in the direction of limiting dependencies made possible by external inheritance. In this case, the
methods and the object are viewed as separate components and the methods should not access the object's
variables, but send messages instead.

Conclusions
If a component is to be a reliable refinement of some specification, the no external inheritance reliability
requirement limits the use of shared variables to sharing variables within a component. Shared variables between
components should be avoided. Instead, when a component wants some data from a collaborator it should send a
message which returns with the data.

8.3.2 Reliable method lookup
In Omicron, an object has a set of slots which are similar to traditional variables and method tables. A slot can
therefore refer to a method. A method is selected for execution when an object receives a message. The selected
method is the object referred to by the slot with the same name as the message selector. The slot may be found
in the object itself or in some object the receiver inherits from. Because of the requirement "no external
inheritance", an object in a reliable refinement component will never inherit from an object outside the
component. Therefore, a slot will always be found in the receiver's component when looking up a method.
However, a slot may refer to an object in another component. The selected method may therefore be part of a
different component than the receiver of the message. The "reliable method lookup" requirement says that a
reliable refinement component can not have methods which are found in the component's context.

Objects holding methods are often thought of as playing the role of classes, and we therefore refer to such objects
as classes in the below discussion. The reliable method lookup requirement then says that an object must be in
the same component as its class(es).

12 Woze assumably means something like "looking at" or "accessing". Woze is not found in Webster's
Dictionary or other dictionaries which have been consulted.

173

When an object and its class(es) must be in the same component, it is not possible or meaningful to let a class
or set of classes by a reliably substitutable component. This can be explained as follows:

If classes are components in themselves and we want reliable substitution, we can have one of the following
cases:

- the class component is not in use
 in the sense that none of the objects in the component's context use the class' methods or
- there are no reliable refinements of the class component's context components

since reliable refinements of the context can not use methods in the class

One conclusion is then that a class is not a typical OCS component in that
- either it is not in use or
- the class' context can not be substituted with reliable refinements.

The context can not be substituted with reliable refinements because there can be no reliable refinements which
use the methods in the class. It they did, they would not be reliable refinements.

When an object is in the same component as its class(es), a change in a class may result in new observable
behaviour. Therefore, a component may not have the same observable behaviour before and after a class change.
It is therefore necessary to check that a component still is a refinement of its specification after one or more
classes are changed.

If classes are to be substitutable components it is necessary to give quite complex specifications of the classes in
order to document exactly what may be changed without making the objects behave differently. The complexity
stem from the necessity to include more than the components' observable behaviour in the documentation. With
complex documentation it becomes impractical to use such components since the documentation becomes
difficult to understand.

Related work
Static classes:
Reliable method lookup is always found in systems created from programs in class-based languages such as Java,
C++ and Simula. In such languages classes are static during runtime. The class description can therefore be seen
as copied into each component and then a method is automatically found in the same component as the receiving
object.

A general rule when making CLOS-programs (Keene 1989) is to separate objects playing the role of classes and
objects having a traditional object-role in the system. The differences in the roles are that the class-objects are
only changed during the development phase of the software while object-objects are also changed during runtime.
The class-objects hold methods while the object-objects hold variables which change during runtime. This is in
accordance with what is shown in section 6.6 and is also recommended for SELF programs (Ungar et al. 1991).

The Dylan language resembles CLOS in many ways, among other things it is a prototype based language where
objects are templates for object creation. Dylan have several additional features which give developers more
control over the systems they are making and thus create systems with less errors. One such feature allows the
developer to declare certain objects as read only (Bollay 1992b). This feature is typically used in relation to
objects functioning as templates for other objects, ie, they function as classes. Read-only keeps the objects
definition from being changed, Therefore, declaring template objects as read-only makes them as static as classes
in C++ and Simula. This helps in Ensuring that the class objects are not changed during run time, thus giving
more reliable components by fulfilling the no external inheritance and reliable method lookup requirements.

Block objects
Inserting new methods into existing classes during runtime is possible in, eg, Smalltalk. This might give
unreliable components. In Smalltalk systems, this functionality is only to a very limited extent used. Instead,
the standard way to insert new functionality or vary functionality in existing components is by sending block-
objects as parameters. A block object holds a piece of code which is executed when the block gets a message
named value (or value:, value:value: etc). A block object may be viewed as a function which is evaluated when it
receives a value message.

Block-objects are then passed from a component to its context, or vice versa. The sending of the value-message
is observed and must therefore be part of the specification. Sending observed messages is reliable. Therefore,
using block objects instead of changing methods give reliable components, while preserving flexibility in object
behaviours. Lately, a version of block-objects is included in Java.

An example of the use of block-objects is the sort-method of the Smalltalk classes for arrays and collections.
The sort method takes a block as a parameter for calculating the sorting order of two objects. An alternative to

174

using the block would be to let the programmer provide the array object with an appropriate method for finding
the sorting order. The new method could either be provided by making a subclass of the old class - which means
that the new version of the array-component must be tested, or by changing a method of the old class during
runtime - which is unreliable.

The idea of creating flexible code by creating an object such as a block has been further developed in the book on
Design Patterns. In the pattern denoted Visitor it is recommended to create an object representing an operation to
be performed on the elements of an object structure. In the Visitor pattern description it says: "Visitor lets you
define a new operation without changing the classes of the elements on which it operates.". The Visitor pattern
is useful in situations where it is necessary to add new code which will naturally fit in as methods in existing
classes, but creating methods is perceived as bad design and feels error prone and insecure. The reliable method
lookup requirement gives theoretical support for the Visitor pattern and shows that the feeling of insecurity
related to changing methods in existing classes is correct. (There are also many other good reasons for the Visitor
pattern which is not relevant to this point).

Framework design
The "reliable methods lookup" requirement can be applied to Framework design. A Framework defines the
collaboration between a set of components. Usually, also a set of classes are provided. The classes can either be
instantiated to create objects in the components or the classes can be subclassed to tailor the behaviour of
components to the needs of individual applications. A Framework where the classes are mainly meant for
instantiation is called a component-based framework, or a black box framework. "Black box" indicates that the
user of the framework needs not know of the internals of the components. Instead the components are treated as
black boxes. A Framework where the classes are intended for subclassing is called an inheritance based
framework, or white box frameworks.

(Johnson and Foot 1988) argues for using components by their observable behaviour by using and creating
component-based frameworks, rather than inheritance based framework. Inheritance based frameworks include
specifications of more than the components' observable behaviour and are therefore much more complex and
difficult to use.

Inheritance vs. Decomposition
(Johnson and Foot 1988) present the concept of "Inheritance vs. Decomposition". Decomposition means making
software components which are used as black boxes and their functionality is available through a set of
messages. The components' functionalities are specified by their observable behaviours. Inheritance, on the other
hand, means making software components which are meant to be used as superclasses. This means that classes
are viewed as components. Subclasses are then created which inherit behaviour and override methods, thus
accessing the same variables as methods in the superclass and changing the methods in the superclass.

Both the "no external inheritance" and the "reliable method lookup" requirements can be used as arguments for
preferring decomposition, since a subclass will break one or both of these requirements. In the paper (Johnson
and Foot 1988), it is also argued that decomposition is better than inheritance. They write:

Since inheritance is so powerful, it is often overused. Frequently a class is made a subclass of another
when it should have had an instance variable of the class as a component… Behaviour can be easier to
reuse as a component than by inheriting it.

Conclusion
Give priority to delegating functionality to a component rather than inheriting it from a class.

It is not possible or meaningful to have superclasses as components and at the same time have reliable
substitution of such components.

If a class is changed by code in another component or by a programmer, the component with the class in it and
all components which have subclasses of the class must be retested to establish if they still are refinements. One
consequence of this is that it is best that methods are not changed by code in other components than the
components holding the methods. Use such things as Smalltalk block-objects and/or the Visitor pattern when
you want a component which should have different observable behaviour depending on which component it
collaborates with.

If a class is changed by code within the component where the class is found, this can still give a reliable
component. This means that it is not unreliable to let objects within a component change the component's own
classes during runtime. However, even if a component has reliable behaviour when changing its own classes,
there might be an argument against this: a human may have problems understanding and managing code which
change or is changed by other code.

175

8.3.3 Reliable message selectors as parameters
The practical result of the definition of observably similar actions, where message parameters must be equal
relative to a substitution, is that object names which are used as parameters in observably similar messages must
be equal relative to a substitution. A consequence of this was the requirement on the number of visible object
names in a refinement. In this section we look at the consequence of the definition of observably similar actions
for message selectors when used as parameters.

To get reliable substitution of component, a substitution can only substitute object names with object names. In
addition, names which are used as object names, must not be used as slot names. Therefore, slot names will not
be substituted by the substitution, and must therefore be equal in parameters of observably similar actions.
Message selectors are slot names and therefore message selectors must be equal when they are found as
parameters in observably similar actions.

Message selectors as parameters are used to make some of the most used components in Smalltalk; the
pluggable editors. This is due to a special feature in Smalltalk which is also found in later versions of Java. In
Smalltalk, message selectors may be parameters to messages and stored in variables. Some basic primitive
method; the perform:-method makes it possible to use the value of a variable as a message selector. If the
variable m holds a selector, the expression o perform: m will send a message with the value of m as selector to
the object referred to by o. The perform: feature of Smalltalk has been used to create some very use-friendly
components such as, eg, the Smalltalk text editor and a view for presenting lists - the so called pluggable
editors.

As mentioned, if message selectors can be parameters and vary in observably similar actions, the receiver will
not be a reliable refinement. Therefore, the perform: feature of Smalltalk makes it possible to create unreliable
components since it allows message selectors to be passed as parameters and stored in variables.

To illustrate why this creates a reliability problem, we can take a situation where we have a component
TextModel, a context TextEditor and a reliable refinement of the context called NewTextEditor. The context and
its reliable refinement send similar messages to the component TextModel. The messages are observably similar
as defined in chapter 5 except that message selectors as parameters may be different. Then it is impossible to
show that TextModel will have similar observable behaviour when collaborating with TextEditor and
NewTextEditor. This is because we do not know how TextModel uses the message selector which is received as
parameters. For example, TextEditor may send the selector s as a parameter and then get two messages back
where both of them have s as selector. NewTextEditor may then send selector t as parameter and then also get
two messages back. The two messages can either both have selectors t or both s or one message have s and the
other t or vice versa. Therefore, if message selectors can differ when they are used as parameters, the receiving
component may behave quite differently.

Conclusion
Parameters which are message selectors must be equal in observably equal actions. Therefore, having message
selectors as parameters in observed messages is wasted effort since the parameters are equal in all cases.

As noted above, some very useful components have been developed by using message selectors as parameters,
namely the pluggable editors of Smalltalk. Allowing message selectors as parameters adds flexibility in how
components collaborate. The unreliability in the message selectors as parameters and the usefulness of the
pluggable editors presents a contradiction between usefulness and reliability. The problem with unreliability of
refinements of pluggable editors is, however, evident in the way pluggable editors are designed, coded and tested:
The pluggable component developers are very conscious about how the slot-name variables and parameters are
handled. Also, cautious tests of the components are done before they are distributed and used.

The positive experience from creating and using pluggable editors was the motivation behind having a common
name space for objects and slots in the Omicron language. The conclusion that this homogenisation gives
unreliability supports the experience that special care must be taken when building pluggable editors so that the
use of slot-name variables is controlled.

Further study of how to create reliable pluggable components
Chapter 5, section 5.4.2 presented an alternative to the above restricted view, where message selectors must be
equal. This alternative allowed message selectors to vary when used as parameters and it seemed that this still
gave reliable substitution. The drawback with the alternative solution, and the reason it was not developed any
further, was that it gave much more complex requirements on reliable refinements. For the theoretic work this
gives much more complex proofs and in practice it means larger and more detailed specifications. However, the
drawback with the simpler solution was that flexible components like pluggable editors are not viewed as
reliable. This is an example of the fact that there is a dilemma between simple specifications and flexible

176

components. The study of the trade-off between the simplicity of specifications and flexibility of components
would be an interesting topic to pursue.

8.3.4 Reliable if-sentences
Omicron and other object-oriented languages allow object names to be compared and the behaviour of the objects
to depend on the result of the comparison. In this way it is possible to vary the behaviour of an object depending
on whether or not two variables refer to the same object. If such comparisons are found in a component and the
component is to be reliable there must be restrictions on the names being compared. As shown in chapter 5,
there are two alternative ways of Ensuring reliability of object name comparisons (if-sentences):

1) Either there is an equal number of visible objects from a specification and its refinement
2) or the compared values are never both names of objects outside the component

Related work
Alternative 1) means that a specification and all the specifications refinements must have an equal number of
visible objects. This restriction is contradictory to many practices where several objects may be substituted with
a single object which is able to behave similarly to all the objects it replaces. This is sometimes done in the
MVC-Framework when a single object takes the place of both a view and a controller object. This is done in
order to limit the complexity (number of classes) and volume (number of objects) of a system.

Alternative 2) means that if-sentences are only used to compare object names of objects which are found inside
the component. By examining the Smalltalk-libraries it is evident that object names are rarely compared, except
to see if a variable is initialised or not. This supports a view that in reusable components one rarely compare
object names. Instead of using if-sentences, the designer and programmers use messages and dynamic binding to
vary the systems functionality depending on the systems state.

When if-sentences are used for other purposes than checking if variables are initialised13, reliability of if-
sentences is ensured by the way if-sentences are implemented. In Smalltalk and also in SELF if-sentences are
only found in a method belonging to the object itself. The method tests if the receiver is the same object as the
parameter to the message. The method is named '==' and can be defined using the Omicron if-sentence in place of
the equivalent Smalltalk-primitive as follows:

== otherObject
 | bool |

bool := (self = otherObject true false).
^bool

This ensures that at least one of the object names is local to the component as the pseudo variable 'self' always
refers to the executing object and this object will always be an object inside the component. Therefore, reliability
is ensured.

In languages where if-sentences may be placed in all parts of the system, one strategy to ensure reliable if-
sentences is to type variables as local or external to the component where it is found. Then the type information
can be used to check that only variables holding object names local to the component are used in if-sentences.
This will ensure reliability.

Conclusion
Comparing object names should be avoided unless refinements are expected to have exactly the same number of
visible objects as defined in the specification. Instead of using if-sentences it is better to redesign and use
dynamic binding. If object names must be tested, at least one of the names must be local to the component
where the test is done.

8.3.5 Reliable message sending
The reliable message sending requirement concerns errors when trying to send messages from a refinement
configuration to a specification configuration. Using the text editor example to illustrate this, the requirement

13 Initialization test check if variables refer to objects. This is usually done by testing the variable value
with the constant representing no object, typically called NULL, none or nil. Such names are, in
relation to Omicron, treated as any name and reliability requirements apply to such names in the same
way they apply to a name which is not the name of an object.

177

concerns the situations where MyModel is trying to send messages to TextEditor. The requirement says that
there must never be a situation where an error occurs because of "message not understood" in TextEditor as a
result of a message from MyModel. In other words, a method must always be found in TextEditor for the
messages sent from MyModel.

The reliable message sending requirement was necessary to ensure that a new context would not get a message
from a refinement component which the old context did not get. If the old context did not have a method for a
message from the refinement component, the refinement component would just have a non-observed error action.
Now, if the new context had a method for this message, the result would be an observed message-send action.
Such a message actions would be unexpected behaviour from the refinement and therefore the refinement doesn't
have reliable behaviour.

As discussed in chapter 5, another error model and new definitions of observability and similarity of such error
actions can be done in a way which eliminates the need for explicitly requiring reliable message sending.
However, this alternative gives more complex definitions and also has consequences on how to make
specifications and refinements which seems counter intuitive to common practice. Instead, it is quite common in
practice that developers require that components meet the reliable message sending requirement. Type checking
and/or type inference is usually employed to ensure such properties.

Related work: Type checking and type inference
Traditional checking that components are type safe can be used to eliminate message not understood errors. This
is very useful in a sequential and/or deterministic system. However, if the system is parallel or non-deterministic
traditional type checking/inference might find errors while the component still has reliable message sending.
Below it is argued that traditional compile time type checking/inference with signature subtypes (as defined in,
eg, (Wegner and Zdonick 1988)) is in some cases in conflict with the refinement relation in that a component
may be a refinement but not a subtype of its specification.

There is an enormous amount of work being done on proving type safety of object expressions, eg, (Cardelli and
Wegner 1985), (Graver 1990), (Ågesen et al. 1993), (Palsberg and Schwartzback 1994), (Abadi and Cardelli
1994) and (Bruce et al. 1997) comparing the different object encodings. Their focus is on making strongly typed
languages allowing polymorphic types to be type safe languages, ie, no calling of undefined functions
(methods). There is also work done on using type inference to ensure type safety. (Palsberg and Schwartzback
1994) give a good presentation of the various aspects of typing object-oriented programs in general and type
inference in particular.

The conflict between subtype and refinement is due to the fact that a specification may specify alternative
observable behaviours. Therefore, a refinement may only display some of the behaviour defined in the
specification and then only get a subset of the messages the specification gets. In this way a refinement might
get fewer messages than a specification. Then the refinement may have fewer methods than the specification
without being erroneous. In type checking / inference terms this means that a specification may be a (signature)
subtype of a refinement and the refinement may be a (signature) supertype of the specification.

Therefore, requiring that a refinement must be a subtype of a specification can lead to refinements being rejected
by the subtype-test while they would pass the refinement test.

If a specification did not include alternative behaviours, a (signature) subtype relation would be a necessary but
not a sufficient requirement for the refinement relation.

If a refinement was found to be a supertype of a specification, the reliability requirement "reliable message
sending" would not be necessary. This can be examples as follows:

The reason reliable message sending was introduced was to avoid the following problem (we use the text editor
example again):

TextEditor and TextModel are specifications. MyModel is a refinement of TextModel and NewTextEditor
is a refinement of TextEditor. MyModel tries to send a message to an object in TextEditor. The selector
of the message does not match with a slot name in the inheritance graph of the receiver. The result is
therefore an error action which is not observable from TextEditor.

Why a supertype would give reliable message sending in this situation can be explained informally as follows:

If every method in NewTextEditor is also found in TextEditor then NewTextEditor is a supertype of
TextEditor. This ensures that if an error occurs because a method is not found in TextEditor, then a
similar error will occur for NewTextEditor and reliability is ensured.

178

However, if a refinement is a subtype of a specification, there might be reliability problems. An example:

If there are methods in NewTextEditor which are missing in TextEditor then we have that NewTextEditor
is a subtype of TextEditor. This will create reliability problems since: The missing methods can create
error-actions which are not observable from the TextEditor in the configuration consisting of TextEditor
and MyModel. When NewTextEditor and MyModel are combined then these errors can disappear and
instead be message sends to NewTextEditor. Such messages might not be messages which are sent from
TextModel to NewTextEditor and the behaviour of the MyModel||NewTextEditor system is therefore
unknown.

This shows that a refinement being a signature subtype of a specification may be unreliable, while a refinement
which is a supertype of a specification eliminates the need for checking reliable message sending.

On the basis of the work done by Palsberg and others (Palsberg and Schwartzback 1994) on compile time type
checking/inference for languages similar to Omicron, it can be assumed that compile time type
checking/inference can be developed for specification languages such as Omicron. Type inference can then be
used to check that a refinement is a supertype of a specification. This will ensure reliable message sending in a
specification configuration.

One way of finding out if a component has reliable message sending is by executing the component together
with the specification of the context. This can be done provided that all message not understood errors are
observable from the component developer. This will work because a message not understood errors will occur
when the reliable message-send requirement is not met. Then, when an unreliable message-send action is
observed, the developer can take appropriate action: either change the refinement and remove the message send
which created the error or change the context specification so that it includes a method for the message.

Conclusion
Above it was shown that the traditional type safety is different from the reliable message sending requirement.
However, techniques used for typing, and subtyping, can be used to ensure reliable message sending.

179

8.4 Use of Classes in Reliable Code

8.4.1 An example
What follows is an example of the use of class names in the code of a Framework which allowed subclassing and
substitution of components. The Framework initially seemed to be very nice for developing a system by
subclassing and substituting components. However, unexpected errors occurred so the components were
obviously not reliable. Even though the example is relatively old, there are reasons to believe that similar
problems can be encountered in more resent Frameworks with components of similar complexity and flexibility.
The unreliabilities were related to:

- a particular class name was explicitly used in the code when objects were created
- the particular class was also available for subclassing, thus objects of this class were seen
 as substitutable components
- instance creation was not considered part of a component's observable behaviour and therefore
 not part of a component's specification

The example is taken from a project at the Centre for Industrial Research in Oslo in 1984. The project was to
enhance a text editor which was part of a Framework for the Apple Lisa computer. The change to the editor was
done to enable it to recognise selections of special words so that these words could not be edited at the character
level, only inserted or removed as whole units.

The original text editor implementation was done in Object Pascal and was delivered as compiled code. However,
most of the classes could be subclassed and objects of a class could then be substituted by objects of a subclass.
In this way reusability and flexibility was supported, and this was very useful to the users of the Framework.

The Framework had a class called TTextSelection. Objects of this class handled the selection of parts of the text
on the screen. This class was provided for subclassing. The change to make the editor recognise and select special
words was therefore simple to do by subclassing the TTextSelection-class. It worked rather well except that on
some occasions the user was suddenly allowed to change the characters of the special words.

After some debugging it was discovered that in some cases, an object of the new text selection class was replaced
with an object of TTextSelection. In such cases the user was allowed to edit the characters of the special words.
When the new text selection class was developed it was observed that new text selection objects were in general
not created by the Apple's text editor component, but created by the new code of the project. However, on close
inspection of the running program it was discovered that code in the text editor component created a new object.
This new object was of class TTextSelection and this object replaced the old object of the new text selection
class. The text editor code obviously explicitly used the TTextSelection class to create new objects.

The error this created in our new version of the text editor was very difficult to correct, particularly since Apple's
text editor was only delivered as compiled code. The problem was, however, eliminated as the Apple Lisa project
was discontinued at Apple and the text editor development project in Oslo moved over to a Smalltalk-80 system.

The conclusion from the project was that the Apple Framework had a lot of good intentions when it comes to
flexibility for extensions and substitutions. However, the intentions were not fulfilled by the specification and
implementation of the various parts of the Framework since they lacked important properties. At the time the
project was ended, it was not clear what these properties were.

The above experiences with the Apple Framework was one of the motivations for the work in this thesis. As a
result of the thesis it is now possible to conclude what important properties were lacking from the specification
and implementation of Apple's text editor Framework: the developers of the Framework should have treated the
TTextSelection class according to the requirements for making reliable specifications and refinements. Here are
some details of what they should have done:

First of all, since it should be possible to replaces the TTextSelection class with a new class, the TTextSelection
class and the objects of this class should be described as part of the context of the text editor component.

Above it is argued that shared variables can not be part of reliably substitutable components. The text editor
contained direct references to the TTextSelection class. This is equal to referring to a shared variable which is
found in the text editor's context. This means that since TTextSelection is explicitly mentioned in the text
editor, the context component with TTextSelection can not be reliably substituted.

180

Instead of explicitly naming TTextSelection in the text editor code, the TTextSelection class could be treated as a
visible object from the context known to the text editor. Also, the creation of new text selection objects should
be part of the observable, and therefore documented, behaviour of the text editor.

Another solution would be to define a message to be sent to the text selection component whenever a text
selection object was to be created. Then the TTextSelection class would not be visible and creation of text
selection objects would not be part of the text editor's observable behaviour. Instead, the specification of the
collaboration between the text editor and the text selection components becomes simpler. In addition, the
developers of the text selection component get full control of text selection object creation.

Below, related work shows that many of these lessons have been learned by other practitioners who have
experienced similar problems when trying to use and develop Frameworks.

8.4.2 Related work
Warnings against spreading class names in the code have been given by several tutorials held at different
conferences, eg, the CLOS-tutorial at TOOLS '89, OORASS-tutorial at OOPSLA/ECOOP 1990 and Ralph
Johnson's tutorial at OOPSLA '91. Class names are spread in the code of programs for three different purposes as
classes are used in the following ways:

- as templates for object creation
- in relation to testing the class of an object
- for typing variables in compile time type checked languages

The following discussion is divided into these three topics.

Class names as templates for object creation
Examples of existing component designs which have more control of the use of class names is found in the
Smalltalk-80 libraries. The trick used to control the use of class names, is that these names are not used directly.
Instead, there are many statements of the form:

obj species new

where obj is a variable pointing to an object, 'species' is a message to the object which returns the object's class
(the class can be returned as the classes are objects in Smalltalk). 'new' is then a message to the class object
which return an object of the class. This is, eg, used when making general code in superclasses. In this way the
code also becomes applicable to objects of subclasses. If this strategy had been chosen in the above mentioned
text editor implementation, the reported problems might not have occurred.

Another strategy found in the Smalltalk libraries is based on hiding object creations behind message interfaces.
Instead of writing 'obj species new' a message is sent. For example, instead of creating a controller explicitly, a
view is sent the message controller. The specification says that the view is expected to return the name of an
object in the view/controller component. The controller class is therefore not visible outside the view/controller
component. It is therefore the view/controller component itself which controls the creation of controllers, and
thereby also controls the template to use for creating controllers. This reduces the number of visible objects of
the view/controller component and thereby simplifies the implementation of the view/controllers collaborators.

This idea has been further developed in the book on Design Patterns where several patterns, so called Creation
Patterns give instructions on how to make a good design which controls the use of class names. The patterns
Factory Method, Abstract Factory and Builder are good examples of controlling class names in relation to object
creation. Factory Method says that particular messages should be defined so that the corresponding methods, and
only these methods, contain the critical (substitutable) class names. Abstract Factory and Builder say that a
particular object should be created which contains methods for creating objects and the critical class names should
only be found in the implementations of the Abstract Factory and Builder objects.

Testing the class of an object
When testing the class of an object, eg, object isKindOf: TTextSelection, the class name is explicitly named. If
the TTextSelection class is in another component it is a shared variable. Then this explicit check for the class of
an object breaks the no external inheritance reliability requirement which in practice means that components can
not share variables. Therefore, checking the class of an object should not be done. The same advice is given in
(Johnson and Foot 1988) where is says:

It is almost always a mistake to explicitly check the class of an object.

181

It is advised to use messages instead of checking the class of an object. By using messages, dynamic binding is
used to let the behaviour of the system depend on the class of the receiver. This is as opposed to using an if-test
to select a behaviour depending on the class of the object.

Class names used for typing variables
When variables are typed and a context is to refer to an object in a component, the context needs to type the
variable referring to the object in the component. When variables are typed by using class names, a class name
from a component which is used to type a variable in the component's context becomes a reference to a shared
variable found in the component.

Generic types and type parameters provide ways to avoid using class names of other components to type
variables. This technique is used to type the variables of a component when the component is created
(instantiated) and not when it is defined. For instance, a component modelling an array is defined. When such a
component is instantiated and an array is created, a type parameter is sent in order to define the types of the
elements of the array. Since this is a way of avoiding class names in the code of a component, this is a way of
avoiding shared variables. Instead, the class of, eg, the elements in the array, becomes a visible object which is
passed from the component for the elements to the component implementing the array. This creates reliably
substitutable element components.

There are people who advocate the use of abstract classes for typing variables. Also, many people argue for
separating the class concept from the type concept and use signature types for typing variables. Abstract classes
and types are used for typing variables and represent behaviour specifications, while classes are implementations
of objects and are used as templates for object creation. This has been pointed out by many authors, eg, (Snyder
1986), (America 1987), (Cook et al. 1990) and (Blair et al. 1991). In the following paragraphs, the word type is
used to denote abstract class or signature type.

Since types do not include any variable declarations or methods (only method specifications), the types of a
component can themselves be components. This is because, even though classes implement one or more types,
or inherit from one or more abstract classes, the class does not inherit any variables or methods. Therefore the
classes meet the no external inheritance and reliable method lookup requirements. Likewise, the components
referring to the types in type declarations of variables also meet the reliability requirements. Unless checking for
the type of an object is done in components (in which case we run into a shared variable problem), the type
component has no functionality or mission during runtime. It is purely used for type checking before the system
starts executing. Therefore, typing variables by referring to types and not classes makes components more
reliable in that this does not break any of the reliability requirements.

To avoid viewing types as shared variables and not create problems when a refinement has fewer visible objects
than its specification, there is also one other requirement: when defining a refinement it must be possible for
objects in a component to be instances of several types. This may be necessary if, eg, one visible refinement
object takes the place of two visible specification objects. To avoid typing errors, the single refinement object
must be of the same type as both of the specification objects. Therefore, it is necessary to have multiple
inheritance of types in the language used for defining refinements.

The book on Design Patterns advocates using abstract classes for typing variables. Examples of languages which
have separation between type and class are Trellis/Owl (Schaffert et al. 1985), Liskov's Theta language and the
programming language Java. In Java, a type is called an interface. A class may implement many interfaces, thus
creating multiple inheritance of interfaces.

8.4.3 Conclusion
When class names from other components are used, the class names should be seen as references to shared
variables found in the other components. Therefore, to get components which can be reliably substituted, class
names from a component should not be used in the component's context.

One way of explicitly referring to a class name when a component is to create an object from a class in another
component, is to pass class names as parameters in messages. Then the classes are comparable to visible
objects. Therefore, limiting the use of class names in the code makes it easier to make reliable specifications
since the number of visible objects will be reduced. Reducing the number of visible objects makes it easier to
control them and the reliable specifications become less complex.

The best solution to avoid using class names of other components for object creation is to let a component
create all objects of its classes. Other components can then send messages to the component and in this way
create new objects. In this way a component, or perhaps more correctly the component developer, gets control of
which classes to use for object creation.

182

When "pure" types which do not include variable declarations and method bodies are used in type declarations,
then this use of types does not break any reliability requirements. However, to be practically useful, the language
used for defining refinements must allow a class to implement several types.

183

8.5 Reliable Substitution in Practice

8.5.1 How to make reliable refinements
The conclusions from the previous sections can be summed up in the following requirements on components
which are to be reliable refinements:

 A component which is to be reliable:
- can not inherit variables or methods from objects in the component's context
- can not compare the names of objects which are not in the component
- can only refer to class names within a component
- a reliable refinements can not send messages to context objects unless methods are found for the messages
- must have the same number or fewer visible objects than the specification and the names must be used as

specified

 In addition, to be a refinement, the component must have observable behaviour similar to its specification.

When a refinement has fewer visible objects than the specification, then one object takes the place of two
or more of the specified visible object. The same refinement object must always be used in place of the two
or more corresponding specified visible objects.

If variables and/or methods are inherited from the context, the variables and methods can not be changed
during execution of the system in order to make the component a reliable refinement. Also, the inherited
parts of the context can not be reliably substituted, ie, there is no way to make a reliable refinement of the
inherited parts.

8.5.2 How to make reliable specifications
A reliable specification of an OCS component specifies both the component itself and the components making
up the context of the component. This means that a reliable specification of a component must specify all
actions observable from the context and all actions observable from the component. For each message which
may be received by an object in the component, the specification must describe the resulting behaviour as
observed from the context. Similarly, for each message an object in the context will receive, the specification
must describe the resulting behaviour as observable from the component. In addition, a reliable component
specification must specify:

- the maximum number of visible objects which refinements of the component may have.
- the maximum number of visible objects from the other components.
- how the names of the visible objects are sent and received in messages from and to
 the component and its context, ie, specify in which parameters in
 which messages the names of the different visible objects are found.
- which visible objects from each component is initially known to the other components.

In general this means that a reliable specification must identify objects, not just categories of objects such as
types, classes, roles etc. This requirement is a consequence of the requirements related to reliable use of names,
the reliable substitution and the definition of the reliable refinement relation using a reliable substitution. One
way to intuitively understanding this requirement is that the number of visible objects must be known so that a
programmer can use the correct number of different variables to hold the different object names (see section 8.2
for a more detailed explanation of this requirement).

As argued above, classes defined in one component and instantiated in another should be viewed as visible
objects. Therefore:

When classes are parameters in observable messages, they must be treated as visible objects

Specifying visible objects and their use is an absolute requirement which is necessary and sufficient to make
reliable specifications. However, there are some additional advice on how to make specifications which are the
consequence of the requirements on reliable refinements. These additional advice are listed below. Thereafter some
comments are made on the consequences of the fact that specifying visible objects is the only absolute
requirement on reliable specifications.

184

Additional advice on how to make reliable specifications
A reliable refinement can not inherit variables from objects in its context. This means in practice that reliable
refinements can not update variables in objects in other components. If such actions are found in a specification,
it might be impossible to make reliable refinements of the specification14. Therefore, the following advice can
be given:

Specifications should only have actions which access and update variables within a component

Explicit use of a class name from another component is comparable to accessing variables outside the
component. One exception is if the class is an abstract class, ie, an interface description, and the language used
to create reliable refinements allows multiple inheritance. Therefore, the following advice can be given:

In the description of a components behaviour, a specification should not explicitly name
non-abstract classes from other components.

A specification's behaviour can depend on the number of visible objects from its context. When the behaviour
depend on the number of visible object, then the specification includes if-tests comparing the names of objects in
the context. If a component is to be a refinement of such a specification, the refinement must also include
similar if-tests comparing context object names. This breaks the reliable if-sentence requirement. Therefore, it
might be impossible to make reliable refinements of a specification with an observable behaviour which depend
on the number of visible objects from its context. (Exceptions as for specifications which update shared variables
as one of its alternative behaviours). Therefore, the following advice can be given:

Specifications should only use if-tests to compare the names of objects within the component

The reliability requirement "reliable method lookup" says that a component which is a reliable refinement can
not have methods which are found in the component's context. This limitation does not apply to components
which are part of reliable specifications. However, there are reasons for wanting to make specifications with
components with reliable method lookup, ie, specification components which do not inherit methods from their
context. The main reason is that if the specification component inherits methods from the context, this can give
unwanted specification behaviour when the context is substituted with refinements. The unwanted behaviour
occurs when the context is substituted with refinements. Then the inherited methods will disappear from the
system, unless they are replaced with visible objects in the context's refinement which give the same behaviour
of the specification as the replaced methods give. To ensure that the new methods in the refinement give the
same behaviour as the replaced methods, the behaviour given by the methods have to be specified in some way.
Then the specifications become larger and more complex only to allow specification components, but not
reliable refinement components, to inherit methods from their context. To keep specifications as small and
simple as possible, it is therefore a good idea to follow the next advice:

Specifications should only use methods which are local to the components.

The reliable message-send requirement says that a component which is to be a reliable refinement can not send
messages to context objects unless methods are found for the messages. By the way observability of error actions
is defined, this does not apply to components in reliable specifications in that a reliable specification component
can send messages to the context which the context does not understand, ie, does not have methods for. However,
if specification components send messages to objects in other components and no method is found, this might
be an indication that the specification is not as the designer intended. Ensuring that specifications are as intended
and describes behaviour as the designer actually wants it to be, is a different problem than Ensuring reliable
refinements. This is discussed further in the last subsection of this section: Ensuring correctness of
specifications.

In addition it is required that message selectors used as parameters in messages must be equal in observably
similar actions. This means that a specification and its refinements send the same message selector to their
collaborators. Since the message selector is equal, the collaborators will behave equally in this relation,
independently of who sent the message selector. Therefore, sending a message selector as a parameter in a
message is wasted effort. Therefore, the following advice can be given:

Specifications should not have message selectors as parameters in observed messages

14It would be possible to make a reliable specification, if updating of shared variables is just one of the
alternative behaviour of the specification. If other alternative behaviours do not update shared variables,
then a reliable refinement can be made. In such situations, the updating of shared variables will just be a
part of the specification which will never by found in a reliable refinement. Updating the shared variable
can therefore be seen as an unnecessary complexity in the specification.

185

Conclusion
Below the advice on how to make reliable specifications is summed up in one list:

Reliable specifications must specify:
- all possible sequences of actions observable from the component and by the context
- the resulting behaviour as observable from the context for each message which may be received
 by an object in the component
- the resulting behaviour as observable from the component for each message an object in the
 context will receive
- the maximum number of visible objects which refinements of the component may have.
- the maximum number of visible objects from the other components.
- how the names of the visible objects are sent and received in messages from and to
 the component and its context, ie, specify in which parameters in which messages the
 names of the different visible objects are found.
- which visible objects from each component is initially known to the other components.
- when classes are parameters in observable messages, they must be treated as visible objects

In addition configurations which are to be specifications for reliable refinements
- should only access and update variables within a component.
- should only use if-tests to compare the names of objects within a component.
- should only use methods which are local to the component.
- should not have message selectors as parameters in observed messages
- should only use class names within a component, names of abstract classes might be an exception

Here are some advice from the conclusions of section 8.3. This advice gives suggestions on what to do instead of
breaking the reliability requirements for reliable refinements:

If a component is to be a reliable refinement of some specification, the no external inheritance reliability
requirement limits the use of shared variables to sharing variables within a component. Instead, when a
component wants some data from a collaborator it should send a message which returns with the data.

Give priority to delegating functionality to a component rather than inheriting it from a class. It is not possible
or meaningful to have superclasses as components and at the same time have reliable substitution of such
components.

Methods in other components should not be changed during execution. Use such things as Smalltalk block-
objects and/or the Visitor pattern when you want a component which should have different observable behaviour
depending on which component it collaborates with.

Comparing object names should be avoided unless refinements are expected to have exactly the same number of
visible objects as defined in the specification. Instead of using if-sentences it is better to redesign and use
dynamic binding. If object names must be tested, then at least one of the names must be local to the component
where the test is done.

Consequences of the requirements on reliable specifications
There are mainly three ways of making reliable specifications. One is to describe objects displaying the desired
observable behaviour, the second is to define the desired sequences of observable actions directly, ie, the
observable traces of the components and the third is to define the sequences of observable actions indirectly by
for instance invariants. The first approach was the starting point for the presented formalisation. However, the
two latter might in some cases be better alternatives since these might give more direct descriptions of the
collaboration of the components.

Independently of which approach is taken it is necessary to specify the components' visible objects, and not just
the types or classes of objects in the different components. As noted above, only two kinds of observable actions
can be found in reliable refinements of a specifications. These are message-send actions and object-creation
actions. Therefore, to avoid unnecessary complexity, the observable traces should only include these two kinds of
actions.

8.5.3 Ensuring correctness of specifications
The reliable refinement relation is defined in order to be able to substitute components without introducing
observable behaviour which is not specified. This is as opposed to Ensuring that a specification describe the
observable behaviour the author(s) think they describe. In the first case, the specification is assumed to be
correct. It is assumed that the initial step has been taken in the development of the system in that the system's

186

parts have been specified. Reliable substitution, and therefore the refinement relation, is focused on the later
steps of the system development, when new versions of the system's parts are to be developed. This is different
from theory and practice which are concerned about whether or not a specification is correct. Their focus is on the
initial step when there is no previous system descriptions to compare with. Many different techniques have been
developed for helping authors ensure that their initially made specifications are as intended.

Ensuring that a specification is correct has several aspects. One aspect is Ensuring that the specification describes
a system which is useful and preferably as useful as possible. Another is Ensuring that the specification actually
say what the author intended.

Creating useful systems usually requires careful analysis and may require the participation of users in order to
understand their needs and requirements. There are a number of analysis methods which claim that they help
system developers through this phase by prescribing good processes and by having notations which can be read
and understood by the coming users of the system. Such methods are human centred and related to "soft sciences"
such as sociology, psychology and anthropology.

Ensuring that a specification actually says what the author intended is another problem. One technique used in
this case is allowing the author to express his/her ideas in more than one way. Today this strategy is supported
by more or less automatic tools for Ensuring that the different specifications say the same thing.

One example where the developer is allowed to view and edit different aspects of a system specification is the
OOram tools. Through the tools the various aspects of the system description are always kept consistent. This
means that when a developer changed the description in an editor showing one aspect of the description, then all
the dependent aspects are automatically updated. If other aspects are shown on the screen, these are redisplayed so
that they show a correct version. A developer can then easily see the consequences of his/her decisions on the
different aspects of the system.

Using algebraic specifications and first order logic as a complimentary way of describing what an imperative
system description is expected to do, is found in various versions. One example of this is Eiffel contracts; not to
be confused with contracts as used in chapter 2. Eiffel contracts consist of assertions which are seen as elements
of formal specification. An assertion is the expression of some property of objects, notably properties of the
variables of objects and relations between values the variables hold. The technique of Eiffel contracts is the idea
of invariants, pre- and post-conditions developed for imperative languages applied to a concrete programming
language (Meyer 1994).

The assertions are found as class invariants expressing properties which must be ensured when an object is
created and maintained by every method. A simple example is:

x > 0
aBool = (x = 0)

which says that the variable x will always hold a value greater than zero, and the variable aBool will be true if
x=0, false otherwise.

Assertions are also found as pre- and post-conditions in methods. An example (preconditions are denoted "require"
and post conditions "ensure"):

method(x: OBJECT); is
require y /= Void
do …
ensure y = x

where y is some variable declared in the class the method is created for. The precondition says that the variable y
refer to some object, not Void (which is Eiffel's term for nil / none). The post condition says that y will refer to
the same object as x when the method has finished executing.

As can be seen from the examples, assertions describe quite different properties than the properties modelled by
Omicron. Assertions express properties of the internal state of an object while Omicron reason about the
observable actions of objects. Eiffel contracts and other similar techniques are quite useful in Ensuring that an
implementation is done correctly in relation to the use of variables and the change of the object's state. It also
helps avoiding duplication of state tests for objects since the assertions explicitly express what can be expected
about an object's state.

A method's pre-condition can be seen as specification of how callers of the method is expected to behave, ie,
under what conditions they are expected to send the message. A methods post-condition is a specification of the

187

component's behaviour when the method is called and the caller behaves as expressed in the pre-condition.
However, traditional post-conditions do not express properties such as message sending or object creation.
Instead they focus on values; specifying return values or updates of the internal state of the receiving object.
Therefore, they are used to express quite different properties than the observable behaviour described by Omicron
configurations. In other words, Eiffel contracts and Omicron specifications fulfil different needs in relation to
creating, documenting and using components. Invariants, pre- and post-conditions, and in general algebraic
specifications, are useful for abstractly specifying how single objects manipulate data while Omicron is useful
for specifying sets of objects collaborating by sending messages and creating new objects. As most object-
oriented systems do both, combining the two might reveal itself as a useful combination.

However, by means of auxiliary variables such as history (trace) variables, one may specify abstract object
behaviour by invariants and pre- and post-conditions. This is discussed in relation to ABEL in chapter 9 on
related work.

8.5.4 Ensuring reliability of refinements
C. A. R. Hoare stated that:

There are two ways of constructing a software design:
- One way is to make it so simple that there are obviously no deficiencies
- and the other way is to make it so complicated that there are no obvious deficiencies.

If a specification is simple, it might be easy to make a component which obviously is a reliable refinement of a
component in the specification. On the other hand, if a specification is complicated, it might be impossible to
convince oneself that a reliable refinement exists without automatic proofs. In practice, the quality of
specifications is therefore an important factor when Ensuring that a component is the reliable refinement of a
component specification. It is important that the specification is easy to understand, by both being as simple as
possible and written using good language and appropriate notations. This is the concern of many of the object-
oriented software engineering methods referred to in this thesis.

However, a good, readable and reliable specification is not enough to ensure that a component is a reliable
refinement of the specification. It must also be shown that it meets the reliability requirements and that it has
the observable behaviour described in the specification. Below are some rough sketches of how one in practice
could test weather or not a component is a reliable refinement of a specification.

To ensure that a component is a reliable refinement, two aspects of the component have to be verified; it must
be tested that the component meets the reliability requirements and it must be tested that it has similar
observable behaviour to its specification. Some reliability requirements can be checked at compile time while
others have to be checked at runtime. Similar observable behaviour must be tested at runtime, or through some
simulation of runtime. There might also be some cases where static program analysis can be used to confirm
that the component has similar observable behaviour to its specification. This is the topic of much work on
incremental modification techniques which ensure that the observable behaviour is maintained by certain kinds of
modifications. These techniques mainly focus on functional behaviour of components and do not consider
message-send and object creation actions.

Compile time checking and static analysis has the advantage over runtime checks in that it is usually faster and
takes a finite amount of time. A sketch of an idea on how to statically check some of the reliability requirements
is as follows:

The main idea is to type slots in order to recognise those which can only hold names of objects which are local
to the component. We call such slots local slots. The type checker/type inference algorithm can then check that
local slots are only assigned the names of local objects. The type checker / type inferer must also do the
following checks to ensure that the different reliability requirements are met:

Reliable if-sentences The if-sentences only compare the values of slots where at least one is a
local slot.

No external inheritance Inheritance slots are local slots.
If static classes are used, then no external inheritance is always ensured.

Reliable method lookup A slot must be a local slot if its name is equal to a message selector in
the component and/or the component's context.
When classes are static, reliable method lookup is always ensured.

188

Reliable message sending In this case traditional type checking can be used, with the danger that the
type checker rejects a component as unreliable, while it is not15.

When these four reliability requirements are fulfilled, the "only" thing which remains to check is that the reliable
component has similar observable behaviour to the specification. For OCS components, this usually means
testing the component in the context of a test environment or as a part of a complete system. R.V. Binder
defines two aspects of component testing in the paper "Design for Testability with Object-Oriented Systems"
(Binder 1994) where he writes:

"To test a component, you must be able to control its input (and internal state) and observe its output.
If you cannot control the input, you cannot be sure what has caused a given output. If you cannot
observe the output of a component under test, you cannot be sure how a given input has been
processed."

When we have a reliable specification of the context of the component and reliability requirements of refinements
of the context, we have control over the input. The limit on visible object names and the requirement not to use
message selectors as parameters in messages from the context to the component may be viewed as examples of
how it is necessary to restrict input in order to have control. Controlling the internal state of the object is done
by the no external inheritance, reliable if-sentences and reliable method lookup requirements.

The reliable message sending requirement is linked to the observability of the output. This is because of the error
model defined for Omicron where message not understood errors are not observed, even when the intended receiver
is an observer. As discussed in chapter 5, reliable message sending is a necessary and also very common
requirement. Type checking and type inference is commonly used to check this property.

Observability of actions was formally defined in a previous chapter. The formal definition was easy to do
compared to observing actions in practice. Actions are observed when a specification and its refinement actually
exist and are to be executed together with a context. To verify similar observable behaviour, actions have to be
observed and compared. Actions must be observed and compared as follows:

For each action sequences from the system consisting of the refinement and the context,
there must be an observably similar action sequence in the system consisting of
the specification and the context.

Since there may be an infinite number of actions in the action sequences from the system with the refinement in
it, there will in general be no practical way to fully ensure similar observable behaviour. However, some
approximations may be done. Usually infinite sequences of actions occur as the system perform the same action
sequence infinitely many times. Then the components can be inspected after a certain number of repetitions of
some action sequence. The state of the components can then be studied to see if it can be assumed that the
components are able to repeat the action sequence indefinitely or at least repeat it as many times as is necessary
in practical situations. A technique which can be used to reason about components' behaviours are invariants and
pre- and post-conditions. By using this technique it can be easier to establish if action sequences can be repeated
indefinitely.

There are many problems related to showing observable similarity of infinite sequences of actions. However,
even the simple problem of showing observable similarity of finite sequences of actions is not solved in
practice. To solve this problem it is necessary to create test environments which can observe actions and
compare them. To be practical, such environments could be integrated with tools used for component
specification. Since the specifications are operational, they can be executed. Therefore, the specified context of a
component can be transformed into a test driver for refinements of the component.

Before good test environments exist, test drives have to be made by hand. This can be a quite large amount of
work. The last resort to testing for observable similarity of behaviour might be running the component with a
context and check this systems' visible output. Visible output is such things as error messages, updates of the
display or output to file or network. For instance we can test a component as follows:

Run the systems with a new component and an existing context and
run the system with the existing context and a component which is seen as a specification
and then see if the two systems have similar visible output

The visible output of the systems can be tested, eg, by going thought the use cases of the systems. One can then
hope that if the visible outputs are similar, the new component and the specification component have similar
observable behaviour when collaborating with the context component.

15 see discussion about subtypes vs. refinements in the section 8.3.5 on reliable message sending

189

Compared with non-reliable components, it is a larger chance that a component which is a reliable refinement
will also give similar visible output to its specification when combined with a new context and where this new
context has similar visible output to the old context when executed together with the specification component.
This can be illustrated as follows:

The new component
is reliable relative to an old component and
the systems with the new component and an existing context has similar visible output to
a system with an old component and the existing context

A new context
is reliable relative to the existing context and
the system with a new context and the old component has similar visible output to
a system with the old component and the existing context

The reliability properties of the new component and new context will increase the chances that:

the systems with the new component and the new context has similar visible output to a system
with the old component and the new context
and also that
the systems with the new component and the new context has similar visible output to a system
with the new component and the existing context

However, the starting point for the development of new versions of components are specifications. Therefore, it
is important that specifications are presented in a form which is easy to understand and that the specifications are
as simple as possible. To make the specifications as simple as possible it is important that only necessary
aspects of the components are described. The above rules for making reliable specifications lists the necessary
aspects of component specifications. By taking the most readable software engineering methods and developing
them further based on the rules for making reliable specifications, one might get one step further in making
better specification languages for OCS components.

8.5.7 Reliability and reusability of components
As mentioned in chapter 1, in relation to reuse, the substitution proposition says that a component which is to
be reused must have a reliable specification and the implementation must be a reliable refinement of the
specification. If not, the implementation might not function as planned when the component is collaborating
with some new component.

If the reused component does not have a reliable specification, the reused component can function as its own
reliable specification. It might be difficult to read and understand, but it meets the requirements to specify visible
objects and their use. If it is its own specification, it has no more visible objects than itself and use them as it
does and it therefore meets this reliability requirement. However, to be a reliable refinement it must also meet
the other reliability requirements. It must therefore not inherit from its collaborators since these may change
when the component is reused. For the same reason, it can not use methods found in collaborators of compare
the names of objects in its collaborators.

To support the reuse of a component, the component should come with a reliable specification of its
collaborators. If a reliable specification is not available, the developer of the new collaborator must guess what
the reused component expects of visible objects. If the guess is wrong, the component user can experience
unanticipated behaviour from the component. Similar problems will occur if the observable behaviour of the
component's collaborator is not specified and the creator of the new collaborator must guess.

Since it is required that the reused component is a reliable refinement, it is expected that it meets the reliable
message sending requirement. This requirement implies that the specification of the reused component's
collaborators must include specifications for all messages the reused component sends to the collaborators. The
collaborator specification should also specify the maximum number and use of visible objects from the
collaborator which are known by the reusable component.

Also, as mentioned in chapter 1, the substitutability proposition does not imply that a new collaborator of a
reusable component needs to be a reliable refinement of the collaborator specification. The new collaborator need
only be a refinement of the specification. This holds as long as the reused component is not substituted with a
new version.

190

The new collaborator need not be a reliable refinement when the reused component is not substituted since the
slots, methods and objects which are in the reused component will not be replaced. Then it is not necessary to
have reliable method lookup, reliable message-send and reliable if-sentences in the new collaborator. The new
collaborator can also inherit from the reused component. However, to be sure that the reused component behaves
as specified, the new collaborator must have no more visible object names than specified and the visible object
names must be used as specified. If the new collaborator has more visible objects than the specification and/or
use them differently, the reused component might not behave as specified. On the other hand it might. However,
if the new collaborator has visible objects as specified, the reused component is guaranteed to behave as
specified.

For example assume that the TextEditor is reused with various refinements of TextModel. For the collaboration
between the reused TextEditor component and a refinement of TextModel to function as planned, it might be
necessary that the refinement of TextModel must have no more visible objects than TextModel and use them in
similar ways as observable from the TextEditor. However, if the developer is lucky, the TextEditor will function
as planned even if the refinement has more visible objects than TextModel and/or use them in different ways.

Conclusion
A reusable component must be a reliable refinement of its specification. If it does not come with a reliable
specification of itself, it can be a reliable specification itself. Then, however, the specification may be
unnecessary detailed.

A reusable component should come with a reliable specification of the components in the context, ie, a
specification of the component's collaborators. When a new collaborator component is made, the new
collaborator should have the no more visible objects than the specified and use the visible objects in the same
way as described in the specification. A new collaborator component need only be a refinement of a collaborator
specification. It does not need to be a reliable refinement of the specification provided the reused component is
not later substituted with a new reliable refinement of itself.

8.5.7 Summary of lessons learned
What follows is a summary of the most important lessons learned in relation to practical use of the results of
this thesis.

The number of visible objects can not be abstracted away:
When specifications describe components in extensible systems, the specifications must be a safe starting point
for implementing the substitutable components of the extensible system. Therefore, if a specification is to
describe a component of an extensible system, the number of visible objects can not be abstracted away. If the
number of visible objects is abstracted away, the specifications are in some sense incomplete since it is not
possible, or difficult, to make implementations which will function as planned. The difficulty is concerned with
knowing how many objects in other components a component is expected to know of and distinguish between.
If an implementation makes an error in distinguishing between objects from other components, the result is
typically wrong messages to the wrong objects. The best to hope for in such a situation is that a system error
occurs immediately. The much worse alternative would be that the wrong message to the wrong object lead to an
inconsistency in the system which only surfaced days, weeks or years after the message was sent.

Inheritance between components creates trouble:
Use of inheritance between components complicates component development, designs and specifications.
Typically this happens when a class is considered a component and developers are allowed to make subclasses
and use them in place of the superclass. The extra complexity is added by the necessity to specify more than the
components' observable behaviours. Also, it must be known how to make reliable refinements of the specified
components. It must then be known what can change and what must be remain stable, ie, what is the
implementer allowed to change and what must s/he keep the same. In particular, it is not clear how to reliable
implement or change methods which are inherited by other components. A lot of work remains before one is
able to make reliable specifications and refinements of components which are allowed to inherit from each other.

If-sentences in object oriented languages can create trouble:
It is not considered good object-oriented practice to use if-sentences to test if two variables refer to the same
object. It was therefore an interesting discovery that the use of if-sentences also created problems in our theory.
Therefore, there now exists both practical and theoretic support for not using if-sentences to test if two variables
refer to the same object. Instead, it is considered better in both theory and practice to use dynamic binding to
control the behaviour of a system.

191

Using message selectors as parameters are useful but can create trouble:
The use of message selectors as message parameters in the Smalltalk pluggable editors makes these editors very
useful, easy to reuse and it is easy to make new collaborators for the editors. It was therefore a small surprise
when our theory concludes with results which say the opposite of the practical experience of the users of these
components. However, makers of pluggable editors, and particularly people which have converted a non-
pluggable editor to a pluggable editor, has experienced that this conversion is not always straight forward. A lot
of effort have to be put into getting the editor implementation right so that errors don't appear when the
pluggable editor is made to collaborate with a component which uses a new message selector as parameter.

How objects are grouped into components will influence maintainability
The observable behaviour of the various components in a system is defined when objects are placed in
components. Therefore, when defining components one is at the same time making decisions about which parts
of the system should be possible to substitute independently of each other. Therefore, the partitioning of a
system into components is one of the factors which will influence the maintainability of a system and the
reusability of the components.

A discussion of where to place an object holding the set of views for the model object in the model-view contract
example of chapter 2 can illustrate this point:
If the set-object is placed in a component by itself, the specification will include a precise description of the
interaction between the set-object and the model. By having this precise description of these interactions, the job
of making an implementation of the set-object is easy compared to not having such a precise description. This
would therefore be a good choice if it would be common to want to replace the implementation of the set-object,
or it is to be developed by a separate team.

The drawback with placing the set-object in a separate component, compared to placing it together with the
model in a component, is that the specification becomes more complex in that there will be more components.
Also, having the set-object and the model in two separate components would mean that changing the interaction
pattern between these two should be taken more seriously since it is part of a system specification. The
interaction pattern should therefore first be changed after long and careful considerations. If the set-object and the
model were one component, their interaction would not be seen as part of the system specification, and could
therefore be seen as details in the specifications of the model component. This interaction could therefore be
changed by those who refine the model component, provided the observable behaviour of this combined
component is in accordance with the specification.

The general and obvious rule is that objects which are assumed to be developed or changed together should be
placed in the same component, while sets of objects which it should be possible to develop and change
separately from the rest of the system should be placed in a component by themselves.

Tool support for ensuring reliable substitution
Quite a lot of further theoretic and practical work is necessary to ensure reliable refinements in a general,
practical case. It is particularly difficult to make complete and easy to use tools which help developers ensure
that they have reliable substitution of components. The main difficulty or amount of work will be related to
observing and comparing sequences of actions, especially since components may have infinite sequences of
actions.

However, results such as the reliability requirements and the definition of the reliable refinement relation, must
be available before such tools can be made. The results of this thesis can therefore be viewed as a small,
necessary first step in the process of making tools which help component developers make reliably substitutable
components. Also, a practising component developer can learn some simple lessons from the presented theoretic
work, where the most important lessons are summed up above. These lessons should be easy to incorporate into
existing development methods and OCS design practices.

192

193

CHAPTER 9

Related Work

This chapter presents different formal approaches to describing software and their relation to
Omicron.

There are mainly three different traditions in modelling computer systems: the distributed systems
tradition, the functional or algebraic tradition and the object-oriented tradition. Omicron belongs to
the last tradition. The distributed systems and functional traditions have a long history of formal
work which are solidly based on the concepts of the traditions. Comparing this with the object-
oriented tradition, we see that most formal work done on objects is firmly rooted in one of the
other traditions. There are some exceptions which are presented in section 9.3.

The problem with rooting formal work in other than the object-oriented tradition, and then
reasoning about objects, is that the different approaches have different views of a component and
specify similarity of behaviour in distinctively different ways. Therefore, it is not clear how object-
oriented concepts map to the concepts found in other traditions. What typically distinguish
functional and process formalisms, and object-formalisms based on these, from Omicron and the
reliable refinement relation are:

- they define a total equality relation and not a partial context dependent refinement relation
- they do not explicitly define a context - which may be substituted by a refinement
- they do not take object creation and inheritance/shared variables into account
- they specify single objects, not components which are configurations of objects, or
 there are no distinct object and/or component boundaries

Because of such differences, it is not clear whether components are reliably substitutable in our
sense when found similar when formalised by using functional or process modelling languages.

In section 9.1 Omicron is compared with other models of distributed systems such as process
models and Actors.

Section 9.2 compares object-oriented models in general and Omicron in particular to traditional
state based functional models.

Section 9.3 presents various other formal models of objects and object behaviour. Conclusions
include that the formal models focus on other aspects of objects than their observable sequences of
actions or the formal models are not worked out to the extent that they can be used to define and
reason about reliable substitution.

Section 9.4 compares the substitution proposition to assumption/guarantee specifications,
introduced in (Jones 1983). Martín Abadi and Leslie Lamport have worked on showing properties
related to composition and decomposition of components specified by assumption/guarantee
specifications. They have formulated a composition principle (Abadi and Lamport 1993). It is
shown that the Omicron reliable refinement relation is in line with the composition principle.

194

9.1 Models of Distributed Systems
In this section Omicron is compared with other models of distributed systems. Subsection 9.1.1 compares
Omicron to general models of distributed systems, while the next two subsections compare Omicron to
particular models of distributed systems. The models selected for comparison are those models which most
resemble Omicron, namely the Actor model (subsection 9.1.2) and the π-calculus (section 9.1.3).

9.1.1 Discussion of distributed system models
This section will compare Omicron to general models of distributed systems. The comparison is done by
describing different features of distributed systems. For each feature, Omicron and other models are compared. An
article by Lamport and Lynch (Lamport and Lynch 1990), hereafter referred to as (L&L), gives a thorough
presentation of different features of distributed systems. The L&L article is used as a basis for the below
discussions which compare Omicron with other models. The L&L article is used as basis instead of making up a
new description of these features.

L&L write:

Underlying almost all models of concurrent16 systems is the assumption that an execution consists of
a set of discrete events, each affecting only part of a system's state. Events are grouped into processes,
each process being a more or less completely sequenced set of events sharing some common locality
in terms of what parts of the state they affect.

This corresponds well with the Omicron (and in general the object-oriented) model of computing.

They divide the models into two categories according to the mechanism employed for interprocess
communication:

those in which processes communicate by message passing and
those who don't

The Omicron calculus is a message passing model between components. L&L further define a taxonomy for
classifying message passing models by the assumptions made about four separate concerns: network topology,
synchrony, failure and message buffering. These four concerns are each handled in the four subsections below:

Network topology:
The topology describes which processes can send messages directly to which other processes and is described by a
communication graph where the nodes are processes and the arcs denote channels for message passing. L&L do
not mention models where this topology can be changed during the processes' lifetimes. In Omicron the
topology can change during execution by objects passing object names as parameters in the messages.

L&L's limitation to fixed topologies corresponds with most message passing models in that these models
assume a fixed topology, eg, CCS(Milner 1989), LOTOS (Bolognesi and Brinksma 1987) etc. The notable
difference is Milner et.al.'s π-calculus (Milner et al. 1989a), (Milner et al. 1989b) where systems with an
evolving topology are called mobile processes. Also CHOCS (Thomsen 1993) allows network topology to
change.

There are many approaches to modelling objects using process modelling formalisms with fixed topologies, eg,
(Moreira and Clark 1994), (Allen and Garland 1994), (Papathomas 1991), (Papathomas 1992). All has the same
limitations as the traditional process specification languages in that it can not handle topology changes. None of
the papers have proofs showing how relations between processes map to relations between objects and how
properties of the relations can be used to prove reliable substitution of components. (Honda and Tokoro 1991)
and (Sato and Tokoro 1992) define a calculus called RtCCS for real-time object-oriented computation. It extends
Milner's CCS by introducing a tick action and a time-out operator. In relation to Omicron it therefore has the
same limitations as CCS in that it can not handle topology changes and instance creation actions and the defined
relations are bisimulations, not refinements.

16 It seems that L&L do not make a clear distinction between distributed and concurrent systems.
"Distributed" is the term they use both before and after this paragraph. "Concurrent" is only used in this
paragraph.

195

Other approaches create new languages inspired by process languages, particularly the π-calculus, eg,

(Honda and Tokoro 1991) define a bisimulation relation, but show no properties of this relation,

(Vasconcelos 1994) does not define anything similar to a monotonic relation or a refinement relation

(Nierstrasz 1993) (earlier version in (Nierstrasz and Papathomas 1990a)) presents an object calculus, but leave the
following problems open (page 167):

When are two object descriptions behaviourally equivalent ?
What is an appropriate type theory for "plug compatibility" of objects ?

Some answers to these questions are suggested in this thesis.

Synchrony:
L&L define a complete asynchronous model as:

A completely asynchronous model is one with no concept of real time. It is assumed that messages
are eventually delivered and processes eventually respond, but no assumption is made about how long
time it may take. Other models [not complete asynchronous] are models which introduce the concept
of time and assume known upper bounds on message transmission time and process response time.

Asynchronous message passing with no time constraints is modelled in Omicron by each active object having an
equal probability of being executed. L&L introduce synchronous communication as follows:

[CSP-example] Unlike the case of ordinary message passing, the input and output commands are
executed synchronously. Execution of a j!v operation (a message send in process i) is delayed until
process j is ready to execute an i?x operation, and vice versa. Thus, a CSP communication operation
waits until a corresponding communication operation can be executed in another process.

Omicron is completely asynchronous in that an object can always receive a message. Therefore, a sender does not
have to wait for a receiver to be willing to communicate. Synchronous communication is found in the π-
calculus and all the above mentioned calculi inspired by this calculus. As omicron, the Actor model (Hewitt
1977), (Agha 1986) has asynchronous message passing.

Failure:
In message passing models both process failures and communication failures may be considered. Communication
failure occurs when a message sent is not delivered for some reason or other. This is not a topic in Omicron (or
π). However, process failure where the failure is due to an error in a process is modelled in Omicron. Omicron
allows only halting failures, where a failed process does nothing.

Omicron has the same fault tolerance as asynchronous communication models, since an object in an Omicron
system will not be removed when one of its sentences gives an error action when executed.

It is not clear whether the failure semantics of the parallel and sequential versions of Omicron correctly model
errors in object component systems. That this is difficult to judge is supported by L&L which write:

"Failure models are problematic because it is difficult to determine how accurately they describe the
behaviour of a real system. "

Further work has to be done to see if the Omicron error models are the best and most useful failure model for
object component systems.

Message buffering:
L&L writes:

"In message-passing models, there is a delay between [the time] when a message is sent and when it is
received. Such a delay implies that there is some form of message buffering. Models may assume
either finite or infinite buffers."

Omicron has an infinite buffer in that an object is always willing to receive a message, ie, a method copy is
created so there may be infinitely many method copies at any one time. The Actor model also assume infinite
message buffers.

196

L&L further writes:

"If a link's buffer can hold more than one message, it is possible for messages to be received in a
different order than they were sent."

In Omicron messages are received in the order they are sent, since a method copy is created when an object
receives a message. However, there is no guarantee that the method copies will be executed in the same order as
they were created because the transition rules non-deterministically select which rule of action to apply at each
step. Thus the observable result is that the order the messages were sent is not preserved in the order of execution
of methods. The Actor model has message buffer semantics which allow messages to be sent and received in
different orders. However, in the Actor model an object will only have one method copy executing at any one
time as new messages will not be received before the previous method has terminated. In Omicron there may be
any number of executing messages at the same time.

Shared variables
L&L define other models of communication than the message passing model, namely shared variables.
Communication through shared variables is not found in the π-calculus or Actor model. However, Omicron
enables communication through shared variables in that several objects share slots through inheritance.

A problem with shared variables is that many algorithms need to somehow control the access to the shared
variables. To be able to control access to the shared variables it is common to use semaphores [L&L page 28].
Examples of such control is implemented in Omicron by using the possibility to assign the same value to
several slots in one atomic operation. This possibility is used in the translation from π to Omicron found in
appendix B.

Another way to control shared variable access is through monitors [L&L page 47]. Actor objects are monitors in
that an Actor object only executes one method (equivalent) at the time. Omicron objects are not monitors. This
is common to many object-oriented languages. This is because an object may send a message and then wait for a
return and while waiting for the return get a new message. This new message will result in the execution of a
new method while the other method for the same object is waiting for a return. This can lead to unanticipated
access of shared variables.

By introducing synchronisation primitives, synchronisation problems emerge such as "contention" problems and
co-operation problems. When there are contention problems, a process is not able to make unlimited progress
when other processes fail to progress, and when there is co-operation problems, the progress of one process
depends upon the progress of another. Such problems can lead to deadlocks.

Since Omicron has asynchronous message passing then synchronisation problems do nor emerge directly from
the way message passing is done. However, synchronisation can be modelled such as is done in the translation
from π to Omicron in appendix B. Here a semaphore controls the access to a shared variable. The use of such
synchronisation mechanisms in Omicron can give contention and co-operation problems. Such problems occur
when an object actively waits to receive a message in order to start or continue one of its tasks.

Specification language vs. verification system
The Omicron language can be used to make specifications of object component systems. However, the Omicron
language is mainly intended as a formal framework for reasoning about and verifying congruence properties of
OCS components. (Lamport and Lynch 1990) page 1167/1168 describes specification and verification as
follows:

"In verification, the properties to be proven are stated in terms of the algorithm itself - that is, in
terms of the algorithm's variables and actions. [In] the related field of specification, […] the properties
to be satisfied are expressed in higher-level, implementation independent terms […]. Specification
methods must deal with the subtle question of what it means for a lower-level algorithm to implement
a higher-level description. This question does not arise in the verification methods that we discuss,
since the description of the algorithm and the properties to be proven are expressed in terms of the
same objects."

Omicron configurations were seen as specifications in the previous chapters. Such a specification is not any
different from an implementation. Therefore it is not done in "implementation independent terms". However, by
the way the reliable refinement relation is defined, the specification and its reliable refinements may have
completely different local structures. In this perspective, an Omicron specification can be seen as implementation
independent, even if it is made using the same terms as implementations. Omicron can therefore be used as a
specification language as defined above.

197

Omicron is also a verification formalism, as defined above, since the description of the algorithm and the
properties to be proven are expressed in terms of the same objects.

Abstraction in relation to verification and specification.
A specification is an abstraction of things it describes. If a specification of observable behaviour should be
abstract, then message send actions and object creation actions should be abstract. Omicron does not give abstract
specifications of object components' observable behaviour. Therefore Omicron can not be used to describe
abstract designs where observable actions are abstract. Instead, the observable behaviour is exactly defined in full
detail by concrete actions.

However, the description of the object components are abstract in that the components internal details are hidden,
ie, the Omicron refinement relation describe abstractions of software components.

Omicron's relation to abstraction can be summed up as follows:

The Omicron language is not abstract
- it is an (abstracted) programming language which have variables and statements which are executed.

The Omicron language semantics is not abstract
- it is defined by an (abstract) operational semantic which specify execution steps.

The Omicron refinement relations are abstract
- it only focus on externally observable behaviour and hide internal details of the configurations

9.1.2 The actor model
The Actor model (Hewitt 1977), (Agha 1986) is created as a foundation for concurrent object-oriented
programming. The actor model corresponds in many ways to the object component design's idea of an object.
The Actor model is mainly a specification (description) language, but has also been given formal definitions
which support reasoning about Actors.

An actor is an object which carries out its actions in response to receiving a message. The actions it may
perform are:

Send communications to itself or to other actors (similar to sending messages)
Create more actors
Replace its behaviour with a new replacement behaviour (similar to changing state)

The replacement behaviour is yet another term to describe the new "actor machine" produced after processing the
communication, ie, the new state of the actor.

The correspondence between actor terminology and object-oriented terms as follows:

Actor Object-oriented
Script Class declaration
Actor Object
Actor Machine Object state
Task Message
Acquaintances Attributes

The most notable difference is that an actor is a monitor which processes one message at the time. Also, an
actor's description explicitly defines which messages the actor is willing to receive. The messages an actor is
willing to receive may change as part of the actor's replacement behaviour. An actor is usually seen as having a
static set of methods which corresponds to the messages other objects might send it. This is different from how
Omicron and other traditional object-oriented language or design notation specify the sequences of messages an
object will receive. In this latter case, the messages the object will receive is not defined in the description of the
object itself, but given by a specification of a context of other objects sending it messages.

This difference in describing which messages objects and actors should get or are willing to receive is also
reflected in the difference in definition of the Omicron refinement relation and the actor interaction equivalence
relation of (Agha et al. 1993). In (Agha et al. 1993) configurations (components) are collections of actors
(objects). The interaction equivalence relation is defined between two actor configurations by comparing their
input and output actions. Input and output actions are described by the name of the receiver and the message sent
from the configuration (output action) or received by the configuration (input action). For two Actor
configurations to be interaction equivalent, the two configurations must have the same number of visible objects
and must also know the same number of visible objects from the context. In addition, the two configurations

198

must have sequences of equal in and out actions where two actions are equal if the receivers and the messages are
equal. Messages are equal if both selector and parameter values are equal.

The interaction equivalence relation only compares actor configurations by how they collaborate with actors
outside the configuration. This is similar to Omicron's notion of observable actions and only comparing
configurations by their observable behaviour.

When an actor is not executing (has no executing methods) and it is selected as the next actor to do something,
then the actor will do an input action provided the actor is willing to receive at least one of input action. Since
actor descriptions include specifications of the sequences of messages the actor is willing to receive, this is
natural to do. In Omicron this is different in that if input-actions should be created from an object's description,
then the result would be input actions describing messages for all the slots in the object's slot map hierarchy (or
in an object-oriented language with classes: input actions for all the methods in the object's class hierarchy).
This corresponds to requiring refinements to have equal observable behaviour to a specification for all contexts.

The main difference between the OCS model as formalised in Omicron and the Actor model in relation to the
definition of the refinement relation, is that Actor definitions may be seen as including information about how
they expect the context to behave and restrict what communications they are willing to engage in, while
Omicron object configurations do not include any such information. Instead this information is found in the
definition of objects intended to collaborate with the objects in the component. Furthermore, Actors are monitors
while Omicron objects may have any number of executing method objects. These differences results in quite
different styles of programming and object/actor descriptions. An interesting topic to pursue is to see if system
design is equally different in the two formalisms and what are the strengths and weaknesses of the two styles.

9.1.3 The π-calculus and Omicron
In this section the Omicron calculus is compared in some detail with the π-calculus (Milner et al. 1989a),
(Milner et al. 1989b), (Thomsen 1993). First the π-calculus is shortly presented. The concepts of the two
languages are compared on the basis of work done on translating parallel Omicron to π and from π to Omicron.
These translations are presented in appendix B. Finally, the Omicron refinement relation is compared to
bisimulation relations of the π-calculus.

π-calculus syntax and informal semantics:
The π-calculus was created to model mobile processes in order to better understand the semantics of processes and
similarity of processes. Below is given a short summary of the π-calculus expressions with informal semantics.
For a more detailed description see (Milner et al. 1989a) and (Milner et al. 1989b). The π-calculus is a process
calculus in which processes with changing communication structure may be expressed. The processes share
communication channels and such channels can be passed on to other processes. Each channel has a name and the
only "values" which may be communicated are such names. This means that in the π-calculus "variables",
"communication channels" and "values" are all names. An infinite set N of names is presupposed, and in the
below description, single letters such as x,y,v (possibly with subscripts) range over names. Below the informal
semantics of π will be expressed using words such as channel, parameter, etc. to reflect the role the name has in
the expression.

The basic building blocks of π-expressions are process expressions. P,Q range over such expressions that are
built from the following expressions:

P ::=
xy.P output action: send name y on channel x and behave like P17

x(y).P input action: receive an unknown name (say v) on channel x, and then behave like
P{v/y) (P with v for y, v must be a new name not occurring in P)

(νy)P y is a private name for P, making it unique within the total system. y may be passed
to other processes so that they can communicate on this channel.

[x=y]P behave like P if name x is equal to name y else terminate
P | Q behave as if P and Q act independently in parallel.

P and Q may share channels and communicate
on these.

P + Q nondeterministic choice: behave either like P of like Q
0 terminate (usually left out at end of expressions)

The formal definition of the semantics of the π-calculus language is done in the same way as the semantics of
Omicron was defined; by giving transition rules. In many ways, the definition of the π-calculus has been used as
a pattern when defining the Omicron calculus. Therefore, there are many similarities between the two definitions.

17 In π-calculus "overscore" is used, instead of "underscore".

199

Comparing the concepts of the two languages
Process calculi, such as the π-calculus, do not reflect object-oriented concepts. However, it is rather simple to
describe the semantics of an object-oriented language using the π-calculus as, eg, done in (Walker 1991), (Walker
1992) and (Nordhagen 1992). Published translations of object-oriented and object based languages to π all follow
the same pattern. Also, the translation of parallel Omicron to π is presented in appendix B follows this pattern.
It is also rather simple to translate from π to the parallel version of Omicron. Such a translation is also
presented in appendix B.

The π language gives names to channels while Omicron gives names to objects and slots within objects. The
Omicron language syntax gives clearly defined boundaries between objects. In the π-calculus syntax, processes
are similarly distinctly identified. When translating from Omicron to π, object names can be simulated by π
channel names and channel names of π simulated by Omicron names. However, When an Omicron object is
translated into the π-calculus, the object boundaries become blurred, since a single object becomes more than one
process. Similar blurring also occurs when translating from π to Omicron, since one π-process is translated into
several Omicron objects.

Communication between different parts of a system is quite different in the two approaches. In Omicron a
receiver can never refuse to receive a message. In π a receiver will not take input before the receiver reaches an
input sentence. Another difference is that in Omicron a message is always sent to a specific object, while in the
process model a sender just puts a message on a channel for anyone to listen to. Omicron may in this relation be
seen as having asynchronous message passing while π has synchronous. As is generally known, and as can be
seen from the translations between the two languages, one form of communication can be simulated by the
other.

The conclusion from the above and the translation of appendix B is that the concepts in one language can be
simulated by the concepts in the other. However, the translations show that there is no simple mapping between
the two. Below are some comments on the translations.

From Omicron to π-calculus
The translation of Omicron objects into π processes has to take into account slots which store values and
inheritance between objects. Slots can be translated in the same way as variables are translated in (Walker 1991)
and inheritance is done along the lines of (Nordhagen 1992). The largest part of the translation concerns the
translation of slot lookup in an inheritance tree and simulating asynchronous message passing.

When the basic Omicron mechanism for looking up slots and asynchronous message passing are implemented
using π, the translation of the different sentences is rather straight forward.

From π to Omicron
As much of the job in translating from Omicron to π involved modelling asynchronous message passing in π,
the translation from π to Omicron has a significant part which models synchronous message passing in
Omicron. In the simulation of synchronous message passing, slots are used as semaphores. Slots can function as
semaphores since the Omicron language allows simultaneous assignment of values to more than one slot, as
defined in the IF-rules in the operational semantics in chapter 3.

When the basic π mechanism for synchronous message passing is implemented using Omicron, then translation
of the various π constructs are rather straight forward. The most complex translation was the non-deterministic
choice (P + Q) where a slot was used as a semaphore to model the non-deterministic choice between P and Q.

Comparing relations between π agents with the Omicron refinement relation
In π there are four kinds of actions:

τ - silent action
xy - free output
x(y) - input
x(y) - bound output

Based on these actions, the π-calculus papers define different relations between process descriptions (π agents).

The simulation relation defined for π allows a variation in determinism. The Omicron refinement relation allows
the same. One of the main differences between these two relations is that the publications on the π calculus
show no properties similar to the substitution proposition for the simulation relation. Instead bisimilarity is
defined based on the simulation relation, below denoted ∼ , and all presented propositions and theorems are stated
and proved for different versions of bisimilar π agents. Bisimilarity does not allow one of the agents to have
more possible actions sequences than the other, ie, the agents must be equally deterministic in their behaviours.

200

There are various versions of bisimilarity, but the most discussed is the strong bisimilarity. Theorem 2 in
(Milner et al. 1989b) shows that the following hold for strong bisimulation (where P, Q and R range over π
agents):

if P ∼ Q then
 α.P ∼ α.Q where α is a free action
 P+R ∼ Q+R
[x=y]P ∼ [x=y]Q
 P|R ∼ Q|R
 (νy)P ∼ (νy)Q

 if P ∼ Q then P|R ∼ Q|R for all R

The last statement is the most interesting property when comparing bisimilarity to the refinement relation of
Omicron. It shows that strong bisimilarity is a monotonic relation over all π agents. This statement expresses
quite different properties than the properties of the Omicron refinement relation in that the reliable refinement
relation is only monotonic relative to Omicron configurations with a specified behaviour.

When translating an Omicron configuration into π and then executed it in π, then all objects will actively listen
to their own message reception channels. When the component has done all local actions, then the objects will
continue to listen on their message reception channels. The way simulation, and then bisimulation, is defined,
gives that when processes listen to channels then the context is expected to eventually send signals on the
channel. As an example, assume that we have two configurations, eg, A and B, which are translated to π giving,
eg, P and Q. To show P ∼ Q would mean to show that P and Q send the same signals on the same channels for
all possible inputs from the context. This would mean that A and B must behave similarly for all messages to
all objects in A and B, ie, no requirements on the context. This is a quite different property than A being a
refinement of B as defined by the Omicron refinement relation. Therefore, even if A is a refinement of B it is not
very likely that we have P ∼ Q.

From the above it is evident that the refinement relation of Omicron do not map to relations defined for the π-
language in a straight forward way. Therefore it is hard to conclude things about object compositionality and
reliable substitution from π simulation relations. However several interesting commonalties and discrepancies
can be found. Exploring these in more detail would be an interesting topic to pursue.

Behaviour equivalence in the Polymorphic π-calculus
A lot of work have been done on typing π-calculus expressions and on defining various kinds of equivalence
classes based on the processes' behaviour. The report (Pierce and Sangiorgi 1996) presents work which combine
typing and definition of behaviour equivalence of processes expressed in the polymorphic π-calculus. In this
work, the behaviours of a process' observers are specified by using abstract types. The types restrict how the
observers may interact with the process. This is analogous to how the reliable refinement relation of this thesis
is defined. By the properties expressed in the substitution proposition, the context specification can be viewed as
a type specification for all its reliable refinements. In this way the poliadic π-calculus relation which is a
behaviour equivalence relation defined relative to the types of observers can be viewed analogous to the Omicron
reliable refinement relation defined relative to a context specification.

One very interesting thing to note is that the report (Pierce and Sangiorgi 1996) reports observation of "some
surprising interaction between polymorphism and aliasing". Polymorphism stems from the fact that the
observers are only known by their types and can therefore have different realisations. Aliasing means that
different names used in the process specification can be replaced by one and the same name when the process is
run with an actual context. They express this as "A process can always test for inequality between two values of
the same type". They formulate the problem they encounter as follows: "When the process's knowledge of the
type of the two values is partial, this permits a "leakage of information" that gives receivers of polymorphic
communications some unexpected discriminating power." The example they give of this problem resembles the
problems encountered in relation to the use of if-sentences in refinements and reliability problems encountered
when a component tests if two values hold the names of two different context objects. They further write : "The
real significance of these examples of information leakage is not at present clear to us. Nor is it clear whether
they can be avoided, e.g., by identifying syntactic or typing restrictions on processes that would guarantee that
information leakage cannot occur." They also show examples of similar problems in Standard ML and claim that
similar examples can be constructed in any setting with both polymorphism and aliasing. It would therefore be
interesting to compare the results in the report with the reliable if-sentence requirement presented here and see if
they together can give a better understanding of this problem.

201

9.2 State Based Functional Models

9.2.1 Objects as collections of functions
Objects can be modelled as collections of functions, ie, as instances of abstract data types (ADTs), initially
defined in (Guttag 1980). In this tradition, each object is seen as a set of functions taking values as parameters
and returning values. (Danforth and Tomlinson 1988) surveys a number of existing type theories for abstract data
types and examines their applicability to object-oriented models. The ADT approach has been applied to different
system designs, see, eg, (Lano and Haughton 1994) for some case studies. Properties of ADT objects are
specified using, eg, algebraic, type theoretic specification techniques.

Traditionally, when functional models are used as a basis for modelling objects, objects collaborate by one object
calling the functions of other objects. Each instance only takes action when one of its functions is called,
otherwise it passively waits for a call on one of its functions. This approach limits the types of collaboration
structures which can be reasoned about to tree-like structures of callers and callees. The limitation to tree-like
collaboration structures is needed in order to avoid the aliasing problem (Hogg 1991), (Hogg et al. 1992) in
relation to verification of the instances' behaviours. If the object structure is not tree-like, there are in some cases
ways of restructuring the objects and give them additional functionality so that they collaborate in a tree-like
structure (Owe 1988). There are also other strategies which reduce the aliasing problem. Some are listed in
(Hogg et al. 1992). However, Hogg et.al. claims that there are still no complete solution to the aliasing problem
with respect to object-oriented designs.

The functional approach's main focus is on the relation between input parameters of a message and the output
values returned from the message - or values returned from messages sent the object at some later time. In
general, the algebraic methods define a subtype relation which assure reliable substitution provided (most of) the
following hold:

- no aliasing and/or shared variables
- liveness requirement is "return a value" and nothing else
- no instance creation requirements
- single objects are specified although an object may contain internal objects not visible, this
 corresponds with components only having a single visible object
- no specification of context other than legal messages and (rarely) legal sequences of messages

Some later methods remove some of these restrictions, eg, (Liskov and Wing 1993) eliminates some aliasing
requirement and (Briggs and Werth 1994) allow instance creation requirements to be part of a type definition.

However, there are many aspects of object behaviour which can not be modelled and thereby reasoned about
using the traditional functional approaches (Nierstrasz and Papathomas 1990b), (Wegner 1993), (Wegner 1994).
These approaches focus on object states and functional aspects of objects. They are therefore not well suited for
modelling and reasoning about object behaviour which include message passing from the objects and creation of
other objects.

9.2.2 Examples of functional object models
The list below gives some examples of object models which are based in the ADT tradition.

There is a huge amount of work on specifying the behaviour of objects by defining the relations between input
and output values of object functions. These approaches use algebraic specifications, type theory or rewrite logic
as their reasoning bases. Objects are modelled as records with associated variables and functions. By using these
formalisms it is possible to prove properties like equality of values returned from function calls. Examples of
such models are:

(America and Rutten 1990) presents what is (claimed to be) the first language to explicitly include
subtyping and inheritance as two completely separate language mechanisms and the subtype
relation definition is based only on the externally observable behaviour of objects. Their definition
of externally observable behaviour is more than the signatures of the object's methods. The paper
present a preliminary formalism in which such properties can be defined: "it states under which
conditions a certain message may be sent to the object (possibly constraining the values of the
parameters) and what are the possible result values." The language to express such properties has
the full power of first order logic and the subtype relationship can therefore not be statically

202

checked by a compiler. Instead property "identifiers" are introduced to denote these specifications.
They explicitly say "A specification exclusively in terms of sequences of messages is clearly
infeasible". This is quite the opposite of the Omicron approach.

(Liskov and Wing 1993) define an object's observable behaviour as the values returned from messages.
They present a subtype relation which allows multiple, possibly concurrent, users to share
mutable objects, ie, aliasing is allowed. They define types based on relations between input and
output values, and do not specify actions and liveness properties, except obligations to return
values. Their formalism is proof theoretic in that they reason directly in terms of specifications,
where as most other approaches are "model-theoretic" in that programmers are expected to reason in
terms of mathematical structures like algebras and categories. The formalism in (Liskov and Wing
1993) uses pre- and post-conditions as assertions about the state of the objects, somewhat
analogous to Eiffel's (Meyer 1988) use of pre- and post-conditions. However, in Eiffel the pre- and
post-conditions are given more operationally as executable boolean expressions about the object's
state, rather than as non executable assertions.

(Briggs and Werth 1994) define abstract object types and handle objects, not just values. The language
they define is called ObjLog and is sufficiently expressive to specify value-based message passing
and instantiation behaviour exhibited by objects defined by sequential object-oriented programming
languages. However, there is no support for showing liveness properties, as they only show
relations between input and output values in messages to an object of a given type.

(Lano and Haughton 1994) give an overview of many of the algebraic specification methods which claim
to be object-oriented such as Object-Z, VDM++, OOZE, MooZ, Fresco, Z++ and Small VDM.
The algebraic specification language Larch (Guttag 1993) has also been customised to object-
oriented languages such as Larch/Smalltalk (Cheon 1991) and Larch/C++ (Cheon and Leavens
1994). These languages have all the characteristics of algebraic specification methods and are
therefore quite different from the Omicron approach.

(Hogg 1991) presents the idea of islands. In Omicron terminology, the islands idea is a strategy for
controlling the visibility of object names. The strategy eliminate some aliasing problems and
thereby give the objects properties which make it easier to prove functional properties of objects.

Other examples are (Leavens and Weihl 1990), (Gunter and Mitchell 1994) and (Abadi and Cardelli 1994)

9.2.3 Traditional functional models are not
sufficient for modelling object behaviours

What distinguishes an object in OCS design from an object in a traditional functional model, is that each object
has a unique identity, or name, which distinguishes it from all other objects. This is discussed in, eg,
(Khoshafian and Copeland 1986). Also, objects continue to exist between executions of their functions, a
difference which is pointed out in, eg, (Wegner 1994) and (Wegner 1995).

Peter Wegner's works has inspired much of the present work, eg, the principle of substitutability in (Wegner and
Zdonick 1988) and a differentiated view on object typing and language design (Wegner 1987). Later works,
notably (Wegner 1993) and (Wegner 1994) address many of the problems Omicron is aimed at solving.

His later works support the below presented view that traditional state based functional models (which Wegner
tend to call algebraic models) are inadequate for modelling interacting objects since functions model
instantaneous, atomic and serializable algorithms while objects are persistent entities which continue to exist
between the execution of their methods and can model concurrent and/or overlapping executions. In (Wegner
1994) Wegner writes (page 3 and 4):

"Objects model not only the behaviour of algorithms in their interface, but also the periods of time
between the execution of algorithms. Whereas algorithm behaviour is defined only for one input at a
time, object behaviour is defined for multiple interacting messages executing in sequence or
concurrently. By explicitly modelling persistence and concurrent (overlapping) execution, objects can
capture the behaviour of real-time actions in a concurrent world."

Wegner further writes on the same topic on page 13:

"Objects achieve their persistence and temporal modelling power by separating existence and
execution, while procedure invocations self-destruct when their execution is completed because they tie

203

existence to execution. Separation of existence and execution allows time to be a first class notion and
introduce new kinds of (serial and fully abstract) semantics for objects that has no analogue for
procedures.

Autonomous existence is the basis not only for persistence but also for concurrency. Persistence
implies concurrent existence of the persistent entity and its environment, while concurrent existence in
turn provides a framework for concurrent execution. Object composition is based on the notion that
objects being composed exist concurrently and can therefore execute concurrently. The composition of
procedures aims to capture the effect of their sequential execution and is therefore noncommutative,
while the composition of objects aims to capture their concurrent existence and is therefore
commutative."

He also supports explicit definition of objects' context to get tractable object specifications (page 10/11) and (on
page 31) writes:

"The space of all possible interactions of an object is generally too rich for neat mathematical
characterisation. But projections of the interactive computation space such as client-server interaction
or particular computation scenarios and use cases18 determine tractable subspaces of all possible
interactions"

Also, the importance of incremental modifications and substitutability is supported, eg, by (page 19):

"Because maintenance and enhancement are dominant parts of the software life cycle, resource
requirements have as much to do with the capacity of the system to change its behaviour as with the
delivery of a given behaviour"

He also argues that algebraic models are aimed at programming in the small, while object models are aimed at
programming in the large and better at modelling large software system and writes (page 19):

"Large software systems are non-algorithmic, open and distributed:

non-algorithmic: they model temporal evolution by systems of interacting components
open: they manage incremental change by local changes of accessible open interfaces
distributed: requirements as well as components are locally autonomous."

Wegner gives arguments and motivations for the present work. However, due to the properties, or rather lack of
properties, which he says that algebraic models have, it seems that he only consider traditional state based
algebraic models. It seems that he does not consider other later approaches to modelling the dynamic behaviours
of systems by creating new specialised algebraic formal systems where a notion of time is explicit or implicit.
Some such formal systems are mentioned in the following subsection. These formal systems do not have the
same weaknesses as traditional state based models.

18"Use cases" are defined in (Jacobson et al. 1992). Use cases are used to model system functionality. The
description of system functionality is divided into different parts. Each part describe how the system is
to respond to a certain kind of user interaction; a use case.

204

9.3 Other Formal Object Models
This section presents formal approaches which model systems as consisting of a set of objects where each object
has a unique name and exists longer than a function call. In all other ways the approaches are different. The
creators of these works have backgrounds in traditional theoretical computer science and have applied their skills
to reasoning about some property of objects. Before Omicron was created, a number of these approaches were
carefully studied. Attempts were made at modelling OCS components and at defining and reasoning about
reliable substitution as described in chapter 1 of this thesis. We found the different approaches difficult to use,
mainly because their creators have their roots in functional or distributed systems traditions. Therefore, the
approaches focus on properties which are commonly the focus of these traditions and therefore what one
traditionally reason about - and therefore have developed mechanisms to reason about. This is different from
approaches such as Omicron which focuses on the properties which component developers see as important.

9.3.1 Approaches using specialised logics
Various attempts at modelling objects by various logics have been made. Bellow are some examples with some
short comments related to what aspects of objects are described:

Modal logic and objects:
(Morzenti and Pientro 1991) State based, no instance creation and messages
(Wieringa et al. 1994) Specify changes in the object's roles over time, no messages or instance

creation
Temporal logic and objects:

(Arapis 1992) Behaviour based.
Describes sequences of in and out messages. In many ways a similar object
component behaviour model as Omicron, but no shared variables, inheritance
or instance creation. Verify consistency of specifications and monitoring
adherence to the specification during run-time. Does not consider problems
related to reliable substitution.

(Fiadeiro and Maibaum 1990) State based. Reasons about object behaviour in terms of proving
properties of the object's attributes.

Rewrite logic and objects:
(Meseguer 1993) A specification language named Maude for specifying concurrent objects.

Focus on defining clear semantics for the specification language, rather than
showing properties of the specifications Objects are modelled as records with
associated functions. It is possible to prove properties like equality of values
returned from function calls.

Deontic logic and objects:
(Reghizzi and Paratesi 1991) Specification by defining constraints on method activations.

Use Petri nets and deontic logic.

9.3.2 Approaches using traces
Trace modelling have been used by many researchers since the early 70ies, most notably people such as Kahn,
Hoare, Dahl and Broy. Various attempts at modelling objects' behaviours by using traces have been made.
Bellow are some examples with some short comments:

(Nierstrasz and Papathomas 1990a) A general discussion on trace based relations between objects, based
on traces consisting of messages. Also, relate such specifications to CCS.
This work only presents definitions and no propositions or proofs of
properties.

(Ehrich et al. 1990) Compare traces consisting of in-messages and observations of variable values.
Response messages are not considered.

(Skuce and Mili 1995) Traces specify objects' observable behaviour. The behaviour consists of
sequences of messages. The trace notation specify the class of the object
receiving each message and in the presented examples parameters in messages
are values.

205

These trace based approaches share many of the same ideas as presented in this thesis. However, they only
present specification notation, while there are no discussions or reasoning about substitutability of components.
They all have static network topologies since they do not consider messages containing object names. Also, they
do not include object creation actions.

9.3.3 Demeter-Contracts
The paper (Helm et al. 1990), (Holland 1992) describe "Contracts" as a way of capturing multi object
behavioural collaboration, but does not provide a precise semantics for Contracts. ObjChart (Gangopadhyay and
Mitra 1993) is a development of the Contract ideas and give precise semantics to object collaboration patterns.
ObjChart is a graphical notation ("visual formalism") for defining object behaviour based on observable actions.
Their definition of refinement is based on legal changes to a given chart which yields a refinement behaviour
description. ObjChart as presented in the paper is based on fixed networks of components and cannot handle the
semantics of dynamically created objects. Otherwise their notion of refinement corresponds with the definitions
used in this thesis.

9.3.4 ABEL
Ole-Johan Dahl and Olaf Owe have developed the ABEL language (Dahl and Owe 1991), (Dahl 1992), (Dahl and
Owe 1998). The applicative core of ABEL is a strongly typed first order expression language with main elements
being variables, functions and types. This allows abstract requirement specifications. Using the imperative class
concept of ABEL, a more low level concrete module can be proven to simulate an abstract module and in such
cases the abstract module may be used as an abstract specification of the more concrete module. In general, this
is used to specify safety aspects of an implementation and value manipulation of functions.

ABEL allows reasoning about messages being received by and sent from objects. This is done by including
fictious history variables in the specifications. These variables represent traces of messages to and from an object
or a collection of objects. This gives a rely/guarantee formalism with abstract specification (and prototyping)
based on history variables.

9.3.5 POBL (or ποβλ)
C. B. Jones has developed a design notation named ποβλ and used it to reason about object-based programs
(Jones 1995). Jones has chosen to focus on a different set of object-oriented concepts than the present notation.
For example ποβλ has classes for object creation and each object can only have one method executing at the
time, while Omicron uses objects as templates for object creation and any number of methods can execute at the
same time. The main difference is, however, that ποβλ is typically used to reason about the state of shared
variables while Omicron is created for reasoning about substitutability of objects with reactive behaviour such as
message passing and object creation.

9.3.6 Other approaches
Other approaches which express properties of objects use state transitions (Barbier 1992), (Andersen and
Reenskaug 1992), (Andersen 1997), object and object types as values (Dami 1993) etc. Most of these efforts are
found to be in the same direction as the presented work, but has not been adequately worked out to give any
useful support for reasoning about requirements necessary to Ensuring reliable substitution.

9.3.7 Object-oriented languages
Examples of object-oriented languages are Smalltalk, CLOS, C++, Simula, Eiffel, SELF, Beta and Java. As
argued in earlier chapters, Omicron and object-oriented programming languages have much in common. The
communality is related to expressing object behaviour, and not reasoning about such behaviours. Below, the
Omicron language is compared with some object-oriented programming languages.

Prototype languages like SELF have many similarities to Omicron. The main difference is that SELF is
sequential and has a more user friendly syntax. To show similarities of SELF and Omicron, an attempt has been
made at translating SELF to the sequential Omicron presented in chapter 7. This translation was rather straight
forward.

206

CLOS also share commonalties with Omicron. However, a major difference is that CLOS has multiple message
dispatching and programmable language features through the meta object protocol. A further study into such
features, relating them to reliability and reliable substitution would be interesting.

It is interesting how Beta resembles Omicron when taking Omicron and Beta's different histories into account.
Beta was developed generalising Simula's idea of active objects working as coroutines and focused on flexible,
but strong typing, while Omicron was developed generalising the idea of objects sending messages which are
bound dynamically to methods with runtime typing, typically found in SELF. Beta is a representative of the
strong compile time type checking tradition while (eg) SELF is a representative of a "lassies faire" tradition.

Beta does not have prototypes, but has the homogeneity of active objects and executing methods. Beta is
strongly typed based on signatures but due to the properties of the typing system, great flexibility in the code
can be achieved, as long as it is planned when the component is programmed, ie, before it is compiled. SELF
(and Omicron) is untyped and planning is therefore unnecessary. The block structure of Beta can be mimicked by
using object-inheritance in SELF and Omicron. When looking into these languages the basic primitives of Beta
is quite similar to Self and Omicron, apart from two things:

• The most significant difference is that in Beta there are explicit constructs to start the execution of an
object without sending another object a message as one must in Omicron.

• To create a new object in Beta one instantiates a pattern which can not be changed during execution, ie, it
will remain as initially defined, while in SELF and Omicron a new object is created by cloning an object
which may have changed since it was initially defined.

An interesting topic to pursue is to include new aspects of object-oriented languages and systems in Omicron.
An interesting goal for such an effort would be to find new reliability requirements and through these findings
get a better understanding of how to make reliably substitutable components in languages with such features. It
could also lead to new language features or new combinations of features which could ease the creation and
maintenance of extensible systems.

207

9.4 Assumption / Guarantee
Specifications

An assumption/guarantee specification, introduced in (Jones 1983), asserts that a system ∏ provides a guarantee
M if its environment satisfies an assumption E. This corresponds to the following expression using the
refinement relation of Omicron:

∏ ≤E M ∧ F ≤M E ⇒ ∏ ≤F M

where F is the environment.

Manfred Broy, Ketil Stølen and others, have worked with assumption/guarantee specifications for describing
components which collaborate by communicating values over channels, see eg, (Broy 1996), (Broy 1997) and
(Stølen 1996). They have developed mathematical models for making assumption/guarantee specifications and
show properties of their models such as safety and liveness aspects of specifications, completeness and
relationships between their model and the stepwise development of specifications. They also relate their work to
objects. Their model of objects is rather simple compared with the Omicron model in that they view object
collaboration as communication of messages which are values. This gives a static topology. There is no object
creation or shared variables. These differences between the Omicron model of OCS components and this object
model are quite substantial. Further work is therefore needed to see if and how their results are applicable to OCS
components.

Martín Abadi and Leslie Lamport have worked on showing properties related to composition and decomposition
of components specified by assumption/guarantee specifications. They have formulated a composition principle
(Abadi and Lamport 1993) and a composition and a decomposition theorem (Abadi and Lamport 1995). Below,
these are compared to the reliable substitution property of the reliable refinement relation. Abadi and Lamport
present a state-based object model and use this model to exemplify their composition principle and theorems.
This state based model define a state as a set of variables holding values and an action as a change of one or more
of the variables' values. This is quite different from the Omicron model of OCS components. However, their
composition principle and theorems have interesting relationships with properties of the reliable refinement
relation defined for Omicron configurations.

9.4.1 The composition principle
Abadi and Lamport discuss composition of specifications in their paper (Abadi and Lamport 1993). In the paper
they present the Composition Principle which, at the semantic level, is independent of any particular
specification language or logic. They write:

The fundamental problem of composing specifications is to prove that a composite system satisfies
its specification if all its components satisfy their specifications.

They denote a specification of an interactive system ∏, and asserts that the system guarantees property M only
under the assumption that the environment satisfies some property E. The Composition Principle is presented as
follows:

The Composition Principle:

Let ∏ be the composition of ∏1,…, ∏n, and let the following conditions hold.

(1) ∏ guarantees M if each component ∏i guarantees Mi.

(2) The environment assumption Ei for each component ∏i is satisfied if the environment of ∏
satisfies E and every ∏j satisfies Mj.

(3) Every component ∏i guarantees Mi under environment assumption Ei.

Then ∏ guarantees M under environment assumption E.

To give a concrete example of this principle, Abadi and Lamport present a state-based approach to system
specification and restate the composition principle for a case n=2, in terms of their formal definitions. This

208

restatement takes the form of a proof rule for showing that the composition of the two components'
specifications implements the system's specification. Their main theorem shows that their proof rule is sound.

Below, we restate the composition principle for a case of n=2, in terms of the Omicron formal definitions and
show that the composition principle holds also in this case.

We assume that we have a specification which says that an interactive system (in Omicron terms: a component)
will guarantee M provided the environment satisfies E. An implementation of such a system is denoted ∏. For
∏ to guarantee M under environment assumptions E, the implementation ∏ must be a reliable refinement of the
specification M relative to an environment with behaviour E. The Composition Principle must therefore give:

∏ ≤E M

We further assume that we have two components which guarantee M1 and M2 respectively provided their
environments satisfies E1 and E2 respectively. The composition principle can the be restated as follows (we
ignore the substitutions for simplicity):

(1) This condition asserts that M1||M2 ≤E M

(2) The environment of ∏1 will consist of E||M2 and we must therefore show that this environment is a reliable
refinement of E1, ie, E||M2 ≤M1 E1. Similarly we must show that E||M1 ≤M2 E2.

(3) This condition means asserting that the implementations fulfil their specification. This means asserting that
implementations of the two component making up ∏, here denote ∏1 and ∏2 are reliable refinements of the
specifications:

∏1 ≤E1 M1 and ∏2 ≤E2 M2

To show that the Composition Principle hold, we must show that provided the assertions in (1), (2) and (3)
hold, then we have ∏ ≤E M, where ∏ = ∏1||∏2. This means showing the following proposition:

M1||M2 ≤E M ∧ E||M2 ≤M1 E1 ∧ E||M1 ≤M2 E2 ∧ ∏1 ≤E1 M1 ∧ ∏2 ≤E2 M2 ⇒ ∏1||∏2 ≤E M

By the simple substitution proposition for systems with two components, theorem T.6.1, we have:

∏1 ≤E1 M1 ∧ E||M2 ≤M1 E1 ⇒ ∏1 ≤EM2 M1 and
∏2 ≤E2 M2 ∧ E||M1 ≤M2 E2 ⇒ ∏2 ≤EM1 M2

Because of reliable substitution, theorem T.6.4 we further have:

∏1 ≤EM2 M1 ∧ ∏2 ≤EM1 M2 ⇒ ∏1 ≤E∏2 M1 ∧ ∏2 ≤E∏1 M2

and also:

∏1 ≤E∏2 M1 ∧ ∏2 ≤E∏1 M2 ⇒ ∏1||∏2 ≤E M1||M2

Because we have M1||M2 ≤E M from (1) and the reliable refinement relation is transitive, observation P.5.5.3,
we have:

∏1||∏2 ≤E M1||M2 ∧ M1||M2 ≤E M ⇒ ∏1||∏2 ≤E M

We then have ∏≤E M. This shows that the reliable substitution property follows the Composition Principle of
Abadi and Lamport.

In the referenced paper, the principle was exemplified and illustrated by a formal model which is very different
from Omicron. It is different in that it is state based where as Omicron is action based. This difference causes
refinement relations and other definitions to be quite different in the two formalisms. In spite of these differences,
the Composition Principle also holds for reliable substitution of Omicron components. This shows the
generality of the Composition Principle. In addition, the Composition Principle expresses an important property
of reliable refinement relations.

209

9.4.2 Composition and decomposition
Abadi and Lamport show decomposition and composition theorems for assumption/guarantee specifications
within TLA (Abadi and Lamport 1995). In TLA, the Temporal Logic of Actions (Lamport 1994), a state is an
assignment of values to variables, and a behaviour is an infinite sequence of states. Syntactically TLA is built
up from state formulas using Boolean operators and three special operators. An action is a Boolean-values
expression which describe how values of variables are changed. As this shows, TLA has focus on the values of
the variables of a system. A specification typically makes statements of the relationship between a set of input
variables e and a set of touples m of output variables. In this way, TLA is used to reason about relationships
between input and output values of systems. This is different from the Omicron formal model which focus on
message sending and object creation. In spite of this difference, there are strong relationships between the
properties of assumption/guarantee specifications using TLA and properties of the reliable refinement relation.
To illustrate this relationship, two theorems which corresponds to the general decomposition theorem and the
composition theorem of (Abadi and Lamport 1995) will be formulated and shown for the Omicron reliable
refinement relation.

T.9.1 The general decomposition theorem
This theorem is formulated on the background of decomposing a complete specification into a number of parts.
For each part there will then be a lower level specifications. The system and each low level specification is
specified using assumption/guarantee specifications. The general decomposition theorem says:

Let E ⇒ M1||…||Mn be the system specification which says that
the system guarantees M1||…||Mn if the environment satisfies assumption E

let Ei ⇒ Ni be the lower level specifications for i = 1,..n

Then we have that
(1) if the environment assumption Ei is satisfied by E and all Nj where j≠i and
(2) Ni implies Mi under the assumption that the environment satisfies Ei
then
N1||…||Nn will guarantee M1||…||Mn under the assumption that the environment satisfies assumption E

This can be formulated using the Omicron reliable refinement relation as follows (we ignore the substitutions for
simplicity and let M-i denote all Mj except Mi):

If, for i = 1,…n,
(1) E||M-i ≤Mi Ei
and
(2) Ni ≤Ei Mi

then
N1||…||Nn ≤E M1||…||Mn

This can be shown by using the reliable specification theorem where we get

∀ i ∈ {1..n} : E||M-i ≤Mi Ei ∧ Ni ≤Ei Mi ⇒ Ni ≤E||M-i Mi

and then we have

∀ i ∈ {1..n} : Ni ≤E||M-i Mi ⇒ N1||…||Nn ≤E M1||…||Mn

This shows that the Omicron reliable refinement relation shares the decomposition property with TLA
assumption/guarantee specifications.

T.9.2 The composition theorem
This theorem is formulated on the background of composing a system specification from a number of lower
level specifications. The system specification and each low level specification are done using
assumption/guarantee specifications. The general composition theorem says:

Let E ⇒ M be the system specification which says that
the system guarantees M if the environment satisfies assumption E

let Ei ⇒ Mi be the lower level specifications for i = 1,..n

Then we have that

210

(1) if the environment assumption Ei is satisfied by E and all Nj where j≠i and
(2) M1||…||Mn implies M under the assumption that the environment satisfies E
then
when we have
 if Ni will guarantee Mi under the assumption that the environment satisfies Ei
 then N1||…||Nn will guarantee M under the assumption that the environment satisfies E

This can be formulated using the Omicron reliable refinement relation as follows (we ignore the substitutions for
simplicity and let M-i denote all Mj except Mi):

If, for i = 1,…n,
(1) E||M-i ≤Mi Ei
and
(2) M1||…||Mn ≤E M

then
∀ i ∈ {1..n} : Ni ≤Ei Mi ⇒ N1||…||Nn ≤E M

From the decomposition theorem we get:

∀ i ∈ {1..n} : E||M-i ≤Mi Ei ∧ Ni ≤Ei Mi ⇒ N1||…||Nn ≤E M1||…||Mn

Since we have (2) and the reliable refinement relation is transitive by proposition p.5.5.3 we have:

N1||…||Nn ≤E M1||…||Mn ∧ M1||…||Mn ≤E M ⇒ N1||…||Nn ≤E M

This shows that the Omicron reliable refinement relation shares the composition property with TLA
assumption/guarantee specifications.

211

CHAPTER 10

Conclusions

 and

Further Work

This chapter gives some concluding remarks.

In section 10.1 the contributions of this thesis are highlighted and evaluated with
respect to the initial goals.

Section 10.2 sums up remaining problems and issues for further work. Section
10.2.1 and 10.2.2 present some ideas of how to develop the theory so that it may
become applicable to other aspects of extensible systems and object-oriented
modelling. Section 10.2.3 discusses how to combine the presented model with
other models such as functional and process models. Section 10.2.3 presents ideas
for further work on applying the theoretic results to enhance development methods
and processes.

Section 10.3 draws some final conclusions.

212

10.1 Main Conclusions
The main focus of this thesis is an investigation of substitutability of components in object component systems
(OCS). This investigation has lead to the following conclusions:

Conclusions from chapter 1:
Object component systems has a set of characteristics distinguishing them from other kinds of systems. The
main characteristics are:

An object component system is viewed as consisting of objects, where each object is associated with a
name distinguishing it from all other objects in the system. An object has variables and methods. To
make a system of objects more manageable, objects are grouped into components. In some cases a single
object will be a component, but in general a component will consist of several objects. Components
form dynamic graph-like collaboration structures as objects in different components send messages to each
other, create objects from templates in other components and update variables in other components. An
object do not move from component to component. A component may be a client of the other
components, the server for other components or both clients and servers.

There are also some special characteristics of how object component systems are specified and designed. The
main specification and design characteristics are:

An object component system specification from a closed system when users and external devices are
modelled as objects with non-deterministic behaviour. The system is closed in the sense that the objects
in the system specification only collaborate with each other.

Components are specified by their observable behaviour which typically include actions which send
messages to objects in other components, actions which create new objects from templates in other
components and actions which update shared variables. We call a component whose observable behaviour
is similar to the observable behaviour described in a specification, a refinement of the specification. If
specifications have non-deterministic behaviour, then a refinement may have a more deterministic
behaviour than the specification and still be seen as having a similar19 observable behaviour. When
implementations are seen as specifications, there may also be refinements of implementations.

Usually all components in a collaboration are designed at the same time. This is done since the quality of
a component's design is judged by the flexibility and simplicity of the total collaboration pattern, not just
the design of an individual component.

A component's observable behaviour is specified relative to a context. The context consists of other
components. A component's specification will also include the specification of the observable behaviour
of the component's context. A component specification may then be viewed as both a specification of the
component and as the specification of the context. In the latter case the objects which were originally
found in the context are viewed as one or more components and the objects in the original component
becomes a part of these components' context. There is therefore a symmetry of component and context.

There are also some particular ways in which components are used and manipulated:

There is component and context symmetry also in that both the component and the context may be
substituted with components / contexts which have similar observable behaviour.

When creating a design it is presupposed that new versions of the components will in general be created
separately from each other in space and/or time. The underlying idea is that it should be possible to define
standards and have a market for components.

At the centre of component substitutability lies a refinement relation which define similarity of components.
The refinement relation is partial in that similarity of components is defined relative to a context of other
components. When a component is to be a refinement of some other component, here called a specification, the
refinement has similar observable behaviour to the specification. A specification may define a rich set of
alternative behaviours and a refinement does not have to display all of the alternative behaviours to have similar

19 "similar" is here used to denote a non-symmetric relation. This is also done in (Milner et al. 1989a)
and others. "bisimilar" is in this tradition used to denote a symmetric relation.

213

observable behaviour to the specification. Therefore, similar behaviour is defined so that the following must be
fulfilled for a component to be a refinement of a specification relative to a context:

For each possible action sequence from the system where the specification is substituted with the
component, there will be a sequence of observably similar actions from the system without the
substitution.

Observably similar actions are actions which are of the same kind; message send, object creation,
assignment or error, and similar message send actions are similar messages to the same objects in the
context of the component and specification, similar object creation actions creates objects from the same
template found in the context and similar assignment actions update the same variable in the context with
similar values.

Similar error actions can be defined in various ways and a simple error model was chosen which defines
two error actions to be observably similar if they are errors from execution of the same object in the
context. Errors in the refinement and specification components are not observable actions and therefore
will not be involved in determining if a refinement and its specification have observably similar
behaviour.

Since any component may have more alternative behaviours than its refinements, then a component it not
necessarily a refinement of its own refinements. Therefore the refinement relation is not symmetric. However, it
is reflexive and transitive and therefore a pre-order.

To avoid unanticipated system behaviour, it is important that similarity of components is maintained when the
components in the context is substituted with similar components. The term reliable substitution means such a
substitution where similarity is maintained. The reliable substitution property was expressed in the central
proposition of this thesis which was called the substitution proposition which expresses a monotonicity-like
property for refinement relations.

Chapter 1 showed relationships between reliable substitution and reuse of components, maintenance of
extensible systems and development of large systems. This showed that when components and component
specifications have the properties expressed in the substitution proposition, the components are easier to reuse,
extensible systems are easier to maintain and it can lead to more efficient development of large systems.

Conclusions from chapter 2:
Chapter 2 presented the classical example of object component system design: the Model-View-Controller
Framework (MVC). It was shown that this design and its use in practice have the characteristics presented in
chapter 1. In addition, similar actions and similar observable behaviour was presented in detail and illustrated
with examples taken from the Model-View-Controller framework.

Conclusions from chapter 3:
Chapter 3 introduced the object-oriented language Omicron and showed how the simple concepts of slot, object
and three kinds of executable sentences could model variables, method tables, executing message, message
sending, inheritance, object creation, dynamic self-binding and most other concepts common to object-oriented
languages.

Conclusions from chapter 4:
In chapter 1 and 2, similar observable behaviour was informally defined. In chapter 4 formal definitions of
observable similarity was given for Omicron components. "Similar components" was formally defined by a
refinement relation. It was shown how this definition corresponds with the informal definition from the previous
chapters.

Conclusions from chapter 5:
The main conclusion from chapter 5 is that the definition of "similar components" given in chapter 1, 2 and 4
does not give reliable substitution of components. It is therefore necessary to introduce requirements on how to
define configurations which are to be reliable refinements and also to strengthen the refinement relation of
chapter 4. A central concept in getting reliable substitution of components is the visible objects of a component.
A visible object is an object which is found in one component but known to the component's context.

It is important that the reliable refinement relation is not too strong, since this will set unnecessary restrictions
on implementors of specified components. Chapter 5 therefore argues that the presented reliability requirements
are strictly necessary. The reliability requirements can be summed up as follows; here stated informally to avoid
formal notation at this stage:

214

No external inheritance: An object in one component can not inherit from an object in another component

Reliable method lookup: When an object receives a message, a method must be found within the
component of the receiver.

Reliable message sending: A method must always be found in the context when there is a message from
the component to an object in the component's context. This can be interpreted as:

1) a reliable specification must specify the context's behaviour for every message
 from an object in the component to an object in the context.
2) a reliable refinement must not send more messages to the context than its
 specification does.

Reliable if-sentences: When the object names in two variables are compared in an object in a component,
then both values can not be names of objects in the component's context.
(Alternatively, a component and its refinements must have the same number of
visible objects.)

In order to get reliable substitution of components it is also necessary to set some requirements on the use of
object names and to strengthen the refinement relation of chapter 4. In the new refinement relation, called
refinement with specialisation, there are additional requirements on the similarity of actions from execution of
sentences in the context which are observed by the component and its specification. There are also additional
requirements on the use of names of visible objects in observably similar actions. This strengthening results in
requirements on how to make reliable specifications and on relationships between the visible objects of a
refinement and its specification. How to make reliable specifications and refinements are topics of chapter 8 and
conclusions from this chapter are presented further below.

Conclusions from chapter 6:
Chapter 6 showed that the reliability requirements of chapter 5 are sufficient for showing the substitution
proposition for the refinement relation with specialisation defined in chapter 5. This is shown in the central
theorem of the thesis, theorem T.6.3. Other theorems in chapter 6 shows that we can reliably substitute all or
just some of the components in a system with their reliable refinements. The last section of this chapter argues
that traditional class libraries are reliable since they are not changed or substituted during runtime.

Conclusions from chapter 7:
Chapter 7 presented a sequential versions of Omicron with expression evaluation semantics of sentence
execution. This is opposed to the parallel version with atomic operation semantics presented in the foregoing
chapters. The main conclusion from this chapter was that the reliability requirements of chapter 5 also apply to
components defined by using sequential Omicron. It can also be assumed that similar requirements are necessary
when using any language to define OCS components which are specified by the component's observable
behaviour consisting of sequences of message send actions, object creation actions and assignment actions.

Conclusions from chapter 8:
Chapter 8 relates the results of the foregoing chapters to practice. Advice on how to make reliable specifications
and reliable refinements were given. These advice were:

Reliable specifications of a set of collaborating components must follow the rules:

- the behaviour of the components in a system are described as the set of all possible sequences of
actions from execution of the system. The action sequences contains actions which are messages to
objects sent from one component to another component and actions which are creation of objects
where the executed sentence is in one component and the template used for object creation is in
another component.

- for each component describe the maximum number of visible objects which refinements of the
component may have.

- for each visible object describe where it is found in the action sequences describing the system
components' behaviour. Visible objects are used as message receivers and templates for object creation
and their names can appear as parameters in messages.

- for each component describe which visible objects from other components are initially known

215

It was pointed out that when classes are parameters in observable messages or initially known to other
components, they must be treated as visible objects.

In addition, configurations which are to be specifications for which there should be created reliable refinements
should follow the same rules as reliable refinements. These are the reliability requirements presented below. They
are not strictly necessary to get reliable specifications, but when the reliability requirements is not followed in
the specifications, the specifications becomes more complex than necessary and do things which can not be done
(or copied) in any reliable refinements of the specification.

Reliability requirements for a component which is to be reliable:
- can not inherit variables or methods from objects in the component's context
- can only have methods which are local to the component
- can not compare the names of objects which are not in the component
- can only refer to class names within a component
- can not send messages to context objects unless methods are found for the messages
- must have the same number or fewer visible objects than the specification and the names must be

used as specified
- when a refinement has fewer visible objects than its specification, then one object shall take the

place of two or more of the specified visible object. The same refinement object must always be
used in place of the same specification visible objects.

Here are some advice giving suggestions on what to do instead of breaking the reliability requirements:

If a component is to be a reliable refinement of some specification, then the no external inheritance
reliability requirement limits the use of shared variables to sharing variables within a component. Instead,
when a component wants some data from a collaborator it should send a message which returns with the
data.

Give priority to delegating functionality to a component rather than inheriting it from a class. It is not
possible or meaningful to have superclasses as components and at the same time have reliable
substitution of such components unless a different and less abstract style of specification than the one
presented in this thesis is used.

Methods in other components should not be changed during execution. Use such things as Smalltalk
block-objects and/or the Visitor pattern when you want a component which should have different
observable behaviour depending on which component it collaborates with.

Comparing object names should be avoided unless refinements are expected to have exactly the same
number of visible objects as defined in the specification, for instance (or typically) infinitely many visible
objects. Instead of using if-sentences it is better to redesign and use dynamic binding. If object names
must be tested, then at least one of the names must be local to the component where the test is done.

One conclusion which was drawn is that there are correspondences between component developers advice on how
to make reusable components and the practical consequences of the reliability requirements. This can be taken as
an indication that the Omicron framework and the definitions of observable behaviour and the refinement relation
are formalisations of important aspects of components and component similarity as found in the OCS design
tradition.

Chapter 8 also explained why a reliable specification may be defined as a trace set consisting of a set of
sequences of message send and object creation actions. This is an alternative to giving an operational
specification through a set of configuration expressions which are executable descriptions of the components of a
system.

Chapter 8 showed that the practitioners' advice for making components does not present a complete
understanding of necessary reliability requirements. One of the new understandings is that a reliable specification
must describe how objects from one component become visible or known to the objects in other components.
This means that when a designer makes a reliable specification s/he can not "abstract away" the number and use
of visible objects. The reliable if-sentences requirement and the fact that message selectors as parameters creates
reliability problems also gave new understanding on how to ensure reliable substitution. The new understanding
may hopefully facilitate the definition, control, management and use of more complex - and is in some ways
easier to understand and/or reuse - components. This in turn might make it feasible to handle more complex
components with richer functionality without introducing uncertainty and doubt whether the finished system will
work or not.

216

Conclusions from chapter 9:
Chapter 9 gives an overview of related work in formalisation of computer systems. There are mainly two
directions: formalisation of processes and of functions. Both these have been extended with ideas taken from
object-oriented languages. Various formalisation techniques are used such as computational frameworks (such as
λ and π calculi), rewrite systems, algebraic specifications and temporal logic. None of these formalisations
define OCS components as described in the presented thesis.

There are many alternative ways of specifying software and defining relations between specifications and between
a specification and implementations of the specification. Most related work focus on total equality relations
which are quite different from the refinement relation defined in the presented thesis. The main difference is that
the refinement relation is defined relative to a context and is therefore partial. (Also, the refinement relation is
not symmetric and is therefore only a pre-order and not an equality relation.)

The ideas behind the refinement relation are also reflected in what is called assumption/guarantee specifications.
Such a specification asserts that a system ∏ provides a guarantee M if its environment satisfies an assumption
E. This corresponds to the simple substitution proposition which defines reliable substitution for systems with
two components. Martín Abadi and Leslie Lamport have worked out a Composition Principle for
assumption/guarantee specifications. Even though their component model is quite different from the Omicron
component model, their Composition Principle has interesting relationships with properties of the reliable
refinement relation defined for Omicron configurations. This shows the generality of the Composition Principle.
Also, the Composition Principle expresses an important property of reliable refinement relations.

An interesting observation is that existing formal works on objects and components in distributed systems do
not touch the ideas represented by the reliability requirements, while chapter 8 shows that informal traditions of
practising software engineers present intuitive understanding of many aspects of the reliability requirements.

217

10.2 Further Work
Even though the presented theory already has been able to form a theoretic basis for practical advice for
component design, the theory can be further developed to cover more of the aspects and problems related to
object component systems. Challenges are for example other error models and modelling of various features
which are found in object-oriented languages but which are not covered by Omicron. Another challenge is to
apply the presented theoretic results in practice. Many different such challenges have been discussed in different
previous chapters and many topics have been mentioned and left for further work. Below, some of the most
interesting and important challenges and topics are presented.

10.2.1 Other languages and rules of action
When working to find a way to formalise OCS components, many alternative languages and rules for describing
the semantics of the language were attempted before the two presented versions were selected. Most alternatives
became very complex and the conclusion is that only two versions were interesting to present. The two versions
reflect the two basically different ways of viewing the execution of a sentence in a program: a sentence may be
seen as an atomic operation to be performed, or as an expression which is to be evaluated. However, there may
be cases where it is important to have both sentence semantics in one and the same language and where a formal
model of the language should reflect this. Such languages would then hold rules for both kinds of actions and
therefore the semantic definition would include more rules than any of the languages presented in this thesis.

As mentioned in previous chapters, the present versions of Omicron is rather cumbersome to use when defining
components holding sets of objects and/or doing arithmetic and other kinds of calculations. In practice, these are
important properties of many components, and a formal language which made specification of such properties
simpler then Omicron as presented here, would be advantageous. Incorporating syntax and formal semantics of
constructs which define set-operations and calculations would therefore give a more complex, but more
practically useful specification language than the Omicron languages presented here.

As explained at the end of chapter 3, transition rules defining the semantics of languages are usually organised
differently than what has been done in this thesis. The main difference is that the rules also define transitions of
parts of systems, not only whole systems as is done in chapter 3 and 7. At the end of chapter 3 is was explained
why this traditional way of organising the rules was not followed, as it created substantially more rules and more
complex rules. However, there might be at present unknown advantages of using the traditional organisation and
this should be looked into in more detail.

As also discussed at the end of chapter 3 there are other way of defining the semantics of a language than using
transition rules. Other alternatives should also be looked into as they might give new insight into the area of
object component systems.

10.2.2 Other refinement relations and substitution
propositions

The reliability requirements defined in chapter 5 only applies to configurations which are reliable refinements and
specifications as defined by Omicron and the substitution proposition. If one or more of the definitions are
changed, the reliability requirements may not be necessary and/or new requirements must be introduced to get
reliable substitution. What follows below are some examples of how the definitions may be changed.

New definition of component similarity
New view on similar actions
The presented definition of similar actions may be viewed as an example. The example was chosen since it
seems to correspond well to most component developers view of similar components. However, there are
alternatives, but most seems rather exotic. For instance:

- two message send actions may be similar even when the message selectors are different
- two message send actions may be similar even when the receivers are different, but in the
 same component
- two actions may be similar even when they stem from execution of different sentences in the observer,
 or one action is from an object in the observers and one is from an object in the component
- one message-send action may be replaced by one or more message-send actions. This is typically done
 when detailing designs

218

If the definition of similar actions is changed, the requirements necessary to get reliable substitution will in most
cases change. This is left for further study.

New view on where to place new objects
In the above, new objects were placed in the part of the system where the template object was found. There are
other alternatives. For instance, the object may be placed in the part of the system where the object creation
sentence which created the object is found. This will alter how components develop over the time of the system's
execution and will therefore influence how components are perceived. This will change the definition of similar
components and also probably change reliability requirements. This is left for further study.

Objects moving between components
In the present work it was assumed that any object belonged to the same component at all times. An alternative
would be to allow objects to move between components. This would change the status of an object from
observed to observable or vice versa. This is left for further study.

A traditional monotonic relation
A traditional monotonic relation defines similarity of components relative to any context the components might
be placed in. This can be expressed using the refinement relation of chapter 4 as follows:

∀ D : A ≤D B

saying that for any D, A||D and B||D will have similar observable behaviour relative to D

A consequence of this is that A and B must be similar for any sequences of messages and any number of visible
objects used in all possible ways. The reliability requirements of chapter 5 would be necessary, but far from
sufficient to ensure this kind of traditional monotonicity properties of reliable refinements and specifications.
Finding reliability requirements in such cases is left for further work.

Investigate other error-models
The Omicron error model is rather simple in that whenever a sentence might give an action which is not
meaningful, eg,

- message to a non-existent object,
- cloning of a non-existent object,
- sending a message to an object where there is no method for the message
 ie, a message not understood error

then the object with the erroneous sentence terminate. All errors lead to the same kind of error action and error
actions are not observable from others than the component where the sentence which gave the error action was
found.

As noted in chapter 8, the reliable message sending requirement was linked to the error model in Omicron.
However, as noted in chapter 8 and in the discussion in section 5.3.3, the only other natural alternative is to
require reliable message sending for the specification components. This in turn indirectly ensures reliable
message sending in the refinements. Therefore, reliable message sending is still a requirement for refinements,
but it is ensured indirectly.

The other reliability requirements are not so directly linked to the error model, as reliable message sending is.
However, there might be other error models which can alter the reliability requirements. Finding such error
models is left for further study.

Other dispatching mechanisms
Omicron has single dispatch, ie, the method lookup algorithm is based on a single object: the receiver of a
message. In many object-oriented languages such as CLOS and Dylan, more objects than the receiver are used
when a method is looked up. This is called multiple dispatch. In such cases the parameter objects may also
influence which method is selected as the result of a message send action. It would be interesting to study a
formal model incorporating multiple dispatch and define refinement relations and reliability requirements for such
a model.

More flexible systems - are they reliable ?
Several different techniques which are used to make highly flexible software, breaks one or more of the reliability
requirements of chapter 5. Example are the meta object protocol of CLOS (Kiczales et al. 1991) and Traces
which makes it possible to add new code to an object after it has been created (Kiczales 1993). The perform-
feature of Smalltalk and later versions of Java is another example mentioned in chapter 8. A study of how to
combine such flexibility while ensuring reliable substitution might result in a better understanding of how to

219

create components which are very flexible but which also allow reliable substitution of itself and of components
in its context.

10.2.3 Omicron's relationships to other models
Omicron is a formalisation of objects as found in object component systems. There exists a number of other
formalisations of other types of systems, such as distributed processes and functional systems.

So far there have been formal frameworks for defining and reasoning about for instance algebraic properties,
signature properties, data representation, data structures, state transitions and signals on channels. All of these
formalisms can be used to describe some properties of (some) objects. However, none of them allow an intuitive
description of objects' observable behaviour. Also, the formal frameworks have not been used to reason about
such things as reliability properties of object descriptions and about reliable refinement relations.

Compared with Omicron, the other formalisations have been substantially more studied. These studies have
revealed many results which might be interesting to compare with similar results which can be obtained from
studies of Omicron. By a further study of Omicron and comparing the results with results from other formal
models contribute to a better understanding of the differences, weaknesses and strengths of the various concepts.

Including functional expressions in Omicron
The different kinds of systems have their strengths in modelling different aspects of computer systems. For
example, functional models are the easiest to use when describing data structures and data manipulation. Object
component system models are better when describing how a system is partitioned into substitutable components
and how these components collaborate. However, most large computer systems both contain data structures
which are manipulated and are partitioned into components. Therefore, both models are useful when developing
computer systems. While Omicron was developed, attempts were made at including functional expressions in the
language. This was syntactically easy and some kinds of component behaviour were easier to express. However,
the definitions and proofs became more complex. Therefore, these functional parts were left out.

A small example of how to include a kind of set notation is shown in chapter 2 when defining the model-view
contract using Omicron. As shown in the example, including functional expressions in Omicron makes it
simpler to express the model-view contract. To make Omicron easier to use when defining object behaviour,
functional expressions should be added. However, this is more syntactic sugar than fundamentally new concepts
since behaviour which is the result of using functional expressions can also be defined using the presented
versions of Omicron.

Integration of other object properties
Objects, or more precisely the concepts modelled by objects, have many aspects which cannot naturally be
expressed as sequences of observed actions. It may nevertheless be interesting to specify and prove properties of
these aspects. The article (Nordhagen 1994) presents four different aspects of objects:

the Conceptual dimension a description of the concepts the objects model
the Observable behaviour dimension the aspect described by observable behaviour in Omicron
the Implementation dimension the aspect described by Omicron expressions
the Representation dimension a description of how the objects are represented, ie,

the syntax of the object descriptions.

The article gives some direction as to the relationships between these aspects. Further study is needed to
understand how the different aspects should be separated and linked to get practical solutions for describing
complex systems. A result of the work reported in the article also indicates that it is possible to exploit the
strengths of various formalisms in describing different aspects of objects and then describe how the formal
descriptions are linked to allow synchronisation of the different views of the objects.

Some development methods allow developers to make models which describe different aspects of the objects
making up the system. To varying degrees, the development methods allow a developer to define the
relationships between the different models and help a developer ensure that the models are consistent. An
example of a rather good tool is a tool for the OOram method. In this tool a developer works on one consistent
model of the system, but is allowed to manipulate this model through editors focusing on different aspects of the
model.

However, none of the development methods cover all aspects of objects and it is not clear how to integrate all
aspects into a common framework. Neither do the methods focus and support developers in making reliable
specifications.

220

The observable behaviour of components must be described in order to get reliable specifications. However, the
observable behaviour is not well suited to describe other aspects of components. Much could therefore be gained
in terms of efficient software development if appropriate mappings between the observable behaviour aspect and
the other aspects could be found. This is an interesting topic for further study. Some attempts have been done at
combining different aspects into a common model, see eg, (Nordhagen 1989) which gives an example. In the
example a graphical language is used to describe a conceptual model of objects which are to be edited by users.
This conceptual model is then used to configure user interface components which are specified and recognised by
their observable behaviours. The user interface components use the conceptual model as a grammar and thereby
becomes a syntax directed editor which supports the user in manipulating the system's data correctly. In this case
a more traditional data model which is good for defining the semantics aspects of objects in a system is
combined with a model of the observable behaviour of the objects. In the concrete system referred to in
(Nordhagen 1989), the implementation dimension is presented as well. Information about the implementation
aspect of objects is used in the algorithm creating objects. In such a case a user is presented with choices as
found in the semantic dimension. When the user chooses an alternative, the editor looks for an implementation
which both match the semantic aspects and the behaviour aspect necessary to insert the new object into an
existing object structure and manipulate it in the editor. This strategy has lead to systems and components which
are very flexible and easy to tailor and change to comply with different users' needs.

10.2.4 Applications of the theoretic results
Incorporating reliability properties into development methods
Only describing the necessary aspects of a component
It is important that specifications are presented in a form which is easy to understand and that the specifications
are as simple as possible. To make the specifications as simple as possible it is important that only necessary
aspects of the components are described. The rules for making reliable specifications lists the necessary aspects
of component specifications. By taking the most readable software engineering methods and developing them
further based on the rules for making reliable specifications, one might get one step further in making better
specification languages for OCS components.

For a specification to be reliable it must specify the traces of observable actions between the components in the
system. Observed actions are usually defined by making interaction diagrams as found in, eg, OOram and UML.
In order to be able to make reliable specification by defining interaction diagrams, the diagrams must show
actions involving visible objects, not just classes of objects something which is often the case. In addition,
development methods must give attention to object creation and include such actions in their diagrams. This is
not common in interaction diagrams found in most existing development methods. Also, the diagrams must
allow a developer to specify parameters by referring to visible objects and not just refer to classes, types or roles
of objects. This also lacks in most existing development methods.

Exactly how to change existing notations to allow reliable specifications will off course depend in the notation.
Two sketches of what must be done for OOram and Catalysis are given below as preliminary suggestions, but
this is mainly left for further study.

OOram
The OOram method has given attention to how large system descriptions can be split into smaller descriptions
and then how such small descriptions can be merged to create large system descriptions. Their solution is a
technique denoted synthesis. Details of the synthesis technique is documented in the OOram book and also
discussed in (Andersen and Reenskaug 1992). What is denoted safe synthesis is a synthesis operation which
closely corresponds to reliable substitution. A further study would reveal if the safe synthesis actually gives
reliable substitution, and if not, prescribe necessary changes to the safe synthesis operation to achieve reliable
substitution.

Catalysis
Catalysis is the method which, at present, has most similarities to the present work, and Catalysis addresses
many of the same problems as this thesis. However, Catalysis is aimed at specifying the behaviour of an object
of a given type and the most formal parts of Catalysis describe traditional functional properties of object
behaviour. Omicron and the substitution proposition is aimed at specifications of the behaviour of components
consisting of one or more objects and focus on more than just the functional aspects of object behaviour. So far,
formal models of object behaviour as found in this thesis, have not existed. It can therefore be assumed that it
has been difficult to incorporate such things into Catalysis. An interesting task would therefore be to incorporate
the results of this thesis into the Catalysis development method. As the creators of Catalysis is now
incorporating their ideas into UML, it would also be interesting to incorporate ideas from this thesis into UML
as well.

221

Complexity, flexibility and visible objects
Many developers give arguments for splitting a component into many objects and argues that this gives more
flexible and reusable code. At the same time, many of the same developers give patterns for avoiding problems
related to the number of visible objects. This reflects the fact that there are trade-offs between specification
complexities and refinement flexibility related to the number of visible objects of components. Such trade-offs
are an interesting topic to pursue, but is left for further study. Presumably this is a less theoretically and more
practically oriented topic since humans' abilities to cope with complex descriptions will influence decisions more
than theoretic limitations.

Ensuring that a component is a reliable refinement
When there are reliable specifications of components, it is also possible to make tools to help verify that some
code is a reliable implementation of a specification. However, making such tools is not trivial. This topic was
presented in chapter 8. The conclusion was that type checking and type inference techniques could be developed
so that many of the reliability requirements could be checked at compile time. To check that a component is a
refinement, ie, has the same observable behaviour as its specification, can not be done by static checks at
compile time. Such checks must be done by, eg, creating test drives from the system specifications or by other
means. Another alternative is to make test environments for running the components and observing the actions
resulting from executing a component in a certain context.

Component testing
Ensuring that a component is a reliable refinement is in many aspects comparable to testing a component, since
both is concerned with the component's behaviour in a context. The definition of the reliable refinement relation
and the reliability requirements might therefore be useful as a basis for developing test-strategies for components.
It might be possible to simplify integration tests and/or comparisons of reference implementations. Reliability
requirements will ensure that the test will also hold when/if the test environment is replaced by a reliable
refinement.

In the paper "Design for Testability with Object-Oriented Systems" Communications of the ACM, 37(9):87-
101, 1994 R.V. Binder writes: "To test a component, you must be able to control its input (and internal state)
and observe its output." When reliability requirements are fulfilled we have control over the input and the
internal state of the object. The observable output is also defined by the refinement relation. This analogy
between design for testability and the definition of reliable specifications and refinements would be an interesting
issue to pursue.

More user friendly specifications
Omicron is not particularly user friendly since the language was created so that it was easy to give a formal
definition of the language's semantics. Specification and design notations and also programming languages have
usually taken the opposite approach giving priority to the user friendliness of their language. To get more user
friendly specifications, one should therefore combine the knowledge of how to make reliable specification with
the knowledge of how to make user friendly notations. How to create such languages is left for further study.

Many user friendly informal approaches lack reasoning power to show necessary and sufficient reliability
requirements and to make reliable specifications. However, the results from using Omicron can be applied to the
less formally defined notations and languages in order to make them better - even though they are not perfect.
Changing a user friendly design notation to make it more precise can be motivated by the possibility to
introduce a formal basis like Omicron. Earlier, the extra precision necessary to make reliable specifications
might only seem like unnecessary detail since common sense solved most problems. However, with a formal
bases the extra precision can be used to verify that what is supposed to be a reliable refinement of a more over-all
design actually is a reliable refinement. This might be interesting, at least in larger and/or critical systems.

From informal to formal specifications - sketches vs. details
A system specification may be difficult to understand if it includes too much detail. Also, in initial stages of the
development of a system, there are few details, just sketches of the various parts of a system. Sketches are also
used when presenting a design, before going into detail. Reliable specifications include many details and should
therefore only be used when a reliable specification is actually needed. Different specification notations have
different levels of detail, eg,

Least details: Medium details: Most details:
Pattern language OOram Role model Omicron reliable specification

The alternatives with least details are often easier to read and understand for humans in that they are usually more
pedagogical. The introduction to a given (sub)system might therefore be done by starting with the least detailed
description to get an overview and then moving on to the more detailed descriptions when details are needed. The

222

most detailed model may, eg, be of no particular interest other than as a basis for reasoning and verification of
properties of (versions) of the description.

To ease the understanding of a specification, a given formal specification should also be available in more
informal forms giving more user friendly, high level descriptions of the system's design. The challenge is to
integrate the presented formalism into a framework of techniques with varying formality and detailing aimed at
different kinds of audiences and serving different purposes.

Safer system building
Some object component designers have said that the possibility of getting reliable specifications and refinements
of the components is the most interesting results of this thesis. This is because when reliable specifications and
reliable refinements are available, it may be possible to get safer building of systems from prefabricated
components. Safer building of systems is achieved since it is possible to give exact specifications of more
complex - and hopefully more functional - components. In the long run, it might also be possible to verify that
the implementations of the components are done according to the specifications - and that each implementation
is a reliable refinement of the specification. Then it is ensured that it will work in all contexts which are reliable
refinements of the context in the component's specification. Actually achieving safer system building is outside
the scope of this thesis, and also definitely more than can be achieved by a single individual such as the author of
this thesis. However, an important step is taken: we now know what a reliable specification is and we know
what the reliability requirements are for the most common way of designing and implementing OCS
components.

Specification and implementation of libraries of components
Existing libraries of components do not document their components by reliable specifications and there is no
guarantee that a component implementation is a reliable refinements of its documentation. Usually, however,
this is compensated for by having very simple components, eg, with single visible objects and only functional
behaviour. In other cases the specifications and/or implementations have not been reliable and the users of the
component experience unanticipated behaviour. On the other hand, there are examples of well documented and
implemented library components which are used successfully. However, by using what is now known about
reliable specifications and refinements, libraries of components might become easier and safer to use. Particularly
when defining standard components, eg, the Java libraries, it is important that the components are reliably
specified and that the implementations are reliable refinements of the specifications.

223

10.3 Summary of Conclusions
This thesis has presented a formal model of object components as viewed by designers of object component
systems (OCS). Object component systems consist of objects which are grouped into components. OCS
developers usually plan to create systems by combining components and therefore specify a system as a set of
collaborating components.

The main focus of the thesis is substitutability of OCS components, both in the design and in the maintenance
phases of a system's life cycle. System designs evolve when more general component descriptions are substituted
by more detailed ones. Object component systems are maintained by substituting the different components of a
system with new components which either are better versions of existing components or when the system must
be adjusted to changes in its surroundings.

The formal model of the present thesis is given by the Omicron language and a calculus describing the semantics
of the language. The calculus allows reasoning about components' behaviour, ie, the sending of messages,
creation of new objects and updating of variables. The formal model includes object-oriented concepts such as
object identity as separate from an object's state, message sending with dynamic binding, and also inheritance
between objects.

There have been many attempts to give a formal model of objects. Few have modelled object-oriented concepts
as used by developers of object component systems. Most attempts have built on traditional formal models such
as communicating processes and algebraic methods. Such models are significantly different from models of
object component systems. These differences makes it difficult to describe and reason about the behaviour of
object component systems using a formalism based on the traditional models. The formal models which come
closest to modelling object component systems, have either lacked reasoning power or do not focus on
substitutability of OCS components.

The main distinction between the present OCS formalism and other existing object formalisms, is the way
components and similarity of components are defined.

A component is not just a single object, but consists of one or more objects. A component can both send and
receive messages from other components, create objects from templates in other components, and update
variables in other components.

Similarity of components is defined relative to a context of other components. The objects in the context
components observe the actions they are involved in. When two components are similar, they have similar
observable behaviour in that the context objects observe similar actions. Two similar actions are either two
object-creation actions which create new objects from the same context templates, or two update actions which
update the same context variables with similar values, or two message-send actions which has the same context
object as receiver and the same message selector. A typical example of observably similar behaviour is that the
same context objects get similar messages in the same order.

In this thesis, the similarity concept of component designers is formalised through a refinement relation. This
relation may be seen as a partial relation, in that two similar components are not defined similar for all contexts,
but just for a given kind of context. This gives a trinary relation between a specification, a refinement of the
specification, and a specification of a context.

Any component in an object component system may be substituted. For the system to continue to function as
planned, the new component must have similar observable behaviour to the component it replaces relative to the
context of other components. This means that a component can be replaced by a component which is a
refinement of itself relative to the context of other components. However, as time passes, components in the
context may be substituted with their refinements. It is therefore important that the new components also will
have similar observable behaviour in the cases when context components are replaced by their refinements. When
this holds, we have reliable substitution of components.

Figure 10.1 below illustrates reliable substitution in a system with two components. The original system is
formed by the two components C1 and C2. The component R1 is a refinement of C1 relative to C2 while R2 is
a refinement of C2 relative to C1. Typically, if R1 and R2 are developed by separate teams and tested relative to
the rest of the system (C2 and C1 respectively), it is important that the refinements behave as planned when they
are combined in R1||R2.

224

C ||C
Original system

Refinement
and context

Refinement
and context

The two refinements combined

1 2

R ||R1 2

C ||R1 2R ||C1 2

Figure 10.1 Components in a system may be replaced by refinements.

Defining a refinement relation based on component developers view of similarity was rather straight forward.
There is rather common agreement on what similar behaviour is. However, showing that this definition gives
reliable refinement is more difficult.

First, reliable substitution is formally expressed in the present substitution proposition. If a refinement relations
assures reliable substitution, then it should be possible to prove the substitution proposition for the refinement
relation. If the substitution proposition can be shown for a refinement relation, we say that the relation is a
reliable refinement relation.

When trying to prove the substitution proposition for the refinement relation which was defined based on
component designers' similarity concept, it soon became evident that the refinement relation was not reliable.
Therefore, a new, stronger, reliable refinement relation was defined and the substitution proposition shown for
this relation. However, finding a sufficient set of additional requirements on similar observable behaviour to
assure reliable substitution was not a simple task. It was also important that the new reliable refinement relation
was not too strong, since this would unnecessarily restrict implementors of refinements. The present thesis
therefore presents a set of necessary and sufficient requirements which ensure reliable substitution of object
components.

The definition of the refinement relation reflects how components are specified by object component designers.
Therefore, the definition of the reliable refinement relation can be applied as rules for how to make specifications
for components which can be reliably substituted. We call such specifications for reliable specifications. The
most important lesson learned about reliable specifications is that traditional component specification is not
reliable. Traditional specification typically defines the types of receivers and parameters of a component. This is
not sufficient to ensure reliable specification of refinements. To be reliable, a specification must define the
visible objects of each component and how these visible objects appear as receivers and parameters in messages
sent between the components.

The requirements on reliable specifications may be seen as a limit on how much and how little must be said
about reliably substitutable components in cases where these components consist of more than one visible
object and where the implementor is to have maximum freedom in choosing the internal details of a component.

To ensure reliable substitution, it was also necessary to put requirements on components which are to be reliable
refinements of reliable specifications, eg, requirements on component implementations. These requirements are
expressed as formal reliability requirements. All the formal reliability requirements defined for Omicron
configurations have practical consequences. These consequences can be formulated as advice on how to make
implementations of components so that both the components and the component's collaborators can be reliably
substituted. In many cases this advice corresponds with component developers' rules for making reusable
components. It may therefore be assumed that the presented formalism captures some important aspects of object
component systems. The most surprising new reliability requirement is that if-sentences comparing names of
objects in other components give unreliable refinements.

The definition of reliable specifications and refinements can be used to create and/or change existing system
description languages, and development methods. This will improve the development and use of OCS
components and thereby better exploit the benefits of component based software. The definition of reliable
substitution allows separate verification of the behaviour of parts of a system in such a way that the behaviour
of the total system can be proved from the verified behaviour of the parts. Distribution of design work among

225

separate teams and the maintenance of extensible systems can exploit this property. Both can take advantage of
the property that the behaviour of the total system can be proven from the separately verified behaviour of the
parts. In this way the reliability properties of specifications and refinements can help co-ordinate work on
different parts of a system and also simplify co-ordination and integration problems.

This thesis presents a formal model of the object-oriented properties described above. As documented, these are
commonly found in object component design and implementation languages, and in development methods.
However, variations of these properties exist and several are discussed throughout the thesis. As the discussions
show, the requirements on reliable refinements and specifications are applicable to many variants of object
component models. In addition, some requirements can translate to corresponding requirements to related models.
For example if classes are present in the model, the requirements can be reformulated for classes. However, all
variations in object component models have not been studied, such as models with objects which can move
between components, systems with multiple dispatch of methods and the meta object protocol. Also, variations
in the definition of similar actions exist. A common example is allowing a sequence of messages to be viewed
as similar to a single message representing an abstraction of the sequence. A further study is necessary to identify
other such variations which diverge from the presented alternatives. Then, further study is necessary to find out
to what degree the reliability requirements are applicable when these diverging properties are present.

Reliable substitution of components becomes increasingly important as an increasing number of systems are
designed, implemented and maintained by composing OCS components. It is a hope that the presented
formalism and results will contribute to a deeper understanding of possibilities and pitfalls related to the
development and maintenance of large extensible object component systems.

226

227

Bibliography
Abadi, Martín and Cardelli, Luca, (1994) A theory of primitive objects, Digital Equipment Corporation,
DEC-SRC, Shorter versions in European Symposium om Programming, and in Theoretical Aspects of
Computer Science 1994

Abadi, Martín and Lamport, Leslie, (1993) Composing Specifications, in ACM Transactions on
Programming Languages and Systems January 1993, 15:1, pp. 73-132

Abadi, Martín and Lamport, Leslie, (1995) Cojoining Specifications, in ACM Transactions on Programming
Languages and Systems May 1995, 17:3, pp. 507-534

Ågesen, Ole, Palsberg, Jens and Schwartzbach, Michael I., (1993) Type Inference in SELF. Analysis of
Objects with Dynamic and Multiple Inheritance, European Conference on Object-Oriented Programming 1993,
published in LNCS 707, pp. 247-267.

Agha, Gul, (1986) A Model of Concurrent Computation in Distributed Systems, MIT Press, Cambridge,
Mass.

Agha, Gul, Mason, Ian A., Smith, Scott and Talcott, Carolyn, (1993) A Foundation for Actor Computation,
FTP: ftp://biobio.cs.uiuc.edu/pub/papers/actor-semantics.ps.Z

Allen, Robert and Garland, David, (1994) Beyond Definition/Use: Architectural Interconnection, Workshop on
Interface Definition Languages 1994, published in ACM SIGPLAN Notices 29:8, pp. 35-45.

America, Pierre, (1987) Inheritance and Subtyping in a Parallel Object-Oriented Language, European
Conference on Object-Oriented Systems 1987, published in LNCS 276, pp. 234-242.

America, Pierre and Rutten, Jan, (1990) A Layered Semantics for a Parallel Object-Oriented Language,
Foundations of Object-Oriented Languages, REX School/Workshop 1990, Noordwijkerhout, The Netherlands,
published in LNCS 489, pp. 91-123.

Andersen, Egil P., (1997) Conceptual Modeling of Objects, A Role Modeling Approach, Dr. Scient thesis 4,
1997, University of Oslo, Informatics Department

Andersen, Egil P. and Reenskaug, Trygve, (1992) System Design by Composing Structures of Interacting
Objects, ECOOP 1992, published in LNCS 615, pp. 133-152.

Arapis, Costas, (1992) Object Behaviour Composition: A temporal Logic Based Approach, in Object
Frameworks, ed: D. Tsichritzis, Centre Universitaire d'Informatique, University of Geneva, pp. 79-107

Barbier, Frank, (1992) Object-oriented analysis of systems through their dynamical aspects, in JOOP May
1992, 5:2, pp. 45-51

Binder, R.V., (1994) Design for Testability with Object-Oriented Systems, in Communications of the ACM
1994, 37:9, pp. 87-101

Birtwistle, Graham M., Dahl, Ole-Johan, Myhrhaug, Bjørn and Nygaard, Kristen, (1973) Simula BEGIN,
Potrocelli/Charter, New York, ISBN : 0-88405-340-7

Blair, Gordon, Gallagher, John, Hutchison, David and Shephard, Dough, (1991) Object-Oriented Languages,
Systems and Applications, Pitman Publishing, London, ISBN : 0-273-03132-5

Bollay, Denison, (1992a) Code reuse: how to reduce maintenance costs by a factor of 10, in JOOP
July/August, 5:4, pp. 64-67

Bollay, Denison, (1992b) Dylan (dynamic language) or CLOS +-, in JOOP November-December 1992, 5:7,
pp. 75-77

Bolognesi, Thommaso and Brinksma, Ed, (1987) Introduction to the ISO Specification Language LOTOS, in
1987, pp. 25-59

Briggs, Ted L. and Werth, John, (1994) A Specification Language for Object-Oriented Analysis and Design,
ECOOP 1994, published in LNCS 821, pp. 365-385.

228

Broy, Manfred, (1996) Toward a Mathematical Concept of a Component and Its Use, the Components' Users
Conference CUC'96 1996, Munich

Broy, Manfred, (1997) A Functional Rephrasing of the Assumption/Commitment Specification Style, in
Formal Methods in System Design, ed: Kluwer

Bruce, Kim B., Cardelli, Luca and Pierce, Benjamin C., (1997) Comparing Object Encodings, in

Cardelli, Luca and Wegner, Peter, (1985) On Understanding Types, Data Abstraction and Polymorphism, in
Computing Surveys December 1985, 17:4, pp. 471-522

Chambers, Craig, Ungar, David, Chang, Bay-Wei and Hölzle, Urs, (1991) Parent and Shared Parts of Objects:
Inheritance and Encapsulation in SELF, in Lisp and Symbolic Computation 1991, 4:3

Cheon, Yoonsik, (1991) Larch/Smalltalk: A Specification Language for Smalltalk, Dept. C.S., Iowa State
University, Ames, IA, 91-15

Cheon, Yoonsik and Leavens, Gary T., (1994) A quick overview of Larch/C++, in JOOP October 1994, 7:6,
pp. 39-49

Cook, Steve and Daniels, John, (1994) Designing Object Systems, Prentice Hall, Hemel Hempstead, UK,
ISBN : 0-13-203860-9

Cook, William R., Hill, Walter L. and Canning, Peter S., (1990) Inheritance Is Not Subtyping, in ACM
089791-343-4, 90:1, pp. 125-135

Cox, Brad J. and Novobilski, Andrew J., (1991) Object-Oriented Programming: An Evolutionary Approach,
Addison-Wesley, 270, ISBN : 0-201-54834-8

D'Souza, Desmond and Wills, Alan, (1995) CATALYSIS - Practical Rigor and Refinement, ICON
Computing, Inc., Available at http://www.iconcomp.com

D'Souza, Desmond and Wills, Alan Cameron, (1997) Types, Behaviours, Collaborations, Refinement, and
Frameworks - Input for OMG OOA&D Submission, ICON Computing, www.icon.com,

Dahl, Ole-Johan and Owe, Olaf, (1991) Formal Development with ABEL, in VDM'91, LNCS, Vol. 552, ed:
S. Prehn and W. J. Toetenel, Springer-Verlag, pp. 320-362

Dahl, Ole-Johan and Owe, Olaf, (1998) Formal Methods and the RM-ODP, Research Report 261, Informatics
Department, University of Oslo, May 1998

Dahl, Ole-Johan, (1992) Verifyable Programming, Prentice Hall, ISBN : 0-13-951062-1

Dahl, O.J., Dijkstra, E. W. and Hoare, C.A.R., (1972) Structured Programming, Academic Press, ISBN : 0-
12-200550-3

Dahl, Ole-Johann, Myhrhaug, Bjørn and Nygaard, Kristen, (1968) SIMULA 67 Common Base Language,
Norwegian Computing Center,

Dami, Laurent, (1993) The HOP Calculus, in Visual Objects, ed: D. Tsichritzis, Centre Universitaire
d'Informatique, Université de Genève, 24 rue Général-Dufour, CH-1211 Genève 4, Switzerland, Genève, pp.
149-210

Danforth, Scott and Tomlinson, Chris, (1988) Type Theories and Object-Oriented Programming, in ACM
Computing Surveys March 1988, 20:1, pp. 29-72

Deutsch, L. Peter, (1989) Design Reuse and Frameworks in the Smalltalk-80 System, in Software
Reusability, Vol. II, ed: T. J. Biggerstaff and A. J. Perlis, ACM-Press, New York, New York, pp. 55-71,
ISBN : 0-201-50018-3

Ehrich, H.-D., Goguen, J.A. and Sernadas, A., (1990) A Categorical Theory of Objects as Observed
Processes, Foundations of Object-Oriented Languages, REX School/Workshop 1990, Noordwijkerhout, The
Netherlands, published in LNCS 489, pp. 203-228.

229

Eliëns, Anton, (1994) Principles of Object-Oriented Software Development, Addison-Wesley, 513, ISBN : 0-
201-62444-3

Fiadeiro, J. and Maibaum, T., (1990) Describing, Structuring and Implementing Objects, Foundations of
Object-Oriented Languages, REX School/Workshop 1990, Noordwijkerhout, The Netherlands, published in
LNCS 489, pp. 274-310.

Gamma, Erich, Helm, Richard, Johnson, Ralph and Vlissides, John, (1994) Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley, 416, ISBN : 0-201-63361-2

Gangopadhyay, Dipayan and Mitra, Subrata, (1993) ObjChart: Tangible Specification of Reactive Object
Behaviour, European Conference on Object-Oriented Programming 1993, published in LNCS 707, pp. 432-
457.

Goldberg, Adele, (1990) Information Models, Views and Controllers - The key to reusability in Smalltalk-80
lies within MVC, in Dr. Dobb's Journal July 1990, pp. 54-61

Goldberg, Adele and Robson, Dave, (1983) Smalltalk-80: The Language and Its Implementation, Addison-
Wesley, Reading, Mass.

Graver, Justin O., (1990) A Type System for Smalltalk, in ACM 089791-343-4, 90:1, pp. 136-150

Gunter, Carl A. and Mitchell, John C., (1994) Theoretical Aspect of Object-Oriented Programming, The MIT
Press, ISBN : ISBN 0-262-07155-X

Guttag, J., (1980) Notes on type abstraction, in IEEE Transactions on Software Engineering Jan. 1980, SE-
6:1, pp. 13-23

Guttag, J.V., (1993) Larch: Languages and Tools for Formal Specification, Springer Verlag, New York

Helm, Richard, Holland, Ian M. and Fangopadyay, Dipayan, (1990) Contracts: Specifying Behavioural
Composition in Object-Oriented Systems, OOPSLA/ECOOP 1990, Ottawa, Canada, published in ACM
SIGPLAN Notices 25:10, pp. 169-180.

Henderson-Sellers, B., (1993) The economy of reusing library classes, in JOOP July-August 1993, 6:4, pp.
43-50

Hewitt, C., (1977) Viewing control structures as patterns of passing messages, in Journal of Artificial
Intelligence June 1977, 8:3, pp. 323-364

Hoare, C.A.R., (1978) Communicating Sequential Processes, in Communications of the ACM
August/1978, 21:8, pp. 666-677

Hoare, C.A.R., (1985) Communicating Sequential Processes, Prentice-Hall

Hogg, John, (1991) Islands: Aliasing Protection In Object-Oriented Languages, OOPSLA 1991, published in
SIGPLAN Notices 26:11, pp. 359-411.

Hogg, John, Lea, Doug, Wills, Alan, deChampeaux, Dennis and Holt, Richard, (1992) The Geneva
Convention On The Treatment of Object Aliasing, in OOPS Messenger from ACM April 1992, 3:2, pp. 11-
16

Hohan, James Michael, (1988) A New Design for the Smalltalk-80 Text Subsystem, Master of Science,
University of Illinois at Urbana-Champaign

Holbækk-Hansen, Erik, Håndlykken, Petter and Nygaard, Kristen, (1975) System Description and the Delta
Language, Norwegian Computing Centre, 523

Holland, Ian M., (1992) Specifying reusable components using Contracts, European Conference on Object-
Oriented Programming 1992, published in LNCS:615, pp. 287-307.

Honda, Kohei and Tokoro, Mario, (1991) An Object Calculus for Asynchronous Communication, ECOOP
1991, published in LNCS 512, pp. 133-147.

230

Hölzle, Urs, (1993) Integrating Independently-Developed Components in Object-Oriented Languages,
European Conference on Object-Oriented Programming 1993, published in LNCS 707, pp. 36-56.

Jacobson, Ivar, Bylund, Stefan, Jonsson, Patric and Ehneboom, Staffan, (1995) Using contracts and use cases
to build pluggable architectures, in JOOP May 1995, 8:2, pp. 18-76

Jacobson, Ivar, Jonsson, Patric and Övergaard, Gunnar, (1992) Object-Oriented Software Engineering,
Addison-Wisley, ISBN : 0-201-54435-0

Johnson, Ralph E., (1992) Documenting Frameworks with Patterns, Object-Oriented Programming,
Languages and Applications 1992, Vancouver BC, published in SIGPLAN Notices, pp. 63-76.

Johnson, Ralph E. and Foot, Brian, (1988) Designing Reusable Classes, in JOOP 1988, 1:2, pp. 22-25

Jones, Cliff B., (1983) Specification and design of (parallel) programs, Information Processing 83: IFIP 9th
World Congress 1983, pp. 321-332.

Jones, C. B., (1995) Accommodating Interference in the Formal Design of Concurrent Object-Based
Programs, in FMiSD, Kluwer Academic Publishers, Boston. Manufactured in the Netherlands, 1:19

Keene, Sonya E., (1989) Object-oriented Programming in Common LISP, Addison-Wesley, Reading, Mass.,
ISBN : 0-201-17589-4

Khoshafian, Setang N. and Copeland, George P., (1986) Object Identity, Object-Oriented Programming,
Systems, Languages and Applications 1986, published in ACM SIGPLAN Notices, pp. 406-416.

Kiczales, Gregor, (1993) Traces (A Cut at the "Make Isn't Generic" Problem), ISOTAS 1993

Kiczales, Gregor, Rivieres, Jim des and Bobrow, Daniel G., (1991) The Art of the Metaobject Protocol, MIT
Press

Krasner, Glenn E. and Pope, Stephen T., (1988) A Cookbook for using the Model-View-Controller User
Interface Paradigm in Smalltalk-80, in JOOP Aug./Sep. 1988, pp. 26-49

Lamport, Leslie, (1994) The Temporal Logic of Actions, in ACM Transactions on Programming Languages
and Systems May 1994, 16:3, pp. 872-923

Lamport, Leslie and Lynch, Nancy, (1990) Distributed Computing: Models and Methods, in Handbook of
Theoretical Computer Science, ed: J. v. Leeuwen, Elsevier Science Publishers, pp. 1155-1199

Lano, Kevin and Haughton, Howard, (1994) Object-oriented specification case studies, Prentice Hall, 236,
ISBN : 0-13-097015-8

Leavens, Gary T. and Weihl, William E., (1990) Reasoning about Object-Oriented Programs that use
Subtypes, ECOOP/OOPSLA 1990, Ottawa, Canada, published in ACM SIGPLAN Notices 25:10, pp. 212-
223.

Lieberherr, K., Holland, I. and Riel, A., (1988) Object-Oriented Programming: An Objective Sense of Style,
OPPSLA 1988, San Diego, California, published in SIGPLAN Notices (ACM) 23:11, pp. 323-334.

Liskov, B. and Guttag, J., (1986) Abstraction and Specification in Program Development, MIT-Press

Liskov, Barbara and Wing, Jeannette M., (1993) A New Definition of the Subtype Relation, European
Conference on Object-Oriented Programming 1993, published in LNCS 707, pp. 119-141.

Meseguer, José, (1993) A Logical Theory of Concurrent Objects and Its Realisation in the Maude Language,
in Research Directions in Concurrent Object-Oriented Programming, ed: G. Aga, P. Wegner and A.
Yonezawa, The MIT Press, Cambridge, Massachusetts, pp. 314-390, ISBN : 0-262-01139-5

Meyer, Bertrand, (1988) Object-Oriented Software Construction, Prentice-Hall

Meyer, Bertrand, (1989) The New Culture of Software Development: Reflection on the Practice of Object-
Oriented Design, TOOLS 1989, Paris, France, pp. 13-23.

Meyer, Bertrand, (1994) Reusable Software, Prentice Hall, ISBN : 0-13-245499-8

231

Milner, Robin, (1989) Communication and Concurrency, Prentice Hall, 260, ISBN : 0-13-115007-3

Milner, Robin, Parrow, Joachim and Walker, David, (1989a) A Calculus of Mobile Processes. Part I,
University of Edinburgh

Milner, Robin, Parrow, Joachim and Walker, David, (1989b) A Calculus of Mobile Processes. Part II,
University of Edinburgh

Milner, R., Tofte, M. and Harper, R., (1990) The definition of Standard ML, The MIT Press, ISBN : 0-262-
12355-9

Moreira, Ana M.D. and Clark, Robert G., (1994) Combining Object-Oriented Analysis and Formal
Description Techniques, ECOOP 1994, published in LNCS 821, pp. 344-364.

Morzenti, Angelo and Pientro, Pierluigi San, (1991) An Object-Oriented Logic Language for Modular System
Specification, ECOOP 1991, published in LNCS 512, pp. 131-147.

Nierstrasz, Oscar, (1993) Composing Active Objects, in Research Directions in Concurrent Object-Oriented
Programming, ed: G. Aga, P. Wegner and A. Yonezawa, The MIT Press, Cambridge, Massachusetts, pp. 151-
171, ISBN : 0-262-01139-5

Nierstrasz, Oscar and Papathomas, Michael, (1990a) Toward a Type Theory for Active Objects - Working
Paper, in Object Management, Vol. July 1990, ed: D.C.Tsichritzis, University of Geneva, pp. 295-304

Nierstrasz, Oscar and Papathomas, Michael, (1990b) Viewing Objects as Patterns of Communicating Agents,
ECOOP/OOPSLA 1990b, published in SIGPLAN NOTICES 25:10

Nordhagen, Else, (1987) A New Text Editor Implementation for Smalltalk-80, Center for Industrial Research
(SI, now SINTEF), Oslo, Norway, EKI-N-42

Nordhagen, Else, (1989) Generic Object-Oriented Systems, TOOLS 1989, Paris, France, published in
TOOLS'89 Proceedings, pp. 131-140.

Nordhagen, Else K., (1992) π-Calculus semantics for a Smalltalk like language, NIK 1992, Tromsø, Norway,
pp. 43-54.

Nordhagen, Else K., (1994) Objects in Four Dimensions - the COIR-archticture, in To be published, copy
available from the author (lc@ifi.uio.no)

Owe, Olaf, (1988) An Alias-Free Object-Oriented Language Concept, Department of Informatics, University
of Oslo, 141, ISBN 82-7368-047-9

Palsberg, Jens and Schwartzback, Michael I., (1994) Object-Oriented Type Systems, John Wiley & Sons
Ltd., 180, ISBN : ISBN 0-471-94128-X

Papathomas, Michael, (1991) A Unifying Framework for Process Calculus Semantics of Concurrent Object-
Oriented Languages, in LNCS 612, Vol. 612, ed: M. Tokoro, O. Nierstrasz and P. Wegner, Springer-Verlag,
pp. 53-80, ISBN : 0-540-55613-3

Papathomas, Michael, (1992) Behaviour Compatibility and Specification for Active Objects, Working Paper,
in Object Frameworks, ed: D. Tsichritzis, University of Geneve, pp. 31-40

Pierce, Benjamin C. and Sangiorgi, Davide, (1996) Behavioural Equivalence in the Polymorphic Pi-Calculus,
Indiana University Computer Science, TR 468

Plotkin, G., (1981) A structural approach to operational semantics, Computer Science Department, Aarhus
University, DAIMI FN-19

Pountain, Dick and Szyperski, Clemens, (1994) Extensible Software Systems, in BYTE May 1994, pp. 57-
62

Reenskaug, Trygve, Andersen, Egil, Berre, Arne Jørgen, Hurlen, Anne, Landmark, Anton, Lehne, Odd Arild,
Nordhagen, Else, Næss-Ulseth, Eirik, Oftedal, Gro, Skaar, Anne Lise and Stenslet, Pål, (1992) OORASS:

232

Seamless Support for the Creation and Maintenance of Object-Oriented Systems, in JOOP October 1992,
5:6, pp. 27-41

Reenskaug, Trygve and Nordhagen, Else K., (1989) The design and description of complex, object-oriented
systems, SI - Senter for Industriforskning, 89-272-1, ISBN: 82-411-0193-7

Reenskaug, Trygve, Wold, Per and Lehne, Odd Arild, (1995) Working with Objects, The OOram Software
Engineering Method, Prentice Hall, ISBN : 1-884777-10-4

Reghizzi, S. Crespi and Paratesi, G. Galli de, (1991) Definition of reusable concurrent software components,
European Conference on Object-Oriented Programming 1991, published in LNCS 512, pp. 148-166.

Sato, Ichiro and Tokoro, Mario, (1992) A Formalism for Real-Time Concurrent Object-Oriented Computing,
OOSPLA 1992, published in ACM SIGPLA Notices 27:10, pp. 315-326.

Schaffert, Craigh, Cooper, Topher and Wilpolt, Carrie, (1985) Trellis Object-Based Environment, Digital
Equipment Corporation, DEC-TR-372

Skuce, Douglas and Mili, Ali, (1995) Behaviour specification in object-oriented programming, in JOOP
January 1995, 7:8, pp. 41-49

Snyder, Alan, (1986) Encapsulation and Inheritance in Object-Oriented Programming Languages, Object-
Oriented Programming, Languages, Systems and Applications 1986, published in ACM SIGPLAN Notices,
pp. 38-45.

Stroustrup, Bjarne, (1986) The C++ Programming Language, Addison Wesley

Stølen, Ketil, (1996) Assumption/Commitment Rules for Dataflow Networks - with an Emphasis on
Completeness, Programming Languages and Systems - ESOP '96 1996, published in LNCS 1058, pp. 356-
372.

Thomsen, Bent, (1993) Plain CHOCS, A second generation calculus for higher order processes, in Acta
Informatica, 30:1, pp. 1-59

Udell, John, (1994) ComponentWare, in Byte May 1994, pp. 46-56

Ungar, David, Chambers, Craig, Chang, Bay-Wei and Hölzle, Urs, (1991) Organising Programs Without
Classes, in Lisp and Symbolic Computation 1991, 4:3

Vasconcelos, Vasco T., (1994) Typed Concurrent Objects, ECOOP 1994, published in LNCS 821, pp. 100-
117.

Waldén, Kim and Nerson, Jean-Marc, (1995) Seamless Object-Oriented Software Architecture, Prentice Hall,
ISBN : 0-13-031303-3

Walker, David, (1991) π-Calculus Semantics of Object-Oriented Programming Languages, TACS 1991,
published in LNCS 526, pp. 532-547.

Walker, David, (1992) Objects in the π-calculus, in Personal copy, pp. 1-34

Wegner, Peter, (1987) Dimensions of Object-Based Language Design, OOPSLA 1987, published in ACM
SIGPLAN Notices, pp. 168-182.

Wegner, Peter, (1993) Tradeoff between Reasoning and Modeling, in Research Directions in Concurrent
Object-Oriented Programming, ed: G. Aga, P. Wegner and A. Yonezawa, The MIT Press, Cambridge,
Massachusetts, pp. 22-41, ISBN : 0-262-01139-5

Wegner, Peter, (1994) Models and Paradigms of Interaction, in Object-Based Distributed Programming,
ECOOP'93 Workshop, Vol. 791, ed: R. Guerraoui, O. Nierstrasz and M. Riveill, Springer-Verlag, pp. 1-32,
ISBN : 3-540-57932-X

Wegner, Peter, (1995) Object Technology, A Virtual Roundtable, Theoretical Foundations, in IEEE
Computer October 1995, 28:10, pp. 70-72

233

Wegner, Peter and Zdonick, Stanley B., (1988) Inheritance as an Incremental Modification Mechanism or
What Like Is or Isn't Like, European Conference on Object-Oriented Programming 1988, Oslo, Norway,
published in LNCS 322, pp. 55-77.

Wieringa, Roel, Jonge, Wieben de and Spruit, Paul, (1994) Roles and Dynamic Subclasses: A Modal Logic
Approach, ECOOP 1994, published in LNCS 821, pp. 32-59.

Wirfs-Brock, Rebecca, Wilkerson, Brian and Wiener, Lauren, (1990) Designing Object-Oriented Software,
Prentice Hall, ISBN : 0-13-629825-7

Wirfs-Brock, Rebecca J. and Johnson, Ralph E., (1990) Surveying Current Research in Object-Oriented
Design, in Communications of the ACM September 1990, 33:9, pp. 105-124

234

235

Appendixes

A: Basic Definitions

B: Translation between the π-calculus
 and Omicron

C: References

236

237

Appendix A : Basic Definitions

1 BNF
The BNF language used in this document consists of the following symbols:

X ::= Y X is defined as Y
X | Y X or Y
X* zero or more X
X+ one or more X
X* >2 two or more X
{X} zero or one X

X;
* zero or more X separated by ';' . ';' may be replaced by any other character.

Bold font is used to denote reserved words and character combinations.

2 Map notation and formal definitions
The notation for Maps used in this document is taken from (Dahl 1992) pages 217-219, Initialized maps. The
Map definition has been expanded with the functions ^.Dom and ^+^.

A Map is a representation of a function U -> T defined for a finite set of arguments. The domain and codomain
are arbitrary given types. In this document the domains are either object names or slot names. The codomains are
correspondingly object definitions or object names.

The map concept is defined as follows:

type Map{U,T} ==
module
func init() : → Map Empty Map
func ^[^→^] : Map × U × T → Map Update Map
func ^(^) : Map × U → T Apply map

M(x) ==
case M of
init : ⊥
M'[y→z] : if x=y then z else M'(x)

func ^.Dom : M → Set{U} The domain of M
M.Dom ==

case M of
init : {}
M'[y→z] : M'.Dom ∪ {y}

func ^-^ : Map × U → Map
M-x ==

case M of
init : init
M'[y→z] : if x=y then M'x else (M'-x)[y→z]

func ^+^ : Map × Map → Map
M+N ==

case N of
init : M
N'[y→z] : (M+N')[y→z]

For configurations of parallel objects the notation C||D is used instead of C+D.

238

Slots maps with the special object name this:
C(o)(s) == let value = C(owner(C,o,s))(s) in

if value = this then return(o)
else return(value)

Special functions eliminating the need to use I and : in slotNames in sentences, ie, when looking up or
updating a slot:

C(o)(s) == if @C(o)(s) then return(C(o)(s))
else
if @C(o)(:s) then return(C(o)(:s))
else
if @C(o)(:sI) then return(C(o)(:sI))
else
if @C(o)(sI) then return(C(o)(sI))

Correspondingly for C(o)[s→j]

3 Object name substitutions
This section describes substitutions for object names in relation to Omicron configurations and Omicron actions.
The below is obvious to those who are familiar with substitutions and is therefore meant as a support to those
who are not. It also gives a precise definition of the interpretation of substitutions used in this document.

To not confuse the domains and ranges of substitutions and configurations, the terms keys and values are used
for substitution domains and ranges respectively. Also the syntax for defining mappings for substitutions is
different from that of Slots and Configurations to make the distinction clear.

Definition: An object name substitution
A substitution σ is an operation mapping object names to object names.
The operation is written post fix, eg, Cσ, and binds stronger than other operations
so that, eg, A||Cσ means A || (Cσ)
The set of all object name substitutions is denoted Su.

A substitution has the form {a1/b1}…{a n/bn} where {a/b} means 'b' is replaced by 'a'. For b-names not
listed in the {a/b}-sequence the substitution mapping is equal to the identity function. For the
substitution to be well-defined, each bi in the sequence must be unique. {a/b}* denotes a sequence of
{a/b}.

Definition: Keys and values of a substitution
The keys of a substitution is the set of names which map to other names than themselves:

keys(σ) = {b | bσ ≠ b }
The values of a substitution is the set of names which some other name than themselves map to:

values(σ) = {bσ | bσ ≠ b }

Definition: Cσ
Oσ denotes an object obtained from O by simultaneously substituting oσ for each occurrence of the
object name o in O.
C = o1 : O1 ||…|| on : On ⇒ Cσ = o1σ : O1σ ||…|| onσ : Onσ
O = M, S ⇒ Oσ = Mσ, S
M = [s1 → o1, … sn → on] ⇒ Mσ = [s1 → o1σ, … sn → onσ]

Definition: ασ
ασ denotes an action obtained from α by simultaneously substituting oσ for each occurrence of an object
name o in α.
(e->(o1.s1)…(on.sn) := i)σ = eσ->(o1σ.s1)…(onσ.sn) := iσ
(e->(o.s) := k/j)σ = eσ->(oσ.s) := kσ / jσ
(e->o!m(p1…pn)/k)σ = eσ->oσ!m(p1σ…pnσ)/kσ
(e->error)σ = eσ->error

239

Definition: Combining substitutions
Given two substitutions σ = {si/ti}* and ρ = {qi/ri}*.
The result of applying the combined substitution σρ = δ, is the same as first applying σ and then ρ.
δ will then look like:

if some j so that ti=qj for some i then
A) if r j = si then neither si/ti or qj/rj is found in δ (as they give identity)
B) if not then si/rj is found in δ (the two substitutions are combined)

if there is no j so that ti=qj then
C) if for some k si=qk then si/ti is found in δ and qk/rk is not found

(as qk is not found after σ is applied)
D) if there is no such k then si/ti and qk/rk is both found in δ

4 New form for Case statements
The following notation allows casing on more than one item, eg:

case x, y of
x = 0, y = 0 : expression1
x > 0, y> 0 : expression2
otherwise: expression3

which is an alternative from for:

case x of
x = 0 : case y of :

y = 0 : expression 1
otherwise : expression3

x > 0 : case y of :
y > 0 : expression 2
otherwise: expression3

Using the alternative with casing on more than one item, usually gives a more readable definition as is the case
in this small example.

240

241

Appendix B:

Translations between

the π-calculus and Omicron

242

1 The π-calculus and Omicron
Process calculi does not reflect object-oriented concepts. However it is rather simple to describe the semantics of
an object-oriented language using the π-calculus (Milner et al. 1989a), (Milner et al. 1989b), (Thomsen 1993)
as, eg, done in (Walker 1991), (Walker 1992) and (Nordhagen 1992). Translating parallel Omicron to π is also
rather simple and is done below. It is also rather simple to translate from π to Omicron something which is done
further below.

First the π-calculus language is presented and then the translations.

π-calculus syntax:
Below is given a short summary of the π-calculus expressions used in the semantic definitions. For a more
detailed description see (Milner et al. 1989a) and (Milner et al. 1989b).

The π-calculus is a process calculus in which processes with changing communication structure may be
expressed. The processes share communication channels and such channels can be passed on to other processes.
Each channel has a name and the only "values" which may be communicated are such names. This means that in
the π-calculus "variables", "communication channels" and "values" are all names. An infinite set N of names is
presupposed, and in the below description single letter such as x,y,v (possibly with subscripts) range over
names. Below the informal semantics of π will be expressed using words such as channel, parameter, etc. to
reflect the role the name has in the expression.

The basic building blocks of π-expressions are process expressions. P,Q range over such expressions that are
built from the following expressions:

P ::=
xy.P output action: send name y on channel x and behave like P20

x(y).P input action: receive an unknown name (say v) on channel x, and then behave like
P{v/y) (P with v for y, v must be a new name not occurring in P)

(νy)P y is a private name for P, making it unique within the total system. y may be passed
to other processes so that they can communicate on this channel.

[x=y]P behave like P if name x is equal to name y else terminate
P | Q behave as if P and Q act independently in parallel.

P and Q may share channels and communicate
on these.

P + Q behave either like P of like Q
0 terminate (usually left out at end of expressions)

The expression α * P is defined as:
α * P == α.(P | α * P) where α is one of xy or x(y).

From Omicron to π-calculus
In the below [[Omicron expression]]π denote a function translating the Omicron expression into the π language.

A Configuration of Omicron objects is translated into π-processes as follows:

[[Object1 || … || Objectn]]π == [[Object1]]π … [[Objectn]]π

A simple translation of Omicron objects into π processes can be done as shown below. This translation do not
take into account inheritance between objects. Inheritance is shown further below.

x(y) is short for (νy) xy, that is send a new local name out on x.

20 In π-calculus "overscore" is used, instead of "underscore".

243

[[o : (Slots, Body)]]π ==
co(o) * [[Slots]]π |

o(u) * u(m).(
([m=mi] (z) [[mi]]π(z) | z(i).ui +
[m=#clone] u(v).co(k).vk +
[m=#exe] u(v).co(k).k(l).l#exe2.vl +
[m=#exe2] u(p1).wp1p1...u(pm).wpmpm.(o'o | [[Body]]π (o')))

where p1…pn = Slots.inputs

The channel 'co' is used to create a new object clone by sending a name on this channel. A new object clone is
created as the operator * is defined as follows:

α * P == α .(P | α * P)
and α = co(o) making o is a new local channel for each instantiation. To clone an object, one must send the
message #clone to it. The #clone-code above first receive a return-cannel and then send on the co-cannel before it
returns the name of the new object.

When an object receives a message it first sends out a local name u in o(u) on the channel o and then spawns a
new process (*). This new process models the new instance of the method to be contacted when a new call is
done. Then the process receives the message on the new channel (u(m)).

An object is turned into an executing process by sending it the message #exe. It then clones itself and sends out
the channel name to the new clone. Then it sends the message #exe2 to the new clone which then receives a set
of parameters and starts executing the body of the object.

To get the body to refer to the correct in-channel for the object of which it is the body to, the name o is sent on
the local channel o' (in o'o). The name o must be sent to the process modelling the body since the object may be
cloned and then o will and should be different from the original object's in-channel.

Slots definition
[[[s1→ i1, … , sn→ in]]]π == (s1, … , sn) Regs1(i1) | | Regsn(in)

where
Regs(i) == rsi.Regs(i) + ws(j). Regs(j)

Slot read:
[[s]]π (v) == rs(z). vz

Including inheritance:

To model slot lookup (and update) in the inheritance hierarchy three functions/macros are defined to control the
sequence of lookups in the π-program:

P ifContinue Q == (stop continue)(P | stop(x) + continue(x).Q) where x is not in fn(Q)
Stop == stop stop.0
Cont == continue continue.0

The slot lookup algorithm defined here is similar to the algorithm defined earlier in the section on inheritance
slots for Omicron: left to right slot priority and closest object first.

Object without inheritance slots:
[[o : (Slots, Body)]]π ==

co(o) * [[Slots]]π |
o(u) * u(m).(
([m=#clone] u(v).co(k).vk +
[m=#exe] u(v).co(k).k(l).l#exe2.vl +
[m=#exe2] u(p1).wp1p1...u(pm).wpmpm.(o'o | [[Body]]π (o')) +

[m=#lookup] u(m).u(v).
([m=mi] [[mi]] π(z) | z(i).vi.Stop) +
 [m≠mi] Cont) +

[m=#store] u(m).u(k)
([m=mi] wmik.Stop) +
 [m≠mi] Cont) +

[m=OTHER] o(v).v#lookup.vm.v(u) ifContinue))

244

Object with inheritance slots s1…sn:
[[o : (Slots, Body)]]π ==

co(o) * [[Slots]]π |
o(u) * u(m).(
([m=#clone] u(v).co(k).vk +
[m=#exe] u(v).co(k).k(l).l#exe2.vl +
[m=#exe2] u(p1).wp1p1...u(pm).wpmpm.(o') (o'o | [[Body]]π (o)) +

[m=#lookup] u(m).u(v).
([m=mi] [[mi]] π(z) | z(i).vi.Stop +
 [m≠mi] (z1) ([[s1]]π(z1) | z1(i1).i1(w).w#lookup.wm.w(v) ifContinue

…
(zn) ([[sn]]π(zn) | zn(in).in(w).w#lookup.wm.w(v) ifContinue
Cont)))) +

[m=#store] u(m).u(k)
([m=mi]wmik.Stop +
 [m≠mi] (z1) ([[s1]]π(z1) | z1(i1).i1(w).w#store.wm.w(k) ifContinue

…
(zn) ([[sn]]π(zn) | zn(in).in(v).w#store.wm.w(k) ifContinue
Cont)))) +

[m=OTHER] o(v).v#lookup.vm.vu ifContinue))

Whenever a slot name is sent over the channel u (in u(m)) then the OTHER-branch is used. In this branch the
object is sent a #lookup message and the name of the slot to lookup is sent in vm. u is the name of the channel
to return the slot value on. The name of this return channel is then sent in vu.

In the lookup branch the slot name is received and then the channel to return the slot value on is received. The
first branch-alternative ([m=mi]) describes what happens when the slot is found in this object. Then the slot is
read and the value of the slot is returned in vi and the lookup is stopped by the macro Stop. The second
alternative ([m≠mi]) describe what to do when the slot is not found in this object. Then a lookup is done in the
object referred to in the first inheritance slot by sending it a lookup message. If the slot is found somewhere in
this branch of the inheritance hierarchy a Stop macro will be called and then ifContinue will lead to no further
execution of sentences in this process. If no slot is found in the branch, the next inheritance slot is searched etc.
If no slot is found then no return is given to the sender of the slot name because there are no further expressions
behind the ifContinue in the OTHER branch.

The #store-branch is similar except that instead of reading a slot value and returning it, the slot is updated with a
new value.

Translating the bodies of objects:
The macros used for slot lookup is also used for ordering the sequence of sentences in the body of an object.
ifContinue will always be true unless there is a slot lookup error, in which case no Cont is done. This means
that if there is a slot lookup error the process just stops by itself in that no further sentences are executed.

The slot lookup in an inheritance tree below is done as follows:
[[s]]π (o,v) == o(u).us.u(i).vi
[[this]]π (o,v) == vo

To model storing into a slot in the inheritance hierarchy the message #store is used.

[[<empty body>]]π (o') == o'(o) <nothing>
[[E1. ... En]]π (o') == o'(o). [[E1]]π(o) ifContinue …… ifContinue [[En]]π(o)

[[s := t clone]] (o) == (z) ([[t]](o,z) | z(i).i(c).c#clone.c(z) | (u) z(k).ou.u#store.us.uk.Cont)

First the value of the slot t is found and the message #clone sent to the object to be cloned. Then the name of
the new object is stored into the slot s in the inheritance hierarchy of the object which input channel is o: first
get a channel to the object by ou. Then send #store, the slot name s and then the value k to the object.

[[s1…sn := (x = y t f)]]π (o) == (z i j) ([[x]]π(o,z) | (v) (z(i).[[y]](o,v) | v(j).
([i=j] (w) ([[t]] π(o,w) | (u) (w(k).ou.u#store.us1.uk…ou.u#store.usn.uk)) +
 [i≠j] (w) ([[f]] π(o,w) | (u) (w(k).ou.u#store.us1.uk…ou.u#store.usn.uk)))))
Cont)

245

First the x and y slots are read and then compared. If they are similar (i=j) then the value of t is read and stored
into the s-slot. If they are different the value of f is stored into the s-slot.

[[s ! m (a1…an)]]π (o) == (w) ([[s]]π(o,w) | (v1) (w(r).[[a1]]π(o,v1)
| (v2) (v1(p1).[[a2]]π(o,v2)
....
| (vn)(vn-2(pn-1).[[an]]π(o,vn)
| (vm)(vn(pn).[[m]] π(o,vm)
| vm(pm) (z) (rz.zpm | (l) (z(k).kl.l#exe.l(z)) | z(x).xp1...xpn Cont))))))…)

First the value of s is read into the local name r. Then the values of the parameters are read into the local names
p1 to pn. After that the message selector is read from the slot named m into the local name pm. Then a channel
is gotten from the receiver by rz. Then the message selector m is sent on this channel. Next the name of the
method for the message is received in z(k), where k is the channel to the process representing the method-object.
A channel is then gotten from this object by kl and across this channel is sent #exe and a channel to get a return
on (l(w)). The channel to the new method-copy is received by w(x), and the parameters are sent across the x-
channel.

From π to Omicron
This section defines functions which translate from π-process expressions to Omicron object configurations. In
the following some short hand notation is used:

#s is short for defining a variable with the name s and value s.
It is assumed that all object have a slot defined as follows "self → this"

 In the implementation of π's synchronous message passing by asynchronous message passing in Omicron,
slots are used as semaphores. A slot with value 0 is an open semaphore while slots with value ≠ 0 is a closed
one.

The following Omicron objects implement π communication in Omicron when the Omicron objects are used as
described further below. The strategy is to use semaphores to control the matching of one send and one receive. It
is expected that the selection of which Omicron sentence to execute next is fair. If this expectation hold, then it
is believed that the fairness in π message sending is modelled by the below Omicron message sending. A formal
proof is necessary to show that the belief is actually true. A brief sketch of such a proof is found at the end of
this appendix.

 top : ([G→g], #first!#do(#top)]
|| g : ([reg → regM, send →sendM, waitingCnl → nil, waitingName → nil, Wsema →0, Rsema →1],)
|| regM : ([super*→g, :obj → nil, :msg →nil, next → x, x→ nil],

Rsema, x := (Rsema = #0 #contReg #waitReg); self!next();)
|| contReg : ([super* → regM, next →x, x→nil],

x := (msg=waitingCnl #okReg #notOkReg); self!next();)
|| waitReg : ([super* →regM], #g!#reg(obj, msg);)
|| okReg : ([super*→regM], obj!#receive(obj, waitingName); Wsema := 0;)
|| notOkReg : ([super* →regM], #g!#reg(obj, msg); Rsema := 0;)
|| sendM : [super*→g, :msg →nil, :par →nil, next→x, x→nil],

Wsema, x := (Wsema = #0, #contS, #waitS); self!next();)
|| contS : [super*→sendM] waitingCnl := msg; waitingName := par; Rsema := 0;)
|| waitS : [super*→sendM], #g!send(msg, par);)

All Omicron objects in the sequel will inherit from the object names top and in this way G will be comparable
to a global variable. g is the name of an object which controls communication. The object can control
communication because it holds semaphores and variables used for synchronisation and these are used in the
translation. Semaphores are not part of Omicron, but can be implemented using Omicron constructs. In this case
variables are used as semaphores where the slots Rsema and Wsema are read and write semaphores respectively,
controlling the access to the variables waitingCnl and waitingName.

When a name is to be sent on a channel, the Omicron object modelling this synchronous sending will send the
message send to the object names g. If Wsema is open, then it gets closed and then the variable waitingCnl is
updated to hold the name of the channel. Also, waitingName is updated to hold the name to be sent on the
channel. In addition the Rsema semaphore is opened. If the semaphore is closed then a new send-message is
issued to g. This is an active wait-loop.

246

When a name may be received on a channel the Omicron object modelling this synchronous receive sends the
message reg to the object named g. If the Rsema semaphore is open then it gets closed and it is checked if the
waitingCnl matches the cannel name for reading. If the channel names match then the message receive is sent the
Omicron object waiting for a π-receive-communication action. The parameter to this message is the name passed
over the channel. Finally the Wsema is opened. If the channel names do not match, then the Rsema semaphore
is opened and a new reg-message is send. Also, if the Rsema is closed, a new reg-message is sent to g. This also
gives and active wait-loop.

Based on this synchronous communication mechanism, π-processes are translated into Omicron by functions
with the following signature:

[[P]] (o) where P is a π-expression,
o is the name of the main object representing the first π sentence in P

The initial call to the translation function will be:
[[P]](first) where P is the π-expressions and first is an arbitrary object name

The different π sentences are translated as follows (When "-k" is used as part of an object name it indicates that
the object name with -k in it will be unique for each translated π-sentence.):

[[0]] (k) == k : ([do→doM],) ||
doM : ([:p*→nil],)

[[(νx).P]] (k) == k : ([do→doM],) ||
doM : ([:p*→nil, x→x], #Cont-k!#do(self);) || [[P]] (Cont-k)

[[xy.P]] (k) == k : ([do → doM],) ||
doM : ([:p*→nil], G!#send(#x, #y); #Cont-k!#do(p);) || [[P]] (Cont-k)

[[x(y).P]] (k) == k : ([do → doM],) ||
doM : ([:p*→nil, receive→recM], G!#reg(self, #x);) ||
recM : ([:p*→nil, :y→nil], #Cont-k!#do(self);) || [[P]] (Cont-k)

[[P | Q]] (k) == k : ([do→doM],) ||
doM : ([:p*→nil], #pCont-k!#do(p); #qCont-k!#do(p);) ||
[[P]] (pCont-k) || [[Q]] (qCont-k)

[[P + Q]] (k) == k : ([do → doM, sema→0, doP→doPM, doQ→doQM],) ||
doM : ([:p*→nil, owner*→k], #k!#doP(self); #k!#doQ(self)) ||
doPM : ([:p*→nil, owner*→k, next→x, x→nil],

sema,x:=(sema = 0 #Pcont-k, #Pnot-k); self!next(self);) ||
Pcont-k : ([:p*→nil], #pCont-k!#do(p);) ||
Pnot-k : ([:p*→nil],) ||
doQM : ([:p*→nil, owner*→-k, next→x, x→nil],

sema,x:=(sema = 0 #Qcont-k, #Qnot-k); self!next(self);) ||
Qcont-k : ([:p*→nil], #qCont-k!#do(p);) ||
Qnot-k : ([:p*→nil],) ||
[[P]] (pCont-k) || [[Q]] (qCont-k)

[[[x=y]P]] (k) == k : ([do→doM],) ||
doM : ([:p*→nil, next→x, x→nil] x:=(x=y #next-k #stop-k); self!next(p);) ||
next-k : ([:p*→nil], #Cont-k!#do(p);) ||
stop-k : ([:p*→nil],) ||
[[P]] (Cont-k)

[[xy.*P]] (k) == k : ([do→doM],) ||
doM : ([:p*→nil, copy → nil], G!#send(#x, #y);

copy := #k clone; #Cont-k!#do(p); copy!#do(p);) ||
[[P]] (Cont-k)

[[x(y).*P]] (k) == k : ([do→doM],) ||
doM : ([:p*→nil, copy → nil, receive→recM], G!#reg(self, #x);

copy := #k clone; copy!#do(p);) ||
recM : ([:p*→nil, :y→nil], #Cont-k!#do(self);) ||
[[P]] (Cont-k)

247

Sketching a proof of correct translations
(Walker 1991) translates an object-oriented language to π-calculus. The translation is done much along the same
lines as the above translation of Omicron into π. (Walker 1992) gives the operational semantics of an object-
oriented language and also gives the semantics by a translation of the language to π. The paper finally shows a
close correspondence between the two semantics. Showing the correspondence between the Omicron operational
semantics and the π semantics can be done in a similar way. The correspondence will then be shown as follows:

Let C denote Omicron system expressions and P denote π agents. Let → be the transition relation between
Omicron expressions and let →* denote zero or more such transitions Let ⇒ denote the reflexive and transitive
closure of silent π transitions τ , and ∼ the relation of strong bisimilarity on π agents from (Milner et al.
1989a). Let C0 be the initial Omicron system. Then:

1) Any computation C0 → C1 →…→ Cn is directly mirrored by a derivation
 [[C0]] ⇒ ∼ [[C1]] ⇒ ∼ … ⇒ ∼ [[Cn]] which, because of the finer grain of action, typically
 involves more transitions.

2) If ([[C0]] ⇒ P) then for some C, C0 →* C and (P ⇒ ∼ [[C]])

A similar exercise must be done to show that the translation from π to Omicron gives the semantics of π
corresponding to the operational semantics given in (Milner et al. 1989a).

These proofs are left for further study.

248

249

Appendix C: References

250

1 Object-oriented languages
Beta B.B. Kristensen, O.L. Madsen, B. Møller-Pedersen and K. Nygaard, (1987) The

BETA Programming Language in Research Directions in Object-Oriented
Programming, ed: B. Shriver and P. Wegner, MIT Press

C++ Bjarne Stroustrup, (1986) The C++ Programming Language, Addison Wesley

CLOS Sonya E. Keene, (1989) Object-oriented Programming in Common LISP,
Addison-Wesley, Reading, Mass., ISBN : 0-201-17589-4

Dylan Apple, (1992) Dylan, an object-oriented dynamic language, Apple Computer, 1
Main Street, Cambridge, MA 02142, To order: email: dylan-manual-
request@cambridge.apple.com

Eiffel Bertrand Meyer, (1988) Object-Oriented Software Construction, Prentice-Hall

Java See URL http://www.javasoft.com for updated lists of books, publications and
online documentation.

SELF David Ungar and Randall B. Smith, (1987) Self: The Power of Simplicity,
OOPSLA 1987, published in ACM SIGPLAN Notices 22:12, pp. 227-241.

Simula Graham M. Birtwistle, Ole-Johan Dahl, Bjørn Myhrhaug and Kristen Nygaard,
(1973) Simula BEGIN, Potrocelli/Charter, New York, ISBN : 0-88405-340-7

Smalltalk-80 Adele Goldberg and Dave Robson, (1983) Smalltalk-80: The Language and Its
Implementation, Addison-Wesley, Reading, Mass.

2 Object-oriented methods
BON Kim Waldén and Jean-Marc Nerson, (1995) Seamless Object-Oriented Software

Architecture, Prentice Hall, ISBN : 0-13-031303-3

Catalysis Book under development by Desmond D'Souza, see URL
http://www.iconcomp.com/catalysis for reports and updated information on
publications

Foundation James Martin and James J. Odell, (1995) Object-Oriented Methods, a Foundation,
Prentice Hall, ISBN : 0-13-630856-2

Fusion Derek Coleman, Patric Arnold, Stephanie Bodoff, Chris Dollin, Helena Gilchrist,
Fiona Hayes and Paul Jeremaes, (1994) Object-Oriented Development. The
Fusion Method, Prentice Hall, 313, ISBN : 0-13-338823-9

Objectory Ivar Jacobson, Patric Jonsson and Gunnar Övergaard, (1992) Object-Oriented
Software Engineering, Addison-Wisley,
ISBN : 0-201-54435-0

Later papers on Objectory referred to in this thesis:
Ivar Jacobson, Stefan Bylund, Patric Jonsson and Staffan Ehneboom, (1995)
Using contracts and use cases to build pluggable architectures in Journal of
Object-Oriented Programming May 1995, 8:2, pp. 18-76

Ivar Jacobson, (1995) Use Cases in Large-Scale Systems in Report on Object
Analysis and Design (ROAD) March-April 1995, 1:6, pp. 9-12

OMT James Rumbaugh, Michael Blaha, William Premerlani, Fredrick Eddy and
William Lorensen, (1991) Object-Oriented Modelling and Design, Prentice Hall,
Englewood Cliffs, New Jersey 07632, ISBN : 0-13-629841-9

251

OOram Trygve Reenskaug, Per Wold and Odd Arild Lehne, (1995) Working with
Objects, The OOram Software Engineering Method, Prentice Hall, ISBN : 1-
884777-10-4

First report on OOram:
Trygve Reenskaug and Else K. Nordhagen, (1989) The design and description of
complex, object-oriented systems, SI - Senter for Industriforskning, 89- 272-1,
ISBN: 82-411-0193-7

First paper on OOram:
Trygve Reenskaug, Egil Andersen, Arne Jørgen Berre, Anne Hurlen, Anton
Landmark, Odd Arild Lehne, Else Nordhagen, Eirik Næss-Ulseth, Gro Oftedal,
Anne Lise Skaar and Pål Stenslet, (1992) OORASS: Seamless Support for the
Creation and Maintenance of Object-Oriented Systems in Journal of Object-
Oriented Programming October 1992, 5:6, pp. 27-41

Paper on aspects of OOram referred to in this thesis:
Egil P. Andersen and Trygve Reenskaug, (1992) System Design by Composing
Structures of Interacting Objects, ECOOP 1992, published in LNCS 615, pp.
133-152.

RDD: Responsibility Driven Design
Rebecka Wirfs-Brock, Brian Wilkerson and Lauren Wiener, (1990) Designing
Object-Oriented Software, Prentice Hall, ISBN : 0-13-629825-7

Syntropy Steve Cook and John Daniels, (1994) Designing Object Systems, Prentice Hall,
Hemel Hempstead, UK,
ISBN : 0-13-203860-9

UML See URL http://www.rational.com for reports and lists of books and
publications

Not a method, but a way to describe designs:
Design Patterns or just Patterns

Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides, (1994) Design
Patterns: Elements of Reusable Object-Oriented Software, Addison-Wesley, 416,
ISBN : 0-201-63361-2

Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides, (1993) Design
patterns: Abstraction and reuse in object-oriented design, European Conference on
Object-Oriented Programming 1993, Kaiserslautern, Germany, published in
LNCS 707, pp. 406-431.

252

3 Related publications

The following list contains publications by the author which are related to the topics of this thesis.

Example of object component design:

Else Nordhagen, (1987) A New Text Editor Implementation for Smalltalk-80, Center for Industrial
Research (SI, now SINTEF), Oslo, Norway, EKI-N-42

General architecture for software composition:

Else Nordhagen, (1989) Generic Object-Oriented Systems, TOOLS 1989, Paris, France, published
in TOOLS'89 Proceedings, pp. 131-140.

Translation of an object-oriented language to the π-language:

Else K. Nordhagen, (1992) π-Calculus semantics for a Smalltalk like language, NIK 1992,
Tromsø, Norway, pp. 43-54.

Architecture for sharing objects, designing programs and reusing code:

Else K. Nordhagen, (1993) Four types of types for objects, NIK 1993, Halden, Norway, pp. 1-12.

Latest version:

Else K. Nordhagen, (1995) The COIR Architecture for Flexible Software Components and
Systems, Department of Informatics, University of Oslo, Norway, Research Report 197, ISBN:
82-7368-108-4,

The OOram design method for object component systems (latest reference (Reenskaug et al. 1995)):

Trygve Reenskaug and Else K. Nordhagen, (1989) The design and description of complex, object-
oriented systems, SI - Senter for Industriforskning, 89-272-1, ISBN: 82-411-0193-7

Trygve Reenskaug, Egil Andersen, Arne Jørgen Berre, Anne Hurlen, Anton Landmark, Odd Arild
Lehne, Else Nordhagen, Eirik Næss-Ulseth, Gro Oftedal, Anne Lise Skaar and Pål Stenslet, (1992)
OORASS: Seamless Support for the Creation and Maintenance of Object-Oriented Systems in
Journal of Object-Oriented Programming October 1992, 5:6, pp. 27-41

253

Index:
α -definition 60; 150
&-function 56
=O observable equality of action sequences 74
~O observable equality 72; 155
~O,σ observable similarity 97; 158
≤D refinement relation 76; 156
≤D,E,σ 129
≤D,σ reliable refinement relation 110
≤O,σ observable similarity of action sequences 100
≤O,σ observably similar action sequences 159
@-function 56
α.dsc 61; 151
α.exe 61; 151
α.names 61
ABEL 187; 205
Abstract Data Types 172
abstract specifications 19; 197
abstraction 19; 80; 190; 197
action 58

error 50
from reliable configuration 118
hidden 31; 69
observable 30; 69
observable equality 72
rules of 58; 148
sequence of 60
silent 70

action sequence 60
actions 4; 28; 46

observably similar 34
Sequential Omicron 147

actor model 197
Actors 197
algebraic models 201
aliasing problem 201
assignment action 29; 30; 35; 47; 147; 149
assumption-guarantee specifications 9; 207
asynchronous 195
behaviour 4
behaviour equivalence 200
Beta 44; 172; 205; 206; 250
block object 173
body of an object 55
BON 3; 250
boundary objects 5; 33
C(o) 55
C(o).Body 56
C(o).inputs 56
C(o).Slots 55
C(o).Slots(s) 55
C++ 2; 17; 31; 38; 48; 84; 161; 171; 173; 205;
250
C.Dom 55
C.Names 55
C.Values 55
Catalysis 168; 169; 220; 250
CCS 194
characteristics of OCS 4
CHOCS 194
class inheritance 87
class names 180
classes 173; 179

clone action 47; 147; 150
CLOS 31; 172; 173; 205; 218; 250
closed system 5
collaboration 4
collaboration pattern 5; 205; 212
collaboration structure 4; 23
combinable configurations 63
combined configurations 62
complete partial order 111
complete specialisation 102
component 4; 6; 28; 45
component and context 6
component developer 3
component encapsulation 39
component in Omicron 45
component substitution 6; 189
Composition Principle 207
composition theorem 209
compositionality property 81
configuration 25

derivation of 60
domain of 55
new names of 63
new objects 32
prime of 63
specialised 82
syntactically correct 55; 147
terminal 151
traces of 61
well-formed 55

configuration specialisation 82
configurations

combinable 63
combined 62
ending collaboration 76
refinement of 76
terminal 62

context 6; 10; 28
new observers 32

context substitution 6
contract 5; 27; 43; 52; 168

Demeter 205
contract specification 29
contracts in Eiffel 186
correct specifications 186
cpo 111
decomposition 174
decomposition theorem 209
Demeter 205
derivations of configurations 60; 151
derived configurations 121
Design Patterns 167; 174
distributed systems 194
domain of a configuration 55
Dylan 172; 173; 218; 250
Eiffel 186; 205; 250
encapsulation 171
endColab() 76
ending collaboration 76
error action 29; 31; 36; 50; 147; 150
error models 31; 218
execution of objects 46
extensible systems 3
extension objects 48
external methods 91

254

failure models 195
Foundation 168; 250
functional models 201; 202
Fusion 168; 250
hidden action 31; 69; 155
hidden behaviour 31
hidden objects 39
inheritance 174; 190

external 86
inheritance graph 57
inheritance slots 48; 56
Java 3; 31; 38; 161; 171; 173; 205; 250
law of Demeter 167
library proposition 143
logic models 204
lookup action 147; 148
LOTOS 194
Maud 204
message buffering 195
message selectors 175; 191; 218
message-send action 28; 30; 34; 47; 147; 148
method 27; 44; 48; 59
method copy 59
method in Omicron 44
method-copy 48
ML 42
model-view contract 27
Model-View-Controller 2; 52
models

actors 197
ADT 201
algebraic 202
distributed systems 194
functional 202
Petri nets 204
process 194
rewrite logic 204
state transition 205
traces 204
π-calculus 198; 242

monotonic relation 218
monotonic relations 3
monotonicity 8; 218
monotonous partial order 111
mpo 111
MVC-design 22
name 43
name in Omicron 43
name substitution 82
names

safe 85
visible 63

specification of 112
names in a configuration 55
new names in an action sequence 63
new objects 75
NewName() 63; 152
no external inheritance 171
noExt() 86
non-determinism 75
non-deterministic behaviour 5; 33; 36
ObjChart 205
object 4; 43

execution of 46
object calculus 195

object component systems 3; 44
object creation 32; 47
object creation action 29; 31; 35
object in Omicron 43
object name substitution 238
object names 84
object system 44
Objectory 3; 5; 30; 33; 168; 250
ObjLog 202
obs(O) 69
observable action 69; 154
observable actions 30
observable behaviour 4; 7; 27; 30; 32
observable similarity 10; 34; 73; 93; 97; 104;

 158; 188
observable trace 69
observable traces 7; 87; 185
observably equal actions 72; 155
observably equal names 72
observably similar action sequences 100
observably similar actions 34
observers 7; 28; 39; 75
OCS 3
Omicron 42

actions 58
component 45
execution 46
inheritance 48; 57
message sending 49
method 44; 48
name 43; 55
object 43
object creation 47
self-reference 50
sentence 43
sequential 146
slot 43; 55
system 44
why created 42

Omicron language 54
Omicron syntax 54
OMT 168; 250
ON() 85
OOram 3; 5; 13; 30; 168; 186; 219; 220; 251
open system 45
operational specification 5; 15; 19; 27; 69; 80
owner of a slot 57
owner() 57
parameters 59
partial specification 5
pattern

Abstract Factory 180
Builder 180
Factory Method 180
Facade 167
Mediator 167
Visitor 174; 215

π-calculus 42; 93; 194; 198; 199; 242
pluggable editors 96; 175; 191
ποβλ / POBL 205
pre-order 77
prime configurations 63; 153
prime substitution 106
prime()-configuration 63; 153
prime()-substitution 106

255

principle of substitutability 7
process modelling 194
RDD 3; 168; 251
receiver 59
refinement 5; 7
refinement relation 7; 25; 75; 76
refinement with specialisation 110
relation

observable equality 72; 74
observable similarity 97
observably similar sequences 100
refinement 76
refinement with specialisation 110

reliability
component combination 138
configuration specialisation 98
examples of 38
specialised configurations 117

reliability and maintenance 12; 25
reliability and reuse 11; 25; 189; 222
reliability and system development 12
reliability and testing 188
reliability properties 11; 116; 171; 189; 220
reliability requirement

no external inheritance 86
reliable if-sentences 89; 176
reliable message sending 90
reliable method lookup 91; 172
visible objects 166

reliability requirements 19; 38; 53; 80;
 86; 92; 161; 164; 187

reliable behaviour 10
reliable if-sentences 89; 176; 190
reliable message sending 90; 117; 177
reliable method lookup 91; 119; 172
reliable names 102
reliable refinement 10; 24; 164; 183; 215
reliable refinement relation 10; 110
reliable specification 10; 18; 38; 164;

 166; 183; 214
reliable substitution 3; 10; 19; 83; 95; 142
reliable substitution proposition 10
Reliable() 92
RelIfSentence() 89
RelMessageSend() 90
RelMethodLookup() 91
RelNames() 102
RelSubst(σ, O) 95
RelSubst(σ, A, B, D) 83
return action 147; 149
RtCCS 194
rules of action 58; 148
safe names 85
safe synthesis 13
SELF 31; 48; 161; 172; 173; 205; 206; 250
self-reference 50
sentence 43
sentences in Omicron 43
separate development 6
sequence notation 56
sequential Omicron 146
shared variables 4; 196
silent action 70
similar observable action sequences 100
similar observable actions 5; 31; 34; 97

similar observable behaviour 5; 7; 24; 37; 104;
187
simplifying assumption 78
Simula 44; 48; 171; 173; 205; 250
slot 43
slot in Omicron 43
slot lookup action 149
slot names 84
slots of an object 55
Smalltalk 17; 48; 84; 161; 173; 175; 205
Smalltalk-80 250
SN() 85
specification and verification 196
specification of visible names 112
specifications

abstract 19
assumption-guarantee 9; 207
correct 186
informal and formal 221
reliable 183

state transitions 205
substitutability theorem

general 139
substitution

name 82
object name 238
prime of 106
reliable 83

substitution proposition 9; 123; 139
subtype 7; 177
subtype and refinement 7; 177
subtype relation 8
supers() 57
supertype 177
symmetry of component and context 6
synchronous 195
syntactically correct configuration 55; 147
Syntropy 168; 251
system 4; 44
template objects 47
templates for object creation 47
terminal configuration 62; 151
termination 37
this 56
topology 194
trace based models 204
traces 7; 61; 151

observable 7
traces of configurations 61
Traces() 61
transition 58
transition relation 58; 148
type inference 177
type safety 177
type specification 7
typing 20; 177
UML 3; 5; 30; 168; 220; 251
values of a configuration 55
visible object - only one 170
visible object names 63
visible objects 35; 39; 64; 89; 112; 164; 166;

 183; 190; 197; 221
Visible() 63
Visitor pattern 215
well-formed configuration 55

