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Abstract

Open distributed systems are composed of geographically dispersed components
that may be modified at run-time. Such systems are becoming increasingly impor-
tant, particularly when they are part of the infrastructure used by safety-critical
applications. Creol is an experimental object-oriented programming language de-
signed for modeling such systems. Creol objects execute concurrently, each with its
own virtual processor and internal process control, and communication takes place
using asynchronous (non-blocking) method calls.

To increase the reliability of the systems in which they operate, Creol classes make
explicit assumptions about their environment and provide guarantees about their
own behavior. The assume–guarantee paradigm enables scalable, compositional
verification based on invariance. The goal of this thesis is to implement a tool
that verifies assume–guarantee specifications and other program assertions using
Maude, an established rewriting logic framework. The tool takes a set of Creol
classes and interfaces as input, and uses Hoare logic to generate verification condi-
tions that can be discharged using off-the-shelf theorem provers.
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Normal methods of calculation and proof seem wholly
impractical to conduct by hand; and fifteen years of
experience suggest that computer assistance can only make
matters worse.

— C. A. R. Hoare (1985)

Chapter 1

Introduction

CREOL [PMA08] is an ongoing research project (2004–2008) by the Precise Mod-
eling and Analysis (PMA) group at the University of Oslo. The project aims to
develop a formal framework for reasoning about dynamic and reflective modifica-
tions in open distributed systems, which consist of geographically dispersed com-
ponents that may be modified at run-time. These systems are becoming increas-
ingly important in society, particularly when they form part of the infrastructure
for safety-critical applications.

The cornerstone of the CREOL project is the Creol programming language. Creol
is strongly-typed and object-oriented. Like Simula and Java, it supports classes,
interfaces, inheritance, and polymorphism. In addition, it provides two intuitive
high-level programming constructs for concurrency: asynchronous (non-blocking)
method calls and explicit processor release points. The reference operational se-
mantics of Creol is expressed in Maude [CDEL+07], a programming and specifica-
tion language based on rewriting logic. Since Maude specifications are executable,
we can use Maude to run Creol programs. This thesis is concerned with the formal
verification of Creol components.

1.1 Motivation

One of Creol’s main design goals is to ensure the reliability and correctness of open
distributed systems. Because of their open nature, such systems generally cannot
be verified monolithically; instead, we normally verify each class individually. If
the instances of the class make assumptions about the other objects in the system,
these must be made explicit; in return, the class can provide explicit guarantees
to the other objects in the system. These assume–guarantee specifications, as well
as other assertions at specific points in the class’s implementation, are supplied
by Creol programmers directly in their source code. When combining instances of
various classes together to build a complex system, we must verify that each class’s
assumptions are supported by the other classes’ guarantees.

Assume–guarantee specifications can be seen as documentation to the users of a
class, but since they are expressed in first-order predicate logic they can also be

1



2 Chapter 1. Introduction

read by various code validation tools. One such tool is an add-on to the Creol
interpreter that monitors the system and aborts it when a class’s implementation
breaks its specification [AJO04, Axe04]. Another tool performs unit testing on a
single class taken in isolation, using a pseudorandom number generator to mimic
an arbitrary environment [JOT06]. However, both tools are testing tools and are
therefore incomplete; some bugs might go undetected.

Formal verification is more powerful but also much more demanding.1 Dovland,
Johnsen, and Owe [DJO05] developed a simple and compositional proof system
for Creol, based on Hoare logic. However, without tool support, the verification
conditions identified by their system must be computed and proved by hand, a
tedious and error-prone process that defeats the very purpose of verification. It is
thus highly desirable to develop a tool that implements the Creol proof system. In
addition, any implementation phase is likely to lead to the discovery and correc-
tion of flaws in the original design, and to expose the strengths and weaknesses of
Creol’s reference operational semantics in the context of program verification.

Dovland and his colleagues developed two versions of their proof system for Creol.
The first version [DJO05] covers a subset of an earlier Creol dialect and is therefore
obsolete. The second version [DJO08] is more up to date but uses a fairly restrictive
subset of Creol. To be of greatest utility, the implementation of the proof system
should support the same syntax and semantics as the interpreter.

Within the PMA group, there is a long tradition of using term-rewriting systems
for the specification and implementation of programs [DO91, Dah92]. In later
years, this culminated with the use of Maude for implementing the Creol inter-
preter [JOA03] and an automated theorem prover [Hol05], for modeling real-time
systems [ÖM04], and as the foundation of the introductory formal methods course
[Ölv07]. Maude has been appreciated for the conciseness, clarity, and expressive-
ness of its syntax, as well as for the quality of its implementation. The experience
with these various projects suggests that Maude could prove a suitable language
for implementing the proof system, and adopting Maude would enable code shar-
ing with other Creol tools.

1.2 Problem Statement

The goal of this thesis to implement a tool, the assertion analyzer, that assists the
verification of a class’s assume–guarantee specification and of any assertions or
invariants that appear in its implementation. The tool takes a set of Creol classes
and interfaces that define a distributed component as input, and attempts to verify
that the component’s implementation respects the specified guarantee using Hoare
logic. More specifically, it checks that the guarantee holds after initialization of an
object, is maintained by all methods, and holds before all processor releases, as long
as the assumption holds.

1Testing is sometimes considered a “lightweight verification” method, but in this thesis we will
reserve the term “verification” for the process of proving the correctness of an implementation
with respect to a specification through mathematical means.



1.3. Related Work 3

The tool’s output is a report listing verification conditions that must be proved
by hand or using a mechanical theorem prover such as Isabelle/HOL [NPW02] or
PVS [CORSS95]. To make its output more readable, the assertion analyzer performs
syntactic simplifications on the verification conditions before it displays them.

The thesis tries to answer the following questions:

1. How can we adapt the existing proof system to fully account for the more
challenging aspects of Creol’s formal semantics, such as object reentry and
the nondeterministic statements?

2. How suited are Maude and rewriting logic to implementing Hoare logic?

3. To what extent do Creol’s reference operational semantics and proof system
enable program verification in practice?

We will come back to these questions in Section 8.1 of the conclusion.

1.3 Related Work

The verification of computer programs was first attempted in the 1940s by Golds-
tine, von Neumann, and Turing [GvN46, Tur49], but it took another twenty years
before this activity was formalized by Floyd [Flo67] (for flowchart programs) and
Hoare [Hoa69] (for structured imperative programs). At about that time, James C.
King [Kin69] wrote what might be the first mechanized verification condition gen-
erator, and since then such tools have been used for a variety of programming lan-
guages and contexts, including for interference-freedom checks in shared-memory
parallel programs [NPN99] and for Java bytecode verification [BP06].

While most verification condition generators are run as independent programs
[Shu01], some are directly embedded in a theorem prover for higher-order logic
[Gor89, NPN99]. A promising approach is suggested by the KeY project’s prover,
which interleaves first-order logic reasoning with symbolic execution of programs,
arithmetic simplification, external decision procedures, and symbolic state simpli-
fication [BHS07]. In Maude, Hoare-style program verification is embodied by the
experimental tool Java+ITP [SM07], which discharges verification conditions using
Maude’s Inductive Theorem Prover (ITP).

Automatic program verification is still the subject of much research. Inspired by
recent advances, Hoare revived the creation of a fully automated “verifying com-
piler” as a grand challenge for computer science [Hoa03]:

A verifying compiler uses mathematical and logical reasoning to check
the correctness of the programs that it compiles. The criterion of cor-
rectness is specified by types, assertions, and other redundant annota-
tions associated with the code of the program. The compiler will work
in combination with other program development and testing tools, to
achieve any desired degree of confidence in the structural soundness of
the system and the total correctness of its more critical components.

The theoretical foundation of concurrent program verification is summarized in
Apt and Olderog [AO97] and de Roever et al. [dRdB+01]. The Hoare logic for Creol
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[DJO05, DJO08] was developed following the approach advocated by de Boer and
Pierik [dBP04]. The proof system is compositional due to the use of communication
histories, which were introduced for program verification by Dahl [Dah77].

1.4 Structure of this Thesis

Although this thesis is concerned with program verification, it should be accessible
to any computer scientist comfortable with symbolic mathematics. Topics such as
operational semantics, Hoare logic, rewriting logic, and Maude are explained when
they are first encountered. On the other hand, familiarity with object-oriented pro-
gramming concepts and terminology is a prerequisite; an excellent introduction
can be found in Abadi and Cardelli [AC96].

The rest of this thesis is structured as follows:

• Chapter 2 explains formal systems and first-order predicate logic, which are
used throughout the thesis.

• Chapter 3 provides an introduction to rewriting logic and to Maude.

• Chapter 4 presents the syntax and formal semantics of Creol.

• Chapter 5 presents the Hoare-style proof system for Creol that serves as the
basis for the assertion analyzer.

• Chapter 6 reviews the assertion analyzer’s design and implementation.

• Chapter 7 presents four small case studies of class verification performed us-
ing the assertion analyzer.

• Chapter 8 summarizes the results and gives directions for future work.

Readers who are interested in trying out the assertion analyzer for themselves will
probably find the appendices useful:

• Appendix A provides a user’s guide to the assertion analyzer and the com-
panion tools developed in the thesis.

• Appendix B provides the Maude specifications for the assertion analyzer and
the companion tools.

• Appendix C provides the Maude specifications for the case studies presented
in Chapter 7.

1.5 Summary of Contributions

The main contribution of this thesis is to develop the assertion analyzer in Maude
and use it on concrete examples, allowing us to answer the questions posed in
Section 1.2. In particular, we find that Maude’s flexible parser makes it possible
to parse the Creol language’s syntax without needing a parser generator (an im-
provement over previous Maude-based Creol tools, which work in terms of “Creol
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Machine Code” [Arn03, Fje05]) and that rewrite rules are a simple yet powerful
way to normalize and simplify assertions.

A second contribution is to strengthen the proof system and to incorporate assume–
guarantee reasoning, focusing on soundness and completeness with respect to the
language’s operational semantics. The main differences between the proof system
we present here and the proof system developed by Dovland, Johnsen, and Owe
are listed in Section 5.7; they include the axiomatization of object reentry and the
nondeterministic statements, as well as the incorporation of assume–guarantee-
based reasoning (instead of a single invariant).

To enhance the presentation, we introduce an intermediate semantics to bridge the
gap between Creol’s traditional operational semantics and the proof system. The
resulting “open systems” operational semantics is described in Section 4.4 and in a
separate paper [BO08]. The approach was inspired by de Roever et al. [dRdB+01]
and might constitute the main distinguishing methodological feature of this thesis.

The thesis provides implementations of two versions of the Creol interpreter: one
for closed systems and one for open systems. These tools let us test a program be-
fore we subject it to formal verification using the assertion analyzer. Unlike existing
Creol interpreters, they expect the same concrete syntax as the assertion analyzer,
thus contributing to the establishment of a unified Creol framework. The tools are
described in Section 4.5.





Only a masochist would state A ∨ B when he knows A.

— Jean-Yves Girard (1995)

Chapter 2

Preliminaries

This chapter explains two basic concepts used throughout this thesis: formal sys-
tems and first-order predicate logic. These topics are usually covered as part of a
computer science undergraduate curriculum, so the chapter provides only a brief
overview, focusing on the terminology and notations used in this thesis. The pre-
sentation is based on Dahl [Dah92], Apt and Olderog [AO97], Gallier [Gal03], and
Hansen [Han07]. Readers who feel comfortable with these topics are encouraged
to skip this chapter.

2.1 Formal Systems

Formal systems are known by many names—deduction systems, derivation sys-
tems, inference systems, formal proof systems, logics, calculi—and they play a cen-
tral role in this thesis. First-order logic (Section 2.2), rewriting logic (Section 3.4),
and Hoare logic (Sections 5.1–5.3) are all examples of formal systems, and so are
the Maude specifications of the tennis scoring rules (Section 3.3) and of the WHILE
interpreter (Section 3.6).

A formal system is a structure S = (Σ, Φ, A,R), where Σ is a set of symbols (the
alphabet ), Φ is a set of strings over Σ (the formulas), A is a subset of Φ (the axioms),
and R is a set of relations on Φ (the derivation rules or proof rules). The theory
associated with S consists of the axioms in A and all the formulas (theorems) that
can be derived from the axioms using one or more derivation rules.

To illustrate this, we will specify a formal system J = (ΣJ , ΦJ , {J1, J2}, {J3–J7})
that infers the type of Java expressions. The alphabet ΣJ consists of the Unicode
characters that may be used in the source text of a Java program; the formulas in
ΦJ have the form e : τ (read “e is of type τ”), where e is a syntactically valid Java
expression and τ is a legal Java type; and the axioms and derivation rules follow.

Axiom J1. n : int for any integer literal n such that −231 ≤ n < 231

Axiom J2. x : τ if x is a variable declared with type τ

Derivation Rule J3.
e : τ

(e) : τ

7



8 Chapter 2. Preliminaries

Derivation Rule J4.
e1 : τ e2 : τ

if τ ∈ {byte, short, int, long}
e1 + e2 : τ

Derivation Rule J5.
e1 : τ1 e2 : τ2

if τ1, τ2 ∈ {byte, short, int, long}
e1 == e2 : boolean

Derivation Rule J6.
e1 : boolean e2 : τ e3 : τ

e1 ? e2 : e3 : τ

Derivation Rule J7.
e1 : τ1[] e2 : τ2

if τ2 ∈ {byte, short, int, long}
e1[e2] : τ1

Axioms J1 and J2 are axiom schemas, whose metavariables (n, x, and τ) can be
instantiated to produce specific axioms. For example, J1 and J2 let us derive axioms
such as 127 : int and a : String[], assuming the program of interest declares a
variable called a of type String[].

Derivation Rules J3–J7 allow us to generate new theorems from existing theorems
or axioms. When we instantiate a rule, the formulas above the horizontal bar (the
premises) must be axioms or theorems themselves; the formula below the bar (the
conclusion) is then a theorem. Thus, the horizontal bar itself can be seen as an im-
plication. Axiom schemas and derivation rules may have side conditions limiting
their applicability, displayed next to them.

Using Derivation Rule J7, we can produce the theorem a[127] : String from the
axioms a : String[] and 127 : int. This can be written as a derivation tree:

J2
a : String[]

J1
127 : int

J7
a[127] : String

Derivation trees (or proof trees) are drawn with their root at the bottom, like nat-
ural trees. The root of the tree is the derived theorem, and each branch ends with
an axiom—or with a theorem proved separately, called a lemma. Invocations of
an axiom or a derivation rule are indicated by a horizontal bar and a label. The
derivation tree below for the Java conditional expression (x == y) ? s : a[127] in-
volves nearly all the axiom schemas and derivation rules in J :

J2
x : int

J2
y : int

J5
x == y : boolean

J3
(x == y) : boolean

J2
s : String

J2
a : String[]

J1
127 : int

J7
a[127] : String

J6
(x == y) ? s : a[127] : String

The formal system J attempts to formalize the typing rules found in the Java lan-
guage’s official specification [GJSB05]. In practice, it is crucial that the theorems of
J are valid when interpreted in terms of that specification; in other words, for all
theorems e : τ of J , the expression e should be of type τ according to the speci-
fication. If this is the case, J is sound. Conversely, J is complete if the formula
e : τ is a theorem whenever e has type τ according to the specification.
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With respect to the Java specification, the system J is sound but not complete. To
prove soundness, we would show that the axioms are all valid and that the deriva-
tion rules preserve validity downward, meaning that valid premises always lead to
valid conclusions. To prove incompleteness, it suffices to consider the counterex-
ample true : boolean, which is valid but not a theorem in J .

2.2 First-Order Predicate Logic

First-order predicate logic is a family of languages that let us express assertions
over elements of sets. The Hoare-style proof system presented in Chapter 5 and
implemented in Chapter 6 builds on first-order logic. Here, we will start by describ-
ing the syntax and semantics of first-order logic languages; then we will present the
sequent calculus LK (“Logischer Kalkül”), a proof system due to Gentzen [Gen35].

A first-order language L consists of logical symbols and of non-logical symbols.
The logical symbols are ∧ (and), ∨ (or),⇒ (implies), ¬ (not), ∀ (for all), ∃ (for some),
variables from a set V, parentheses, commas, and periods. The non-logical symbols
are specified by a signature Σ = (C, F,R), where C is a set of constant symbols,
F is a set of function symbols with arities (parameter counts), and R is a set of
relational symbols with arities. In the context of program verification, the constants
typically express values of programming language data types (such as true, false,
0, and −123), and the function and relational symbols correspond to operators and
functions on these data types (such as ≤, +, and sqrt).

The language L lets us express assertions (or formulas) that involve terms. The
set T of terms associated with Σ is defined inductively to contain all variables and
constants from the sets V and C, as well as all elements of the form

f (t1, . . . , tn) function term

where f is an n-ary function symbol from F, n≥ 1, and t1, . . . , tn belong to the term
language T . The set A of assertions associated with L consists of all elements of
the forms

R(t1, . . . , tn) relational expression
¬ϕ logical negation
ϕ ∧ ψ logical conjunction
ϕ ∨ ψ logical disjunction
ϕ⇒ ψ implication
∀x. ϕ universal quantification
∃x. ϕ existential quantification
(ϕ) parenthesized assertion

where R is a relation symbol, x is a variable, t1, . . . , tn are terms, and ϕ and ψ are
assertions. The operator precedence is as follows: ¬ binds more strongly than ∧,
which binds more strongly than ∨, which binds more strongly than⇒, which binds
more strongly than ∀ and ∃; furthermore, the ∧ and ∨ operators are associative
and commutative, and⇒ associates to the right. Thus, a ∧ ∀x.¬b ∧ c ⇒ d ⇒ e is
considered the same as a ∧ (∀x. (((¬b) ∧ c)⇒ (d⇒ e))).

We will also use the abbreviations defined below.
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∀x1, x2, . . . , xn. ϕ , ∀x1. ∀x2. · · · ∀xn. ϕ

∃x1, x2, . . . , xn. ϕ , ∃x1. ∃x2. · · · ∃xn. ϕ

x1 R x2 , R(x1, x2)
x1 6R x2 , ¬R(x1, x2)
ϕ⇔ ψ , (ϕ⇒ ψ) ∧ (ψ⇒ ϕ)
if ϕ then χ else ψ fi , (ϕ ∧ χ) ∨ (¬ϕ ∧ ψ).

Example 2.1. Let LZ be the first-order language with the signature ΣZ = (Z, FZ,
RZ), where Z = {. . . ,−1, 0, 1, . . .}, FZ = {∗, square}, and RZ = {=, <, >,≤,≥}.
Using this language, we can express assertions such as these:

∀x. ∃y. y > x,
∀k. ∃n. 3 ∗ n > square(k),

∀x, y. (x < y)⇔ (y > x),
∀x. x = x ∧ x≥ 0. �

A variable occurrence is bound if it appears inside the scope of a ∀ or ∃ quantifier;
otherwise, it is free. In the assertion x = 5 ∧ ∀x. x ≥ 0, the first occurrence of x is
free, whereas the second and third occurrences are bound by the ∀ quantifier. The
notation ϕx

t represents the result of replacing each free occurrence of x in ϕ with the
term t. If a free variable in t would become bound as a result of the substitution,
the bound variables in ϕ are renamed to avoid clashing. An assertion or term that
contains no free variables is said to be closed.

So far, we have considered assertions as purely syntactic entities. Our goal is to use
them to represent Boolean functions (predicates). To make ∧ mean “and”, ¬ mean
“not”, and “square(k)” mean k2, we must attribute a semantics to assertions.

The semantics is parameterized by a model M and a variable assignment σ. A
model M for a first-order languageL consists of a non-empty set |M| (the domain)
and an operator M (where ‘ ’ is a placeholder for the operand) that interprets all
non-logical symbols as follows: If c is a constant symbol, then cM ∈ |M|; if f is
an n-ary function symbol, then fM is a function from |M|n to |M|; and if R is an
n-ary relational symbol, then RM is a relation on |M|n. A variable assignment σ is
a function from the set V of variables to the domain |M|. The semantics of a term
t inM under σ, writtenM[[t]]σ, is defined by the equations

M[[x]]σ , σ(x)
M[[c]]σ , cM

M[[ f (t1, . . . , tn)]]σ , fM(M[[t1]]σ, . . . ,M[[tn]]σ).

The semantics of an assertion is given as follows: For an assertion ϕ, we write
(M, σ) |= ϕ when ϕ is true inM under σ. The |= relation is specified below.

(M, σ) |= R(t1, . . . , tn) iff 〈M[[t1]]σ, . . . ,M[[tn]]σ〉 ∈ RM

(M, σ) |= ¬ϕ iff (M, σ) 6|= ϕ
(M, σ) |= ϕ ∧ ψ iff (M, σ) |= ϕ and (M, σ) |= ψ
(M, σ) |= ϕ ∨ ψ iff (M, σ) |= ϕ or (M, σ) |= ψ
(M, σ) |= ϕ⇒ ψ iff (M, σ) |= ϕ implies (M, σ) |= ψ
(M, σ) |= ∀x. ϕ iff (M, σ[x 7→ a]) |= ϕ for all a ∈ |M|
(M, σ) |= ∃x. ϕ iff (M, σ[x 7→ a]) |= ϕ for some a ∈ |M|.

If σ is a variable assignment, σ[x 7→ a] denotes the variable assignment that is iden-
tical to σ except that x maps to a. For closed assertions, the variable assignment is
irrelevant, so we can simply writeM |= ϕ to express that ϕ is true inM.
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Example 2.2. LetM be a model such that |M| = Z, cM = c, ∗M = ∗, squareM =
2, and >M= >; furthermore, let σ be the variable assignment {n 7→ 5, k 7→ 4}. Is

the assertion 3 ∗ n > square(k) true inM under σ?

(M, σ) |= 3 ∗ n > square(k)
iff 〈M[[3 ∗ n]]σ, M[[square(k)]]σ〉 ∈ >M

iff M[[3 ∗ n]]σ >M[[square(k)]]σ
iff ∗M(M[[3]]σ,M[[n]]σ) > squareM(M[[k]]σ)
iff 3 ∗ σ(n) > σ2(k)
iff 3 ∗ 5 > 42

iff 15 > 16.

The assertion is false. �

We will now present a sound and complete proof system for first-order logic. The
sequent calculus LK operates on formulas of the form Γ ` ∆, called sequents, where
Γ (the antecedent formulas) and ∆ (the succedent formulas) are comma-separated
multisets of closed assertions. Semantically, a sequent is valid if for all modelsM,
at least one succedent formula is true whenever all antecedent formulas are true.
The axiom and proof rules of LK are specified below [Gal03, Han07]:

Axiom PA. Γ, ϕ ` ϕ, ∆

Proof Rule L∧.
Γ, ϕ, ψ ` ∆

Γ, ϕ ∧ ψ ` ∆
Proof Rule R∧.

Γ ` ϕ, ∆ Γ ` ψ, ∆

Γ ` ϕ ∧ ψ, ∆

Proof Rule L∨.
Γ, ϕ ` ∆ Γ, ψ ` ∆

Γ, ϕ ∨ ψ ` ∆
Proof Rule R∨.

Γ ` ϕ, ψ, ∆

Γ ` ϕ ∨ ψ, ∆

Proof Rule L⇒.
Γ ` ϕ, ∆ Γ, ψ ` ∆

Γ, ϕ⇒ ψ ` ∆
Proof Rule R⇒.

Γ, ϕ ` ψ, ∆

Γ ` ϕ⇒ ψ, ∆

Proof Rule L¬.
Γ ` ϕ, ∆

Γ, ¬ϕ ` ∆
Proof Rule R¬.

Γ, ϕ ` ∆

Γ ` ¬ϕ, ∆

Proof Rule L∀.
Γ, ∀x. ϕ, ϕx

t ` ∆

Γ, ∀x. ϕ ` ∆
Proof Rule R∀.

Γ ` ϕx
a , ∆

Γ ` ∀x. ϕ, ∆

Proof Rule L∃.
Γ, ϕx

a ` ∆

Γ, ∃x. ϕ ` ∆
Proof Rule R∃.

Γ ` ∃x. ϕ, ϕx
t , ∆

Γ ` ∃x. ϕ, ∆

In Proof Rules L∀ and R∃, t is an arbitrary closed term. In Proof Rules L∃ and R∀,
a is a constant that doesn’t appear in the conclusion (a “fresh” constant).

Example 2.3. Let nick and dime be constants. Here is a proof tree for the sequent
nick = 5⇒ dime = 10, nick = 5 ` dime = 10:

PA
nick = 5 ` nick = 5, dime = 10

PA
dime = 10, nick = 5 ` dime = 10

L⇒
nick = 5⇒ dime = 10, nick = 5 ` dime = 10
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By soundness of the sequent calculus LK, the assertion dime = 10 is true for any
model that satisfies the assertions nick = 5⇒ dime = 10 and nick = 5. �

Example 2.4. In practice, the assertions Γ on the left-hand side of the sequent sym-
bol ` usually specify data types (natural numbers, lists, sets, etc.). In the proof
tree below, the assertion ∀x. ∃y. y > x specifies a well-known property of natural
numbers:

PA
∀x. ∃y. y > x, a > 1000 ` ∃k. k > 1000, a > 1000

R∃
∀x. ∃y. y > x, a > 1000 ` ∃k. k > 1000

L∃
∀x. ∃y. y > x, ∃y. y > 1000 ` ∃k. k > 1000

L∀
∀x. ∃y. y > x ` ∃k. k > 1000 �

Assertion validity in first-order logic is a semidecidable problem: There exists an
algorithm that derives an LK-proof for any valid formula in a finite amount of
steps, but if an invalid formula is supplied to the algorithm, it may run forever
without producing any results. Most automated theorem provers rely on more
efficient (and usually more complex) calculi than LK [Shu01], but they suffer from
the same theoretical limitations as LK.

In the above development, we barely mentioned types. Yet, when using first-order
logic for specifying properties of programs, we constantly need to express things
like “for all n of type int” or “for some s of type str”, where int and str are data
types from the underlying programming language. There are two main ways to
handle this [LP99]:

• We can use an untyped first-order language that caters for an axiomatic set
theory (say, Zermelo–Fraenkel). In this context, sets are the only type, and
every object (integer, string, etc.) is encoded as a set. This approach is tradi-
tionally favored by mathematicians, who generally regard set theory as the
foundation of mathematics. To express that every integer is less than its suc-
cessor, we would write ∀n. n∈ int⇒ n < n + 1. All of this can be done within
the framework presented in this section.

• We can extend the syntax and semantics of first-order logic with types (also
called sorts). Variables, constant symbols, function symbols, and relation
symbols must then be declared with their types, and only well-typed assump-
tions are legal. This is the approach traditionally favored by computer scien-
tists and used by most theorem provers, because types allow the machine to
catch errors that would otherwise go undetected. Using this approach, we
could write ∀n : int. n < n + 1, having declared < as a relation symbol on
int× int.

In the rest of the thesis, we will prefer the second approach, since it is general
enough for our purposes and typed assertions are easy to recast to untyped as-
sertions. Furthermore, we will often omit the typing constraints and write, say,
∀n. n < n + 1 when the types can be inferred from the context.



The fact that occasionally some particular technical concept
mentioned in passing (for example, “the Church–Rosser
property”) may be unfamiliar should not be seen as an
obstacle. It should be taken in a relaxed, sporting spirit.

— Maude Manual, Version 2.3 (2007)

Chapter 3

Rewriting Logic and Maude

Maude is a programming and specification language based on order-sorted rewrit-
ing logic [CDEL+07]. This chapter provides an introduction to rewriting logic in
Maude 2, focusing on the features that are used in this thesis. The presentation is
based primarily on Ölveczky [Ölv07] and Baader and Nipkow [BN98].

Section 3.1 reviews Maude’s equational subset by defining some basic data types:
natural numbers, pairs, binary trees, lists, multisets, and sets. Section 3.2 reviews
Maude’s support for membership equational logic. Section 3.3 introduces rewrite
rules by formally specifying the tennis scoring rules and demonstrates Maude’s
built-in term-rewriting and search capabilities. Section 3.4 presents the formal se-
mantics of rewriting logic specifications. Section 3.5 shows how to manipulate
Maude specifications using the META-LEVEL module, relying on rewriting logic’s
reflective nature. Finally, Section 3.6 presents the implementation of an interpreter
for a minimalistic imperative programming language, written in Maude.

3.1 Equational Specifications

Data types in Maude are defined by algebraic specifications. As an example, con-
sider the set N of natural numbers. Following Peano, we can define it by induction:
0 is a natural number, and if n is a natural number, then Sn (the successor of n) is
a natural number. In Peano’s notation, the number 4 would be written SSSS0. For
m, n ∈N, we can define addition and multiplication using equations as follows:

Equation N1. m + 0 , m

Equation N2. m + Sn , S(m + n)

Equation N3. m ∗ 0 , 0

Equation N4. m ∗ Sn , m + (m ∗ n)

These equations can be used to compute the value of any complex term that con-
tains + or ∗. For example, here is one way to compute the value of SSS0 ∗ SS0:

SSS0 ∗ SS0
N4
 SSS0 + (SSS0 ∗ S0)
N4
 SSS0 + (SSS0 + (SSS0 ∗ 0))
N3
 SSS0 + (SSS0 + 0)

13
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N1
 SSS0 + SSS0
N2
 S(SSS0 + SS0)
N2
 SS(SSS0 + S0)
N2
 SSS(SSS0 + 0)
N1
 SSSSSS0.

The above algebraic definition can serve as the basis of a Maude module that pro-
vides natural numbers:

fmod PEANO is
sort Nat .

op 0 : -> Nat [ctor] .
op s_ : Nat -> Nat [ctor prec 1] .

op _+_ : Nat Nat -> Nat [prec 7 gather (E e)] .
op _*_ : Nat Nat -> Nat [prec 5 gather (E e)] .

vars M N : Nat .

eq M + 0 = M .
eq M + s N = s (M + N) .

eq M * 0 = 0 .
eq M * s N = M + M * N .

endfm

The module is called PEANO so as not to clash with Maude’s predefined NAT mod-
ule, which is part of Maude’s automatically loaded prelude.maude file. The fmod

keyword indicates that the module is a functional (or equational ) module.

We define a sort (type) Nat that corresponds to the set N of natural numbers. We
define two constructor functions, identified by the ctor attribute. The first con-
structor, 0, is a constant (or nullary function) of sort Nat. The second constructor,
s_, takes a Nat and returns a Nat. These constructors allow us to specify natural
numbers: 0, s 0, s s 0, s s s 0, etc. The underscore in s_ indicates that s is a prefix
operator. Maude supports prefix, postfix, infix, and even “mixfix” operators.

Next, we declare the infix operators + and *. Unlike 0 and s, these operators are
not constructors. Terms like s s 0 + s 0 and s s s 0 * s s 0 that contain these
operators are reduced to constructor terms by equations.

For operators that have leading or trailing underscores, we resolve potential pars-
ing ambiguities by specifying a precedence using the prec attribute. Lower num-
bers denote higher precedences. For example, s is given higher precedence than *
to ensure that s 0 * 0 is parsed as (s 0) * 0, not as s (0 * 0). When constructing
terms, we can use parentheses to force a specific precedence order.

The gather attribute is used to ensure that the operators are left-associative. For
example, 1 + 2 - 3 + 4 is interpreted as ((1 + 2) - 3) + 4). Right-associativity
would be specified as gather (e E).

Maude’s red (reduce) command simplifies a given term by applying equations in
a left-to-right manner until no equation can be applied. If several equations can be
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applied on the same term, Maude will choose one. Using red, we can compute the
value of any well-formed term built using 0, s, +, and *:

red s s s s s 0 . *** result Nat: s s s s s 0
red 0 + 0 . *** result Nat: 0
red s 0 + s s 0 . *** result Nat: s s s 0
red s s s 0 * s s 0 . *** result Nat: s s s s s s 0
red s (s 0 + s s 0) . *** result Nat: s s s s 0

The result of each command is displayed in a single-line comment introduced by
three consecutive asterisks (***).

A desirable property of an equational specification in Maude is termination, mean-
ing that irrespective of the starting term, only a finite number of reductions can be
performed before reaching an irreducible term. The PEANO module is terminating,
but we can make it nonterminating by adding the equation

eq M = M + 0 .

Although it looks harmless in its assertion of the obvious, this equation can cause
Maude to loop infinitely. Indeed, depending on which equations Maude chooses
to execute when, red 0 can give rise to a looping computation:

0  0 + 0  0  0 + 0  0  . . .

It can also lead to a non-looping infinite computation:

0  0 + 0  (0 + 0) + 0  ((0 + 0) + 0) + 0  . . .

As a rule of thumb, we can obtain termination by ensuring that the right-hand
sides of our equations are “simpler” than the corresponding left-hand sides. For
example, 0 is simpler than 0 + 0, because the latter embeds the former as a subterm.
Termination is generally undecidable, but there are techniques to prove termination
for interesting classes of specifications.

Another desirable property of equational specifications is confluence (also called
the Church–Rosser property). For terminating specifications, confluence means
that we always obtain the same irreducible term regardless of which equations are
applied in which order. Consider the following extension to PEANO:

op min{_,_} : Nat Nat -> Nat .

eq min { M, 0 } = 0 .
eq min { 0, N } = 0 .
eq min { s M, s N } = s min { M, N } .

The min{_,_} operator returns the minimum of its two arguments. If we ask Maude
to reduce min { 0, 0 }, it will apply either the first equation (with M bound to 0) or
the second equation (with N bound to 0)—either way, the result is 0. The specifica-
tion is confluent as well as terminating.

Let us continue our review of Maude with the following module.

fmod NAT-PAIR is
including NAT .

sort NatPair .
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op <_,_> : Nat Nat -> NatPair [ctor] .

op _+_ : NatPair NatPair -> NatPair .

vars M1 M2 N1 N2 : Nat .

eq < M1, N1 > + < M2, N2 > = < M1 + M2, N1 + N2 > .
endfm

The NAT-PAIR module defines the sort NatPair, which consists of constructor terms
of the form < m, n >, where m and n are of the sort Nat. In addition to the constructor
function, the NatPair sort provides a binary + operator implemented in terms of
Nat’s + operator. This is possible because Maude supports operator overloading.

The including NAT declaration near the top imports Maude’s predefined NAT mod-
ule into the current module, so that we can access the built-in Nat sort. We could
have imported PEANO instead of NAT, but NAT is more efficient and lets us use decimal
numbers interchangeably with Peano numbers.

Here are a few examples of NatPair in action:

red < s 0, s s s s 0 > . *** result NatPair: < 1, 4 >
red < 3 + 4, 5 * 6 + 7 > . *** result NatPair: < 7, 37 >
red < 1, 2 > + < 3, 4 > . *** result NatPair: < 4, 6 >

The NatPair sort demonstrates how to reuse existing sorts when defining new sorts.
The next example takes this idea further:

fmod LISP-TREE is
including NAT .

sort Leaf .
subsort Nat < Leaf .

sort InnerNode .

sort Tree .
subsort Leaf < Tree .
subsort InnerNode < Tree .

op nil : -> Leaf [ctor] .
op cons__ : Tree Tree -> InnerNode [ctor] .

op car_ : InnerNode -> Tree .
op cdr_ : InnerNode -> Tree .

vars T1 T2 : Tree .

eq (car (cons T1 T2)) = T1 .
eq (cdr (cons T1 T2)) = T2 .

endfm

The LISP-TREE module defines a Tree sort that represents a binary tree, using Lisp
notation. For example, (cons 1 (cons (cons 2 nil) 3)) represents the tree
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In addition to Tree, the LISP-TREE module defines the Leaf and InnerNode sorts,
which represent the leaves and inner nodes of a tree, respectively. The declaration
subsort Nat < Leaf makes Nat a subsort of Leaf, meaning that all Nat terms are
also Leaf terms. Moreover, as in Lisp, the term nil can be used as a leaf. The
declarations subsort Leaf < Tree and subsort InnerNode < Tree state that leaves
and inner nodes are trees. The cons constructor function takes two trees and returns
an inner node. The car and cdr functions are also modeled after Lisp: They take an
inner node and return the first and second subtrees, respectively.1

For convenience, most Lisp interpreters provide the functions caar, cadr, cdar,
and cddr, which correspond to two successive applications of car and/or cdr. In
Maude, we would define them as follows:

op caar_ : InnerNode ~> Tree .
op cadr_ : InnerNode ~> Tree .
op cdar_ : InnerNode ~> Tree .
op cddr_ : InnerNode ~> Tree .

var I : InnerNode .

eq (caar I) = (car (car I)) .
eq (cadr I) = (car (cdr I)) .
eq (cdar I) = (cdr (car I)) .
eq (cddr I) = (cdr (cdr I)) .

The new functions’ signatures use ~> instead of -> to indicate that these are partial
functions. For example, (caar (cons 1 2)) is not defined:

red (caar (cons 1 2)) . *** result [Tree]: car 1

Maude first expands (caar (cons 1 2)) to (car (car (cons 1 2))); then it reduces
the subterm (car (cons 1 2)) to 1. At that point, no equations can be applied,
so we are left with the irreducible non-constructor term (car 1). When Maude
displays the result, it puts the sort name in square brackets, denoting a “kind” (an
error sort). To avoid these undesirable terms, we must ensure that partial functions
are used only on values for which they are defined.

Another approach to partial functions is simply to avoid them. Here is how we
could define cadr as a total function:

op cadr_ : InnerNode -> Tree .

1The names car and cdr come from the original implementation of Lisp on the IBM 704, whose
memory words had a 15-bit “address” part and a 15-bit “decrement” part. In this context, car
stood for “contents of address part of register” and cdr stood for “contents of decrement part of
register” [AS96]. Standard ML calls these functions hd (head) and tl (tail).
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eq (cadr I) =
if (cdr I) :: InnerNode then (car (cdr I)) else (cdr I) fi .

We start by extracting the second subtree of I using cdr. If the result is a tree, we
extract its first subtree; otherwise, we simply return (cdr I).

The example uses Maude’s built-in if_then_else_fi and _:: S operators. The
if_then_else_fi operator chooses the then or else branch based on whether the
condition reduces to true or false. The _:: S operator returns true if and only if
its argument has sort S, which may be any sort.

Instead of using if_then_else_fi, we can specify a pair of conditional equations:

ceq (cadr I) = (car (cdr I)) if (cdr I) :: InnerNode .
ceq (cadr I) = (cdr I) if not (cdr I) :: InnerNode .

Conditional equations are applied only if their side condition is true. (The if key-
word that introduces the side condition should not be confused with the if token of
if_then_else_fi.) Side conditions are normally used to restrict the applicability of
a rule, but they can also be used purely to bind values to variables. For example, the
equation below binds (cdr I) to T and then uses T in the equation’s right-hand side:

var T : Tree .

ceq (cadr I) = if T :: InnerNode then (car T) else T fi
if T := (cdr I) .

Lisp programmers usually regard lists as degenerate binary trees. For example,
nil is an empty list, and (cons 1 (cons 2 (cons 3 (cons 4 nil)))) represents the
list [1, 2, 3, 4]. In Maude, it is usually more convenient to use a dedicated sort to
represent lists. Here is a module that defines a NatList sort:

fmod NAT-LIST is
including NAT .

sort NatList .

op nil : -> NatList [ctor] .
op __ : Nat NatList -> NatList [ctor] .

endfm

The empty list is represented by nil. More complex lists are built by prepending
a Nat to an existing NatList; for example, 1 2 nil represents the two-element list
[1, 2] and is constructed by prepending 1 to the list 2 nil, which in turn is obtained
by prepending 2 to the list nil. We can make the module more useful, and eliminate
the need for trailing nils, by defining the NatList sort slightly differently:

fmod NAT-LIST is
including NAT .

sort NatList .
subsort Nat < NatList .

op nil : -> NatList [ctor] .
op __ : NatList NatList -> NatList [ctor assoc id: nil] .

endfm
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This time we make Nat a subsort of NatList, so that plain Nat terms such as 7 and 32

can be used as one-element lists. The __ operator becomes a general concatenation
operator that takes two NatLists, rather than a Nat and a NatList. The operator
is also declared with the assoc (associative) attribute, so that (1 2) 3 and 1 (2 3)

are considered equal, allowing us to write 1 2 3 with no ambiguity. Finally, the id:

nil attribute makes nil an identity element for concatenation. This ensures that
prepending or appending nil to a list leaves the list unchanged.

When defining functions on NatLists, we usually distinguish two cases: the empty
list nil and lists of the form n l, where n is a Nat and l is a NatList. For example:

op size : NatList -> Nat .
op reverse : NatList -> NatList .

var L : NatList .
var N : Nat .

eq size(nil) = 0 .
eq size(N L) = 1 + size(L) .

eq reverse(nil) = nil .
eq reverse(N L) = reverse(L) N .

Unlike the symbols defined so far, the size and reverse functions don’t specify the
position of their arguments using underscores. In such cases, the arguments must
be supplied in parentheses after the function name:

red size(nil) . *** result Zero: 0
red size(1 2 3) . *** result NzNat: 3
red reverse(1 2 3) . *** result NatList: 3 2 1

(The Zero and NzNat sorts are subsorts of Nat.)

From an algebraic point of view, the distinctive feature of lists is that concatenation
is associative. When we have a list such as 1 2 3 4, it is immaterial whether this list
is the concatenation of 1 2 and 3 4, or of 1 and 2 3 4, or of 1 2 3 4 and nil: All these
interpretations are equally valid when it comes to matching the left-hand side of
an equation with an actual term.

If we relax the definition of concatenation so that it is commutative as well as as-
sociative, we obtain a different data structure: a multiset, or unordered list. Here is
the Maude specification of a NatMSet sort:

fmod NAT-MULTISET is
including NAT .

sort NatMSet .
subsort Nat < NatMSet .

op empty : -> NatMSet [ctor] .
op _++_ : NatMSet NatMSet -> NatMSet

[ctor prec 7 assoc comm id: empty] .

op |_| : NatMSet -> Nat .
op _in_ : Nat NatMSet -> Bool [prec 9] .
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var MS : NatMSet .
vars N N’ : Nat .

eq | empty | = 0 .
eq | N ++ MS | = 1 + | MS | .

eq N in empty = false .
eq N in N’ ++ MS = (N == N’) or (N in MS) .

endfm

The empty multiset is written empty. The union of two multisets ms1 and ms2 is
written ms1 ++ ms2. Because ++ is declared with the comm attribute, the order of
the elements in a multiset is irrelevant. Thus, 4 ++ 7 and 7 ++ 4 denote the same
multiset and are considered equal.

The cardinality operator |_| is defined recursively on multisets. Because multisets
are associative and have an identity element, we need only to consider the cases
empty and n ++ ms. The cardinality of the multiset 7 ++ 7 is 2, because every occur-
rence of an element in a multiset counts.

The _in_ operator is defined in a similar way. An alternative, equally valid defini-
tion would be

eq N in N ++ MS = true .
eq N in MS = false [otherwise] .

By associativity and commutativity, N ++ MS will match any multiset that contains
N. The otherwise attribute tells Maude to use the second equation only when no
other equations are applicable for in. Here are a few examples:

red 4 in 4 . *** result Bool: true
red 4 in 7 ++ 4 . *** result Bool: true
red 9 in 7 ++ 4 . *** result Bool: false

A set, like a multiset, is an associative and commutative data structure, but in addi-
tion set union is idempotent. Idempotence means that S ++ S equals S for any set S.
To implement this in Maude, we could create a NatSet sort identical to NatMSet

except that it would also include the equation

eq N ++ N = N .

Now, what is the cardinality of 4 ++ 4? Depending on which equation is applied
first, we obtain 2 or 1:

| 4 ++ 4 |  1 + | 4 |  1 + | 4 ++ empty |  1 + 1 + | empty |

 2 + | empty |  2 + 0  2

| 4 ++ 4 |  | 4 |  | 4 ++ empty |  1 + | empty |  1 + 0  1 .

Because of the equation N ++ N = N, the specification is no longer confluent. The
solution is to change the equations associated with |_| so that whenever an element
N is counted, any superfluous occurrences of that element in the remaining set S are
removed explicitly using the set subtraction operator _\_:

eq | empty | = 0 .
eq | N ++ S | = 1 + | S \ N | .

The set subtraction operator is defined as follows:
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op _\_ : NatSet Nat -> NatSet [prec 7] .

eq empty \ N = empty .
eq (N ++ S) \ N’ = if N == N’ then S \ N’ else N ++ (S \ N’) fi .

This is sufficient to make the specification confluent. Confluence is generally un-
decidable, but for terminating equational specifications there is an algorithm that
decides confluence.

3.2 Membership Axioms

Equational logic lets us implement data types by declaring sorts, subsorts, and
constructors. Maude extends equational logic with a powerful mechanism called
membership axioms that lets us specify subsorts based on semantic criteria.

Suppose that we would like to specify a NatTwins sort consisting of terms of the
form < n, n >, where n is a natural number. This sort is very similar to the NatPair

sort presented in the previous section, except that for NatTwins the two components
of the pair must be identical. Using membership axioms and building upon the
NatPair sort, we obtain the following specification:

fmod NAT-TWINS is
including NAT-PAIR .

sort NatTwins .
subsort NatTwins < NatPair .

var N : Nat .

mb < N, N > : NatTwins .
endfm

The NatTwins sort is declared as a subsort of NatPair. The membership axiom
< N, N > : NatTwins specifies that all NatPair terms of the form < N, N > qualify
as NatTwins terms.

Like equations, membership axioms may have a side condition. For example, here
is how we could define a NatNonTwins sort with terms of the form < m, n > where m

and n are distinct:

fmod NAT-NON-TWINS is
including NAT-PAIR .

sort NatNonTwins .
subsort NatNonTwins < NatPair .

vars M N : Nat .

cmb < M, N > : NatNonTwins if M =/= N .
endfm
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3.3 Rewrite Rules

Functions on data structures such as binary trees, lists, multisets, and sets should
be deterministic and terminating. However, sometimes we want to model systems
that are nondeterministic, nonterminating, or both. For example, a program that
contains an infinite loop gives rise to a nonterminating process, yet we might still
want to model this process using Maude. Similarly, concurrent systems often give
rise to nondeterminism.

Besides equations, which let Maude replace equals for equals, we can model change
in a system using unidirectional rewrite rules. These rewrite rules are applied in
much the same way as equations, but they need not be confluent or terminating.

To illustrate this, we will attempt to model a tennis game in Maude. The standard
scoring rules for tennis from the 2007 edition of the International Tennis Federa-
tion’s Rules of Tennis are given below.

A standard game is scored as follows with the server’s score being
called first:

No point — “Love”
First point — “15”
Second point — “30”
Third point — “40”
Fourth point — “Game”

except that if each player/team has won three points, the score is
“Deuce”. After “Deuce”, the score is “Advantage” for the player/team
who wins the next point. If that same player/team also wins the next
point, that player/team wins the “Game”; if the opposing player/team
wins the next point, the score is again “Deuce”. A player/team needs
to win two consecutive points immediately after “Deuce” to win the
“Game”.

The following module specifies these rules in Maude:

mod TENNIS-GAME is
including NAT .

sort Game .

op _--_ : Nat Nat -> Game [ctor] .
op deuce : -> Game [ctor] .
op advantage-server : -> Game [ctor] .
op advantage-receiver : -> Game [ctor] .
op game-server : -> Game [ctor] .
op game-receiver : -> Game [ctor] .

var N : Nat .

eq 40 -- 40 = deuce .

*** the server wins a point
rl 0 -- N => 15 -- N .
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rl 15 -- N => 30 -- N .
rl 30 -- N => 40 -- N .
crl 40 -- N => game-server if N < 40 .
rl deuce => advantage-server .
rl advantage-server => game-server .
rl advantage-receiver => deuce .

*** the receiver wins a point
rl N -- 0 => N -- 15 .
rl N -- 15 => N -- 30 .
rl N -- 30 => N -- 40 .
crl N -- 40 => game-receiver if N < 40 .
rl deuce => advantage-receiver .
rl advantage-receiver => game-receiver .
rl advantage-server => deuce .

endm

A term of sort Game represents the score of a game. It can be of the form m -- n,
where m is the server’s score and n is the receiver’s score, or it can be one of deuce,
advantage-server, advantage-receiver, game-server, and game-receiver. We let 0
stand for “Love”. The score 40 -- 40 is considered the same as deuce, thanks to the
equation 40 -- 40 = deuce.

The mod keyword at the very beginning of the module indicates that it is a system
module. Unlike functional modules, system modules may contain rewrite rules.
Rewrite rules are specified using the rl or crl keyword and the => operator be-
tween the left- and right-hand sides.

An inspection of the rules shows that from the start state 0 -- 0, two final states
are possible: game-server and game-receiver. This means that the system is not
confluent. It is not terminating either, because from deuce it allows infinite looping:

deuce −→ advantage-server −→ deuce −→ . . .

To analyze system modules, Maude provides the rew, frew, and search commands.
The rew command rewrites a term using equations and rewrite rules until none can
be applied. More precisely, at each rewrite step, it starts by reducing the term using
equations (as red would do), then it applies a rewrite rule that matches. At the end,
it reduces the term one last time using equations. For example:

rew 0 -- 0 . *** result Game: game-server

We can specify a limit on the number of rewrite steps in brackets:

rew [1] 0 -- 0 . *** result Game: 15 -- 0
rew [2] 0 -- 0 . *** result Game: 30 -- 0
rew [3] 0 -- 0 . *** result Game: 40 -- 0
rew [4] 0 -- 0 . *** result Game: game-server

The frew command is similar to rew, except that it is fairer in its choice of subterm
on which to apply a rewrite rule. For the example above, it would make no dif-
ference since all the rewrite rules operate on entire terms. A typical example that
would benefit from frew is that of a multiset of tennis games played in parallel,
each represented by a subterm in the multiset.
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While the rew and frew commands find a single path, the search command per-
forms a breadth-first search to find all reachable states from a given state. For ex-
ample, the command

search 0 -- 0 =>1 G:Game .

asks Maude to return all the terms of sort Game that can be reached from the term
0 -- 0 in exactly one rewrite step. Maude finds exactly two solutions: 15 -- 0 and
0 -- 15. By replacing =>1 with =>* in the search command, we ask Maude to list
all states reachable in zero or more rewrite steps. This time, Maude finds 20 solu-
tions, including 0 -- 0. Finally, by using =>! in the search command, we obtain the
reachable states from which no transitions are possible, namely game-server and
game-receiver.

For any state, we can retrieve the list of rewrite rules applied to reach that state
using show path. This enables us to construct a transition graph for the system:

40 -- 15

30 -- 0

40 -- 0 15 -- 30

30 -- 40

0 -- 15

0 -- 40

0 -- 0

15 -- 0

advantage-receiver

game-receiver

advantage-server

game-server

15 -- 40

0 -- 30

40 -- 30

deuce

30 -- 15

30 -- 30

15 -- 15

If only a finite number of states are reachable from the initial state (as is always the
case with tennis games), search will give us all the possible results, or output “No
solution”, in a finite amount of time—unless it aborts for some reason. If an infinite
number of states are reachable from the initial state, the search will go on forever.

3.4 Logical Semantics of Rewriting Logic Specifications

So far, we have used an informal description of how Maude executes a specifica-
tion. We intuitively know how to “apply an equation”, and we have some notion of
whether the left-hand side of an equation or rewrite rule “matches” a term or not.
Since Maude is used throughout this thesis, both as a programming language and
as a semantic framework for giving executable semantics to Creol, it is appropriate
to rigorously specify its semantics.

To keep the presentation as simple as possible, we will focus on a subset of rewrit-
ing logic. We will assume that the specification contains only one sort and that
equations and rewrite rules are unconditional. Moreover, we will ignore Maude’s
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attributes (assoc, comm, id, etc.) and will assume that all terms are expressed using
a functional syntax.

A rewriting logic specification is a triple R = (Σ, E, R) where Σ is a set of function
symbols (with arities), E is a set of equations of the form l(x1, . . . ,xp) = r(x1, . . . ,xp),
and R is a set of rewrite rules of the form l(x1, . . . , xp) −→ r(x1, . . . , xp).

The subtheory E = (Σ, E) of R constitutes an equational logic specification. To
express that two terms t and u built using function symbols in Σ are equal by the
equations in E, we will write E ` t = u. Let l(x1, . . . , xp) = r(x1, . . . , xp) be an
equation in E, let t, u, v, . . . be variable-free terms on Σ, and let f be an n-ary func-
tion symbol from Σ. Equational logic consists of the following axiom schemas and
derivation rules:

Axiom E1 (Reflexivity)

E ` t = t

Axiom E2 (Substitutivity)

E ` l(t1, . . . , tp) = r(t1, . . . , tp)

Derivation Rule E3 (Symmetry)

E ` t = u

E ` u = t

Derivation Rule E4 (Transitivity)

E ` t = u E ` u = v

E ` t = v

Derivation Rule E5 (Congruence)

E ` t1 = u1 · · · E ` tn = un

E ` f (t1, . . . , tn) = f (u1, . . . , un)

The Axioms and Derivation Rules E1–E5 express properties that we can use for
reasoning about equality.

Example 3.1. Inspired by the elementary arithmetic result 1 + 2 = 2 + 1, we would
like to derive the formula E+ ` S0 + SS0 = SS0 + S0. The equational specification
E+ = (Σ+, E+) has the alphabet Σ+ = {0, S, +} and the equation set E+ = {m +
0 = m, m + Sn = S(m + n)}. Here is the complete derivation:

1. E+ ` S0 + SS0 = S(S0 + S0) (by E2)
2. E+ ` S(S0 + S0) = SS(S0 + 0) (by E2)
3. E+ ` S0 + SS0 = SS(S0 + 0) (by E4 on 1 and 2)
4. E+ ` SS(S0 + 0) = SSS0 (by E2)
5. E+ ` S0 + SS0 = SSS0 (by E4 on 3 and 4)
6. E+ ` SS0 + S0 = S(SS0 + 0) (by E2)
7. E+ ` S(SS0 + 0) = SSS0 (by E2)
8. E+ ` SS0 + S0 = SSS0 (by E4 on 6 and 7)
9. E+ ` SSS0 = SS0 + S0 (by E3 on 8)

10. E+ ` S0 + SS0 = SS0 + S0. (by E4 on 5 and 9)
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In the derivation, each instance of Axiom E2 corresponds to the application of an
equation from E+. �

Rewriting logic supplements equational logic with its own set of axiom schemas
and derivation rules. To express that the term t can be rewritten into u using the
equations and rewrite rules in R = (Σ, E, R), we will write R ` t −→ u. Let
l(x1, . . . , xp) −→ r(x1, . . . , xp) be a rewrite rule in R, let t, u, v, . . . be variable-free
terms on Σ, and let f be an n-ary function symbol from Σ. The following axiom
schema and derivation rules define rewriting logic :

Axiom R1 (Reflexivity)

R ` t−→ t

Derivation Rule R2 (Equality)

R ` t−→ u E ` t = t′ E ` u = u′

R ` t′ −→ u′

Derivation Rule R3 (Replacement)

R ` t1 −→ u1 · · · R ` tp −→ up

R ` l(t1, . . . , tp)−→ r(u1, . . . , up)

Derivation Rule R4 (Transitivity)

R ` t−→ u R ` u−→ v

R ` t−→ v

Derivation Rule R5 (Congruence)

R ` t1 −→ u1 · · · R ` tn −→ un

R ` f (t1, . . . , tn)−→ f (u1, . . . , un)

Logically, what distinguishes an equation from a rewrite rule is that equations are
symmetric. While the equation 40 -- 40 = deuce specifies that the terms 40 -- 40

and deuce belong to the same equivalence class and can be used interchangeably,
the rewrite rule N -- 0 => N -- 15 specifies an irreversible transition from one state
to another. Operationally, Maude applies equations and rewrite rules in a left-
to-right manner. The logical and the operational semantics are equivalent under
certain conditions, notably that the equations in E are confluent and terminating.

3.5 Reflection and Metaprogramming

Rewriting logic supports reflection, in the sense that there exists a Maude program
that can take an arbitrary Maude program as input and simulate it. Programs that
take programs as input are called metaprograms. Metaprograms can themselves
be processed by other programs, which can be seen as meta-metaprograms, which
in turn are processed by meta-meta-metaprograms, and so on; this gives rise to a
“reflective tower” [CDEL+07].
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Maude supports metaprogramming through its META-LEVEL module, which is de-
clared in prelude.maude. The module defines a syntax to represent a Maude mod-
ule within Maude. In addition, it provides various functions that implement the
fundamental Maude algorithms in terms of the metarepresentation of a module:
pattern matching, term reduction, term rewriting, and breadth-first search. Finally,
the META-LEVEL module provides hooks to move Maude terms and modules be-
tween reflection levels.

Metaprogramming has many uses:

• Some metaprograms analyze Maude specifications to find out if they have
certain properties. Maude’s Inductive Theorem Prover (ITP), Church–Rosser
Checker (CRC), and Coherence Checker (ChC) fall into this category.

• Metaprogramming can be used to implement custom evaluation strategies,
complementing the built-in red, rew, frew, and search commands. This ap-
proach has been used to monitor object-oriented systems [AJO04, JOT06] and
to implement custom proof strategies for first-order logic [Hol05].

• Metaprogramming lets us construct Maude specifications at run-time and ex-
ecute them on demand.

We will now briefly review metaprogramming, using the TENNIS-GAME module from
Section 3.3 as our primary example. The metarepresentation of the module follows:

mod ’TENNIS-GAME is
including ’NAT .
sorts ’Game .
none
op ’_--_ : ’Nat ’Nat -> ’Game [ctor] .
op ’deuce : nil -> ’Game [ctor] .
op ’advantage-server : nil -> ’Game [ctor] .
op ’advantage-receiver : nil -> ’Game [ctor] .
op ’game-server : nil -> ’Game [ctor] .
op ’game-receiver : nil -> ’Game [ctor] .
none
eq ’_--_[’s_^40[’0.Zero], ’s_^40[’0.Zero]] = ’deuce.Game [none] .
rl ’_--_[’0.Zero, ’N:Nat] =>

’_--_[’s_^15[’0.Zero], ’N:Nat] [none] .
...

rl ’advantage-server.Game => ’deuce.Game [none] .
endm

The entire code above is a Maude term of sort SModule (system module). The mod

. . . endm operator is declared as follows:

op mod_is_sorts_._____endm :
Header ImportList SortSet SubsortDeclSet OpDeclSet MembAxSet
EquationSet RuleSet
-> SModule [ctor gather (& & & & & & & &) format (...)] .

A system module consists of a name, a list of import directives, a set of sorts, a set
of subsort declarations, a set of operator declarations, a set of membership axioms,
a set of equations, and a set of rewrite rules, in that order. Maude also provides an
fmod_is_sorts_.____endfm constructor for functional modules.
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To obtain the metarepresentation of a previously loaded module, we can use the
upModule function. For example, the metarepresentation of the TENNIS-GAME module
given above was obtained using the command

red upModule(’TENNIS-GAME, false) .

The second argument indicates whether the imported modules should be metarep-
resented as well. Other useful conversion functions include upTerm, which returns
the metarepresentation of a term, and downTerm, which returns a term from its meta-
representation. For example:

red upTerm(deuce) . *** result Term: ’deuce.Game
red downTerm(’deuce.Game, 0 -- 0) . *** result Game: deuce
red downTerm(’blah.Game, 0 -- 0) . *** result Game: 0 -- 0

The second argument to downTerm specifies the expected sort (more precisely, the
kind) of the result. If the first argument represents a term of that sort, that term is
returned; otherwise, the second argument is returned.

Maude provides metalevel versions of its red, rew, frew, and search commands,
called metaReduce, metaRewrite, metaFrewrite, and metaSearch. For example:

red metaRewrite(upModule(’TENNIS-GAME, false), upTerm(0 -- 0), 1) .

*** result ResultPair: { ’_--_[’s_^15[’0.Zero], ’0.Zero], ’Game }

The ResultPair term holds the resulting metaterm and its sort. We can extract the
metaterm from the ResultPair using getTerm and convert it to a plain Game term
using downTerm. If we combine everything together, we get

red downTerm(getTerm(metaRewrite(upModule(’TENNIS-GAME, false),
upTerm(0 -- 0), 1)),

0 -- 0) .

*** result Game: 15 -- 0

This example is contrived, because we could just as well have written

rew [1] 0 -- 0 .

rather than performing the rewrite step at the metalevel, but it clearly illustrates
the relationship between programs and metaprograms.

3.6 Example: A WHILE Interpreter

To conclude, we will use Maude to write an interpreter for WHILE (Weak Hypo-
thetical Imperative Language Example), a minimalistic imperative programming
language that provides the following statements:

skip null statement
x := e assignment
if B then S1 else S2 fi if statement
while B do S od while loop
S1; S2 sequential composition
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In the above, x is a variable name, e is an arithmetic or Boolean expression, B is
a Boolean expression, and S, S1, S2 are statements. The empty statement list, writ-
ten ε, is an identity element for sequential composition. The WHILE language is a
deterministic subset of Creol as defined in Section 4.1.

The following WHILE program uses Euclid’s algorithm to compute the greatest
common divisor of two positive integers a and b, leaving the result in a:

while b 6= 0 do
if a > b then

a := a− b
else

b := b− a
fi

od

Although the semantics of WHILE programs is fairly obvious from the syntax, it
is still worthwhile to spell it out to avoid ambiguities. Following the structural
operational semantics approach [Plo04], we represent a program under execution
by a pair 〈S, σ〉, where S is the program code to execute and σ is the current state.
We can then define the semantics of the WHILE language using four rewrite rules.

Rewrite Rule W1 (Null Statement)

〈skip; S, σ〉
−→
〈S, σ〉

If the next statement to execute is skip, we can simply eliminate it. The state σ is not
affected by skip. The statement S represents the rest of the program. By making ε
an identity element for sequential composition, skip; S will even match skip, with
S bound to ε.

Rewrite Rule W2 (Assignment)

〈x := e; S, σ〉
−→
〈S, σ[x 7→ {e}σ]〉

The assignment statement leads to a modification of the state. The new state is
identical to the old state, except that the variable x should map to the value of e,
evaluated in the original state σ. This is written σ[x 7→ {e}σ].

Rewrite Rule W3 (If Statement)

〈if B then S1 else S2 fi; S, σ〉
−→

if {B} σ then 〈S1; S, σ〉 else 〈S2; S, σ〉 fi

If the condition B evaluates to true, the if statement expands to its then branch;
otherwise, it expands to its else branch. Notice that the first if construct in the rule
is a WHILE language statement, whereas the second if is a conditional expression
in rewriting logic.
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Rewrite Rule W4 (While Loop)

〈while B do S od; S′, σ〉
−→

if {B} σ then 〈S; while B do S od; S′, σ〉 else 〈S′, σ〉 fi

If the condition B evaluates to true, the while statement expands to its body fol-
lowed by another instance of the loop; otherwise, the entire statement is eliminated.

To execute a WHILE program S from a state σ that gives a value to all the variables
used in the program, we begin with the configuration 〈S, σ〉 and apply rewrite
rules until we reach a configuration of the form 〈ε, σ′〉. By inspecting Rewrite Rules
W1–W4, we can prove that the final state σ′ is unique if it exists.

We will now review the Maude specification of the WHILE interpreter, module
by module. The first modules define data structures for storing WHILE programs
under execution, as well as an auxiliary operator to evaluate expressions. Once we
have defined these, the interpreter proper can be written in about 30 lines of code.

fmod WHILE-PRELUDE is
including (INT + QID) * (op _xor_ : Nat Nat -> Nat to _xor2_) .

endfm

The WHILE-PRELUDE module imports Maude’s predefined INT and QID modules and
renames the integer version of the xor operator to avoid a clash with the Boolean
version, which has a different precedence.1

fmod WHILE-VALUE is
including WHILE-PRELUDE .

sort Value .

subsort Bool < Value .
subsort Int < Value .

endfm

The WHILE-VALUE module defines the Value sort as a supersort of Bool and Int.

fmod WHILE-EXPRESSION is
including WHILE-VALUE .

sort BasicExp .
subsort Qid < BasicExp .

op [_] : BasicExp -> BasicExp [ctor] .

sort AExp .
subsort BasicExp < AExp .
subsort Int < AExp .

op plus_ : AExp -> AExp [ctor prec 3] .
op minus_ : AExp -> AExp [ctor prec 3] .

1The clash occurs in the WHILE interpreter because Bool and Int belong to the same connected
component in the subsort graph, which in turn is necessary because we want Bool and Int to be
subsorts of Value. This quirk has been reported to the Maude developers.
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op _times_ : AExp AExp -> AExp [ctor prec 5 gather (E e)] .
op _div_ : AExp AExp -> AExp [ctor prec 5 gather (E e)] .
op _plus_ : AExp AExp -> AExp [ctor prec 7 gather (E e)] .
op _minus_ : AExp AExp -> AExp [ctor prec 7 gather (E e)] .
op [_] : AExp -> AExp [ctor] .

sort BExp .
subsort BasicExp < BExp .
subsort Bool < BExp .

op _eq_ : AExp AExp -> BExp [ctor prec 9] .
op _ne_ : AExp AExp -> BExp [ctor prec 9] .
op _lt_ : AExp AExp -> BExp [ctor prec 9] .
op _gt_ : AExp AExp -> BExp [ctor prec 9] .
op _le_ : AExp AExp -> BExp [ctor prec 9] .
op _ge_ : AExp AExp -> BExp [ctor prec 9] .

op !_ : BExp -> BExp [ctor prec 3] .
op _&&_ : BExp BExp -> BExp [ctor assoc comm prec 11] .
op _||_ : BExp BExp -> BExp [ctor assoc comm prec 13] .
op [_] : BExp -> BExp [ctor] .

sort Exp .
subsort AExp < Exp .
subsort BExp < Exp .

endfm

The WHILE-EXPRESSION module defines the sorts AExp (arithmetic expression), BExp
(Boolean expression), and Exp (arithmetic or Boolean expression). Arithmetic ex-
pressions can be quoted identifiers, integer literals, or complex expressions such
as [’x plus ’y] div 2. Boolean expressions are defined similarly. The Exp sort is a
supersort of AExp and BExp. For both types of expressions, we provide a constructor
for bracketed expressions ([_]).

The operators are called plus, minus, etc., to avoid clashes with the predefined
Maude operators: While 1 + 2 is a term of sort Nat that reduces to 3, the term 1

plus 2 is irreducible and its sort is AExp. Similarly, parentheses occurring in WHILE
expressions are represented by square brackets to distinguish them from Maude
parentheses. The gather attributes specify left-associativity.

The module also defines a BasicExp sort, which provides the [_] operator and has
Qid (quoted identifier) as a subsort. If we attempted to do without it, Maude would
display the message

Warning: sort declarations for operator ‘[_‘] failed preregularity
check on 1 out of 13 sort tuples. First such tuple is (Qid).

When Maude sees the term [’x], it cannot determine whether it is an arithmetic or
a Boolean expression. By factoring out what AExp and BExp have in common in a
BasicExp sort, we ensure that Maude can assign a unique minimal sort to [’x].

fmod WHILE-STATE is
including WHILE-VALUE .

sort State .
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op emptyState : -> State [ctor] .
op [_|->_] : Qid Value -> State [ctor] .
op __ : State State -> State [ctor assoc prec 1 id: emptyState] .

var SIGMA : State .
vars V V’ : Value .
var X : Qid .

eq [X |-> V] SIGMA [X |-> V’] = SIGMA [X |-> V’] .
endfm

The State sort encodes a mapping from Qids to Values. For example, [’x |-> 1]

[’y |-> 2][’z |-> 3] denotes the state in which x = 1, y = 2, and z = 3. If a variable
occurs several times in the state, only the last occurrence is kept. This behavior is
implemented by an equation.

fmod WHILE-STATEMENT is
including WHILE-EXPRESSION .

sort SingleStmt .

sort Stmt .
subsort SingleStmt < Stmt .

op skip : -> SingleStmt [ctor] .
op _:=_ : Qid Exp -> SingleStmt [ctor prec 23] .
op if_th_el_fi : BExp Stmt Stmt -> SingleStmt [ctor] .
op while_do_od : BExp Stmt -> SingleStmt [ctor] .

op emptyStmt : -> Stmt [ctor] .
op _;_ : Stmt Stmt -> Stmt [ctor assoc prec 25 id: emptyStmt] .

endfm

The WHILE-STATEMENT module defines the SingleStmt and Stmt sorts, with construc-
tor terms that correspond to the WHILE language syntax. The correspondence be-
tween the abstract, mathematical syntax for WHILE statements and the concrete,
Maude-compatible syntax is straightforward. The WHILE language’s then and
else keywords are written th and el to avoid conflicts with Maude’s predefined
if_then_else_fi operator.

fmod WHILE-PROCESS is
including WHILE-STATE .
including WHILE-STATEMENT .

sort Process .

op <_,_> : Stmt State -> Process [ctor] .
endfm

The WHILE-PROCESS module defines the Process sort, which stores the code and
current state of a process.

fmod WHILE-EXPRESSION-EVALUATION is
including WHILE-EXPRESSION .
including WHILE-STATE .
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op {_}_ : Exp State -> Value [prec 3] .

vars A A1 A2 : AExp .
vars B B1 B2 : BExp .
var E : Exp .
var N : Int .
var SIGMA : State .
var V : Value .
vars X X’ : Qid .

eq {X} SIGMA [X’ |-> V] = if X == X’ then V else {X} SIGMA fi .

eq {[E]} SIGMA = {E} SIGMA .

eq {N} SIGMA = N .
eq {plus A} SIGMA = {A} SIGMA .
eq {minus A} SIGMA = - {A} SIGMA .
eq {A1 times A2} SIGMA = {A1} SIGMA * {A2} SIGMA .
eq {A1 div A2} SIGMA = {A1} SIGMA quo {A2} SIGMA .
eq {A1 plus A2} SIGMA = {A1} SIGMA + {A2} SIGMA .
eq {A1 minus A2} SIGMA = {A1} SIGMA - {A2} SIGMA .

eq {true} SIGMA = true .
eq {false} SIGMA = false .
eq {A1 eq A2} SIGMA = {A1} SIGMA == {A2} SIGMA .
eq {A1 ne A2} SIGMA = {A1} SIGMA =/= {A2} SIGMA .
eq {A1 lt A2} SIGMA = {A1} SIGMA < {A2} SIGMA .
eq {A1 gt A2} SIGMA = {A1} SIGMA > {A2} SIGMA .
eq {A1 le A2} SIGMA = {A1} SIGMA <= {A2} SIGMA .
eq {A1 ge A2} SIGMA = {A1} SIGMA >= {A2} SIGMA .
eq {! B} SIGMA = not {B} SIGMA .
eq {B1 && B2} SIGMA = {B1} SIGMA and {B2} SIGMA .
eq {B1 || B2} SIGMA = {B1} SIGMA or {B2} SIGMA .

endfm

The WHILE-EXPRESSION-EVALUATION module defines the {_}_ operator, which re-
turns the value of an expression in a given state. The operator is defined recur-
sively on the syntax of expressions, and relies on Maude’s predefined operators on
Int and Bool. The {_}_ operator is given a lower precedence than state concatena-
tion (__) to ensure that {E} SIGMA SIGMA’ is parsed as {E} (SIGMA SIGMA’).

mod WHILE-INTERPRETER is
including WHILE-EXPRESSION-EVALUATION .
including WHILE-PROCESS .

var B : BExp .
var E : Exp .
vars S S’ S1 S2 : Stmt .
var SIGMA : State .
var X : Qid .

rl [null-statement] :
< skip ; S, SIGMA >
=>

< S, SIGMA > .
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rl [assignment] :
< X := E ; S, SIGMA >
=>
< S, SIGMA [X |-> {E} SIGMA] > .

rl [if-statement] :
< if B th S1 el S2 fi ; S, SIGMA >
=>
if {B} SIGMA then < S1 ; S, SIGMA >

else < S2 ; S, SIGMA > fi .

rl [while-loop] :
< while B do S od ; S’, SIGMA >
=>
if {B} SIGMA then < S ; while B do S od ; S’, SIGMA >

else < S’, SIGMA > fi .
endm

Finally, the WHILE-INTERPRETER module builds upon the previous modules to spec-
ify Rewrite Rules W1–W4 in Maude.

To execute the greatest common divisor program shown earlier, we can use the rew

command as follows, after having loaded the WHILE-INTERPRETER module:

rew < while ’b ne 0 do
if ’a gt ’b th

’a := ’a minus ’b
el

’b := ’b minus ’a
fi

od,
[’a |-> 518][’b |-> 1155] > .

The result is < emptyStmt, [’a |-> 7][’b |-> 0] >, meaning that the greatest com-
mon divisor of 518 and 1155 is 7.

Maude’s dual nature as a programming language and as a specification language
is made apparent by the WHILE interpreter. On the one hand, the Maude code can
be run reasonably efficiently to execute any WHILE program, which suggests that
Maude can be used to solve real-world problems normally tackled using imper-
ative, object-oriented, or functional programming languages. On the other hand,
the Maude equations and rewrite rules can be read as a logical theory, yielding an
elegant formulation of the WHILE language’s semantics.

By specifying the WHILE interpreter in Maude rather than in a conventional pro-
gramming language such as C or Java, we also benefit from Maude’s extensible
rewrite strategies, its search capabilities, and its built-in model checker. As an ad-
ditional benefit, Maude’s powerful parsing capabilities let us analyze the WHILE
syntax without needing a parser generator.



The 1980s will probably be remembered as the decade in
which programmers took a gigantic step backwards by
switching from secure Pascal-like languages to insecure
C-like languages.

— Per Brinch Hansen (1993)

Chapter 4

Syntax and Semantics of Creol

This chapter presents the syntax and semantics for the Creol dialect used in this the-
sis. The dialect broadly corresponds to the language understood by the standard
Creol interpreter in use at the University of Oslo, with a few extensions to sup-
port the proof system of Chapter 5. The following Creol language features are not
part of the dialect and so they are not covered here: class upgrades [Ofs05, YJO06],
constrained method calls [JO05], and type parameters [JO04b, Fje05].

To simplify the exposition, we will consider only bool and int as built-in data types,
and ignore char, float, list, pair, set, and str. In our setting, the additional data
types don’t present any particular challenges and can be handled in essentially the
same way as bool and int.

Section 4.1 gives a brief overview of Creol’s main features and illustrates them
through a concrete example. Section 4.2 explains Creol’s syntax and semantics in
more detail. Section 4.3 presents a small-step operational semantics for Creol, and
Section 4.4 gives an alternative semantics that lays the theoretical foundation for
the proof system introduced in Chapter 5. Section 4.5 concludes by explaining how
the two semantics are implemented in Maude.

4.1 Overview of the Language

Creol is an experimental object-oriented language that supports interfaces, class
inheritance, and dynamic method binding. It is object-oriented in the sense that
classes are the fundamental structuring unit and that all interaction between objects
occurs through method calls. The name Creol is a pseudoacronym for “Concurrent
Reflective Object-Oriented Language” and is usually pronounced “cray-OOL” or
[kRe"u:l]. What sets Creol apart from popular object-oriented languages such as
C++, Java, or C# is its concurrency model: In Creol, each object executes on its own
virtual processor. This approach leads to increased parallelism in a distributed
system, where objects may be dispersed geographically.

Objects have unique identities and communicate using asynchronous method calls.
When an object A calls a method m of an object B, it first sends an invocation mes-
sage to B along with arguments. Method m executes on B’s processor and sends a
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reply to A once it has finished executing, with return values. Object A may con-
tinue executing while expecting B’s reply. Like in other object-oriented languages,
object identities (references) can be passed as parameters, and thanks to Creol’s
interface concept, method calls are type-safe [JOY06].

Johnsen and Owe [JO07] argue that asynchronous method calls offer a more struc-
tured object interaction model than shared variables and message passing, while
avoiding the blocking associated with synchronous method calls (also called re-
mote procedure calls or remote method invocation). For convenience, Creol sup-
ports synchronous method calls as syntactic sugar for a method invocation fol-
lowed by a blocking wait for the reply.

Besides asynchronous method calls, the other main distinguishing feature of Creol
is its reliance on explicit processor release points, which take the form of await
statements. Since there is only one processor per object, at most one method m
may execute at a given time for a given object; any other method invocations must
wait until m finishes or explicitly releases the processor by using await. This “co-
operative” approach to intra-object concurrency ensures that while a method is ex-
ecuting, no other processes are accessing the object’s attributes (instance variables),
leading to a programming and reasoning style reminiscent of monitors [BH70,
Hoa74].

To illustrate how Creol programs are executed, we will study a Creol solution to the
classic producer–consumer problem, in which a producer process writes to a shared
buffer and a consumer process reads the data from the buffer as it is written. The
example consists of two interfaces and four classes. Let us start with the interfaces:

interface WritableBuffer interface ReadableBuffer
begin begin
with any: with any:

op put(in x : int) op get(out y : int)
end end

The WritableBuffer interface declares the signature of a put method that has an input
parameter called x of type int. Similarly, the ReadableBuffer interface declares the
signature of a get method that has an output parameter called y of type int. The
with any clauses specify that any object may call these methods.

class Producer (buf :WritableBuffer) class Consumer (buf :ReadableBuffer)
begin begin

op run is op run is
var i : int; var j : int, sum : int;
i := 1; sum := 0;
while true do while true do

buf.put(i); buf.get(; j);
i := i + 1 sum := sum + j

od od
end end

The Producer class takes an object that supports the WritableBuffer interface as a
context parameter. When instantiating the class, we must pass an object that im-
plements the WritableBuffer interface as argument. The class’s run method repeat-
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edly calls put on the WritableBuffer object with 1, 2, 3, and so on. The run method is
automatically invoked when the class is instantiated.

The Consumer class mirrors Producer. Instances of Consumer get their data from an
object that supports the ReadableBuffer interface, one integer at a time, and compute
the sum of the data read from the buffer. The semicolon in buf.get(; j) indicates that
j is an output argument; in many other languages, we would write j := buf.get().

class Buffer
implements WritableBuffer, ReadableBuffer

begin
var value : int, full : bool

with any:
op put(in x : int) is

await ¬full;
value := x;
full := true

op get(out y : int) is
await full;
y := value;
full := false

end

The Buffer class supports the WritableBuffer and ReadableBuffer interfaces and im-
plements the put and get methods. It also declares two attributes, value and full.
The buffer’s role is to synchronize the producer and the consumer, ensuring that
the consumer doesn’t read data that the producer hasn’t generated yet and that the
producer doesn’t overwrite data that the consumer hasn’t read.

In this example, the buffer can store at most one data item at a time, which partly
defeats its purpose. A more realistic (and more efficient) Buffer class would use
a circular buffer internally [And00]. This could be implemented in Buffer without
having to change Producer or Consumer.

class Main
begin

op run is
var buf : any, prod : any, cons : any;
buf := new Buffer;
prod := new Producer(buf );
cons := new Consumer(buf )

end

To launch the program, we must instantiate the Main class. Creol provides an ex-
plicit syntax for achieving this:

bootstrap system Main

The run method, which is invoked automatically when Main is instantiated, starts
by creating a Buffer instance. Then it creates one Producer and one Consumer in-
stance, both initialized with a reference back to the buffer. At that point, the pro-
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ducer’s and the consumer’s run methods are invoked, giving rise to two nontermi-
nating processes that exchange data through the buffer object.

Producer–consumer synchronization works as follows: If the consumer calls get
before the producer calls put, then full is false and the get method invocation is
suspended on the await full statement. This enables put to execute. When put
returns, full is now true and get can resume its execution. If the producer calls put
twice in a row before the consumer calls get, the second put invocation is suspended
on await ¬full.

One of Creol’s main strengths is that it lets us seamlessly combine active and re-
active (client and server) behavior in the same object [JOA03]. The run method
initiates the active component of an object, whereas the other methods embody the
object’s reactive behavior. Consider the following version of the Consumer class:

class Consumer (buf : ReadableBuffer)
begin

var sum : int

op run is
var j : int;
sum := 0;
while true do

await buf.get(; j);
sum := sum + j

od
with any:

op getSum(out s : int) is
s := sum

end

In this version of the class, we declare a getSum method that returns the sum com-
puted so far, and promote sum to an attribute. In addition, the synchronous method
call buf.get(; j) in run has been replaced by the statement await buf.get(; j), which
invokes get asynchronously, releases the processor while it waits for a reply, and re-
trieves the return value. Because await releases the processor, the object can service
incoming calls to getSum while waiting for buf ’s reply.

While not using all the features found in Creol, the producer–consumer example
demonstrates most of Creol’s key concepts. Johnsen et al. [JO02, JOA03, DJO05,
JOY06, JO07] provide more elaborate examples, including a Creol model of a peer-
to-peer network [JO07]. We will also consider many other examples later in this
thesis, notably in Chapter 7.

4.2 The Language’s Syntax

Interface and class declarations constitute the core of Creol’s syntax; in fact, a Creol
program is simply a list of interface and class declarations, followed by a bootstrap
command. Before we look at their syntax, we will introduce a few basic syntactic
entities: identifiers, types, typed identifiers, and assertions.
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The set Id of identifiers consists of case-sensitive alphanumeric tokens that start
with a letter. Thus, x, hungryCat, and R2D2 are valid identifiers, whereas 3DCube
and Muad’dib aren’t. Identifiers are used to name interfaces, classes, methods, at-
tributes, parameters, local variables, and method call labels. Keywords are not
allowed as identifiers.

The set Type of types comprises the built-in data types bool and int. In addition,
the name of any interface can be used as a type. For simplicity, we will allow any
identifier to act as a type (regardless of whether it is declared or not) by letting
Type , Id ∪ {bool, int}. A typed identifier, belonging to the set TypedId, has the
syntax x : τ, where x is an identifier and τ is a type.

Creol programmers can specify first-order logic assertions in the program code.
These assertions may represent assumptions or guarantees associated with a class
or interface, loop invariants, or conditions that must hold at certain points during
the program’s execution. Their precise syntax is given in Section A.3. The set of
assertions is denoted Assn.

In many places in the Creol syntax, programmers can supply a comma-separated
list of items. For example, the assignment operator can be applied to several vari-
ables simultaneously, as follows: a, b, c := 1, 2, 3. To represent a comma-separated
list of elements from a set X (Id, TypedId, etc.), we will use an element x̄ ≡ x1, . . . , xn
(where ‘≡’ denotes syntactic equality) of the set

L(X) ,
∞⋃

k=1

{a1, . . . , ak | ai ∈ X}.

We are now ready to tackle interface and class declarations. An interface declara-
tion has the syntax

interface i
[
(X̄)
][

inherits ̄
]

begin
with k:

op µ1
...

op µn[
asum ϕ

][
guar ψ

]
end

where i ∈ Id is the name of the interface, X̄ ∈ L(TypedId) is a list of context pa-
rameters, ̄ ∈ L(Super) is a list of inherited interfaces, µ1, . . . , µn ∈ Sig are method
signatures, k ∈ Id ∪ {any} is an interface associated with µ1, . . . , µn, ϕ ∈ Assn is
an assumption about the environment, and ψ ∈ Assn is a guarantee offered by the
interface. Square brackets denote optional clauses.

The set Super of supertypes (superinterfaces or superclasses) consists of elements
with the syntax τ

[
(ē)
]
, where τ is the name of a type (interface or class) and ē is

a list of arguments corresponding to τ’s context parameters. The arguments can
refer to the parameters X̄.
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The cointerface k of a method is an interface that the calling object is required to
implement; using the implicit caller parameter, the method can then call back the
calling object through interface k. If k ≡ any, no cointerface is specified and the
methods µ1, . . . , µn can be called from any object.

The asum and guar clauses, together with the context parameters X̄, let the pro-
grammer specify an assume–guarantee specification that is inherited by all classes
that support the interface. The assumption is a condition upon which classes that
implement the interface can rely. The guarantee is a commitment that the interface
makes as long as the assumption holds on behalf of the classes that implement it.
We will see examples of this later in this chapter.

A method signature, belonging to the set Sig, has the syntax

m(
[
in X̄

][
out Ȳ

]
)

with m ∈ Id and X̄, Ȳ ∈ L(TypedId). The variables X̄ are input parameters. These
are passed by value and are read-only inside the method. Methods don’t return a
value directly; instead, they may assign values to one or several output parame-
ters declared using the out keyword. If the method has neither input nor output
parameters, we can drop the parentheses around the empty parameter list.

This completes our review of the syntax of interface declarations. We now proceed
with class declarations, which have the syntax

class c
[
(X̄)
][

implements ı̄
][

contracts ̄
][

inherits q̄
]

begin[
var W̄

][
G0
]

with k1:
G1
...

with km:
Gm[
asum ϕ

][
guar ψ

]
end

where c ∈ Id is the class name, X̄ ∈ L(TypedId) is a list of context parameters,
ı̄, ̄ ∈ L(Super) are superinterfaces, q̄ ∈ L(Super) are superclasses, W̄ ∈ L(TypedId)
is a list of attributes, G0, . . . , Gm ∈ MtdDeclGroup are groups of methods, k1, . . . , km
are cointerfaces associated with G1, . . . Gm, and 〈ϕ, ψ〉 ∈ Assn×Assn is an assume–
guarantee specification.

A class may declare context parameters X̄ and attributes W̄. The context parame-
ters must be provided at object creation and behave like read-only attributes. An
object’s parameters and attributes are not accessible to other objects.
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Unlike interfaces, classes provide bodies for the methods they declare. The set Mtd-
DeclGroup of method declaration groups contains elements with the syntax

op µ1 is β1
...

op µn is βn

where µ1, . . . , µn ∈ Sig are method signatures and β1, . . . , βn ∈ MtdBody are method
bodies. Methods declared before the first with clause can be called only by the
object itself.

A class c can be declared with one or several superclasses, from which it inherits all
the non-internal methods that it doesn’t override. It may also have superinterfaces,
specified using the implements clause, in which case it must provide implementa-
tions for all the methods declared by the interfaces and must respect the interfaces’
assume–guarantee specifications.

In Creol, inheritance and subtyping don’t coincide: Classes that inherit from class c
do not inherit its assume–guarantee specification or that of its superinterfaces ı̄, and
are not even considered to support ı̄. This stands in sharp contrast with the concept
of inheritance as found in Java or C#. If we want to force a certain interface (and its
assume–guarantee specification) upon a class’s direct and indirect subclasses, we
must use the contracts clause instead of implements.

The set MtdBody of method bodies consists of elements with the syntax[
var V̄;

]
S

where V̄ ∈ L(TypedId) is the list of local variables and S ∈ Stmt is a (simple or
compound) statement.

To complete the syntactic definition of class declarations, we must explain what
a Creol statement looks like. We will start by defining expressions, which play a
major role in the definition of Creol statements; then we will look at statements.

The set AExp of arithmetic expressions includes the set Id of identifiers and contains
integer literals of arbitrary size expressed as decimal numbers, such as 0, 1234,
and −11235813213455. In addition, if x ∈ Id is an attribute and c ∈ Id the name
of a superclass, the qualified identifier x@c ∈ QualifiedId denotes the attribute x
declared by c, to distinguish it from attributes with the same name inherited from
other superclasses. Moreover, for any arithmetic expressions A, A1, A2 ∈ AExp and
Boolean expression B ∈ BExp, the following expressions also belong to AExp:

+A unary plus
−A unary minus
if B then A1 else A2 fi conditional expression
A1 ∗ A2 multiplication
A1 / A2 integer division (rounding toward zero)
A1 + A2 addition
A1 − A2 subtraction
(A) parenthesized expression



42 Chapter 4. Syntax and Semantics of Creol

This definition of arithmetic expressions leads to syntactic ambiguities. To re-
solve these, we follow the standard conventions: The unary operators bind more
strongly than the other operators; the multiplicative binary operators (∗, /) bind
more strongly than the additive operators (+, −); and binary operators with the
same binding power associate to the left. As a consequence, x +−y ∗ z is read as
x + ((−y) ∗ z), and −a + b− c + d is read as (((−a) + b)− c

)
+ d.

If τ is the name of an interface, any variable of type τ or of one of its subtypes can be
used as an object expression of type τ. The set of such variables is denoted OExpτ.
To this set, we add null (the null object reference), as well as self (a reference to
the current object) and caller (a reference to the object that invoked the current
method), if they support τ. Finally, for any object expressions O, O1, O2 ∈ OExpτ

and Boolean expression B ∈ BExp, the following expressions also belong to OExpτ:

if B then O1 else O2 fi conditional expression
(O) parenthesized expression

For the set BExp of Boolean expressions, we consider all identifiers as base ele-
ments, as well as the constants true and false. In addition, for any A1, A2 ∈ AExp
and R ∈ {=, 6=, <, >,≤,≥}, the set BExp contains the expression

A1 R A2 arithmetic comparison

Similarly, for any O1, O2 ∈ OExpτ and R ∈ {=, 6=}, the set BExp contains

O1 R O2 object comparison

Let B, B1, B2 ∈ BExp. Then the following expressions also belong to BExp:

¬B logical negation
if B then B1 else B2 fi conditional expression
B1 ∧ B2 logical conjunction
B1 ∨ B2 logical disjunction
(B) parenthesized expression

The operator ¬ binds more strongly than ∧, which in turn binds more strongly than
∨. The ∧ and ∨ operators are associative.

In addition to the built-in data types, Creol lets us define custom data types and
functions using a formalism similar to Maude’s equational sublanguage. Data
types are defined inductively, and operations are defined as functions f that take a
list of arguments ē and return a value of a given type. The arguments and return
value can be of any type. Let f be a function (or constructor) with n parameters
of types τ1, . . . , τn that returns a value of type τ. Then the function application
f (e1, . . . , en), where each expression ei is of type τi, is an expression of type τ.

Example 4.1. A point2D data type that stores a pair of integer coordinates would
be defined as follows:

functional
begin

type point2D [default-value: point2D(0, 0)]

ctor point2D : int× int→ point2D
fn getX : point2D→ int
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fn getY : point2D→ int
fn add : point2D× point2D→ point2D

var x : int, x′ : int, y : int, y′ : int

eq getX(point2D(x, y)) , x
eq getY(point2D(x, y)) , y
eq add(point2D(x, y), point2D(x′, y′)) , point2D(x + x′, y + y′)

end

These definitions must be provided to the Creol interpreter in addition to the Creol
program to execute. In the program, we could use the new data type as follows:

var p1 : point2D, p2 : point2D, width : int, height : int
p1 := point2D(320, 200);
p2 := point2D(1024, 768);
width := getX(p2)− getX(p1);
height := getY(p2)− getY(p1) �

As they are defined here, Creol expressions may not contain method calls, assign-
ments, or other constructs with side effects. This design greatly simplifies the for-
mulation of the semantics and of the proof system, and enables us to define the
assertion language Assn as a superset of the Boolean expression language BExp.
Using temporary variables, it is always possible to reformulate a program that con-
tains expressions with side effects as an equivalent program that doesn’t [Dah92].

In some places in the syntax, an expression of any kind (arithmetic, Boolean, or
object) is expected. We will denote the set of all expressions by Exp.

We will now define Creol’s statements, belonging to the set Stmt. Creol offers the
following trivial statements, where ϕ ∈ Assn:

skip null statement
abort abnormal termination
prove ϕ inline assertion

The skip statement is a “do nothing” statement. The abort statement causes the
object to terminate all its activity immediately, reporting an error to the user. To
quote Ole-Johan Dahl [Dah92]:

The [abort] statement is useful when programming consistency and ca-
pacity checks. When developing larger programs we may use abort
statements to represent unfinished program segments. Thereby the pro-
gram may remain partially correct throughout the development phase,
producing valid results whenever it terminates normally.

The prove statement allows the programmer to specify a proof outline as part of
the program, which can be formally verified using the assertion analyzer presented
in Chapter 6. When the program is executed, prove statements are ignored.

Let z̄ ≡ z1, . . . , zn ∈ L(QualifiedId) be a list of variables and ē ≡ e1, . . . , en ∈ L(Exp)
be a list of expressions such that each ei is type-compatible with zi. The assignment
statement has the following syntax:

z̄ := ē assignment
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If n > 1, the assignments to z1, . . . , zn are performed simultaneously. For example,
the statement a, b := b, a (unlike a := b; b := a) swaps the values of a and b. If the
same variable is assigned to several times, only the last assignment is applied; thus,
a, a := 1, 2 sets a to 2.

Since the right-hand side of the := operator is a list of expressions and expressions
cannot have side effects, we need an additional syntax rule for assigning a newly
created object to a variable. Let z ∈ QualifiedId be the name of a variable, c ∈ Id
be the name of a class, and ē ≡ e1, . . . , en ∈ L(Exp) be a list of expressions. New
instances of class c can be created as follows:

z := new c
[
(ē)
]

object creation

The expressions e1, . . . , en are assigned to the context parameters specified in the
class declaration. If the class has a parameterless method called init, this method
is called immediately. If class c has superclasses, the superclasses’ init methods are
called recursively, before c’s version of init is run. Moreoever, if a parameterless run
method is declared or inherited by the class, it is invoked immediately after.

Creol offers two basic flavors of method calls, synchronous (blocking) and asyn-
chronous (non-blocking), with the following syntax:[

l
]
!
[
O.
]
m(
[
ē
]
) asynchronous invocation

l?(
[
ȳ
]
) asynchronous reply[

O.
]
m(
[
ē
][

; z̄
]
) synchronous call

Here, l ∈ Id is a label variable identifying the asynchronous call, O ∈ OExpτ is an
object expression of type τ, m ∈ Id is the name of a method supported by the τ type,
ē ∈ L(Exp) is a list of input arguments, and z̄ ∈ L(QualifiedId) is a list of output
arguments. The input and output arguments must match the input and output
parameters declared in the method’s signature. In addition, the calling object must
implement the method’s cointerface if one was specified.

Asynchronous method calls consist of an invocation and a reply. The invocation
can be seen as a message from the caller to the called method, with arguments
corresponding to the method’s input parameters. The reply is a message from the
called method, containing the return values for the call. The label l makes it possi-
ble to refer to a specific asynchronous call.

Example 4.2. The following code initiates two asynchronous calls, releases the pro-
cessor while waiting for the replies, and retrieves the return values:

var res1 : int, res2 : int;
l1 !server.request();
l2 !server.request();
await l1? & l2?;
l1?(res1);
l2?(res2) �

For synchronous calls, we distinguish between local and remote calls. Local syn-
chronous calls correspond to the case where O is omitted or evaluates to self and
are executed immediately, as they would be in Pascal or Java. In contrast, a remote
synchronous call O.m(ē; z̄) is implemented as an asynchronous method invocation
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ν !O.m(ē) followed by the reply statement ν?(z̄), where ν is a special identifier that
may not occur in the program text. Because there is no await statement between the
method invocation and the reply statement, the calling object is blocked while the
remote method executes. When the reply statement ν?(z̄) terminates, the values
assigned to the output parameters are available in z̄.

When overriding a method in a subclass, it is often necessary to call the original
implementation of the method as well. Creol lets us do that using qualified method
calls, which have the syntax[

l
]
!m@c(

[
ē
]
) qualified asynchronous invocation

m@c(
[
ē
][

; z̄
]
) qualified synchronous call

where c ∈ Id is the name of a superclass.

We have already seen instances of the await statement, which releases the processor
conditionally. In general, await statements are of the forms

await g conditional wait
await

[
g &
]

l?(
[
z̄
]
) conditional wait for reply

await
[
g &
]
O.m(

[
ē
][

; z̄
]
) conditional wait during call

await
[
g &
]

m
[
@c
]
(
[
ē
][

; z̄
]
) conditional wait during local call

with g ∈ Guard, l, m, c ∈ Id, z̄ ∈ L(QualifiedId), O ∈ OExpτ, and ē ∈ L(Exp).
The statement await g releases the processor if the conditional guard g evaluates
to false and reacquires it at some later time when g is true. The second, third, and
fourth versions of the await statement are abbreviations:

await g & l?(z̄) ≡ await g & l?; l?(z̄)
await g & O.m(ē; z̄) ≡ ν !O.m(ē); await g & ν?; ν?(z̄)
await g & m@c(ē; z̄) ≡ ν !m@c(ē); await g & ν?; ν?(z̄).

In the above, ν is a fresh label. The set Guard of conditional guards is constructed
as follows:

B Boolean guard
l? reply guard
wait unconditional processor release
g1 & g2 complex guard

where B ∈ BExp, l ∈ Id, and g1, g2 ∈ Guard. The guard l? evaluates to true if and
only if a reply for the asynchronous call identified by l has arrived. The wait guard
evaluates to false the first time it is encountered, resulting in a processor release,
and evaluates to true from then on. The complex guard g1 & g2 evaluates to true if
and only if both g1 and g2 evaluate to true.

The basic statements seen so far can serve as building blocks for compound state-
ments. The first of these is the if statement:

if B then
S1[

else
S2
]

fi
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If the condition B ∈ BExp evaluates to true, the statement S1 is executed; otherwise,
S2 is executed. Omitting the else clause is equivalent to letting S2 be skip.

A second type of compound statement is the while loop:[
inv ϕ

]
while B do

S
od

If the condition B ∈ BExp evaluates to true, the loop body S ∈ Stmt is executed,
then the condition is reevaluated. If the condition is still true, the body is executed
a second time, and so on, only stopping if the condition ever turns false.

The optional inv clause lets the programmer specify a loop invariant ϕ ∈ Assn that
must hold before entering the loop and after each iteration. The inv clause is used
by the assertion analyzer presented in Chapter 6.

Loops are currently being phased out of Creol because they can always be replaced
by recursion. Nonetheless, it seems appropriate to include while loops here for the
following reasons:

1. Loops are a well understood concept that is easy to define and reason about
and that integrates unproblematically with the rest of the language.

2. Many programs, including the producer–consumer example earlier in this
section, can be expressed more simply using while than with recursion. (This
explains why fairly recent papers [JOY06, JO07] use loops in their examples.)

3. With its invariant, the while statement will serve as a stepping stone for ax-
iomatization of more advanced Creol constructs in Chapter 5.

In Chapter 7, we will compare loops and recursion for program verification.

The remaining compound statements resemble expression syntax in that they com-
bine simpler statements together using operators, and parentheses can be used to
force a precedence order:

S1; S2 sequential composition
S1� S2 nondeterministic choice
S1 ||| · · · ||| Sn nondeterministic merge
(S) parenthesized statement

with S, Si ∈ Stmt. The ; operator binds more strongly than �, and � binds more
strongly than |||. The ; and � operators are associative, allowing us to write things
like A; B; C and A� B� C. Furthermore, � and ||| are commutative.

The sequential composition of two or more statements yields a statement. Later in
this chapter, to denote any statement except sequential composition, we will use an
element s from the set SingleStmt , Stmt\{S1; S2 | Si ∈ Stmt}.

We need the following two definitions to describe � and |||: A statement S is en-
abled if it can execute in the current state without releasing the processor immedi-
ately. For example, await B is enabled if B evaluates to true; otherwise it is disabled.
If S is enabled and doesn’t block immediately, S is said to be ready. The statement
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l?(z̄) is always enabled, but it is ready only if the asynchronous reply associated
with l has arrived.

The nondeterministic choice statement S1 � S2 executes either S1 or S2. If both
branches Si are ready, S1� S2 randomly chooses either S1 or S2. If only one branch
Si is ready, that branch is executed. If neither branch is ready, S1 � S2 blocks if
either S1 or S2 is enabled and releases the processor otherwise.

The nondeterministic merge statement S1 ||| · · · ||| Sn (also written |||ni=1 Si) is similar
to S1 � S2 but it always executes all branches Si. The precise order in which the
constituents of S1, . . . , Sn are executed is nondeterministic. Like with �, a random
branch Si is chosen to start and is allowed to run until a disabled statement occurs
or the branch finishes. If one or more other branches are ready at that point, one of
these is randomly chosen to run; otherwise, the merge statement either blocks (if at
least one branch is enabled) or releases the processor and tries to continue executing
one of the branches later on. This goes on until all branches have terminated.

There is a subtle pitfall with the definition of |||. Unlike �, it is not associative; in
general, (S1 ||| S2) ||| S3 and S1 ||| (S2 ||| S3) mean two different things, and S1 ||| S2 |||
S3 also means something else. This will become clearer in the next section.

Example 4.3. The nondeterministic statements are typically used in conjunction
with asynchronous method calls. Consider the following method bodies:

var res : int; var res1 : int, res2 : int;
l1 !server1.request(); l1 !server1.request();
l2 !server2.request(); l2 !server2.request();
(l1?(res) � l2?(res));

(
l1?(res1); processResult1(res1)

processResult(res) ||| l2?(res2); processResult2(res2)
)

In both code snippets, we initiate two asynchronous method calls: one to server1
and the other to server2. In the code on the left-hand side, we use the nondetermin-
istic choice statement to handle the first reply that arrives, and we ignore the other
reply. In the code on the right-hand side, we pick up both replies and process them
as they arrive using nondeterministic merge. �

We have now reviewed the syntax of interface and class declarations. In addition to
interfaces and classes, a Creol program must also specify an entry point. Let c ∈ Id
be the name of a class, and ē ≡ e1, . . . , en ∈ L(Exp) be a list of expressions. The
following command launches the program by instantiating c:

bootstrap system c
[
(ē)
]

Like with the object creation statement, the expressions e1, . . . , en are assigned to
the context parameters specified in the class declaration, and the class’s init and
run methods are invoked.

4.3 An Operational Semantics in Rewriting Logic

In this section, we formally define the operational semantics of Creol programs,
thereby providing a solid foundation for the rest of the thesis. The operational se-
mantics is expressed using the rewriting logic formalism presented in Chapter 3.
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Through its implicit support for concurrency, rewriting logic captures the nondeter-
ministic, concurrent nature of distributed systems in a natural way [JO07, Ölv07].
Appendix B gives a complete Maude listing for a Creol interpreter based on the
equations and rewrite rules given here.

The operational semantics of Creol was originally sketched by Einar Broch Johnsen
[Joh02]. These ideas were refined by Marte Arnestad [Arn03], who implemented
the first version of the Creol interpreter in Maude. Our presentation is primarily
based on Johnsen and Owe [JO07].

When a Creol program is executed, it gives rise to an evolving data structure that
represents the program’s state, called a system configuration. A system configura-
tion, belonging to the set Config, is a multiset that consists of objects, classes, and
messages. In the style of Full Maude [CDEL+07], the terms that belong to the mul-
tiset are directly adjoined, with no operator in between. Following a suggestion by
Ölveczky [Ölv07], the entire system configuration is enclosed in a pair of braces.
These braces allow us to match the entire configuration in rewrite rules, as we will
see shortly.

In a system configuration, Creol objects are represented by terms of the form〈
o : c

∣∣ Pr: S, LVar: β, Att: α, PrQ: P, MsgQ: Q, LabCnt: k
〉
,

where o ∈ OId is a unique identity for the object, c ∈ Id is the object’s class, S ∈
Stmt is the active process’s code, β ∈ State is the active process’s local variables,
α ∈ State is the current state of the object’s attributes, P ∈ M(State× Stmt) is a
queue of suspended processes, Q ∈ M(MsgBody) is the incoming message queue,
and k ∈N is a counter used to number outgoing invocation messages.

For a given set X,M(X) denotes the set of all multisets over X (the power multiset
of X). We will also write x̄ to denote a comma-separated list of elements of a set X.
Unlike in the previous section, but in keeping with the algebraic definition of a list,
x̄ may be the empty list (denoted ε).

The set State of variable states consists of mappings from variables to values. For
example, [x 7→ 1][y 7→ 2][z 7→ 3] denotes the state in which x = 1, y = 2, and z = 3.
We let ∅ denote the empty state. The concatenation αβ of two states α and β gives
precedence to β for variables defined by both. Thus, if σ is a state, σ[x 7→ v] denotes
the state that is identical to σ except that x maps to v. The {ē}σ function returns the
value of an expression list ē in a state σ; it will be the object of Definitions T12–T17.

The set Value of values consists of the Boolean constants true and false, integer
literals, and object identities. Expressions such as 1 + 2 and x > y are not values.

Example 4.4. The term〈
Main#0 : Main

∣∣ Pr: cons := new Consumer(buf ); return ε; continue 0,
LVar: β, Att: α, PrQ: 〈ν?(), [ν 7→ 0]〉, MsgQ: ∅, LabCnt: 1

〉
with

α ≡ [self 7→ Main#0]
β ≡ [caller 7→ Main#0][label 7→ 0][buf 7→ Buffer#0][prod 7→ Producer#0]

[cons 7→ null]
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represents the Main instance from the producer–consumer program reviewed at
the beginning of this chapter after it instantiated Buffer and Producer. �

In the rest of this section and in the next section, we will use the following nota-
tions to refer to elements of particular sets (resorting to subscripts and primes when
necessary):

c, i, l, m ∈ Id e ∈ Exp ς ∈ Super
z ∈ QualifiedId A ∈ AExp τ ∈ Type

W, X, Y ∈ TypedId B ∈ BExp Γ ∈ Config
Z ∈ TypedQualifiedId O ∈ OExp G ∈ MtdDeclGroup

k, n ∈N ϕ, ψ ∈ Assn M ∈ M(Mtd)
o ∈ OId g ∈ Guard P ∈ M(State× Stmt)

v, w ∈ Value S ∈ Stmt Q ∈ M(MsgBody)
α, β, σ ∈ State s ∈ SingleStmt

Creol classes are represented by terms of the form〈
c : Class

∣∣ Inh: ς̄, Param: X̄, Att: W̄, Mtd: M, ObjCnt: n
〉
,

where c is the class name, ς̄ is the list of base classes, X̄ is the list of context param-
eters, W̄ is the list of attributes, M is a multiset of methods, and n is a counter used
to generate unique object identities. The following term is an example of a class:〈

Producer : Class
∣∣ Inh: ε, Param: buf : WritableBuffer, Att: ε,

Mtd: {. . .}, ObjCnt: 1
〉
.

The set Mtd consists of terms of the form〈
m : Method

∣∣ In: X̄, Out: Ȳ, LVar: W̄, Code: S
〉
,

where m is the method’s name, X̄ is a list of input parameter names, Ȳ is a list of
output parameter names, W̄ is a list of local variables, and S is the method’s body.
The following term is a method:〈

get : Method
∣∣ In: ε, Out: y : int, LVar: ε,

Code: await full; y := value; full := false
〉
.

Creol objects interact by exchanging messages, which are stored in the system con-
figuration. Invocation messages have the form

Invoke(o, k, m
[
@c
]
, v̄),

where o is the calling object, k is the sequence number associated with the method
call, m (or m@c) is the called method, and v̄ is a list of input arguments to m. Reply
messages have the form

Reply(k, w̄),

where k is the sequence number for the method call and w̄ is a list of return val-
ues. Invocation and reply messages belong to the set MsgBody. When messages are
passed around, the receiver object o′ is specified by appending to o′ to the message.

The operational semantics for Creol consists of 24 rewrite rules (labeled S1–S24)
that model concurrent execution, object creation, and inter-object communication.
It also relies on equations (labeled T1–T17) to perform auxiliary tasks. We assume
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throughout that the Creol program is syntactically correct and well-typed. This can
be checked using a separate tool, such as the one developed by Jørgen Hermanrud
Fjeld [Fje05].

To execute a Creol program, we must first convert its source text into a system
configuration that reflects the initial state of the system. Definitions T1–T3 express
this conversion within the rewriting logic framework.

Definition T1 (Interface Declaration)

interface i
[
(X̄)
]

. . . begin with τ: . . . end , ∅

Interfaces are used by the type checker to ensure that when a method m is called on
an object o, the method exists and the arguments are well-typed. In the operational
semantics, it could be used to bind methods correctly in the presence of dynamic
updates. For the purposes of this section, we simply ignore them.

Definition T2 (Class Declaration)

class c
[
(X̄)
]

. . .
[
inherits ς̄

]
begin

[
var W̄

][
G0
]

with τ1: G1 . . . with τm: Gm
[
asum ϕ

][
guar ψ

]
end

,
〈
c : Class

∣∣ Inh: ς̄, Param: X̄, Att: W̄, Mtd: classMethods(G0, . . . , Gm),
ObjCnt: 0

〉
Class declarations give rise to terms of the form

〈
c : Class | . . .

〉
. The classMethods

auxiliary function expands to a multiset of method terms. For brevity, we will not
present it here; see Appendix B for details.

Definition T3 (Synthetic Statements)

!O.m(ē) , ν !O.m(ē)
!m
[
@c
]
(ē) , ν !m

[
@c
]
(ē)

O.m(ē
[
; z̄
]
) , ν !O.m(ē); ν?(

[
z̄
]
)

m
[
@c
]
(ē
[
; z̄
]
) , ν !m

[
@c
]
(ē); ν?(

[
z̄
]
)

await
[
g &
]

l?(z̄) , await
[
g &
]

l?; l?(z̄)
await

[
g &
]
O.m(ē

[
; z̄
]
) , ν !O.m(ē); await

[
g &
]

ν?; ν?(
[
z̄
]
)

await
[
g &
]

m
[
@c
]
(ē
[
; z̄
]
) , ν !m

[
@c
]
(ē); await

[
g &
]

ν?; ν?(
[
z̄
]
)

if B then S1 fi , if B then S1 else skip fi

We use equations to expand statements that were defined as abbreviations. The
letter ν is a special identifier that may not appear in actual programs.

Other versions of the interpreter simplify await statements further, reducing await
wait & B & l? to await wait; await l?; await B, in that order. This approach leads to
simpler equations later on, but it also has subtle effects on the semantics (and thus
on the axiomatization) of S1� S2 and |||ni=1 Si when some of the Si branches contain
await statements. Section A.2.9 has the details.

Definition T4 (Residual Statements)

ε := ε , skip
ε /// S , S
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Definition T4 eliminates constructs that may appear during program execution, as
we will see shortly.

The equations presented so far are concerned with setting up the class terms so
that they can be executed. To actually launch the program, we must create a root
object using Rewrite Rule S1, presented below. For conciseness, the fields that are
not used by a rule are omitted.

Rewrite Rule S1 (System Bootstrapping)

{ bootstrap system c
[
(v̄)
]

Γ }
−→
{
〈
c#0 : c

∣∣ Pr: initialPr(c(v̄), Γ), LVar: ∅,
Att: initialAtt(c(v̄), Γ)[self 7→ c#0], PrQ: ∅, MsgQ: ∅,
LabCnt: 0

〉
incrementObjCnt(c, Γ) }

If there is a bootstrap system command in the system configuration, we create an
object term for the specified class and call it c#0. The new object’s Pr and Att fields
are initialized using the initialPr and initialAtt auxiliary functions, which traverse
the class hierarchy. The incrementObjCnt function returns the configuration Γ in
which the ObjCnt field of class c has been incremented by 1, to ensure that the
object identities remain unique.

The initialPr, initialAtt, and incrementObjCnt functions need to access the terms that
represent class c and its superclasses to do their work. The equations that imple-
ment initialPr, initialPr, and incrementObjCnt are listed in Appendix B. The braces
around the left-hand side ensure that Γ matches all the classes and interfaces, in-
cluding c and all its superclasses; without the braces, Γ could match any subset of
the configuration.1

As soon as we have an object in the system, we can start executing its active process.
This is what most of the remaining rewriting rules are about.

Rewrite Rule S2 (Null Statement)〈
o : c

∣∣ Pr: skip; S
〉

−→〈
o : c

∣∣ Pr: S
〉

Executing a skip statement amounts to eliminating it. An alternative to Rewrite
Rule S2 would be the equation〈

o : c
∣∣ Pr: skip; S

〉
,
〈
o : c

∣∣ Pr: S
〉
.

Both approaches work equally well for executing skip, because the statement is
terminating and deterministic. Statements that may not terminate (like while) or
that are nondeterministic (like �) must be modeled by rewrite rules, to keep the
equation system confluent and terminating. For consistency, we will systematically

1Another option would have been to use messages and equations to traverse the class hierarchy
[JO07]. However, this approach relies on specificities of Maude’s operational semantics and leads
to incorrect behavior under the logical semantics associated with Maude specifications.
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use rewrite rules to model the execution of a statement in an object. It might also be
tempting to define an equation skip , ε to eliminate all skip statements before they
are executed; however, this would have subtle consequences on � and |||, which
inspect the very first statement of each branch before committing to a branch.

Rewrite Rule S3 (Abnormal Termination)〈
o : c

∣∣ Pr: abort; S
〉

−→
∅

The abort statement causes the object to disappear. To other objects, an object that
has aborted is indistinguishable from an object that is infinitely slow to respond.

Rewrite Rule S4 (Inline Assertion)〈
o : c

∣∣ Pr: prove ϕ; S
〉

−→〈
o : c

∣∣ Pr: S
〉

Like skip, the prove statement is simply ignored. An alternative would have been
to check that the assertion ϕ (which must then be a Boolean expression) is true
each time the statement is executed. In this thesis, we favor an approach where
assertions specified by the programmer are formally verified before the program is
run, rather than tested at run-time [AJO04, JOT06].

Rewrite Rule S5 (Assignment)〈
o : c

∣∣ Pr: (z0, z̄) := (e0, ē); S, LVar: β, Att: α
〉

−→
if z0 in β then

〈
o : c

∣∣ Pr: z̄ := {ē}αβ; S, LVar: β[z0 7→ {e0}αβ], Att: α
〉

else
〈
o : c

∣∣ Pr: z̄ := {ē}αβ; S, LVar: β, Att: α[z0 7→ {e0}αβ]
〉

fi

The assignment statement takes a list of variables z0, z̄ and a list of expressions
e0, ē. We start by evaluating e0 in the state provided by α and β and assigning
that value to z0. If z0 is a local variable, we update the local state β; otherwise,
we update the object state α. Although the assignment statement requires several
rewrite steps (one for each variable we assign to), it appears to be simultaneous
because it evaluates all assigned expressions during the first step.

The in predicate checks whether a qualified identifier z is attributed a value by a
state σ. It is defined as follows:

Definition T5 (State Membership)

z in ∅ , false
z in σ[z′ 7→ v] , z = z′ ∨ z in σ

Example 4.5. Suppose a, b, and c are local variables with initial values A, B, and
C, respectively. The following execution shows that the assignment a, b, c := c, a, b
effectively shuffles the values of the three variables:
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〈
o : c′

∣∣ Pr: a, b, c := c, a, b, LVar: β[a 7→ A][b 7→ B][c 7→ C]
〉

S5−→ 〈
o : c′

∣∣ Pr: b, c := A, B, LVar: β[a 7→ C][b 7→ B][c 7→ C]
〉

S5−→ 〈
o : c′

∣∣ Pr: c := B, LVar: β[a 7→ C][b 7→ A][c 7→ C]
〉

S5−→ 〈
o : c′

∣∣ Pr: skip, LVar: β[a 7→ C][b 7→ A][c 7→ B]
〉

S2−→ 〈
o : c′

∣∣ Pr: ε, LVar: β[a 7→ C][b 7→ A][c 7→ B]
〉
.

The reduction of ε := ε to skip is handled implicitly by Definition T4. �

Rewrite Rule S6 (If Statement)〈
o : c

∣∣ Pr: if B then S1 else S2 fi; S, LVar: β, Att: α
〉

−→
if {B}αβ then

〈
o : c

∣∣ Pr: S1; S, LVar: β, Att: α
〉

else
〈
o : c

∣∣ Pr: S2; S, LVar: β, Att: α
〉

fi

If the condition B evaluates to true, the if statement expands to its then branch;
otherwise, it expands to its else branch. Notice that the first if construct in the
rule above is a Creol statement, while the second if is a conditional expression in
rewriting logic.

Rewrite Rule S7 (While Loop)〈
o : c

∣∣ Pr:
[
inv ϕ

]
while B do S od; S′, LVar: β, Att: α

〉
−→

if {B}αβ then
〈
o : c

∣∣ Pr: S; while B do S od; S′, LVar: β, Att: α
〉

else
〈
o : c

∣∣ Pr: S′, LVar: β, Att: α
〉

fi

If the condition B evaluates to true, the while statement expands to its body fol-
lowed by another instance of the loop; otherwise, the entire statement is eliminated.

Rewrite Rule S8 (Guard Crossing)〈
o : c

∣∣ Pr: await g; S, LVar: β, Att: α, MsgQ: Q
〉

−→〈
o : c

∣∣ Pr: S, LVar: β, Att: α, MsgQ: Q
〉

if satisfied(g, αβ, Q)

An await statement whose guard evaluates to true is equivalent to a skip state-
ment. The satisfied predicate is defined recursively using equations:

Definition T6 (Guard Satisfaction)

satisfied(B, σ, Q) , {B}σ

satisfied(l?, σ, Q) , replied({l}σ, Q)
satisfied(wait, σ, Q) , false
satisfied(g1 & g2, σ, Q) , satisfied(g1, σ, Q) ∧ satisfied(g2, σ, Q)

A Boolean guard is satisfied if it evaluates to true. A reply guard l? is satisfied if the
reply with label l is in the object’s incoming message queue. The label identifier l
must be evaluated to yield a sequence number. A wait guard is considered false.
The replied predicate is defined below.
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Definition T7 (Replied Predicate)

replied(k, ∅) , false
replied(k, {Invoke(o, k′, m@c, v̄)} ∪Q) , replied(k, Q)
replied(k, {Reply(k′, v̄)} ∪Q) , k = k′ ∨ replied(k, Q)

The replied(k, Q) predicate determines whether the message queue Q contains the
reply associated with the asynchronous message call with sequence number k.

Rewrite Rule S9 (Nondeterministic Choice)〈
o : c

∣∣ Pr: (S1� S2); S, LVar: β, Att: α, MsgQ: Q
〉

−→〈
o : c

∣∣ Pr: S1; S, LVar: β, Att: α, MsgQ: Q
〉

if ready(S1, αβ, Q)

The � statement may choose its left branch if it is ready. By letting � be commuta-
tive in the rewriting logic, the rule may also choose the right branch if that one is
ready. This saves us from formulating a separate rule for the right branch. If both
branches are ready, the rule may be applied in two different ways.

Rewrite Rule S10 (Nondeterministic Merge)〈
o : c

∣∣ Pr:
(∣∣∣∣∣∣n

i=1 Si
)
; S, LVar: β, Att: α, MsgQ: Q

〉
−→〈

o : c
∣∣ Pr:

(
S1 ///

∣∣∣∣∣∣n
i=2 Si

)
; S, LVar: β, Att: α, MsgQ: Q

〉
if ready(S1, αβ, Q)

The ||| operator makes a nondeterministic choice among its branches based on their
readiness, to determine which branch should start executing. The actual execution
of the branch is performed by the auxiliary operator ///. To allow the selection of a
random branch Si, we let the branches of ||| commute inside the rewriting logic.

Rewrite Rule S11 (Left Merge)〈
o : c

∣∣ Pr:
(
(s; S′1) ///

∣∣∣∣∣∣n
i=2 Si

)
; S, LVar: β, Att: α, MsgQ: Q

〉
−→

if enabled(s, αβ, Q) then〈
o : c

∣∣ Pr: s;
(
S′1 ///

∣∣∣∣∣∣n
i=2 Si

)
; S, LVar: β, Att: α, MsgQ: Q

〉
else〈

o : c
∣∣ Pr:

(
(s; S′1) |||

∣∣∣∣∣∣n
i=2 Si

)
; S, LVar: β, Att: α, MsgQ: Q

〉
fi

The /// operator executes its left branch statement by statement until it encounters
a disabled statement. At that point, it lets the ||| operator make a nondeterministic
choice between its n branches again. Because it prefers the left branch over the right
branch, /// is not commutative. The reduction of ε /// |||ni=2 Si to |||ni=2 Si is handled
by Definition T4.

The history of ||| is convoluted. In earlier versions of Creol [Arn03, JO04a], S1 ||| S2
expanded to (S1; S2) � (S2; S1), which lead to very coarse-grained interleaving.
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Following a suggestion by Are Husby [Hus05], newer versions of the Creol inter-
preter use a non-commutative version of S1 ||| S2 that gives precedence to S1 if both
branches are ready. Our formulation of ||| in terms of /// is inspired by Johnsen and
Owe [JO07]. This commutative definition seems preferable to the non-commutative
definition for the following reasons:

1. Commutativity relieves the programmer from the need to choose between
S1 ||| S2 and S2 ||| S1 where both would work, enhancing the clarity of the
program and avoiding an overspecification of the solution [Dij75].

2. The commutative definition leads to a simpler axiomatization.

3. Similar merge operators found in other concurrent languages [AO97, And00]
or process calculi [Hoa85, Mil99] are commutative.

Moreover, programmers who desire one of the two other semantics can usually use
� or ||| to achieve it. For example, the non-commutative definition of S1 ||| S2 can
be approximated by (skip; S1) ||| (await wait; S2).

The definition of ||| as an n-ary operator is original to this thesis. It allows us to
distinguish between (S1 ||| S2) ||| S3 and S1 ||| (S2 ||| S3) and S1 ||| S2 ||| S3 semantically,
enabling a cleaner axiomatization.

Rewrite Rule S12 (Parenthesized Statement)〈
o : c

∣∣ Pr: (S); S′
〉

−→〈
o : c

∣∣ Pr: S; S′
〉

Executing a parenthesized statement amounts to executing the statement within
the parentheses. To stress the difference between Creol parentheses (which are part
of the syntax) and rewriting logic parentheses (which are part of the semantics),
Creol parentheses are shown in bold.

Rewrite Rule S13 (Object Creation)

{
〈
o : c

∣∣ Pr: z := new c′
[
(ē)
]
; S, LVar: β, Att: α

〉
Γ }
−→
{
〈
o : c

∣∣ Pr: z := o′; S, LVar: β, Att: α
〉〈

o′ : c′
∣∣ Pr: initialPr(c′({ē}αβ), Γ), LVar: ∅,

Att: initialAtt(c′, Γ)[self 7→ o′], PrQ: ∅, MsgQ: ∅, LabCnt: 0
〉

incrementObjCnt(c′, Γ) }

if o′ := nextOId(c′, Γ)

A new statement creates an instance of a given class. The new object’s identity is
computed by the nextOId auxiliary function and bound to o′; it is of the form c′#n,
where c′ is the class name and n a sequence number that uniquely identifies this
object among c′ instances. Like in Rewrite Rule S1, the Pr and Att fields are set up
using the initialPr and initialAtt auxiliary functions, and Γ matches the rest of the
system configuration.
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In the parent object, creating an object is viewed as an assignment of o′ to a variable.
In the instantiated class, the object counter is incremented (by incrementObjCnt) to
ensure that object identities remain unique.

Rewrite Rule S14 (Process Suspension)〈
o : c

∣∣ Pr: S, LVar: β, Att: α, PrQ: P, MsgQ: Q
〉

−→〈
o : c

∣∣ Pr: ε, LVar: ∅, Att: α, PrQ: P ∪ {〈clearWait(S), β〉}, MsgQ: Q
〉

if ¬enabled(S, αβ, Q)

A statement is enabled unless it would immediately release the processor if exe-
cuted. If the next statement is not enabled, the current process is put on the process
queue, together with its local state. The enabled predicate is defined below.

Definition T8 (Statement Enabledness)

enabled(await g; S, σ, Q) , satisfied(g, σ, Q)
enabled((S1� S2); S, σ, Q) , enabled(S1, σ, Q) ∨ enabled(S2, σ, Q)
enabled((|||ni=1 Si); S, σ, Q) ,

∨n
i=1 enabled(Si, σ, Q)

enabled((S); S′, σ, Q) , enabled(S, σ, Q)
enabled(S, σ, Q) , true [otherwise]

A statement is enabled unless it would release the processor immediately.

Definition T9 (Wait Guard Clearer)

clearWait(await g; S) , await cleared(g); S
clearWait((S1� S2); S) , (clearWait(S1)� clearWait(S2)); S
clearWait((|||ni=1 Si); S) , (|||ni=1 clearWait(Si)); S
clearWait((S); S′) , (clearWait(S)); S′

clearWait(S) , S [otherwise]

Definition T10 (Cleared Guard)

cleared(wait) , true
cleared(g1 & g2) , cleared(g1) & cleared(g2)
cleared(g) , g [otherwise]

Informally, wait evaluates to false the first time it is encountered and to true af-
terward. This is achieved formally by letting satisfied(wait, σ, Q) , false and by
replacing leading wait guards with true when the process is suspended.

Rewrite Rule S15 (Process Activation)〈
o : c

∣∣ Pr: ε, LVar: β, Att: α, PrQ: {〈S′, β′〉} ∪ P, MsgQ: Q
〉

−→〈
o : c

∣∣ Pr: S′, LVar: β′, Att: α, PrQ: P, MsgQ: Q
〉

if ready(S′, αβ′, Q)

While a process is suspended, other processes may be activated. It is also possible
that the suspended process is reactivated immediately afterward, if it has become
enabled in the meantime as a result of an incoming reply or a cleared wait guard.



4.3. An Operational Semantics in Rewriting Logic 57

Maude’s facilities for associative, commutative, and identity (AC1) matching allow
{〈S′, β′〉} to match any process in PrQ. The ready predicate is defined below.

Definition T11 (Statement Readiness)

ready(l?(z̄); S, σ, Q) , satisfied(l?, σ, Q)
ready(await g; S, σ, Q) , satisfied(g, σ, Q)
ready((S1� S2); S, σ, Q) , ready(S1, σ, Q) ∨ ready(S2, σ, Q)
ready((|||ni=1 Si); S, σ, Q) ,

∨n
i=1 ready(Si, σ, Q)

ready((S); S′, σ, Q) , ready(S, σ, Q)
ready(S, σ, Q) , true [otherwise]

Intuitively, a statement is ready if it is enabled and doesn’t block immediately.

Rewrite Rule S16 (Asynchronous Invocation)〈
o : c

∣∣ Pr: l !O.m(ē); S, LVar: β, Att: α, LabCnt: k
〉

−→〈
o : c

∣∣ Pr: S, LVar: β[l 7→ k], Att: α, LabCnt: k + 1
〉

Invoke(o, k, m, {ē}αβ) to {O}αβ

Asynchronous method calls lead to the creation of an invocation message that is
sent to the called object. If O equals null or refers to an object that has aborted, the
invocation message will in effect be ignored.

Each method call originated by a given object is identified by a unique sequence
number k. This number is assigned to the local variable l, which corresponds to the
label l. We assume that there is no local variable or parameter called l that clashes
with the label l. This can easily be verified by the type checker. Some versions of
Creol require the programmer to declare all labels before using them [Arn03], but
since labels may appear only in certain syntactic positions where other variables
are not allowed (l ! and l?), such declarations are superfluous.

Rewrite Rule S17 (Local Asynchronous Invocation)〈
o : c

∣∣ Pr: l !m@c′(ē); S, LVar: β, Att: α, LabCnt: k
〉

−→〈
o : c

∣∣ Pr: S, LVar: β[l 7→ k], Att: α, LabCnt: k + 1
〉

Invoke(o, k, m@c′, {ē}αβ) to o

Local method calls are initiated in essentially the same way as calls to self .

Rewrite Rule S18 (Transport of Invocation Message)〈
o : c

∣∣ MsgQ: Q
〉

Invoke(o′, k, m@c′, v̄) to o
−→〈

o : c
∣∣ MsgQ: Q ∪ {Invoke(o′, k, m@c′, v̄)}

〉
At some point after an invocation message has been sent, the recipient receives it.
There are no guarantees whatsoever as to when this rule is applied. In particular,
Rewrite Rule S18 allows message overtaking, meaning that messages sent from
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object o to object o′ might arrive in a different order than they were sent. They may
also be delayed forever, if the rule is never applied. AC1 matching applies.

Rewrite Rule S19 (Method Binding)

{
〈
o : c

∣∣ PrQ: P, MsgQ: {Invoke(o′, k, m@c′, v̄)} ∪Q
〉

Γ }
−→
{
〈
o : c

∣∣ PrQ: P ∪ boundMtd(if c′ = none then c else c′ fi, o′, k, m, v̄, Γ),
MsgQ: Q

〉
Γ }

A pending invocation message gives rise to a new pending process. The boundMtd
auxiliary function finds the specified method and returns a pair 〈S, β〉 storing the
code and initial state of the process. Thanks to the identity axiom m = m@none,
the pattern m@c′matches both unqualified (m) and qualified (m@c′) method names.
The initial state consists of the method’s local variables and parameters, including
the implicit caller and label parameters. The implementation of boundMtd is in
Appendix B.

Rewrite Rule S20 (Method Return)〈
o : c

∣∣ Pr: return ē; S, LVar: β, Att: α
〉

−→〈
o : c

∣∣ Pr: S, LVar: β, Att: α
〉

Reply({label}β, {ē}αβ) to {caller}β

The return statement is added implicitly at the end of every method body by bound-
Mtd. It sends a reply message to the caller along with the output arguments.

Rewrite Rule S21 (Transport of Reply Message)〈
o : c

∣∣ MsgQ: Q
〉

Reply(k, v̄) to o
−→〈

o : c
∣∣ MsgQ: Q ∪ {Reply(k, v̄)}

〉
A reply message is eventually received by the calling object and added to its in-
coming message queue.

Rewrite Rule S22 (Asynchronous Reply)〈
o : c

∣∣ Pr: l?(z̄); S, LVar: β, MsgQ: {Reply(k, v̄)} ∪Q
〉

−→〈
o : c

∣∣ Pr: z̄ := v̄; S, LVar: β[l 7→ −1], MsgQ: Q
〉

if {l}β = k

A statement l?(z̄) may proceed only if the corresponding reply message has ar-
rived. We can find this out by looking for a reply message numbered k, where k is
l’s value. The output parameter values stored in the reply are assigned to z̄.

The next two rules are necessary to avoid internal deadlocking when a local syn-
chronous call is performed:
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Rewrite Rule S23 (Local Reentry)〈
o : c

∣∣ Pr: l?(z̄); S, LVar: β, PrQ: {〈S′, β′〉} ∪ P
〉

−→〈
o : c

∣∣ Pr: S′; continue {l}β, LVar: β′, PrQ: P ∪ {〈l?(z̄); S, β〉}
〉

if {caller}β′ = o ∧ {label}β′ = {l}β

Rewrite Rule S24 (Local Continuation)〈
o : c

∣∣ Pr: continue k, LVar: β, PrQ: {〈l?(z̄); S, β′〉} ∪ P
〉

−→〈
o : c

∣∣ Pr: l?(z̄); S, LVar: β′, PrQ: P
〉

if {l}β′ = k

If the l?(z̄) statement corresponds to a pending local method invocation, we tem-
porarily let that method proceed and append a continue statement (instead of
blocking forever). The continue statement gives control back to the process that
attempted to execute l?(z̄); it shouldn’t occur in actual programs.

Example 4.6. Consider the local call cube(4; n). By Definition T3, the statement is
first expanded to ν !cube(4); ν?(n). From there, we have the following execution:〈

o : c
∣∣ Pr: ν !cube(4); ν?(n), LVar: β, PrQ: P, MsgQ: Q, LabCnt: k

〉
S17−→ 〈

o : c
∣∣ Pr: ν?(n), LVar: β[ν 7→ k], PrQ: P, MsgQ: Q, LabCnt: k + 1

〉
Invoke(o, k, cube, 4) to oS18−→ 〈
o : c

∣∣ Pr: ν?(n), LVar: β[ν 7→ k], PrQ: P, MsgQ: Q ∪ {Invoke(o, k, cube, 4)}
〉

S19−→ 〈
o : c

∣∣ Pr: ν?(n), LVar: β[ν 7→ k], PrQ: P∪ {〈y := x ∗ x; return y; continue k,
[caller 7→ o][label 7→ k][x 7→ 4][y 7→ 0]〉}

MsgQ: Q
〉

S23−→ 〈
o : c

∣∣ Pr: y := x ∗ x; return y; continue k,
LVar: [caller 7→ o][label 7→ k][x 7→ 4][y 7→ 0],
PrQ: P ∪ {〈ν?(n), β[ν 7→ k]〉}, MsgQ: Q

〉
S5−→ 〈

o : c
∣∣ Pr: return y; continue k, LVar: [caller 7→ o][label 7→ k][x 7→ 4][y 7→ 64],

PrQ: P ∪ {〈ν?(n), β[ν 7→ k]〉}, MsgQ: Q
〉

S20−→ 〈
o : c

∣∣ Pr: continue k, LVar: [caller 7→ o][label 7→ k][x 7→ 4][y 7→ 64],
PrQ: P ∪ {〈ν?(n), β[ν 7→ k]〉}, MsgQ: Q

〉
Reply(k, 64) to oS24−→ 〈
o : c

∣∣ Pr: ν?(n), LVar: β[ν 7→ k], PrQ: P, MsgQ: Q
〉

Reply(k, 64) to oS21−→ 〈
o : c

∣∣ Pr: ν?(n), LVar: β[ν 7→ k], PrQ: P, MsgQ: Q ∪ Reply(k, 64)
〉

S22−→ 〈
o : c

∣∣ Pr: n := 64, LVar: β[ν 7→ −1], PrQ: P, MsgQ: Q
〉

S5−→ 〈
o : c

∣∣ Pr: skip, LVar: β[ν 7→ −1][n 7→ 64], PrQ: P, MsgQ: Q
〉

S2−→ 〈
o : c

∣∣ Pr: ε, LVar: β[ν 7→ −1][n 7→ 64], PrQ: P, MsgQ: Q
〉
. �
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To complete the semantics of Creol, we will define the {e}σ function, which we
used in several places to determine the value of expression e in a given state σ.

Definition T12 (Evaluation of Variable)

{z}σ[z′ 7→v] , if z = z′ then v else {z}σ fi

Evaluating a variable consists of looking it up in the state. The function is defined
only for existing variables. If an undefined variable z is supplied, the result is an
irreducible term {z}∅ of kind [Value].

Definition T13 (Evaluation of Generic Expression)

{if B then e1 else e2 fi}σ , if {B}σ then {e1}σ else {e2}σ fi
{(e)}σ , {e}σ

A Creol if expression evaluates to a rewriting logic if expression, where the condi-
tion and the two branches have been evaluated. A parenthesized expression eval-
uates to the value of the expression in parentheses.

Definition T14 (Evaluation of Arithmetic Expression)

{n}σ , n
{+A}σ , {A}σ

{−A}σ , −{A}σ

{A1 ∗ A2}σ , {A1}σ ∗ {A2}σ

{A1 / A2}σ , {A1}σ / {A2}σ

{A1 + A2}σ , {A1}σ + {A2}σ

{A1 − A2}σ , {A1}σ − {A2}σ

For evaluating arithmetic expressions, we rely on operators specified algebraically
by equations. Tools like Maude already provide the most important built-in oper-
ators for unbound integers. The operator precedence specified in Section 4.1 must
be respected when evaluating arithmetic expressions.

Definition T15 (Evaluation of Boolean Expression)

{true}σ , true
{false}σ , false
{e1 R e2}σ , {e1}σ R {e2}σ

{¬B}σ , ¬{B}σ

{B1 ∧ B2}σ , {B1}σ ∧ {B2}σ

{B1 ∨ B2}σ , {B1}σ ∨ {B2}σ

Boolean expressions are evaluated in an analogous way to arithmetic expressions.

Definition T16 (Evaluation of Object Expression)

{o}σ , o

Object identities (including the special identity null) evaluate to themselves.
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Definition T17 (Evaluation of Expression List)

{ε}σ , ε

{e0, ē}σ , {e0}σ, {ē}σ if ē 6= ε

Finally, evaluating a list of expressions amounts to evaluating each expression.

The operational semantics defined by Rewrite Rules S1–S24 can be used to simulate
the execution of a Creol program. In fact, the Creol interpreter of Appendix B is
essentially a Maude specification of the rewrite rules and equations presented here.
Such an interpreter simulates an entire system of objects communicating with each
other. Using Maude’s search capabilities, we can analyze the system in various
ways. We can also implement a custom execution strategy to guide Maude when
two or more rules are applicable. This can be used to obtain more random (or
fairer) executions than are achieved by the built-in rew and frew strategies [AJO04,
JOT06].

There is, however, one significant limitation in what we have done so far: While
our semantics correctly captures the behavior of a closed system, it doesn’t directly
cater for open systems, which are characterized as follows:

1. Objects communicate through interfaces and generally don’t have access to
each other’s implementations.

2. Objects and classes may be added at any time to the system.

3. Classes should be upgradable while the system is running.

Point 1 is a fundamental issue for us. The operational semantics presented in this
section captures the execution of a monolithic system, but we have no satisfactory
way to simulate the activity of a single process taken in isolation once we abstract
away the environment with which it communicates (the other processes executing
in the same object and the other objects in the system). Even for a closed system,
this is an issue if the system includes a proprietary third-party component whose
source code is kept secret.

Point 2 reflects a limitation in Creol’s syntax as we have defined it here. For our
convenience, we have assumed the existence of a root object that launches the sys-
tem, but this approach is generally impractical in a distributed setting, where there
might be several root objects created independently of each other. To remove this
limitation, we would need to extend the Creol syntax to allow different Creol pro-
grams to communicate with each other [Kya06].

Point 3 raises a particularly difficult issue. On the one hand, we want to verify
formally that a class update is safe before applying it to a system in use; on the
other hand, we want to reuse existing correctness proofs as much as possible. This
issue is currently being researched [Ofs05, YJO06]; we will not consider it here.

4.4 An Alternative Semantics for Open Systems

In this section, we will define an operational semantics that captures the behavior
of a process seen in isolation, paving the way for the compositional proof system
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introduced in Chapter 5. Conceptually, the semantics focuses on a single process
executing in an unspecified environment. In this setting, a system configuration
will always contain exactly one object executing one process.

Following Dahl [Dah77], we introduce the concept of a communication history. A
communication history records the creation of objects and the messages that are
exchanged between objects in a distributed system—in other words, the objects’
observable behavior. More formally, a history h is a finite sequence of communica-
tion events. Let o, o′ ∈ OId, c, m ∈ Id, v̄, w̄ ∈ L(Value), and k ∈ N. The following
are communication events:

[o→o′.new c(v̄)] object creation
[o→o′.m@c(v̄)]k asynchronous invocation
[o←o′.m@c(v̄; w̄)]k asynchronous reply

For invocation and reply events, v̄ stores the values passed to the method, and k
is the sequence number of the method call. For reply events, w̄ stores the return
values. To simplify the notation, we will write

[o↔o′.m@c(v̄; w̄)]k

as an abbreviation for

[o→o′.m@c(v̄)]k _ [o←o′.m@c(v̄; w̄)]k,

where _ denotes concatenation of histories. In addition to these inter-object com-
munication events, we also record how processes compete for the processor within
a single object. This is captured by the following control events:

[o.initialized] termination of initial process
[o.release] processor release
[o.reenter]k local reentry

The initialized event is recorded when the initial process of an object has termi-
nated. The release and reenter events correspond to applications of Rewrite Rules
S14 (Process Suspension) and S23 (Local Reentry) in the semantics of Section 4.3.

Example 4.7. Consider the producer–consumer program from the beginning of the
chapter. The system starts when Main is instantiated. Next, the Main object’s run
method instantiates Buffer, Producer, and Consumer. At that point, the Producer ob-
ject repeatedly calls put on the Buffer object, and the Consumer object repeatedly
calls get. The following sequence of events is a possible history for this system
when the second value has reached the consumer:

[null→M.new Main()] _ [M→M.run()]0 _ [M.reenter]0 _

[M→B.new Buffer()] _ [M→P.new Producer(B)] _

[M→C.new Consumer(B)] _ [M←M.run()]0 _ [M.initialized] _

[P→P.run()]0 _ [C→C.run()]0 _ [P↔B.put(1;)]1 _ [C↔B.get(; 1)]1 _

[P↔B.put(2;)]2 _ [C↔B.get(; 2)]2.

In the above, M, B, P, and C denote Main#0, Buffer#0, Producer#0, and Consumer#0,
respectively. �
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The history represents a snapshot of the system’s execution at a given point and is
therefore always finite. When designing or analyzing a complex system, we often
want to spell out the set of possible histories for that system. Knowing the set of all
possible histories allows us to deduce safety properties about the system.

Let us define some notations for histories. For an event υ and a history h, the
predicate υ in h is true iff υ occurs in h, and υ not in h expresses the negation of
υ in h. Given two histories h and h′, h ew h′ is true if and only if h ends with h′ (that
is, h′ is a suffix of h). Similarly, h bw h′, also written h′ � h, is true if and only if h
begins with h′. The projection h

/
A of history h onto the set of events (or alphabet )

A returns the longest subsequence of h that consists exclusively of events from A.
The length of a history h is given by #(h). The history of length 0 is written ε. Event
sets are often represented using wildcard patterns. For example:

[o→∗] , {[o→o′.new c(v̄)] | o′ ∈ OId, c ∈ Id, v̄ ∈ L(Value)}
∪ {[o→o′.m@c(v̄)]k | o′ ∈ OId, m, c ∈ Id, v̄ ∈ L(Value), k ∈N}

[∗←o] , {[o′←o.m@c(v̄; w̄)]k | o′ ∈ OId, m, c ∈ Id, v̄, w̄ ∈ L(Value), k ∈N}.

We will also need the following event sets:

ino , [∗→o] ∪ [o←∗]
outo , [o→∗] ∪ [∗←o]
ctlo , [o.initialized] ∪ [o.release] ∪ [o.reenter]
o , ino ∪ outo ∪ ctlo.

We are now ready to define an alternative version of Creol’s operational semantics
that focuses on the execution of a single process. The new “open system” opera-
tional semantics uses a communication history to abstract away the environment.
The semantics reuses Rewrite Rules S2–S12 and S22 from the previous section,
because these rules involve no interaction between objects or between processes
within an object. Rewrite Rules S1, S13–S21, S23, and S24 are replaced with a new
set of rules that operate on the history. The table below compares the closed system
semantics of Section 4.3 with the open system semantics.

Name of Rewrite Rule Closed System Open System
System Bootstrapping S1 −
Object Bootstrapping − S1′α
Method Bootstrapping − S1′β
Null Statement S2 S2
Abnormal Termination S3 S3
Inline Assertion S4 S4
Assignment S5 S5
If Statement S6 S6
While Loop S7 S7
Guard Crossing S8 S8
Nondeterministic Choice S9 S9
Nondeterministic Merge S10 S10
Left Merge S11 S11
Parenthesized Statement S12 S12
Object Creation S13 S13′
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Name of Rewrite Rule Closed System Open System
Process Suspension S14

}
S14′

Process Activation S15
Asynchronous Invocation S16 S16′

Local Asynchronous Invocation S17 S17′

Transport of Invocation Message S18 −
Method Binding S19 −
Method Return S20 S20′

Transport of Reply Message S21 −
Asynchronous Reply S22 S22
Local Reentry S23

}
S23′

Local Continuation S24
Parallel Activity − S25′

In the open system semantics, Creol objects are represented by terms of the form〈
o : c

∣∣ Pr: S, LVar: β, Att: α, MsgQ: Q, Asum: ϕ, Guar: ψ, ROAtt: Z̄
〉
.

The attributes α now include a distinguished H attribute that represents the object’s
communication history. The history could also have been stored in a separate field,
or as a separate object, but making it an attribute will simplify the definition of
Hoare-style correctness formulas in Chapter 5.

We omit the LabCnt field because we can deduce its value from the communica-
tion history. Technically, the MsgQ field is also redundant now that we record the
history; we keep it because Rewrite Rules S8–S11 and S22 rely on it. Finally, since
we concentrate on one process’s execution, we can also leave out PrQ.

On the other hand, we introduce a pair of fields, Asum and Guar, that store an
assume–guarantee specification derived from the asum and guar clauses supplied
by the programmer in the class declaration for c and in the declarations of the in-
terfaces implemented by c [JO02, JO04b]. We also introduce a list of read-only at-
tributes (ROAtt), which we will use to strengthen the guarantee.

The assumption is the responsibility of the objects in the environment. The guar-
antee is the responsibility of the self object, and must hold after initialization of
the object, be maintained by all methods, and hold before all processor releases, as
long as the assumption holds. Together, the assumption and the guarantee can be
seen as an invariant for the class. In Section 5.5, we will see how to prove that a
guarantee is valid for a class.

Example 4.8. The following interface provides access to a reference counter:

interface ReferenceCounter
begin
with any:

op inc
op dec
op getCount(out n : int)

asum #(H
/
[∗→self .inc()]) ≥ #(H

/
[∗→self .dec()])

guar ∃x. G(H , x)
end
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The inc and dec methods are expected to increment and decrement the counter by
one, and the getCount method retrieves the current value of the counter. The pred-
icate G(h, x) used in the guar clause is defined recursively as follows:

G(ε, x) , x = 0
G(h _ [o→self .inc()]k, x) , x > 0 ∧ G(h, x− 1)
G(h _ [o→self .dec()]k, x) , G(h, x + 1)
G(h _ [o←self .getCount(; n)]k, x) , n = x ∧ G(h, x)
G(h _ υ, x) , G(h, x). [otherwise]

The guar clause expresses that the reference counter has a current value (repre-
sented by x) corresponding to the number of times inc has been called, minus the
number of times dec has been called. It further asserts that getCount calls return
the current value and that the current value stays positive as long as the assertion
holds. The asum clause expresses the requirement that the history must at all times
contain at least as many calls to inc as to dec.

The class declaration below implements the methods declared in the interface and
respects the assume–guarantee specification:

class SimpleReferenceCounter
implements ReferenceCounter

begin
var value : int

with any:
op inc is

value := value + 1
op dec is

value := value− 1
op getCount(out n : int) is

n := value
end �

In the closed system semantics, we could ignore interfaces altogether, since we had
access to the code for all the classes. In the open system semantics, interface decla-
rations are important because we will need their assume–guarantee specifications.
We represent Creol interfaces by terms of the form〈

i : Interface
∣∣ Inh: ς̄, Param: X̄, Asum: ϕ, Guar: ψ

〉
.

Finally, Creol classes are represented by terms of the form〈
c : Class

∣∣ Impl: ς̄, Cntc: ς̄′, Inh: ς̄′′, Param: X̄, Att: W̄, Mtd: M,
Asum: ϕ, Guar: ψ

〉
.

For classes, we now store the assume–guarantee specification provided in the asum
and guar clauses. We also store the interfaces listed in a class’s implements and
contracts clauses in the Impl and Ctrc fields; this will allow us to retrieve the su-
perinterfaces’ assume–guarantee specifications. The ObjCnt field, which we used
in the closed system semantics to give unique names to new objects, is no longer
necessary, because we can generate unique names by inspecting H .
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We will now review the rewrite rules that are specific to the open system semantics,
starting with object creation.

Rewrite Rule S13′ (Object Creation)〈
o : c

∣∣ Pr: z := new c′(ē); S, LVar: β, Att: α
〉

−→〈
o : c

∣∣ Pr: z := o′; S, LVar: β, Att: α[H 7→ h]
〉

if o′ /∈ objectIds({H }α) ∧ parent(o′) = o ∧ h := {H }α
_ [o→o′.new c′({ē}αβ)]

With the open system semantics, a new statement allocates a fresh object identity o′

and extends the communication history H with an object creation event. The new
object is now part of the environment embodied by the communication history. The
objects created by o have arbitrary names o′ such that parent(o′) = o. One option is
to call o’s children o#0, o#1, o#2, and so on, and to let parent(o#n) = o; however,
Rewrite Rule S13 does not mandate any specific naming scheme. Because we re-
quire that o′ is fresh, the parenthood graph remains acyclic.

Example 4.9. The following rewrite step illustrates Rewrite Rule S13′ in the context
of the producer–consumer program:〈

M : Main
∣∣ Pr: cons := new Consumer(buf ); return ε, Att: α[H 7→ h0]

〉
S13′−→ 〈

M : Main
∣∣ Pr: cons := C; return ε;

Att: α[H 7→ h0
_ [M→C.new Consumer(B)]]

〉
,

where

h0 ≡ [null→M.new Main()] _ [M→M.run()]0 _ [M.reenter]0 _

[M→B.new Buffer()] _ [M→P.new Producer(B)].

Following the proposed naming scheme, B, P, and C stand for M#0, M#1, and M#2,
respectively. �

Rewrite Rule S16′ (Asynchronous Invocation)〈
o : c

∣∣ Pr: l !O.m(ē); S, LVar: β, Att: α
〉

−→〈
o : c

∣∣ Pr: S, LVar: β[l 7→ k], Att: α[H 7→ h]
〉

if [o→∗]k not in {H }α ∧ h := {H }α
_ [o→{O}αβ.m({ē}αβ)]k

Rewrite Rule S17′ (Local Asynchronous Invocation)〈
o : c

∣∣ Pr: l !m@c′(ē); S, LVar: β, Att: α
〉

−→〈
o : c

∣∣ Pr: S, LVar: β[l 7→ k], Att: α[H 7→ h]
〉

if [o→∗]k not in {H }α ∧ h := {H }α
_ [o→o.m@c′({ē}αβ)]k

Asynchronous method calls simply extend the history with a new invocation event.
The [o→∗]k not in {H }α condition ensures that k is a fresh sequence number.
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Rewrite Rule S20′ (Method Return)〈
o : c

∣∣ Pr: return ē; S, LVar: β, Att: α
〉

−→〈
o : c

∣∣ Pr: S, LVar: β, Att: α[H 7→ h]
〉

if h := {H }α
_ replyEvent({H }α, o, {caller}β, {label}β, {ē}αβ)

Returning from a method extends the history with a reply event. The auxiliary
function replyEvent determines the reply event by inspecting the history, which
should contain a corresponding invocation event. If [o′→o.m(v̄)]k in h, then reply-
Event(h, o, o′, k, w̄) is [o′←o.m(v̄; w̄)]k.

Rewrite Rule S14′ (Process Suspension and Reactivation)〈
o : c

∣∣ Pr: S, LVar: β, Att: α, MsgQ: Q, Asum: ϕ, Guar: ψ, ROAtt: Z̄
〉

−→〈
o : c

∣∣ Pr: clearWait(S), LVar: β, Att: α′, MsgQ: replies({H }α′ , o),
Asum: ϕ, Guar: ψ, ROAtt: Z̄

〉
if ¬enabled(S, αβ, Q) ∧ release(ϕ, ψ, o, {caller}β, {label}β, Z̄, α, α′)
∧ enabled(clearWait(S), α′β, replies({H }α′ , o))

If the next statement to execute is disabled, the process is suspended. When it
wakes up, it is in a different state in which the statement is enabled. The writable at-
tributes, including the history H , might have changed in the meantime; this is mod-
eled by replacing α with α′ in the Att field. In addition, the MsgQ field is updated
to reflect the new history. The constraint release(ϕ, ψ, o, {caller}β, {label}β, Z̄, α, α′)
restricts the values that the attributes α′ may take. It is defined below.

Definition T18 (Processor Release Predicate)

release(ϕ, ψ, o, o′, k, Z̄, α, α′) , lwf ({H }α′ , o)
∧ {H }α

_ [o.release]� {H }α′

∧ mayAcquireProcessor({H }α′ , o, o′, k)
∧ pending({H }α′ , o′, o, k)
∧ compatibleStates(α, α′)
∧ readOnly(Z̄, α, α′)
∧
(
({H }α

_ [o.release])
/
(outo ∪ ctlo) =

{H }α′
/
(outo ∪ ctlo)⇒

α[H 7→ {H }α′ ] = α′
)

∧ ({ϕ ∧ ψ}α ⇒ {ϕ ∧ ψ}α′)

The preceding definition is complex because we want to precisely capture the effect
of a processor release on the object’s attributes and local history. By restricting the
nondeterminism associated with processor releases, each conjunct gives us some
potentially useful information about the new attribute state α′.

The first conjunct forces the new history to respect program-independent well-
formedness rules, defined below. The second conjunct expresses that the old his-
tory must be a prefix of the new history, and requires the presence of a release
event at the beginning of the history extension. The third conjunct ensures that the
new history ends with an event that releases the processor. The fourth conjunct
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states that the method call that released the processor should still be pending when
the processor is reacquired. Together, these conjuncts capture the idea that we first
release the processor, then other processes execute, and finally the processor is re-
leased again and we acquire it.

The last four conjuncts state that the new state has the same variables as the old
state, that the read-only attributes cannot change, that the writable attributes may
only be changed by the object itself, and that the assumption and the guarantee
should hold when the processor is reacquired if they held before it was released.

Definition T19 (History Well-Formedness)

wf (ε) , true
wf (h _ [o→o′.new c(v̄)]) , wf (h) ∧ o′ /∈ objectIds(h) ∧ parent(o′) = o
wf (h _ [o→o′.m@c(v̄)]k) , wf (h) ∧ [o→∗]k not in h
wf (h _ [o←o′.m@c(v̄; w̄)]k) , wf (h) ∧ pending(h, o, o′, k)
wf (h _ [o.initialized]) , wf (h) ∧ [o.initialized]k not in h
wf (h _ [o.release]) , wf (h)
wf (h _ [o.reenter]k) , wf (h) ∧ pending(h, o, o, k)

∧ [o.reenter]k not in h

Intuitively, a communication history is well-formed if new objects have unique
identities, if method invocations and replies match, and if initialized and reenter
events follow certain rules. We also require that a pair (o, k) uniquely identifies a
method call originating from an object o. This is all captured by the wf (h) predicate.

For local histories, we have an additional requirement—only events that originate
from o or that are sent to o may appear in o’s history. This is captured by the
lwf (h, o) predicate.

Definition T20 (Local History Well-Formedness)

lwf (h, o) , wf (h) ∧ h = h
/

o

Well-formedness is used to constrain nondeterministic history extensions. Since
Creol programs are strongly typed, we could tighten Definition T19 to incorporate
type safety.

Definition T21 (Processor Acquisition Predicate)

mayAcquireProcessor(h, o, o′, k)
, h

/
(outo ∪ ctlo) ew ([o.initialized] ∪ [o.release])
∨ (o = o′ ∧ h

/
(outo ∪ ctlo) ew [o.reenter]k)

∨ ∃k′. (h
/
(outo ∪ ctlo) ew [∗←o]k

′ ∧ [o.reenter]k
′
not in h)

The mayAcquireProcessor(h, o, o′, k) predicate is true if and only if the process identi-
fied by the caller o′ and sequence number k running in object o is allowed to acquire
the processor at the point in time described by the history h. A process can acquire
the processor in any of the following circumstances:

1. When the object initialization code terminates executing, the processor is
available to any pending process. This situation is identified by an initial-
ized event at the end of the history.
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2. Similarly, when a process explicitly releases the processor using await, the
processor is available to any pending process. This situation is identified by
a release event at the end of the history.

3. There is also the possibility that the process is at the receiving end of a local
reentry. This may occur only for self calls (hence the o = o′ condition) and is
identified by a reenter event.

4. Finally, when a method returns, the processor generally becomes available to
any process. The exception is when the method was reentered; in that case,
the processor is given to the process that performed the local reentry. This
corresponds to the execution of a continue statement in the closed system
semantics of Section 4.3.

Definition T22 (Pending Call Predicate)

pending(h, o, o′, k) , [o→o′.∗]k in h ∧ [o←o′.∗]k not in h

The pending(h, o, o′, k) predicate is true if and only if there is an unfinished method
invocation with sequence number k from o to o′.

Definition T23 (Read-Only Predicate)

readOnly(ε, α, α′) , true
readOnly((Z0, Z̄), α, α′) , {Z0}α = {Z0}α′ ∧ readOnly(Z̄, α, α′)

The readOnly(Z̄, α, α′) predicate is true if and only if the variables Z̄ have the same
values in states α and α′.

The compatibleStates(α, α′) predicate used in Definition T18 is given in Appendix B.

Rewrite Rule S23′ (Local Reentry and Continuation)〈
o : c

∣∣ Pr: l?(z̄); S, LVar: β, Att: α, Asum: ϕ, Guar: ψ, ROAtt: Z̄
〉

−→〈
o : c

∣∣ Pr: l?(z̄); S, LVar: β, Att: α′, Asum: ϕ, Guar: ψ, ROAtt: Z̄
〉

if pending({H }α, o, o, {l}β) ∧ reenter(ϕ, o, {caller}β, {label}β, {l}β, Z̄, α, α′)

If the label l is associated with a call to self that hasn’t been serviced yet, execut-
ing l?(z̄) gives the processor directly to the pending process. Control returns to
l?(z̄) when the pending call is completed. This behavior is captured by the reenter
predicate, defined below:

Definition T24 (Local Reentry Predicate)

reenter(ϕ, ψ, o, o′, k, k′, Z̄, α, α′) , lwf ({H }α′ , o)
∧ {H }α

_ [o.reenter]k
′ � {H }α′

∧ {H }α′ ew [o←o.∗]k′

∧ pending({H }α′ , o′, o, k)
∧ compatibleStates(α, α′)
∧ readOnly(Z̄, α, α′)
∧ ({ϕ ∧ ψ}α ⇒ {ϕ ∧ ψ}α′)
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The reenter predicate is very similar to release. To model the reentry and continua-
tion, we append a reenter event to the history before we release the processor, and
we require that the history ends with a matching reply event when we obtain the
processor again.

Example 4.10. In an unspecified environment, a local call l !cube(4); l?(n) may give
rise to the following execution:〈

o : c
∣∣ Pr: l !cube(4); l?(n), LVar: β, Att: α[H 7→ h0], Asum: true, Guar: true

〉
S17′−→ 〈

o : c
∣∣ Pr: l?(n), LVar: β[l 7→ 2], Att: α[H 7→ h0

_ [o→o.cube(4)]2]
〉

S23′−→ 〈
o : c

∣∣ Pr: l?(n), LVar: β[l 7→ 2],
Att: α[H 7→ h0

_ [o→o.cube(4)]2 _ [o.reenter]2 _ [o←o.cube(4; 666)]2
〉

S22−→ 〈
o : c

∣∣ Pr: n := 666, LVar: β[l 7→ −1]
〉
.

From the caller’s perspective, the cube method can return any value, including 666.
To remedy this, we would need to supply a guarantee ψ that relates the method’s
return value to its input. �

Rewrite Rule S25′ (Parallel Activity)〈
o : c

∣∣ Pr: S, Att: α, MsgQ: Q, Asum: ϕ
〉

−→〈
o : c

∣∣ Pr: S, Att: α[H 7→ h], MsgQ: replies(h, o), Asum: ϕ
〉

if interleave(ϕ, o, α, h)

Rewrite Rule S25′ lets us extend the history in a nondeterministic way with invo-
cation and reply events originating from the environment at any point during the
execution of a process. Notice that the attributes other than H are left unchanged
by the environment.

The nondeterministic extension of the history must abide by the following con-
straints: The environment must preserve the well-formedness of the history; the
environment may only append events to the history; the environment may only
produce events that do not originate from o; and the environment may not invali-
date the assumption ϕ. This is formalized by the following definition:

Definition T25 (Parallel Activity Interleaving Predicate)

interleave(ϕ, o, α, h) , lwf (h, o)
∧ {H }α � h
∧ {H }α

/
(outo ∪ ctlo) = h

/
(outo ∪ ctlo)

∧ ({ϕ}α ⇒ {ϕ}α[H 7→h])

We have now reviewed all the rules that can be used to simulate the execution of a
process. The remaining rules, S1′α and S1′β, serve as starting points for the other
rules by introducing an object term in the system configuration.

For the closed system semantics, Rewrite Rule S1 bootstrapped the system by in-
stantiating a root object. Here, we want to instantiate any process from any class.
This is achieved by letting the user specify which process to instantiate by supply-
ing a bootstrap object or bootstrap method command in the Creol program.
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The bootstrap object command instantiates the initial process running in an object,
which initializes the context parameters and calls init and run. The syntax is

bootstrap object o := new c(v̄) with parent o′

The bootstrap method command instantiates a process that starts as a result of an
asynchronous method invocation. The syntax is

bootstrap method o.m@c′(v̄)
with class c, caller o′, label k, history h

[
, attributes z̄ := w̄

]
The history and attributes clauses let us specify the exact initial state of the object
at the moment when the method acquires the processor and starts executing.

The semantics of the bootstrap commands is given by Rewrite Rules S1′α and S1′β.

Rewrite Rule S1′α (Object Bootstrapping)

{ bootstrap object o := new c(v̄) with parent o′

Γ }
−→
{
〈
o : c

∣∣ Pr: initialPr(c(v̄), Γ); H := H _ [o.initialized]
LVar: ∅, Att: initialAtt(c, Γ)[H 7→ h][self 7→ o], MsgQ: ∅,
Asum: ϕ, Guar: ψ, ROAtt: classROAtt(c, Γ)

〉
Γ }

if h := [o′→o.new c(v̄)]
∧ parent(o) = o′

∧ 〈ϕ, ψ〉 := classAGSpec(c, Γ)

Rewrite Rule S1′α creates a new instance of class c. The new instance’s Pr field is
initialized as it was in Rewrite Rule S1, using an auxiliary initialPr function, ex-
cept that we append a history assignment statement to the process to record an
[o.initialized] event when the initial process terminates. (In contrast, the other pro-
cesses terminate with a return statement, which generates a reply event.) The Att,
Asum, Guar, and ROAtt fields are initialized using auxiliary functions.

Rewrite Rule S1′β (Method Bootstrapping)

{ bootstrap method o.m@c′(v̄)
with class c, caller o′, label k, history h

[
, attributes z̄ := w̄

]
Γ }
−→
{
〈
o : c

∣∣ Pr: S, LVar: β, Att: [H 7→ h][self 7→ o][z̄ 7→ w̄],
MsgQ: replies(h, o), Asum: ϕ, Guar: ψ, ROAtt: classROAtt(c, Γ)

〉
Γ }

if lwf (h, o)
∧ h bw [∗→o.new c(∗)]
∧ mayAcquireProcessor(h, o, o′, k)
∧ [o′→o.m@c′(v̄)]k in h
∧ pending(h, o′, o, k)
∧ 〈S, β〉 := boundMtd(if c′ = none then c else c′ fi, o′, k, m, v̄, Γ)
∧ 〈ϕ, ψ〉 := classAGSpec(c, Γ)
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Rewrite Rule S1′β also creates an object term but initializes it differently. The
boundMtd function finds the method m@c′ and expands to the method’s code and
initial state, which are put into the Pr and LVar fields. The Att field is populated
with the history and attributes specified in the bootstrap command.

The side condition ensures that the local history is well-formed, that it starts with a
new event to create o as an instance of c, that it ends with an event that makes the
processor available to the call, and that it contains the pending call to m@c′.

Example 4.11. Let us simulate the execution of a call to the put method on an in-
stance of the Buffer class from Section 4.1. To restrict the activity of concurrent
processes, we add the following guarantee to the Buffer class declaration:

guar
(
∀j. H

/
outself ew [∗←self .put(j;)]⇒ full ∧ value = j

)
∧
(
H
/

outself ew [∗←self .get(; ∗)]⇒ ¬full
)

∧ H
/

outself �
(
[∗←self .put(j;)] _ [∗←self .get(; j)] some j

)∗
ψ

The first conjunct states that if the last method that returned was put, then full is
true and value stores the argument passed to put. The second conjunct states that
if the last method that returned was get, then full is false. The third conjunct states
that the replies for put and get alternate, and that for each put–get pair, the argument
to put matches get’s return value. The notation (αj some j)∗ denotes the set of event
sequences of the form αj1 . . . αjn , with n≥ 0 and j1, . . . , jn ∈ N [JO02]. If H is a set
of event sequences, then h � H if and only if there exists h′ ∈ H such that h � h′.

To start the process, we must add a bootstrap command at the end of the program:

bootstrap method B.put(2)
with class Buffer, caller P, label 2, history h0,

attributes value, full := 1, true

where

h0 ≡ [M→B.new Buffer()] _ [P↔B.put(1)]1.

Let h1 ≡ h0
_ [P→B.put(2)]2. A possible execution for the B.put(2) process follows.

bootstrap method B.put(2)
with class Buffer, caller P, label 2, history h0,

attributes value, full := 1, trueS1′β−→ 〈
B : Buffer

∣∣ Pr: await ¬full; value := x; full := true; return ε,
Att: [H 7→ h1][self 7→ B][value 7→ 1][full 7→ true],
LVar: [caller 7→ P][label 7→ 2][x 7→ 2]

〉
S14′−→ 〈

B : Buffer
∣∣ Pr: await ¬full; value := x; full := true; return ε,

Att: [H 7→ h1
_ [B.release] _ [C↔B.get(; 1)]1]

[self 7→ B][value 7→ 1][full 7→ false]
〉

S8−→ 〈
B : Buffer

∣∣ Pr: value := x; full := true; return ε,
Att: [H 7→ h1

_ [B.release] _ [C↔B.get(; 1)]1]
[self 7→ B][value 7→ 1][full 7→ false]

〉
S5, S2−→



4.5. Implementing the Semantics in Maude 73

〈
B : Buffer

∣∣ Pr: full := true; return ε,
Att: [H 7→ h1

_ [B.release] _ [C↔B.get(; 1)]1]
[self 7→ B][value 7→ 2][full 7→ false]

〉
S5, S2−→ 〈

B : Buffer
∣∣ Pr: return ε,

Att: [H 7→ h1
_ [B.release] _ [C↔B.get(; 1)]1]

[self 7→ B][value 7→ 2][full 7→ true]
〉

S20′−→ 〈
B : Buffer

∣∣ Pr: ε,
Att: [H 7→ h1

_ [B.release] _ [C↔B.get(; 1)]1] _ [P←B.put(2; )]2]
[self 7→ B][value 7→ 2][full 7→ true]

〉
.

Using Rewrite Rule S1′β, we instantiate a Buffer object set up to execute put(2).
Because the statement await ¬full is not enabled (full is true), we suspend and re-
activate the process using S14′. While the process was suspended, object C called
get to empty the buffer. Without any knowledge of how get is implemented, the
guarantee ψ forces full to be false immediately after get has returned. From there,
we use S8 to execute the await statement, we apply S5 and S2 twice in a row to
execute the assignments, and we finish with S20′ to handle the return statement. �

The approach presented here is adapted from Dovland et al. [DJO05], who devised
an encoding of the Creol language, following de Boer and Pierik [dBP04]. This
encoding serves essentially the same role as the open system semantics presented
here. With our approach, the closed system and the open system operational se-
mantics are very similar: Half of the rewrite rules are common to both semantics,
and for the other half there is an almost one-to-one relationship between the rules
of the two semantics. This makes it easier to detect inconsistencies between them,
which would translate into unsoundness or incompleteness of the proof method.

4.5 Implementing the Semantics in Maude

The Maude specifications of the closed system and open system operational seman-
tics presented in Section 4.3 and Section 4.4 are given in Appendix B. In the context
of this thesis, these specifications fulfill two main purposes: First, they extend this
chapter by providing a complete and unambiguous definition of Creol’s semantics.
Second, by defining basic sorts such as Exp and Stmt, they also form the basis of the
assertion analyzer described in Chapter 6.

In this section, we will briefly review how to use these specifications to execute
Creol programs, then we will discuss the main implementation decisions, compar-
ing it with the implementation of other Creol interpreters.

To execute a Creol program with either of the interpreters, we use Maude’s built-in
rew or frew command on a term that represents the program, after having loaded
the appropriate CREOL-INTERPRETER-FOR-x-SYSTEMS module (x ∈ {CLOSED, OPEN}).
The term is expressed in a Maude-compatible format, with quoted identifiers, extra
space around tokens, and square brackets instead of parentheses. For example,
here is the Producer class declaration from Section 4.1 expressed in this format:
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class ’Producer [’buf : ’WritableBuffer]
begin

op ’run is
var ’i : int ;
’i := 1 ;
while true do

’buf . ’put[’i ;] ;
’i := ’i plus 1

od
end

To execute the program using the closed semantics interpreter, we must supply a
bootstrap system command. To execute the program using the open system inter-
preter, we must supply a bootstrap object or bootstrap method command.

For the open system interpreter, some of the rewrite rules presented in Section 4.4
are not directly executable in Maude and are declared with the nonexec attribute.
This is because we model the nondeterministic behavior of the environment by in-
troducing variables on the right-hand side of rewrite rules, which isn’t supported
by Maude’s built-in execution strategies. To work around this, the Maude imple-
mentation provides alternative versions of the nonexec rewrite rules that take user-
supplied “random” data provided using random data commands; see Sections A.1.4
and A.4.5 for details.

The Maude specification of the closed system interpreter follows as nearly as pos-
sible the conventions of this chapter and differs significantly from other versions
of the interpreter in use at the University of Oslo. Here is a summary of its main
distinctive features:

• The input to the interpreter is very close to standard Creol syntax. Since the
interpreter handles the conversion of Creol syntax to a system configuration
with < i : Interface | . . . > and < c : Class | . . . > terms, there is no need for
a separate conversion tool (such as the one developed by Fjeld [Fje05]).

• The Maude sorts used to implement the interpreter have an intuitive, consis-
tent syntax. For example, commas are used systematically to separate items
in lists, and the empty list is represented by the term epsilon.

• The syntax of statements and expressions closely follows the Creol syntax. In
particular, redundant parentheses are avoided by specifying operator prece-
dences in Maude. To enhance readability, the infix operators on bool and int

are left alone, instead of being converted to a generic prefix notation [Fje05].

• The Maude Bool and Int sorts can be used directly in Creol expressions and
statements without any wrapper. This is achieved by making Value a super-
sort of Bool and Int, and allows us to write ’x := 5 instead of ’x := int(5).
The drawback is that predefined Bool and Int operators like and, or, not, +,
and * cannot be used; instead, we must write &&, ||, !, plus, and times.

• Creol parentheses are represented by square brackets to distinguish them
from Maude parentheses. This makes it possible to spell out the semantics of
Creol parentheses, and lets us implement the n-ary nondeterministic merge
operator in a satisfactory manner in Maude, as discussed in Section 4.3.
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• The interpreter uses a syntax inspired by Full Maude to avoid specifying un-
used fields in rewrite rules. This is achieved by representing the fields in an
< o : c | . . . > term by a multiset and by using an ETC variable to match the
unspecified fields. With this approach, a rewrite rule with the left-hand side

< O : C | Pr: abort ; S, ETC >

will match the term

< ’Main # 0 : ’Main | Pr: abort, LVar: [’x |-> 1],
Att: [self |-> ’Main # 0],
PrQ: emptyMset, MsgQ: emptyMset,
LabCnt: 2 >

• The interpreter can be used together with Maude’s built-in metaprogram-
ming facilities. Maude’s upTerm and downTerm partial functions convert a term
to and from the metalevel. This is necessary to define custom execution strate-
gies, which are often needed for testing or verifying Creol programs. To avoid
any clashes with the META-LEVEL module, the interpreter uses as little of the
standard prelude.maude file as possible. In particular, it avoids the Qid sort
and instead hooks directly into Maude to define its own quoted identifier sort
(QuotedId).

• The interpreter uses the global configuration pattern suggested by Ölveczky
[Ölv07] to initialize objects and bind methods. Other versions of the Creol
interpreter use messages and equations instead [JO07]. The latter approach
works with Maude’s built-in strategies, which apply equations before rewrite
rules, but it violates the coherence requirement mentioned in section 5.3 of the
Maude 2.3 manual [CDEL+07].

• Because the interpreter’s main purpose is to define the semantics of Creol,
the emphasis has been on the simplicity, readability, and correctness of the
interpreter, not on its efficiency. In particular, there is no garbage collection to
eliminate superfluous reply messages; on the other hand, the interpreter cor-
rectly resolves qualified and unqualified attributes in the presence of single
or multiple inheritance.

Some of these ideas are expected to find their way into the official Creol interpreter
in use at the University of Oslo.





Fifteen years ago computer programming was so badly
understood that hardly anyone ever thought about
proving programs correct; we just fiddled with a program
until it appeared to work.

— Donald E. Knuth (1974)

Chapter 5

A Compositional Proof System
for Creol

This chapter presents a proof system for reasoning about Creol programs origi-
nally developed by Dovland, Johnsen, and Owe [DJO05, DJO08]. The proof system
is based on Hoare logic [Hoa69, Apt81, Apt84], which lets us reason directly on
a program’s text using axioms and proof rules. It also incorporates later devel-
opments that make it possible to analyze open distributed systems, such as the
assume–guarantee paradigm [Jon81, MC81] and the concept of a communication
history [Dah77].

Hoare logic was originally designed to verify procedure input–output relation-
ships: establishing, for example, that a given gcd procedure computes the greatest
common divisor of two integers, that a bsearch procedure performs a binary search,
or that quicksort really sorts the items of an array. Unfortunately, such proofs are
tedious to write, and unless they are verified by a computer, they are likely to con-
tain more bugs than the program of interest [Knu02]. Incidentally, most programs
do have bugs, and therefore are impossible to prove correct with respect to their
specification; this lead Dijkstra and others to promote a programming style where
the program and its proof are developed together [Dij75, Kal90].

With the rise of concurrent programming in the late 1970s and the 1980s, Hoare
logic found a new field of application. Concurrent programs are notoriously diffi-
cult to study at the semantic level, because of their inherent nondeterminism. In-
deed, the history of concurrent programming research is paved with published
algorithms that are flawed and for which there exist very convincing semiformal
arguments known as “behavioral proofs.”1 Using Hoare logic, we can verify that
a certain property (data consistency, mutual exclusion, etc.) holds throughout the
execution of a program. Hoare logic is also useful to verify that certain undesirable

1After presenting the first concurrent garbage collection algorithm, Dijkstra, Lamport, and their col-
leagues concluded: “It has been surprisingly hard to find the published solution and justification.
It was only too easy to design what looked—sometimes even for weeks and to many people—like
a perfectly valid solution, until the effort to prove it to be correct revealed a (sometimes deep)
bug” [DLMSS78]. Lamport remarked in retrospect: “The lesson I learned from this is that be-
havioral proofs are unreliable and one should always use state-based reasoning for concurrent
algorithms—that is, reasoning based on invariance” [Lam08].

77
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situations cannot occur. In sequential programs, we want to avoid run-time errors
(abort, method call on null, division by zero) and infinite loops. In a concurrent
setting, we must also beware of deadlocks, which occur when several processes are
blocked waiting for each other to proceed.

Section 5.1 introduces Hoare logic and covers basic Creol statements such as as-
signment, sequential composition, if, and while. Section 5.2 presents Hoare axioms
and proof rules for the more advanced Creol statements that involve the commu-
nication history. Section 5.3 reviews the main proof strategies that can be used for
Hoare logic. Section 5.4 recasts the Hoare axioms and proof rules to a backward-
constructive style based on weakest liberal preconditions (WLPs). Section 5.5 ex-
plains how to use WLPs to verify the guarantee supplied in the guar clause of
a Creol class and of its interfaces. Section 5.6 shows how to combine assume–
guarantee specifications together to verify a complex system. Finally, Section 5.7
summarizes the contributions of this thesis to the proof system.

5.1 Local Reasoning with Hoare Logic

Hoare-style reasoning at the statement level constitutes the cornerstone of the proof
system presented in this chapter. The fundamental question which Hoare logic
tries to answer is, “If a statement starts executing in a certain state, what are the
possible states at termination?” The statement may be a single statement or a list
of statements. To express the answer to this question concisely, we use a partial
correctness formula of the form

{P} S {Q},

with P, Q ∈ Assn and S ∈ Stmt. Informally, the formula has the following meaning:

If the precondition P holds before S is executed and the execution ter-
minates normally, then the postcondition Q holds at termination.

Notice that the formula doesn’t affirm that the statement S will not abort or loop
forever; it only states that if S does terminate normally, then Q will hold at that
point. In this context, it is useful to see an assertion P as a set of states σ such that the
assertion holds in that state. Assuming a and b are the only two declared variables
and are of type int, the assertion a = 2 describes the set {[a 7→ 2][b 7→ n] | n ∈ Z},
and similarly a = 2 ∧ b = 4 describes the singleton {[a 7→ 2][b 7→ 4]}. Following
the practice of logicians, we will write σ |= P rather than σ ∈ P to express that P
holds in the state σ.

To express the stronger requirement of termination, we must resort to a total cor-
rectness formula

{P} S {Q}tot,

which can be interpreted as follows:

If the precondition P holds before S is executed, then the execution ter-
minates normally and the postcondition Q holds at termination.



5.1. Local Reasoning with Hoare Logic 79

Total correctness is normally what we aim at when writing a program. Indeed,
using the weaker criterion of partial correctness, the programs x := 1/0, abort,
and while true do skip od are all valid sort algorithms, even though they never
produce useful results.

In practice, total correctness is significantly more difficult to prove than partial cor-
rectness. To establish the total correctness of a program, we usually start by proving
the program partially correct, then we show the absence of run-time errors, infinite
loops, and deadlocks. In this thesis, we will focus on partial correctness and use
the unqualified word “correctness” in that sense. For a thorough review of total
correctness of concurrent programs, refer to Apt and Olderog [AO97] or de Roever
et al. [dRdB+01].

Here are a few examples of valid correctness formulas and their interpretation:

i. {true} b := 4 {b = 4}
If we start in an arbitrary state and execute b := 4, the condition b = 4 holds
in the final state.

ii. {a = 2} b := 2 ∗ a {a = 2 ∧ b = 4}
If we start in a state where a = 2 holds and execute b := 2 ∗ a, the condition
a = 2 ∧ b = 4 holds in the final state.

iii. {b≥ 0} b := b + 1 {b≥ 1}
If we start in a state where b≥ 0 holds and execute b := b + 1, the condition
b≥ 1 holds in the final state.

iv. {false} skip {b = 100}
If we start in an impossible state and execute skip, we may assume anything
about the final state, including that b = 100 holds.

v. {true}while i 6= 0 do i := i− 1 od {i = 0}
If we start in an arbitrary state and execute while i 6= 0 do i := i− 1 od, the
condition i = 0 will hold in the final state.

Formula iv may seem counterintuitive, but since no state satisfies the precondition,
the formula effectively asserts nothing at all. In a way, the formula is valid for the
same reason that the assertion false⇒ b = 100 holds for any value of b.

Formula v illustrates the difference between partial and total correctness. Clearly,
if i < 0 holds before entering the loop, the loop will never terminate. However,
the partial correctness formula doesn’t express that; it only asserts that if the loop
terminates, i = 0 will hold. In contrast, in a total correctness setting, the formula
{true}while i 6= 0 do i := i − 1 od {i = 0}tot isn’t valid, because it would imply
that the loop always terminates, which clearly isn’t the case. To make the total
correctness formula valid, we must strengthen the precondition:

{i≥ 0}while i 6= 0 do i := i− 1 od {i = 0}tot.

It would have been equally correct, but needlessly restrictive, to specify i ≥ 10,
i = 100, or false as the precondition.
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Paradoxically, while partial correctness cannot express termination, it lets us ex-
press nontermination. For example, the formula

{i < 0}while i 6= 0 do i := i− 1 od {false}

states that if the while loop starts in a state where i < 0, either it will end in an im-
possible state, or it won’t terminate normally. Since we can exclude the possibility
of reaching an impossible state, we conclude that the loop will run forever.

Our intuition tells us that formulas i to v are valid, but how can we justify it for-
mally? One answer is: using the operational semantics of Section 4.4. More pre-
cisely, we must consider an arbitrary object

〈
o : c

∣∣ . . .
〉

in a state that satisfies P,
simulate all possible executions of the statement S, and verify that Q holds in the
final state for all of these.

Let us try to prove the partial correctness formula {a = 2} b := 2 ∗ a {a = 2 ∧ b = 4}
using the operational semantics. For simplicity, we will assume that a and b are
local variables; a similar argument could be made for attributes. Starting in a state
where a = 2, we need to consider only one execution:〈

o : c
∣∣ Pr: b := 2 ∗ a; S, LVar: β[a 7→ 2]

〉
S5−→ 〈

o : c
∣∣ Pr: S, LVar: β[a 7→ 2][b 7→ 4]

〉
.

Clearly, the postcondition a = 2 ∧ b = 4 holds in the final configuration. In general,
we would need to consider Rewrite Rule S25′ (Parallel Activity), but we can ignore
it here since it has no impact on a and b.

To make this argument more satisfactory, we must give a formal interpretation of
correctness formulas based on the operational semantics. A partial correctness for-
mula {P} S {Q} is valid if and only if α′β′ |= Q for all executions of the form〈

o : c
∣∣ Pr: S; S′, LVar: β, Att: α

〉
∗−→ 〈

o : c
∣∣ Pr: S′, LVar: β′, Att: α′

〉
,

where αβ |= P. The conditions P and Q may refer to any local variable and object
attribute, but not to H . (In the next section, we will see how to handle H .)

We have proved {a = 2} b := 2 ∗ a {a = 2 ∧ b = 4}, but at what cost? Imagine veri-
fying an entire Creol program by reasoning in terms of the language’s operational
semantics. This would require pages upon pages of executions accompanied by
semiformal justifications.

This is where Hoare logic comes into play. Hoare logic is a framework for deriving
valid correctness formulas in a mechanical way, using a set of axioms and proof
rules. It allows us to reason directly on the program’s syntax, without concerning
ourselves with the operational semantics. The approach is mechanical in the sense
that the applicability of an axiom or a proof rule can easily be checked using a
computer or manually.

The goal of Hoare logic is to derive valid formulas. If a Hoare logic derives only
valid formulas, we say that the logic is sound ; and if it can be used to derive all
valid formulas, we say that it is complete. Soundness is nonnegotiable; an unsound
Hoare logic is comparable to a calculator that reports 1 + 1 = 3 and should not be
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used. Completeness is desirable, because without it some correct programs cannot
be proved correct using Hoare logic.

Like most object-oriented programming languages, Creol comprises an imperative
subset consisting of statements that produce side effects or affect the control flow.
In addition, Creol offers a few statements that are relevant only in a concurrent or
distributed context, such as await, �, and |||. In this section, we will review the
Hoare axioms and proof rules that are shared by most imperative languages; in
Section 5.2, we will consider the axioms and proof rules that apply specifically to
Creol. Except when noted otherwise, the axioms and proof rules presented here
are believed to be sound and complete.1

Axiom P1 (Null Statement)

{Q} skip {Q}

If αβ is a possible state before executing skip, then αβ is a possible state after exe-
cuting skip, and vice versa. Strictly speaking, Axiom P1 is not a single axiom but
rather an axiom schema that allows us to derive an infinity of axioms, including
{false} skip {false}, {true} skip {true}, and {x = 5} skip {x = 5}.

Axiom P2 (Abnormal Termination)

{true} abort {false}

If we start in an arbitrary state and execute an abort statement, the statement won’t
terminate normally.

Axiom P3 (Assignment)

{Qz̄
ē} z̄ := ē {Q}

Axiom P3 works backward: It asks for a postcondition Q that we want to hold
after the assignment, and gives us back a precondition P ≡ Qz̄

ē . The notation Qz̄
ē

denotes the assertion Q where all free occurrences of z̄ have been replaced by ē. (If
a free variable in ē would become bound as a result of the substitution, the bound
variables in ϕ are renamed to avoid clashing.) For example, if

Q ≡ a≤ b; z̄ ≡ a, b; ē ≡ 2, 4;

we obtain Qz̄
ē ≡ (a≤ b)a,b

2,4 ≡ 2≤ 4.

Axiom P3 may seem counterintuitive at first glance, but it correctly captures the
semantics of the assignment statement, as illustrated by the following examples:

i. {0 = 0} x := 0 {x = 0}

ii. {0 = 0 ∧ y = 5} x := 0 {x = 0 ∧ y = 5}

iii. {x + 1≥ 5} x := x + 1 {x≥ 5}

1It is sobering to read that in the experience of Willem-Paul de Roever, “every alleged proof method
for concurrency, which reached his desk and had not been proven complete, turned out to be
incomplete, and every such proof method, which had not been proven sound, turned out to be
unsound” [dRdB+01].



82 Chapter 5. A Compositional Proof System for Creol

iv. {y = 2 ∧ x = 4} x, y := y, x {x = 2 ∧ y = 4}.

Using elementary number theory, we can simplify the preconditions; for example,
0 = 0 is equivalent to true and x + 1≥ 5 is equivalent to x≥ 4.

Because Creol objects cannot access each other’s attributes directly, Axiom P3 is
sound even in the presence of reference aliasing [dBP04]. On the other hand, the
axiom schema will fail if we mix qualified and unqualified accesses to attributes,
because the substitution operator Qz̄

ē cannot know whether x@c and x are the same
variable. To avoid aliasing issues as well as potential name clashes with local vari-
ables, we will assume that the code systematically uses the qualified syntax x@c
to refer to attributes. In practice, this can easily be achieved by preprocessing the
Creol program.

Axiom P3 implicitly assumes that the expressions ē have no side effects and are to-
tally defined. What about division by zero? An expedient adopted by Apt and
Olderog [AO97] is to make division a total function by requiring that x/0 = 0
(a decision that was criticized by Lamport and Paulson [LP99]). In contrast, Dahl
[Dah92] provides a more thorough treatment of partial functions, at the cost of
more complex Hoare axioms and proof rules, and Owe addresses the issue in the
underlying predicate logic [Owe93]. For this thesis, Apt and Olderog’s expedient of
letting x/0 = 0 is acceptable, since proving the absence of run-time errors is beyond
the scope of partial correctness.

There is one more twist to the assignment axiom. Suppose we want to study the
statement x := x + 1 in isolation. We would like to state that it increments x by 1,
but how can we express this as a {P} S {Q} correctness formula? Attempts like
{x + 1 = x + 1} x := x + 1 {x = x} and {x = x} x := x + 1 {x = x + 1} lead to
tautologies or contradictions. The solution is to introduce a logical variable for
reasoning purposes. Such variables must not appear in the program itself. Using
this technique, we would characterize the effect of x := x + 1 by introducing x0 to
freeze the initial state of x:

{x = x0} x := x + 1 {x = x0 + 1}.

Once again, we have simplified the precondition using elementary number theory.
In a formal system such as Hoare logic, altering formulas like this is not permitted
unless we can justify it using formal rules. However, our intuition tells us that if
{P} S {Q} is valid, then {P′} S {Q′} is also valid for P′ ⇔ P and Q′ ⇔ Q. Proof
Rule P6, presented shortly, will formalize a more general result.

Proof Rule P4 (Parenthesized Statement)

{P} S {Q}
{P} (S) {Q}

In a formal proof system, a proof rule lets us derive new formulas, called theorems,
from existing axioms and theorems. Using Proof Rule P4, if {P} S {Q} is provable
using Hoare logic, then we can also derive {P} (S) {Q}.

Example 5.1. To prove {true} (b := 4) {b = 4}, we first prove {true} b := 4 {b = 4}
using Axiom P3; then we invoke Proof Rule P4. The proof can be represented by a
proof tree:
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P3
{true} b := 4 {b = 4}

P4
{true} (b := 4) {b = 4}

The formula to prove appears at the bottom of the tree. �

Proof Rule P5 (Sequential Composition)

{P} S1 {R} {R} S2 {Q}
{P} S1; S2 {Q}

The proof rule for sequential composition allows us to combine existing proofs
about S1 and S2 to build a proof about S1; S2. Intuitively, the rule reads as follows:
If executing S1 from a state that satisfies P leaves the program in a state that satis-
fies R, and executing S2 from a state that satisfies R leaves the program in a state
that satisfies Q, we may conclude that executing S1; S2 in a state where P holds will
lead to a state where Q holds.

Example 5.2. The following proof tree shows that {a = 2} b := a; c := b {c = 2} is
a theorem:

P3
{a = 2} b := a {b = 2}

P3
{b = 2} c := b {c = 2}

P5
{a = 2} b := a; c := b {c = 2} �

Correctness formulas for general statement lists S1; S2; . . . ; Sn can be derived using
n− 1 applications of Proof Rule P5. Since sequential composition is associative, we
are free to regard S1; S2; S3 as either (S1; S2); S3 or S1; (S2; S3). Here is a sketch of
one possible proof of {P} S1; . . . ; Sn {Q}:

{P} S1 {R}
{R} S2 {R′}

{R′} S3 {R′′}
etc.

P5
{R′′} S4; . . . ; Sn {Q}

P5
{R′} S3; . . . ; Sn {Q}

P5
{R} S2; . . . ; Sn {Q}

P5
{P} S1; . . . ; Sn {Q}

To complete the proof, we would derive {P} S1 {R}, {R} S2 {R′}, . . . , using axioms
and proof rules.

Proof Rule P6 (Consequence)

P⇒ P′ {P′} S {Q′} Q′ ⇒ Q
{P} S {Q}

The rule of consequence lets us strengthen a precondition, weaken a postcondition,
or both. We often need this rule to compose statements together when their pre- or
postconditions don’t match exactly. The first and third hypotheses are first-order
logic assertions that must be proved using the sequent calculus LK of Section 2.2 or
any other proof system for first-order logic.

Example 5.3. The following tree shows how to derive {x≥ 10} y := x {y≥ 0} from
the axiom {x≥ 5} y := x {y≥ 5}:
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x≥ 10⇒ x≥ 5
P3

{x≥ 5} y := x {y≥ 5} y≥ 5⇒ y≥ 0
P6

{x≥ 10} y := x {y≥ 0}

To complete the proof, the implications x≥ 10⇒ x≥ 5 and y≥ 5⇒ y≥ 0 should be
proved in first-order logic, with appropriate antecedents that specify the algebraic
properties of integers. �

Example 5.4. The following proof tree shows how to derive {true} b := 4; b :=
b + 1 {b = 5}:

P3
{4 = 4} b := 4 {b = 4}

P6
{true} b := 4 {b = 4}

P3
{b + 1 = 5} b := b + 1 {b = 5}

P6
{b = 4} b := b + 1 {b = 5}

P5
{true} b := 4; b := b + 1 {b = 5}

For brevity, we omitted the P ⇒ P′ and Q′ ⇒ Q premises when invoking the rule
of consequence. To make the proof entirely formal, we would need to prove the
following assertions:

true⇒ 4 = 4,
b = 4⇒ b = 4,

b = 4⇒ b + 1 = 5,
b = 5⇒ b = 5. �

Notice that in the last example, we did not actually strengthen the preconditions
or weaken the postconditions. Rather, we used the rule of consequence to replace
assertions with logically equivalent ones.

Proof Rule P7 (Inline Assertion)

Q⇒ P

{Q}prove P {Q}

The prove statement lets the programmer specify an assertion P that must be true
at a specific point during the program’s execution. Since the statement does noth-
ing, the precondition and the postcondition are identical. To ensure that programs
containing wrong assertions cannot be proved correct, we require that the precon-
dition implies P.

Proof Rule P8 (If Statement)

{P1} S1 {Q} {P2} S2 {Q}
{if B then P1 else P2 fi} if B then S1 else S2 fi {Q}

Proof Rule P8 for if statements may be interpreted as follows: If B is true, S1’s
precondition must hold before executing S1; otherwise, S2’s precondition must hold
before executing S2. By combining these two cases, we obtain the precondition
if B then P1 else P2 fi, which may also be written (B ∧ P1) ∨ (¬B ∧ P2) or even
(B⇒ P1) ∧ (¬B⇒ P2).

Notice how the Boolean expression B escapes the programming language and en-
ters the assertion language. This works because our assertion language Assn in-
cludes BExp, the set of Boolean expressions.
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Example 5.5. To derive the formula {true} if x < 0 then x := −x fi {x ≥ 0}, we
must first expand the statement to its canonical form as per Definition T3 of Sec-
tion 4.3. Then we proceed as follows:

P3
{−x≥ 0} x := −x {x≥ 0}

P1
{x≥ 0} skip {x≥ 0}

P8
{if x < 0 then −x≥ 0 else x≥ 0 fi} if . . . fi {x≥ 0}

P6
{true} if x < 0 then x := −x else skip fi {x≥ 0}

Again, we omitted the P ⇒ P′ and Q′ ⇒ Q premises when invoking the rule of
consequence. To make the proof entirely formal, we would also prove the following
assertions:

true⇒ if x < 0 then −x≥ 0 else x≥ 0 fi,
x≥ 0⇒ x≥ 0. �

Proof Rule P9 (While Loop)

{I ∧ B} S {I}
{I}while B do S od {I ∧ ¬B}

When using the while loop rule, we must supply an invariant I that holds before
entering the loop and after every iteration of the loop. We may assume that B holds
just before S is executed, and that it doesn’t hold when the loop terminates.

Example 5.6. Consider the following program fragment, which computes the sum
of the natural numbers up to n:

i := 0;
s := 0;
while i < n do

i := i + 1;
s := s + i

od

Suppose we want to prove that s = n ∗ (n + 1)/2 holds when the loop terminates,
under the assumption that n≥ 0. We can use s = Si ∧ i ≤ n as the loop invariant,
with Si ≡ i ∗ (i + 1)/2. This would give rise to the following proof tree, in which I
denotes the loop invariant:

{I ∧ i < n} i := i + 1 {s = Si−1 ∧ i≤ n} {s = Si−1 ∧ i≤ n} s := s + i {I}
P5

{I ∧ i < n} i := i + 1; s := s + i {I}
P9

{I}while . . . od {I ∧ i 6< n}
P6

{n≥ 0 ∧ i = 0 ∧ s = 0}while . . . od {s = n ∗ (n + 1)/2}

The two hypotheses at the top of the tree can be proved using the assignment axiom
and the rule of consequence. �

So far, we have used proof trees to show that a formula is a theorem. In practice, we
usually prefer proof outlines, where the program text is systematically annotated
with assertions. Here is the proof outline for the while loop of Example 5.6:
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{n≥ 0 ∧ i = 0 ∧ s = 0}
{I}
while i < n do
{I ∧ i < n}
i := i + 1;
{s = Si−1 ∧ i≤ n}
s := s + i
{I}

od
{I ∧ i 6< n}
{s = n ∗ (n + 1)/2}

In the proof outline, each statement is bracketed by its precondition and its post-
condition. Consecutive assertions {P}{P′} before a statement or {Q′}{Q} after a
statement make applications of the consequence rule explicit; the associated proof
obligation is P⇒ P′ or Q′ ⇒ Q.

From a proof tree it is easy to produce a proof outline, and vice versa. Proof out-
lines are less explicit, because we don’t label them with the axioms and proof rules
that were used to derive them, and because we often omit some assertions; but
since they follow the structure of the original program, they also tend to be both
more concise and more readable. In fact, using prove and inv, the programmer can
already provide the backbone of a proof outline:

prove n≥ 0 ∧ i = 0 ∧ s = 0;
inv s = i ∗ (i + 1)/2 ∧ i≤ n
while i < n do

i := i + 1;
prove s = (i− 1) ∗ i/2 ∧ i≤ n;
s := s + i

od;
prove s = n ∗ (n + 1)/2

Proof Rule P10 (While Loop with Invariant Clause)

I′ ⇒ I {I′ ∧ B} S {I′}
{I′} inv I while B do S od {I′ ∧ ¬B}

If the programmer has specified an invariant I using the inv clause, we can choose
I′ ≡ I as the invariant, or if I is too weak, we can strengthen it by providing an
invariant I′ that implies I.

5.2 Hoare Axioms and Proof Rules for the Creol-Specific
Statements

The Hoare axioms and proof rules presented in Section 5.1 cover Creol’s sequential
subset and are shared by most imperative programming languages. We will now
look at the statements that are specific to Creol: object creation, asynchronous invoc-
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ation, asynchronous reply, conditional wait, nondeterministic choice, and nonde-
terministic merge. Since they involve unbounded nondeterminism, it will be bene-
ficial to begin by studying this kind of nondeterminism in its simplest form.

For the sake of illustration, we will consider the language SEQ [DJO05] that consists
of Creol’s sequential subset extended with the random assignment statement

z̄ := ē for some x̄ such that P

This statement is similar to the standard assignment statement z̄ := ē, except that
the expressions ē may also refer to logical variables x̄ that take random values re-
specting the assertion P. (If no such values exist, the statement does not terminate
normally.) For example,

i, j := +x,−y for some x, y such that x > 0 ∧ y > 0

assigns a random positive value to i and a random negative value to j. Axiom P11
captures the semantics of the random assignment statement:

Axiom P11 (Random Assignment)

{∀x̄. P⇒ Qz̄
ē} z̄ := ē for some x̄ such that P {Q} for fresh variables x̄

Intuitively, the postcondition Q must hold after the random assignment if Qz̄
ē held

before for any values x̄ that satisfy P. The side condition ensures that no occur-
rences of x̄ in P or Q are accidentally bound by the universal quantifier.

The preconditions obtained using Axiom P11 can often be simplified drastically, as
illustrated by the examples below:

i. {
j=5︷ ︸︸ ︷

∀x. true⇒ j = 5 } i := x for some x such that true {j = 5}

ii. {
true︷ ︸︸ ︷

∀x. x = 2⇒ x = 2 } i := x for some x such that x = 2 {i = 2}

iii. {
true︷ ︸︸ ︷

∀x, y. x > y⇒ x > y } i, j := x, y for some x, y such that x > y {i > j}

iv. {
j≥5︷ ︸︸ ︷

∀x. x > j⇒ x > 5 } i := x for some x such that x > j {i > 5}

v. {
j≥5︷ ︸︸ ︷

∀y. y > j⇒ y > 5 } j := y for some y such that y > j {j > 5}.

Formula v shows that the axiom schema is sound when the condition P refers to
the variables z̄ that appear on the left-hand side of the assignment: “If j≥ 5 and we
assign to j a value that is greater than its current value, then j > 5 holds afterward.”

In the operational semantics of Section 4.4, Rewrite Rule S25′ (Parallel Activity) is
an important source of nondeterminism, because it can be invoked at any point to
extend the history variable H with an event originating from another object. The
axioms and proof rules presented so far don’t take this into account; for example,
Axiom P1 lets us derive

{H ew [self→buf.new Buffer]} skip {H ew [self→buf.new Buffer]},
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even though H might have been extended while skip was executing. If we take into
account the nondeterministic extension of the history, a skip statement is (from a
local point of view) effectively equivalent to

H := h for some h such that interleave(H , h)

where interleave(h, h′) is defined below.

Definition Q1 (Parallel Activity Interleaving Assertion)

interleave(h, h′) , lwf (h′, self)
∧ h� h′

∧ h
/
(outself ∪ ctlself) = h′

/
(outself ∪ ctlself)

∧
(
Ac
)H

h′

The interleave(h, h′) assertion is primarily a syntactic reformulation of the predicate
interleave(ϕ, o, α, h) from Definition T25 in Section 4.4. The symbol Ac denotes the
class assumption. The last conjunct expresses that the assumption should hold after
the history extension.

Using Axiom P11, we would derive the following axiom schema for skip:

{∀h. interleave(H , h)⇒ QH
h } skip {Q} for any fresh variable h.

The same could be done for the other statements considered in the previous section,
but it would seriously burden the Hoare logic. Fortunately, there is an alternative.
Dovland et al. [DJO05] pointed out that it is sufficient to consider parallel activity
only when analyzing statements that access the history variable H . A statement
such as skip does not access the history, so it is immaterial whether the environ-
ment has sent a message to self immediately before skip has executed or after.

To account for parallel activity, we therefore propose a new criterion for the validity
of a formula: A partial correctness formula {P} S {Q} is valid if and only if α′β′ |=
Q for all executions of the form〈

o : c
∣∣ Pr: S; S′, LVar: β, Att: α

〉
∗−→ 〈

o : c
∣∣ Pr: S′, LVar: β′, Att: α′

〉
,

where αβ |= P and Rewrite Rule S25′ is only applied immediately before Rewrite
Rules S8–S11, S13′, S14′, S16′, S17′, S22, or S23′—namely, the rules that involve the
history variable H or the MsgQ field. The conditions P and Q may refer to any
local variable and object attribute, including H . Using this new criterion, the skip
axiom schema and the other axiom schemas and proof rules from Section 5.1 can
be left unchanged.

We are now ready to study the axiom schemas that apply specifically to Creol. Most
of these follow the general pattern{

∀x, h.
(
interleave(H , h) ∧ 〈further constraints on h and x〉

)
⇒ Qz,H

x,h_〈event 〉
}

〈Creol statement〉
{Q},

which corresponds to the random assignment
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z, H := x, h _ 〈event〉 for some x, h
such that interleave(H , h) ∧ 〈further constraints on h and x〉

The variable z represents a local variable or an attribute that is modified by the
Creol statement. The history variable H is extended in a nondeterministic fashion
to account for parallel activity; then it is extended by one more event that records
the execution of the Creol statement.

The axiom schema for object creation closely follows this pattern:

Axiom P12 (Object Creation){
∀o, h.

(
interleave(H , h) ∧ o /∈ objectIds(h) ∧ parent(o) = self

)
⇒

Qz,H
o,h_[self→o.new c(ē)]

}
z := new c(ē)
{Q}
for fresh variables o, h

Rewrite Rule S13′ of Section 4.4 models z := new c(ē) by assigning a fresh object
identity o to z and extending the history with the event [self→o.new c(ē)]. In ad-
dition, since creating an object accesses the history, we must also consider Rewrite
Rule S25′ and extend the history beforehand to reflect parallel activity. Using SEQ,
we can encode object creation as follows:

z, H := o, h _ [self→o.new c(ē)] for some o, h
such that interleave(H , h) ∧ o /∈ objectIds(h) ∧ parent(o) = self

Axiom P12 can be derived by applying Axiom P11 on the SEQ statement.

The new object’s identifier is made unique by requiring that it hasn’t occurred in
the local history h and by specifying that parent(o) = self . The latter requirement
will allow us to compose objects together in Section 5.6 without the risk of clashes
in object identities.

Example 5.7. Axiom P12 is difficult to relate to because it encodes the effective
postcondition into the precondition. This becomes especially visible when we use
Axiom P12 to prove correctness formulas with true as the precondition. Consider
the formula

{true}
buf := new Buffer;
{∃h0. H = h0

_ [self→buf.new Buffer] ∧ buf /∈ objectIds(h0)
∧ parent(buf ) = self}.

Starting with the formula’s postcondition, a direct application of Axiom P12 pro-
duces the following precondition:

∀o, h.
(
interleave(H , h) ∧ o /∈ objectIds(h) ∧ parent(o) = self

)
⇒

∃h0. h _ [self→o.new Buffer] = h0
_ [self→o.new Buffer]

∧ o /∈ objectIds(h0) ∧ parent(o) = self .

This predicate simplifies to true. [Hint: Try substituting h for h0 in the existential
subformula.] �
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Axiom P13 (Asynchronous Invocation){
∀k, h.

(
interleave(H , h) ∧ [self→∗]k not in h ∧ k≥ 0

)
⇒ Ql,H

k,h_[self→O.m(ē)]k
}

l !O.m(ē)
{Q}
for fresh variables k, h

In Section 4.4, we modeled the asynchronous method call l !O.m(ē) by an assign-
ment to l and an extension of the history H with the event [self→O.m(ē)]k. Using
SEQ, we can express this as follows:

l, H := k, h _ [self→O.m(ē)]k for some k, h
such that interleave(H , h) ∧ [self→∗]k not in h

We assign a fresh sequence number k to the label l. In addition, we extend the his-
tory nondeterministically to model the activity of the environment and append an
invocation event to the history. Axiom P13 is derived directly from this statement.

Axiom P14 (Local Asynchronous Invocation){
∀k, h.

(
interleave(H , h) ∧

[
self→∗]k not in h ∧ k≥ 0

)
⇒

Ql,H
k,h_[self→self .m@c(ē)]k

}
l !m@c(ē)
{Q}
for fresh variables k, h

Local method calls are axiomatized in the same way.

Example 5.8. When invoking Axiom P13 or P14, we can obtain a much simpler
precondition by filtering out the parallel activity and omitting sequence numbers
in the postcondition. To illustrate this, we will show how to derive the following
correctness formula:

{H
/

outself ew [self→buf.put(i− 1)]}
l !buf.put(i)
{H
/

outself ew [self→buf.put(i− 1)] _ [self→buf.put(i)]}.

First, from the desired postcondition, Axiom P13 produces the precondition

∀k, h.
(
interleave(H , h) ∧ [self→∗]k not in h ∧ k≥ 0

)
⇒(

h _ [self→buf.put(i)]
)/

outself ew [self→buf.put(i− 1)] _

[self→buf.put(i)].

Since k does not occur on the right-hand side of the implication, we can simplify
the precondition to

∀h. interleave(H , h)⇒(
h _ [self→buf.put(i)]

)/
outself ew [self→buf.put(i− 1)] _

[self→buf.put(i)].

The key observation is that interleave(H , h) requires the new history h to be an
extension of H where all the new events originate from other objects. Therefore,
h
/

outself = H
/

outself . This allows us to substitute H for h in the right-hand side:
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∀h. interleave(H , h)⇒(
H _ [self→buf.put(i)]

)/
outself ew [self→buf.put(i− 1)] _

[self→buf.put(i)].

Since h no longer occurs on the right-hand side, and assuming the class makes no
assumption about its environment, the precondition can be simplified further to(

H _ [self→buf.put(i)]
)/

outself ew [self→buf.put(i− 1)] _ [self→buf.put(i)],

which is equivalent to

H
/

outself ew [self→buf.put(i− 1)].

This last assertion is the desired precondition. �

Axiom P15 (Asynchronous Reply){
if pending(H , self , self , l) then

(Gc)H
H _[self .reenter]l

∧ ∀ā, h. reenter(H , h, ā, l)⇒ QĀ ,H ,l,z1,...,zn
ā,h,−1,returnVal1(h,self ,l),...,returnValn(h,self ,l)

else
∀h.

(
interleave(H , h) ∧ [self←∗]l in h

)
⇒

QH ,l,z1,...,zn
h,−1,returnVal1(h,self ,l),...,returnValn(h,self ,l)

fi
}

l?(z̄)
{Q}
for fresh variables ā, h

The operational semantics of the asynchronous reply statement l?(z̄) is given by
Rewrite Rules S22 (Asynchronous Reply) and S23′ (Local Reentry and Continua-
tion). The pending predicate is from Definition T24 in Section 4.4; the reenter predi-
cate and the returnVali function will be defined shortly. Using SEQ, we can encode
the statement’s semantics as follows:

if pending(H , self , self , l) then
prove (Gc)H

H _[self .reenter]l ;
Ā , H := ā, h for some ā, h such that reenter(H , h, ā, l)

else
H := h for some h such that interleave(H , h) ∧ [self←∗]l in h

fi;
l, z1, . . . , zn := −1, returnVal1(H , self , l), . . . , returnValn(H , self , l)

If the call associated with l is a pending call to self , we release the processor and
reacquire it in a state where the history H has become h and the object’s writable
attributes, denoted by Ā , have the values ā. (We don’t need to extend the history
with interleave before accessing H in the if condition because the history extension
has no effect on the truth of the condition.) The prove statement gives rise to the
(Gc)H

H _[self .reenter]l term in the precondition of Axiom P15, ensuring that the guar-
antee holds when the processor is released.

If l refers to a remote call, or to a local call that has already been serviced, we
extend the history with events originating from other objects, including a reply
event [self←∗]l .
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In all cases, we assign−1 to l to prevent it from being used again, and we assign the
return values from the method call to z̄. The assignment to l can be omitted if we
can determine through static program analysis that l is a dead variable [NNH99].

Definition Q2 (Local Reentry Assertion)

reenter(h, h′, ā, l) , lwf (h′, self)
∧ h _ [self .reenter]l � h′

∧ h′ ew [self←self .∗]l

∧ [caller←self ]label not in h′

∧
(
Ac ∧ Gc

)Ā ,H
ā,h′

The reenter(h, h′, ā, l) assertion is a syntactic reformulation of the reenter(ϕ, o, o′, k, k′,
Z̄, α, α′) predicate from Definition T24 in Section 4.4, except that we now expect
the class assumption Ac and the class guarantee Gc to hold after the processor is
released. (In Section 4.4, we took the more liberal approach of letting the program
continue when the guarantee is broken.)

We assume that the free variables occurring in the assumption and in the guarantee
do not clash with the method’s local variables and parameters. An easy way to
achieve this is to use a distinct syntax for logical variables.

Definition Q3 (Call Return Value)

returnVali(h _ [o←o′.m@c(v̄; w̄)]k, o, k) , wi

returnVali(h _ υ, o, k) , returnVali(h, o, k) [otherwise]

The returnVali(h, o, k) auxiliary (partial) function extracts the return values for the
method call identified by the pair (o, k) from the history.

We will now look at the await statement. In the open system semantics, await g
was handled by Rewrite Rules S8 (Guard Crossing), S14′ (Process Suspension and
Reactivation), and S25′ (Parallel Activity). Here, we proceed by case on the guard:

i. await B1 & · · ·& Bn

The guard is a simple or complex Boolean guard.

ii. await
[
B1 & · · ·& Bn &

]
l1? & · · ·& lp?

The guard is a simple or complex reply guard, with an optional Boolean com-
ponent. Since & is commutative, we can assume without loss of generality
that the Boolean guards precede the reply guards.

iii. await wait
[
& B1 & · · ·& Bn

][
& l1? & · · ·& lp?

]
The guard is a simple wait guard or a complex guard with at least one wait
component. By idempotence, we may assume that wait occurs only once.1

We will start with case i, when the guard g is a simple or complex Boolean guard
of the form B1 & · · ·& Bn.

1One way to avoid some of the complications caused by the wait guard would be to replace it with
a separate release statement with the same semantics. It is expected that future definitions of the
Creol language will adopt this convention.
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Axiom P16 (Conditional Wait with Boolean Guards){
if
∧n

i=1 Bi then ∀h. interleave(H , h)⇒ QH
h

else (Gc)H
H _[self .release]

∧ ∀ā, h.
(
release(H , h, ā) ∧ ∧n

i=1(Bi)Ā
ā
)
⇒ QĀ ,H

ā,h fi
}

await B1 & · · ·& Bn
{Q}
for fresh variables ā, h

Axiom P16 is derived from the following SEQ code:

if
∧n

i=1 Bi then
H := h for some h such that interleave(H , h)

else
prove (Gc)H

H _[self .release];
Ā , H := ā, h for some ā, h such that release(H , h, ā) ∧ ∧n

i=1(Bi)Ā
ā

fi

If
∧n

i=1 Bi is true, the await statement is skipped. We still need to extend the history
because by our definition of validity, Rewrite Rule S25′ (Parallel Activity) can be
invoked immediately before Rewrite Rule S8 (Guard Crossing). If

∧n
i=1 Bi is false,

we release the processor—and require the guarantee to hold. As with Rewrite Rule
S14′, the history H and the writable attributes Ā are modified nondeterministically.

Definition Q4 (Processor Release Assertion)

release(h, h′, ā) , lwf (h′, self)
∧ h _ [self .release]� h′

∧ mayAcquireProcessor(h′, self , caller, label)
∧ [caller←self ]label not in h′

∧
(
(h _ [self .release])

/
(outself ∪ ctlself) =

h′
/
(outself ∪ ctlself)⇒

Ā = ā
)

∧
(
Ac ∧ Gc

)Ā ,H
ā,h′

The release(h, h′, ā) assertion is primarily a syntactic reformulation of the release(ϕ, o,
o′, k, Z̄, α, α′) predicate from Definition T25. The mayAcquireProcessor predicate is
from Definition T21 in Section 4.4.

Axiom P17 (Conditional Wait with Reply Guards){
∀h. interleave(H , h)⇒

if
∧n

i=1 Bi ∧
∧p

j=1[self←∗]lj in h then
QH

h
else

(Gc)H
h_[self .release]

∧ ∀ā, h′.
(
release(h, h′, ā) ∧∧n

i=1(Bi)Ā
ā ∧

∧p
j=1[self←∗]lj in h′

)
⇒ QĀ ,H

ā,h′

fi
}

await l1? & · · ·& lp?
[
& B1 & · · ·& Bn

]
{Q}
for fresh variables ā, h, h′
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Axiom P17 corresponds to the following SEQ code:

H := h for some h such that interleave(H , h);
if ¬

(∧n
i=1 Bi ∧

∧p
j=1[self←∗]lj in H

)
then

prove (Gc)H
H _[self .release];

Ā , H := ā, h′ for some ā, h′

such that release(H , h′, ā) ∧ ∧n
i=1(Bi)Ā

ā ∧
∧p

j=1[self←∗]lj in h′

fi

We start by extending the history nondeterministically to reflect parallel activity. If
one of the Boolean conditions Bi is false, we release the processor and reacquire it
in a state in which the Boolean conditions are true and the replies have arrived. As
before, we require that the guarantee holds when the processor is released.

Axiom P18 (Unconditional Wait){
(Gc)H

H _[self .release]
∧ ∀ā, h.

(
release(H , h, ā) ∧ ∧n

i=1(Bi)Ā
ā ∧

∧p
j=1[self←∗]lj in h

)
⇒ QĀ ,H

ā,h
}

await wait
[
& l1? & · · ·& lp?

][
& B1 & · · ·& Bn

]
{Q}
for fresh variables ā, h

An await statement that contains a wait guard unconditionally releases the proces-
sor and reacquires it at some point when the Boolean conditions Bi are true and the
replies associated with the labels lj have arrived. Axiom P18 is derived from

prove (Gc)H
H _[self .release];

Ā , H := ā, h for some ā, h
such that release(H , h, ā) ∧ ∧n

i=1(Bi)Ā
ā ∧

∧p
j=1[self←∗]lj in h

We have now covered all the simple Creol statements that alter the history vari-
able H . The last two Creol statements to review are the nondeterministic choice
statement S1� S2 and the nondeterministic merge statement |||ni=1 Si.

Proof Rule P19 (Nondeterministic Choice)

{P1} S1 {Q} {P2} S2 {Q} {P′1} S?
1 {Q} {P′2} S?

2 {Q}{
∀h. interleave(H , h)⇒

if ready(S1� S2, Ā , h) then
pickReadyBranch(S1, S2, P1, P2, Ā , h)

else if enabled(S1� S2, Ā , h) then
∀h′.

(
interleave(h, h′) ∧ ready(S1� S2, Ā , h′)

)
⇒

pickReadyBranch(S1, S2, P1, P2, Ā , h′)
else

(Gc)H
h_[self .release]

∧ ∀ā, h′.
(
release(h, h′, ā) ∧ ready(S?

1 � S?
2 , ā, h′)

)
⇒

pickReadyBranch(S?
1 , S?

2 , P′1, P′2, ā, h′)
fi fi
}

S1� S2
{Q}
where S?

i ≡ clearWait(Si) and ā, h, h′ are fresh variables
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The Hoare logic rule for S1� S2 corresponds to Rewrite Rules S9 (Nondeterministic
Choice), S14′ (Process Suspension and Reactivation), and S25′ (Parallel Activity) in
the operational semantics. The clearWait function was introduced by Definition T9
in Section 4.3. The precondition of S1� S2 encodes the following algorithm:

1. Extend the history nondeterministically with events from other objects.

2. If S1� S2 is ready, choose a ready branch.

3. If S1� S2 is enabled but not ready, block until it becomes ready and choose a
ready branch.

4. If S1 � S2 is disabled, release the processor and reacquire it in a state where
one of the branches is ready.

In pseudocode, this gives

H := h for some h such that interleave(H , h);
if ready(S1� S2, Ā , H ) then
〈S1 or S2, whichever is ready〉

else if enabled(S1� S2, Ā , H ) then
H := h′ for some h′ such that interleave(H , h′) ∧ ready(S1� S2, Ā , h′);
〈S1 or S2, whichever is ready〉

else
prove (Gc)H

H _[self .release];
Ā , H := ā, h′ for some ā, h′

such that release(H , h′, ā) ∧ ready(S?
1 � S?

2 , ā, h′);
〈S?

1 or S?
2 , whichever is ready〉

fi fi

The pickReadyBranch, ready, and enabled assertions, and the auxiliary satisfied asser-
tion, are defined below.

Definition Q5 (Ready Branch Choice Assertion)

pickReadyBranch(S1, S2, P1, P2, ā, h) ,
(
ready(S1, ā, h)⇒

(
P1
)Ā ,H

ā,h
)

∧
(
ready(S2, ā, h)⇒

(
P2
)Ā ,H

ā,h
)

Definition Q6 (Statement Readiness Assertion)

ready(l?(z̄); S, ā, h) , satisfied(l?, ā, h)
ready(await g; S, ā, h) , satisfied(g, ā, h)
ready((S1� S2); S, ā, h) , ready(S1, ā, h) ∨ ready(S2, ā, h)
ready((|||ni=1 Si); S, ā, h) ,

∨n
i=1 ready(Si, ā, h)

ready((S); S′, ā, h) , ready(S, ā, h)
ready(S, ā, h) , true [otherwise]

Definition Q7 (Statement Enabledness Assertion)

enabled(await g; S, ā, h) , satisfied(g, ā, h)
enabled((S1� S2); S, ā, h) , enabled(S1, ā, h) ∨ enabled(S2, ā, h)
enabled((|||ni=1 Si); S, ā, h) ,

∨n
i=1 enabled(Si, ā, h)

enabled((S); S′, ā, h) , enabled(S, ā, h)
enabled(S, ā, h) , true [otherwise]
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Definition Q8 (Guard Satisfaction Assertion)

satisfied(B, ā, h) , BĀ ,H
ā,h

satisfied(l?, ā, h) , [self←∗]l in h
satisfied(wait, ā, h) , false
satisfied(g1 & g2, ā, h) , satisfied(g1, ā, h) ∧ satisfied(g2, ā, h)

Proof Rule P19 can be contrasted with the following proof rule:

Proof Rule P20 (Nondeterministic Choice, Incomplete)

{P1} S1 {Q} {P2} S2 {Q}
{P1 ∧ P2} S1� S2 {Q}

This new rule is sound but not complete. It would be complete if S1 � S2 chose
which branch to execute completely at random, but in Section 4.3 we saw that it
prefers branches that are ready or enabled over branches that are not.

Example 5.9. The following statement will make the contrast between Proof Rules
P19 and P20 more apparent:

await x = 1 � x := 2

If x 6= 1 holds before the statement is executed, only the second branch can be cho-
sen, because the first branch is not ready (the guard x = 1 is false). Hence,

{x 6= 1} await x = 1 � x := 2 {x = 2}

is valid. Can this be proved with Hoare logic? Using Proof Rule P20, the best we
can achieve is a correctness formula with false ∧ true as the precondition:

{false} await x = 1 {x = 2} {true} x := 2 {x = 2}
P20

{false ∧ true} await x = 1 � x := 2 {x = 2}

The problem here is that in terms of Proof Rule P20, either branch can be executed,
whereas the operational semantics always chooses the second branch if x 6= 1.

With its reliance on ready and enabled, Proof Rule P19 appears more promising:

{false} await x = 1 {x = 2}
{false} await x = 1 {x = 2}

{true} x := 2 {x = 2}
{true} x := 2 {x = 2}

P19{
∀h. interleave(H , h)⇒

if ready(await x = 1 � x := 2, Ā , h) then
pickReadyBranch(await x = 1, x := 2, false, true, Ā , h)

else if enabled(await x = 1 � x := 2, Ā , h) then
∀h′.

(
interleave(h, h′) ∧ ready(await x = 1 � x := 2, Ā , h′)

)
⇒

pickReadyBranch(await x = 1, x := 2, false, true, Ā , h′)
else

(Gc)H
h_[self .release]

∧ ∀ā, h′.
(
release(h, h′, ā) ∧ ready(await x = 1 � x := 2, ā, h′)

)
⇒

pickReadyBranch(await x = 1, x := 2, false, true, ā, h′)
fi fi
}

await x = 1 � x := 2
{x = 2}
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The precondition in the conclusion is fairly complex, but it can be simplified a lot.
Because parallel activity does not influence the readiness or enabledness of either
branch of the � statement, we can drop “∀h. interleave(H , h)⇒” and substitute H
for h. And since the second branch of the� statement is always ready, the statement
as a whole is ready and the first branch of the precondition’s if expression is taken.
The precondition simplifies to

pickReadyBranch(await x = 1, x := 2, false, true, Ā , H ).

By the definition of pickReadyBranch, this expands to(
ready(await x = 1, Ā , H )⇒ false

)
∧
(
ready(x := 2, Ā , H )⇒ true

)
,

which in turn expands to

(x = 1⇒ false) ∧ (true⇒ true).

This assertion is equivalent to x 6= 1. Thus, Proof Rule P19 can be used to derive the
correctness formula {x 6= 1} await x = 1 � x := 2 {x = 2}. �

Proof Rule P21 (Nondeterministic Merge, Await-Free)

{P} �n
i=1(Si; |||nj=1,j 6=i Sj) {Q}

if awaitFree(|||ni=1 Si){P} |||ni=1 Si {Q}

Nondeterministic merge is difficult to axiomatize because an await statement oc-
curring in branch Si may give control to another branch Sj if the await guard is not
satisfied, instead of releasing the processor.

To avoid these difficulties, Proof Rule P21 requires that the Si branches contain no
await statements. We can then treat |||ni=1 Si as a nondeterministic permutation of
the Si branches, using the � statement. For n = 2, we have

{P} S1; S2 � S2; S1 {Q}
P21

{P} S1 ||| S2 {Q}

and for n = 3, we have

{P} S1; (S2 ||| S3) � S2; (S1 ||| S3) � S3; (S1 ||| S2) {Q}
P21

{P} S1 ||| S2 ||| S3 {Q}

Notice that the n case is defined in terms of the n− 1 case. The awaitFree(S) predi-
cate is defined below.

Definition Q9 (Await-Freedom)

awaitFree(await g) , false
awaitFree(if B then S1 else S2 fi) , awaitFree(S1) ∧ awaitFree(S2)
awaitFree(

[
inv I

]
while B do S od) , awaitFree(S)

awaitFree(S1; S2) , awaitFree(S1) ∧ awaitFree(S2)
awaitFree(S1� S2) , awaitFree(S1) ∧ awaitFree(S2)
awaitFree(|||ni=1 Si) ,

∧n
i=1 awaitFree(Si)

awaitFree((S)) , awaitFree(S)
awaitFree(S) , true [otherwise]
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To fully capture the behavior of the |||ni=1 Si statement in the presence of await state-
ments, we could for example provide a proof rule that performs an interference-
freedom test on the Si branches to the proof system, as is customary for shared-
variable concurrency [AO97, And00, dRdB+01]; however, this is very complex and
will not be attempted here. With this one exception, we have now reviewed all the
proof rules and axioms necessary to reason about Creol statements.

5.3 Proof Strategies for Hoare Logic

The aim of Hoare logic is to prove correctness formulas {P} S {Q}. By the postu-
lated soundness of the Hoare logic, the proved formulas are then valid with respect
to Creol’s operational semantics. But given an arbitrarily complex method body S,
how do we proceed to reason about it? Clearly, we must break it down, but how?

When constructing proofs, we usually rely on a proof strategy. The strategy tells
us which axioms or proof rules to invoke, and in which order. Proof strategies are
especially important for automation. In his program verification textbook [Dah92],
Dahl identified four main proof construction strategies.

Conceptually, the simplest strategy is forward construction (which Dahl calls “right
construction”). Using this strategy, to prove the formula

{P} S1; . . . ; Sn {Q},

we start with P and work forward by proving the formulas

{P} S1 {Q1}, {Q1} S2 {Q2}, . . . , {Qn−1} Sn {Qn}.

Using n− 1 applications of Proof Rule P5 (Sequential Composition), we obtain the
theorem {P} S1; . . . ; Sn {Qn}. We conclude by proving that Qn implies Q, invoking
Proof Rule P6 (Consequence).

Forward construction requires axiom schemas and proof rules that let us specify
an arbitrary precondition P and that define the postcondition Q in terms of P. For
example, here are forward-constructive versions of the assignment axiom and of
the if statement rule:

Axiom P22 (Assignment, Forward Constructive)

{P} z̄ := ē {∃x̄. Pz̄
x̄ ∧ z̄ = ēz̄

x̄}

Proof Rule P23 (If Statement, Forward Constructive)

{P ∧ B} S1 {Q1} {P ∧ ¬B} S2 {Q2}
{P} if B then S1 else S2 fi {Q1 ∨Q2}

A forward-constructive axiom schema or proof rule for a statement S is right max-
imal if for any precondition P, it allows the derivation of {P} S {Q}, where Q is
the strongest predicate Q′ such that {P} S {Q′} is valid. If the axiom schemas for
all the statements are right maximal and the proof rules allow us to derive right-
maximal theorems from right-maximal axioms, then every valid correctness for-
mula is provable using forward construction, assuming that we have an oracle to
assess the validity of first-order logic assertions [Apt81].
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A similar strategy is backward construction (or “left construction”). Axiom P3
(Assignment) is an example of a backward-constructive axiom, because its precon-
dition P ≡ Qx̄

ē is defined in terms of its postcondition Q. Another example is the
following axiom schema for the prove statement:

Axiom P24 (Inline Assertion, Backward Constructive)

{P ∧Q}prove P {Q}

To compute a backward-constructive proof for

{P} S1; . . . ; Sn {Q},

we start with Q and work backward using the theorems

{Pn} Sn {Q}, {Pn−1} Sn−1 {Pn}, . . . , {P1} S1 {P2},

and we conclude by proving that P implies P1. A theorem is left maximal if the
precondition P is the weakest predicate P′ such that {P′} S {Q} is valid.

The third proof strategy identified by Dahl is top-down construction. This strategy
is used to reason about compound statements, and requires proof rules whose con-
clusion involves both an arbitrary precondition P and an arbitrary postcondition Q.
A top-down rule for the if statement is given below:

Proof Rule P25 (If Statement, Top-Down)

{P ∧ B} S1 {Q} {P ∧ ¬B} S2 {Q}
{P} if B then S1 else S2 fi {Q}

Top-down proofs start with an arbitrary correctness formula {P} S {Q} that must
be proved and work “outside in” in the program S.

The fourth proof strategy is bottom-up construction. This strategy works “in-
side out” by letting us derive correctness formulas about compound statements
from arbitrary formulas about their constituent statements. Compare the follow-
ing bottom-up if statement rule with Proof Rule P25:

Proof Rule P26 (If Statement, Bottom-Up)

{P1} S1 {Q1} {P2} S2 {Q2}
{if B then P1 else P2 fi} if B then S1 else S2 fi {Q1 ∨Q2}

The table below lists the axiom schemas and proof rules presented in this chapter
and specifies whether they are forward constructive (FC), backward constructive
(BC), top-down (TD), and/or bottom-up (BU). Proof Rule P6 (Consequence) is not
listed, as it does not fall into any of these categories.

Name of Axiom or Proof Rule FC BC TD BU
Parenthesized Statement P4 P4 P4 P4
If Statement P23 P8 P25 P26
While Loop P9 − − −
While Loop with Invariant Clause P10 − − −
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Name of Axiom or Proof Rule FC BC TD BU
Null Statement P1 P1 − −
Inline Assertion P7 P7/24 − −
Assignment P22 P3 − −
Sequential Composition P5 P5 − −
Random Assignment − P11 − −
Object Creation − P12 − −
Asynchronous Invocation − P13 − −
Local Asynchronous Invocation − P14 − −
Asynchronous Reply − P15 − −
Conditional Wait with Boolean Guards − P16 − −
Conditional Wait with Reply Guards − P17 − −
Unconditional Wait − P18 − −
Nondeterministic Choice − P19/20 − −
Nondeterministic Merge − P21 − −
Abnormal Termination − − − P2

Forward and backward construction are more suitable for automation, because the
theorems can be chained together mechanistically starting from a method body’s
pre- or postcondition. Backward construction is usually preferred, because it nor-
mally leads to simpler assertions; for example, the forward version of the assign-
ment axiom is nowhere as simple as the backward version. For this reason, most of
the axiom schemas and proof rules presented in Sections 5.1 and 5.2 are backward
constructive, and among these all but Proof Rule P20 (Nondeterministic Choice,
Incomplete) are left maximal.

5.4 Weakest Liberal Preconditions

The assertion analyzer described in Chapter 6 uses a variant of the backward con-
struction strategy based on weakest liberal preconditions, a functional formalism
introduced by Dijkstra [Dij75]. The weakest liberal precondition (WLP) of a state-
ment S with respect to a postcondition Q is the less restrictive precondition P such
that {P} S {Q} is valid. The adjective “liberal” reminds us that we operate in a
partial correctness setting; the analogous concept for total correctness is called the
weakest conservative precondition, or simply weakest precondition.

While the WLP of a statement is primarily a semantic concept defined in terms of
formula validity (another semantic concept), Definitions Q10–Q12 attempt to give
it a syntactic form. Just as the Hoare logic is designed to be sound and complete
with respect to the operational semantics, the wlp(S, Q) function of Definitions
Q10–Q12 is intended to be logically equivalent to the semantic WLPs for the class
of Creol programs that specify valid assertions—that is, valid assume–guarantee
specifications, inline assertions, and loop invariants.

The computation of wlp(S, Q) mimics a backward-constructive proof built from
left-maximal theorems. For example, to prove the correctness formula

{P} S1; . . . ; Sn {Q},
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we compute Pn ≡ wlp(Sn, Q), Pn−1 ≡ wlp(Sn−1, Pn), . . . , P1 ≡ wlp(S1, P2), and we
conclude by proving that P implies P1—that is, P is at least as strong as the weakest
liberal precondition.

Definition Q10 (WLP for Most Creol Statements)

wlp(skip, Q) , Q
wlp(abort, Q) , true
wlp(prove P, Q) , P ∧Q
wlp(x̄ := ē, Q) , Qx̄

ē
wlp((S), Q) , wlp(S, Q)
wlp(if B then S1 else S2 fi, Q) , if B then wlp(S1, Q) else wlp(S2, Q) fi
wlp(S1; S2, Q) , wlp(S1, wlp(S2, Q))
wlp(z̄ := ē for some x̄ , precondition of Axiom P11

such that P, Q)
wlp(z := new c(ē), Q) , precondition of Axiom P12
wlp(l !O.m(ē), Q) , precondition of Axiom P13
wlp(l !m@c(ē), Q) , precondition of Axiom P14
wlp(l?(z̄), Q) , precondition of Axiom P15
wlp(await B1 & · · ·& Bn, Q) , precondition of Axiom P16
wlp(await l1? & · · ·& lp? , precondition of Axiom P17[

& B1 & · · ·& Bn
]
, Q)

wlp(await wait
[
& l1? & · · ·& lp?

]
, precondition of Axiom P18[

& B1 & · · ·& Bn
]
, Q)

wlp(|||ni=1 Si, Q) , wlp(�n
i=1(Si; |||nj=1,j 6=i Sj), Q)

if awaitFree(|||ni=1 Si)

Definition Q11 (WLP for Nondeterministic Choice)

wlp(S1� S2, Q)
, ∀h. interleave(H , h)⇒

if ready(S1� S2, Ā , h) then
pickReadyBranch(S1, S2, wlp(S1, Q), wlp(S2, Q), Ā , h)

else if enabled(S1� S2, Ā , h) then
∀h′.

(
interleave(h, h′) ∧ ready(S1� S2, Ā , h′)

)
⇒

pickReadyBranch(S1, S2, wlp(S1, Q), wlp(S2, Q), Ā , h′)
else

(Gc)H
h_[self .release]

∧ ∀ā, h′.
(
release(h, h′, ā) ∧ ready(S?

1 � S?
2 , ā, h′)

)
⇒

pickReadyBranch(S?
1 , S?

2 , wlp(S?
1 , Q), wlp(S?

2 , Q), ā, h′)
fi fi

The WLP for the while loop poses a particular challenge. The operational seman-
tics suggests the following definition:

wlp(while B do S od) , if B then wlp(S, wlp(while B do S od, Q))
else Q fi.

However, the recursion is not well-founded, since wlp(while B do S od, Q) appears
on both sides of the equation. Instead of resorting to fixed point theory to give a
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meaning to the above equation, we can use the following trick, inspired by Dijkstra
[Dij75]. Let Hk(while B do S od, Q) denote the WLP for while B do S od when at
most k iterations of the loop are performed. Thus:

H0(while B do S od, Q) , Q
H1(while B do S od, Q) , wlp(if B then S fi, Q)
H2(while B do S od, Q) , wlp(if B then S fi, wlp(if B then S fi, Q)).

In general, for k > 0, we have

Hk(while B do S od, Q) , wlp(if B then S fi, Hk−1(while B do S od, Q)).

We do the same for inv I while B do S od, except that we require that I is satisfied
at every iteration:

H0(inv I while B do S od, Q) , I ∧ Q
H1(inv I while B do S od, Q) , I ∧ wlp(if B then S fi, I ∧ Q)
H2(inv I while B do S od, Q) , I ∧ wlp(if B then S fi,

I ∧ wlp(if B then S fi, I ∧ Q))
...

Hk(inv I while B do S od, Q) , I ∧ wlp(if B then S fi,
Hk−1(inv I while B do S od, Q)).

We can then define the WLP for while loops in terms of Hk as follows:

Definition Q12 (WLP for While Loop)

wlp(
[
inv I

]
while B do S od, Q) , ∃k. Hk(

[
inv I

]
while B do S od, Q)

5.5 Verification of a Class’s Assume–Guarantee
Specification

In the previous sections, we reviewed the axioms and proof rules necessary to rea-
son about statements in a method body. In this section, we will see how to apply
these to verify the assume–guarantee specification provided in the asum and guar
clauses of a Creol class c and of the interfaces it implements.

The basic idea is as follows: We have the code for class c and all its superclasses
and superinterfaces. From the asum and guar clauses, we derive a class assump-
tion Ac and a class guarantee Gc. Using backward construction, we verify that
the initialization code establishes the guarantee and that each method maintains
it. Backward construction gives rise to verification conditions of the form P ⇒
wlp(〈code〉 , Q), which must be proved in first-order logic. If we can prove all
of the verification conditions, we have proved that the class’s implementation re-
spects the guarantee Gc with respect to the assumptionAc (assuming that the WLPs
presented in Section 5.4 are sound).

The first step is to compute the assumption and the guarantee for the class of in-
terest. The derived assume–guarantee specification is obtained from the asum and
guar clauses of the class and of all the interfaces that it implements, projected onto
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their respective alphabets. Let i be an interface that inherits j1, . . . , jn. The alphabet
o:i of an object o typed by interface i is the set

o:i , o:j1 ∪ · · · ∪ o:jn
∪ {[o′→o.m(v̄)]k, [o′←o.m(v̄; w̄)]k | m is declared by i and and o′ 6= o}
∪ {[o→o′.m(v̄)]k, [o←o′.m(v̄; w̄)]k | m is declared or inherited

by i’s cointerface and o′ 6= o}.

Let c be a class that implements some interfaces j1, . . . , jn. Let ϕx stand for the
asum clause of x ∈ {c, j1, . . . , jn}, and similarly let ψx stand for the guar clause of
x. The derived class assumption Ac and the derived class guarantee Gc for class c
are defined as follows:

Ac ,
(

ϕc
)H

H/self ∧
(

ϕj1
)H

H/self :j1 ∧ · · · ∧
(

ϕjn
)H

H/self :jn
Gc ,

(
ψc
)H

H/self ∧
(
ψj1
)H

H/self :j1 ∧ · · · ∧
(
ψjn
)H

H/self :jn .

Our goal is to verify the guarantee, taking the assumption for granted. The guaran-
tee is expected to hold after initialization of the object, be maintained by all meth-
ods, and hold before and after all processor releases.

Let us begin with object initialization. The initialization code is spread across class
c and all its ancestor classes c1, . . . , cn, enumerated in postorder with respect to the
inheritance tree. Let Ā denote the list of writable attributes, including inherited
attributes, and let D̄ denote the list of default values to assign to Ā . (For example,
if Ai has type bool, then Di ≡ false.) Furthermore, let x̄, x̄1, . . . , x̄n denote the
context parameters of c, c1, . . . , cn, and let ē1, . . . , ēn denote the lists of arguments
corresponding to x̄1, . . . , x̄n. Finally, let 〈 initializer〉 stand for the following code:

Ā := D̄;
x̄n@cn := ēn; . . . ; x̄1@c1 := ē1;
init@c1(); . . . ; init@cn(); init@c();
run()

For simplicity, we assume that every class provides an init method and that c de-
clares or inherits a run method. The general case would be handled by removing
calls to nonexistent methods. To verify that the object initialization leaves the object
in a state that satisfies the guarantee, we must prove the correctness formula

{Ac ∧ H = [parent(self)→self .new c( p̄)]}
〈 initializer〉;
H := H _ [self .initialized]
{Gc},

where p̄ is a list of fresh variables. Informally, this formula can be read as follows:

If we start in a state such that the object has just been created and the
assumption Ac holds, and we execute the object initialization code, then
the guarantee Gc should hold at termination.

To prove the correctness formula, it is sufficient to prove the following implication,
which builds on the wlp function:(

Ac ∧ H = [parent(self)→self .new c( p̄)]
)
⇒

wlp(〈 initializer〉 , (Gc)H
H _[self .initialized]).
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The implication is equivalent to(
Ac ⇒ wlp(〈 initializer〉 , (Gc)H

H _[self .initialized])
)H
[parent(self)→self .new c( p̄)].

Within the initialization code, the guarantee Gc must hold whenever the proces-
sor is released or a local reentry is performed. Since this requirement is already
expressed in the WLPs for l?(z̄), await g, S1 � S2, and |||ni=1 Si, there are no sepa-
rate verification conditions for these cases. If we can prove the above verification
condition, we are assured that the guarantee will hold when the initialization code
releases the processor.

Just as the initialization code must establish the guarantee, every method m de-
clared by a class c′ that is either c or an ancestor of c must preserve it. Consider the
following method declaration:

op m(in x1 : τ1, . . . , xn : τn out y1 : τ′1, . . . , yp : τ′p) is
var v1 : τ′′1 , . . . , vq : τ′′q ;
S

Let D̄y and D̄v denote the lists of default values of ȳ and v̄, respectively. Now, let
〈method〉 stand for the following code:

ȳ := D̄y;
v̄ := D̄v;
S

To verify that the method m maintains the guarantee, we must prove the correct-
ness formula{

Ac
∧ Gc
∧ lwf (H , self)
∧ mayAcquireProcessor(H , self , caller, label)
∧ [caller→self .m@c′(x̄)]label in H
∧ [caller←self ]label not in H

}
〈method〉 ;
H := H _ [caller←self .m@c′(x̄; ȳ)]label

{Gc}.

Both the precondition and the postcondition contain the guarantee Gc. In addition,
the precondition is strengthened by the assumption Ac, and by various program-
independent properties that must hold when a method starts executing. Using
backward construction, we obtain the verification condition(

Ac

∧ Gc

∧ lwf (H , self)
∧ mayAcquireProcessor(H , self , caller, label)
∧ [caller→self .m@c′(x̄)]label in H
∧ [caller←self ]label not in H

)
⇒

wlp
(
〈method〉 , (Gc)H

H _[caller←self .m@c’(x̄; ȳ)]label

)
.
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5.6 Compositional Reasoning

In the previous section, we saw how to verify a class guarantee by identifying and
proving verification conditions for the class’s initializer and methods. The next and
final step consists of deducing global properties about the entire system from the
guarantees of the classes that compose it. This presents three main difficulties:

1. A system consists of objects, not classes, yet all we can verify so far are class
guarantees.

2. As a result of Creol’s asynchronous communication model, which allows
method overtaking, the local histories of different objects in the system may
disagree on common events.

3. Classes can make assumptions about the environment, and these assump-
tions should be verified when objects are composed together to form larger
systems.

We will review two solutions to these problems.

The first solution is based on Dovland et al. [DJO05, DJO08]. In their papers, they
use a single class invariant Jc that serves both as an assumption and as a guarantee.
From the class invariant Jc, they derive the following composable object invariant
Jo:c(ē) for an instance o of class c constructed with ē as the arguments corresponding
to the context parameters x̄:

Jo:c(ē) , ∃ā.
(
Jc
)self ,x̄,Ā

o,ē,ā .

To avoid name clashes with attributes of other objects when the invariant is com-
posed with other invariants, the attributes Ā are hidden behind an existential quan-
tifier. The history variable H may occur free in Jo:c(ē). The set of possible histories
for o is

{
h
∣∣ h� h′ ∧

(
Jo:c(ē)

)H
h′
}

—that is, the prefix closure of the set of histories
that satisfy the invariant.

Asynchronous communication is handled by requiring that the class invariant Jc
respects the following asynchronous input property :

∀h, hin.
(
wf (h) ∧ h ∈ (H ||| hin) ∧ hin

/
(outo ∪ ctlo) = ε ∧ Jc

)
⇒
(
Jc
)H

h .

Informally, this formula means the following:

If Jc holds for H , then Jc must also hold if we merge additional input
events hin into the history and the result is well-formed.

The formula is justified as follows [DJO08]:

In the asynchronous setting, an object may independently decide to
send a message and, due to overtaking, messages may arrive in a differ-
ent order than sent. The invariant of an object should therefore restrict
messages seen by the object, but allow the existence of additional input
not processed yet.

If two objects o1 and o2 execute in parallel in the same system, their combined
invariant Jo1 :c1(ē1)||o2 :c2(ē2) is the conjunction of the object invariants for o1 and o2:
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Jo1:c1(ē1)||o2 :c2(ē2) ,
(
Jo1 :c1(ē1)

)H
H/o1
∧
(
Jo2:c2(ē2)

)H
H/o2

.

This can be taken further to compute a global invariant Jsys for the system:

Jsys ,
∧

o:c(ē) in H

(
Jo:c(ē)

)H
H/o .

(We write o:c(ē) in H as an abbreviation for [o′→o.new c(ē)] in H .) The conjunction
operator ranges over all the objects in the system, which is a finite number at any
point during the system’s execution. Global properties G about the system can be
verified by proving Jsys ⇒ G. Since the global invariant is defined directly in terms
of the class invariants, the proof system is compositional.

With the approach of Dovland et al., class invariants are combined together us-
ing little more than the logical conjunction operator. On the other hand, the asyn-
chronous input property prevents classes from making useful assumptions about
the environment; for example, a class invariant may not state that a call to write can
occur only after a call to open.

The second approach we will review is significantly more complex but also more
powerful. To account for the unordered asynchronous communication taking place
in Creol, we will distinguish between the moment when a message is sent and
the moment when it becomes visible to the receiver. This leads us to replace the
ambiguous [o→o′.m@c(v̄)]k and [o←o′.m@c(v̄; w̄)]k events with the following:

[o⇀o′.m@c(v̄)]k asynchronous invocation emission
[o⇁o′.m@c(v̄)]k asynchronous invocation reception
[o↼o′.m@c(v̄; w̄)]k asynchronous reply emission
[o↽o′.m@c(v̄; w̄)]k asynchronous reply reception

To see how this helps us, consider the following example. A producer P asyn-
chronously calls put(3) on a buffer B, then put(4), without waiting for the replies.
Using old-style→ and← events, this would be recorded in P’s local history as

[P→B.put(3)]3 _ [P→B.put(4)]4.

Now, suppose that the invocation messages arrive out of order. We would then
have the following sequence in B’s local history:

[P→B.put(4)]4 _ [P→B.put(3)]3.

Clearly, there is no global history H that can agree with both P’s and B’s local his-
tory, since they disagree on the order of these two shared events. Dovland et al.
solved this problem by preventing the receiver from contradicting the sender, and
called this the asynchronous input property. But if we distinguish between send-
ing and receiving a message, there is no contradiction anymore; P’s local history
contains the sequence

[P⇀B.put(3)]3 _ [P⇀B.put(4)]4,

B’s local history contains

[P⇁B.put(4)]4 _ [P⇁B.put(3)]3,

and the global history could then have the sequence
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[P⇀B.put(3)]3 _ [P⇀B.put(4)]4 _ [P⇁B.put(4)]4 _ [P⇁B.put(3)]3

as a subsequence.

In this new setting, we define a composable object assumption Ao:c(ē) and a com-
posable object guarantee Go:c(ē) as follows:

Ao:c(ē) , ∃ā.
(
Ac
)self ,x̄,Ā

o,ē,ā
Go:c(ē) , ∃ā.

(
Gc
)self ,x̄,Ā

o,ē,ā .

Here, we assume that the class assumption Ac and the class guarantee Gc use the
new-style ⇀, ⇁, ↼, and ↽ events instead of→ and←. For two objects o1 and o2
executing in parallel, the combined guarantee is

Go1 :c1(ē1)||o2 :c2(ē2) , Go1:c1(ē1) ∧ Go2:c2(ē2) ∧ gwf (H ),

where gwf is an adaptation of the well-formedness predicate of Definition T19 to
our new setting, as defined by the following equations:

gwf (ε) , true
gwf (h _ [o→o′.new c(v̄)]) , gwf (h) ∧ o′ /∈ objectIds(h) ∧ parent(o′) = o
gwf (h _ [o⇀o′.m@c(v̄)]k) , gwf (h) ∧ [o⇀o′.m@c(v̄)]k not in h
gwf (h _ [o⇁o′.m@c(v̄)]k) , gwf (h) ∧ [o⇀o′.m@c(v̄)]k in h

∧ [o⇁o′.m@c(v̄)]k not in h
gwf (h _ [o↼o′.m@c(v̄; w̄)]k) , gwf (h) ∧ [o⇁o′.m@c(v̄)]k in h

∧ [o↼o′.m@c(v̄; w̄)]k not in h
gwf (h _ [o↽o′.m@c(v̄; w̄)]k) , gwf (h) ∧ [o↼o′.m@c(v̄; w̄)]k in h

∧ [o↽o′.m@c(v̄; w̄)]k not in h
gwf (h _ [o.initialized]) , gwf (h) ∧ [o.initialized]k not in h
gwf (h _ [o.release]) , gwf (h)
gwf (h _ [o.reenter]k) , gwf (h).

The combined assumption is then

Ao1 :c1(ē1)||o2 :c2(ē2) , Go1:c1(ē1)||o2 :c2(ē2) ⇒
(
Ao1 :c1(ē1) ∧ Ao2 :c2(ē2)

)
.

The assumption is weakened by the combined guarantee. For the entire system,
the global guarantee is

Gsys ,
∧

o:c(ē) in H

(
Go:c(ē)

)H
H/o ∧ gwf (H )

and the global assumption is

Asys , Gsys ⇒
∧

o:c(ē) in H

(
Ao:c(ē)

)H
H/o.

Since the system has no environment that can fulfill its assumption, we require that
Asys ⇔ true. If this is the case, then Gsys is valid for the system, and we can verify
global properties P about the system by proving Gsys ⇒ P.



108 Chapter 5. A Compositional Proof System for Creol

5.7 Contributions

The proof system presented in this chapter is firmly rooted in the work of Dovland,
Johnsen, and Owe. In their 2005 paper [DJO05], they introduced the first proof sys-
tem for Creol, based on WLPs and an encoding. Their 2008 paper [DJO08] presents
a higher-level proof system that abstracts away Creol labels and that requires the
programmer to specify pre- and postconditions for individual methods, in addi-
tion to the class’s semantic specification. In both papers, the focus is on simplicity
of reasoning.

In this thesis, we followed a somewhat different approach. The primary focus is on
soundness and completeness with respect to the language’s operational semantics.
The main differences between the proof system we presented here and the proof
system developed by Dovland et al. in their 2005 paper are listed below:

• Instead of relying on a single invariant that simultaneously serves as assump-
tion and guarantee, we expect the programmer to supply the assumption and
the guarantee separately. This makes it possible to restrict the possible par-
allel activity using the assumption. (A single invariant cannot achieve that,
because parallel activity may occur at any point in the program, where the
guarantee might not hold.)

• As a step toward completeness, we record three additional types of events
([o.initialized], [o.release], and [o.reenter]k) in the history, and for invoca-
tion and reply events, we record the sequence numbers associated with the
method calls. This additional information allows us to precisely capture the
behavior of Creol’s idiosyncratic await statement and local reentry feature,
among other things. The WLPs and the verification conditions associated
with a class have been adapted to deal with this information.

• We provide sound and complete axioms for await l? and l?(z̄) with respect to
later versions of the Creol semantics. In the 2005 paper, the await l? statement
always releases the processor, even if the reply associated with l has already
arrived, and the l?(z̄) statement blocks if l is a pending local call.

• We give a syntactically simpler (but logically equivalent) WLP for the general
case of await g.

• The axiomatization of the nondeterministic statements S1 � S2 and |||ni=1 Si is
original to this thesis. Dovland et al. did not consider them in their papers.

• The treatment of compositional reasoning in an asychronous setting by dis-
tinguishing emission from reception is an old idea [dRdB+01], but due to the
complexity it introduces it has not been applied to Creol previously.



To understand a program you must become both the
machine and the program.

— Alan J. Perlis (1982)

Chapter 6

An Assertion Analyzer
Based on the Proof System

The Creol language lets the programmer embed four types of assertions directly in
the program text: assumptions (asum), guarantees (guar), inline assertions (prove),
and loop invariants (inv). The assertion analyzer is a tool that takes the complete
source code of a class as input, including superclasses and superinterfaces, and at-
tempts to verify the assertions that appear in it. The output is a report that indicates
whether the verification was successful.

In this chapter, we will review the tool’s design and implementation. Section 6.1
provides an overview of the tool’s capabilities. Section 6.2 presents its internal
architecture. Section 6.3 explains how Maude is used to parse Creol programs. Sec-
tion 6.4 explains how Creol statements and assertions are represented as Maude
terms. Section 6.5 describes how the tool generates the verification report. Sec-
tion 6.6 explains how the tool computes the weakest liberal precondition (WLP) of
Creol statements. And finally, Section 6.7 explains how the tool normalizes, simpli-
fies, untypes, and pretty-prints assertions.

6.1 The Assertion Analyzer at a Glance

We will start by having a look at the input and output of the assertion analyzer,
without going into details. (Appendix A provides a comprehensive user’s guide.)
When invoking the assertion analyzer, we must supply the following input:

• The source code of a Creol class and of all its superclasses and superinterfaces.

• The declarations of the necessary custom data types and functions.

• An optional set of assertion simplification rules.

• A verify class command that specifies the class to verify and the simplifica-
tion rules to use.

Using the approach presented in Section 5.5, the tool computes the verification con-
ditions for the class’s initialization code and methods (including inherited ones).

109
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As a by-product, the tool also verifies the inline assertions and the loop invariants
found in the method bodies. The output is a report of the following form:

Verification of class c

Initialization code:
q? Establishes the guarantee iff Q̂0 holds

Method m1 of c1:
q? Maintains the guarantee iff Q̂1 holds

...

Method mn of cn:
q? Maintains the guarantee iff Q̂n holds

The assertions Q̂0, Q̂1, . . . , Q̂n are proof obligations that we must carry out (by hand
or using a mechanical theorem prover) to verify that the code respects the class’s
assume–guarantee specification. The hat on Q̂i is there to remind us that the asser-
tions are pretty-printed, as explained in Section 6.7.

Assuming the presence of a set of assertions {P1, . . . , Pk} expressing the defining
properties of the non-logical symbols from our assertion language (such as +, in,
and ew), we must prove for each Q̂i that the sequent P1, . . . , Pk ` Q̂i is valid in
the sense of Section 2.2. If the sequent is not valid, we can conclude that the corre-
sponding initialization code or method body violates the class guarantee.

Sometimes, the tool can automatically determine whether the sequent is valid, in
which case the judgment will be “q3 Establishes the guarantee”, “q Fails to estab-
lish the guarantee”, “q3 Maintains the guarantee”, or “q Breaks the guarantee”.

Complications arises for methods whose body contains an inline assertion, a while
loop, or a nondeterministic merge statement. For these, the tool can produce the
judgment “q? Maintains the guarantee if Q̂i holds” (with “if” instead of “iff”) or
give up entirely and state “q? Don’t know”. We will see why this happens and
what it means in Section 6.6.

6.2 Architecture of the Assertion Analyzer

The assertion analyzer shares a large amount of its source code with the interpreters
described in Section 4.5. The source code for these tools is spread across six source
files, whose contents are listed in Appendix B. The dependency graph below shows
how these files relate to each other:

program

interpreter-coreassertion-utilities

open-interpreter closed-interpreterassertion-analyzer

?

? ?



6.3. Parsing Creol Programs 111

An arrow pointing from x to y indicates that the file creol-x.maude relies on mod-
ules declared in creol-y.maude. The three files shown in bold are those that are
necessary to run the assertion analyzer.

• The file creol-program.maude defines the concrete Creol language syntax and
converts Creol programs to system configurations. It also provides several
auxiliary functions for manipulating system configurations.

• The file creol-assertion-utilities.maude declares auxiliary functions to ex-
tract the assume–guarantee specification of a class and to perform basic logi-
cal simplifications.

• The file creol-assertion-analyzer.maude contains the modules that are spe-
cific to the assertion analyzer. These modules provide functions for comput-
ing WLPs and verification conditions, generating a verification report with
proof obligations, and massaging the assertions.

6.3 Parsing Creol Programs

The Creol classes and interfaces provided to the assertion analyzer are specified in
a Maude-compatible syntax that closely follows the abstract syntax used through-
out this thesis. The example below shows the correspondence between the two
syntaxes:

interface Counter interface ’Counter

begin begin

with any: with any :

op inc op ’inc

end end

class SimpleCounter class ’SimpleCounter

implements Counter implements ’Counter

begin begin

var n : int var ’n : int

with any: with any :

op inc is op ’inc is

n := n + 1 ’n := ’n plus 1

guar G(H ) guar ’G[~H~]

end end

The Creol syntax can be specified by a context-free grammar [Fje05, HMU06]. A
context-free grammar G = (N, Σ, P, S) consists of a finite set of terminal symbols
N, a finite set of nonterminal symbols Σ that is disjoint from N, a finite set of pro-
duction rules P of the form A ::= α, where A is a nonterminal and α is a string over
terminals and nonterminals, and a distinguished start symbol S ∈ Σ. The empty
string is written ε. The language L(G) associated with the grammar G is the set of
strings over Σ that can be generated from S by using the production rules from P as
left-to-right rewrite rules. Two grammars G and G ′ are equivalent if L(G) = L(G ′).
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Although Maude does not understand context-free grammars, we can use sort hi-
erarchies, mixfix operators, and attributes such as assoc and prec to mimic a gram-
mar. Consider the following incomplete fragment of a grammar for Creol class
declarations, with angle brackets (〈〉) enclosing nonterminal symbols:

〈class〉 ::= class 〈id-with-params〉 〈class-head-clauses-opt〉
begin 〈var-clause-opt〉 〈class-mtds-opt〉
〈asum-clause-opt〉 〈guar-clause-opt〉 end

〈id-with-params〉 ::= 〈id〉
〈id-with-params〉 ::= 〈id〉 ( 〈typed-id-list〉 )

〈class-head-clauses-opt〉 ::= ε
〈class-head-clauses-opt〉 ::= 〈class-head-clause〉 〈class-head-clauses-opt〉

〈class-head-clause〉 ::= implements 〈super-list〉
〈class-head-clause〉 ::= contracts 〈super-list〉
〈class-head-clause〉 ::= inherits 〈super-list〉

〈super-list〉 ::= 〈super〉
〈super-list〉 ::= 〈super〉 , 〈super-list〉

〈super〉 ::= 〈id-with-args〉

〈id-with-args〉 ::= 〈id〉
〈id-with-args〉 ::= 〈id〉 ( 〈exp-list〉 )

〈var-clause-opt〉 ::= ε
〈var-clause-opt〉 ::= var 〈typed-id-list〉

〈class-mtds-opt〉 ::= ε
〈class-mtds-opt〉 ::= 〈mtd-decl-grp〉
〈class-mtds-opt〉 ::= 〈class-mtds-opt〉 with 〈type〉 : 〈mtd-decl-grp〉

〈asum-clause-opt〉 ::= ε
〈asum-clause-opt〉 ::= asum 〈assn〉

〈guar-clause-opt〉 ::= ε
〈guar-clause-opt〉 ::= guar 〈assn〉

Most of these production rules can be implemented in Maude by defining a mixfix
operator, substituting sorts for nonterminals. For example, the declarations

op implements_ : SuperList -> ClassHeadClause [ctor] .

op _[_] : Id ExpList -> IdWithArgs [ctor] .

implement the production rules

〈class-head-clause〉 ::= implements 〈super-list〉
〈id-with-args〉 ::= 〈id〉 ( 〈exp-list〉 )

For lists, a natural Maude representation relies on the assoc attribute:

op _,_ : SuperList SuperList -> SuperList [ctor assoc] .
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In Maude, parentheses can be used to resolve parsing ambiguities and for apply-
ing functions (non-mixfix operators). To avoid confusion, we systematically use
square brackets to represent Creol parentheses, even in contexts where Maude’s
parentheses would have worked equally well.

In Section 4.2, we specified the precedence of Creol’s infix operators. For exam-
ple, we mentioned that ¬ binds more strongly than ∧, which in turn binds more
strongly than ∨. Using the prec attribute, we can easily implement this in Maude:

op !_ : BExp -> BExp [ctor prec 5] .
op _&&_ : BExp BExp -> BExp [ctor assoc comm prec 13] .
op _||_ : BExp BExp -> BExp [ctor assoc comm prec 15] .

(Like in C and Java, the operators !, &&, and || represent ¬, ∧, and ∨, respectively.)
We also take this as an opportunity to supply other attributes that make sense, such
as assoc and comm for && and ||.

For production rules like 〈super〉 ::= 〈id-with-args〉, which are of the form A ::= A′,
Maude doesn’t let us write

*** WRONG
op _ : IdWithArgs -> Super [ctor] .

Instead, we must use a subsort declaration:

subsort IdWithArgs < Super .

Production rules with ε on their right-hand side (called empty production rules or
ε production rules) also require special care. A straightforward conversion leaves
us with the following invalid operator declaration:

*** WRONG
op : -> GuarClauseOpt [ctor] .

To work around this, we can insert a dummy epsilon token as follows:

op epsilon : -> GuarClauseOpt [ctor] .

However, this forces the user to type epsilon explicitly in the source code. A better
option is to rewrite the grammar to avoid ε production rules before we convert it to
Maude. For context-free grammars G that don’t generate the empty string (that is,
ε /∈ L(G)), this step is always possible. A result from formal language theory states
that any such grammar G can be converted into an equivalent grammar G ′ where
all the production rules are of the form A ::= BC or A ::= a, with A, B, C ∈ N and
a ∈ Σ. The grammar G ′ is said to be in Chomsky normal form [HMU06].

To avoid ε rules, we can duplicate each production rule in which a nonterminal that
can expand to ε occurs, and then simply omit the ε rule. For example, if we omit
the ε rule for 〈guar-clause-opt〉, and rename the symbol 〈guar-clause〉, we obtain

〈class〉 ::= class 〈id-with-params〉 〈class-head-clauses-opt〉
begin 〈var-clause-opt〉 〈class-mtds-opt〉
〈asum-clause-opt〉 〈guar-clause〉 end

〈class〉 ::= class 〈id-with-params〉 〈class-head-clauses-opt〉
begin 〈var-clause-opt〉 〈class-mtds-opt〉
〈asum-clause-opt〉 end

〈guar-clause〉 ::= guar 〈assn〉
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Next to the original 〈class〉 rule, we introduced a rule in which 〈guar-clause〉 is
omitted. This process can be repeated to eliminate the ε rules for 〈class-head-clauses-
opt〉, 〈var-clause-opt〉, 〈class-mtds-opt〉, and 〈asum-clause-opt〉, each time doubling the
number of 〈class〉 rules. Through this process, the original rule for 〈class〉 gives rise
to 31 new rules.

Fortunately, we can restructure the 〈class〉 rule to avoid this combinatorial explo-
sion. By introducing a 〈tail〉 nonterminal, we can factor out the complexity associ-
ated with 〈asum-clause-opt〉 and 〈guar-clause-opt〉:

〈class〉 ::= class 〈id-with-params〉 〈class-head-clauses-opt〉
begin 〈var-clause-opt〉 〈class-mtds-opt〉 〈tail〉

〈tail〉 ::= asum 〈assn〉 guar 〈assn〉 end
〈tail〉 ::= asum 〈assn〉 end
〈tail〉 ::= guar 〈assn〉 end
〈tail〉 ::= end

This is easy to represent using Maude operators:

op class__begin___ :
Id ClassHeadClauses VarClause ClassMtds Tail -> Class [ctor] .

op asum_guar_end : Assn Assn -> Tail [ctor] .
op asum_end : Assn -> Tail .
op guar_end : Assn -> Tail .
op end : -> Tail .

We can go further and define equations to normalize the tail of a class declaration
so that it always uses the operator asum_guar_end:

eq asum ASUM end = asum ASUM guar true end .
eq guar GUAR end = asum true guar GUAR end .
eq end = asum true guar true end .

When converting a grammar to Maude, most production rules give rise to an oper-
ator declaration. This sometimes leads to conflicts, as we will see with the following
grammar fragment:

〈id-with-params〉 ::= 〈id〉 ( 〈typed-id-list〉 )

〈id-with-args〉 ::= 〈id〉 ( 〈exp-list〉 )

In Maude, we would represent the preceding rules as follows:

op _[_] : Id TypedIdList -> IdWithParams [ctor] .

op _[_] : Id ExpList -> IdWithArgs [ctor] .

Because the term ’x[’y] can be parsed both as an IdWithParams term and as an
IdWithArgs term, Maude reports a parsing ambiguity—even in a context where
only one interpretation is possible. The solution here is to make IdWithParams

a subsort of IdWithArgs. In general, Maude parsing ambiguities assume various
guises and must be handled on a case-by-case basis.

Another general problem is that some of the operators required to represent Creol
programs clash with built-in operators. For example, Maude’s META-LEVEL module
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defines a _,_ operator that collides with Creol’s _,_ operator. Many of these clashes
are avoided by defining a QuotedId sort that hooks directly into Maude, distinct
from the built-in Qid sort:

sort QuotedId .

op <QIds> : -> QuotedId [special (id-hook QuotedIdentifierSymbol)] .

(Thanks to the special attribute, the <QIds> operator stands for any quoted iden-
tifier constant, as explained in section 6.3.2 of the Maude 2.3 manual [CDEL+07].)
Using QuotedId, we can ensure that the sorts used to represent Creol programs are
not part of the same connected component in the subsort graph as the sorts used
by META-LEVEL to metarepresent Maude terms, a sufficient condition for operator
overloading in Maude.

Other clashes are resolved by renaming built-in operators when importing mod-
ules defined by Maude. (Maude provides a syntax for achieving this.) Finally,
for common built-in operators, we can simply rename the Creol constructs. Thus,
_plus_ and if_th_el_fi are used for Creol instead of _+_ and if_then_else_fi,
which keep their standard meaning.

At the beginning of the section, we introduced the concrete Maude-compatible syn-
tax with the declaration of a ’Counter interface and a ’SimpleCounter class. Here is
a parse tree for the class declaration:

Class

ClassHead begin VarClause with Type : ClassMtds Tail

ClassHead ClassHeadClause var TypedIdList any MtdDeclGroup guar Assn end

class IdWithParams TypedId MtdDecl BasicExp

Id Id : Type OpSig is MtdBody Id [ TypedIdList ]

QuotedId QuotedId op Id QuotedId TypedId

’SimpleCounter ’n int QuotedId Stmt ’G Id

implements SuperList ’inc SingleStmt ~H~

Super TypedQualifiedIdList := ExpList

IdWithArgs TypedQualifiedId Exp

IdWithParams TypedId AExp

Id Id AExp plus AExp

QuotedId QuotedId BasicExp Int

’Counter ’n Id 1

QuotedId

’n

A significant drawback of the concrete syntax is that its structure owes more to
Maude’s limited parsing capabilities than to the actual structure of the program.
To make Creol programs more malleable, creol-program.maude uses equations to
convert them to system configuration terms. For example:

< ’Counter : Interface | Inh: epsilon, Param: epsilon,
Asum: true, Guar: true >

< ’SimpleCounter : Class | Impl: ’Counter, Ctrc: epsilon,
Inh: epsilon, Param: epsilon,
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Att: ’n : int,
Mtd: < ’inc : Method | In: epsilon,

Out: epsilon,
LVar: epsilon,
Code: ’n := ’n plus 1 >,

ObjCnt: 0, Asum: true, Guar: ’G[~H~] >

This conversion process affects the structure of interface and class declarations. The
statements in the method bodies and the assertions in the assume–guarantee spec-
ification, whose Maude representation is not so convoluted, are left unchanged.

6.4 Representing Statements and Assertions

Statements and assertions play a crucial part in the assertion analyzer. In this sec-
tion, we will study how they are represented in Maude. We will also review the
more fundamental sorts used to represent identifiers, types, and expressions.

sort Id .
subsort QuotedId < Id .

op none : -> Id [ctor] .
op nu : -> Id [ctor] .
op self : -> Id [ctor] .
op caller : -> Id [ctor] .
op label : -> Id [ctor] .
op ~H~ : -> Id [ctor] .
op _$_ : Id Int -> Id [ctor prec 1] .

The Id sort represents identifiers in Creol programs, such as variable names and
class names. Any quoted identifier can be used as a Creol identifier; in addition,
the constants none, nu (ν), self, caller, label, and ~H~ (H ) are special identifiers
used in Creol programs or internally in the Creol tools. The _$_ constructor is used
by the assertion analyzer to construct logical variables, such as ’h $ 1 (h1).

sort Type .
subsort Id < Type .

op bool : -> Type [ctor] .
op int : -> Type [ctor] .
op any : -> Type [ctor] .
op event : -> Type [ctor] .
op history : -> Type [ctor] .

The Type sort specifies the Creol types bool, int, and any as well as the reasoning
types event and history. In addition, any identifier can be used as a type.

sort TypedId .
subsort Id < TypedId .

op _:_ : Id Type -> TypedId [ctor prec 3 right id: none] .

The TypedId sort represents identifiers accompanied by a typing annotation. The
constructor reflects the syntax of Creol variable declarations, allowing terms of the
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form x : t, with x ∈ Id and t ∈ Type. The subsort declaration makes it possible to
specify a plain identifier where a typed identifier is expected. Using the right id

attribute, we specify the identity axiom x = x : none ; this ensures that we can
match any TypedId term with the pattern X : T, where X is a variable of sort Id and
T is a variable of sort Type.

sort QualifiedId .
subsort Id < QualifiedId .

op _@_ : Id Id -> QualifiedId [ctor prec 1 right id: none] .

The QualifiedId sort represents identifiers of the form x @ c, with x, c ∈ Id. The
subsort declaration ensures that plain identifiers are allowed as well. Using the
right id attribute, we specify the identity axiom x = x @ none, so that we can
match any QualifiedId term with the pattern X @ C, where X and C are of sort Id.

sort TypedQualifiedId .
subsort QualifiedId < TypedQualifiedId .
subsort TypedId < TypedQualifiedId .

op _:_ : QualifiedId Type -> TypedQualifiedId [ctor ditto] .

The TypedQualifiedId combines TypedId and QualifiedId, allowing terms of the
form x @ c : t, where both @ c and : t can be omitted. The ditto attribute is a
shorthand for the attributes that were specified in the earlier declaration of _:_,
excluding ctor. We could also have written

op _:_ : QualifiedId Type -> TypedId [ctor prec 3 right id: none] .

In addition, creol-program.maude declares the following list sorts: IdList, Typed-
IdList, QualifiedIdList, and TypedQualifiedIdList. The subsort graph below il-
lustrates how the identifier sorts relate to each other and to the list sorts:

QuotedId

Id

TypedId QualifiedId

TypedQualifiedId

IdList

TypedIdList QualifiedIdList

TypedQualifiedIdList

c

c
6 6

6

6 6

6

6

6 6

6

The expression sorts comprise arithmetic expressions (AExp), Boolean expressions
(BExp), object expressions (OExp), assertions (Assn), event expressions (EventExp),
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history expressions (HistoryExp), event pattern expressions (EventPatExp), and his-
tory pattern expressions (HistoryPatExp). The event- and history-related expres-
sions may appear as subexpressions in assertions. The subsort graph below illus-
trates how the expression sorts relate to each other:

Exp

Assn HistoryPatExp

AExp BExp BasicAssn OExp EventPatExp HistoryExp

BasicBExp EventExp

BasicExp

6

6 6

6 6 6 6 6 6

6 6

In parallel with the expression sorts, creol-program.maude declares a hierarchy of
value sorts:

Int Bool OId HistoryPat

Value

Event

EventPat History

6

6 6

6

The BasicExp sort specifies the subsorts and operators that are common to all ex-
pression sorts. This is necessary to respect Maude’s preregularity requirements on
overloaded operators. The sort is declared as follows:

sort BasicExp .
subsort QualifiedId < BasicExp .
subsort IdWithArgs < BasicExp .

op if_th_el_fi : BExp BasicExp BasicExp -> BasicExp [ctor] .
op [_] : BasicExp -> BasicExp [ctor] .

Thus, a BasicExp can be a qualified identifier x @ c, a function application f[ē], a
condition expression if B th e1 el e2 fi, or a parenthesized expression [e].

The specific expression sorts provide additional constructors reflecting the abstract
syntax of Creol. For example, arithmetic expressions are declared as follows:

sort AExp .
subsort BasicExp < AExp .
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subsort Int < AExp .
subsort IntTypedId < AExp .

op plus_ : AExp -> AExp [ctor prec 3] .
op minus_ : AExp -> AExp [ctor prec 3] .
op _times_ : AExp AExp -> AExp

[ctor assoc comm prec 5 gather (E e)] .
op _div_ : AExp AExp -> AExp [ctor prec 5 gather (E e)] .
op _plus_ : AExp AExp -> AExp

[ctor assoc comm prec 7 gather (E e)] .
op _minus_ : AExp AExp -> AExp [ctor prec 7 gather (E e)] .
op if_th_el_fi : BExp AExp AExp -> AExp [ctor] .
op [_] : AExp -> AExp [ctor] .

The AExp sort is declared with three subsorts: BasicExp, Int, and IntTypedId. The
Int subsort enables us to use integer constants as arithmetic expressions, while
IntTypedId provides typed qualified identifiers of the form x @ c : int. The Int-

TypedId sort is declared using a membership axiom as follows:

sort IntTypedId .
subsort IntTypedId < TypedId .
subsort IntTypedId < TypedQualifiedId .

mb (Z : int) : IntTypedId .

The other expression sorts are declared in a similar fashion. In particular, the asser-
tion sort Assn is declared as a supersort of BExp as follows:

sort Quantifier .

op forall : -> Quantifier [ctor] .
op exists : -> Quantifier [ctor] .

sort Assn .
subsort BasicAssn < Assn .
subsort BExp < Assn .

op !_ : Assn -> Assn [ctor ditto] .
op _&&_ : Assn Assn -> Assn [ctor ditto] .
op _||_ : Assn Assn -> Assn [ctor ditto] .
op _==>_ : Assn Assn -> Assn [ctor prec 17 gather (e E)] .
op _<==>_ : Assn Assn -> Assn [ctor comm prec 19 gather (e e)] .
op __._ : Quantifier TypedIdList Assn -> Assn [ctor prec 21] .
op if_th_el_fi : Assn Assn Assn -> Assn [ctor] .
op [_] : Assn -> Assn [ctor] .

Let us now look at Creol statements. Statements are represented by three sorts, as
shown in the subsort graph below:

SingleStmtAllowedInAwait

SingleStmt

Stmt

6

6
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The SingleStmtAllowedInAwait sort is used for the statements that may appear as
the last guard in an await statement, namely

L ?[z̄], O . m[ē ; z̄], m @ c[ē ; z̄].

The SingleStmt sort adds all the other statements except sequential composition
(S1 ; S2), which is declared in Stmt only.

The concrete syntax of the canonical Creol statements is defined by the following
operators:

op skip : -> SingleStmt [ctor] .
op abort : -> SingleStmt [ctor] .
op prove_ : Assn -> SingleStmt [ctor prec 23] .
op _:=_ : TypedQualifiedIdList ExpList -> SingleStmt

[ctor prec 23] .
op _:= new_ : TypedQualifiedId IdWithArgs -> SingleStmt

[ctor prec 23] .
op _!_._[_] : TypedId OExp Id ExpList -> SingleStmt [ctor prec 5] .
op _!_[_] : TypedId TypedQualifiedId ExpList -> SingleStmt

[ctor prec 5] .
op _?[_] : TypedId TypedQualifiedIdList -> SingleStmtAllowedInAwait

[ctor prec 5] .
op await_ : Guard -> SingleStmt [ctor prec 19] .
op if_th_el_fi : BExp Stmt Stmt -> SingleStmt [ctor] .
op while_do_od : BExp Stmt -> SingleStmt [ctor] .
op inv_while_do_od : Assn BExp Stmt -> SingleStmt [ctor] .
op _[]_ : Stmt Stmt -> SingleStmt

[ctor assoc comm prec 27 format (d s d s d)] .
op _|||_ : Stmt Stmt -> SingleStmt [ctor assoc comm prec 29] .
op [_] : Stmt -> SingleStmt [ctor] .

op emptyStmt : -> Stmt [ctor] .
op _;_ : Stmt Stmt -> Stmt [ctor assoc prec 25 id: emptyStmt] .

The n-ary operator S1 ||| · · · ||| Sn is implemented using an associative and com-
mutative binary operator |||. Because we use square brackets for Creol paren-
theses, we can distinguish between [S1 ||| S2] ||| S3 and S1 ||| S2 ||| S3, even
though the binary operator ||| is associative in Maude.

The empty statement emptyStmt, which is distinct from the null statement skip,
is the identity element of the sequential composition operator (;). It should not
appear in actual programs. The pattern SS ; S, where SS has sort SingleStmt and S

has sort Stmt, can be used to match any non-empty statement.

In addition to Creol’s canonical statements, creol-program.maude supports various
synthetic statements, which can be seen as abbreviations:

op _.__ : OExp Id SyncCallArgs -> SingleStmtAllowedInAwait
[ctor prec 1] .

op __ : QualifiedId SyncCallArgs -> SingleStmtAllowedInAwait
op await_&&&_ : Guard SingleStmtAllowedInAwait -> SingleStmt

[ctor prec 19] .
op await_ : SingleStmtAllowedInAwait -> SingleStmt [ctor prec 19] .
op !_._[_] : OExp Id ExpList -> SingleStmt [ctor] .
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op !_[_] : QualifiedId ExpList -> SingleStmt [ctor] .
op if_th_fi : BExp Stmt -> SingleStmt [ctor] .

The SyncCallArgs sort used in the signature of the synchronous call operators _.__
and __ is declared as follows:

sort SyncCallArgs .

op [_;_] : ExpList TypedQualifiedIdList -> SyncCallArgs [ctor] .
op [_;] : ExpList -> SyncCallArgs .
op [;_] : TypedQualifiedIdList -> SyncCallArgs .
op [;] : -> SyncCallArgs .
op [] : -> SyncCallArgs .

A synchronous call takes a list of input arguments and a list of output arguments,
both of which are optional. Equations introduce dummy epsilon tokens so that we
can match synchronous method call arguments with the pattern [EL ; ZZL], where
EL has sort ExpList and ZZL has sort TypedQualifiedIdList:

eq [EL ;] = [EL ; epsilon] .
eq [; ZZL] = [epsilon ; ZZL] .
eq [;] = [epsilon ; epsilon] .
eq [] = [epsilon ; epsilon] .

The Creol interpreters expands the synthetic statements into the canonical state-
ments they abbreviate using equations. In contrast, the assertion analyzer treats
them as first-class citizens, because for some of them it can produce “optimized”
WLPs, as we will see in Section 6.6.

To handle empty argument lists gracefully, creol-program.maude specifies the fol-
lowing operators and equations:

op _!_._[] : TypedId OExp Id -> SingleStmt [prec 5] .
op _!_[] : TypedId QualifiedId -> SingleStmt [prec 5] .
op !_._[] : OExp Id -> SingleStmt .
op !_[] : QualifiedId -> SingleStmt .
op _?[] : TypedId -> SingleStmtAllowedInAwait [prec 5] .

eq LL ! OEXP . M[] = LL ! OEXP . M[epsilon] .
eq LL ! M @ C[] = LL ! M @ C[epsilon] .
eq ! OEXP . M[] = ! OEXP . M[epsilon] .
eq ! M @ C[] = ! M @ C[epsilon] .
eq LL ?[] = LL ?[epsilon] .

6.5 Producing the Verification Report

At the heart of the assertion analyzer lies the following rewrite rule, which in one
step transforms the input program and its verify class command into a compre-
hensive verification report:

crl [start-verification] :
{

verify class C with simplifications QID
CONFIG
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}
=>

{
Verification of class C
classInitializationJudgment(C, AG, AAL, CONFIG, MOD)
classMethodJudgments(C, AG, AAL, CONFIG, MOD)

}
if AG := classAGSpec(C, CONFIG)

/\ AAL := classWritableAttributes(C, CONFIG)
/\ MOD := upModule(QID, false) .

The classInitializationJudgment and classMethodJudgments functions expand to
the judgments for the class to verify. We will review them shortly. The classAGSpec

function extracts the assume–guarantee specification for the class, taking into ac-
count superclasses and superinterfaces, and the classWritableAttributes function
returns the list of writable attributes for the class.

The verification report is a term of sort Report. The report is made more readable
using Maude’s format attribute, which lets us color tokens and insert whitespace
between them. Here is the declaration of the Report constructor:

op Verification of class__ : Id JudgmentList -> Report
[ctor gather (e &) format (b b osb b bnn o)] .

A report consists of a banner followed by a list of judgments:

sort JudgmentList .
subsort Judgment < JudgmentList .

op Nothing to verify : -> JudgmentList [ctor format (b b b on)] .
op __ : JudgmentList JudgmentList -> JudgmentList

[ctor assoc prec 9 id: Nothing to verify format (b bn o)] .

A judgment consists of a head and a body, separated by a colon:

sort Judgment .

op _:_ : JudgmentHead judgmentBody -> Judgment
[ctor prec 7 format (b b bnssss on)] .

The head of a judgment identifies the code that has been verified:

sort JudgmentHead .

op Initialization code : -> JudgmentHead [ctor format (b b o)] .
op Method_of_ : Id Id -> JudgmentHead

[ctor prec 3 format (b b b b o)] .

The body of a judgment states the result of the verification:

sort JudgmentBody .

op Maintains the guarantee : -> JudgmentBody
[ctor format (g g g o)] .

op Maintains the guarantee iff_holds :
PrettyAssn -> JudgmentBody

[ctor format (y y y y nssssy nssssy o)] .
...
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op Fails to establish the guarantee : -> JudgmentBody
[ctor format (r r r r r o)] .

To increase the report’s readability, the judgment bodies are colored according to
a traffic light scheme: green for positive judgments, yellow for inconclusive judg-
ments, and red for negative judgments. (In Section 6.1, the glyphs q3, q? , and q

carried this information.)

The judgment for the class’s initialization code is generated by the classInitial-

izationJudgment function and has the general form

Initialization code : Establishes the invariant iff Q̂ holds

where Q̂ is a proof obligation that is derived from the verification condition given
in Section 5.5 through the massaging process described in Section 6.7. Recall that
the verification condition for a class’s initialization code is(

Ac ⇒ wlp(〈 initializer〉 , (Gc)H
H _[self .initialized])

)H
[parent(self)→self .new c( p̄)],

where p̄ is a list of fresh logical variables.

The classInitializationJudgment function is defined as follows:

ceq classInitializationJudgment(C, < ASUM, GUAR >, AAL, CONFIG,
MOD) =

Initialization code :
judgmentBody(S,

(ASUM ==> wlp(S, Q, < ASUM, GUAR >, AAL))
{ ~H~ : history |->
[’parent[self : any] -> self : any . new C[PPL]] },

MOD)
if Q := GUAR { ~H~ : history |-> ~H~ : history

^^ [self : any . initialized] }
/\ PPL := freshLogicalVarList(classParams(C, CONFIG), Q)
/\ S := (initializeVars(AAL) ; initialPr(C[PPL], CONFIG)) .

This definition relies on many auxiliary functions and operators, which we will
review in turn.

The wlp function implements the wlp function presented in Section 5.4. In addition
to a statement S and a postcondition Q, it takes an assume–guarantee specification
< ASUM, GUAR > and the list of attributes AAL as arguments. We will study the imple-
mentation of wlp in the next section.

The substitution operator (X) { z̄ |-> ē } simultaneously replaces all free occur-
rences of the variables z̄ with the corresponding expressions from ē in X, which can
be a statement or an expression. (If Maude had supported superscripts and sub-
scripts, we could have written Xz̄ē instead.) The substitution operator ensures that
free variables in ē don’t get captured by a quantifier, by renaming bound variables
in X if necessary. For example:

red (forall ’x $ 1 . ’y) { ’y |-> ’x $ 1 } .

*** result Assn: forall ’x $ 2 . ’x $ 1

The ^^ operator denotes history concatenation (_).
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The freshLogicalVarList function generates fresh names for logical variables. It
takes a list of variables Z̄ and a list of expressions ē and returns a list of logical
variables X̄ that have the same types as the corresponding variables in Z̄ and that
do not occur free in ē. For example:

red freshLogicalVarList((’x : int, ’y : bool), (’x $ 1, ’b)) .

*** result TypedIdList: ’x $ 2 : int, ’y $ 1 : bool

The classParams function returns the context parameters for the specified class.

The initializeVars function returns a list of assignment statements that initialize
the specified variables to their default values. For example,

red initializeVars(’x : int, ’y : bool, ’z : ’Counter) .

*** result Stmt: ’x : int := 0 ; ’y : bool := false ;

*** ’z : ’Counter := null

Notice that the variables in the assignment statements carry typing annotations.
The assertion analyzer works on code that is fully typed and fully qualified. Typ-
ing helps the assertion simplification process, while qualifying is necessary to avoid
aliasing issues and potential name clashes, as noted in Section 5.1. This also ex-
plains why we wrote ~H~ : history and self : any rather than just ~H~ and self

in the classInitializationJudgment equation.

The initialPr function returns the fully typed and fully qualified code for the ini-
tial process, which consists of the initialization of the context parameters, the calls
to ’init, and the call to ’run.

Finally, judgmentBody takes the verification condition, normalizes it, simplifies it
(using the simplification module MOD), untypes it, pretty-prints it, and embeds it in
a judgment body. The argument S influences the wording of the judgment body.
If S contains a while loop or some other statement that weakens the proof system,
the resulting judgment body says if instead of iff:

ceq judgmentBody(S, Q, MOD) =
if wlpIsComplete(S) then

Maintains the guarantee iff PRETTY holds
else

Maintains the guarantee if PRETTY holds
fi

if PRETTY := massaged(Q, MOD) .

Equations are used to adapt the wording of the judgment bodies for the initializa-
tion code:

eq Initialization code : Maintains the guarantee =
Initialization code : Establishes the guarantee .

...
eq Initialization code : Breaks the guarantee =

Initialization code : Fails to establish the guarantee .

Equations are also used to reword judgment bodies that contain the trivial proof
obligations true and false:
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eq Maintains the guarantee iff true holds =
Maintains the guarantee .

eq Maintains the guarantee iff false holds =
Breaks the guarantee .

...
eq Establishes the guarantee if true holds =

Establishes the guarantee .
eq Establishes the guarantee if false holds =

Don’t know .

We have seen how the assertion analyzer generates the judgment associated with a
class’s initialization code. The judgments relative to the methods declared in a class
are generated in much the same way. The classMethodJudgments function, which
orchestrates this, simply calls methodJudgment for every method provided by the
class, producing judgments of the form

Method m of c : Maintains the invariant iff Q̂ holds

The verification condition for a method is(
Ac

∧ Gc

∧ lwf (H , self)
∧ mayAcquireProcessor(H , self , caller, label)
∧ [caller→self .m@c′(x̄)]label in H
∧ [caller←self ]label not in H

)
⇒

wlp
(
〈method〉 , (Gc)H

H _[caller←self .m@c’(x̄; ȳ)]label

)
.

Putting this together, we obtain the following definition for methodJudgment:

ceq methodJudgment(C, < ASUM, GUAR >, AAL, M, XXL, YYL, VVL, S,
CONFIG, MOD) =

Method M of C :
judgmentBody(S’,

[ASUM
&& GUAR
&& ’lwf[~H~ : history, self : any]
&& ’mayAcquireProcessor[~H~ : history, self : any,

caller : any, label : int]
&& [label : int % caller : any -> self : any . M[XXL]]

in ~H~ : history
&& ! [[label : int % caller : any <- self : any . *]

in ~H~ : history]] ==>
wlp(S’, (GUAR) { ~H~ : history |-> ~H~ : history

^^ [label : int % caller : any <-
self : any . M[XXL ; YYL]] },

< ASUM, GUAR >, AAL),
MOD)

if S’ := (initializeVars(YYL, VVL) ;
qualifiedAndTyped(S, C, AAL, (XXL, YYL, VVL), CONFIG)) .

The most noteworthy feature of this definition is the qualifiedAndTyped call, which
systematically types and qualifies the variables that appear in the method body S.
The third argument lists the attributes, whereas the fourth argument lists the local
variables (including the input and output parameters).
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6.6 Computing the Weakest Liberal Preconditions

The verification conditions computed by the assertion analyzer rely on the wlp

function. For most of the Creol statements, the wlp function implemented in Maude
is almost the same as the wlp function from Definitions Q10–Q12 (Section 5.4), the
difference being that the assume–guarantee specification AG and the list of attributes
AAL are now explicit parameters of wlp. For example, here is the definition of wlp
for some of the basic Creol statements:

eq wlp(skip, Q, AG, AAL) = Q .
eq wlp(abort, Q, AG, AAL) = true .
eq wlp(prove P, Q, AG, AAL) = P && Q .
eq wlp(ZZL := EL, Q, AG, AAL) = (Q) { ZZL |-> EL } .
eq wlp([S], Q, AG, AAL) = wlp(S, Q, AG, AAL) .
eq wlp(if B th S1 el S2 fi, Q, AG, AAL) =

if B th wlp(S1, Q, AG, AAL) el wlp(S2, Q, AG, AAL) fi .
ceq wlp(S1 ; S2, Q, AG, AAL) = wlp(S1, wlp(S2, Q, AG, AAL), AG, AAL)
if S1 =/= emptyStmt and S2 =/= emptyStmt .

For the other Creol statements, the transition from the abstract WLP given by the
wlp function to the concrete wlp is less straightforward. This is largely due to a dif-
ference in philosophy between the proof system and the assertion analyzer: Where
the proof system tends to be minimalistic and reductionist, the assertion analyzer
introduces some complications to obtain syntactically simpler (yet logically equiv-
alent) preconditions. And pragmatism forces us to revisit the while loop, whose
abstract WLP is unusable in practice.

In the rest of this section, we will look more specifically at the following statements:

z := new c(ē),
await g,
await g & l?(z̄),
m@c(ē; z̄),

|||ni=1 Si,
S1� S2,[
inv I

]
while B do S od.

We start with object creation. In Chapter 5, we gave the following WLP for the
statement z := new c(ē):

∀o, h.
(
interleave(H , h) ∧ o /∈ objectIds(h) ∧ parent(o) = self

)
⇒

Qz,H
o,h_[self→o.new c(ē)] .

In contrast, the assertion analyzer uses the equation

ceq wlp(ZZ := new C[EL], Q, AG, AAL) =
interleaved(

forall OO .
[’isFreshObjectId[OO, ~H~ : history]
&& ’parent[OO] eq self : any] ==>
(Q) { ZZ |-> OO }

{ ~H~ : history |-> ~H~ : history
^^ [self : any -> OO . new C[EL]] },

AG)
if OO := freshLogicalVar(’o : any, Q) .

where interleaved is defined as follows:
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ceq interleaved(Q, AG) =
forall HH .

interleave(~H~ : history, HH, AG) ==>
(Q) { ~H~ : history |-> HH }

if HH := freshLogicalVar(’h : history, Q) .

The interleaved function transforms Q into forall HH . [interleave(~H~, HH, AG)

==> Q~H~HH ]. It occurs in the wlp of most Creol-specific statements. Its purpose is
to make the source code of the assertion analyzer simpler to read. Besides this,
the main difference between the abstract WLP and the concrete wlp is the use of
a function ’isFreshObjectId[OO, ~H~] instead of ! [OO in ’objectIds[~H~]], to
avoid overusing operators.

The interleave function (with no d) is defined as follows:

eq interleave(HEXP, HEXP’, < ASUM, GUAR >) =
’lwf[HEXP’, self : any]
&& HEXP pr HEXP’
&& ’agreeOnOutAndCtl[HEXP, HEXP’, self : any]
&& ASUM { ~H~ : history |-> HEXP’ } .

Compared with Definition Q1, the only difference is that we write ’agreeOnOut-

AndCtl[HEXP, HEXP’, self : any] instead of HEXP / (out[self : any] | ctl[self

: any]) eq HEXP’ / (out[self : any] | ctl[self : any]), to make the resulting
assertion more manageable.

The next statement we consider is conditional wait. In Section 5.2, we distinguished
three cases:

i. await B1 & · · ·& Bn

ii. await l1? & · · ·& lp?
[
& B1 & · · ·& Bn

]
iii. await wait

[
& l1? & · · ·& lp?

][
& B1 & · · ·& Bn

]
The assertion analyzer handles all three cases in one equation:

ceq wlp(await G, Q, < ASUM, GUAR >, AAL) =
if cleared(G) == G then

if P :: BExp then

*** case i
if P th

Q
el

GUAR { ~H~ : history |->
~H~ : history ^^ [self : any . release] }

&& [forall AAL’, HH .
release(~H~ : history, HH, AAL’,

< ASUM, GUAR >, AAL) ==>
(P ==> Q) { AAL |-> AAL’ }

{ ~H~ : history |-> HH }]
fi

else

*** case ii
forall HH .

[interleave(~H~ : history, HH, < ASUM, GUAR >) ==>
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if (P) { ~H~ : history |-> HH } th
(Q) { ~H~ : history |-> HH }

el
GUAR { ~H~ : history |->

HH ^^ [self : any . release] }
&& [forall AAL’, HH’ .

release(HH, HH’, AAL’, < ASUM, GUAR >,
AAL) ==>

(P ==> Q) { AAL |-> AAL’ }
{ ~H~ : history |-> HH’ }]

fi]
fi

else

*** case iii
GUAR { ~H~ : history |->

~H~ : history ^^ [self : any . release] }
&& [forall AAL’, HH .

release(~H~ : history, HH, AAL’, < ASUM, GUAR >,
AAL) ==>

(P ==> Q) { AAL |-> AAL’ }
{ ~H~ : history |-> HH }]

fi
if P := satisfied(cleared(G), AAL, ~H~, AAL)

/\ HH := freshLogicalVar(’h : history, Q)
/\ HH’ := freshLogicalVar(’h : history, (HH, Q))
/\ AAL’ := freshLogicalVarList(AAL, (HH, HH’, Q)) .

The variable P is bound to an assertion corresponding to the guard G. It is computed
by the satisfied function. For example:

red satisfied(’x eq ’y, AAL, ~H~ : history, AAL) .

*** result BasicBExp: ’x eq ’y

red satisfied(’l ?, AAL, ~H~ : history, AAL) .

*** result BasicAssn: [’l % self : any <- * . *] in ~H~ : history

In the wlp definition, we first check if there is a wait guard. If cleared(G) == G,
there is no such guard and the choice is between cases i and ii; otherwise, we have
case iii. To distinguish cases i and ii, we use the :: BExp operator on the assertion P

to check whether the assertion is a Boolean expression or a general assertion.

The release function’s implementation follows Definition Q4:

eq release(HEXP, HEXP’, AAL’, < ASUM, GUAR >, AAL) =
’lwf[HEXP’, self : any]
&& HEXP ^^ [self : any . release] pr HEXP’
&& ’mayAcquireProcessor[HEXP’, self : any, caller : any,

label : int]
&& ! [[label : int % caller : any <- self : any . *] in HEXP’]
&& [[HEXP ^^ [self : any . release]] /

(out[self : any] | ctl[self : any]) eq
HEXP’ / (out[self : any] | ctl[self : any]) ==>
AAL all eq AAL’]

&& (ASUM && GUAR) { AAL |-> AAL’ }
{ ~H~ : history |-> HEXP’ } .
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In the proof system presented in Chapter 5, we assumed that synthetic statements
were expanded to the canonical statements they abbreviated. Thus, we gave no
proof rule for if B then S fi, which can be treated as if B then S else skip fi. How-
ever, for some of the synthetic statements, we can provide syntactically simpler
preconditions than we would obtain by expanding them first.

Consider the statement await g & l?(z̄), which abbreviates await g & l?; l?(z̄). If
z̄ ≡ z1, . . . , zn, the WLP for l?(z̄) is

if pending(H , self , self , l) then
(Gc)H

H _[self .reenter]l

∧ ∀ā, h.
(
reenter(H , h, ā, l)⇒ QĀ ,H ,l,z1,...,zn

ā,h,−1,returnVal1(h,self ,l),...,returnValn(h,self ,l)
)

else
∀h.

(
interleave(H , h) ∧ [self←∗]l in h

)
⇒

QH ,l,z1,...,zn
h,−1,returnVal1(h,self ,l),...,returnValn(h,self ,l)

fi

but immediately after await g & l? we can assume that [self←∗]l in H will hold,
and thus the above precondition can be replaced by

Ql,z1,...,zn
−1,returnVal1(h,self ,l),...,returnValn(h,self ,l),

which corresponds to the SEQ statement

l, z1, . . . , zn := −1, returnVal1(h, self , l), . . . , returnValn(h, self , l)

Based on this, we can define an optimized WLP for await g & l?(z̄) as follows:

wlp(await g & l?(z̄), Q) , wlp
(
await g & l?,
Ql,z1,...,zn
−1,returnVal1(h,self ,l),...,returnValn(h,self ,l)

)
.

This leads to the following concrete wlp:

eq wlp(await G &&& LL ?[ZZL], Q, AG, AAL) =
wlp(await G &&& LL ?,

(Q) { LL |-> -1 }
{ ZZL |-> returnVals(~H~ : history, self : any, LL,

length(ZZL)) },
AG, AAL) .

We can perform a similar optimization for synchronous method calls. In Chapter 4,
we defined m@c(ē; z̄) as an abbreviation for ν !m@c(ē); ν?(z̄), where ν is a special
label that cannot occur in the program text. Using backward construction, we find
the following WLP for ν !m@c(ē); ν?(z̄):

∀k, h.
(
interleave(H , h) ∧

[
self→∗]k not in h ∧ k≥ 0

)
⇒(

if pending(H , self , self , k) then
(Gc)H

h_[self .reenter]k

∧ ∀ā, h′. reenter(H , h′, Ā , ā, k)⇒
QĀ ,H ,ν,z1,...,zn

ā,h′,−1,returnVal1(h′,self ,k),...,returnValn(h′,self ,k)
else
∀h′.

(
interleave(H , h′) ∧ [self←∗]k in h′

)
⇒

QH ,ν,z1,...,zn
h′,−1,returnVal1(h′,self ,k),...,returnValn(h′,self ,k)

fi
)H

h_[self→self .m@c(ē)]k .
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By the definition of pending, the then branch of the conditional expression will al-
ways be taken. (If we call m@c asynchronously on self , we can expect the call to
remain pending at least until we release the processor.) And since the guarantee
should be insensitive to additional events originating from the environment and
ν shouldn’t occur in Q, we can use the optimized WLP

wlp(m@c(ē; z̄), Q)
, ∀k.

[
self→∗]k not in H ∧ k≥ 0⇒(
(Gc)H

H _[self .reenter]k

∧ ∀ā, h. reenter(H , h, Ā , ā, k)⇒
QĀ ,H ,z1,...,zn

ā,h,returnVal1(h,self ,k),...,returnValn(h,self ,k)
)H

H _[self→self .m@c(ē)]k ,

In Maude, this gives

ceq wlp(M @ C[EL ; ZZL], Q, < ASUM, GUAR >, AAL) =
forall KK .

’isFreshSequenceNum[KK, self : any, ~H~ : history] ==>
(GUAR { ~H~ : history |->

~H~ : history ^^ [KK % self : any . reenter] }
&& [forall AAL’, HH .

reenter(~H~ : history, HH, AAL’, KK,
< ASUM, GUAR >, AAL) ==>

(Q) { AAL |-> AAL’ }
{ ~H~ : history |-> HH }
{ ZZL |-> returnVals(HH, self : any, KK,

length(ZZL)) }])
{ ~H~ : history |-> ~H~ : history

^^ [KK % self : any -> self : any . M[EL]] }
if KK := freshLogicalVar(’k : int, Q)

/\ HH := freshLogicalVar(’h : history, Q)
/\ AAL’ := freshLogicalVarList(AAL, (KK, HH, Q)) .

The next statement we will look at is nondeterministic merge. In Chapter 5, we
defined its WLP as follows:

wlp(|||ni=1 Si, Q) , wlp(�n
i=1(Si; |||nj=1,j 6=i Sj), Q) if awaitFree(|||ni=1 Si).

From this, we deduce

wlp(S1 ||| S2 ||| S3, Q)
= wlp(S1; (S2 ||| S3) � S2; (S1 ||| S3) � S3; (S1 ||| S2), Q)
= wlp(S1; (S2; S3� S2; S3) � S2; (S1; S3� S3; S1) � S3; (S1; S2� S2; S1), Q).

As an easy speed optimization, the assertion analyzer avoids this intermediate step
and converts S1 ||| · · · ||| Sn directly into a |||-free statement. This is done by
the perms function. For example:

red perms(S1 ||| S2 ||| S3) .

*** result SingleStmt: S1 ; (S2 ; S3 [] S3 ; S2)

*** [] S2 ; (S1 ; S3 [] S3 ; S1)

*** [] S3 ; (S1 ; S2 [] S2 ; S1)

Using perms and an auxiliary awaitFree predicate modeled after Definition Q9, we
can define the concrete wlp as follows:
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ceq wlp(S1..SK ||| SK+1..SN, Q, AG, AAL) =
wlp(perms(S1..SK ||| SK+1..SN), Q, AG, AAL)

if awaitFree(S1..SK ||| SK+1..SN) .

The variable names S1..SK and SK+1..SN convey the idea that each of these may
represent several branches of a general n-ary ||| statement. The perms function is
implemented below:

eq perms(S) = perms(S, S) .

ceq perms(S1, S1) = S1
if simpleBranch(S1) .
ceq perms(S1, S1 ||| S’) = S1 ; perms(S’)
if simpleBranch(S1) .
ceq perms(S1 ||| S’, S1 ||| S2..SN) =

S1 ; perms(S2..SN, S2..SN) [] perms(S’, S1 ||| S2..SN)
if simpleBranch(S1) .

In general, a merge statement with n branches gives rise to no less than n! − 1
choice statements. To make matters worse, the WLP for the choice statement is
prohibitively complex:

∀h. interleave(H , h)⇒
if ready(S1� S2, Ā , h) then

pickReadyBranch(S1, S2, wlp(S1, Q), wlp(S2, Q), Ā , h)
else if enabled(S1� S2, Ā , h) then
∀h′.

(
interleave(h, h′) ∧ ready(S1� S2, Ā , h′)

)
⇒

pickReadyBranch(S1, S2, wlp(S1, Q), wlp(S2, Q), Ā , h′)
else

(Gc)H
h_[self .release]

∧ ∀ā, h′.
(
release(h, h′, ā) ∧ ready(S?

1 � S?
2 , ā, h′)

)
⇒

pickReadyBranch(S?
1 , S?

2 , wlp(S?
1 , Q), wlp(S?

2 , Q), ā, h′)
fi fi

Fortunately, in the frequent case where the statements S1 and S2 are always ready,
the precondition simplifies to wlp(S1, Q) ∧ wlp(S2, Q). The assertion analyzer ex-
ploits this in its wlp implementation:

ceq wlp(S1 [] S2, Q, < ASUM, GUAR >, AAL) =
if logicallySimplified(ready(S1, AAL, ~H~ : history, AAL)

&& ready(S2, AAL, ~H~ : history, AAL))
== true then

wlp(S1, Q, < ASUM, GUAR >, AAL)
&& wlp(S2, Q, < ASUM, GUAR >, AAL)

else
interleaved(

if ready(S1 [] S2, AAL, ~H~ : history, AAL) th
pickReadyBranch(S1, S2,

wlp(S1, Q, < ASUM, GUAR >, AAL),
wlp(S2, Q, < ASUM, GUAR >, AAL),
AAL, ~H~ : history, AAL)

el if enabled(S1 [] S2, AAL, ~H~ : history, AAL) th
interleaved(

ready(S1 [] S2, AAL, ~H~ : history, AAL) ==>
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pickReadyBranch(S1, S2,
wlp(S1, Q, < ASUM, GUAR >, AAL),
wlp(S2, Q, < ASUM, GUAR >, AAL),
AAL, ~H~ : history, AAL),

< ASUM, GUAR >)
el

GUAR { ~H~ : history |->
~H~ : history ^^ [self : any . release] }

&& [forall AAL’, HH .
[release(~H~ : history, HH, AAL’,

< ASUM, GUAR >, AAL)
&& ready(S1* [] S2*, AAL’, HH, AAL)] ==>

pickReadyBranch(S1*, S2*,
wlp(S1*, Q, < ASUM, GUAR >, AAL),
wlp(S2*, Q, < ASUM, GUAR >, AAL),
AAL’, HH, AAL)]

fi fi,
< ASUM, GUAR >)

fi
if HH := freshLogicalVar(’h : history, Q)

/\ AAL’ := freshLogicalVarList(AAL, (HH, Q))
/\ S1* := clearWait(S1)
/\ S2* := clearWait(S2) .

The ready function returns an assertion that specifies whether a given statement is
ready. If for both S1 and S2 the assertion can be simplified to true, both statements
are always ready and we use the optimized WLP.

The last statement we will look at is the while loop. In Section 5.4, we gave a WLP
based on Dijkstra [Dij75], but unfortunately it is generally impossible to compute
[IS97]. Instead, the assertion analyzer relies on the loop invariant provided by the
programmer. If no loop invariant is provided, we return false as the precondition:

eq wlp(while B do S od, Q, AG, AAL) = false .

As a result, the assertion analyzer will not be able to complete the proof and will
produce the judgment Don’t know.

eq wlp(inv I while B do S od, Q, AG, AAL) =
I {{ [I && B] ==> wlp(S, I, AG, AAL) }}

{{ [I && ! B] ==> Q }} .

If a loop invariant is provided, we return it as the precondition, because a valid loop
invariant must hold before entering the loop. In addition, we generate two side
conditions, enclosed in double braces ({{ }}). The first condition ensures that each
iteration maintains the invariant, whereas the second condition ensures that the
invariant, together with the negated loop condition, is strong enough to imply the
while loop’s postcondition. This is comparable to Proof Rule P9 from Section 5.1:

{I ∧ B} S {I}
{I}while B do S od {I ∧ ¬B}

We enclose the side conditions in double braces instead of simply using the con-
junction operator, because they are not part of the precondition and should not be
altered when computing the WLP of statements that occur before the while loop.
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Since we need to carry them along so that they become part of the verification
condition, we put them in “bubbles”, which are simply passed unchanged by the
wlp function. Equations ensures that they are moved to the top level of a complex
assertion:

eq ! (PHI {{ PHI’ }}) = (! PHI) {{ PHI’ }} .
eq (PHI1 {{ PHI’ }}) && PHI2 = (PHI1 && PHI2) {{ PHI’ }} .

...
eq forall XXL . (PHI {{ PHI’ }}) =

(forall XXL . PHI) {{ PHI’ }} .
eq exists XXL . (PHI {{ PHI’ }}) =

(exists XXL . PHI) {{ PHI’ }} .

Side conditions can be combined:

eq PHI {{ PHI’ {{ PHI’’ }} }} = PHI {{ PHI’ && PHI’’ }} .
eq PHI {{ PHI’ }} {{ PHI’’ }} = PHI {{ PHI’ && PHI’’ }} .

Importantly, substitutions do not affect side conditions:

eq (PHI {{ PHI’ }}) RHO = ((PHI) RHO) {{ PHI’ }} .

The advantage of this approach is that side conditions are propagated implicitly
by the backward proof construction process, without any extra work. However, it
does require some care: For every wlp, the postcondition Q must appear somewhere
in the precondition; otherwise the side conditions attached to it will be lost. (A
notable exception is the equation

eq wlp(while B do S od, Q, AG, AAL) = false .

for which there is no point in keeping the side conditions.)

6.7 Massaging the Verification Conditions

The verification conditions that are shown to the user pass through the massaged

function, which transforms them syntactically to make them more readable. To see
why this is necessary, consider the following if statement:

if x < 5 then
await x≥ 0

fi

Intuitively, control flow can take three paths, depending on the initial value of x:

1. If x≥ 5, the if statement is bypassed.

2. If 0≤ x < 5, the then branch is taken but the await statement does nothing.

3. If x < 0, the then branch is taken and the await statement releases the proces-
sor and reacquires it in a state where x≥ 0.

Let us assume that the code is located in the implementation of class c, in which x
is declared with type int. For simplicity, we will also assume that the class has no
assume–guarantee specification. In these circumstances, what is the WLP of the if
statement for the postcondition k≤ x? The command
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red wlp(if ’x @ ’c : int lt 5 th await ’x @ ’c : int ge 0 fi,
’k : int le ’x @ ’c : int, < true, true >, ’x @ ’c : int) .

gives the answer

result Assn: if ’x @ ’c : int lt 5 th if ’x @ ’c : int ge 0 th ’k :
int le ’x @ ’c : int el true && forall ’x $ 1 : int, ’h $ 1 :
history . [true && true && ! [[label : int % caller : any <- self
: any . *] in ’h $ 1 : history] && ’lwf[’h $ 1 : history, self :
any] && ’mayAcquireProcessor[’h $ 1 : history, self : any,
caller : any, label : int] && ~H~ : history ^^ [self : any .
release] pr ’h $ 1 : history ==> ’x $ 1 : int ge 0 ==> ’k : int
le ’x $ 1 : int] fi el ’k : int le ’x @ ’c : int fi

This output hardly qualifies as readable. There is no apparent structure, and some
parts can obviously be simplified (for example, true && true). The systematic qual-
ification and typing for the variables also diminish readability. For larger programs,
the output would have been completely opaque.

Contrast this with the output we get when we use the massaged function to normal-
ize, simplify, untype, and pretty-print the assertion:

Forall ’x $ 1 : int, ’h $ 1 : history .

5 le ’x @ ’c

===>

’k le ’x @ ’c

And

’x @ ’c lt 5

/\ 0 le ’x @ ’c

===>

’k le ’x @ ’c

And

! ([label % caller <- self . *] in ’h $ 1)

/\ ’lwf[’h $ 1, self]

/\ ’mayAcquireProcessor[’h $ 1, self, caller, label]

/\ ’x @ ’c lt 0

/\ 0 le ’x $ 1

/\ ~H~ ^^ [self . release] pr ’h $ 1

===>

’k le ’x $ 1

The pretty-printer introduces low-precedence logical operators that are displayed
in bold in the margin. The indentation indicates their relative precedences: /\ (∧∧∧)
binds more strongly than ===> (=⇒), which binds more strongly than And (

∧∧∧
),

which binds more strongly than Forall (∀∀∀).

The massaged assertion reflects the structure of the original program. The three
implications joined by And correspond to the three cases we identified informally:

1. If x≥ 5, we must have k≤ x initially if we want k≤ x to hold afterward.

2. If 0≤ x < 5, we must have k≤ x initially if we want k≤ x to hold afterward.
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3. If x < 0, then k≤ x1 must hold for all x1 ∈Z such that 0≤ x1 before executing
the statement if we want k ≤ x to hold afterward. In other words, we need
k≤ 0. (For this example, we can ignore the conjuncts that involve H and h1.)

From the above argument, it would seem that setting k := 0 initially is sufficient to
ensure that the postcondition holds. This is easy to confirm:

red massaged(wlp(’k := 0 ; if ’x @ ’c : int lt 5 th
await ’x @ ’c : int ge 0 fi,

’k : int le ’x @ ’c : int, < true, true >,
’x @ ’c : int)) .

*** result Bool: true

Here, the massaged function simplified the assertion

if ’x @ ’c : int lt 5 th if ’x @ ’c : int ge 0 th 0 le ’x @ ’c : int
el true && forall ’x $ 1 : int, ’h $ 1 : history . [true && true &&
! [[label : int % caller : any <- self : any . *] in ’h $ 1 :
history] && ’lwf[’h $ 1 : history, self : any] &&
’mayAcquireProcessor[’h $ 1 : history, self : any, caller : any,
label : int] && ~H~ : history ^^ [self : any . release] pr ’h $ 1 :
history ==> ’x $ 1 : int ge 0 ==> 0 le ’x $ 1 : int] fi el 0 le ’x @
’c : int fi

returned by wlp to true.

The purpose of the preceding example was to illustrate the critical importance of
assertion massaging for the assertion analyzer. We are now going to look at how
massaged is implemented. Here is the defining equation:

eq massaged(PHI, MOD) =
pretty(untyped(

simplifiedAndNormalized(normalized(PHI), MOD, 5))) .

Assertion massaging involves the following steps:

1. The assertion is normalized : Quantifiers are moved outward, conditional ex-
pressions are moved outward and rewritten using implications, negations are
moved inward, and nested implications are “uncurried” using the rewrite
rule P⇒ Q⇒ R −→ (P ∧Q)⇒ R.

2. The assertion is simplified using rewrite rules that replace terms or subfor-
mulas with logically equivalent terms or subformulas. The tool’s predefined
simplification rules can be extended or replaced by a set of user-defined rules.

3. The assertion is untyped, meaning that typed identifiers of the form z : τ are
replaced with z.

4. The assertion is pretty-printed.

Steps 1 and 2 are repeated to ensure that the assertion is fully normalized and sim-
plified. This is done by simplifiedAndNormalized as follows:

eq simplifiedAndNormalized(PHI, MOD, 0) = PHI .
ceq simplifiedAndNormalized(PHI, MOD, N) =

if PHI == PHI’ then
PHI’
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else
simplifiedAndNormalized(PHI’, MOD, N - 1)

fi
if PHI’ := normalized(simplified(PHI, MOD)) [otherwise] .

Normalization itself is implemented using two distinct passes:

eq normalized(PHI) = normalized2(normalized1(PHI)) .

Each normalization pass is implemented by its own set of rewrite rules, which are
executed on demand at the metalevel:

eq normalized1(PHI) =
rewritten(PHI, upModule(’CREOL-NORMALIZATION-RULES-1, false)) .

eq normalized2(PHI) =
rewritten(PHI, upModule(’CREOL-NORMALIZATION-RULES-2, false)) .

The rewritten auxiliary function is defined as follows:

eq rewritten(PHI, MOD) =
downTerm(getTerm(metaRewrite(MOD, upTerm(PHI), unbounded)),

PHI) .

The first normalization pass eliminates square brackets ([]) and bi-implications
(<==>), moves negations inward, moves quantifiers outward, and moves condi-
tional expressions outward. For example, here is a selection of the rewrite rules
defined in the CREOL-NORMALIZATION-RULES-1 module:

rl [PHI] => PHI .
rl (PHI1 <==> PHI2) => (PHI1 ==> PHI2) && (PHI2 ==> PHI1) .
rl ! (PHI1 && PHI2) => (! PHI1 || ! PHI2) .
rl ! QUANT XXL . PHI => opposite(QUANT) XXL . (! PHI) .
crl PHI1 && (QUANT XX0, XXL . PHI2) =>

QUANT XX0 . PHI1 && (QUANT XXL . PHI2)
if not XX0 occurs free in PHI1 .
crl PHI1 && (QUANT XX0, XXL . PHI2) =>

QUANT YY0 . PHI1 && (QUANT XXL . (PHI2) { XX0 |-> YY0 })
if XX0 occurs free in PHI1

/\ YY0 := freshLogicalVar(XX0, (XXL, PHI1, PHI2)) .
rl PHI1 && (if PHI2 th PHI3 el PHI4 fi) =>

if PHI2 th PHI1 && PHI3 el PHI1 && PHI4 fi .

The second normalization pass expands conditional expressions to conjunctions of
implications, uncurries nested implications, and moves || outward:

rl if PHI1 th PHI2 el PHI3 fi =>
((PHI1 ==> PHI2) && (! PHI1 ==> PHI3)) .

rl (PHI1 ==> (PHI2 ==> PHI3)) => ((PHI1 && PHI2) ==> PHI3) .
rl (PHI1 ==> (PHI2 && (PHI3 ==> PHI4))) =>

((PHI1 ==> PHI2) && ((PHI1 && PHI3) ==> PHI4)) .
rl (PHI1 || PHI2) && PHI3 => (PHI1 && PHI3) || (PHI2 && PHI3) .
rl ((PHI1 || PHI2) ==> PHI3) => (PHI1 ==> PHI3) && (PHI2 ==> PHI3) .

The simplification is performed in a similar manner, except that this time we take a
user-specified module as argument:

eq simplified(PHI, MOD) = rewritten(PHI, MOD) .
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The predefined simplification rules are located in the two modules CREOL-LOGICAL-
SIMPLIFICATION-RULES and CREOL-SIMPLIFICATION-RULES. The first module defines
rewrite rules that exploit properties of the logical operators. For example:

rl PHI && PHI => PHI .

rl true && PHI => PHI .

rl false && PHI => false .

rl PHI && (! PHI) => false .

rl PHI || PHI => PHI .

rl true || PHI => true .

rl false || PHI => PHI .

rl PHI || (! PHI) => true .

rl (true ==> PHI) => PHI .

rl (false ==> PHI) => true .

rl (PHI ==> true) => true .

rl (PHI ==> PHI) => true .

crl QUANT XXL, XX, XXL’ . PHI => QUANT XXL, XXL’ . PHI

if not XX occurs free in PHI .

The second module imports the logical simplification rules and extends these with
simplifications that involve non-logical symbols. Some of the rules compute the
value of expressions involving constants; for example:

rl N1 times N2 => N1 * N2 .
rl N1 eq N2 => N1 == N2 .
rl #[emptyHistory] => 0 .

Other rules eliminate certain operators that can be seen as abbreviations:

rl E1 ne E2 => ! (E1 eq E2) .
rl A1 gt A2 => A2 lt A1 .
rl A1 ge A2 => A2 le A1 .

Some rules exploit properties of the non-logical symbols to simplify assertions:

rl A times 1 => A .
rl 0 eq A1 minus A2 => A1 eq A2 .
rl A1 lt A2 && A2 lt A1 => false .
crl (HEXP ^^ EEXP) / EPEXP => HEXP / EPEXP
if EEXP cannot match EPEXP .

A few rules try to expand variables to their definition:

crl ((XX eq E && PHI1) ==> PHI2) =>
((XX eq E && (PHI1) { XX |-> E }) ==> (PHI2) { XX |-> E })

if XX occurs free in (PHI1, PHI2)
and not XX occurs free in E
and not (E :: TypedQualifiedId) .

crl ((XX eq YY && PHI1) ==> PHI2) =>
(XX eq YY && (PHI1) { XX |-> YY }) ==> (PHI2) { XX |-> YY }

if XX occurs free in (PHI1, PHI2)
and YY occurs free in (PHI1, PHI2) .

In addition to the predefined rules, the user can supply custom simplification rules.
These are typically used to expand a custom function application. For example, the
following two rules simplify assertions containing the factorial function:
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rl ’fact[N] => if N > 1 then N * ’fact[N - 1] else 1 fi .
rl ’fact[A] eq 1 => A le 1 .

The third step of the massaging process consists of removing the typing annota-
tions tied to the variables that occur in the assertion. This is done by untyped:

eq untyped(PHI) = downTerm(metaUntyped(upTerm(PHI)), PHI) .

Instead of defining untyped recursively on all the types of assertions and terms that
may occur in assertions, type removal is implemented at the metalevel, where it
can be done uniformly with very little code:

eq metaUntyped(CONST) = CONST .
eq metaUntyped(VAR) = VAR .
eq metaUntyped(’_:_[TERM1, TERM2]) = TERM1 .
eq metaUntyped(’__._[TERM1, TERM2, TERM3]) =

’__._[TERM1, TERM2, metaUntyped(TERM3)] .
eq metaUntyped(QID[TERMLIST]) =

QID[metaUntyped(TERMLIST)] [otherwise] .
ceq metaUntyped((TERM0, TERMLIST)) =

metaUntyped(TERM0), metaUntyped(TERMLIST)
if TERMLIST =/= empty .

The third equation removes the type in the metaterm for z : t. The fourth equation
introduces an exception for forall and exists, so that newly introduced bound
variables keep their type.

In addition to untyped, the assertion analyzer also provides an unqualified func-
tion that removes @ c qualifiers from the output. By having massaged use it, we
could further condense the output. However, this facility is disabled by default,
because for some programs the qualification conveys essential information.

Finally, pretty-printing is implemented by a PrettyAssn sort that extends Assn with
a set of low-precedence operators formatted with the format attribute:

sort PrettyAssn .
subsort Assn < PrettyAssn .

op _And:_ : PrettyAssn PrettyAssn -> PrettyAssn
[ctor assoc id: true prec 35 format (y !ynssss oynsssssssssss y)] .

op Forall_._ : TypedIdList PrettyAssn -> PrettyAssn
[ctor prec 33 format (!y oy y nsssssssssss y)] .

op Exists_._ : TypedIdList PrettyAssn -> PrettyAssn
[ctor prec 33 format (!y oy y nsssssssssss y)] .

op _And_ : PrettyAssn PrettyAssn -> PrettyAssn
[ctor assoc comm prec 31 format (y !ynsssss oynsssssssssss y)] .

op _===>_ : PrettyAssn PrettyAssn -> PrettyAssn
[ctor prec 29 gather (e E) format (y !ynssssss oynsssssssssss y)] .

op _\/_ : PrettyAssn PrettyAssn -> PrettyAssn
[ctor assoc comm prec 27 format (y !ynsssssss oynsssssssssss y)] .

op _/\_ : PrettyAssn PrettyAssn -> PrettyAssn
[ctor assoc comm prec 25 format (y !ynssssssss oy y)] .

The conversion from a standard Assn to a PrettyAssn is done using recursive de-
scent by the pretty function and its auxiliary functions:
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op pretty : Assn -> PrettyAssn .
op prettyQuantifier : Assn -> PrettyAssn .
op prettyMiddleAnd : Assn -> PrettyAssn .
op prettyImplies : Assn -> PrettyAssn .
op prettyOr : Assn -> PrettyAssn .
op prettyInnerAnd : Assn -> PrettyAssn .

eq pretty(PHI {{ PHI’ }}) =
pretty(PHI) And: prettyQuantifier(PHI’) .

eq pretty(PHI) = prettyQuantifier(PHI) [otherwise] .
...

eq prettyInnerAnd(PHI1 && PHI2) =
prettyInnerAnd(PHI1) /\ prettyInnerAnd(PHI2) .

eq prettyInnerAnd(PHI) = PHI [otherwise] .

The assertion massaging process relies on Maude’s support for rewrite rules and
metaprogramming to achieve a lot with very little code. The approach used is fairly
ad hoc but has proved surprisingly successful on several small examples, including
those presented in the next chapter.





The programmer who tries using toy-language rules to
reason about real Pascal programs is in for a rude surprise.

— Leslie Lamport (1993)

Chapter 7

Case Studies

We will now use the assertion analyzer tool presented in Chapter 6 to verify four
Creol classes: an Internet bank account (Section 7.1), a read–write lock (Section 7.2),
an iterative factorial implementation (Section 7.3), and a recursive factorial imple-
mentation (Section 7.4). Despite their simplicity, the examples involve most Creol
constructs, notably if statements, while loops, await statements, method calls, and
prove statements. Examples of any complexity that rely on the Creol dialect de-
scribed in Chapter 4 (excluding the general case of |||ni=1 Si) could be treated in the
same way. The complete Maude code for the examples is given in Appendix C.

7.1 An Internet Bank Account

Consider a NetBankAccount class that models a simplistic Internet bank account.
In a real-world scenario, the user logs into the Internet bank, makes some deposits
and payments, and logs out. The transactions are normally performed at night, and
if there is not enough money in the account, the payments are delayed. In Creol,
this can be modeled by asynchronous method calls:

account := new NetBankAccount;
!account.deposit(500);
!account.payBill(875);
!account.deposit(500)

Because of method overtaking, the bank could receive the deposit and payment
requests in any order. Furthermore, to prevent the user from going overdrawn, the
bank should first process the two $500 deposits, then pay the bill. The deposit and
payBill methods are declared by the BankAccount interface:

interface BankAccount
begin
with any:

op deposit(in amount : int)
op payBill(in amount : int)
asum noNegatives(H )

end

141
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The noNegatives predicate used in the interface’s asum clause is defined recursively
on histories by inspection of invocation events:

noNegatives(ε) , true
noNegatives(h _ [o→self .deposit(n)]k) , n ≥ 0 ∧ noNegatives(h)
noNegatives(h _ [o→self .payBill(n)]k) , n ≥ 0 ∧ noNegatives(h)
noNegatives(h _ υ) , noNegatives(h). [otherwise]

The asum clause expresses the assumption that deposit and payBill must be called
with nonnegative amounts.1 It is the callers’ responsibility to ensure that this re-
quirement is met. The NetBankAccount class, which implements the BankAccount
interface, is declared as follows:

class NetBankAccount
implements BankAccount

begin
var balance : int

with any:
op deposit(in amount : int) is

balance := balance + amount

op payBill(in amount : int) is
await balance ≥ amount;
balance := balance− amount

guar balance≥ 0 ∧ balance = sum(H )
end

The NetBackAccount class achieves synchronization using await, in addition to re-
lying on Creol’s implicit mutual exclusion for processes in the same object. The
class’s guar clause specifies a guarantee that should hold initially and whenever
the processor is released. Intuitively, NetBankAccount guarantees that the balance
will always be nonnegative and equal to the difference between the deposits and
the payments performed so far.

Notice that the deposit method does not check that amount is nonnegative. As a re-
sult, the balance could become negative, breaking the class’s guarantee. However,
this would violate the the BankAccount interface’s assumption, which forbids pass-
ing negative values to deposit. When verifying a class, we may take the assumption
for granted.

The sum function used in the guar clause is defined as follows:

sum(ε) , 0
sum(h _ [o←self .deposit(n)]k) , sum(h) + n
sum(h _ [o←self .payBill(n)]k) , sum(h)− n
sum(h _ υ) , sum(h). [otherwise]

If we disable the predefined non-logical simplification rules and run the assertion
analyzer on the code for NetBankAccount, we get the report below.

1Our minimalistic dialect of Creol provides only the integer type int. If we extended the language
with a natural number type nat, we could use it in the deposit and payBill method signatures and
omit the asum clause.
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Verification of class NetBankAccount

Initialization code:
q? Establishes the guarantee iff

noNegatives([parent(self)→self .new NetBankAccount()])
=⇒

0 = sum([parent(self)→self .new NetBankAccount()] _

[self .initialized])
∧∧∧ 0≥ 0

holds

Method deposit of NetBankAccount:
q? Maintains the guarantee iff

¬([caller←self .∗]label in H )
∧∧∧ lwf (H , self)
∧∧∧ mayAcquireProcessor(H , self , caller, label)
∧∧∧ noNegatives(H )
∧∧∧ balance = sum(H )
∧∧∧ balance≥ 0
∧∧∧ [caller→self .deposit(amount)]label in H

=⇒
sum(H _ [caller←self .deposit(amount;)]) = amount + balance

∧∧∧ amount + balance≥ 0
holds

Method payBill of NetBankAccount:
q? Maintains the guarantee iff
∀∀∀balance1 : int, h1 : history.

¬(balance≥ amount)
∧∧∧ ¬([caller←self .∗]label in H )
∧∧∧ lwf (H , self)
∧∧∧ mayAcquireProcessor(H , self , caller, label)
∧∧∧ noNegatives(H )
∧∧∧ balance = sum(H )
∧∧∧ balance≥ 0
∧∧∧ [caller→self .payBill(amount)]label in H

=⇒
balance = sum(H _ [self .release])∧∧∧
¬([caller←self .∗]label in H )

∧∧∧ lwf (H , self)
∧∧∧ mayAcquireProcessor(H , self , caller, label)
∧∧∧ noNegatives(H )
∧∧∧ balance = sum(H )
∧∧∧ balance≥ 0
∧∧∧ balance≥ amount
∧∧∧ [caller→self .payBill(amount)]label in H

=⇒
sum(H _ [caller←self .payBill(amount;)]label) = balance− amount

∧∧∧ balance− amount≥ 0∧∧∧
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¬(balance≥ amount)
∧∧∧ ¬([caller←self .∗]label in H )
∧∧∧ ¬([caller←self .∗]label in h1)
∧∧∧ lwf (H , self)
∧∧∧ lwf (h1, self)
∧∧∧ mayAcquireProcessor(H , self , caller, label)
∧∧∧ mayAcquireProcessor(h1, self , caller, label)
∧∧∧ noNegatives(H )
∧∧∧ noNegatives(h1)
∧∧∧ balance1 = sum(h1)
∧∧∧ balance = sum(H )
∧∧∧ balance1 ≥ 0
∧∧∧ balance1 ≥ amount
∧∧∧ balance≥ 0
∧∧∧ (H _ [self .release])

/
(outself ∪ ctlself) = h1

/
(outself ∪ ctlself)⇒

balance1 = balance
∧∧∧ [caller→self .payBill(amount)]label in H
∧∧∧ H _ [self .release] � h1

=⇒
sum(h1

_ [caller←self .payBill(amount;)]label) = balance1− amount
∧∧∧ balance1 − amount≥ 0

holds

Notice in particular that the applications of the auxiliary functions sum and noNeg-
atives are not expanded. To be of any use to the assertion analyzer, the defining
equations for the auxiliary functions must be converted into simplification rules.
The process is fairly straightforward; for example, here are the rules for sum:

sum(ε) −→ 0
sum(H _ [O←self :any.deposit(A)]A′) −→ sum(H) + A
sum(H _ [O←self :any.payBill(A)]A′) −→ sum(H)− A
sum(H _ Y) −→ sum(H) if Y cannot match reply.

In the above, H ∈ HistoryExp, O ∈ OExp, A, A′ ∈ AExp, and Y ∈ EventExp. The
last rule is invoked when it can be determined that the event expression Y is an
object creation event, a method invocation event, or an internal control event—all
of which fall into the “otherwise” case of the sum definition. Since the simplification
rules are applied before the type annotations are removed, the program and logical
variables that occur in the rules (in this case, self) must carry a type.

If we do the same for noNegatives and run the assertion analyzer with the prede-
fined simplifications enabled, we obtain the following report:

Verification of class NetBankAccount

Initialization code:
q3 Establishes the guarantee

Method deposit of NetBankAccount:
q? Maintains the guarantee iff

¬([caller←self .∗]label in H )
∧∧∧ lwf (H , self)
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∧∧∧ mayAcquireProcessor(H , self , caller, label)
∧∧∧ noNegatives(H )
∧∧∧ 0≤ sum(H )
∧∧∧ [caller→self .deposit(amount)]label in H

=⇒
0≤ amount + sum(H )

holds

Method payBill of NetBankAccount:
q3 Maintains the guarantee

The tool automatically discharges the verification conditions associated with the
initialization code (an implicit balance := 0 statement) and the payBill method. On
the other hand, it doesn’t manage to simplify the deposit method’s verification con-
dition to true, so we must proceed by hand.

The verification condition is of the form (P1 ∧ · · · ∧ P6) ⇒ Q, where Q ≡ 0≤
amount + sum(H ). Among the premises, we find 0≤ sum(H ). The key to complete
the proof is to observe that amount must be nonnegative (by the noNegatives(H )
premise), and then the conclusion Q is clearly true if the premises are true.

We can formalize this into the following simplification rule, generalizing a bit:

(A1 ≤ A2 ∧ noNegatives(H) ∧ [O→self .deposit(A3)]k in H ∧ ϕ)⇒
A1 ≤ A2 + A3
−→

true.

The variable ϕ stands for the additional conjuncts, which do not influence the truth
value of the formula on the left-hand side of the rewrite rule. If we run the asser-
tion analyzer after adding this simplification rule, the rule will replace the entire
implication (P1 ∧ · · · ∧ P6) ⇒ Q with true, and the report will now state that
deposit maintains the guarantee.

This completes the verification of the NetBankAccount class using the assertion an-
alyzer. To increase our confidence in the result, we could use a theorem prover to
verify that the simplification rules are sound with respect to the equational defini-
tions of the auxiliary functions noNegatives and sum.

7.2 Readers–Writers Synchronization

We will now study an implementation of a read–write lock, a synchronization
tool for protecting shared resources that can be accessed for reading and writing
[And00]. When used correctly, read–write locks enforce the following policy:

1. Multiple processes may read the shared data simultaneously.

2. A process is allowed to modify the shared data only when no other processes
are accessing the data in any way.

Reader and writer processes synchronize their accesses to the data using an in-
stance of a class that implements the RWLock interface. For example, here is the
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pseudocode of a Reader and a Writer class that use a read–write lock to synchronize
accesses to an unspecified shared resource:

class Reader (lock : RWLock) class Writer (lock : RWLock)
begin begin

op run is op run is
while true do while true do

lock.beginRead(); lock.beginWrite();
〈read data〉; 〈write data〉;
! lock.endRead(); ! lock.endWrite();
〈other processing〉 〈other processing〉

od od
end end

The calls to beginRead and beginWrite block until the lock is granted to the process,
at which point the process may access the shared data; once it is finished, it releases
the lock by calling endRead or endWrite. The RWLock interface declaration follows:

interface RWLock
begin
with any:

op beginRead
op endRead
op beginWrite
op endWrite

asum #(H
/
[∗→self .beginRead()]) ≥ #(H

/
[∗→self .endRead()])

∧ #(H
/
[∗→self .beginWrite()]) ≥ #(H

/
[∗→self .endWrite()])

guar numWriters(H ) = 0 ∨ (numWriters(H ) = 1 ∧ numReaders(H ) = 0)
end

The asum clause expresses the requirement that at any time the number of incom-
ing calls to beginRead should be greater than or equal to endRead, and similarly for
beginWrite and endWrite. (Recall that the function #(h) returns the length of h.) The
guar clause states that implementations of the interface realize the locking policy
described earlier. The numReaders and numWriters functions return the number of
active readers and writers:

numReaders(ε) , 0
numReaders(h _ [o←self .beginRead()]k) , numReaders(h) + 1
numReaders(h _ [o←self .endRead()]k) , numReaders(h)− 1
numReaders(h _ υ) , numReaders(h) [otherwise]

numWriters(ε) , 0
numWriters(h _ [o←self .beginWrite()]k) , numWriters(h) + 1
numWriters(h _ [o←self .endWrite()]k) , numWriters(h)− 1
numWriters(h _ υ) , numWriters(h). [otherwise]

The WriterFriendlyRWLock class that we will verify in this section is an implemen-
tation of the “writers’ preference” solution to the readers–writers problem. It is
declared as follows:
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class WriterFriendlyRWLock
implements RWLock

begin
var nr : int, nw : int, dw : int

with any:
op beginRead is

await nw = 0 ∧ dw = 0;
nr := nr + 1

op endRead is
prove nr > 0;
nr := nr− 1

op beginWrite is
dw := dw + 1;
await nr = 0 ∧ nw = 0;
dw := dw− 1;
nw := nw + 1

op endWrite is
prove nw > 0;
nw := nw− 1

guar nr = numReaders(H ) ∧ nw = numWriters(H )
end

The class declares three attributes: nr (the number of active readers), nw (the num-
ber of active writers), and dw (the number of delayed writers). Readers are allowed
to proceed only when no writers are active or waiting to become active—hence the
label “writers’ preference”. The class guarantee relates the value of the attributes
nr and nw to the history H ; this will simplify the proofs later on. Notice that the
endRead and endWrite methods start with a prove statement.

If we convert the defining equations for numReaders and numWriters into simplifi-
cation rules and run the assertion analyzer, we obtain the following report:

Verification of class WriterFriendlyRWLock

Initialization code:
q3 Establishes the guarantee

Method beginRead of WriterFriendlyRWLock:
q3 Maintains the guarantee

Method endRead of WriterFriendlyRWLock:
q? Maintains the guarantee if

¬([caller←self .∗]label in H )
∧∧∧ lwf (H , self)
∧∧∧ mayAcquireProcessor(H , self , caller, label)
∧∧∧ 0 = numWriters(H )
∧∧∧ #(H

/
[∗→self .endRead()])≤ #(H

/
[∗→self .beginRead()])

∧∧∧ #(H
/
[∗→self .endWrite()])≤ #(H

/
[∗→self .beginWrite()])

∧∧∧ [caller→self .endRead()]label in H
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=⇒
0 < numReaders(H )∧∧∧
¬([caller←self .∗]label in H )

∧∧∧ lwf (H , self)
∧∧∧ mayAcquireProcessor(H , self , caller, label)
∧∧∧ 0 = numReaders(H )
∧∧∧ 1 = numWriters(H )
∧∧∧ #(H

/
[∗→self .endRead()])≤ #(H

/
[∗→self .beginRead()])

∧∧∧ #(H
/
[∗→self .endWrite()])≤ #(H

/
[∗→self .beginWrite()])

∧∧∧ [caller→self .endRead()]label in H
=⇒

false
holds

Method beginWrite of WriterFriendlyRWLock:
q3 Maintains the guarantee

Method endWrite of WriterFriendlyRWLock:
q? Maintains the guarantee if

¬([caller←self .∗]label in H )
∧∧∧ lwf (H , self)
∧∧∧ mayAcquireProcessor(H , self , caller, label)
∧∧∧ 0 = numWriters(H )
∧∧∧ #(H

/
[∗→self .endRead()])≤ #(H

/
[∗→self .beginRead()])

∧∧∧ #(H
/
[∗→self .endWrite()])≤ #(H

/
[∗→self .beginWrite()])

∧∧∧ [caller→self .endWrite()]label in H
=⇒

false
holds

Let us first consider endWrite. The proof obligation is of the form (P1 ∧ · · · ∧ P7)⇒
false, or equivalently ¬P1 ∨ · · · ∨ ¬P7, with

P1 ≡ ¬([caller←self .∗]label in H )
P2 ≡ lwf (H , self)
P3 ≡ mayAcquireProcessor(H , self , caller, label)
P4 ≡ 0 = numWriters(H )
P5 ≡ #(H

/
[∗→self .endRead()])≤ #(H

/
[∗→self .beginRead()])

P6 ≡ #(H
/
[∗→self .endWrite()])≤ #(H

/
[∗→self .beginWrite()])

P7 ≡ [caller→self .endWrite()]label in H .

To complete the proof, we must show that the premises contradict each other. The
premises P1 and P7 state that there is a pending call to endWrite. If the call hasn’t
been processed yet, and endWrite hasn’t been called more times than beginWrite (P6),
and the history is well-formed (P2), then numWriters(H ) should be at least 1 (by
definition). This contradicts P4. Since it is impossible to satisfy all the premises
simultaneously, we can formulate the following simplification rule:

[O→self :any.endWrite()]A in H
∧ ¬([O←self :any.∗]A in H)
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∧ numWriters(H) = 0
∧ lwf (H, self :any)
∧ #(H

/
[∗→self :any.endWrite()])≤ #(H

/
[∗→self :any.beginWrite()])

−→
false.

This rule is sufficient to complete the proof for endWrite.

The proof for endRead is slightly more challenging. The proof obligation is of the
form (P ⇒ Q) ∧ (P′ ⇒ false), where P and P′ are conjunctions. The second
implication can be eliminated using a similar rule to the one shown above:

[O→self :any.endRead()]A in H
∧ ¬([O←self :any.∗]A in H)
∧ numReaders(H) = 0
∧ lwf (H, self :any)
∧ #(H

/
[∗→self :any.endRead()])≤ #(H

/
[∗→self :any.beginRead()])

−→
false.

If we now run the assertion analyzer, we get the following output for endRead:

Method endRead of WriterFriendlyRWLock:
q? Maintains the guarantee if

¬([caller←self .∗]label in H )
∧∧∧ lwf (H , self)
∧∧∧ mayAcquireProcessor(H , self , caller, label)
∧∧∧ 0 = numWriters(H )
∧∧∧ #(H

/
[∗→self .endRead()])≤ #(H

/
[∗→self .beginRead()])

∧∧∧ #(H
/
[∗→self .endWrite()])≤ #(H

/
[∗→self .beginWrite()])

∧∧∧ [caller→self .endRead()]label in H
=⇒

0 < numReaders(H )
holds

Intuitively, if there is a pending call to endRead, and endRead hasn’t been called more
times than beginRead, and H is well-formed, then numReaders(H ) should be greater
than 0. This enables us to formulate the following simplification rule and complete
the proof:(

[O→self :any.endRead()]A in H
∧ ¬([O←self :any.∗]A in H)
∧ lwf (H, self :any)
∧ #(H

/
[∗→self :any.endRead()])≤ #(H

/
[∗→self :any.beginRead()])

∧ ϕ
)
⇒

0 < numReaders(H)
−→

true.

Incidentally, we now know not only that the WriterFriendlyRWLock class imple-
ments the locking policy mandated by the RWLock interface, but also that the as-
sertions in the prove statements of endRead and endWrite will hold as long as the
interface assumption holds.
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7.3 An Iterative Factorial Program

Creol offers both iteration and recursion for performing repeated actions. In this
section, we will verify a class called IterativeFactorial that uses a while loop to com-
pute the factorial of an integer. In the next section, we will study a recursive imple-
mentation of the class. Both classes support the following Factorial interface:

interface Factorial
begin
with any:

op compute(in x : int out y : int)

guar G(H )
end

The Factorial interface makes no assumptions about the environment. The guaran-
tee G(H ) states that the results of the compute method are mathematically sound:

G(ε) , true
G(h _ [o←self .compute(x; y)]k) , G(h) ∧ y = x!
G(h _ υ) , G(h). [otherwise]

The factorial of n ∈ Z, denoted n! , is defined by a pair of conditional equations:

n! , n ∗ (n− 1)! if n > 1
n! , 1 if n≤ 1.

The IterativeFactorial class is declared as follows:

class IterativeFactorial
implements Factorial

begin
with any:

op compute(in x : int out y : int) is
var i : int;
i := 1;
y := 1;
inv G(H ) ∧ i≥ 1 ∧ (i≤ x ∨ (i = 1 ∧ x < 1)) ∧ y = i!
while i < x do

i := i + 1;
y := y ∗ i

od
end

The most noteworthy feature of the compute method’s implementation is the loop
invariant, supplied in the inv clause. To enable verification, we must supply a
sufficiently strong invariant. The invariant and the negated loop condition taken
together must imply G(H ) ∧ y = x! , which must hold at the end of the loop so
that G(H _ [caller←self .compute(x; y)]label) holds immediately after the method
has returned. Naturally, to qualify as a loop invariant, the assertion specified in the
inv clause must also hold before entering the loop and after each iteration.
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Before we run the assertion analyzer on the IterativeFactorial class, we can already
define the following simplification rule to reduce n! to its value when n is known:

n! −→ if n > 1 then n ∗ (n− 1)! else 1 fi.

Given the above invariant and simplification rule, the assertion analyzer produces
the following output:

Verification of class IterativeFactorial

Initialization code:
q3 Establishes the guarantee

Method compute of IterativeFactorial:
q? Maintains the guarantee if

G(H )
∧∧∧ i < x
∧∧∧ 1≤ i

=⇒
(i + 1)! = i! ∗ (i + 1)∧∧∧
G(H )

∧∧∧ x < 1
=⇒

1 = x!
holds

The proof obligation consists of two conjuncts. Observing that (n + 1)! = n! ∗
(n + 1) for n≥ 1, we can eliminate the first conjunct with the rule

((1≤ A ∧ ϕ)⇒ (A + 1)! = A! ∗ (A + 1)) −→ true.

To eliminate the second conjunct, we can use the rule

A! = 1 −→ A≤ 1.

This completes the proof.

7.4 A Recursive Factorial Program

With an appropriate loop invariant, verifying IterativeFactorial turned out to be easy.
Let us now consider the recursive version of the factorial program:

class RecursiveFactorial
implements Factorial

begin
with any:

op compute(in x : int out y : int) is
if x≤ 1 then

y := 1
else

compute(x− 1; y);
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y := y ∗ x
fi

end

If we run the assertion analyzer on RecursiveFactorial together with the simplifica-
tion rules specified in the previous section, we get the following report:

Verification of class RecursiveFactorial

Initialization code:
q3 Establishes the guarantee

Method compute of RecursiveFactorial:
q? Maintains the guarantee iff
∀∀∀k1 : int, h1 : history.

¬([caller←self .∗]label in h1)
∧∧∧ G(H )
∧∧∧ G(h1)
∧∧∧ isFreshSequenceNum(k1, self , H )
∧∧∧ lwf (h1, self)
∧∧∧ mayAcquireProcessor(H , self , caller, label)
∧∧∧ 1 < x
∧∧∧ [caller→self .compute(x)]label in H
∧∧∧ h1 ew [self←self .∗]k1

∧∧∧ H _ [self→self .compute(x− 1)]k1 _ [self .reenter]k1 � h1
=⇒

x! = x ∗ returnVal1(h1, self , k1)
holds

We must show that the conclusion x! = x ∗ returnVal1(h1, self , k1) follows from the
premises. (Recall that the function returnVali(h, o, k) extracts the ith return value for
the method call identified by the pair (o, k) from the history h.) From the seventh
premise, we know that x > 1. By the definition of n! , the conclusion will be true if
and only if returnVal1(h1, self , k1) = (x− 1)! is true. In other words, we must show
that the return value of the call identified by (self , k1) is (x− 1)! according to h1.

The last premise tells us that the call (self , k1) had x − 1 as input argument ac-
cording to h1. The next-to-last premise tells us that the call has returned. Since
the interface guarantee holds for h1 (by the third premise), and h1 is well-formed
(by the fifth premise), h1 contains the reply event [self←self .compute(x− 1; y)]k1 ,
with y = (x− 1)! , and we get returnVal1(h1, self , k1) = (x− 1)! by the definition of
returnVal. Quod erat demonstrandum.

As we did for the other examples, we can capture this reasoning in a simplification
rule and run the assertion analyzer again:

(G(H′)
∧ lwf (H′, self :any)
∧ H _ [self :any→self :any.compute(A− 1)]A′ _ [self :any.reenter]A′ � H′

∧ ϕ)⇒
A! = A ∗ returnVal1(H′, self :any, A′)
−→

true.
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It is instructive to compare the verification process for the RecursiveFactorial class
with that of IterativeFactorial. For the iterative version, we must supply a loop in-
variant that completely captures the behavior of the loop. In contrast, for the re-
cursive version, there is no extra specification work involved: When performing
the recursive call x− 1, we can directly use the guarantee G(H ) to deduce that the
return value of the recursive call is (x− 1)! , like in a proof by induction.

With both implementations, we must keep in mind that we have only proved that
the compute method will return a correct result if it terminates. We have not proved
that the method will actually terminate. In fact, we could use the assertion analyzer
to prove the following class correct in the sense of partial correctness:

class NonterminatingFactorial
implements Factorial

begin
with any:

op compute(in x : int out y : int) is
compute(x; y)

end

In the proof, we get a circular argument: compute(x; y) gives y = x! if compute(x; y)
gives y = x! . Nevertheless, as we saw in Section 5.1, partial correctness is strong
enough to express that a program will never terminate. For the preceding class, we
can assert the nontermination of compute through the following class guarantee:

guar [∗←self .compute(∗)] not in H

Informally, the guarantee states that calls to compute will never return. Using the
assertion analyzer, we can easily verify that this guarantee holds.

7.5 Summary

We considered four examples in this chapter, which between them cover most Creol
constructs. The table below summarizes the verification of the examples.

Number of Number of Number of Number of
Example VCs Def. Rules Proved VCs Add. Rules

Bank Account 3 8 2 1
Read-Write Lock 5 12 3 3
Iterative Factorial 2 4 1 2
Recursive Factorial 2 4 1 1

The second column gives the number of verification conditions for each example,
which is always 1 + 〈method count〉. The third column gives the number of sim-
plification rules that were specified based on the defining equations of the custom
functions. The fourth column gives the number of verification conditions that were
discharged automatically by the tool, using the built-in and custom simplification
rules. Finally, the fifth column gives the number of additional simplification rules
required to discharge the remaining proof obligations.





These are general philosophical and moral principles, and I
hold them to be self-evident—which is just as well, because
all the actual evidence is against them.

— C. A. R. Hoare (1985)

Chapter 8

Conclusion

The Creol language supports object-orientation in a high-level and intuitive way
by means of concurrent objects with processor release points and asynchronous
methods calls. The language lets programmers supply assume–guarantee specifi-
cations, which define the provided and required interaction and semantic behavior
of classes and interfaces.

In this thesis, we presented Creol’s syntax, provided two variants of the operational
semantics, presented a proof system to verify assume–guarantee specifications, im-
plemented the proof system in Maude, and used the resulting Maude program, the
assertion analyzer, to verify four Creol classes. We can now summarize the results
and propose directions for future work.

8.1 Results

In Section 1.2 of the introduction, we posed three questions that we wished to an-
swer in the thesis. The first question was:

How can we adapt the existing proof system to fully account for the
more challenging aspects of Creol’s formal semantics, such as object
reentry and the nondeterministic statements?

This question is concerned with the soundness and completeness (left-maximality)
of the individual axioms and proof rules with respect to the operational semantics,
and the completeness of the set of rules. Section 5.7 lists the steps that we took to
answer it. In particular:

• We introduced three types of events in the history, corresponding to the end
of an object’s initialization, the release of the processor, and object reentry.

• For invocation and reply events, we added the sequence numbers of the
method calls.

• We provided proof rules for Creol’s nondeterministic choice statement and
a special case of the nondeterministic merge statement, both of which are
specific to Creol and were not covered by previous work.
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• We provided left-maximal axioms for the conditional wait with reply guard
statement and for the reply statement.

• We eliminated the asynchronous input property requirement on the class in-
variant by separating the assumption and guarantee parts of the invariant.

The second question we set out to answer was:

How suited are Maude and rewriting logic to implementing Hoare logic?

The main challenges were to parse Creol programs, to represent Creol statements
and assertions, to compute the weakest liberal precondition (WLP) of Creol state-
ments, and to normalize, simplify, and pretty-print assertions, using Maude as the
implementation language.

For a term-rewriting system, Maude performed remarkably well at parsing Creol.
Maude’s sort hierarchies, mixfix operators, and attributes were powerful enough
to represent Creol statements and assertions in an intuitive manner, except in a few
cases where Maude’s syntactic idiosyncrasies must be accommodated. Although
Maude offers no direct substitute for the empty production rules of a context-free
grammar, we could easily transform Creol’s grammar to avoid them. For a few
Creol constructs, trial and error was needed to avoid parsing conflicts in Maude
and pass the “preregularity” checks. A context-free grammar front-end to Maude
would have been a most welcome feature.

The equational subset of rewriting logic made it straightforward to implement the
WLP formalism. Thanks to their functional nature, the abstract WLP definitions
could be implemented directly in Maude. Using pattern matching and conditional
equations, it was also easy to identify special cases and produce optimized WLPs
for these.

While most of the assertion analyzer relies on equations, rewrite rules applied at
the metalevel proved extremely useful for normalizing and simplifying the asser-
tions generated by the tool. Furthermore, Maude’s support for term formatting
made it possible to pretty-print the verification conditions generated by the asser-
tion analyzer, a near-necessity if humans are to understand the tool’s output.

Restrictions on the concrete tokens that can be used in Maude to generate verifi-
cation conditions prevented us from generating assertions in a format compatible
with off-the-shelf theorem provers. However, this remains a minor issue that can
easily be worked around using conversion programs. Such programs can easily
be written using a lexical analyzer generator or a scripting language that supports
regular expressions.

As expected, the conciseness, clarity, and expressiveness of Maude’s syntax mani-
fested themselves in the implementation of the assertion analyzer. Because the wlp

function implemented in Maude is virtually identical to the mathematical WLP
given in Chapter 5, it is likely to be error-free. The prospect of code sharing be-
tween the various Creol tools, which was another reason for choosing Maude as
the implementation language, materialized to the extent that about 60 percent of
the assertion analyzer’s code is also used by the interpreters. And since Maude is
highly optimized, the assertion analyzer is fairly fast, requiring a few seconds to
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verify the classes presented in Chapter 7 on a standard PC running Linux. On the
whole, Maude was a very good choice for implementing the tool.

Let us now turn to the third question:

To what extent do Creol’s reference operational semantics and proof
system enable program verification in practice?

The assertion analyzer was expected to expose the strengths and weaknesses of
Creol’s reference semantics in the context of program verification. Most Creol state-
ments, including assignment, have simple preconditions, but a few advanced con-
structs were more problematic.

In particular, the nondeterministic choice statement, which had never been axiom-
atized before, has a very complex precondition in the general case. Fortunately, by
inspecting its branches statically, we could drastically optimize the WLP. Similar
syntactic optimizations were possible for other statements, including some of the
synthetic statements. All of this contributed to making the verification conditions
produced by the assertion analyzer more manageable.

With appropriate simplifications and optimizations, it seems that we don’t need
to sacrifice completeness to achieve simplicity. With a suitable theorem prover
and appropriate lemmas regarding the built-in functions, verification of Creol pro-
grams appears within reach. The remaining uncertainties concern the parts of the
proof system that haven’t been implemented, namely the general case of the non-
deterministic merge statement and the composition of assume–guarantee specifi-
cations to prove a complete system correct.

Beyond answering the three questions posed in Section 1.2, the thesis lead to the
development of an intermediate semantics that bridges the gap between Creol’s
traditional “closed system” operational semantics and the proof system. The re-
sulting open system operational semantics defines the behavior of a single method
execution seen in isolation, using a communication history to abstract away the
environment. Previously, this role was assumed by SEQ, the augmented Creol sub-
set from which the Hoare logic was initially derived, following de Boer and Pierik
[dBP04]. The open system semantics helps prevent inconsistencies between the
reference closed system semantics and the Hoare logic, which would translate into
unsoundness or incompleteness of the proof method.

The table below summarizes the main characteristics of the four semantics pre-
sented in this thesis, along three axes:

Semantic
Global or
Local?

Operational or
Syntax-Driven?

State-Based or
Predicate-Based?

Closed System GlobalOperationalState-Based
Open System LocalOperationalState-Based
SEQ Encoding LocalSyntax-DrivenState-Based
Hoare Logic LocalSyntax-DrivenPredicate-Based

The first axis is “state-based versus predicate-based”. A state-based semantics de-
scribes how a state is transformed into a new state when executing a statement,
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whereas a predicate-based semantics describes how an assertion is transformed
into another assertion by a statement.

The second axis is “operational versus syntax-driven”. An operational semantics
defines rules that are invoked following the control flow of the program of interest,
whereas a syntax-driven semantics works directly on the program’s source text.
The operational/syntax-driven opposition coincides with the traditional semantic/
syntactic divide.

The third axis is “global versus local”. A global semantics considers a complete
system in which all the components are known, whereas a local semantics focuses
on one process and abstracts away the other processes and objects by using a com-
munication history.

The table suggests the following general four-step approach to the development of
a Hoare logic from a traditional closed system semantics, using the open system
semantics and the SEQ encoding as stepping stones:

1. Specify an open system semantics that abstracts away the environment us-
ing a history, reusing the parts of the closed system semantics that cover the
language’s sequential subset.

2. Develop a Hoare logic for the language’s sequential subset.

3. Reformulate the open semantics as an encoding in terms of the language’s
sequential subset augmented with random assignment.

4. Mechanically derive a Hoare logic from this encoding.

Because the open system semantics is expressed in rewriting logic, it is straight-
forward to detect inconsistencies with the reference closed system semantics by
comparing the rewrite rules—a sketch of the proof can be found in Blanchette and
Owe [BO08]. From the new semantics, we can easily derive a history-based Hoare
logic that is sound and complete by construction. This approach can be adapted to
other object-oriented languages where communication is done by messages pass-
ing, method interaction, or both.

8.2 Future Work

The work on the proof system left some questions only partially answered and sug-
gests many directions for future research. An obvious gap is that we gave no rule
that handles the general case of the nondeterministic merge statement. One option
would be to eliminate the statement from Creol, arguing that its noncompositional
semantics violates the spirit of the language—but this would reduce the language’s
expressive power [Cho05]. Failing that, we could impose syntactic restrictions on
its use to ease its axiomatization. A third option would be to develop a proof rule
that performs an interference-freedom test on the statement’s branches.

The other main limitation of the proof system is that it is concerned with partial
correctness only and thus cannot be used to establish the absence of run-time errors,
infinite loops, and deadlocks. To catch these errors, we would need to formulate
total correctness axioms and proof rules for the Creol-specific statements.
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In addition, many improvements suggest themselves for the assertion analyzer tool
built on top of the proof system. We implemented the verification of a single class,
but didn’t try to automate the process of verifying global properties about an en-
tire system from the assume–guarantee specifications of the classes that compose
it. Other possible improvements include explicitly supporting mythical statements
(statements that have no effect on the program’s behavior but that are used for rea-
soning purposes [Dah92]), and allowing the user to supply equations for defining
auxiliary functions from which the assertion analyzer would automatically gener-
ate simplification rules, using Maude’s support for metaprogramming.

Because virtual method calls might bind differently in a subclass than in a base
class, verifying a subclass currently involves (re)verifying the methods inherited
from the superclass. Dovland et al. recently proposed a calculus that enables proof
reuse [DJOS08]. Implementing this calculus, either in the assertion analyzer or as a
separate tool, would be of great practical interest.

A program that verifies another program is itself a prime candidate for formal veri-
fication. For the assertion analyzer, this would involve proving that the Creol WLPs
are sound with respect to the open system operational semantics, that the open sys-
tem operational semantics is a safe approximation of the closed system operational
semantics, that the built-in simplification rules are logically correct, and that the
rest of the Maude code is correct. The functional nature of the Maude code means
that we can perform the proofs by induction—for example, using Maude’s Induc-
tive Theorem Prover (ITP). The other proofs could be performed using an arbitrary
theorem prover, following the lines of de Roever et al. [dRdB+01].

To make the assertion analyzer more useful in practice, it would be desirable to
integrate the tool with ITP [SM07] or Bjarne Holen’s Maude-based automated the-
orem prover [Hol05] to discharge proof obligations automatically. Alternatively, it
could be interesting to try implementing the proof system in an interactive theorem
prover such as Isabelle/HOL [NPW02] or PVS [CORSS95] or in a program analysis
framework such as KeY [BHS07] or ASF+SDF [dH03], and compare the result with
the Maude implementation we developed here.

A more modest endeavor would be to develop libraries of simplification rules for
specific application areas, corresponding to the proof rules or lemmas used by in-
teractive theorem provers. For simple assume–guarantee specifications, where ver-
ification conditions are manageable and a limited number of lemmas are needed,
the assertion analyzer could be of practical use. However, until it is tried on larger
programs, it is not clear to what extent the Creol proof system is usable in practice.
Creol’s simple semantics and compositional proof system inspire hope, but much
still remains to be done.





Appendix A

User’s Guide to the Assertion
Analyzer and the Interpreters

This appendix explains how to use the Creol tools that were developed in this thesis
and whose source code is included in Appendix B.

• The assertion analyzer verifies that the implementation of a Creol class re-
spects the class’s assume–guarantee specification.

• The interpreter for closed systems executes a self-contained Creol program
representing a complete distributed system.

• The interpreter for open systems executes a single Creol process considered
in isolation.

The appendix is organized as follows: Section A.1 presents a short example Creol
program and shows how to use the three tools on it. Sections A.2 and A.3 give
the concrete syntax of Creol programs and assertions. Section A.4 gives the syntax
of the bootstrapping commands needed for the tools. Section A.5 explains how
to supply custom simplification rules to the assertion analyzer. Section A.6 shows
how to define custom data types and functions for use with the tools. Finally, Sec-
tion A.7 lists the known bugs and limitations of the tools.

A.1 Getting Started

Before you can run the Creol tools, you first need to install Maude 2 on your
computer. Maude is free (open source) software; executables can be downloaded
from http://maude.cs.uiuc.edu/ (for Linux, Mac OS X, and FreeBSD) and http://

moment.dsic.upv.es/mfw/ (for Windows). The Creol tools have been tested with
Maude 2.3, but other 2.x versions are likely to work just as well.

In addition, you must install the following files together in a directory:

creol-program.maude

creol-assertion-utilities.maude

creol-assertion-analyzer.maude
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creol-interpreter-core.maude

creol-closed-interpreter.maude

creol-open-interpreter.maude

creol-tools.maude

The first six files contain the Maude modules that implement the tools. The seventh
file is provided for convenience; it simply loads the other six. The contents of these
files are listed in Appendix B.

A.1.1 Specifying the Creol Program

Once the software is installed, the first step to use any of the Creol tools is to
specify the Creol program of interest as a Maude term. The Maude-compatible
Creol syntax is provided by a functional module called CREOL-PROGRAM defined in
creol-program.maude. The concrete syntax mimics the abstract Creol syntax intro-
duced in Section 4.2.

Consider the following Creol program in which two processes synchronize using a
binary semaphore (a “mutex”), specified using the abstract syntax:

interface Mutex
begin
with any:

op lock
op unlock

end

class SimpleMutex
implements Mutex

begin
var locked : bool

with any:
op lock is

await ¬locked;
locked := true

op unlock is
locked := false

guar locked⇔ H
/

outself ew
[∗←self .lock(∗)]

end

class Process (mutex : Mutex)
begin

var n : int

op run is
while true do

mutex.lock();
n := n + 1;
mutex.unlock()

od
end

class Main
begin

op run is
var mutex : Mutex,

p1 : any, p2 : any;
mutex := new SimpleMutex;
p1 := new Process(mutex);
p2 := new Process(mutex)

end

For our convenience, we normally define the program in a Maude file of its own.
Here is the content of mutex-program.maude, which specifies the mutex program:

load creol-program.maude .

fmod MUTEX-PROGRAM is
including CREOL-PROGRAM .

op prog : -> Config .
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eq prog =
interface ’Mutex
begin
with any :

op ’lock
op ’unlock

end

class ’SimpleMutex
implements ’Mutex

begin
var ’locked : bool

with any :
op ’lock is

await ! ’locked ;
’locked := true

op ’unlock is
’locked := false

guar ’locked <==> ~H~ / out[self] ew [* <- self . ’lock[*]]
end

class ’Process [’mutex : ’Mutex]
begin

var ’n : int

op ’run is
while true do

’mutex . ’lock[] ;
’n := ’n plus 1 ;
’mutex . ’unlock[]

od
end

class ’Main
begin

op ’run is
var ’mutex : ’Mutex, ’p1 : any, ’p2 : any ;
’mutex := new ’SimpleMutex ;
’p1 := new ’Process[’mutex] ;
’p2 := new ’Process[’mutex]

end
.

endfm

The MUTEX-PROGRAM module defines a constant prog of sort Config that expands to a
Maude term representing the mutex program. The rest of the file is simply boiler-
plate for Maude. To check that Maude can parse the program, load the module in
Maude and type the following command:

red prog .
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For this specific example, the result should have sort Config and consist of exactly
one < i : Interface | . . . > term and three < c : Class | . . . > terms, correspond-
ing to the interface and class declarations found in the program.

Before we see how to invoke the individual tools, a couple of warnings are in or-
der. First, the tools do not perform any static program checking beyond the basic
parsability requirements enforced by Maude. To catch type errors, undeclared vari-
ables, and other similar errors, a separate tool, such as the one developed by Fjeld
[Fje05], must be used. Second, because Maude gives terms under evaluation the
benefit of the doubt, many syntax errors, such as typing not B instead of ! B or
if B then e1 else e2 fi instead of if B th e1 el e2 fi, will often slip through and
lead to an error term of kind [Config]. The easiest way to diagnose such errors is
to enable Maude’s term coloring feature using the command

set print color on .

When term coloring is enabled, the standard syntax highlighting is replaced by a
color code that identifies error terms. Symbols at the root of the error are displayed
in red or magenta; other affected symbols are rendered in blue or cyan. To avoid
error terms in the first place, refer to Sections A.2 and A.3 whenever you are uncer-
tain of the concrete syntax of a Creol construct.

A.1.2 Running the Assertion Analyzer

The Creol assertion analyzer is a tool that attempts to verify whether the class’s
implementation respects its assume–guarantee specification. The tool is available
through a system module called CREOL-ASSERTION-ANALYZER found in the file creol-
assertion-analyzer.maude, which requires creol-assertion-utilities.maude to
be already loaded. The implementation of the tool is described in Chapter 6.

To run the assertion analyzer on the mutex program defined in Section A.1.1, define
a system module that includes both the mutex program module and the assertion
analyzer modules as follows:

load mutex-program.maude .
load creol-assertion-utilities.maude .
load creol-assertion-analyzer.maude .

mod MUTEX-VERIFICATION is
including CREOL-ASSERTION-ANALYZER .
including MUTEX-PROGRAM .

op init : -> GlobalConfig .

eq init =
{

prog
verify class ’SimpleMutex

} .
endm

The new module defines an init constant that can be used to verify the ’Simple-

Mutex class. The init constant, of sort GlobalConfig, is defined to expand to the
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Creol program and a verify class command that specifies which class should be
verified. (Section A.4.1 gives the complete syntax of verify class.) To run the
assertion analyzer, use the rew command on init:

rew init .

This produces the following output:

result GlobalConfig: {
Verification of class ’SimpleMutex

Initialization code :
Establishes the guarantee

Method ’lock of ’SimpleMutex :
Maintains the guarantee

Method ’unlock of ’SimpleMutex :
Maintains the guarantee

}

The report contains one judgment for the class’s implicit initialization code and
one judgment per method (including inherited methods). The initialization code
corresponds to the code executed to set up an object, including the call to ’run (if
that method is provided).

For the methods, the judgments are of the following forms:

i. Maintains the guarantee iff Q̂ holds

The assertion Q̂ is a proof obligation that we must carry out to verify that the
method maintains the guarantee.

ii. Maintains the guarantee

The verification succeeded; the method’s body always maintains the guaran-
tee. This is the same as form i with Q̂ ≡ true.

iii. Breaks the guarantee

The verification failed; the method’s body sometimes breaks the guarantee.
This is the same as form i with Q̂ taken to be an invalid assertion (for example,
Q̂ ≡ false).

iv. Maintains the guarantee if Q̂ holds

This is a weaker version of form i, with if instead of iff. This judgment can
occur only for methods that contain prove, while, or ||| statements, for which
proof system is incomplete. The invalidity of Q̂ means that at least one of the
following is true:

a. The method contains a prove statement with an invalid assertion.

b. The method contains a while loop with an invalid or too weak invariant.

c. The method contains a ||| statement with a nested await statement.

d. The method body sometimes breaks the guarantee.
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v. Don’t know

This is the same as form iv with Q̂ taken to be an invalid assertion (for ex-
ample, Q̂ ≡ false). This judgment can occur only for methods that contain
prove, while, or ||| statements, for the reasons given above.

In judgments of forms i and iv, the formula Q̂ ∈ PrettyAssn is a pretty-printed
assertion expressed using the syntax defined in Section A.3.2. To increase the out-
put’s readabibility, the judgments are colored according to a traffic light scheme:
green for positive judgments (form ii), yellow for inconclusive judgments (forms i,
iv, and v), and red for negative judgments (form iii).

For the initialization code, the wording of the judgments is adapted slightly, but
the meaning is essentially the same:

i. Establishes the guarantee iff Q̂ holds

ii. Establishes the guarantee

iii. Fails to establish the guarantee

iv. Establishes the guarantee if Q̂ holds

v. Don’t know

As the class guarantee, the assertion analyzer and the open system interpreter use
the conjunction of the guar clauses specified in the class of interest and in its super-
interfaces, without projecting them onto their respective alphabets. A similar com-
putation is made for the class assumption. In addition, the tool takes for granted
that the assumption is insensitive to additional output, and that the guarantee is
insensitive to additional input that respects the assumption. In practice, the above
constraints can easily be met by respecting the following syntactic rules:

1. Define the assumption by case on input events that belong to the interface or
class’s alphabet, and let all other events fall through.

2. Define the guarantee by case on output or internal control events that belong
to the interface or class’s alphabet, and let all other events fall through.

For the mutex program, the assertion analyzer was able to verify the class guar-
antee with no intervention. For more complex examples, such as those studied in
Chapter 7 and specified in Appendix C, the output would have contained proof
obligations Q̂ that must be carried out by hand or through simplification rules. Sec-
tion A.5 explains how to specify custom simplification rules.

A.1.3 Running the Interpreter for Closed Systems

The Creol interpreter for closed systems is a tool that executes a self-contained
Creol program. It lets us simulate a closed distributed system, in which all the
classes are known in advance. This enables us to test a program before we sub-
ject it to formal verification using the assertion analyzer. The tool is provided by
a system module called CREOL-INTERPRETER-FOR-CLOSED-SYSTEMS defined in the file
creol-closed-interpreter.maude, which relies on creol-interpreter-core.maude.
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The interpreter is based on the reference operational semantics of Section 4.3; its
implementation is briefly described in Section 4.5.

The mutex program introduced in Section A.1.1 is an example of a closed system,
since we have the code for all the classes involved in the system (’SimpleMutex,
’Process, and ’Main). To execute the program using the interpreter for closed sys-
tems, first define a system module that includes both the mutex program module
and the closed system interpreter module:

load mutex-program.maude .
load creol-interpreter-core.maude .
load creol-closed-interpreter.maude .

mod MUTEX-CLOSED-SYSTEM is
including CREOL-INTERPRETER-FOR-CLOSED-SYSTEMS .
including MUTEX-PROGRAM .

op init : -> GlobalConfig .

eq init =
{

prog
bootstrap system ’Main

} .
endm

The new module defines an init constant that can be used to launch the system.
The init constant, of sort GlobalConfig, is defined to expand to the Creol program
and a bootstrap system command that specifies the class to instantiate at startup.
(Section A.4.2 gives the complete syntax of bootstrap system.)

To execute the Creol program, you can use Maude’s built-in evaluation strategies.
Each rewrite step in Maude corresponds to one step in the operational semantics
of Creol. For example, the following command will display the system’s configu-
ration after executing 500 rewrite steps:

frew [500] init .

The output is a global system configuration consisting of < i : Interface | . . . >,
< c : Class | . . . >, and < o : c | . . . > terms, as well as Invoke and Reply mes-
sages. Since Creol is highly nondeterministic, an execution given by rew or frew

is generally only one among many possible. To perform a systematic search of the
states reachable from the initial state, use Maude’s search command.

A.1.4 Running the Interpreter for Open Systems

The Creol interpreter for open systems is a tool that lets us simulate the execution
of a specific process, abstracting the other processes and objects in the environ-
ment. The tool is provided by a system module called CREOL-INTERPRETER-FOR-

OPEN-SYSTEMS defined in the file creol-open-interpreter.maude, which requires
both creol-assertion-utilities.maude and creol-interpreter-core.maude to be
loaded. The interpreter is based on the alternative operational semantics given in
Section 4.4; its implementation is briefly described in Section 4.5.
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To execute processes based on the mutex program presented in Section A.1.1 using
the interpreter for open systems, start by defining a system module that includes
both the mutex program module and the open system interpreter module:

load mutex-program.maude .
load creol-assertion-utilities.maude .
load creol-interpreter-core.maude .
load creol-open-interpreter.maude .

mod MUTEX-OPEN-SYSTEM is
including CREOL-INTERPRETER-FOR-OPEN-SYSTEMS .
including MUTEX-PROGRAM .

op init : -> GlobalConfig .

eq init =
{

prog
bootstrap object root # 0 := new ’SimpleMutex

with parent root
} .

endm

The new module defines an init constant that can be used to execute the ’Simple-

Mutex initialization code. The init constant, of sort GlobalConfig, is defined to ex-
pand to the Creol program and a bootstrap object command that specifies which
object’s initialization code should be executed. To execute the process, you can use
the rew or frew command. For example:

frew init .

In this case, the output would contain the following term:

< root # 0 : ’SimpleMutex | Pr: emptyStmt, LVar: emptyState,
Att: [’locked @ ’SimpleMutex |-> false]

[self |-> root # 0]
[~H~ |-> [root -> root # 0

. new ’SimpleMutex[epsilon]] ^^
[root # 0 . initialized]],

MsgQ: emptyMSet, Asum: true,
Guar: locked @ ’SimpleMutex : bool <==>

~H~ : history / out[self : any] ew
[* <- self : any . ’lock[*]]

ROAtt: self : ’SimpleMutex >

Or, using the notation of Section 4.4:〈
root#0 : SimpleMutex

∣∣ Pr: ε, LVar: ∅,
Att: [locked@SimpleMutex 7→ false]

[self 7→ root#0]
[H 7→ [root→root#0.new SimpleMutex()] _

[root#0.initialized]],
MsgQ: ∅, Asum: true,
Guar: locked@SimpleMutex : bool⇔

H :history
/

outself ew [∗←self :any.lock()],
ROAtt: self : SimpleMutex

〉



A.1. Getting Started 169

This term corresponds to one possible state of the object after executing its initial-
ization code. By replacing the bootstrap object command by a bootstrap method

command, you can follow a process that starts as a result of an asynchronous
method invocation.

For example, the following command launches a process associated with a call
to the ’lock method of ’SimpleMutex, at a point when the ’SimpleMutex object’s
’locked attribute is true:

bootstrap method root # 0 . ’lock[epsilon]
with class ’SimpleMutex,

caller root # 1,
label 1,
history [root -> root # 0

. new ’SimpleMutex[epsilon]] ^^
[root # 0 . initialized] ^^
[1 % root # 1 -> root # 0 . ’lock[epsilon]],

attributes ’locked @ ’SimpleMutex := true

Some of the rewrite rules that implement the interpreter for open systems rely
on the presence of user-supplied “random” data in the form of random data com-
mands. Thus, to complete the execution of the process initiated by the preceding
bootstrap method command, we would need to supply a random attribute state in
which ’locked is false and the history variable ~H~ (H ) is extended:

random data [self |-> root # 0]
[’locked @ ’SimpleMutex |-> false]
[~H~ |-> [root -> root # 0

. new ’SimpleMutex[epsilon]] ^^
[root # 0 . initialized] ^^
[1 % root # 2 -> root # 0 . ’lock[epsilon]] ^^
[1 % root # 2 <- root # 0
. ’lock[epsilon ; epsilon]] ^^
[1 % root # 1 -> root # 0 . ’lock[epsilon]] ^^
[root # 0 . release] ^^
[2 % root # 2 -> root # 0
. ’unlock[epsilon]] ^^
[2 % root # 2 <- root # 0
. ’unlock[epsilon ; epsilon]]]

In Section 4.4, we modeled the nondeterministic behavior of the environment by in-
troducing variables on the right-hand side of rewrite rules, which isn’t supported
by Maude’s built-in execution strategies. To work around this, the Maude imple-
mentation provides altered versions of the rewrite rules that take user-supplied
random data (histories and states) provided along with the Creol program.

Section A.4 gives the complete syntax of the bootstrap object, bootstrap method,
and random data commands. If the instantiated class’s assumption or guarantee in-
volves a custom function, that function must be defined using the syntax described
in Section A.6.

In its current state, the interpreter for open systems is mostly a curiosity. An im-
provement that would make it more useful would be to generate random data
automatically, alleviating the need for random data commands.
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A.2 Programming Language Syntax

This section describes the concrete syntax used to represent Creol programs in
Maude. This syntax follows the conventions of Section 4.2 as closely as possible.
For an informal description of the semantics, see Section 4.2. For a formal opera-
tional semantic, see Section 4.3.

In this section and the following two sections, tall square brackets (
[]

) denote op-
tional clauses; they should not be confused with monospace square brackets ([]),
which are part of the concrete Creol syntax.

A.2.1 Basic Syntactic Entities

The Bool sort is defined in the Maude prelude and has two constructor terms: true
and false. The Int sort is also defined in the Maude prelude; it consists of terms of
the form

[
-
]
d1. . . dk, where di ∈ {0, 1, . . . , 9}.

The Id sort provides quoted identifiers such as ’x and ’hungryCat as well as the
special identifiers self, caller, label, and ~H~ (H ). The Id sort also contains terms
of the form x $ k, with x ∈ Id and k ∈ Int; such terms are reserved by the assertion
analyzer, which uses them for bound variables in the output.

The Type sort corresponds to Creol types. Any Id term can be used as a type. In
addition, bool, int, and any are built-in types that may occur in Creol programs,
whereas event and history can be used in assertions.

The TypedId sort reflects the syntax of Creol variable declarations. Terms of this
sort have the form x or x : t, with x ∈ Id and t ∈ Type. For example, ’full :

bool is a term of sort TypedId. The QualifiedId sort provides terms of the form x

or x @ c, where x ∈ Id is the name of a Creol attribute or method and c ∈ Id is the
name of a Creol class.

For a given sort X, the sort XList consists of comma-separated lists of terms from X.
The empty list is represented by the constant epsilon. In many contexts, epsilon
can be omitted; this is indicated by a “?” subscript attached to a metavariable of
sort XList (for example, ē? with ē ∈ ExpList). When referencing a sort defined
in this user’s guide, we will often indicate the section in which it is defined, like
this: IdA.2.1 . For XList sorts, we point to the section where X is defined.

A.2.2 Interface Declarations

Creol interfaces are declared using the following syntax:

interface ı
[
[X̄]

]
ı, mi ∈ IdA.2.1

k ∈ TypeA.2.1

X̄, X̄i, Ȳi ∈ TypedIdListA.2.1

J̄ ∈ SuperListA.2.2

P, Q ∈ AssnA.3.1

[
inherits J̄

]
begin

with k :

op m1
[
[
[
in X̄1

] [
out Ȳ1

]
]
]

...
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op mn
[
[
[
in X̄n

] [
out Ȳn

]
]
][

asum P
][

guar Q
]

end

The Super sort provides terms of the form x or x[ē], with x ∈ Id and ē ∈ ExpList.
The Exp sort is a supersort for AExpA.2.5 , BExpA.2.6 , and OExpA.2.7 .

A.2.3 Class Declarations

Creol classes are declared using the following syntax:

class c
[
[X̄]

]
c ∈ IdA.2.1

ki ∈ TypeA.2.1

W̄, X̄ ∈ TypedIdListA.2.1

ı̄, J̄, q̄ ∈ SuperListA.2.2

Gi ∈ MtdDeclGroupA.2.3

P, Q ∈ AssnA.3.1

[
implements ı̄

][
contracts J̄

][
inherits q̄

]
begin[

var W̄
][

G0
]

with k1 :

G1
...

with km :

Gm[
asum P

][
guar Q

]
end

The MtdDeclGroup sort consists of sequences of terms of the form

op m
[
[
[
in X̄

] [
out Ȳ

]
]
]
is m ∈ IdA.2.1

V̄, X̄, Ȳ ∈ TypedIdListA.2.1

S ∈ StmtA.2.4

[
var V̄ ;

]
S

A.2.4 Statements

The Stmt sort of Creol statements consists of terms with these syntaxes:

skip c, L, m ∈ IdA.2.1

z ∈ QualifiedIdA.2.1

z̄ ∈ QualifiedIdListA.2.1

ē ∈ ExpListA.2.2

S, Si ∈ Stmt

B ∈ BExpA.2.6

O ∈ OExpA.2.7

g ∈ GuardA.2.8

I, P ∈ AssnA.3.1

abort

prove P

z̄ := ē

z := new c
[
[ē]

][
L
]
! O . m[ē?][

L
]
! m

[
@ c

]
[ē?]

L ?[z̄?]

O . m[
[
ē? ; z̄?

]
]

m[
[
ē? ; z̄?

]
]
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m @ c[
[
ē? ; z̄?

]
]

await g

await
[
g &&&

]
L ?[z̄?]

await
[
g &&&

]
O . m[

[
ē? ; z̄?

]
]

await
[
g &&&

]
m
[
@ c

]
[
[
ē? ; z̄?

]
]

if B th S1
[
el S2

]
fi[

inv I
]
while B do S od

S1 ; S2
S1 [] S2 (�)
S1 ||| · · · ||| Sn (|||)
[S]

Section A.2.9 summarizes the semantic pecularities of the await and ||| statements
compared with the Creol interpreter in use at the University of Oslo.

A.2.5 Arithmetic Expressions

The sort AExp of arithmetic expressions consists of terms with these syntaxes:

n n ∈ IntA.2.1

f ∈ IdA.2.1

z ∈ QualifiedIdA.2.1

ē ∈ ExpListA.2.2

A, A1, A2 ∈ AExp

B ∈ BExpA.2.6

H ∈ HistoryExpA.3.5

z
[
: int

]
f[ē]

#[H]

plus A (+)
minus A (−)
A1 times A2 (∗)
A1 div A2 (/)
A1 plus A2 (+)
A1 minus A2 (−)
if B th A1 el A2 fi

[A]

A.2.6 Boolean Expressions

The sort BExp of Boolean expressions consists of terms with these syntaxes:

b b ∈ BoolA.2.1

f ∈ IdA.2.1

z ∈ QualifiedIdA.2.1

ē ∈ ExpListA.2.2

A1, A2 ∈ AExpA.2.5

B, B1, B2 ∈ BExp

O1, O2 ∈ OExpA.2.7

z
[
: bool

]
f[ē]

A1 eq A2 (=)
A1 ne A2 ( 6=)
A1 lt A2 (<)
A1 gt A2 (>)
A1 le A2 (≤)
A1 ge A2 (≥)
O1 eq O2 (=)
O1 ne O2 ( 6=)
! B (¬)
B1 && B2 (∧)
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B1 || B2 (∨)
if B th B1 el B2 fi

[B]

A.2.7 Object Expressions

The sort OExp of object expressions consists of terms with these syntaxes:

null f, j ∈ IdA.2.1

z ∈ QualifiedIdA.2.1

ē ∈ ExpListA.2.2

B ∈ BExpA.2.6

O, O1, O2 ∈ OExp

z
[
: any

]
z : j

f[ē]

if B th O1 el O2 fi

[O]

A.2.8 Guards

The sort Guard of await statement guards consists of terms with these syntaxes:

B L ∈ IdA.2.1

B ∈ BExpA.2.6

g1, g2 ∈ Guard

L ?

wait

g1 &&& g2

A.2.9 Semantic Peculiarities

The Creol dialect supported by the tools broadly corresponds to the language un-
derstood by the interpreter in use at the University of Oslo. There are, however,
three subtle differences that must be kept in mind. The first difference concerns
await and is illustrated by this program:

class ’Main
begin

var ’x : int

op ’run is
’l1 ! ’doNothing[] ;
await ’l1 ? ;
’l2 ! ’incrementX[] ;
[await ’l1 ? &&& ’x ne 0 [] ’x := 2] ;
await ’l2 ?

op ’doNothing is
skip

op ’incrementX is
’x := ’x plus 1

end

bootstrap system ’Main
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In this thesis, we have taken the view that complex guards are evaluated atomically.
As a result, when control reaches the [] statement in ’run, the left branch is not
ready (since ’x ne 0 is false) and the right branch is chosen. The attribute ’x equals
3 at the end of the program’s execution. In contrast, the standard Creol interpreter
treats

[await ’l1 ? &&& ’x ne 0 [] ’x := 2]

the same as

[await ’l1 ? ; await ’x ne 0 [] ’x := 2]

with the consequence that the left branch is always ready (since ’l1 ? is true).
Either branch can be chosen, and ’x equals 1 or 3 at the end.

The second difference concerns ||| statements. As pointed out in Section 4.3, we
adopted a commutative definition for |||, instead of the “first branch’s preference”
definition advocated by Husby [Hus05].

The third difference concerns nested ||| statements. In this thesis, we consider
the complex statement [S1 ||| S2] ||| S3 in a strict compositional sense (“merge
S1 and S2, then merge the result with S3”) and distinguish it from the three-way
merge S1 ||| S2 ||| S3. Thus, from a state in which ’x equals 0, the following
statement will always lead to a state in which ’x equals 3:

[’x := 1 ||| await ’x ne 0 ; ’x := 2]
||| await ’x ne 0 ; ’x := 3

In contrast, the standard Creol interpreter would treat the above statement as

’x := 1
||| await ’x ne 0 ; ’x := 2
||| await ’x ne 0 ; ’x := 3

and ’x would equal either 2 or 3 at the end.

A.3 Assertion Language Syntax

This section describes the syntax of first-order assertions. These assertions may
appear in a Creol interface or class’s assume–guarantee specification, as inline as-
sertions in the body of a method, or as loop invariants. In addition, assertions
figure in some of the judgments produced by the assertion analyzer.

A.3.1 Plain Assertions

The sort Assn of assertions admits terms with these syntaxes:

B X̄ ∈ TypedIdListA.2.1

B ∈ BExpA.2.6

P, P1, P2 ∈ Assn

Y∗ ∈ EventPatExpA.3.4

H, H1, H2 ∈ HistoryExpA.3.5

H∗ ∈ HistoryPatExpA.3.6

H1 eq H2 (=)
H1 ne H2 ( 6=)
Y∗ in H

H bw H∗

H ew H∗



A.3. Assertion Language Syntax 175

H∗ pr H (�)
! P (¬)
P1 && P2 (∧)
P1 || P2 (∨)
P1 ==> P2 (⇒)
P1 <==> P2 (⇔)
forall X̄ . P (∀)
exists X̄ . P (∃)
if P th P1 el P2 fi

[P]

Assertions may refer to program variables directly as x or x @ c. They may also
refer to the mythical variable ~H~ (H ). There is no dedicated syntax for user-defined
logical variables; any variable name that does not occur in the program’s text can
be used as a logical variable. Names of the form x $ k are reserved by the assertion
analyzer for its own logical variables.

Occurrences of variables in assertions can be typed (z : t) or untyped (z). As a
first step in their processing, the assertion analyzer and the interpreter for open
systems supply the missing typing annotations for the program variables and the
special variables self, caller, label, and ~H~ (H ). Thus, in the assertions that occur
in a program’s text, it is sufficient to provide types for logical variables.

A.3.2 Pretty-Printed Assertions

The sort PrettyAssn of pretty-printed assertions admits terms with the following
syntaxes, listed in decreasing order of precedence:

P P ∈ AssnA.3.1

P̂, P̂1, P̂2 ∈ PrettyAssnP̂1 /\ P̂2 (∧∧∧)
P̂1 \/ P̂2 (∨∨∨)
P̂1 ===> P̂2 (=⇒)
P̂1 And P̂2 (

∧∧∧
)

Forall X̄ . P̂ (∀∀∀)
Exists X̄ . P̂ (∃∃∃)
P̂1 And: P̂2 (

∧∧∧
)

A.3.3 Event Expressions

The sort EventExp of event expressions consists of terms with these syntaxes:

x
[
: event

]
c, m, x ∈ IdA.2.1

ē, ē’∈ ExpListA.2.2

A ∈ AExpA.2.5

O, O’∈ OExpA.2.7

[O -> O’ . new c[ē]]

[A % O -> O’ . m
[
@ c

]
[ē]]

[A % O <- O’ . m
[
@ c

]
[ē ; ē’]]

[O . initialized]

[O . release]

[A % O . reenter]

See Section 4.4 for a description of these event types.
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A.3.4 Event Pattern Expressions

The sort EventPatExp of event pattern expressions consists of terms with the fol-
lowing syntaxes:

Y c, m ∈ IdA.2.1

A ∈ AExpA.2.5

O, O’∈ OExpA.2.7

Y ∈ EventExpA.3.3

Y∗, Y∗1 , Y∗2 ∈ EventPatExp

new

invoke

reply

initialized

release

reenter

control

[O -> *]

[O <- *]

[* -> O]

[* <- O]

[* -> O . new c[*]]

[* -> O . m
[
@ c

]
[*]]

[* <- O . m
[
@ c

]
[*]]

[A % O -> O’ . *]

[A % O -> * . *]

[A % O <- O’ . *]

[A % O <- * . *]

[O . reenter]

in[O]

out[O]

ctl[O]

O

~ Y∗ ( C)
Y∗1 & Y∗2 (∩)
Y∗1 | Y∗2 (∪)

Event patterns correspond to sets of events:

new , {[O -> O’ . new c[ē]] | O, O’, c, ē}
invoke , {[k % O -> O’ . m

[
@ c
]
[ē]] | k, O, O’, m, c, ē}

reply , {[k % O <- O’ . m
[
@ c
]
[ē ; ē’]] | k, O, O’, m, c, ē, ē’}

initialized , {[O . initialized] | O}
release , {[O . release] | O}
reenter , {[k % O . reenter] | k, O}
control , initialized ∪ release ∪ reenter

[O -> *] , {[O -> O’ . new c[ē]] | O’, c, ē}
∪ {[k % O -> O’ . m

[
@ c
]
[ē]] | k, O’, m, c, ē}

[O <- *] , {[k % O <- O’ . m
[
@ c
]
[ē ; ē’]] | k, O’, m, c, ē, ē’}

[* -> O] , {[O’ -> O . new c[ē]] | O’, c, ē}
∪ {[k % O’ -> O . m

[
@ c
]
[ē]] | k, O’, m, c, ē}

[* <- O] , {[k % O’ <- O . m
[
@ c
]
[ē ; ē’]] | k, O’, m, c, ē, ē’}
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[* -> O . new c[*]] , {[O’ -> O . new c[ē]] | O’, ē}
[* -> O . m

[
@ c
]
[*]] , {[k % O’ -> O . m

[
@ c
]
[ē]] | k, O’, ē}

[* <- O . m
[
@ c
]
[*]] , {[k % O’ <- O . m

[
@ c
]
[ē ; ē’]] | k, O’, ē, ē’}

[k % O -> O’ . *] , {[k % O -> O’ . m
[
@ c
]
[ē]] | m, c, ē}

[k % O -> * . *] , {[k % O -> O’ . m
[
@ c
]
[ē]] | O’, m, c, ē}

[k % O <- O’ . *] , {[k % O <- O’ . m
[
@ c
]
[ē ; ē’]] | m, c, ē, ē’}

[k % O <- * . *] , {[k % O <- O’ . m
[
@ c
]
[ē ; ē’]] | O’, m, c, ē, ē’}

[O . reenter] , {[k % O . reenter] | k}
in[O] , [* -> O] ∪ [O <- *]

out[O] , [O -> *] ∪ [* <- O]

ctl[O] , [O . initialize] ∪ [O . release]

∪ [O . reenter]

O , in[O] ∪ out[O] ∪ ctl[O]

~ υ∗ , υC

υ∗1 & υ∗2 , υ∗1 ∩ υ∗2
υ∗1 | υ∗2 , υ∗1 ∪ υ∗2

A.3.5 History Expressions

The sort HistoryExp of history expressions consists of terms with these syntaxes:

emptyHistory (ε) x ∈ IdA.2.1

H, H1, H2 ∈ HistoryExp

Y ∈ EventExpA.3.3

Y∗ ∈ EventPatExpA.3.4

x
[
: history

]
Y

H1 ^^ H2 (_)
H / Y∗ (

/
)

See Section 4.4 for the definition of the history operators.

A.3.6 History Pattern Expressions

The sort HistoryPatExp of history pattern expressions consists of terms with these
syntaxes:

H H ∈ HistoryExpA.3.5

Y∗ ∈ EventPatExpA.3.4

H∗1 , H∗2 ∈ HistoryPatExp

Y∗

H∗1 ^^ H∗2 (_)

A.3.7 Built-in Functions

The following functions may appear in the proof obligations generated by the as-
sertion analyzer:

’lwf[H, O] k ∈ IntA.2.1

A ∈ AExpA.2.5

O, O’∈ OExpA.2.7

H, H’∈ HistoryExpA.3.5

’mayAcquireProcessor[H, O, O’, A]

’agreeOnOutAndCtl[H, H’, O]

’isFreshObjectId[O, H]
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’isFreshSequenceNum[A, O, H]

’parent[O]

’returnVal $ k[H, O, A]

The ’lwf[H, O] predicate represents the local history well-formedness predicate of
Definition T20 in Section 4.4.

The ’mayAcquireProcessor[H, O, O’, A] predicate represents the processor acqui-
sition predicate of Definition T21 in Section 4.4.

The ’agreeOnOutAndCtl[H, H’, O] predicate stands for H / (out[O] | ctl[O]) eq

H’ / (out[O] | ctl[O]).

The ’isFreshObjectId[O, H] predicate stands for ! [O in ’objectIds[H]].

The ’isFreshSequenceNum[A, O, H] predicate stands for A ge 0 && ! [[A % O ->

* . *] in H].

The ’parent[O] function returns the parent of an object. Using first-order logic, we
can for example deduce from ’parent[O] ne ’parent[O’] that O ne O’.

The ’returnVal $ k[H, O, A] function represents the kth return value of the func-
tion call uniquely identified by the pair (O, A) according to the history H. The func-
tion is undefined if no such call has returned or if the invoked method has less than
k output parameters.

A.4 Tool-Specific Commands

Each of the Creol tools has its own syntax for launching the system. The asser-
tion analyzer requires a verify class command. The interpreter for closed sys-
tems requires a bootstrap system command. The interpreter for open systems re-
quires a bootstrap object or a bootstrap method command, usually accompanied
by random data commands.

A.4.1 Verify Class Command

To verify a class using the assertion analyzer, you must supply a verify class com-
mand along with the program:

verify class c c ∈ IdA.2.1

q ∈ Qid
[
with simplifications q

]
This command tells the assertion analyzer which class should be verified, and
which simplification rules should be used to simplify the assertions produced by
the tool. The simplification rules are supplied as a quoted Maude module name
(for example, ’MY-SIMPLIFICATION-RULES).

If the with simplifications clause is omitted, the built-in simplification rules (de-
fined in CREOL-SIMPLIFICATION-RULES) are used. Section A.5 explains how to define
custom simplification rules.
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A.4.2 Bootstrap System Command

To run a Creol program using the interpreter for closed system, you must provide
a bootstrap system command that specifies the name of the class to instantiate to
launch the system, with optional arguments corresponding to the class’s context
parameters:

bootstrap system c
[
[ē]

]
c ∈ IdA.2.1 ē ∈ ExpListA.2.2

When executing the program, the first rewrite step replaces the bootstrap system

command with an object term that represents an instance of class c. After that, the
expressions ē are assigned to the context parameters specified in the class declara-
tion, and the class’s ’init and ’run methods are invoked.

A.4.3 Bootstrap Object Command

To launch a Creol object’s initial process using the interpreter for open systems, you
must use a bootstrap object command that specifies the new object’s identity, its
class, and the parent object’s identity:

bootstrap object o := new c c ∈ IdA.2.1

o, o’∈ OIdA.4.4with parent o’

The new identity o must be of the form o’ # n, with n ∈ Int.

A.4.4 Bootstrap Method Command

To launch a Creol process that starts as a result of an asynchronous method invo-
cation, you must use a bootstrap method command:

bootstrap method o . m
[
@ c’

]
[v̄] k ∈ IntA.2.1

c, c’, m ∈ IdA.2.1

z̄ ∈ QualifiedIdListA.2.1

o, o’∈ OIdA.4.4

v̄, w̄’∈ ValueListA.4.4

h ∈ HistoryA.4.4

with class c,

caller o’,

label k,

history h[
, attributes z̄ := w̄

]
The bootstrap method command lets you specify the called object’s identity (o), the
called method (m or m @ c’), the arguments passed to the method (v̄), the called
object’s class (c), the caller object’s identity (o’), the sequence number associated
with the call (k), the local history for the called object at the moment when the
method starts executing (h), and the values (w̄) of the object’s attributes (z̄).

The History sort is a subsort of HistoryExpA.3.5 that consists exclusively of con-
stants. The Value sort is a supersort of Int, Bool, OId, and History. Finally, the
OId sort consists of null, root, and terms of the form x # n1 ... # np, where x ∈
Id∪ {null, root}, ni ∈ Int, and p ≥ 1.
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A.4.5 Random Data Commands

The random data commands that may accompany a bootstrap object or bootstrap
method command have the following syntax:

random data h h ∈ HistoryA.4.4

α ∈ StateA.4.5random data α

The State sort consists of terms with these syntaxes:

emptyState (∅) z ∈ QualifiedIdA.2.1

v ∈ ValueA.4.4

α1, α2 ∈ State

[z |-> v]

α1 α2

A.5 Simplification Rules

The computation of weakest liberal preconditions performed by the assertion ana-
lyzer often leads to complex proof obligations. To make its output more readable,
the assertion analyzer performs syntactic simplifications on the proof obligations
before it displays them. The tool’s built-in simplification rules can be extended or
replaced by the user.

A.5.1 Built-in Simplification Rules

Before we see how to write custom simplification rules, let us consider the built-in
simplification rules. These rules are defined in two system modules. The first mod-
ule, CREOL-LOGICAL-SIMPLIFICATION-RULES (located in creol-assertion-utilities

.maude), restricts itself to logical simplifications, that is, simplifications that involve
only the logical operators (!, &&, ||, etc.). For example, here are three rules defined
by that module:

rl PHI && PHI => PHI .
rl (true ==> PHI) => PHI .
rl ((PHI1 && PHI2) ==> PHI1) => true .

The second simplification module, CREOL-SIMPLIFICATION-RULES (located in creol-

assertion-analyzer.maude), imports the logical simplifications and extends these
with simplifications that involve non-logical symbols. For example:

rl N1 plus N2 => N1 + N2 .
rl A1 ge A2 => A2 le A1 .
rl ((A1 eq A2 && PHI) ==> A1 le A2) => true .

These simplifications are complemented by logical normalizations, which move
quantifiers outward, replace P ==> Q ==> R with (P && Q) ==> R, and so on. These
normalizations are specified in the modules CREOL-NORMALIZATION-RULES-1 and -2

(located in creol-assertion-analyzer.maude).
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A.5.2 Custom Simplification Rules

When we verify a class guarantee using the assertion analyzer, we can define cus-
tom simplification rules that are tailored for the class of interest. To illustrate this,
we will consider the ’SimpleMutex class of Section A.1.1, but with a guar clause that
involves the ’isLocked[h, o] custom predicate.

class ’SimpleMutex
implements ’Mutex

begin
var ’locked : bool

with any :
op ’lock is

await ! ’locked ;
’locked := true

op ’unlock is
’locked := false

guar ’locked <==> ’isLocked[~H~, self]
end

Informally, ’isLocked[h, o] returns true if and only if the last method call that
returned according to the history h was ’lock.

If we run the assertion analyzer on ’SimpleMutex using only the built-in simplifica-
tion rules, we obtain various proof obligations containing terms such as these:

’isLocked[[’parent[self] -> self . new ’SimpleMutex[epsilon]]
^^ [self . initialized], self]

’isLocked[~H~ ^^ [label % caller <- self
. ’lock[epsilon ; epsilon]], self]

’isLocked[’h $ 1 ^^ [label % caller <- self
. ’lock[epsilon ; epsilon]], self]

’isLocked[~H~ ^^ [label % caller <- self
. ’unlock[epsilon ; epsilon]], self]

Our goal would be to reduce these to false, true, true, and false, respectively,
based on the informal definition of ’isLocked[h, o]. To achieve this, we can define
the following simplification rules:

mod MUTEX-SIMPLIFICATION-RULES is
including CREOL-SIMPLIFICATION-RULES .

var A : AExp .
var EEXP : EventExp .
var HEXP : HistoryExp .
vars OEXP OEXP’ : OExp .

rl ’isLocked[emptyHistory, OEXP] => false .
rl ’isLocked[HEXP ^^ [A % OEXP’ <- OEXP .

’lock[epsilon ; epsilon]],
OEXP] =>

true .
rl ’isLocked[HEXP ^^ [A % OEXP’ <- OEXP .
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’unlock[epsilon ; epsilon]],
OEXP] =>

false .
crl ’isLocked[HEXP ^^ EEXP, OEXP] => ’isLocked[HEXP, OEXP]
if EEXP cannot match reply .

endm

At the beginning of the module, we include CREOL-SIMPLIFICATION-RULES, which
defines the built-in simplification rules. To tell the assertion analyzer about our
simplification rules, we must specify the name of the simplification module in the
verify class command:

verify class ’SimpleMutex
with simplifications ’MUTEX-SIMPLIFICATION-RULES

When writing simplification rules, we must keep the following points in mind:

• Simplification rules operate at the syntactic level, not at the semantic level.

Consider the ’isLocked predicate presented above. Although the predicate is
fundamentally a function from History× OId to Bool, syntactically it takes a
HistoryExp and an OExp and returns a BExp.

The passage from values to expressions requires some care, as illustrated by
the following example. Let ’fact[n] denote the factorial of n ∈ Int. The
simplification rule

var N : Int .

rl ’fact[N] => if N > 1 then N * ’fact[N - 1] else 1 fi .

will successfully simplify ’fact[n] to its value (n!) for any integer n. If we
naively lift the above rule to expressions, we obtain

var A : AExp .

*** WRONG
rl ’fact[A] => if A gt 1 th A times ’fact[A minus 1] el 1 fi .

This new rule is wrong because leads to infinite expansions such as this:

’fact[’x]
−→

if ’x gt 1 th ’x times ’fact[’x minus 1] el 1 fi
−→

if ’x gt 1 th ’x times if ’x minus 1 gt 1 th (’x minus 1)

times ’fact[’x minus 1 minus 1] el 1 fi el 1 fi
−→
· · ·

• We must use the otherwise attribute with care.

Because syntactic-level equality (eq) does not coincide with semantic-level
equality (==), the otherwise attribute will often lead to unsuspected result.
For example, the simplification rule
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var EEXP : EventExp .
var HEXP : HistoryExp .
var OEXP : OExp .

*** WRONG
rl ’isLocked[HEXP ^^ EEXP, OEXP] => ’isLocked[HEXP, OEXP]

[otherwise] .

would allow the simplification

’isLocked[’h : history ^^ ’e : event, self : any]
−→

’isLocked[’h : history, self : any] .

Syntactically, ’e : event doesn’t match any of the alternatives; semantically,
it can match any of the alternatives.

As a substitute for otherwise, we can use the Y cannot match Y∗ operator,
which takes an event expression Y and an event pattern expression Y∗ and
returns true only if it can determine that the expression cannot match the
pattern. Thus, for ’isLocked, we can use the following rule to eliminate trail-
ing events that cannot affect the value of ’isLocked:

crl ’isLocked[HEXP ^^ EEXP, OEXP] => ’isLocked[HEXP, OEXP]
if EEXP cannot match reply .

• The program and logical variables that occur in simplification rules must
carry typing annotations.

To prevent spurious simplifications, the assertion analyzer applies simplifi-
cation rules on fully typed assertions, even though it displays the resulting
proof obligations without types. This is why we needed self : any and not
just self in the ’isLocked simplification rules above.

• Program and free logical variables should not be introduced on the right-
hand side of a simplification rule.

The assertion analyzer performs various simplifications and substitutions as-
suming that program and logical variables that don’t occur syntactically in
a subexpression don’t influence it. Simplification rules that introduce these
variables in their right-hand side can lead to unsound proof obligations. For
example, the following simplification rule is wrong:

*** WRONG
rl ’G => ’isLocked[~H~ : history, self : any] .

Exceptionally, it is safe to refer to the special variables self, caller, and label,
since their values stay the same for the lifetime of a process.

• Some of the logical and non-logical operators have associativity, commuta-
tivity, or identity attributes in their Maude declarations.

When writing simplification rules, it helps to know which operators are de-
clared with which attributes. For these, look for the operator declarations in
creol-program.maude.
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For the ’SimpleMutex example, we used custom simplification rules to expand a
custom function application to its definition. Another common use of custom sim-
plifications is to simplify formulas involving built-in non-logical symbols or func-
tions. Chapter 7 has several examples of simplification rules, many of which in-
volve built-in symbols such as ^^, pr, and ’lwf.

A.6 Custom Data Types and Functions

The Creol tools support only two built-in data types: bool and int. This proved
sufficient for the examples presented in this thesis, but many other Creol programs
require more powerful data types. While arbitrarily complex data structures can
be represented using Creol objects, it is better style to use Creol’s functional sub-
language to define data types and operations on them.

Example 4.1 of Section 4.2 featured a 2D point data type to store a pair of integer
coordinates, allowing us to write code like this:

var ’p1 : ’point2D, ’p2 : ’point2D, ’width : int, ’height : int ;
’p1 := ’point2D[320, 200] ;
’p2 := ’point2D[1024, 768] ;
’width := ’getX[’p2] minus ’getX[’p1] ;
’height := ’getY[’p2] minus ’getY[’p1]

Custom functions, including constructors, are applied using the syntax f[ē], with
f ∈ Id and ē ∈ ExpList.

When the Creol interpreters need to evaluate an expression that involves function
applications, it evaluates the arguments and adds @ to the left of the function name.
Then, user-supplied equations are applied to expand non-constructor function ap-
plications, until only constructors are left. For example, the following functional
module implements the ’point2D data type:

fmod POINT2D-EQUATIONS is
including CREOL-VALUE .

vars X X1 X2 : Int .
vars Y Y1 Y2 : Int .

eq defaultValue(’point2D) = @ ’point2D[0, 0] .

eq @ ’getX[@ ’point2D[X, Y]] = X .
eq @ ’getY[@ ’point2D[X, Y]] = Y .
eq @ ’add[@ ’point2D[X1, Y1], @ ’point2D[X2, Y2]] =

@ ’point2D[X1 + X2, Y1 + Y2] .
endfm

The first equation defines a default value for the type. This is necessary so that
variables of type ’point2D are correctly initialized. The other equations define the
functions that operate on ’point2D values. To use the ’point2D in a Creol program,
we must simply include the POINT2D-EQUATIONS module in the program’s module.

Custom functions can be used to implement operations on built-in data types just
as well as they can be used on custom data types. A common use case occurs when
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using the interpreter for open systems; custom functions occurring in the class’s
assume–guarantee specification must be defined using equations. For example:

fmod MUTEX-EQUATIONS is
including CREOL-HISTORY .

var EV : Event .
var H : History .
var K : Int .
vars O O’ : OId .

eq @ ’isLocked[emptyHistory, O] = false .
eq @ ’isLocked[H ^^ [K % O’ <- O . ’lock[epsilon ; epsilon]], O] =

true .
eq @ ’isLocked[H ^^

[K % O’ <- O . ’unlock[epsilon ; epsilon]], O] =
false .

eq @ ’isLocked[H ^^ EV, O] = @ ’isLocked[H, O] [otherwise] .
endfm

In Sections 7.3 and 7.4, we saw two implementations of the factorial function, one
using a while loop and the other using a recursive method call. A simpler and more
Creolesque (but also less instructive) solution would have been to define a ’fact

function using Creol’s functional sublanguage, as follows:

fmod FACTORIAL-EQUATIONS is
including CREOL-VALUE .

var N : Int .

eq @ ’fact[N] = if N >= 1 then N * @ ’fact[N - 1] else 1 fi .
endfm

A.7 Known Bugs and Limitations

Here are the known bugs and limitations in the tools at the time of writing:

• Method overloading is not supported by any of the tools.

• In the assertion analyzer, the special variables self and caller are typed as
any instead of their actual type.

• The interpreter for open systems fails on forall (∀) or exists (∃) quantifiers
in assume–guarantee specifications.

• The assertion massaging process can be slow for large programs.

• The assertion analyzer records invocation and reply events without qualifica-
tion (that is, m instead of m @ c).

• The tools assume that the input programs are syntactically correct and well-
typed.

Comments and bug reports concerning the tools or their documentation should be
directed to jasminnospamcb@ifi.uio.no or olnospamaf@ifi.uio.no.





Appendix B

Specifications of the Assertion
Analyzer and the Interpreters

This appendix presents the complete Maude specification of the Creol tools that
were developed in this thesis. The code is put in the public domain.

B.1 Creol Program Syntax

***(
creol-program.maude

This file implements the Creol language’s syntax described in
Sections 4.2, A.2, and A.3 of Verification of Assertions in Creol
Programs.

)

fmod CREOL-PRELUDE is

*** import what we need from the prelude and rename operators that

*** clash with Creol
including (INT + META-LEVEL) *

(op ~_ to maude~_,
op _&_ to _maude&_,
op _|_ to _maude|_,
op _:=_ to _maude:=_,
op _/_ to _maude/_,
op _xor_ : Nat Nat -> Nat to _xor2_,
op __ : NatList NatList -> NatList to _‘,‘,_,
sort Type to MaudeType).

endfm

fmod CREOL-LIST is
including CREOL-PRELUDE .

*** Base for comma-separated lists
sort EmptyList .

op epsilon : -> EmptyList [ctor] .

187
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op _,_ : EmptyList EmptyList -> EmptyList
[ctor assoc prec 21 id: epsilon format (d d s d)] .

*** Supersort for list elements
sort ListElem .

*** Supersort for comma-separated lists
sort List .
subsort EmptyList < List .
subsort ListElem < List .

op _,_ : List List -> List [ctor ditto] .

op _without_ : List List -> List [prec 9] .
op length : List -> Nat .

var ELEM : ListElem .
vars LIST LIST’ : List .

eq epsilon without LIST = epsilon .
eq ELEM without (LIST, ELEM, LIST’) = epsilon .
ceq (ELEM, LIST) without LIST’ =

(ELEM without LIST’), (LIST without LIST’)
if LIST =/= epsilon .
eq ELEM without LIST = ELEM [otherwise] .

eq length(epsilon) = 0 .
eq length(ELEM, LIST) = 1 + length(LIST) .

endfm

fmod CREOL-MULTISET is
including CREOL-PRELUDE .

*** Base for ++-separated multisets
sort EmptyMSet .

op emptyMSet : -> EmptyMSet [ctor] .
op _++_ : EmptyMSet EmptyMSet -> EmptyMSet

[ctor assoc comm prec 7 id: emptyMSet] .

*** Supersort for multiset elements
sort MSetElem .

*** Supersort for sets
sort MSet .
subsort EmptyMSet < MSet .
subsort MSetElem < MSet .

op _++_ : MSet MSet -> MSet [ctor ditto] .

op _\_ : MSet MSet -> MSet [prec 9] .
op _in mset_ : MSetElem MSet -> Bool [prec 11] .

vars ELEM ELEM’ : MSetElem .
vars MSET MSET’ : MSet .
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eq emptyMSet \ MSET’ = emptyMSet .
eq (ELEM ++ MSET) \ MSET’ =

(MSET \ MSET’) ++ if ELEM in mset MSET’ then emptyMSet
else ELEM fi .

eq ELEM in mset emptyMSet = false .
eq ELEM in mset (ELEM’ ++ MSET) =

(ELEM == ELEM’) or (ELEM in mset MSET) .
endfm

fmod CREOL-IDENTIFIER is
including CREOL-LIST .
including CREOL-MULTISET .

*** Plain quoted identifier (used instead of Qid to avoid clashes with

*** META-LEVEL)
sort QuotedId .

op <QIds> : -> QuotedId [special (id-hook QuotedIdentifierSymbol)] .

*** Creol identifier
sort Id .
subsort QuotedId < Id .

*** special identifiers
op none : -> Id [ctor] .
op nu : -> Id [ctor] . *** fresh label
op self : -> Id [ctor] .
op caller : -> Id [ctor] .
op label : -> Id [ctor] .
op ~H~ : -> Id [ctor] . *** mythical history

*** generated logical variables
op _$_ : Id Int -> Id [ctor prec 1] .

*** auxiliary function
op baseId : Id -> Id .

*** Comma-separated list of identifiers
sort IdList .
subsort Id < IdList .
subsort Id < ListElem .
subsort IdList < List .
subsort EmptyList < IdList .

op _,_ : IdList IdList -> IdList [ctor ditto] .

*** Multiset of identifiers
sort IdMSet .
subsort Id < IdMSet .
subsort Id < MSetElem .
subsort IdMSet < MSet .
subsort EmptyMSet < IdMSet .
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op _++_ : IdMSet IdMSet -> IdMSet [ctor ditto] .

var N : Int .
var X : Id .

eq baseId(X $ N) = baseId(X) .
eq baseId(X) = X [otherwise] .

endfm

fmod CREOL-QUALIFIED-IDENTIFIER is
including CREOL-IDENTIFIER .

*** Identifier that may be qualified with a class name (e.g., ’x @ ’C)

*** or not (e.g., ’x, ’x @ none)
sort QualifiedId .
subsort Id < QualifiedId .

op _@_ : Id Id -> QualifiedId [ctor prec 1 right id: none] .

*** Comma-separated list of qualified identifiers
sort QualifiedIdList .
subsort QualifiedId < QualifiedIdList .
subsort QualifiedId < ListElem .
subsort QualifiedIdList < List .
subsort IdList < QualifiedIdList .

op _,_ : QualifiedIdList QualifiedIdList -> QualifiedIdList
[ctor ditto] .

endfm

fmod CREOL-TYPE is
including CREOL-IDENTIFIER .

*** Creol data type
sort Type .
subsort Id < Type .

*** built-in program data types
op bool : -> Type [ctor] .
op int : -> Type [ctor] .
op any : -> Type [ctor] .

*** built-in reasoning data types
op event : -> Type [ctor] .
op history : -> Type [ctor] .

endfm

fmod CREOL-TYPED-IDENTIFIER is
including CREOL-TYPE .

*** Typed identifier
sort TypedId .
subsort Id < TypedId .

op _:_ : Id Type -> TypedId [ctor prec 3 right id: none] .
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*** Comma-separated list of typed identifiers
sort TypedIdList .
subsort TypedId < TypedIdList .
subsort TypedId < ListElem .
subsort TypedIdList < List .
subsort IdList < TypedIdList .

op _,_ : TypedIdList TypedIdList -> TypedIdList [ctor ditto] .

*** auxiliary function
op asIdList : TypedIdList -> IdList .

*** Identifier followed by typed parameters

*** e.g., ’C[’x : bool, ’y : int, ’z : ’I]
sort IdWithParams .
subsort Id < IdWithParams .

op _[_] : Id TypedIdList -> IdWithParams
[ctor prec 3 right id: epsilon] .

var T0 : Type .
var X0 : Id .
var XXL : TypedIdList .

eq asIdList(epsilon) = epsilon .
eq asIdList(X0 : T0, XXL) = X0, asIdList(XXL) .

endfm

fmod CREOL-TYPED-QUALIFIED-IDENTIFIER is
including CREOL-QUALIFIED-IDENTIFIER .
including CREOL-TYPED-IDENTIFIER .

*** Typed qualified identifier
sort TypedQualifiedId .
subsort QualifiedId < TypedQualifiedId .
subsort TypedId < TypedQualifiedId .

op _:_ : QualifiedId Type -> TypedQualifiedId [ctor ditto] .

*** Comma-separated list of typed qualified identifiers
sort TypedQualifiedIdList .
subsort TypedQualifiedId < TypedQualifiedIdList .
subsort TypedQualifiedId < ListElem .
subsort TypedQualifiedIdList < List .
subsort TypedIdList < TypedQualifiedIdList .
subsort QualifiedIdList < TypedQualifiedIdList .

op _,_ :
TypedQualifiedIdList TypedQualifiedIdList -> TypedQualifiedIdList

[ctor ditto] .

*** auxiliary operator
op _@@_ : TypedIdList Id -> TypedQualifiedIdList [prec 23] .
op _@@_ : IdList Id -> QualifiedIdList [ditto] .
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*** Boolean-typed qualified identifier
sort BoolTypedId .
subsort BoolTypedId < TypedId .
subsort BoolTypedId < TypedQualifiedId .

mb (Z : bool) : BoolTypedId .

*** Integer-typed qualified identifier
sort IntTypedId .
subsort IntTypedId < TypedId .
subsort IntTypedId < TypedQualifiedId .

mb (Z : int) : IntTypedId .

*** Unknown-interface-typed qualified identifier
sort AnyTypedId .
subsort AnyTypedId < TypedId .
subsort AnyTypedId < TypedQualifiedId .

mb (Z : any) : AnyTypedId .
mb (Z : QUOTEDID) : AnyTypedId .

*** Event-typed qualified identifier
sort EventTypedId .
subsort EventTypedId < TypedId .
subsort EventTypedId < TypedQualifiedId .

mb (Z : event) : EventTypedId .

*** History-typed qualified identifier
sort HistoryTypedId .
subsort HistoryTypedId < TypedId .
subsort HistoryTypedId < TypedQualifiedId .

mb (Z : history) : HistoryTypedId .

var C : Id .
var QUOTEDID : QuotedId .
var T0 : Type .
var X0 : Id .
var XXL : TypedIdList .
var Z : QualifiedId .

eq epsilon @@ C = epsilon .
eq X0 : T0, XXL @@ C = X0 @ C : T0, (XXL @@ C) .

endfm

fmod CREOL-OBJECT-IDENTITY is
including CREOL-IDENTIFIER .

*** Object identity
sort OId .

*** Base part of an object identity



B.1. Creol Program Syntax 193

sort OIdBase .
subsort Id < OIdBase .
subsort OId < OIdBase .

*** main constructor
op _#_ : OIdBase Int -> OId [ctor prec 1] .

*** special object identifiers
op null : -> OId [ctor] .
op root : -> OId [ctor] .

*** auxiliary operators
op parent : OId -> OIdBase .
op seq : OId -> Int .

*** Multiset of object identifiers
sort OIdMSet .
subsort OId < OIdMSet .
subsort OId < MSetElem .
subsort OIdMSet < MSet .
subsort EmptyMSet < OIdMSet .

op _++_ : OIdMSet OIdMSet -> OIdMSet [ctor ditto] .

var N : Int .
var OID : OId .
var OIDBASE : OIdBase .

eq parent(OIDBASE # N) = OIDBASE .
eq parent(OID) = null [otherwise] .

eq seq(OIDBASE # N) = N .
eq seq(OID) = 0 [otherwise] .

endfm

fmod CREOL-VALUE is
including CREOL-OBJECT-IDENTITY .
including CREOL-TYPED-QUALIFIED-IDENTIFIER .

*** Arithmetic (integer), Boolean, or object value
sort Value .
subsort Bool < Value .
subsort Int < Value .
subsort OId < Value .

*** value of custom type (represented as a term, e.g., @ ’s[5])
op @_[_] : Id ValueList -> Value [ctor] .

*** Comma-separated list of values
sort ValueList .
subsort Value < ValueList .
subsort Value < ListElem .
subsort ValueList < List .
subsort TypedQualifiedIdList < ValueList . *** for preregularity
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op _,_ : ValueList ValueList -> ValueList [ctor ditto] .

op defaultValue : Type -> Value .
op typeOf : Value -> Type .

var BOOL : Bool .
var F : Id .
var N : Nat .
var O : OId .
var VL : ValueList .
var X : Id .

eq defaultValue(bool) = false .
eq defaultValue(int) = 0 .
eq defaultValue(any) = null .
eq defaultValue(X) = null [otherwise] .

eq typeOf(BOOL) = bool .
eq typeOf(N) = int .
eq typeOf(O) = any .
eq typeOf(@ F[VL]) = none . *** unknown

endfm

fmod CREOL-EXPRESSION is
including CREOL-TYPE .
including CREOL-VALUE .
including CREOL-TYPED-QUALIFIED-IDENTIFIER .

*** Base for expressions
sort BasicExp .
subsort QualifiedId < BasicExp .
subsort IdWithArgs < BasicExp .

op if_th_el_fi : BExp BasicExp BasicExp -> BasicExp [ctor] .
op [_] : BasicExp -> BasicExp [ctor] .

*** Arithmetic (integer) expression
sort AExp .
subsort BasicExp < AExp .
subsort Int < AExp .
subsort IntTypedId < AExp .

op plus_ : AExp -> AExp [ctor prec 3] .
op minus_ : AExp -> AExp [ctor prec 3] .
op _times_ : AExp AExp -> AExp [ctor assoc comm prec 5 gather (E e)] .
op _div_ : AExp AExp -> AExp [ctor prec 5 gather (E e)] .
op _plus_ : AExp AExp -> AExp [ctor assoc comm prec 7 gather (E e)] .
op _minus_ : AExp AExp -> AExp [ctor prec 7 gather (E e)] .
op if_th_el_fi : BExp AExp AExp -> AExp [ctor] .
op [_] : AExp -> AExp [ctor] .

*** Basic Boolean expression
sort BasicBExp .
subsort BasicExp < BasicBExp .
subsort Bool < BasicBExp .
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subsort BoolTypedId < BasicBExp .

*** arithmetic comparison operators
op _eq_ : AExp AExp -> BasicBExp [ctor comm prec 11] .
op _ne_ : AExp AExp -> BasicBExp [ctor comm prec 11] .
op _lt_ : AExp AExp -> BasicBExp [ctor prec 11] .
op _gt_ : AExp AExp -> BasicBExp [ctor prec 11] .
op _le_ : AExp AExp -> BasicBExp [ctor prec 11] .
op _ge_ : AExp AExp -> BasicBExp [ctor prec 11] .

*** Boolean comparison operators (undocumented, but useful)
op _eq_ : BExp BExp -> BasicBExp [ctor ditto] .
op _ne_ : BExp BExp -> BasicBExp [ctor ditto] .

*** object comparison operators
op _eq_ : OExp OExp -> BasicBExp [ctor ditto] .
op _ne_ : OExp OExp -> BasicBExp [ctor ditto] .

*** Boolean expression
sort BExp .
subsort BasicBExp < BExp .

op !_ : BExp -> BExp [ctor prec 5] .
op _&&_ : BExp BExp -> BExp [ctor assoc comm prec 13] .
op _||_ : BExp BExp -> BExp [ctor assoc comm prec 15] .
op if_th_el_fi : BExp BExp BExp -> BExp [ctor] .
op [_] : BExp -> BExp [ctor] .

*** Logical quantifier
sort Quantifier .

op forall : -> Quantifier [ctor] .
op exists : -> Quantifier [ctor] .

*** auxiliary function
op opposite : Quantifier -> Quantifier .

*** Basic first-order logic assertion
sort BasicAssn .
subsort BasicBExp < BasicAssn .

*** Complex first-order logic assertion
sort Assn .
subsort BasicAssn < Assn .
subsort BExp < Assn .

op !_ : Assn -> Assn [ctor ditto] .
op _&&_ : Assn Assn -> Assn [ctor ditto] .
op _||_ : Assn Assn -> Assn [ctor ditto] .
op _==>_ : Assn Assn -> Assn [ctor prec 17 gather (e E)] .
op _<==>_ : Assn Assn -> Assn [ctor comm prec 19 gather (e e)] .
op __._ : Quantifier TypedIdList Assn -> Assn

[ctor prec 21 gather (e & E)] .
op if_th_el_fi : Assn Assn Assn -> Assn [ctor] .
op [_] : Assn -> Assn [ctor] .



196 Appendix B. Specifications of the Assertion Analyzer and the Interpreters

*** fresh identifier generators
op freshLogicalVar : TypedQualifiedId ExpList -> TypedId .
op freshLogicalVarHelper : TypedQualifiedId ExpList Int -> TypedId .
op freshLogicalVarList : TypedQualifiedIdList ExpList -> TypedIdList .

*** Object expression
sort OExp .
subsort BasicExp < OExp .
subsort AnyTypedId < OExp .

op if_th_el_fi : BExp OExp OExp -> OExp [ctor] .
op [_] : OExp -> OExp [ctor] .

*** used internally to assign object identifiers to variables
subsort OId < OExp .

*** Expression of any type (arithmetic, Boolean, object, assertion)
sort Exp .
subsort AExp < Exp .
subsort Assn < Exp .
subsort OExp < Exp .
subsort Value < Exp .

*** Comma-separated list of expressions
sort ExpList .
subsort Exp < ExpList .
subsort Exp < ListElem .
subsort ExpList < List .
subsort ValueList < ExpList .

op _,_ : ExpList ExpList -> ExpList [ctor ditto] .

*** auxiliary operator and functions
op _occurs free in_ : TypedQualifiedId ExpList -> Bool [prec 23] .
op qualified : ExpList TypedIdList Id -> ExpList .
op qualifiedAndTyped : ExpList TypedIdList Id -> ExpList .

*** Variable substitution
sort Subst .

op emptySubst : -> Subst [ctor] .
op {_|->_} : TypedQualifiedIdList ExpList -> Subst [ctor] .

op typedBuiltInVarSubst : -> Subst .

*** application of a substitution on a list of expressions
op __ : ExpList Subst -> ExpList [prec 1] .
op __ : BasicExp Subst -> BasicExp [ditto] .
op __ : AExp Subst -> AExp [ditto] .
op __ : BExp Subst -> BExp [ditto] .
op __ : Assn Subst -> Assn [ditto] .
op __ : OExp Subst -> OExp [ditto] .

*** other operators
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op _without_ : Subst TypedQualifiedId -> Subst [prec 5] .
op targets : Subst -> ExpList .

*** Identifier followed by arguments

*** e.g., ’C[true, 4, caller]
sort IdWithArgs .
subsort IdWithParams < IdWithArgs .

op _[_] : Id ExpList -> IdWithArgs [ctor ditto] .

vars A A1 A2 : AExp .
vars C C0 : Id .
vars E E0 E1 E2 : Exp .
vars EL EL’ : ExpList .
var F : Id .
var N : Int .
var O : OId .
vars PHI PHI1 PHI2 : Assn .
var QUANT : Quantifier .
var RHO : Subst .
vars T T0 : Type .
var VL : ValueList .
vars X X0 : Id .
var XX0 : TypedId .
vars XXL XXL’ : TypedIdList .
var YY0 : TypedId .
vars Z Z0 : QualifiedId .
var ZZ : TypedQualifiedId .
vars ZZL ZZL’ : TypedQualifiedIdList .

eq opposite(forall) = exists .
eq opposite(exists) = forall .

eq QUANT XXL . QUANT XXL’ . PHI = QUANT XXL, (XXL’ without XXL) . PHI .
eq QUANT epsilon . PHI = PHI .
eq {epsilon |-> epsilon} = emptySubst .

eq freshLogicalVar(ZZ, EL) = freshLogicalVarHelper(ZZ, EL, 1) .

eq freshLogicalVarHelper(X @ C : T, EL, N) =
if not baseId(X) $ N occurs free in EL then

baseId(X) $ N : T
else

freshLogicalVarHelper(X @ C : T, EL, (N + 1))
fi .

eq freshLogicalVarList(epsilon, EL) = epsilon .
ceq freshLogicalVarList((X0 @ C0 : T0, ZZL), EL) =

YY0, freshLogicalVarList(ZZL, (YY0, EL))
if YY0 := freshLogicalVar((X0 @ C0 : T0), EL) .

eq ZZ occurs free in epsilon = false .
eq ZZ occurs free in E0, EL =

(E0 {ZZ |-> none} =/= E0) or ZZ occurs free in EL .
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eq qualified(EL, XXL, C) = (EL) { XXL |-> XXL @@ C } .

eq qualifiedAndTyped(EL, XXL, C) =
(qualified(EL, XXL, C)) typedBuiltInVarSubst .

eq typedBuiltInVarSubst =
{ nu, self, caller, label, ~H~ |->
nu : int, self : any, caller : any, label : int, ~H~ : history } .

eq (ZZ) emptySubst = ZZ .
eq (Z : T) {ZZL, Z0 : T0 |-> EL, E0} =

if Z0 == Z then E0 else (Z : T) {ZZL |-> EL} fi .

eq (if PHI th E1 el E2 fi) RHO =
if (PHI) RHO th (E1) RHO el (E2) RHO fi .

eq ([E]) RHO = [(E) RHO] .

eq (F[EL]) RHO = F[(EL) RHO] .
eq (@ F[VL]) RHO = F[VL] .

eq (N) RHO = N .
eq (plus A) RHO = plus (A) RHO .
eq (minus A) RHO = minus (A) RHO .
eq (A1 times A2) RHO = (A1) RHO times (A2) RHO .
eq (A1 div A2) RHO = (A1) RHO div (A2) RHO .
eq (A1 plus A2) RHO = (A1) RHO plus (A2) RHO .
eq (A1 minus A2) RHO = (A1) RHO minus (A2) RHO .

eq (true) RHO = true .
eq (false) RHO = false .
eq (E1 eq E2) RHO = (E1) RHO eq (E2) RHO .
eq (E1 ne E2) RHO = (E1) RHO ne (E2) RHO .
eq (E1 lt E2) RHO = (E1) RHO lt (E2) RHO .
eq (E1 gt E2) RHO = (E1) RHO gt (E2) RHO .
eq (E1 le E2) RHO = (E1) RHO le (E2) RHO .
eq (E1 ge E2) RHO = (E1) RHO ge (E2) RHO .
eq (! PHI) RHO = ! (PHI) RHO .
eq (PHI1 && PHI2) RHO = (PHI1) RHO && (PHI2) RHO .
eq (PHI1 || PHI2) RHO = (PHI1) RHO || (PHI2) RHO .
eq (PHI1 ==> PHI2) RHO = (PHI1) RHO ==> (PHI2) RHO .
eq (PHI1 <==> PHI2) RHO = (PHI1) RHO <==> (PHI2) RHO .

*** makes sure that free variables introduced by the substitution RHO

*** don’t get bound accidentally, by renaming XX0 if necessary
ceq (QUANT XX0, XXL . PHI) RHO =

QUANT XX0 . (QUANT XXL . PHI) (RHO without XX0)
if not XX0 occurs free in targets(RHO) .
ceq (QUANT XX0, XXL . PHI) RHO =

(QUANT YY0 . (QUANT XXL . (PHI) { XX0 |-> YY0 })) (RHO without XX0)
if YY0 := freshLogicalVar(XX0, (XXL, PHI, targets(RHO))) [otherwise] .

eq (O) RHO = O .

eq (epsilon) RHO = epsilon .
ceq (E0, EL) RHO = (E0) RHO, (EL) RHO if EL =/= epsilon .



B.1. Creol Program Syntax 199

eq emptySubst without ZZ = emptySubst .
ceq { ZZL, Z, ZZL’ |-> EL, E, EL’ } without Z : T =

{ ZZL, ZZL’ |-> EL, EL’ } without Z : T
if length(ZZL) == length(EL) .
eq { ZZL |-> EL } without Z : T = { ZZL |-> EL } [otherwise] .

eq targets(emptySubst) = epsilon .
eq targets({ ZZL |-> EL }) = EL .

endfm

fmod CREOL-HISTORY is
including CREOL-VALUE .

*** Event in the history
sort Event .

op [_->_. new_[_]] : OId OId Id ValueList -> Event [ctor] .
op [_%_->_._[_]] : Int OId OId QualifiedId ValueList -> Event [ctor] .
op [_%_<-_._[_;_]] :

Int OId OId QualifiedId ValueList ValueList -> Event [ctor] .
op [_. initialized] : OId -> Event [ctor] .
op [_. release] : OId -> Event [ctor] .
op [_%_. reenter] : Int OId -> Event [ctor] .

*** Event patterns
sort EventPat .
subsort Event < EventPat .
subsort OId < EventPat .

op new : -> EventPat [ctor] .
op invoke : -> EventPat [ctor] .
op reply : -> EventPat [ctor] .
op initialized : -> EventPat [ctor] .
op release : -> EventPat [ctor] .
op reenter : -> EventPat [ctor] .
op control : -> EventPat [ctor] .
op [_-> *] : OId -> EventPat [ctor] .
op [_<- *] : OId -> EventPat [ctor] .
op [* ->_] : OId -> EventPat [ctor] .
op [* <-_] : OId -> EventPat [ctor] .
op [* ->_. new_[*]] : OId Id -> EventPat [ctor] .
op [* -> _._[*]] : OId QualifiedId -> EventPat [ctor] .
op [* <- _._[*]] : OId QualifiedId -> EventPat [ctor] .
op [_%_->_. *] : Int OId OId -> EventPat [ctor] .
op [_%_-> * . *] : Int OId -> EventPat [ctor] .
op [_%_<-_. *] : Int OId OId -> EventPat [ctor] .
op [_%_<- * . *] : Int OId -> EventPat [ctor] .
op [_. reenter] : OId -> EventPat [ctor] .
op in[_] : OId -> EventPat [ctor] .
op out[_] : OId -> EventPat [ctor] .
op ctl[_] : OId -> EventPat [ctor] .
op ~_ : EventPat -> EventPat [ctor prec 3] .
op _&_ : EventPat EventPat -> EventPat [ctor assoc comm prec 5] .
op _|_ : EventPat EventPat -> EventPat [ctor assoc comm prec 7] .
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*** auxiliary operator
op _matches_ : Event EventPat -> Bool [prec 11] .

*** Communication history (i.e., ^^-separated sequence of events)
sort History .
subsort Event < History .

op emptyHistory : -> History [ctor] .
op _^^_ : History History -> History

[ctor assoc prec 5 id: emptyHistory] .

*** auxiliary operators (projection, sequence length, membership)
op _/_ : History EventPat -> History [prec 9] .
op #[_] : History -> Int .
op _in_ : EventPat History -> Bool [prec 11] .

*** History pattern
sort HistoryPat .
subsort History < HistoryPat .
subsort EventPat < HistoryPat .
subsort HistoryPat < Value .

op _^^_ : HistoryPat HistoryPat -> HistoryPat [ctor ditto] .

*** auxiliary operators (begins with, ends with, prefix)
op _bw_ : History HistoryPat -> Bool [prec 11] .
op _ew_ : History HistoryPat -> Bool [prec 11] .
op _pr_ : HistoryPat History -> Bool [prec 11] .

var C : Id .
var EV : Event .
vars EVPAT EVPAT1 EVPAT2 : EventPat .
vars H H’ : History .
var HPAT : HistoryPat .
var K : Int .
var M : Id .
vars O O’ : OId .
var VL : ValueList .
var WL : ValueList .

eq defaultValue(history) = emptyHistory .

eq typeOf(H) = history .

eq EV matches EV = true .
eq EV matches O = EV matches (in[O] | out[O] | ctl[O]) .

eq [O -> O’ . new C[VL]] matches new = true .
eq [K % O -> O’ . M @ C[VL]] matches invoke = true .
eq [K % O <- O’ . M @ C[VL ; WL]] matches reply = true .
eq [O . initialized] matches initialized = true .
eq [O . release] matches release = true .
eq [K % O . reenter] matches reenter = true .
eq EV matches control = EV matches (initialized | release | reenter) .
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eq [O -> O’ . new C[VL]] matches [O -> *] = true .
eq [K % O -> O’ . M @ C[VL]] matches [O -> *] = true .
eq [K % O <- O’ . M @ C[VL ; WL]] matches [O <- *] = true .
eq [O -> O’ . new C[VL]] matches [* -> O’] = true .
eq [K % O -> O’ . M @ C[VL]] matches [* -> O’] = true .
eq [K % O <- O’ . M @ C[VL ; WL]] matches [* <- O’] = true .
eq [O -> O’ . new C[VL]] matches [* -> O’ . new C[*]] = true .
eq [K % O -> O’ . M @ C[VL]] matches [* -> O’ . M @ C[*]] = true .
eq [K % O <- O’ . M @ C[VL ; WL]] matches [* <- O’ . M @ C[*]] = true .
eq [K % O -> O’ . M @ C[VL]] matches [K % O -> O’ . *] = true .
eq [K % O -> O’ . M @ C[VL]] matches [K % O -> * . *] = true .
eq [K % O <- O’ . M @ C[VL ; WL]] matches [K % O <- O’ . *] = true .
eq [K % O <- O’ . M @ C[VL ; WL]] matches [K % O <- * . *] = true .
eq [K % O . reenter] matches [O . reenter] = true .
eq EV matches in[O] = EV matches ([* -> O] | [O <- *]) .
eq EV matches out[O] = EV matches ([O -> *] | [* <- O]) .
eq EV matches ctl[O] =

EV matches ([O . initialized] | [O . release] | [O . reenter]) .

eq EV matches ~ EVPAT = not EV matches EVPAT .
eq EV matches EVPAT1 & EVPAT2 =

EV matches EVPAT1 and EV matches EVPAT2 .
eq EV matches EVPAT1 | EVPAT2 =

EV matches EVPAT1 or EV matches EVPAT2 .

eq EV matches EVPAT = false [otherwise] .

eq emptyHistory / EVPAT = emptyHistory .
eq H ^^ EV / EVPAT =

(H / EVPAT) ^^ if EV matches EVPAT then EV else emptyHistory fi .

eq #[emptyHistory] = 0 .
eq #[H ^^ EV] = 1 + #[H] .

eq EVPAT in emptyHistory = false .
eq EVPAT in (H ^^ EV) = (EV matches EVPAT) or (EVPAT in H) .

eq H bw emptyHistory = true .
eq emptyHistory bw HPAT ^^ EVPAT = false .
eq EV ^^ H bw EVPAT ^^ HPAT = (EV matches EVPAT) and (H bw HPAT) .

eq H ew emptyHistory = true .
eq emptyHistory ew H ^^ EVPAT = false .
eq H ^^ EV ew H’ ^^ EVPAT = (EV matches EVPAT) and (H ew H’) .

eq emptyHistory pr H = true .
eq HPAT ^^ EVPAT pr emptyHistory = false .
eq EVPAT ^^ HPAT pr EV ^^ H = (EV matches EVPAT) and (H bw HPAT) .

endfm

fmod CREOL-HISTORY-EXPRESSION is
including CREOL-EXPRESSION .
including CREOL-HISTORY .

*** Event expression
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sort EventExp .
subsort BasicExp < EventExp .
subsort Event < EventExp .
subsort EventTypedId < EventExp .

op [_->_. new_[_]] : OExp OExp Id ExpList -> EventExp [ctor] .
op [_%_->_._[_]] : AExp OExp OExp QualifiedId ExpList -> EventExp

[ctor] .
op [_%_<-_._[_;_]] :

AExp OExp OExp QualifiedId ExpList ExpList -> EventExp [ctor] .
op [_. initialized] : OExp -> EventExp [ctor] .
op [_. release] : OExp -> EventExp [ctor] .
op [_%_. reenter] : AExp OExp -> EventExp [ctor] .
op if_th_el_fi : BExp EventExp EventExp -> EventExp [ctor] .
op [_] : EventExp -> EventExp [ctor] .

*** auxiliary operators
op _must match_ : EventExp EventPatExp -> Bool .
op _cannot match_ : EventExp EventPatExp -> Bool .

*** Event pattern expression
sort EventPatExp .
subsort EventExp < EventPatExp .
subsort OExp < EventPatExp .
subsort EventPat < EventPatExp .

op [_-> *] : OExp -> EventPatExp [ctor] .
op [_<- *] : OExp -> EventPatExp [ctor] .
op [* ->_] : OExp -> EventPatExp [ctor] .
op [* <-_] : OExp -> EventPatExp [ctor] .
op [* ->_. new_[*]] : OExp Id -> EventPatExp [ctor] .
op [* -> _._[*]] : OExp QualifiedId -> EventPat [ctor] .
op [* <- _._[*]] : OExp QualifiedId -> EventPat [ctor] .
op [_%_->_. *] : AExp OExp OExp -> EventPatExp [ctor] .
op [_%_-> * . *] : AExp OExp -> EventPatExp [ctor] .
op [_%_<-_. *] : AExp OExp OExp -> EventPatExp [ctor] .
op [_%_<- * . *] : AExp OExp -> EventPat [ctor] .
op [_. reenter] : AExp -> EventPatExp [ctor] .
op in[_] : OExp -> EventPatExp [ctor] .
op out[_] : OExp -> EventPatExp [ctor] .
op ctl[_] : OExp -> EventPatExp [ctor] .
op ~_ : EventPatExp -> EventPatExp [ctor ditto] .
op _&_ : EventPatExp EventPatExp -> EventPatExp [ctor ditto] .
op _|_ : EventPatExp EventPatExp -> EventPatExp [ctor ditto] .
op if_th_el_fi : BExp EventPatExp EventPatExp -> EventPatExp [ctor] .
op [_] : EventPatExp -> EventPatExp [ctor] .

*** History expression
sort HistoryExp .
subsort EventExp < HistoryExp .
subsort History < HistoryExp .
subsort HistoryTypedId < HistoryExp .

op _^^_ : HistoryExp HistoryExp -> HistoryExp [ctor ditto] .
op if_th_el_fi : BExp HistoryExp HistoryExp -> HistoryExp [ctor] .
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op [_] : HistoryExp -> HistoryExp [ctor] .

*** expressions involving histories
op _/_ : HistoryExp EventPatExp -> HistoryExp [ctor ditto] .
op #[_] : HistoryExp -> AExp [ctor ditto] .
op _eq_ : HistoryExp HistoryExp -> BasicAssn [ctor ditto] .
op _ne_ : HistoryExp HistoryExp -> BasicAssn [ctor ditto] .
op _in_ : EventPatExp HistoryExp -> BasicAssn [ctor ditto] .

*** History pattern expression
sort HistoryPatExp .
subsort HistoryPat < HistoryPatExp .
subsort HistoryExp < HistoryPatExp .
subsort EventPatExp < HistoryPatExp .
subsort HistoryPatExp < Exp .

op _^^_ : HistoryPatExp HistoryPatExp -> HistoryPatExp [ctor ditto] .
op if_th_el_fi :

BExp HistoryPatExp HistoryPatExp -> HistoryPatExp [ctor] .
op [_] : HistoryPatExp -> HistoryPatExp [ctor] .

*** expressions involving history patterns
op _bw_ : HistoryExp HistoryPatExp -> BasicAssn [ctor ditto] .
op _ew_ : HistoryExp HistoryPatExp -> BasicAssn [ctor ditto] .
op _pr_ : HistoryPatExp HistoryExp -> BasicAssn [ctor ditto] .

vars A A1 A2 : AExp .
vars C C1 C2 : Id .
var EEXP : EventExp .
vars EL EL’ EL1 EL1’ EL2 EL2’ : ExpList .
vars EPEXP EPEXP1 EPEXP2 : EventPatExp .
var HEXP : HistoryExp .
var HPEXP : HistoryPatExp .
vars M M1 M2 : Id .
vars OEXP OEXP’ OEXP1 OEXP1’ OEXP2 OEXP2’ : OExp .
var RHO : Subst .

eq EEXP must match EEXP = true .
eq [OEXP -> OEXP’ . new C[EL]] must match new = true .
eq [A % OEXP -> OEXP’ . M @ C[EL]] must match invoke = true .
eq [A % OEXP <- OEXP’ . M @ C[EL ; EL’]] must match reply = true .
eq [OEXP . initialized] must match initialized = true .
eq [OEXP . release] must match release = true .
eq [A % OEXP . reenter] must match reenter = true .
eq EEXP must match control =

EEXP must match (initialized | release | reenter) .
eq [OEXP -> OEXP’ . new C[EL]] must match [OEXP -> *] = true .
eq [A % OEXP -> OEXP’ . M @ C[EL]] must match [OEXP -> *] = true .
eq [A % OEXP <- OEXP’ . M @ C[EL ; EL’]] must match [OEXP <- *] =

true .
eq [OEXP -> OEXP’ . new C[EL]] must match [* -> OEXP’] = true .
eq [A % OEXP -> OEXP’ . M @ C[EL]] must match [* -> OEXP’] = true .
eq [A % OEXP <- OEXP’ . M @ C[EL ; EL’]] must match [* <- OEXP’] =

true .
eq [OEXP -> OEXP’ . new C[EL]] must match [* -> OEXP’ . new C[*]] =
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true .
eq [A % OEXP -> OEXP’ . M @ C[EL]] must match [* -> OEXP’ . M @ C[*]] =

true .
eq [A % OEXP <- OEXP’ . M @ C[EL ; EL’]] must match

[* <- OEXP’ . M @ C[*]] =
true .

eq [A % OEXP -> OEXP’ . M @ C[EL]] must match [A % OEXP -> OEXP’ . *] =
true .

eq [A % OEXP <- OEXP’ . M @ C[EL ; EL’]] must match
[A % OEXP <- OEXP’ . *] =
true .

eq [A % OEXP <- OEXP’ . M @ C[EL ; EL’]] must match
[A % OEXP <- * . *] =
true .

eq [A % OEXP . reenter] must match [OEXP . reenter] = true .
eq [OEXP -> OEXP’ . new C[EL]] must match in[OEXP’] = true .
eq [A % OEXP -> OEXP’ . M @ C[EL]] must match in[OEXP’] = true .
eq [A % OEXP <- OEXP’ . M @ C[EL ; EL’]] must match in[OEXP] = true .
eq [OEXP -> OEXP’ . new C[EL]] must match out[OEXP] = true .
eq [A % OEXP -> OEXP’ . M @ C[EL]] must match out[OEXP] = true .
eq [A % OEXP <- OEXP’ . M @ C[EL ; EL’]] must match out[OEXP’] = true .
eq [OEXP . initialized] must match ctl[OEXP] = true .
eq [OEXP . release] must match ctl[OEXP] = true .
eq [A % OEXP . reenter] must match ctl[OEXP] = true .
eq EEXP must match ~ EPEXP = EEXP cannot match EPEXP .
eq EEXP must match EPEXP1 & EPEXP2 =

EEXP must match EPEXP1 and EEXP must match EPEXP2 .
eq EEXP must match EPEXP1 | EPEXP2 =

EEXP must match EPEXP1 or EEXP must match EPEXP2 .
eq EEXP must match EPEXP = false [otherwise] .

eq EEXP cannot match new = EEXP must match (invoke | reply | control) .
eq EEXP cannot match invoke = EEXP must match (new | reply | control) .
eq EEXP cannot match reply = EEXP must match (new | invoke | control) .
eq EEXP cannot match initialized =

EEXP must match (new | invoke | reply | release | reenter) .
eq EEXP cannot match release =

EEXP must match (new | invoke | reply | initialized | reenter) .
eq EEXP cannot match reenter =

EEXP must match (new | invoke | reply | initialized | release) .
eq EEXP cannot match control =

EEXP must match (new | invoke | reply) .
eq EEXP cannot match [OEXP -> OEXP’ . new C[EL]] =

EEXP cannot match new .
eq [A1 % OEXP1 -> OEXP1’ . M1 @ C1[EL1]] cannot match

[A2 % OEXP2 -> OEXP2’ . M2 @ C2[EL2]] =
M1 =/= M2 or C1 =/= C2 .

ceq EEXP cannot match [A % OEXP -> OEXP’ . M @ C[EL]] = true
if EEXP cannot match invoke .
eq [A1 % OEXP1 <- OEXP1’ . M1 @ C1[EL1 ; EL1’]] cannot match

[A2 % OEXP2 <- OEXP2’ . M2 @ C2[EL2 ; EL2’]] =
M1 =/= M2 or C1 =/= C2 .

ceq EEXP cannot match [A % OEXP <- OEXP’ . M @ C[EL ; EL’]] = true
if EEXP cannot match reply .
eq EEXP cannot match [OEXP . initialized] =
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EEXP cannot match initialized .
eq EEXP cannot match [OEXP . release] = EEXP cannot match release .
eq EEXP cannot match [A % OEXP . reenter] = EEXP cannot match reenter .
eq EEXP cannot match [OEXP -> *] = EEXP cannot match (new | invoke) .
eq EEXP cannot match [OEXP <- *] = EEXP cannot match reply .
eq EEXP cannot match [* -> OEXP] = EEXP cannot match (new | invoke) .
eq EEXP cannot match [* <- OEXP] = EEXP cannot match reply .
eq [OEXP1 -> OEXP1’ . new C1[EL1]] cannot match

[* -> OEXP’ . new C2[*]] =
C1 =/= C2 .

ceq EEXP cannot match [* -> OEXP’ . new C[*]] = true
if EEXP cannot match new .
eq [A1 % OEXP1 -> OEXP1’ . M1 @ C1[EL1]] cannot match

[* -> OEXP2’ . M2 @ C2[*]] =
M1 =/= M2 or C1 =/= C2 .

ceq EEXP cannot match [* -> OEXP’ . M @ C[*]] = true
if EEXP cannot match invoke .
eq [A1 % OEXP1 <- OEXP1’ . M1 @ C1[EL1 ; EL1’]] cannot match

[* <- OEXP2’ . M2 @ C2[*]] =
M1 =/= M2 or C1 =/= C2 .

ceq EEXP cannot match [* <- OEXP’ . M @ C[*]] = true
if EEXP cannot match reply .
eq EEXP cannot match [A % OEXP -> OEXP’ . *] =

EEXP cannot match invoke .
eq EEXP cannot match [A % OEXP -> * . *] = EEXP cannot match invoke .
eq EEXP cannot match [A % OEXP <- OEXP’ . *] =

EEXP cannot match reply .
eq EEXP cannot match [A % OEXP <- * . *] = EEXP cannot match reply .
eq EEXP cannot match [OEXP . reenter] = EEXP cannot match reenter .
eq EEXP cannot match in[OEXP] = EEXP must match control .
eq EEXP cannot match out[OEXP] = EEXP must match control .
eq EEXP cannot match ctl[OEXP] = EEXP cannot match control .
eq EEXP cannot match ~ EPEXP = EEXP must match EPEXP .
eq EEXP cannot match EPEXP1 & EPEXP2 =

EEXP cannot match EPEXP1 or EEXP cannot match EPEXP2 .
eq EEXP cannot match EPEXP1 | EPEXP2 =

EEXP cannot match EPEXP1 and EEXP cannot match EPEXP2 .
eq EEXP cannot match EPEXP = false [otherwise] .

eq ([OEXP -> OEXP’ . new C[EL]]) RHO =
[(OEXP) RHO -> (OEXP’) RHO . new C[(EL) RHO]] .

eq ([A % OEXP -> OEXP’ . M @ C[EL]]) RHO =
[(A) RHO % (OEXP) RHO -> (OEXP’) RHO . M @ C[(EL) RHO]] .

eq ([A % OEXP <- OEXP’ . M @ C[EL ; EL’]]) RHO =
[(A) RHO % (OEXP) RHO <- (OEXP’) RHO
. M @ C[(EL) RHO ; (EL’) RHO]] .

eq ([OEXP . initialized]) RHO = [(OEXP) RHO . initialized] .
eq ([OEXP . release]) RHO = [(OEXP) RHO . release] .
eq ([A % OEXP . reenter]) RHO = [(A) RHO % (OEXP) RHO . reenter] .

eq (new) RHO = new .
eq (invoke) RHO = invoke .
eq (reply) RHO = reply .
eq (initialized) RHO = initialized .
eq (release) RHO = release .
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eq (reenter) RHO = reenter .
eq (control) RHO = control .
eq ([OEXP -> *]) RHO = [(OEXP) RHO -> *] .
eq ([OEXP <- *]) RHO = [(OEXP) RHO <- *] .
eq ([* -> OEXP]) RHO = [* -> (OEXP) RHO] .
eq ([* <- OEXP]) RHO = [* <- (OEXP) RHO] .
eq ([* -> OEXP . new C[*]]) RHO = [* -> (OEXP) RHO . new C[*]] .
eq ([* -> OEXP . M @ C[*]]) RHO = [* -> (OEXP) RHO . M @ C[*]] .
eq ([* <- OEXP . M @ C[*]]) RHO = [* <- (OEXP) RHO . M @ C[*]] .
eq ([A % OEXP -> OEXP’ . *]) RHO =

[(A) RHO % (OEXP) RHO -> (OEXP’) RHO . *] .
eq ([A % OEXP -> * . *]) RHO = [(A) RHO % (OEXP) RHO -> * . *] .
eq ([A % OEXP <- OEXP’ . *]) RHO =

[(A) RHO % (OEXP) RHO <- (OEXP’) RHO . *] .
eq ([A % OEXP <- * . *]) RHO = [(A) RHO % (OEXP) RHO <- * . *] .
eq ([OEXP . reenter]) RHO = [(OEXP) RHO . reenter] .
eq (in[OEXP]) RHO = in[(OEXP) RHO] .
eq (out[OEXP]) RHO = out[(OEXP) RHO] .
eq (ctl[OEXP]) RHO = ctl[(OEXP) RHO] .

eq (~ EPEXP) RHO = ~ (EPEXP) RHO .
eq (EPEXP1 & EPEXP2) RHO = (EPEXP1) RHO & (EPEXP2) RHO .
eq (EPEXP1 | EPEXP2) RHO = (EPEXP1) RHO | (EPEXP2) RHO .

eq (emptyHistory) RHO = emptyHistory .
ceq (HPEXP ^^ EPEXP) RHO = (HPEXP) RHO ^^ (EPEXP) RHO
if HPEXP =/= emptyHistory .

eq (HEXP / EPEXP) RHO = (HEXP) RHO / (EPEXP) RHO .
eq (#[HEXP]) RHO = #[(HEXP) RHO] .
eq (EPEXP in HEXP) RHO = (EPEXP) RHO in (HEXP) RHO .

eq (HEXP bw HPEXP) RHO = (HEXP) RHO bw (HPEXP) RHO .
eq (HEXP bw HPEXP) RHO = (HEXP) RHO bw (HPEXP) RHO .

eq (HEXP ew HPEXP) RHO = (HEXP) RHO ew (HPEXP) RHO .
eq (HEXP ew HPEXP) RHO = (HEXP) RHO ew (HPEXP) RHO .

eq (HPEXP pr HEXP) RHO = (HPEXP) RHO pr (HEXP) RHO .
eq (HPEXP pr HEXP) RHO = (HPEXP) RHO pr (HEXP) RHO .

endfm

fmod CREOL-GUARD is
including CREOL-EXPRESSION .

*** Conditional guard
sort Guard .
subsort BExp < Guard .

op _? : Id -> Guard [ctor prec 13] .
op wait : -> Guard [ctor] .
op _&&&_ : Guard Guard -> Guard [ctor assoc comm prec 15] .

*** application of a substitution on a conditional guard
op __ : Guard Subst -> Guard [ditto] .



B.1. Creol Program Syntax 207

vars G1 G2 : Guard .
var LL : TypedId .
var RHO : Subst .

eq (LL ?) RHO = LL ? .
eq (wait) RHO = wait .
eq (G1 &&& G2) RHO = (G1) RHO &&& (G2) RHO .

endfm

fmod CREOL-STATEMENT is
including CREOL-GUARD .
including CREOL-TYPED-IDENTIFIER .

*** Argument list to synchronous call
sort SyncCallArgs .

*** canonical argument list
op [_;_] : ExpList TypedQualifiedIdList -> SyncCallArgs [ctor] .

*** non-canonical argument lists
op [_;] : ExpList -> SyncCallArgs .
op [;_] : TypedQualifiedIdList -> SyncCallArgs .
op [;] : -> SyncCallArgs .
op [] : -> SyncCallArgs .

*** Statement that may serve as an await guard
sort SingleStmtAllowedInAwait .

*** Statement other than a statement list
sort SingleStmt .
subsort SingleStmtAllowedInAwait < SingleStmt .

*** Any statement
sort Stmt .
subsort SingleStmt < Stmt .

*** canonical statements
op skip : -> SingleStmt [ctor] .
op abort : -> SingleStmt [ctor] .
op prove_ : Assn -> SingleStmt [ctor prec 23] .
op _:=_ : TypedQualifiedIdList ExpList -> SingleStmt [ctor prec 23] .
op _:= new_ : TypedQualifiedId IdWithArgs -> SingleStmt

[ctor prec 23] .
op _!_._[_] : TypedId OExp Id ExpList -> SingleStmt [ctor prec 5] .
op _!_[_] : TypedId TypedQualifiedId ExpList -> SingleStmt

[ctor prec 5] .
op _?[_] : TypedId TypedQualifiedIdList -> SingleStmtAllowedInAwait

[ctor prec 5] .

op await_ : Guard -> SingleStmt [ctor prec 19] .
op if_th_el_fi : BExp Stmt Stmt -> SingleStmt [ctor] .
op while_do_od : BExp Stmt -> SingleStmt [ctor] .
op inv_while_do_od : Assn BExp Stmt -> SingleStmt [ctor] .
op _[]_ : Stmt Stmt -> SingleStmt
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[ctor assoc comm prec 27 format (d s d s d)] .
op _|||_ : Stmt Stmt -> SingleStmt [ctor assoc comm prec 29] .
op [_] : Stmt -> SingleStmt [ctor] .

*** synthetic statements
op !_._[_] : OExp Id ExpList -> SingleStmt [ctor] .
op !_[_] : QualifiedId ExpList -> SingleStmt [ctor] .
op _.__ : OExp Id SyncCallArgs -> SingleStmtAllowedInAwait

[ctor prec 1] .
op __ : QualifiedId SyncCallArgs -> SingleStmtAllowedInAwait

[ctor prec 1] .
op await_&&&_ : Guard SingleStmtAllowedInAwait -> SingleStmt

[ctor prec 19] .
op await_ : SingleStmtAllowedInAwait -> SingleStmt [ctor prec 19] .
op if_th_fi : BExp Stmt -> SingleStmt [ctor] .

*** statements with empty argument list
op _!_._[] : TypedId OExp Id -> SingleStmt [prec 5] .
op _!_[] : TypedId QualifiedId -> SingleStmt [prec 5] .
op !_._[] : OExp Id -> SingleStmt .
op !_[] : QualifiedId -> SingleStmt .
op _?[] : TypedId -> SingleStmtAllowedInAwait [prec 5] .

*** sequence of statements
op emptyStmt : -> Stmt [ctor] .
op _;_ : Stmt Stmt -> Stmt [ctor assoc prec 25 id: emptyStmt] .

*** application of a substitution on a statement
op __ : Stmt Subst -> Stmt [prec 1] .

*** other operators
op qualified : Stmt TypedIdList Id -> Stmt .
op clearWait : Stmt -> Stmt .
op cleared : Guard -> Guard .
op simpleBranch : Stmt -> Bool .

var B : BExp .
var C : Id .
var EL : ExpList .
vars G G1 G2 : Guard .
var LL : TypedId .
var M : Id .
var OEXP : OExp .
var PHI : Assn .
var RHO : Subst .
vars S S’ S1 S2 S1..SK SK+1..SN : Stmt .
var SS : SingleStmt .
var XXL : TypedIdList .
var ZZ : TypedQualifiedId .
var ZZL : TypedQualifiedIdList .

eq [EL ;] = [EL ; epsilon] .
eq [; ZZL] = [epsilon ; ZZL] .
eq [;] = [epsilon ; epsilon] .
eq [] = [epsilon ; epsilon] .
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eq LL ! OEXP . M[] = LL ! OEXP . M[epsilon] .
eq LL ! M @ C[] = LL ! M @ C[epsilon] .
eq ! OEXP . M[] = ! OEXP . M[epsilon] .
eq ! M @ C[] = ! M @ C[epsilon] .
eq LL ?[] = LL ?[epsilon] .

eq (skip) RHO = skip .
eq (abort) RHO = abort .
eq (prove PHI) RHO = prove (PHI) RHO .
eq (ZZL := EL) RHO = (ZZL) RHO := (EL) RHO .
eq (ZZ := new C[EL]) RHO = (ZZ) RHO := new C[(EL) RHO] .
eq (LL ! OEXP . M[EL]) RHO = LL ! (OEXP) RHO . M[(EL) RHO] .
eq (LL ! M @ C[EL]) RHO = LL ! M @ C[(EL) RHO] .
eq (LL ?[ZZL]) RHO = LL ?[(ZZL) RHO] .
eq (await G) RHO = await (G) RHO .
eq (if B th S1 el S2 fi) RHO =

if (B) RHO th (S1) RHO el (S2) RHO fi .
eq (while B do S od) RHO = while (B) RHO do (S) RHO od .
eq (inv PHI while B do S od) RHO =

inv (PHI) RHO while (B) RHO do (S) RHO od .
eq (S1 [] S2) RHO = (S1) RHO [] (S2) RHO .
eq (S1..SK ||| SK+1..SN) RHO = (S1..SK) RHO ||| (SK+1..SN) RHO .
eq ([S]) RHO = [(S) RHO] .

eq (! OEXP . M[EL]) RHO = ! (OEXP) RHO . M[(EL) RHO] .
eq (! M @ C[EL]).Stmt RHO = (! M @ C[(EL) RHO]).Stmt .
eq (OEXP . M[EL ; ZZL]) RHO = (OEXP) RHO . M[(EL) RHO ; (ZZL) RHO] .
eq (M @ C[EL ; ZZL]) RHO = M @ C[(EL) RHO ; (ZZL) RHO] .
eq (await G &&& SS) RHO = await (G) RHO &&& (SS) RHO .
eq (await SS) RHO = await (SS) RHO .
eq (if B th S1 fi) RHO = if (B) RHO th (S1) RHO fi .

eq (emptyStmt) RHO = emptyStmt .
ceq (SS ; S) RHO = (SS) RHO ; (S) RHO if S =/= emptyStmt .

eq qualified(S, XXL, C) = (S) { XXL |-> XXL @@ C } .

*** Definition T9 (Wait Guard Clearer)

*** slightly adapted to cover synthetic await statements properly
eq clearWait(await G ; S) = await cleared(G) ; S .
eq clearWait(await G &&& SS ; S) = await cleared(G) &&& SS ; S .
eq clearWait((S1 [] S2) ; S) = (clearWait(S1) [] clearWait(S2)) ; S .
eq clearWait((S1..SK ||| SK+1..SN) ; S) =

(clearWait(S1..SK) ||| clearWait(SK+1..SN)) ; S .
eq clearWait([S] ; S’) = [clearWait(S)] ; S’ .
eq clearWait(S) = S [otherwise] .

*** Definition T10 (Cleared Guard)
eq cleared(wait) = true .
eq cleared(G1 &&& G2) = cleared(G1) &&& cleared(G2) .
eq cleared(G) = G [otherwise] .

eq simpleBranch(S1..SK ||| SK+1..SN) = false .
eq simpleBranch(S) = true [otherwise] .
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endfm

fmod CREOL-METHOD is
including CREOL-STATEMENT .

*** Creol method
sort Mtd .

op <_: Method | In:_, Out:_, LVar:_, Code:_> :
Id TypedIdList TypedIdList TypedIdList Stmt -> Mtd

[ctor format (c c! oc c c sc! oc c sc! oc c sc! oc c sc! oc
c n)] .

*** Multiset of methods
sort MtdMSet .
subsort Mtd < MtdMSet .
subsort Mtd < MSetElem .
subsort MtdMSet < MSet .
subsort EmptyMSet < MtdMSet .

op _++_ : MtdMSet MtdMSet -> MtdMSet [ctor ditto] .

*** method multiset membership
op <_: Method | * > in mset_ : Id MtdMSet -> Bool [prec 11] .

vars M M’ : Id .
var MM : MtdMSet .
var S : Stmt .
var VVL : TypedIdList .
var XXL : TypedIdList .
var YYL : TypedIdList .

eq < M : Method | * > in mset emptyMSet = false .
eq < M : Method | * > in mset

< M’ : Method | In: XXL, Out: YYL, LVar: VVL, Code: S > ++ MM =
(M == M’) or (< M : Method | * > in mset MM) .

endfm

fmod CREOL-SUPER is
including CREOL-STATEMENT .

*** Creol supertype in interface or class declaration
sort Super .
subsort IdWithArgs < Super .

*** Comma-separated list of supertypes
sort SuperList .
subsort Super < SuperList .
subsort Super < ListElem .
subsort SuperList < ExpList .
subsort IdList < SuperList .

op _,_ : SuperList SuperList -> SuperList [ctor ditto] .

*** auxiliary function
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op qualifiedSuperList : SuperList TypedIdList Id -> SuperList .

vars C C’ : Id .
var EL : ExpList .
var SUPERL : SuperList .
var XXL : TypedIdList .

eq qualifiedSuperList(epsilon, XXL, C) = epsilon .
eq qualifiedSuperList((C’[EL], SUPERL), XXL, C) =

C’[EL {XXL |-> XXL @@ C}], qualifiedSuperList(SUPERL, XXL, C) .
endfm

fmod CREOL-SIGNATURE is
including CREOL-TYPED-IDENTIFIER .

*** Creol method signature preceded by the op keyword
sort OpSig .

*** canonical form of method signature
op op_[in_out_] : Id TypedIdList TypedIdList -> OpSig

[ctor format (ss d d d d d d d d)] .

*** non-canonical forms
op op_[in_] : Id TypedIdList -> OpSig .
op op_[out_] : Id TypedIdList -> OpSig .
op op_[] : Id -> OpSig .
op op_ : Id -> OpSig [prec 1] .

var M : Id .
var XXL : TypedIdList .
var YYL : TypedIdList .

eq op M[in XXL] = op M[in XXL out epsilon] .
eq op M[out YYL] = op M[in epsilon out YYL] .
eq op M[] = op M[in epsilon out epsilon] .
eq op M = op M[in epsilon out epsilon] .

endfm

fmod CREOL-INTERFACE is
including CREOL-HISTORY-EXPRESSION .
including CREOL-METHOD .
including CREOL-SIGNATURE .
including CREOL-SUPER .

*** Clause in a Creol interface declaration head
sort InterfaceHeadClause .

op inherits_ : SuperList -> InterfaceHeadClause [ctor prec 23] .

*** Interface declaration head

*** e.g., interface ’I[’a] inherits ’J, ’K[’a]
sort InterfaceHead .

op interface_ : IdWithParams -> InterfaceHead [ctor prec 3] .
op __ : InterfaceHead InterfaceHeadClause -> InterfaceHead
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[ctor prec 25] .

*** Interface or class declaration tail
sort Tail .

op asum_guar_end : Assn Assn -> Tail [ctor] .

op asum_end : Assn -> Tail .
op guar_end : Assn -> Tail .
op end : -> Tail .

*** Interface declaration body
sort InterfaceMtds .
subsort OpSig < InterfaceMtds .

op noMtds : -> InterfaceMtds [ctor format (ss d)] .
op __ : InterfaceMtds InterfaceMtds -> InterfaceMtds

[ctor assoc comm prec 25 id: noMtds format (d n d)] .

*** Creol interface
sort Interface .

*** canonical representation of interfaces
op <_: Interface | Inh:_, Param:_, Asum:_, Guar:_> :

Id SuperList TypedIdList Assn Assn -> Interface
[ctor format (m m! om m m m! om m sm! om m sm! om m sm! om m

n)] .

*** interface declaration syntax
op _begin with_:__ : InterfaceHead Type InterfaceMtds Tail -> Interface

[prec 27] .
op _begin_ : InterfaceHead Tail -> Interface [prec 27] .

*** auxiliary functions
op interfaceName : InterfaceHead -> Id .
op interfaceParams : InterfaceHead -> TypedIdList .
op interfaceInherits : InterfaceHead -> SuperList .

var ASUM : Assn .
var GUAR : Assn .
var I : Id .
var IHEAD : InterfaceHead .
var IHEADCLAUSE : InterfaceHeadClause .
var IMTDS : InterfaceMtds .
var SUPERL : SuperList .
var T : Type .
var XXL : TypedIdList .

eq asum ASUM end = asum ASUM guar true end .
eq guar GUAR end = asum true guar GUAR end .
eq end = asum true guar true end .

*** Definition T1’ (Interface Declaration)
eq IHEAD begin with T : IMTDS asum ASUM guar GUAR end =

< interfaceName(IHEAD) : Interface |
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Inh: interfaceInherits(IHEAD), Param: interfaceParams(IHEAD),
Asum: ASUM, Guar: GUAR > .

eq IHEAD begin end = IHEAD begin with any : noMtds end .

eq interfaceName(interface I[XXL]) = I .
eq interfaceName(IHEAD IHEADCLAUSE) = interfaceName(IHEAD) .

eq interfaceParams(interface I[XXL]) = XXL .
eq interfaceParams(IHEAD IHEADCLAUSE) = interfaceParams(IHEAD) .

eq interfaceInherits(interface I[XXL]) = epsilon .
eq interfaceInherits(IHEAD inherits SUPERL) =

interfaceInherits(IHEAD), SUPERL .
endfm

fmod CREOL-CLASS is
including CREOL-INTERFACE .
including CREOL-METHOD .

*** Clause in a class declaration head
sort ClassHeadClause .
subsort InterfaceHeadClause < ClassHeadClause .

op implements_ : SuperList -> ClassHeadClause [ctor prec 23] .
op contracts_ : SuperList -> ClassHeadClause [ctor prec 23] .

*** Class declaration head

*** e.g., class ’C[’a] implements ’J contracts ’K[’a] inherits ’B
sort ClassHead .

op class_ : IdWithParams -> ClassHead [ctor prec 3] .
op __ : ClassHead ClassHeadClause -> ClassHead [ctor prec 25] .

*** Class attribute declaration
sort VarClause .

op var_ : TypedIdList -> VarClause [ctor prec 23] .

*** Method body

*** e.g., var ’i : int ; ’i := x plus 1 ; ’y := ’i
sort MtdBody .
subsort Stmt < MtdBody .

op _;_ : VarClause Stmt -> MtdBody
[ctor prec 27 left id: (var epsilon)] .

*** Method declaration

*** e.g., op ’init is ’pi := 31416
sort MtdDecl .

op _is_ : OpSig MtdBody -> MtdDecl [ctor prec 29] .

*** Group of method declarations
sort MtdDeclGroup .
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subsort MtdDecl < MtdDeclGroup .

op noMtds : -> MtdDeclGroup [ctor format (ss d)] .
op __ : MtdDeclGroup MtdDeclGroup -> MtdDeclGroup

[ctor assoc comm prec 31 id: noMtds format (d n d)] .

*** All method declarations in a class
sort ClassMtds .
subsort MtdDeclGroup < ClassMtds .

op _with_:_ : MtdDeclGroup Type ClassMtds -> ClassMtds [ctor prec 33] .

*** Class declaration body
sort ClassBody .
subsort ClassMtds < ClassBody .

op __ : VarClause ClassMtds -> ClassBody
[ctor prec 35 left id: (var epsilon)] .

*** Creol class
sort Class .

*** canonical representation of classes
op <_: Class | Impl:_, Ctrc:_, Inh:_, Param:_, Att:_, Mtd:_, ObjCnt:_,

Asum:_, Guar:_> :
Id SuperList SuperList SuperList TypedIdList TypedIdList MtdMSet Int
Assn Assn
-> Class

[ctor format (b b! ob b b b! ob b sb! ob b sb! ob b sb! ob b
sb! ob b sb! onssssb ssb sb! ob b sb! ob b sb!
ob b n)] .

*** class declaration syntax
op _begin__ : ClassHead ClassBody Tail -> Class [prec 37] .
op _begin_with_:__ : ClassHead VarClause Type ClassMtds Tail -> Class

[prec 37] .
op _begin with_:__ : ClassHead Type ClassMtds Tail -> Class [prec 37] .
op _begin__ : ClassHead VarClause Tail -> Class [prec 37] .
op _begin_ : ClassHead Tail -> Class [prec 37] .

*** auxiliary functions
op className : ClassHead -> Id .
op classParams : ClassHead -> TypedIdList .
op classImplements : ClassHead -> SuperList .
op classContracts : ClassHead -> SuperList .
op classInherits : ClassHead -> SuperList .
op classMethods : ClassMtds -> MtdMSet .
op labels : Stmt -> TypedIdList .

var ASUM : Assn .
var C : Id .
var CHEAD : ClassHead .
var CHEADCLAUSE : ClassHeadClause .
var CMTDS : ClassMtds .
var EL : ExpList .
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var GUAR : Assn .
var L : Id .
var M : Id .
vars MGRP MGRP1 MGRP2 : MtdDeclGroup .
var OEXP : OExp .
var S : Stmt .
var SS : SingleStmt .
var SUPERL : SuperList .
var T : Type .
var TAIL : Tail .
var VVL : TypedIdList .
var WWL : TypedIdList .
var XXL : TypedIdList .
var YYL : TypedIdList .
var ZZL : TypedQualifiedIdList .

*** Definition T2’ (Class Declaration)
eq CHEAD begin var WWL CMTDS asum ASUM guar GUAR end =

< className(CHEAD) : Class | Impl: classImplements(CHEAD),
Ctrc: classContracts(CHEAD), Inh: classInherits(CHEAD),
Param: classParams(CHEAD), Att: WWL, Mtd: classMethods(CMTDS),
ObjCnt: 0, Asum: ASUM, Guar: GUAR > .

eq CHEAD begin var WWL with T : CMTDS TAIL =
CHEAD begin var WWL noMtds with T : CMTDS TAIL .

eq CHEAD begin with T : CMTDS TAIL =
CHEAD begin noMtds with T : CMTDS TAIL .

eq CHEAD begin var WWL TAIL = CHEAD begin var WWL noMtds TAIL .
eq CHEAD begin TAIL = CHEAD begin noMtds TAIL .

eq className(class C[XXL]) = C .
eq className(CHEAD CHEADCLAUSE) = className(CHEAD) .

eq classParams(class C[XXL]) = XXL .
eq classParams(CHEAD CHEADCLAUSE) = classParams(CHEAD) .

eq classImplements(class C[XXL]) = epsilon .
eq classImplements(CHEAD implements SUPERL) =

classImplements(CHEAD), SUPERL .
eq classImplements(CHEAD CHEADCLAUSE) = classImplements(CHEAD)

[otherwise] .

eq classContracts(class C[XXL]) = epsilon .
eq classContracts(CHEAD contracts SUPERL) =

classContracts(CHEAD), SUPERL .
eq classContracts(CHEAD CHEADCLAUSE) = classContracts(CHEAD)

[otherwise] .

eq classInherits(class C[XXL]) = epsilon .
eq classInherits(CHEAD inherits SUPERL) =

classInherits(CHEAD), SUPERL .
eq classInherits(CHEAD CHEADCLAUSE) = classInherits(CHEAD)

[otherwise] .

eq classMethods(op M[in XXL out YYL] is var VVL ; S) =
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< M : Method | In: XXL, Out: YYL, LVar: VVL, labels(S), Code: S > .
eq classMethods(noMtds) = emptyMSet .
eq classMethods(MGRP1 MGRP2) =

classMethods(MGRP1) ++ classMethods(MGRP2) .
eq classMethods(MGRP with T : CMTDS) =

classMethods(MGRP) ++ classMethods(CMTDS) .

eq labels(L : T ! OEXP . M[EL]) = L : int .
eq labels(L : T ! M @ C[EL]) = L : int .
eq labels(L : T ?[ZZL]) = L : int .
eq labels(SS) = epsilon [otherwise] .

eq labels(emptyStmt) = epsilon .
ceq labels(SS ; S) = labels(SS), labels(S) if S =/= emptyStmt .

endfm

fmod CREOL-PROGRAM is
including CREOL-CLASS .

*** System subconfiguration (multiset of interfaces, classes,

*** objects, and messages)
sort Config .
subsort Interface < Config .
subsort Class < Config .

op emptyConfig : -> Config [ctor] .
op __ : Config Config -> Config [ctor assoc comm id: emptyConfig] .

*** auxiliary functions
op qualified : Stmt SuperList TypedIdList Config ~> Stmt .
op qualifiedAndTyped :

Stmt SuperList TypedQualifiedIdList TypedIdList Config ~> Stmt .
op classParams : Id Config ~> TypedIdList .
op initialPr : Super Config ~> Stmt .
op initialPr : SuperList Stmt Stmt Stmt Config ~> Stmt .

*** Global system configuration
sort GlobalConfig .

op {_} : Config -> GlobalConfig [ctor format (!w on !w o)] .

var AAL : TypedQualifiedIdList .
var ASUM : Assn .
var C : Id .
var CONFIG : Config .
var EL : ExpList .
var GUAR : Assn .
var MM : MtdMSet .
var N : Int .
var PPL : TypedIdList .
vars S S1 S2 S3 : Stmt .
vars SUPERL SUPERL’ SUPERL’’ SUPERL’’’ : SuperList .
var VVL : TypedIdList .
var WWL : TypedIdList .
var XXL : TypedIdList .
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eq qualified(S, epsilon, XXL, CONFIG) = S .
eq qualified(S, (SUPERL’’’, C[EL]), XXL,

< C : Class | Impl: SUPERL, Ctrc: SUPERL’, Inh: SUPERL’’,
Param: PPL, Att: WWL, Mtd: MM, ObjCnt: N,
Asum: ASUM, Guar: GUAR >

CONFIG) =
qualified(qualified(S, (PPL, WWL) without XXL, C),

(SUPERL’’’, SUPERL’’), XXL,
< C : Class | Impl: SUPERL, Ctrc: SUPERL’, Inh: SUPERL’’,

Param: PPL, Att: WWL, Mtd: MM, ObjCnt: N,
Asum: ASUM, Guar: GUAR >

CONFIG) .

eq qualifiedAndTyped(S, C, AAL, VVL, CONFIG) =
(qualified(S, C, VVL, CONFIG))

{ AAL, VVL |-> AAL, VVL }
typedBuiltInVarSubst .

eq classParams(C,
< C : Class | Impl: SUPERL, Ctrc: SUPERL’,

Inh: SUPERL’’, Param: PPL, Att: WWL,
Mtd: MM, ObjCnt: N, Asum: ASUM,
Guar: GUAR >

CONFIG) = PPL .

eq initialPr(C[EL], CONFIG) =
initialPr(C[EL], emptyStmt, emptyStmt, emptyStmt, CONFIG) .

eq initialPr(epsilon, S1, S2, S3, CONFIG) = S1 ; S2 ; S3 .
eq initialPr((SUPERL’’’, C[EL]), S1, S2, S3,

< C : Class | Impl: SUPERL, Ctrc: SUPERL’, Inh: SUPERL’’,
Param: PPL, Att: WWL, Mtd: MM, ObjCnt: N,
Asum: ASUM, Guar: GUAR >

CONFIG) =
initialPr((SUPERL’’’,

qualifiedSuperList(SUPERL’’, asIdList(PPL), C)),
S1 ; PPL := EL,
if < ’init : Method | * > in mset MM then

’init @ C[epsilon ; epsilon]
else

emptyStmt
fi ; S2,
if < ’run : Method | * > in mset MM then

’run[epsilon ; epsilon]
else

S3
fi,
< C : Class | Impl: SUPERL, Ctrc: SUPERL’, Inh: SUPERL’’,

Param: PPL, Att: WWL, Mtd: MM, ObjCnt: N,
Asum: ASUM, Guar: GUAR >

CONFIG) .
endfm
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B.2 Assertion Utilities

***(
creol-assertion-utilities.maude

This file contains modules shared by the Creol assertion analyzer
and the interpreter for open systems.

)

fmod CREOL-ASSERTION-WITH-SIDE-CONDITION is
including CREOL-HISTORY-EXPRESSION .

*** assertion with side condition
op _{{_}} : Assn Assn -> Assn [ctor prec 23 format (d s d s s d d)] .

vars PHI PHI’ PHI’’ PHI1 PHI2 PHI3 : Assn .
var QUANT : Quantifier .
var RHO : Subst .
var XXL : TypedIdList .

eq ! (PHI {{ PHI’ }}) = (! PHI) {{ PHI’ }} .
eq if PHI1 {{ PHI’ }} th PHI2 el PHI3 fi =

(if PHI1 th PHI2 el PHI3 fi) {{ PHI’ }} .
eq if PHI1 th PHI2 {{ PHI’ }} el PHI3 fi =

(if PHI1 th PHI2 el PHI3 fi) {{ PHI’ }} .
eq if PHI1 th PHI2 el PHI3 {{ PHI’ }} fi =

(if PHI1 th PHI2 el PHI3 fi) {{ PHI’ }} .
eq (PHI1 {{ PHI’ }}) && PHI2 = (PHI1 && PHI2) {{ PHI’ }} .
eq (PHI1 {{ PHI’ }}) || PHI2 = (PHI1 || PHI2) {{ PHI’ }} .
eq (PHI1 {{ PHI’ }}) ==> PHI2 = (PHI1 ==> PHI2) {{ PHI’ }} .
eq PHI1 ==> (PHI2 {{ PHI’ }}) = (PHI1 ==> PHI2) {{ PHI’ }} .
eq (PHI1 {{ PHI’ }}) <==> PHI2 = (PHI1 <==> PHI2) {{ PHI’ }} .
eq [PHI {{ PHI’ }}] = [PHI] {{ PHI’ }} .
eq QUANT XXL . (PHI {{ PHI’ }}) = (QUANT XXL . PHI) {{ PHI’ }} .

eq PHI {{ true }} = PHI .
eq PHI {{ PHI’ {{ PHI’’ }} }} = PHI {{ PHI’ && PHI’’ }} .
eq PHI {{ PHI’ }} {{ PHI’’ }} = PHI {{ PHI’ && PHI’’ }} .

*** substitutions leave the side condition alone
eq (PHI {{ PHI’ }}) RHO = ((PHI) RHO) {{ PHI’ }} .

endfm

mod CREOL-LOGICAL-SIMPLIFICATION-RULES is
including CREOL-ASSERTION-WITH-SIDE-CONDITION .

var BASIC : BasicAssn .
vars PHI PHI1 PHI2 PHI3 : Assn .
var QUANT : Quantifier .
var XX : TypedId .
vars XXL XXL’ : TypedIdList .

rl PHI && PHI => PHI .
rl true && PHI => PHI .
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rl false && PHI => false .
rl PHI && (! PHI) => false .
rl PHI || PHI => PHI .
rl true || PHI => true .
rl false || PHI => PHI .
rl PHI || (! PHI) => true .
rl (true ==> PHI) => PHI .
rl (false ==> PHI) => true .
rl (PHI ==> true) => true .
rl (PHI ==> PHI) => true .
rl (true <==> PHI) => PHI .
rl (false <==> PHI) => ! PHI .
rl ((PHI1 && PHI2) ==> PHI1) => true .
rl ((BASIC && PHI1) ==> (BASIC && PHI2)) =>

((BASIC && PHI1) ==> PHI2) .
rl ((BASIC && PHI1) ==> (BASIC || PHI2)) => true .
rl ((BASIC && PHI1) ==> ((BASIC || PHI2) && PHI3)) =>

((BASIC && PHI1) ==> PHI3) .
rl ((BASIC && PHI1) ==> ((BASIC && PHI2) || PHI3)) =>

((BASIC && PHI1) ==> (PHI2 || PHI3)) .
rl if true th PHI1 el PHI2 fi => PHI1 .
rl if false th PHI1 el PHI2 fi => PHI2 .
rl if PHI1 th true el PHI2 fi => ! PHI1 ==> PHI2 .
rl if PHI1 th false el PHI2 fi => ! PHI1 && PHI2 .
rl if PHI1 th PHI2 el true fi => PHI1 ==> PHI2 .
rl if PHI1 th PHI2 el false fi => PHI1 && PHI2 .
rl ! false => true .
rl ! true => false .
rl ! ! PHI => PHI .
crl QUANT XXL, XX, XXL’ . PHI => QUANT XXL, XXL’ . PHI
if not XX occurs free in PHI .

endm

fmod CREOL-LOGICAL-SIMPLIFICATION is
including CREOL-HISTORY-EXPRESSION .

*** simplifies an assertion using the rules declared in

*** CREOL-LOGICAL-SIMPLIFICATION-RULES
op logicallySimplified : Assn -> Assn .

*** auxiliary function
op rewritten : Assn Module -> Assn .

var MOD : Module .
var PHI : Assn .

eq logicallySimplified(PHI) =
rewritten(PHI, upModule(’CREOL-LOGICAL-SIMPLIFICATION-RULES,

false)) .

eq rewritten(PHI, MOD) =
downTerm(getTerm(metaRewrite(MOD, upTerm(PHI), unbounded)), PHI) .

endfm

fmod CREOL-ASSUME-GUARANTEE-SPECIFICATION is
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including CREOL-LOGICAL-SIMPLIFICATION .
including CREOL-PROGRAM .

*** Assume--guarantee specification
sort AGSpec .

op <_,_> : Assn Assn -> AGSpec [ctor] .

*** auxiliary operator and functions
op _&&_ : AGSpec AGSpec -> AGSpec [assoc comm prec 13] .
op logicallySimplified : AGSpec -> AGSpec .
op classAGSpec : Id Config ~> AGSpec .
op inheritedAGSpec : SuperList Config ~> AGSpec .

vars ASUM ASUM’ : Assn .
var C : Id .
var CONFIG : Config .
var EL : ExpList .
vars GUAR GUAR’ : Assn .
var I : Id .
var MM : MtdMSet .
var N : Int .
var PPL : TypedIdList .
vars SUPERL SUPERL’ SUPERL’’ SUPERL’’’ : SuperList .
var WWL : TypedIdList .

eq < ASUM, GUAR > && < ASUM’, GUAR’ > =
< ASUM && ASUM’, GUAR && GUAR’ > .

eq logicallySimplified(< ASUM, GUAR >) =
< logicallySimplified(ASUM), logicallySimplified(GUAR) > .

eq classAGSpec(C,
< C : Class | Impl: SUPERL, Ctrc: SUPERL’,

Inh: SUPERL’’, Param: PPL, Att: WWL,
Mtd: MM, ObjCnt: N, Asum: ASUM,
Guar: GUAR >

CONFIG) =
logicallySimplified(

< qualifiedAndTyped(ASUM, (PPL, WWL), C),
qualifiedAndTyped(GUAR, (PPL, WWL), C) >

&& inheritedAGSpec((SUPERL, SUPERL’, SUPERL’’), CONFIG)) .

eq inheritedAGSpec(epsilon, CONFIG) = < true, true > .
eq inheritedAGSpec((SUPERL’’’, C[EL]),

< C : Class | Impl: SUPERL, Ctrc: SUPERL’,
Inh: SUPERL’’, Param: PPL, Att: WWL,
Mtd: MM, ObjCnt: N, Asum: ASUM,
Guar: GUAR >

CONFIG) =
inheritedAGSpec((SUPERL’’’, SUPERL’, SUPERL’’),

< C : Class | Impl: SUPERL, Ctrc: SUPERL’,
Inh: SUPERL’’, Param: PPL, Att: WWL,
Mtd: MM, ObjCnt: N, Asum: ASUM,
Guar: GUAR >
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CONFIG) .
eq inheritedAGSpec((SUPERL’, I[EL]),

< I : Interface | Inh: SUPERL, Param: PPL,
Asum: ASUM, Guar: GUAR >

CONFIG) =
< qualifiedAndTyped(ASUM, PPL, I), qualifiedAndTyped(GUAR, PPL, I) >
&& inheritedAGSpec((SUPERL’, SUPERL),

< I : Interface | Inh: SUPERL, Param: PPL,
Asum: ASUM, Guar: GUAR >

CONFIG) .
endfm

B.3 Assertion Analyzer

***(
creol-assertion-analyzer.maude

This file implements the Creol assertion analyzer described in
Chapter 6 of Verification of Assertions in Creol Programs. See
Appendix A for a user’s guide.

)

fmod CREOL-ASSERTION-PRETTY-PRINTING is
including CREOL-ASSERTION-WITH-SIDE-CONDITION .

*** Pretty-printed assertion
sort PrettyAssn .
subsort Assn < PrettyAssn .

op _And:_ : PrettyAssn PrettyAssn -> PrettyAssn
[ctor assoc id: true prec 35 format (y !ynssss

oynsssssssssss y)] .
op Forall_._ : TypedIdList PrettyAssn -> PrettyAssn

[ctor prec 33 format (!y oy y nsssssssssss y)] .
op Exists_._ : TypedIdList PrettyAssn -> PrettyAssn

[ctor prec 33 format (!y oy y nsssssssssss y)] .
op _And_ : PrettyAssn PrettyAssn -> PrettyAssn

[ctor assoc comm prec 31 format (y !ynsssss oynsssssssssss y)] .
op _===>_ : PrettyAssn PrettyAssn -> PrettyAssn

[ctor prec 29 gather (e E) format (y !ynssssss oynsssssssssss
y)] .

op _\/_ : PrettyAssn PrettyAssn -> PrettyAssn
[ctor assoc comm prec 27 format (y !ynsssssss oynsssssssssss

y)] .
op _/\_ : PrettyAssn PrettyAssn -> PrettyAssn

[ctor assoc comm prec 25 format (y !ynssssssss oy y)] .

op pretty : Assn -> PrettyAssn .
op prettyQuantifier : Assn -> PrettyAssn .
op prettyMiddleAnd : Assn -> PrettyAssn .
op prettyImplies : Assn -> PrettyAssn .
op prettyOr : Assn -> PrettyAssn .
op prettyInnerAnd : Assn -> PrettyAssn .



222 Appendix B. Specifications of the Assertion Analyzer and the Interpreters

vars PHI PHI’ PHI1 PHI2 PHI3 : Assn .
var XXL : TypedIdList .

eq pretty(PHI {{ PHI’ }}) = pretty(PHI) And: prettyQuantifier(PHI’) .
eq pretty(PHI) = prettyQuantifier(PHI) [otherwise] .

eq prettyQuantifier(forall XXL . PHI) =
Forall XXL . prettyQuantifier(PHI) .

eq prettyQuantifier(exists XXL . PHI) =
Exists XXL . prettyQuantifier(PHI) .

eq prettyQuantifier(PHI) = prettyMiddleAnd(PHI) [otherwise] .

eq prettyMiddleAnd((PHI1 ==> PHI2) && PHI3) =
prettyImplies(PHI1 ==> PHI2) And prettyMiddleAnd(PHI3) .

eq prettyMiddleAnd(PHI) = prettyImplies(PHI) [otherwise] .

eq prettyImplies(PHI1 ==> PHI2) =
prettyOr(PHI1) ===> prettyImplies(PHI2) .

eq prettyImplies(PHI) = prettyOr(PHI) [otherwise] .

eq prettyOr(PHI1 || PHI2) = prettyOr(PHI1) \/ prettyOr(PHI2) .
eq prettyOr(PHI) = prettyInnerAnd(PHI) [otherwise] .

eq prettyInnerAnd(PHI1 && PHI2) =
prettyInnerAnd(PHI1) /\ prettyInnerAnd(PHI2) .

eq prettyInnerAnd(PHI) = PHI [otherwise] .
endfm

mod CREOL-NORMALIZATION-RULES-1 is
including CREOL-ASSERTION-WITH-SIDE-CONDITION .

vars PHI PHI1 PHI2 PHI3 PHI4 : Assn .
var QUANT : Quantifier .
var XX0 : TypedId .
var XXL : TypedIdList .
var YY0 : TypedId .

*** eliminate square brackets
rl [PHI] => PHI .

*** eliminate bi-implications
rl (PHI1 <==> PHI2) => (PHI1 ==> PHI2) && (PHI2 ==> PHI1) .

*** move negations inward
rl ! (PHI1 && PHI2) => (! PHI1 || ! PHI2) .
rl ! (PHI1 || PHI2) => (! PHI1 && ! PHI2) .
rl ! (PHI1 ==> PHI2) => (PHI1 && ! PHI2) .
rl ! if PHI1 th PHI2 el PHI3 fi => if PHI1 th ! PHI2 el ! PHI3 fi .
rl ! (QUANT XXL . PHI) => opposite(QUANT) XXL . (! PHI) .

*** move quantifiers outward
crl PHI1 && (QUANT XX0, XXL . PHI2) =>

QUANT XX0 . PHI1 && (QUANT XXL . PHI2)
if not XX0 occurs free in PHI1 .
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crl PHI1 && (QUANT XX0, XXL . PHI2) =>
QUANT YY0 . PHI1 && (QUANT XXL . (PHI2) { XX0 |-> YY0 })

if XX0 occurs free in PHI1
/\ YY0 := freshLogicalVar(XX0, (XXL, PHI1, PHI2)) .

crl PHI1 || (QUANT XX0, XXL . PHI2) =>
QUANT XX0 . PHI1 || (QUANT XXL . PHI2)

if not XX0 occurs free in PHI1 .
crl PHI1 || (QUANT XX0, XXL . PHI2) =>

QUANT YY0 . PHI1 || (QUANT XXL . (PHI2) { XX0 |-> YY0 })
if XX0 occurs free in PHI1

/\ YY0 := freshLogicalVar(XX0, (XXL, PHI1, PHI2)) .
crl (PHI1 ==> (QUANT XX0, XXL . PHI2)) =>

(QUANT XX0 . PHI1 ==> (QUANT XXL . PHI2))
if not XX0 occurs free in PHI1 .
crl (PHI1 ==> (QUANT XX0, XXL . PHI2)) =>

(QUANT YY0 . PHI1 ==> (QUANT XXL . (PHI2) { XX0 |-> YY0 }))
if XX0 occurs free in PHI1

/\ YY0 := freshLogicalVar(XX0, (XXL, PHI1, PHI2)) .
crl ((QUANT XX0, XXL . PHI1) ==> PHI2) =>

(opposite(QUANT) XX0 . ((QUANT XXL . PHI1) ==> PHI2))
if not XX0 occurs free in PHI2 .
crl ((QUANT XX0, XXL . PHI1) ==> PHI2) =>

(opposite(QUANT) YY0 .
((QUANT XXL . (PHI1) { XX0 |-> YY0 }) ==> PHI2))

if XX0 occurs free in PHI2
/\ YY0 := freshLogicalVar(XX0, (XXL, PHI1, PHI2)) .

crl if PHI1 th (QUANT XX0, XXL . PHI2) el PHI3 fi =>
QUANT XX0 . if PHI1 th (QUANT XXL . PHI2) el PHI3 fi

if not XX0 occurs free in (PHI1, PHI3) .
crl if PHI1 th (QUANT XX0, XXL . PHI2) el PHI3 fi =>

QUANT YY0 . if PHI1 th (QUANT XXL . (PHI2) { XX0 |-> YY0 })
el PHI3 fi

if XX0 occurs free in (PHI1, PHI3)
/\ YY0 := freshLogicalVar(XX0, (XXL, PHI1, PHI2, PHI3)) .

crl if PHI1 th PHI2 el (QUANT XX0, XXL . PHI3) fi =>
QUANT XX0 . if PHI1 th PHI2 el (QUANT XXL . PHI3) fi

if not XX0 occurs free in (PHI1, PHI2) .
crl if PHI1 th PHI2 el (QUANT XX0, XXL . PHI3) fi =>

QUANT YY0 . if PHI1 th PHI2
el (QUANT XXL . (PHI3) { XX0 |-> YY0 }) fi

if XX0 occurs free in (PHI1, PHI2)
/\ YY0 := freshLogicalVar(XX0, (XXL, PHI1, PHI2, PHI3)) .

*** move conditional expressions outward
rl PHI1 && (if PHI2 th PHI3 el PHI4 fi) =>

if PHI2 th PHI1 && PHI3 el PHI1 && PHI4 fi .
rl PHI1 || (if PHI2 th PHI3 el PHI4 fi) =>

if PHI2 th PHI1 || PHI3 el PHI1 || PHI4 fi .
rl if PHI1 th PHI2 el PHI3 fi ==> PHI4 =>

if PHI1 th PHI2 ==> PHI4 el PHI3 ==> PHI4 fi .
rl PHI1 ==> if PHI2 th PHI3 el PHI4 fi =>

if PHI2 th PHI1 ==> PHI3 el PHI1 ==> PHI4 fi .
endm

mod CREOL-NORMALIZATION-RULES-2 is



224 Appendix B. Specifications of the Assertion Analyzer and the Interpreters

including CREOL-ASSERTION-WITH-SIDE-CONDITION .

vars PHI1 PHI2 PHI3 PHI4 PHI5 : Assn .

rl if PHI1 th PHI2 el PHI3 fi =>
((PHI1 ==> PHI2) && (! PHI1 ==> PHI3)) .

*** uncurry nested implications
rl (PHI1 ==> (PHI2 ==> PHI3)) => ((PHI1 && PHI2) ==> PHI3) .
rl (PHI1 ==> (PHI2 && (PHI3 ==> PHI4))) =>

((PHI1 ==> PHI2) && ((PHI1 && PHI3) ==> PHI4)) .

rl (PHI1 || PHI2) && PHI3 => (PHI1 && PHI3) || (PHI2 && PHI3) .
rl ((PHI1 || PHI2) ==> PHI3) => (PHI1 ==> PHI3) && (PHI2 ==> PHI3) .

endm

mod CREOL-SIMPLIFICATION-RULES is
including CREOL-LOGICAL-SIMPLIFICATION-RULES .

op isPrefix : HistoryExp HistoryExp Assn -> Bool .

vars A A1 A2 A3 A4 : AExp .
var BASIC : BasicAssn .
vars E E1 E2 : Exp .
var EEXP : EventExp .
vars EPEXP EPEXP’ : EventPatExp .
vars HEXP HEXP’ HEXP’’ HEXP’’’ : HistoryExp .
vars N N1 N2 : Int .
var OEXP : OExp .
vars PHI PHI’ PHI1 PHI2 PHI3 : Assn .
var V : Value .
var XX : TypedId .
var YY : TypedId .

*** auxiliary predicate
eq isPrefix(HEXP, HEXP’, HEXP ^^ HEXP’’ pr HEXP) = true .
eq isPrefix(HEXP, HEXP’, HEXP ^^ HEXP’’ pr HEXP’’’ && PHI) =

(HEXP’’’ == HEXP’) or isPrefix(HEXP’’’, HEXP’, PHI) .
eq isPrefix(HEXP, HEXP’, PHI) = false [otherwise] .

rl if true th E1 el E2 fi => E1 .
rl if false th E1 el E2 fi => E2 .
rl [E] => E .

rl plus A => A .
rl minus N => - N .
rl N1 times N2 => N1 * N2 .
rl A times 1 => A .
rl N1 div N2 => if N2 == 0 then 0 else N1 quo N2 fi .
rl N1 plus N2 => N1 + N2 .
rl A plus 0 => A .
rl N1 minus N2 => N1 - N2 .
rl A minus 0 => A .
rl A minus A => 0 .
rl 0 minus A => minus A .
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rl A1 plus (A2 minus A3) => A1 plus A2 minus A3 .
rl A1 minus (A2 plus A3) => A1 minus A2 minus A3 .
rl A1 minus (A2 minus A3) => A1 minus A2 plus A3 .
rl A1 plus A2 minus A2 => A1 .
rl 0 eq A1 minus A2 => A1 eq A2 .
rl 0 lt A1 minus A2 => A2 lt A1 .
rl 0 le A1 minus A2 => A2 le A1 .
rl N1 eq A plus N2 => (N1 - N2) eq A .
rl N1 eq A minus N2 => (N1 + N2) eq A .
rl A1 minus A2 eq 0 => A1 eq A2 .
rl A1 minus A2 lt 0 => A1 lt A2 .
rl A1 minus A2 le 0 => A1 le A2 .
rl A1 plus A2 eq A1 plus A3 plus A4 => A2 eq A3 plus A4 .
rl A1 plus A2 eq A1 plus A3 minus A4 => A2 eq A3 minus A4 .
rl A1 minus A2 eq A3 minus A2 plus A4 => A1 eq A3 plus A4 .
rl A1 minus A2 eq A3 minus A2 minus A4 => A1 eq A3 minus A4 .
rl A1 plus A2 eq A1 => A2 eq 0 .
rl A1 plus A2 eq A2 => A1 eq 0 .

*** eliminate ne, gt, and ge
rl E1 ne E2 => ! (E1 eq E2) .
rl A1 gt A2 => A2 lt A1 .
rl A1 ge A2 => A2 le A1 .

rl ! (A1 lt A2) => A2 le A1 .
rl ! (A1 le A2) => A2 lt A1 .

rl N1 eq N2 => N1 == N2 .
rl E eq E => true .
rl N1 lt N2 => N1 < N2 .
rl A lt A => false .
rl N1 le N2 => N1 <= N2 .
rl A le A => true .
crl A minus N le A => true if N >= 0 .
crl A minus N lt A => true if N >= 1 .
crl A le A plus N => true if N >= 0 .
crl A lt A plus N => true if N >= 1 .
rl A1 lt A2 && A1 le A2 => A1 lt A2 .
rl A1 lt A2 plus 1 => A1 le A2 .
rl A1 minus 1 lt A2 => A1 le A2 .
rl A1 plus 1 le A2 => A1 lt A2 .
rl A1 le A2 minus 1 => A1 lt A2 .
rl A1 lt A2 && A2 lt A1 => false .
rl A1 le A2 && A2 le A1 => A1 eq A2 .
rl A1 lt A2 && A2 lt A3 && A3 lt A1 => false .
rl A1 lt A2 && A2 lt A3 && A3 le A1 => false .
rl A1 lt A2 && A2 le A3 && A3 le A1 => false .
rl A1 lt A2 || A2 le A1 => true .

rl A1 eq A2 && A1 le A2 => A1 eq A2 .
rl A1 eq A2 && A2 le A1 => A1 eq A2 .
crl N1 eq A && N2 lt A => N1 eq A if N2 < N1 .
crl A eq N1 && A lt N2 => A eq N1 if N1 < N2 .

rl A lt N1 && A lt N2 => A lt min(N1, N2) .
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rl A le N1 && A le N2 => A le min(N1, N2) .
rl N1 lt A && N2 lt A => max(N1, N2) lt A .
rl N1 le A && N2 le A => max(N1, N2) le A .

crl N1 lt A ==> N2 lt A => true
if N1 >= N2 .
crl N1 le A ==> N2 le A => true
if N1 >= N2 .
crl A lt N1 ==> A lt N2 => true
if N1 <= N2 .
crl A le N1 ==> A le N2 => true
if N1 <= N2 .

rl (A1 eq A2 ==> A1 le A2) => true .
rl (A1 eq A2 ==> A2 le A1) => true .
crl (N1 eq A ==> N2 lt A) => true
if N2 < N1 .
crl (A eq N1 ==> A lt N2) => true
if N1 < N2 .

rl ((A1 eq A2 && PHI) ==> A1 le A2) => true .
rl ((A1 eq A2 && PHI) ==> A2 le A1) => true .
crl ((N1 eq A && PHI) ==> N2 lt A) => true
if N2 < N1 .
crl ((A eq N1 && PHI) ==> A lt N2) => true
if N1 < N2 .

rl ((A1 eq A2 && PHI1) ==> (A1 le A2 && PHI2)) =>
((A1 eq A2 && PHI1) ==> PHI2) .

rl ((A1 eq A2 && PHI1) ==> (A2 le A1 && PHI2)) =>
((A1 eq A2 && PHI1) ==> PHI2) .

crl ((N1 eq A && PHI1) ==> (N2 lt A && PHI2)) =>
((N1 eq A && PHI1) ==> PHI2)

if N2 < N1 .
crl ((A eq N1 && PHI1) ==> (A lt N2 && PHI2)) =>

((A eq N1 && PHI1) ==> PHI2)
if N1 < N2 .

crl (A eq N1 && A eq N2) => false if N1 =/= N2 .
crl ((A eq N1 && PHI) ==> A eq N2) =>

((A eq N1 && PHI) ==> false)
if N1 =/= N2 .
crl ((A eq N1 && PHI1) ==> (A eq N2 && PHI2)) =>

((A eq N1 && PHI1) ==> false)
if N1 =/= N2 .
crl ((A eq N1 && PHI1) ==> ((A eq N2 && PHI2) || PHI3)) =>

((A eq N1 && PHI1) ==> PHI3)
if N1 =/= N2 .

crl ((N1 le A && PHI1) ==> A eq N2) => ((N1 le A && PHI1) ==> false)
if N1 > N2 .
crl ((N1 le A && PHI1) ==> (A eq N2 && PHI3)) =>

((N1 le A && PHI1) ==> false)
if N1 > N2 .
crl ((N1 le A && PHI1) ==> (A eq N2 || PHI3)) =>



B.3. Assertion Analyzer 227

((N1 le A && PHI1) ==> PHI3)
if N1 > N2 .
crl ((N1 le A && PHI1) ==> ((A eq N2 && PHI2) || PHI3)) =>

((N1 le A && PHI1) ==> PHI3)
if N1 > N2 .

rl ((A1 lt A2 && PHI1) ==> A1 le A2) => true .
rl ((A1 le A2 && PHI1) ==> A1 le A2 plus 1) => true .
rl ((A1 lt A2 && PHI1) ==> A1 minus 1 lt A2) => true .
rl ((A1 le A2 && PHI1) ==> A1 minus 1 le A2) => true .
rl ((A1 lt A2 && PHI1) ==> (A1 le A2 && PHI2)) =>

((A1 lt A2 && PHI1) ==> PHI2) .
rl ((A1 le A2 && PHI1) ==> (A1 le A2 plus 1 && PHI2)) =>

((A1 le A2 && PHI1) ==> PHI2) .
rl ((A1 lt A2 && PHI1) ==> (A1 minus 1 lt A2 && PHI2)) =>

((A1 lt A2 && PHI1) ==> PHI2) .
rl ((A1 le A2 && PHI1) ==> (A1 minus 1 le A2 && PHI2)) =>

((A1 le A2 && PHI1) ==> PHI2) .

crl XX eq V && BASIC => XX eq V && (BASIC) { XX |-> V }
if XX occurs free in BASIC .

rl ((XX eq V && PHI) ==> XX eq E) => ((XX eq V && PHI) ==> V eq E) .

crl ((XX eq E && PHI1) ==> PHI2) =>
((XX eq E && (PHI1) { XX |-> E }) ==> (PHI2) { XX |-> E })

if XX occurs free in (PHI1, PHI2)
and not XX occurs free in E
and not (E :: TypedQualifiedId) .

crl ((XX eq YY && PHI1) ==> PHI2) =>
(XX eq YY && (PHI1) { XX |-> YY }) ==> (PHI2) { XX |-> YY }

if XX occurs free in (PHI1, PHI2) and YY occurs free in (PHI1, PHI2) .

rl #[emptyHistory] => 0 .
rl #[EEXP] => 1 .
crl #[HEXP ^^ HEXP’] => #[HEXP] plus #[HEXP’]
if HEXP =/= emptyHistory and HEXP’ =/= emptyHistory .

rl ’lwf[HEXP, OEXP] && ’lwf[HEXP’, OEXP] && HEXP ^^ HEXP’’ pr HEXP’ =>
’lwf[HEXP’, OEXP] && HEXP ^^ HEXP’’ pr HEXP’ .

crl (HEXP ^^ EEXP) / EPEXP => HEXP / EPEXP
if EEXP cannot match EPEXP .

crl (HEXP ^^ EEXP) / EPEXP => (HEXP / EPEXP) ^^ EEXP
if EEXP must match EPEXP .

crl EEXP / EPEXP ew EPEXP’ => true
if EEXP must match EPEXP’ .

crl EEXP / EPEXP ew EPEXP’ => false
if EEXP cannot match EPEXP’ .

crl (HEXP ^^ EEXP) ew EPEXP => false
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if EEXP cannot match EPEXP .

crl (HEXP ^^ EEXP) ew EPEXP => true
if EEXP must match EPEXP .

crl EPEXP in HEXP ^^ EEXP => EPEXP in HEXP
if EEXP cannot match EPEXP .

crl EPEXP in HEXP ^^ EEXP => true
if EEXP must match EPEXP .

ceq ((EPEXP in HEXP) && (EPEXP in HEXP’) && PHI) ==> PHI’ =
((EPEXP in HEXP’) && PHI) ==> PHI’

if isPrefix(HEXP, HEXP’, PHI) .
ceq (! (EPEXP in HEXP) && ! (EPEXP in HEXP’) && PHI) ==> PHI’ =

(! (EPEXP in HEXP’) && PHI) ==> PHI’
if isPrefix(HEXP, HEXP’, PHI) .

endm

fmod CREOL-ASSERTION-MASSAGING is
including CREOL-ASSERTION-PRETTY-PRINTING .
including CREOL-LOGICAL-SIMPLIFICATION .

*** convenience functions
op massaged : Assn Module -> PrettyAssn .
op massaged : Assn -> PrettyAssn .

*** low-level massaging functions
op untyped : Assn -> Assn .
op metaUntyped : TermList -> TermList .
op unqualified : Assn -> Assn .
op metaUnqualified : TermList -> TermList .
op simplifiedAndNormalized : Assn Module Int -> Assn .
op normalized : Assn -> Assn .
op normalized1 : Assn -> Assn .
op normalized2 : Assn -> Assn .
op simplified : Assn Module -> Assn .

var CONST : Constant .
var MOD : Module .
var N : Int .
vars PHI PHI’ : Assn .
var QID : Qid .
vars TERM0 TERM1 TERM2 TERM3 : Term .
var TERMLIST : TermList .
var VAR : Variable .

eq massaged(PHI, MOD) =
pretty(untyped(simplifiedAndNormalized(normalized(PHI), MOD, 5))) .

eq massaged(PHI) =
massaged(PHI, upModule(’CREOL-SIMPLIFICATION-RULES, false)) .

eq untyped(PHI) = downTerm(metaUntyped(upTerm(PHI)), PHI) .
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eq metaUntyped(CONST) = CONST .
eq metaUntyped(VAR) = VAR .
eq metaUntyped(’_:_[TERM1, TERM2]) = TERM1 .
eq metaUntyped(’__._[TERM1, TERM2, TERM3]) =

’__._[TERM1, TERM2, metaUntyped(TERM3)] .
eq metaUntyped(QID[TERMLIST]) = QID[metaUntyped(TERMLIST)]

[otherwise] .
ceq metaUntyped((TERM0, TERMLIST)) =

metaUntyped(TERM0), metaUntyped(TERMLIST)
if TERMLIST =/= empty .

*** unused, but comes in handy at times
eq unqualified(PHI) = downTerm(metaUnqualified(upTerm(PHI)), PHI) .

eq metaUnqualified(CONST) = CONST .
eq metaUnqualified(VAR) = VAR .
eq metaUnqualified(’_@_[TERM1, TERM2]) = TERM1 .
eq metaUnqualified(QID[TERMLIST]) = QID[metaUnqualified(TERMLIST)]

[otherwise] .
ceq metaUnqualified((TERM0, TERMLIST)) =

metaUnqualified(TERM0), metaUnqualified(TERMLIST)
if TERMLIST =/= empty .

eq simplifiedAndNormalized(PHI, MOD, 0) = PHI .
ceq simplifiedAndNormalized(PHI, MOD, N) =

if PHI == PHI’ then
PHI’

else
simplifiedAndNormalized(PHI’, MOD, N - 1)

fi
if PHI’ := normalized(simplified(PHI, MOD)) [otherwise] .

eq normalized(PHI) = normalized2(normalized1(PHI)) .

eq normalized1(PHI) =
rewritten(PHI, upModule(’CREOL-NORMALIZATION-RULES-1, false)) .

eq normalized2(PHI) =
rewritten(PHI, upModule(’CREOL-NORMALIZATION-RULES-2, false)) .

eq simplified(PHI, MOD) = rewritten(PHI, MOD) .
endfm

fmod CREOL-WEAKEST-LIBERAL-PRECONDITION is
including CREOL-ASSERTION-MASSAGING .
including CREOL-ASSUME-GUARANTEE-SPECIFICATION .

op _all eq_ : ExpList ExpList ~> BasicBExp [ctor comm prec 11] .
op perms : Stmt -> Stmt .
op perms : Stmt Stmt -> Stmt .
op awaitFree : Stmt -> Bool .
op satisfied :

Guard TypedQualifiedIdList HistoryExp TypedQualifiedIdList -> Assn .
op enabled :

Stmt TypedQualifiedIdList HistoryExp TypedQualifiedIdList -> Assn .
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op ready :
Stmt TypedQualifiedIdList HistoryExp TypedQualifiedIdList -> Assn .

op pickReadyBranch :
Stmt Stmt Assn Assn TypedQualifiedIdList HistoryExp
TypedQualifiedIdList
-> Assn .

op pending : HistoryExp OExp OExp AExp -> Assn .
op release :

HistoryExp HistoryExp TypedQualifiedIdList AGSpec
TypedQualifiedIdList
-> Assn .

op reenter :
HistoryExp HistoryExp TypedQualifiedIdList AExp AGSpec
TypedQualifiedIdList
-> Assn .

op interleave : HistoryExp HistoryExp AGSpec -> Assn .
op interleaved : Assn AGSpec -> Assn .
op returnVals : HistoryExp OExp TypedId Int -> ExpList .
op wlp : Stmt Assn AGSpec TypedQualifiedIdList ~> Assn .

var A : AExp .
vars AAL AAL’ : TypedQualifiedIdList .
var AG : AGSpec .
var ASUM : Assn .
var B : BExp .
var C : Id .
vars E1 E2 : Exp .
vars EL EL1 EL2 : ExpList .
vars G G1 G2 : Guard .
var GUAR : Assn .
vars HEXP HEXP’ : HistoryExp .
vars HH HH’ : TypedId .
var I : Assn .
var K : Int .
var KK : TypedId .
var LL : TypedId .
var M : Id .
vars OEXP OEXP’ : OExp .
var OO : TypedId .
vars P P1 P2 : Assn .
var Q : Assn .
vars S S’ S1 S1* S2 S2* S1..SK SK+1..SN S2..SN : Stmt .
var ZZ : TypedQualifiedId .
var ZZL : TypedQualifiedIdList .

eq epsilon all eq epsilon = true .
eq (E1, EL1) all eq (E2, EL2) = E1 eq E2 && EL1 all eq EL2 .

eq perms(S) = perms(S, S) .

ceq perms(S1, S1) = S1
if simpleBranch(S1) .
ceq perms(S1, S1 ||| S’) = S1 ; perms(S’)
if simpleBranch(S1) .
ceq perms(S1 ||| S’, S1 ||| S2..SN) =
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S1 ; perms(S2..SN, S2..SN) [] perms(S’, S1 ||| S2..SN)
if simpleBranch(S1) .

*** Definition Q9 (Await-Freedom)
eq awaitFree(await G) = false .
eq awaitFree(if B th S1 el S2 fi) = awaitFree(S1) and awaitFree(S2) .
eq awaitFree(while B do S od) = awaitFree(S) .
eq awaitFree(inv I while B do S od) = awaitFree(S) .
ceq awaitFree(S1 ; S2) = awaitFree(S1) and awaitFree(S2)
if S1 =/= emptyStmt and S2 =/= emptyStmt .
eq awaitFree(S1 [] S2) = awaitFree(S1) and awaitFree(S2) .
eq awaitFree(S1..SK ||| SK+1..SN) =

awaitFree(S1..SK) and awaitFree(SK+1..SN) .
eq awaitFree([S]) = awaitFree(S) .
eq awaitFree(S) = true [otherwise] .

*** Definition Q8 (Guard Satisfaction Assertion)

*** extended with AAL parameter
eq satisfied(B, AAL’, HEXP, AAL) =

(B) { AAL |-> AAL’ }
{ ~H~ : history |-> HEXP } .

eq satisfied(LL ?, AAL’, HEXP, AAL) =
[LL % self : any <- * . *] in HEXP .

eq satisfied(wait, AAL’, HEXP, AAL) = false .
eq satisfied(G1 &&& G2, AAL’, HEXP, AAL) =

satisfied(G1, AAL’, HEXP, AAL) && satisfied(G2, AAL’, HEXP, AAL) .

*** Definition Q7 (Statement Enabledness Assertion)

*** extended with AAL parameter
eq enabled(await G ; S, AAL’, HEXP, AAL) =

satisfied(G, AAL’, HEXP, AAL) .
eq enabled((S1 [] S2) ; S, AAL’, HEXP, AAL) =

enabled(S1, AAL’, HEXP, AAL) || enabled(S2, AAL’, HEXP, AAL) .
eq enabled((S1..SK ||| SK+1..SN) ; S, AAL’, HEXP, AAL) =

enabled(S1..SK, AAL’, HEXP, AAL)
|| enabled(SK+1..SN, AAL’, HEXP, AAL) .

eq enabled([S] ; S’, AAL’, HEXP, AAL) = enabled(S, AAL’, HEXP, AAL) .
eq enabled(S, AAL’, HEXP, AAL) = true [otherwise] .

*** Definition Q6 (Statement Readiness Assertion)

*** extended with AAL parameter
eq ready(LL ?[ZZL] ; S, AAL’, HEXP, AAL) =

satisfied(LL ?, AAL’, HEXP, AAL) .
eq ready(await G ; S, AAL’, HEXP, AAL) =

satisfied(G, AAL’, HEXP, AAL) .
eq ready((S1 [] S2) ; S, AAL’, HEXP, AAL) =

ready(S1, AAL’, HEXP, AAL) || ready(S2, AAL’, HEXP, AAL) .
eq ready((S1..SK ||| SK+1..SN) ; S, AAL’, HEXP, AAL) =

ready(S1..SK, AAL’, HEXP, AAL) || ready(SK+1..SN, AAL’, HEXP, AAL) .
eq ready([S] ; S’, AAL’, HEXP, AAL) = ready(S, AAL’, HEXP, AAL) .
eq ready(S, AAL’, HEXP, AAL) = true [otherwise] .

*** Definition Q5 (Ready Branch Choice Assertion)

*** extended with AAL parameter
eq pickReadyBranch(S1, S2, P1, P2, AAL’, HEXP, AAL) =
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[ready(S1, AAL’, HEXP, AAL) ==>
(P1) { AAL |-> AAL’ }

{ ~H~ : history |-> HEXP }]
&& [ready(S2, AAL’, HEXP, AAL) ==>

(P2) { AAL |-> AAL’ }
{ ~H~ : history |-> HEXP }] .

*** Definition T22 (Pending Call Predicate)
eq pending(HEXP, OEXP, OEXP’, A) =

[A % OEXP -> OEXP’ . *] in HEXP
&& ! [[A % self : any <- self : any . *] in HEXP] .

*** Definition Q4 (Processor Release Assertion)

*** extended with < ASUM, GUAR > and AAL parameters
eq release(HEXP, HEXP’, AAL’, < ASUM, GUAR >, AAL) =

’lwf[HEXP’, self : any]
&& HEXP ^^ [self : any . release] pr HEXP’
&& ’mayAcquireProcessor[HEXP’, self : any, caller : any,

label : int]
&& ! [[label : int % caller : any <- self : any . *] in HEXP’]
&& [[HEXP ^^ [self : any . release]] /

(out[self : any] | ctl[self : any]) eq
HEXP’ / (out[self : any] | ctl[self : any]) ==>
AAL all eq AAL’]

&& (ASUM && GUAR) { AAL |-> AAL’ }
{ ~H~ : history |-> HEXP’ } .

*** Definition Q2 (Local Reentry Assertion)

*** extended with < ASUM, GUAR > and AAL parameters
eq reenter(HEXP, HEXP’, AAL’, A, < ASUM, GUAR >, AAL) =

’lwf[HEXP’, self : any]
&& HEXP ^^ [A % self : any . reenter] pr HEXP’
&& HEXP’ ew [A % self : any <- self : any . *]
&& ! [[label : int % caller : any <- self : any . *] in HEXP’]
&& (ASUM && GUAR) { AAL |-> AAL’ }

{ ~H~ : history |-> HEXP’ } .

*** Definition Q1 (Parallel Activity Interleaving Assertion)

*** extended with < ASUM, GUAR >
eq interleave(HEXP, HEXP’, < ASUM, GUAR >) =

’lwf[HEXP’, self : any]
&& HEXP pr HEXP’
&& ’agreeOnOutAndCtl[HEXP, HEXP’, self : any]
&& ASUM { ~H~ : history |-> HEXP’ } .

ceq interleaved(Q, AG) =
forall HH .

interleave(~H~ : history, HH, AG) ==>
(Q) { ~H~ : history |-> HH }

if HH := freshLogicalVar(’h : history, Q) .

eq returnVals(HEXP, OEXP, LL, 0) = epsilon .
eq returnVals(HEXP, OEXP, LL, K) =

returnVals(HEXP, OEXP, LL, (K - 1)),
’returnVal $ K[HEXP, OEXP, LL] [otherwise] .



B.3. Assertion Analyzer 233

*** Definition Q10 (WLP for Most Creol Statements)

*** extended with AG and AAL
eq wlp(skip, Q, AG, AAL) = Q .
eq wlp(abort, Q, AG, AAL) = true .
eq wlp(prove P, Q, AG, AAL) = P && Q .
eq wlp(ZZL := EL, Q, AG, AAL) = (Q) { ZZL |-> EL } .
eq wlp([S], Q, AG, AAL) = wlp(S, Q, AG, AAL) .
eq wlp(if B th S1 el S2 fi, Q, AG, AAL) =

if B th wlp(S1, Q, AG, AAL) el wlp(S2, Q, AG, AAL) fi .
ceq wlp(S1..SK ||| SK+1..SN, Q, AG, AAL) =

wlp(perms(S1..SK ||| SK+1..SN), Q, AG, AAL)
if awaitFree(S1..SK ||| SK+1..SN) .
ceq wlp(S1 ; S2, Q, AG, AAL) = wlp(S1, wlp(S2, Q, AG, AAL), AG, AAL)
if S1 =/= emptyStmt and S2 =/= emptyStmt .

*** Precond. of Axiom P12 (Object Creation)
ceq wlp(ZZ := new C[EL], Q, AG, AAL) =

interleaved(
forall OO .

[’isFreshObjectId[OO, ~H~ : history]
&& ’parent[OO] eq self : any] ==>
(Q) { ZZ |-> OO }

{ ~H~ : history |-> ~H~ : history
^^ [self : any -> OO . new C[EL]] },

AG)
if OO := freshLogicalVar(’o : any, Q) .

*** Precond. of Axiom P13 (Asynchronous Invocation)
ceq wlp(LL ! OEXP . M[EL], Q, AG, AAL) =

interleaved(
forall KK .

’isFreshSequenceNum[KK, self : any, ~H~ : history] ==>
(Q) { LL |-> KK }

{ ~H~ : history |-> ~H~ : history
^^ [KK % self : any -> OEXP . M[EL]] },

AG)
if KK := freshLogicalVar(’k : int, Q) .

*** Precond. of Axiom P14 (Local Asynchronous Invocation)
ceq wlp(LL ! M @ C[EL], Q, AG, AAL) =

interleaved(
forall KK .

’isFreshSequenceNum[KK, self : any, ~H~ : history] ==>
(Q) { LL |-> KK }

{ ~H~ : history |-> ~H~ : history
^^ [KK % self : any -> self : any . M[EL]] },

AG)
if KK := freshLogicalVar(’k : int, Q) .

*** Precond. of Axiom P15 (Asynchronous Reply)
ceq wlp(LL ?[ZZL], Q, < ASUM, GUAR >, AAL) =

if pending(~H~ : history, self : any, self : any, LL) th
GUAR { ~H~ : history |->

~H~ : history ^^ [LL % self : any . reenter] }
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&& [forall AAL’, HH .
reenter(~H~ : history, HH, AAL’, LL, < ASUM, GUAR >,

AAL) ==>
(Q) { AAL |-> AAL’ }

{ ~H~ : history |-> HH }
{ LL |-> -1 }
{ ZZL |-> returnVals(HH, self : any, LL,

length(ZZL)) }]
el

interleaved(
[LL % self : any <- * . *] in ~H~ : history ==>
(Q) { LL |-> -1 }

{ ZZL |-> returnVals(~H~, self : any, LL,
length(ZZL)) },

< ASUM, GUAR >)
fi

if HH := freshLogicalVar(’h : history, Q)
/\ AAL’ := freshLogicalVarList(AAL, (HH, Q)) .

*** Precond. of Axiom P16 (Conditional Wait with Boolean Guards)

*** Precond. of Axiom P17 (Conditional Wait with Reply Guards)

*** Precond. of Axiom P18 (Unconditional Wait)

*** slightly altered to avoid interleaved in Boolean case and to share

*** common code
ceq wlp(await G, Q, < ASUM, GUAR >, AAL) =

if cleared(G) == G then
if P :: BExp then

*** Boolean guards
if P th

Q
el

GUAR { ~H~ : history |->
~H~ : history ^^ [self : any . release] }

&& [forall AAL’, HH .
release(~H~ : history, HH, AAL’,

< ASUM, GUAR >, AAL) ==>
(P ==> Q) { AAL |-> AAL’ }

{ ~H~ : history |-> HH }]
fi

else

*** reply guards with optional Boolean guards
forall HH .

interleave(~H~ : history, HH, < ASUM, GUAR >) ==>
if (P) { ~H~ : history |-> HH } th

(Q) { ~H~ : history |-> HH }
el

GUAR { ~H~ : history |->
HH ^^ [self : any . release] }

&& [forall AAL’, HH’ .
release(HH, HH’, AAL’, < ASUM, GUAR >,

AAL) ==>
(P ==> Q) { AAL |-> AAL’ }

{ ~H~ : history |-> HH’ }]
fi

fi
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else

*** wait guard with optional reply and Boolean guards
GUAR { ~H~ : history |->

~H~ : history ^^ [self : any . release] }
&& [forall AAL’, HH .

release(~H~ : history, HH, AAL’, < ASUM, GUAR >,
AAL) ==>

(P ==> Q) { AAL |-> AAL’ }
{ ~H~ : history |-> HH }]

fi
if P := satisfied(cleared(G), AAL, ~H~, AAL)

/\ HH := freshLogicalVar(’h : history, Q)
/\ HH’ := freshLogicalVar(’h : history, (HH, Q))
/\ AAL’ := freshLogicalVarList(AAL, (HH, HH’, Q)) .

*** Definition Q12 (WLP for While Loop)

*** Proof Rule P9 (While Loop)

*** altered versions that doesn’t use Dijkstra’s trick, which is hard

*** to implement and has little practical value
eq wlp(while B do S od, Q, AG, AAL) = false .
eq wlp(inv I while B do S od, Q, AG, AAL) =

I {{ [I && B] ==> wlp(S, I, AG, AAL) }}
{{ [I && ! B] ==> Q }} .

*** Definition Q11 (WLP for Nondeterministic Choice)

*** Proof Rule P20 (Nondeterministic Choice, Incomplete)

*** altered version that optimizes the common case
ceq wlp(S1 [] S2, Q, < ASUM, GUAR >, AAL) =

if logicallySimplified(ready(S1, AAL, ~H~ : history, AAL)
&& ready(S2, AAL, ~H~ : history, AAL))

== true then

*** S1 and S2 are always ready
wlp(S1, Q, < ASUM, GUAR >, AAL) && wlp(S2, Q, < ASUM, GUAR >,

AAL)
else

*** general case
interleaved(

if ready(S1 [] S2, AAL, ~H~ : history, AAL) th
pickReadyBranch(S1, S2,

wlp(S1, Q, < ASUM, GUAR >, AAL),
wlp(S2, Q, < ASUM, GUAR >, AAL),
AAL, ~H~ : history, AAL)

el if enabled(S1 [] S2, AAL, ~H~ : history, AAL) th
interleaved(

ready(S1 [] S2, AAL, ~H~ : history, AAL) ==>
pickReadyBranch(S1, S2,

wlp(S1, Q, < ASUM, GUAR >, AAL),
wlp(S2, Q, < ASUM, GUAR >, AAL),
AAL, ~H~ : history, AAL),

< ASUM, GUAR >)
el

GUAR { ~H~ : history |->
~H~ : history ^^ [self : any . release] }

&& [forall AAL’, HH .
[release(~H~ : history, HH, AAL’,
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< ASUM, GUAR >, AAL)
&& ready(S1* [] S2*, AAL’, HH, AAL)] ==>

pickReadyBranch(S1*, S2*,
wlp(S1*, Q,

< ASUM, GUAR >, AAL),
wlp(S2*, Q,

< ASUM, GUAR >, AAL),
AAL’, HH, AAL)]

fi fi,
< ASUM, GUAR >)

fi
if HH := freshLogicalVar(’h : history, Q)

/\ AAL’ := freshLogicalVarList(AAL, (HH, Q))
/\ S1* := clearWait(S1)
/\ S2* := clearWait(S2) .

*** WLPs for synthetic statements; some of these are optimized

eq wlp(! OEXP . M[EL], Q, AG, AAL) =
wlp(nu : int ! OEXP . M[EL], Q, AG, AAL) .

eq wlp(! M @ C[EL], Q, AG, AAL) =
wlp(nu : int ! M @ C[EL], Q, AG, AAL) .

eq wlp(OEXP . M[EL ; ZZL], Q, < ASUM, GUAR >, AAL) =
if OEXP == self : any then

wlp(M[EL ; ZZL], Q, < ASUM, GUAR >, AAL)
else

wlp(nu : int ! OEXP . M[EL] ; nu : int ?[ZZL], Q,
< ASUM, GUAR >, AAL)

fi .

ceq wlp(M @ C[EL ; ZZL], Q, < ASUM, GUAR >, AAL) =
forall KK .

’isFreshSequenceNum[KK, self : any, ~H~ : history] ==>
(GUAR { ~H~ : history |->

~H~ : history ^^ [KK % self : any . reenter] }
&& [forall AAL’, HH .

reenter(~H~ : history, HH, AAL’, KK, < ASUM, GUAR >,
AAL) ==>

(Q) { AAL |-> AAL’ }
{ ~H~ : history |-> HH }
{ ZZL |-> returnVals(HH, self : any, KK,

length(ZZL)) }])
{ ~H~ : history |-> ~H~ : history

^^ [KK % self : any -> self : any . M[EL]] }
if KK := freshLogicalVar(’k : int, Q)

/\ HH := freshLogicalVar(’h : history, Q)
/\ AAL’ := freshLogicalVarList(AAL, (KK, HH, Q)) .

eq wlp(await G &&& LL ?[ZZL], Q, AG, AAL) =
wlp(await G &&& LL ?,

(Q) { LL |-> -1 }
{ ZZL |-> returnVals(~H~ : history, self : any, LL,

length(ZZL)) },



B.3. Assertion Analyzer 237

AG, AAL) .

eq wlp(await G &&& OEXP . M[EL ; ZZL], Q, AG, AAL) =
wlp(nu : int ! OEXP . M[EL] ; await G &&& nu : int ?[ZZL], Q, AG,

AAL) .

eq wlp(await G &&& M @ C[EL ; ZZL], Q, AG, AAL) =
wlp(nu : int ! M @ C[EL] ; await wait &&& G &&& nu : int ?[ZZL], Q,

AG, AAL) .

eq wlp(await LL ?[ZZL], Q, AG, AAL) =
wlp(await true &&& LL ?[ZZL], Q, AG, AAL) .

eq wlp(await OEXP . M[EL ; ZZL], Q, AG, AAL) =
wlp(await true &&& OEXP . M[EL ; ZZL], Q, AG, AAL) .

eq wlp(await M @ C[EL ; ZZL], Q, AG, AAL) =
wlp(await true &&& M @ C[EL ; ZZL], Q, AG, AAL) .

eq wlp(if B th S1 fi, Q, AG, AAL) =
wlp(if B th S1 el skip fi, Q, AG, AAL) .

*** isn’t really needed
eq wlp(emptyStmt, Q, AG, AAL) = Q .

endfm

fmod CREOL-ASSERTION-ANALYZER-REPORT is
including CREOL-ASSERTION-MASSAGING .
including CREOL-PROGRAM .
including CREOL-WEAKEST-LIBERAL-PRECONDITION .

*** Head of a judgment
sort JudgmentHead .

op Initialization code : -> JudgmentHead [ctor format (b b o)] .
op Method_of_ : Id Id -> JudgmentHead

[ctor prec 3 format (b b b b o)] .

*** Body of a judgment
sort JudgmentBody .

op Maintains the guarantee : -> JudgmentBody [ctor format (g g g o)] .
op Maintains the guarantee iff_holds :

PrettyAssn -> JudgmentBody [ctor format (y y y y nssssy nssssy o)] .
op Maintains the guarantee if_holds :

PrettyAssn -> JudgmentBody [ctor format (y y y y nssssy nssssy o)] .
op Breaks the guarantee : -> JudgmentBody [ctor format (r r r o)] .
op Don’t know : -> JudgmentBody [ctor format (y y o)] .
op Establishes the guarantee : -> JudgmentBody

[ctor format (g g g o)] .
op Establishes the guarantee iff_holds :

PrettyAssn -> JudgmentBody [ctor format (y y y y nssssy nssssy o)] .
op Establishes the guarantee if_holds :

PrettyAssn -> JudgmentBody [ctor format (y y y y nssssy nssssy o)] .
op Fails to establish the guarantee : -> JudgmentBody
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[ctor format (r r r r r o)] .

*** auxiliary functions
op judgmentBody : Stmt Assn Module -> JudgmentBody .
op wlpIsComplete : Stmt -> Bool .

*** Judgment produced by the assertion analyzer
sort Judgment .

op _:_ : JudgmentHead JudgmentBody -> Judgment
[ctor prec 7 format (b b bnssss on)] .

*** List of judgments
sort JudgmentList .
subsort Judgment < JudgmentList .

op Nothing to verify : -> JudgmentList [ctor format (b b b on)] .
op __ : JudgmentList JudgmentList -> JudgmentList

[ctor assoc prec 9 id: Nothing to verify format (b bn o)] .

*** Verification report
sort Report .
subsort Report < Config .

*** result of verification
op Verification of class__ : Id JudgmentList -> Report

[ctor gather (e &) format (b b osb b bnn o)] .

*** canonical verify command
op verify class_with simplifications_ : Id Qid -> Report

[ctor prec 3 format (b b b b b b on)] .

*** non-canonical verify command
op verify class_ : Id -> Report [prec 3] .

var B : BExp .
var C : Id .
var I : Assn .
var MOD : Module .
var PRETTY : PrettyAssn .
var P : Assn .
var Q : Assn .
vars S S1 S2 S1..SK SK+1..SN : Stmt .

eq Initialization code : Maintains the guarantee =
Initialization code : Establishes the guarantee .

eq Initialization code : Maintains the guarantee iff PRETTY holds =
Initialization code : Establishes the guarantee iff PRETTY holds .

eq Initialization code : Maintains the guarantee if PRETTY holds =
Initialization code : Establishes the guarantee if PRETTY holds .

eq Initialization code : Breaks the guarantee =
Initialization code : Fails to establish the guarantee .

eq Maintains the guarantee iff true holds = Maintains the guarantee .
eq Maintains the guarantee iff false holds = Breaks the guarantee .
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eq Maintains the guarantee if true holds = Maintains the guarantee .
eq Maintains the guarantee if false holds = Don’t know .
eq Establishes the guarantee iff true holds =

Establishes the guarantee .
eq Establishes the guarantee iff false holds =

Fails to establish the guarantee .
eq Establishes the guarantee if true holds =

Establishes the guarantee .
eq Establishes the guarantee if false holds = Don’t know .

ceq judgmentBody(S, Q, MOD) =
if wlpIsComplete(S) then

Maintains the guarantee iff PRETTY holds
else

Maintains the guarantee if PRETTY holds
fi

if PRETTY := massaged(Q, MOD) .

eq wlpIsComplete(prove P) = false .
eq wlpIsComplete(while B do S od) = false .
eq wlpIsComplete(inv I while B do S od) = false .
eq wlpIsComplete(if B th S1 el S2 fi) =

wlpIsComplete(S1) and wlpIsComplete(S2) .
ceq wlpIsComplete(S1 ; S2) = wlpIsComplete(S1) and wlpIsComplete(S2)
if S1 =/= emptyStmt and S2 =/= emptyStmt .
eq wlpIsComplete(S1 [] S2) = wlpIsComplete(S1) and wlpIsComplete(S2) .
eq wlpIsComplete(S1..SK ||| SK+1..SN) =

wlpIsComplete(S1..SK) and wlpIsComplete(SK+1..SN) .
eq wlpIsComplete([S]) = wlpIsComplete(S) .
eq wlpIsComplete(S) = true [otherwise] .

eq verify class C =
verify class C with simplifications ’CREOL-SIMPLIFICATION-RULES .

endfm

mod CREOL-ASSERTION-ANALYZER is
including CREOL-ASSERTION-ANALYZER-REPORT .

*** auxiliary functions needed by the assertion analyzer
op classInitializationJudgment :

SuperList AGSpec TypedQualifiedIdList Config Module ~> Judgment .
op classMethodJudgments :

SuperList AGSpec TypedQualifiedIdList Config Module
~> JudgmentList .

op methodJudgments :
Id AGSpec TypedQualifiedIdList MtdMSet Config Module
~> JudgmentList .

op methodJudgment :
Id AGSpec TypedQualifiedIdList Id TypedIdList TypedIdList
TypedIdList Stmt Config Module
~> Judgment .

op classWritableAttributes : SuperList Config ~> TypedQualifiedIdList .
op initializeVars : TypedQualifiedIdList -> Stmt .

var AAL : TypedQualifiedIdList .



240 Appendix B. Specifications of the Assertion Analyzer and the Interpreters

var AG : AGSpec .
var ASUM : Assn .
var C : Id .
var CONFIG : Config .
var EL : ExpList .
var GUAR : Assn .
var M : Id .
var MM : MtdMSet .
var MOD : Module .
var N : Int .
var PPL : TypedIdList .
var Q : Assn .
var QID : Qid .
vars S S’ : Stmt .
vars SUPERL SUPERL’ SUPERL’’ SUPERL’’’ : SuperList .
var T0 : Type .
var VVL : TypedIdList .
var WWL : TypedIdList .
var XXL : TypedIdList .
var YYL : TypedIdList .
var Z0 : QualifiedId .
var ZZL : TypedQualifiedIdList .

ceq classInitializationJudgment(C, < ASUM, GUAR >, AAL, CONFIG, MOD) =
Initialization code :

judgmentBody(S,
(ASUM ==> wlp(S, Q, < ASUM, GUAR >, AAL))

{ ~H~ : history |->
[’parent[self : any] -> self : any . new C[PPL]] },

MOD)
if Q := GUAR { ~H~ : history |-> ~H~ : history

^^ [self : any . initialized] }
/\ PPL := freshLogicalVarList(classParams(C, CONFIG), Q)
/\ S := (initializeVars(AAL) ; initialPr(C[PPL], CONFIG)) .

eq classMethodJudgments(epsilon, AG, AAL, CONFIG, MOD) =
Nothing to verify .

eq classMethodJudgments((SUPERL’’’, C[EL]), AG, AAL,
< C : Class | Impl: SUPERL, Ctrc: SUPERL’,

Inh: SUPERL’’, Param: PPL,
Att: WWL, Mtd: MM, ObjCnt: N,
Asum: ASUM, Guar: GUAR >

CONFIG,
MOD) =

methodJudgments(C, AG, AAL, MM,
< C : Class | Impl: SUPERL, Ctrc: SUPERL’,

Inh: SUPERL’’, Param: PPL, Att: WWL,
Mtd: MM, ObjCnt: N, Asum: ASUM,
Guar: GUAR >

CONFIG,
MOD)

classMethodJudgments((SUPERL’’’, SUPERL’’), AG, AAL,
< C : Class | Impl: SUPERL, Ctrc: SUPERL’,

Inh: SUPERL’’, Param: PPL,
Att: WWL, Mtd: MM, ObjCnt: N,
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Asum: ASUM, Guar: GUAR >
CONFIG,
MOD) .

eq methodJudgments(C, AG, AAL, emptyMSet, CONFIG, MOD) =
Nothing to verify .

eq methodJudgments(C, < ASUM, GUAR >, AAL,
< M : Method | In: XXL, Out: YYL,

LVar: VVL, Code: S >
++ MM, CONFIG, MOD) =

methodJudgment(C, < ASUM, GUAR >, AAL, M, XXL, YYL, VVL, S, CONFIG,
MOD)

methodJudgments(C, < ASUM, GUAR >, AAL, MM, CONFIG, MOD) .

ceq methodJudgment(C, < ASUM, GUAR >, AAL, M, XXL, YYL, VVL, S, CONFIG,
MOD) =

Method M of C :
judgmentBody(S’,

[ASUM
&& GUAR
&& ’lwf[~H~ : history, self : any]
&& ’mayAcquireProcessor[~H~ : history, self : any,

caller : any, label : int]
&& [label : int % caller : any -> self : any . M[XXL]] in

~H~ : history
&& ! [[label : int % caller : any <- self : any . *] in

~H~ : history]] ==>
wlp(S’, (GUAR) { ~H~ : history |-> ~H~ : history

^^ [label : int % caller : any
<- self : any . M[XXL ; YYL]] },

< ASUM, GUAR >, AAL),
MOD)

if S’ := (initializeVars(YYL, VVL) ;
qualifiedAndTyped(S, C, AAL, (XXL, YYL, VVL), CONFIG)) .

eq classWritableAttributes(epsilon, CONFIG) = epsilon .
eq classWritableAttributes((SUPERL’’’, C[EL]),

< C : Class | Impl: SUPERL, Ctrc: SUPERL’,
Inh: SUPERL’’, Param: PPL,
Att: WWL, Mtd: MM, ObjCnt: N,
Asum: ASUM, Guar: GUAR >

CONFIG) =
WWL @@ C,
classWritableAttributes((SUPERL’’’, SUPERL’’),

< C : Class | Impl: SUPERL, Ctrc: SUPERL’,
Inh: SUPERL’’, Param: PPL,
Att: WWL, Mtd: MM, ObjCnt: N,
Asum: ASUM, Guar: GUAR >

CONFIG) .

eq initializeVars(epsilon) = emptyStmt .
eq initializeVars(Z0 : T0, ZZL) =

Z0 : T0 := defaultValue(T0) ; initializeVars(ZZL) .

crl [start-verification] :
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{
verify class C with simplifications QID
CONFIG

}
=>

{
Verification of class C
classInitializationJudgment(C, AG, AAL, CONFIG, MOD)
classMethodJudgments(C, AG, AAL, CONFIG, MOD)

}
if AG := classAGSpec(C, CONFIG)

/\ AAL := classWritableAttributes(C, CONFIG)
/\ MOD := upModule(QID, false) .

endm

B.4 Interpreter Core

***(
creol-interpreter-core.maude

This file contains modules shared by the Creol interpreter for closed
systems and the interpreter for open systems.

)

fmod CREOL-STATE is
including CREOL-TYPED-QUALIFIED-IDENTIFIER .
including CREOL-VALUE .

*** Variable state
sort State .

op emptyState : -> State [ctor] .
op [_|->_] : QualifiedId Value -> State [ctor] .
op __ : State State -> State [ctor assoc prec 1 id: emptyState] .

*** state from two lists
op [_|->_] : QualifiedIdList ValueList -> State .

*** state membership
op _in_ : QualifiedId State -> Bool [prec 11] .

*** qualification of a state

*** e.g., [’x |-> 1][’y |-> 2] @@ ’C == [’x @ ’C |-> 1][’y @ ’C |-> 2]
op _@@_ : State Id -> State [prec 3] .

op asState : TypedQualifiedIdList -> State .

var C : Id .
var SIGMA : State .
var T0 : Type .
vars V V’ V0 : Value .
var VL : ValueList .
var X : Id .
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vars Z Z’ Z0 : QualifiedId .
var ZL : QualifiedIdList .
var ZZL : TypedQualifiedIdList .

eq [epsilon |-> epsilon] = emptyState .
ceq [Z0, ZL |-> V0, VL] = [Z0 |-> V0][ZL |-> VL]
if ZL =/= epsilon .

*** Definition T5 (State Membership)
eq Z in emptyState = false .
eq Z in SIGMA [Z’ |-> V] = (Z == Z’) or (Z in SIGMA) .

eq [Z |-> V] SIGMA [Z |-> V’] = SIGMA [Z |-> V’] .

eq emptyState @@ C = emptyState .
eq SIGMA [X |-> V] @@ C = (SIGMA @@ C) [X @ C |-> V] .

eq asState(epsilon) = emptyState .
eq asState(Z0 : T0, ZZL) = [Z0 |-> defaultValue(T0)] asState(ZZL) .

endfm

fmod CREOL-EXPRESSION-EVALUATION is
including CREOL-HISTORY-EXPRESSION .
including CREOL-STATE .

*** evaluation of expressions
op {_}_ : ExpList State ~> ValueList [prec 3] .

vars A A1 A2 : AExp .
var B : BExp .
var C : Id .
vars E E0 E1 E2 : Exp .
vars EL EL’ : ExpList .
vars EPEXP EPEXP1 EPEXP2 : EventPatExp .
var F : Id .
var HEXP : HistoryExp .
var HPEXP : HistoryPatExp .
var M : Id .
var N : Int .
var O : OId .
vars OEXP OEXP’ : OExp .
vars PHI PHI1 PHI2 : Assn .
var SIGMA : State .
var T : Type .
vars V V1 V2 : Value .
var VL : ValueList .
vars Z Z’ : QualifiedId .

*** Definition T12 (Evaluation of Variable)

*** extended to deal with typed identifiers
eq {Z : T} SIGMA [Z’ |-> V] = if Z == Z’ then V else {Z} SIGMA fi .

*** Definition T13 (Evaluation of Generic Expression)
eq {if B th E1 el E2 fi} SIGMA =

if {B} SIGMA then {E1} SIGMA else {E2} SIGMA fi .
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eq {[E]} SIGMA = {E} SIGMA .

*** evaluation of custom functions
eq {F[EL]} SIGMA = @ F[{EL} SIGMA] .
eq {@ F[VL]} SIGMA = @ F[VL] .

*** Definition T14 (Evaluation of Arithmetic Expression)
eq {N} SIGMA = N .
eq {plus A} SIGMA = {A} SIGMA .
eq {minus A} SIGMA = - {A} SIGMA .
eq {A1 times A2} SIGMA = {A1} SIGMA * {A2} SIGMA .
eq {A1 div A2} SIGMA = {A1} SIGMA quo {A2} SIGMA .
eq {A1 plus A2} SIGMA = {A1} SIGMA + {A2} SIGMA .
eq {A1 minus A2} SIGMA = {A1} SIGMA - {A2} SIGMA .

*** Definition T15 (Evaluation of Boolean Expression)

*** altered to ensure that junk terms don’t evaluate to valid terms and

*** to handle quantifier-free assertions
eq {true} SIGMA = true .
eq {false} SIGMA = false .
ceq {E1 eq E2} SIGMA = V1 == V2
if V1 := {E1} SIGMA /\ V2 := {E2} SIGMA .
ceq {E1 ne E2} SIGMA = V1 =/= V2
if V1 := {E1} SIGMA /\ V2 := {E2} SIGMA .
eq {E1 lt E2} SIGMA = {E1} SIGMA < {E2} SIGMA .
eq {E1 gt E2} SIGMA = {E1} SIGMA > {E2} SIGMA .
eq {E1 le E2} SIGMA = {E1} SIGMA <= {E2} SIGMA .
eq {E1 ge E2} SIGMA = {E1} SIGMA >= {E2} SIGMA .
eq {! PHI} SIGMA = not {PHI} SIGMA .
eq {PHI1 && PHI2} SIGMA = {PHI1} SIGMA and {PHI2} SIGMA .
eq {PHI1 || PHI2} SIGMA = {PHI1} SIGMA or {PHI2} SIGMA .
eq {PHI1 ==> PHI2} SIGMA = {PHI1} SIGMA implies {PHI2} SIGMA .
eq {PHI1 <==> PHI2} SIGMA = {PHI1} SIGMA == {PHI2} SIGMA .

*** Definition T16 (Evaluation of Object Expression)
eq {O} SIGMA = O .

*** Definition T17 (Evaluation of Expression List)
eq {epsilon} SIGMA = epsilon .
ceq {E0, EL} SIGMA = {E0} SIGMA, {EL} SIGMA if EL =/= epsilon .

eq {[OEXP -> OEXP’ . new C[EL]]} SIGMA =
[{OEXP} SIGMA -> {OEXP’} SIGMA . new C[{EL} SIGMA]] .

eq {[A % OEXP -> OEXP’ . M @ C[EL]]} SIGMA =
[{A} SIGMA % {OEXP} SIGMA -> {OEXP’} SIGMA . M @ C[{EL} SIGMA]] .

eq {[A % OEXP <- OEXP’ . M @ C[EL ; EL’]]} SIGMA =
[{A} SIGMA % {OEXP} SIGMA <- {OEXP’} SIGMA
. M @ C[{EL} SIGMA ; {EL’} SIGMA]] .

eq {[OEXP . initialized]} SIGMA = [{OEXP} SIGMA . initialized] .
eq {[OEXP . release]} SIGMA = [{OEXP} SIGMA . release] .
eq {[A % OEXP . reenter]} SIGMA =

[{A} SIGMA % {OEXP} SIGMA . reenter] .

eq {[OEXP -> *]} SIGMA = [{OEXP} SIGMA -> *] .
eq {[OEXP <- *]} SIGMA = [{OEXP} SIGMA <- *] .
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eq {[* -> OEXP]} SIGMA = [* -> {OEXP} SIGMA] .
eq {[* <- OEXP]} SIGMA = [* <- {OEXP} SIGMA] .
eq {[OEXP . reenter]} SIGMA = [{OEXP} SIGMA . reenter] .
eq {in[OEXP]} SIGMA = in[{OEXP} SIGMA] .
eq {out[OEXP]} SIGMA = out[{OEXP} SIGMA] .
eq {ctl[OEXP]} SIGMA = ctl[{OEXP} SIGMA] .

eq {~ EPEXP} SIGMA = ~ {EPEXP} SIGMA .
eq {EPEXP1 & EPEXP2} SIGMA = {EPEXP1} SIGMA & {EPEXP2} SIGMA .
eq {EPEXP1 | EPEXP2} SIGMA = {EPEXP1} SIGMA | {EPEXP2} SIGMA .

eq {HEXP / EPEXP} SIGMA = {HEXP} SIGMA / {EPEXP} SIGMA .
eq {EPEXP in HEXP} SIGMA = {EPEXP} SIGMA in {HEXP} SIGMA .

eq {emptyHistory} SIGMA = emptyHistory .
ceq {HPEXP ^^ EPEXP} SIGMA = {HPEXP} SIGMA ^^ {EPEXP} SIGMA
if HPEXP =/= emptyHistory .

eq {HEXP bw HPEXP} SIGMA = {HEXP} SIGMA bw {HPEXP} SIGMA .
eq {HEXP bw HPEXP} SIGMA = {HEXP} SIGMA bw {HPEXP} SIGMA .

eq {HEXP ew HPEXP} SIGMA = {HEXP} SIGMA ew {HPEXP} SIGMA .
eq {HEXP ew HPEXP} SIGMA = {HEXP} SIGMA ew {HPEXP} SIGMA .

eq {HPEXP pr HEXP} SIGMA = {HPEXP} SIGMA pr {HEXP} SIGMA .
eq {HPEXP pr HEXP} SIGMA = {HPEXP} SIGMA pr {HEXP} SIGMA .

endfm

fmod CREOL-PROCESS is
including CREOL-STATE .
including CREOL-STATEMENT .

*** Suspended process
sort Process .

op <_,_> : Stmt State -> Process [ctor format (d d d s d d)] .

op pr : Process -> Stmt .
op lvar : Process -> State .

*** Multiset of suspended processes
sort ProcessMSet .
subsort Process < ProcessMSet .
subsort Process < MSetElem .
subsort ProcessMSet < MSet .
subsort EmptyMSet < ProcessMSet .

op _++_ : ProcessMSet ProcessMSet -> ProcessMSet [ctor ditto] .

var BETA : State .
var S : Stmt .

eq pr(< S, BETA >) = S .
eq lvar(< S, BETA >) = BETA .

endfm
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fmod CREOL-MESSAGE is
including CREOL-EXPRESSION .
including CREOL-PROGRAM .

*** Message body
sort MsgBody .
subsort Msg < Config .

op Invoke : OId Int QualifiedId ValueList -> MsgBody
[ctor format (!r or)] .

op Reply : Int ValueList -> MsgBody [ctor format (!r or)] .

*** Message with a target
sort Msg .

op _to_ : MsgBody OId -> Msg [ctor prec 3 format (r r! or n)] .

*** Multiset of message bodies
sort MsgBodyMSet .
subsort MsgBody < MsgBodyMSet .
subsort MsgBody < MSetElem .
subsort MsgBodyMSet < MSet .
subsort EmptyMSet < MsgBodyMSet .

op _++_ : MsgBodyMSet MsgBodyMSet -> MsgBodyMSet [ctor ditto] .
endfm

fmod CREOL-OBJECT is
including CREOL-MESSAGE .
including CREOL-PROCESS .

*** Field of an object term
sort ObjectField .

op Pr:_ : Stmt -> ObjectField [ctor prec 35 format (y! oy y)] .
op LVar:_ : State -> ObjectField [ctor prec 35 format (y! oy y)] .
op Att:_ : State -> ObjectField [ctor prec 35 format (y! oy y)] .
op PrQ:_ : ProcessMSet -> ObjectField [ctor prec 35 format (y! oy y)] .
op MsgQ:_ : MsgBodyMSet -> ObjectField

[ctor prec 35 format (y! oy y)] .
op LabCnt:_ : Int -> ObjectField [ctor prec 35 format (y! oy y)] .

*** Comma-separated multiset of object fields
sort ObjectFieldMSet .
subsort ObjectField < ObjectFieldMSet .

op noFields : -> ObjectField [ctor] .
op _,_ : ObjectFieldMSet ObjectFieldMSet -> ObjectFieldMSet

[ctor assoc comm prec 37 id: noFields format (d d s d)] .

*** Creol object
sort Object .
subsort Object < Config .
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op <_:_|_> : OId Id ObjectFieldMSet -> Object
[ctor format (y y! oy y y oy y n)] .

endfm

mod CREOL-INTERPRETER-CORE is
including CREOL-EXPRESSION-EVALUATION .
including CREOL-OBJECT .

*** used internally as part of the operational semantics
op return_ : ExpList -> SingleStmt [ctor prec 23] .
op continue_ : Int -> SingleStmt [ctor prec 23] .
op _///_ : Stmt Stmt -> SingleStmt [ctor prec 31] .

*** auxiliary functions
op boundMtd :

SuperList OId Int QualifiedId ValueList Config ~> Process .
op initialAtt : SuperList Config ~> State .
op nextOId : Id Config ~> OId .
op incrementObjCnt : Id Config ~> Config .
op satisfied : Guard State MsgBodyMSet -> Bool .
op replied : Int MsgBodyMSet -> Bool .
op enabled : Stmt State MsgBodyMSet -> Bool .
op ready : Stmt State MsgBodyMSet -> Bool .
op shadowed : TypedIdList IdList -> ExpList .

var ALPHA : State .
var ASUM : Assn .
var B : BExp .
var BETA : State .
var C : Id .
var CONFIG : Config .
var E0 : Exp .
var EL : ExpList .
var ETC : ObjectFieldMSet .
vars G G1 G2 : Guard .
var GUAR : Assn .
vars K K’ : Int .
var LL : TypedId .
var M : Id .
var MM : MtdMSet .
var N : Int .
vars O O’ : OId .
var OEXP : OExp .
var PHI : Assn .
var PPL : TypedIdList .
var Q : MsgBodyMSet .
vars S S’ S1 S1’ S2 S1..SK SK+1..SN S2..SN : Stmt .
var SIGMA : State .
var SS : SingleStmt .
vars SUPERL SUPERL’ SUPERL’’ SUPERL’’’ : SuperList .
vars T T’ T0 : Type .
var VL : ValueList .
var VVL : TypedIdList .
var WL : ValueList .
var WWL : TypedIdList .
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vars XXL XXL’ : TypedIdList .
vars Y Y0 : Id .
var YYL : TypedIdList .
var Z0 : QualifiedId .
var ZZL : TypedQualifiedIdList .

*** Definition T3 (Synthetic Statements)
eq ! OEXP . M[EL] = nu ! OEXP . M[EL] .
eq ! M @ C[EL] = nu ! M @ C[EL] .
eq OEXP . M[EL ; ZZL] = nu ! OEXP . M[EL] ; nu ?[ZZL] .
eq M @ C[EL ; ZZL] = nu ! M @ C[EL] ; nu ?[ZZL] .
eq await G &&& LL ?[ZZL] = await G &&& LL ? ; LL ?[ZZL] .
eq await G &&& OEXP . M[EL ; ZZL] =

nu ! OEXP . M[EL] ; await G &&& nu ? ; nu ?[ZZL] .
eq await G &&& M @ C[EL ; ZZL] =

nu ! M @ C[EL] ; await G &&& nu ? ; nu ?[ZZL] .
eq await LL ?[ZZL] = await LL ? ; LL ?[ZZL] .
eq await OEXP . M[EL ; ZZL] =

nu ! OEXP . M[EL] ; await nu ? ; nu ?[ZZL] .
eq await M @ C[EL ; ZZL] = nu ! M @ C[EL] ; await nu ? ; nu ?[ZZL] .
eq if B th S1 fi = if B th S1 el skip fi .

*** Definition T4 (Residual Statements)
eq epsilon := epsilon = emptyStmt .
eq emptyStmt /// S = S .

*** Definition T6 (Guard Satisfaction)
eq satisfied(B, SIGMA, Q) = {B} SIGMA .
eq satisfied(LL ?, SIGMA, Q) = replied({LL} SIGMA, Q) .
eq satisfied(wait, SIGMA, Q) = false .
eq satisfied(G1 &&& G2, SIGMA, Q) =

satisfied(G1, SIGMA, Q) and satisfied(G2, SIGMA, Q) .

*** Definition T7 (Replied Predicate)
eq replied(K, emptyMSet) = false .
eq replied(K, Invoke(O, K’, M @ C, VL) ++ Q) = replied(K, Q) .
eq replied(K, Reply(K’, WL) ++ Q) = (K == K’) or replied(K, Q) .

*** Definition T8 (Statement Enabledness)
eq enabled(await G ; S, SIGMA, Q) = satisfied(G, SIGMA, Q) .
eq enabled((S1 [] S2) ; S, SIGMA, Q) =

enabled(S1, SIGMA, Q) or enabled(S2, SIGMA, Q) .
eq enabled((S1..SK ||| SK+1..SN) ; S, SIGMA, Q) =

enabled(S1..SK, SIGMA, Q) or enabled(SK+1..SN, SIGMA, Q) .
eq enabled([S] ; S’, SIGMA, Q) = enabled(S, SIGMA, Q) .
eq enabled(S, SIGMA, Q) = true [otherwise] .

*** Definition T11 (Statement Readiness)
eq ready(LL ?[ZZL] ; S, SIGMA, Q) = satisfied(LL ?, SIGMA, Q) .
eq ready(await G ; S, SIGMA, Q) = satisfied(G, SIGMA, Q) .
eq ready((S1 [] S2) ; S, SIGMA, Q) =

ready(S1, SIGMA, Q) or ready(S2, SIGMA, Q) .
eq ready((S1..SK ||| SK+1..SN) ; S, SIGMA, Q) =

ready(S1..SK, SIGMA, Q) or ready(SK+1..SN, SIGMA, Q) .
eq ready([S] ; S’, SIGMA, Q) = ready(S, SIGMA, Q) .
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eq ready(S, SIGMA, Q) = true [otherwise] .

eq shadowed(epsilon, XXL) = epsilon .
eq shadowed(Y : T, (XXL, Y : T’, XXL’)) = defaultValue(T) .
eq shadowed(Y : T, XXL) = Y [otherwise] .
ceq shadowed((Y0 : T0, YYL), XXL) =

shadowed(Y0 : T0, XXL), shadowed(YYL, XXL)
if YYL =/= epsilon .

eq initialAtt(epsilon, CONFIG) = emptyState .
eq initialAtt((SUPERL’’’, C[EL]),

< C : Class | Impl: SUPERL, Ctrc: SUPERL’, Inh: SUPERL’’,
Param: PPL, Att: WWL, Mtd: MM, ObjCnt: N,
Asum: ASUM, Guar: GUAR >

CONFIG) =
initialAtt((SUPERL’’’, SUPERL’’),

< C : Class | Impl: SUPERL, Ctrc: SUPERL’, Inh: SUPERL’’,
Param: PPL, Att: WWL, Mtd: MM, ObjCnt: N,
Asum: ASUM, Guar: GUAR >

CONFIG)
asState((PPL, WWL) @@ C) .

eq nextOId(C,
< C : Class | Impl: SUPERL, Ctrc: SUPERL’, Inh: SUPERL’’,

Param: PPL, Att: WWL, Mtd: MM, ObjCnt: N,
Asum: ASUM, Guar: GUAR >

CONFIG) =
C # N .

eq incrementObjCnt(C,
< C : Class | Impl: SUPERL, Ctrc: SUPERL’,

Inh: SUPERL’’, Param: PPL, Att: WWL, Mtd: MM,
ObjCnt: N, Asum: ASUM, Guar: GUAR >

CONFIG) =
< C : Class | Impl: SUPERL, Ctrc: SUPERL’, Inh: SUPERL’’,

Param: PPL, Att: WWL, Mtd: MM, ObjCnt: N + 1,
Asum: ASUM, Guar: GUAR >

CONFIG .

*** can’t find method in class; proceed with superclasses
ceq boundMtd((SUPERL’’’, C[EL]), O’, K, M, VL,

< C : Class | Impl: SUPERL, Ctrc: SUPERL’, Inh: SUPERL’’,
Param: PPL, Att: WWL, Mtd: MM, ObjCnt: N,
Asum: ASUM, Guar: GUAR >

CONFIG) =
boundMtd((SUPERL’’’, SUPERL’’), O’, K, M, VL,

< C : Class | Impl: SUPERL, Ctrc: SUPERL’, Inh: SUPERL’’,
Param: PPL, Att: WWL, Mtd: MM, ObjCnt: N,
Asum: ASUM, Guar: GUAR >

CONFIG)
if not < M : Method | * > in mset MM .

*** found method in class
eq boundMtd((SUPERL’’’, C[EL]), O’, K, M, VL,

< C : Class | Impl: SUPERL, Ctrc: SUPERL’, Inh: SUPERL’’,
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Param: PPL, Att: WWL,
Mtd: < M : Method | In: XXL, Out: YYL,

LVar: VVL,
Code: S > ++ MM,

ObjCnt: N, Asum: ASUM, Guar: GUAR >
CONFIG) =

< qualified(S, (SUPERL’’’, C[EL]), (XXL, YYL, VVL),
< C : Class | Impl: SUPERL, Ctrc: SUPERL’,

Inh: SUPERL’’, Param: PPL, Att: WWL,
Mtd: < M : Method | In: XXL, Out: YYL,

LVar: VVL,
Code: S > ++ MM,

ObjCnt: N, Asum: ASUM, Guar: GUAR >
CONFIG) ;

return shadowed(YYL, VVL),
[caller |-> O’][label |-> K] [asIdList(XXL) |-> VL]
asState(YYL, VVL) > .

*** eliminate invariant clause in while loop
eq inv PHI while B do S od = while B do S od .

*** Rewrite Rule S2 (Null Statement)
rl [null-statement] :
< O : C | Pr: skip ; S, ETC >
=>

< O : C | Pr: S, ETC > .

*** Rewrite Rule S3 (Abnormal Termination)
rl [abnormal-termination] :
< O : C | Pr: abort ; S, ETC >
=>

emptyConfig .

*** Rewrite Rule S4 (Inline Assertion)
rl [inline-assertion] :
< O : C | Pr: prove PHI ; S, ETC >
=>

< O : C | Pr: S, ETC > .

*** Rewrite Rule S5 (Assignment)
rl [assignment] :
< O : C | Pr: (Z0 : T0, ZZL) := (E0, EL) ; S, LVar: BETA, Att: ALPHA,

ETC >
=>

if Z0 in BETA then
< O : C | Pr: ZZL := {EL} ALPHA BETA ; S,

LVar: BETA [Z0 |-> {E0} ALPHA BETA], Att: ALPHA, ETC >
else

< O : C | Pr: ZZL := {EL} ALPHA BETA ; S, LVar: BETA,
Att: ALPHA [Z0 |-> {E0} ALPHA BETA], ETC >

fi .

*** Rewrite Rule S6 (If Statement)
rl [if-statement] :
< O : C | Pr: if B th S1 el S2 fi ; S, LVar: BETA, Att: ALPHA, ETC >
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=>
if {B} ALPHA BETA then

< O : C | Pr: S1 ; S, LVar: BETA, Att: ALPHA, ETC >
else

< O : C | Pr: S2 ; S, LVar: BETA, Att: ALPHA, ETC >
fi .

*** Rewrite Rule S7 (While Loop)
rl [while-loop] :
< O : C | Pr: while B do S od ; S’, LVar: BETA, Att: ALPHA, ETC >
=>

if {B} ALPHA BETA then
< O : C | Pr: S ; while B do S od ; S’, LVar: BETA, Att: ALPHA,

ETC >
else

< O : C | Pr: S’, LVar: BETA, Att: ALPHA, ETC >
fi .

*** Rewrite Rule S8 (Guard Crossing)
crl [guard-crossing] :
< O : C | Pr: await G ; S, LVar: BETA, Att: ALPHA, MsgQ: Q, ETC >
=>

< O : C | Pr: S, LVar: BETA, Att: ALPHA, MsgQ: Q, ETC >
if satisfied(G, ALPHA BETA, Q) .

*** Rewrite Rule S9 (Nondeterministic Choice)
crl [nondeterministic-choice] :
< O : C | Pr: (S1 [] S2) ; S, LVar: BETA, Att: ALPHA, MsgQ: Q, ETC >
=>

< O : C | Pr: S1 ; S, LVar: BETA, Att: ALPHA, MsgQ: Q, ETC >
if ready(S1, ALPHA BETA, Q) .

*** Rewrite Rule S10 (Nondeterministic Merge)
crl [nondeterministic-merge] :
< O : C | Pr: (S1 ||| S2..SN) ; S, LVar: BETA, Att: ALPHA, MsgQ: Q,

ETC >
=>

< O : C | Pr: (S1 /// S2..SN) ; S, LVar: BETA, Att: ALPHA, MsgQ: Q,
ETC >

if ready(S1, ALPHA BETA, Q) and simpleBranch(S1) .

*** Rewrite Rule S11 (Left Merge)
rl [left-merge] :
< O : C | Pr: ((SS ; S1’) /// S2..SN) ; S, LVar: BETA, Att: ALPHA,

MsgQ: Q, ETC >
=>

if enabled(SS, ALPHA BETA, Q) then
< O : C | Pr: SS ; (S1’ /// S2..SN) ; S, LVar: BETA, Att: ALPHA,

MsgQ: Q, ETC >
else

< O : C | Pr: ((SS ; S1’) ||| S2..SN) ; S, LVar: BETA,
Att: ALPHA, MsgQ: Q, ETC >

fi .

*** Rewrite Rule S12 (Parenthesized Statement)
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rl [parenthesized-statement] :
< O : C | Pr: [S] ; S’, ETC >
=>

< O : C | Pr: S ; S’, ETC > .

*** Rewrite Rule S22 (Asynchronous Reply)
crl [asynchronous-reply] :
< O : C | Pr: LL ?[ZZL] ; S, LVar: BETA, MsgQ: Reply(K, WL) ++ Q, ETC >
=>

< O : C | Pr: ZZL := WL ; S, LVar: BETA [LL |-> -1], MsgQ: Q, ETC >
if {LL} BETA == K .

endm

B.5 Interpreter for Closed System

***(
creol-closed-interpreter.maude

This file implements the Creol interpreter for closed systems, based
on the operational semantics described in Section 4.3 of Verification
of Assertions in Creol Programs. See Appendix A for a user’s guide.

)

mod CREOL-INTERPRETER-FOR-CLOSED-SYSTEMS is
including CREOL-INTERPRETER-CORE .

var ALPHA : State .
vars BETA BETA’ : State .
vars C C’ : Id .
var CONFIG : Config .
var EL : ExpList .
var ETC : ObjectFieldMSet .
var K : Int .
var LL : TypedId .
var M : Id .
vars O O’ : OId .
var OEXP : OExp .
var P : ProcessMSet .
var Q : MsgBodyMSet .
vars S S’ : Stmt .
var VL : ValueList .
var WL : ValueList .
var ZZ : TypedQualifiedId .
var ZZL : TypedQualifiedIdList .

*** closed system interpreter bootstrap command
op bootstrap system_ : IdWithArgs -> Object

[ctor prec 3 format (b b b on)] .

*** Rewrite Rule S1 (System Bootstrapping)
rl [system-bootstrapping] :
{

bootstrap system C[EL]
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CONFIG
}
=>

{
< C # 0 : C | Pr: initialPr(C[{EL} emptyState], CONFIG),

LVar: emptyState,
Att: initialAtt(C[{EL} emptyState], CONFIG)

[self |-> C # 0],
PrQ: emptyMSet, MsgQ: emptyMSet, LabCnt: 0 >

incrementObjCnt(C, CONFIG)
} .

*** Rewrite Rule S13 (Object Creation)
crl [object-creation] :
{

< O : C | Pr: ZZ := new C’[EL] ; S, LVar: BETA, Att: ALPHA, ETC >
CONFIG

}
=>

{
< O : C | Pr: ZZ := O’ ; S, LVar: BETA, Att: ALPHA, ETC >
< O’ : C’ | Pr: initialPr(C’[{EL} ALPHA BETA], CONFIG),

LVar: emptyState,
Att: initialAtt(C’, CONFIG) [self |-> O’],
PrQ: emptyMSet, MsgQ: emptyMSet, LabCnt: 0 >

incrementObjCnt(C’, CONFIG)
}
if O’ := nextOId(C’, CONFIG) .

*** Rewrite Rule S14 (Process Suspension)
crl [process-suspension] :
< O : C | Pr: S, LVar: BETA, Att: ALPHA, PrQ: P, MsgQ: Q, ETC >
=>

< O : C | Pr: emptyStmt, LVar: emptyState, Att: ALPHA,
PrQ: P ++ < clearWait(S), BETA >, MsgQ: Q, ETC >

if not enabled(S, ALPHA BETA, Q) .

*** Rewrite Rule S15 (Process Activation)
crl [process-activation] :
< O : C | Pr: emptyStmt, LVar: BETA, Att: ALPHA,

PrQ: < S’, BETA’ > ++ P, MsgQ: Q, ETC >
=>

< O : C | Pr: S’, LVar: BETA’, Att: ALPHA, PrQ: P, MsgQ: Q, ETC >
if ready(S’, ALPHA BETA’, Q) .

*** Rewrite Rule S16 (Asynchronous Invocation)
rl [asynchronous-invocation] :
< O : C | Pr: LL ! OEXP . M[EL] ; S, LVar: BETA, Att: ALPHA, LabCnt: K,

ETC >
=>

< O : C | Pr: S, LVar: BETA [LL |-> K], Att: ALPHA, LabCnt: K + 1,
ETC >

Invoke(O, K, M, {EL} ALPHA BETA) to {OEXP} ALPHA BETA .

*** Rewrite Rule S17 (Local Asynchronous Invocation)
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rl [local-asynchronous-invocation] :
< O : C | Pr: LL ! M @ C’[EL] ; S, LVar: BETA, Att: ALPHA, LabCnt: K,

ETC >
=>

< O : C | Pr: S, LVar: BETA [LL |-> K], Att: ALPHA, LabCnt: K + 1,
ETC >

Invoke(O, K, M @ C’, {EL} ALPHA BETA) to O .

*** Rewrite Rule S18 (Transport of Invocation Message)
rl [transport-of-invocation-message] :
< O : C | MsgQ: Q, ETC >
Invoke(O’, K, M @ C’, VL) to O
=>

< O : C | MsgQ: Q ++ Invoke(O’, K, M @ C’, VL), ETC > .

*** Rewrite Rule S19 (Method Binding)
rl [method-binding] :
{

< O : C | PrQ: P, MsgQ: Invoke(O’, K, M @ C’, VL) ++ Q, ETC >
CONFIG

}
=>

{
< O : C | PrQ: P ++ boundMtd(if C’ == none then C else C’ fi, O’, K,

M, VL, CONFIG),
MsgQ: Q, ETC >

CONFIG
} .

*** Rewrite Rule S20 (Method Return)
rl [method-return] :
< O : C | Pr: return EL ; S, LVar: BETA, Att: ALPHA, ETC >
=>

< O : C | Pr: S, LVar: BETA, Att: ALPHA, ETC >
Reply({label} BETA, {EL} ALPHA BETA) to {caller} BETA .

*** Rewrite Rule S21 (Transport of Reply Message)
rl [transport-of-reply-message] :
< O : C | MsgQ: Q, ETC >
Reply(K, WL) to O
=>

< O : C | MsgQ: Q ++ Reply(K, WL), ETC > .

*** Rewrite Rule S23 (Local Reentry)
crl [local-reentry] :
< O : C | Pr: LL ?[ZZL] ; S, LVar: BETA, PrQ: < S’, BETA’ > ++ P, ETC >
=>

< O : C | Pr: S’ ; continue {LL} BETA, LVar: BETA’,
PrQ: P ++ < LL ?[ZZL] ; S, BETA >, ETC >

if {caller} BETA’ == O and {label} BETA’ == {LL} BETA .

*** Rewrite Rule S24 (Local Continuation)
crl [local-continuation] :
< O : C | Pr: continue K, LVar: BETA,

PrQ: < LL ?[ZZL] ; S, BETA’ > ++ P, ETC >
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=>
< O : C | Pr: LL ?[ZZL] ; S, LVar: BETA’, PrQ: P, ETC >
if {LL} BETA’ == K .

endm

B.6 Interpreter for Open System

***(
creol-open-interpreter.maude

This file implements the Creol interpreter for open systems, based on
the operational semantics described in Section 4.4 of Verification of
Assertions in Creol Programs. See Appendix A for a user’s guide.

)

fmod CREOL-RANDOM-DATA is
including CREOL-HISTORY .
including CREOL-PROGRAM .
including CREOL-STATE .

*** User-supplied random data command
sort RandomData .
subsort RandomData < Config .

op random data_ : History -> RandomData
[ctor prec 23 format (b b b on)] .

op random data_ : State -> RandomData
[ctor prec 23 format (b b b on)] .

endfm

mod CREOL-INTERPRETER-FOR-OPEN-SYSTEMS is
including CREOL-ASSUME-GUARANTEE-SPECIFICATION .
including CREOL-INTERPRETER-CORE .
including CREOL-RANDOM-DATA .
including CREOL-TYPED-QUALIFIED-IDENTIFIER .

*** canonical open system interpreter bootstrap commands
op bootstrap object_:= new_with parent_ :

OId IdWithArgs OId -> Object
[ctor prec 3 format (b b b b b b b b b on)] .

op bootstrap method_._[_]
with class_,caller_,label_,history_,attributes_:=_ :

OId QualifiedId ValueList Id OId Int History QualifiedIdList
ValueList -> Object

[ctor prec 23 format (b b b b b b b b sb b b b sb b b sb b b
sb b b sb b b b on)] .

*** non-canonical bootstrap command
op bootstrap method_._[_]

with class_,caller_,label_,history_ :
OId QualifiedId ValueList Id OId Int History -> Object

[format (b b b b b b b b sb b b b sb b b sb b b sb b on)] .
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*** extra object fields needed by this semantics
op Asum:_ : Assn -> ObjectField [ctor prec 35 format (y! oy y)] .
op Guar:_ : Assn -> ObjectField [ctor prec 35 format (y! oy y)] .
op ROAtt:_ : TypedQualifiedIdList -> ObjectField

[ctor prec 35 format (y! oy y)] .

*** auxiliary functions
op classROAtt : Id Config ~> TypedQualifiedIdList .
op inheritedROAtt : SuperList Config ~> TypedQualifiedIdList .
op release :

Assn Assn OId OId Int TypedQualifiedIdList State State -> Bool .
op reenter :

Assn Assn OId OId Int Int TypedQualifiedIdList State State -> Bool .
op interleave : Assn OId State History -> Bool .
op compatibleStates : State State -> Bool .
op lwf : History OId -> Bool .
op wf : History -> Bool .
op pending : History OId OId Int -> Bool .
op readOnly : TypedQualifiedIdList State State -> Bool .
op mayAcquireProcessor : History OId OId Int -> Bool .
op replyEvent : History OId OId Int ValueList ~> Event .
op replies : History OId -> MsgBodyMSet .
op trailingReplySeqNum : History -> Int .
op nextLabel : History OId -> Int .
op nextChild : History OId -> Int .

vars ALPHA ALPHA’ : State .
var ASUM : Assn .
var BETA : State .
vars C C’ : Id .
var CONFIG : Config .
var EL : ExpList .
var ETC : ObjectFieldMSet .
var EV : Event .
var GUAR : Assn .
vars H H’ : History .
vars K K’ : Int .
var LL : TypedId .
var M : Id .
var MM : MtdMSet .
var N : Int .
vars O O’ : OId .
var OEXP : OExp .
var PPL : TypedIdList .
var Q : MsgBodyMSet .
var S : Stmt .
vars SIGMA SIGMA’ SIGMA’’ : State .
vars SUPERL SUPERL’ SUPERL’’ SUPERL’’’ : SuperList .
vars V V’ : Value .
var VL : ValueList .
var WL : ValueList .
var WWL : TypedIdList .
var Z : QualifiedId .
var ZL : QualifiedIdList .
vars ZZ ZZ0 : TypedQualifiedId .
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var ZZL : TypedQualifiedIdList .

eq bootstrap method O . M @ C’[VL]
with class C, caller O’, label K, history H =

bootstrap method O . M @ C’[VL]
with class C, caller O’, label K, history H,

attributes epsilon := epsilon .

eq classROAtt(C, CONFIG) = inheritedROAtt(C, CONFIG), self : C .

eq inheritedROAtt(epsilon, CONFIG) = epsilon .
eq inheritedROAtt((SUPERL’’’, C[EL]),

< C : Class | Impl: SUPERL, Ctrc: SUPERL’,
Inh: SUPERL’’, Param: PPL, Att: WWL,
Mtd: MM, ObjCnt: N, Asum: ASUM,
Guar: GUAR >

CONFIG) =
inheritedROAtt((SUPERL’’’, SUPERL’’),

< C : Class | Impl: SUPERL, Ctrc: SUPERL’,
Inh: SUPERL’’, Param: PPL, Att: WWL,
Mtd: MM, ObjCnt: N, Asum: ASUM,
Guar: GUAR >

CONFIG),
(PPL @@ C) .

*** Definition T18 (Processor Release Predicate)
eq release(ASUM, GUAR, O, O’, K, ZZL, ALPHA, ALPHA’) =

lwf({~H~} ALPHA’, O)
and {~H~} ALPHA ^^ [O . release] pr {~H~} ALPHA’
and mayAcquireProcessor({~H~} ALPHA’, O, O’, K)
and pending({~H~} ALPHA’, O’, O, K)
and compatibleStates(ALPHA, ALPHA’)
and readOnly(ZZL, ALPHA, ALPHA’)
and ((({~H~} ALPHA ^^ [O . release]) / (out[O] | ctl[O]) ==

{~H~} ALPHA’ / (out[O] | ctl[O])) implies
(ALPHA [~H~ |-> {~H~} ALPHA’] == ALPHA’))

and ({ASUM && GUAR} ALPHA implies {ASUM && GUAR} ALPHA’) .

*** Definition T24 (Local Reentry Predicate)
eq reenter(ASUM, GUAR, O, O’, K, K’, ZZL, ALPHA, ALPHA’) =

lwf({~H~} ALPHA’, O)
and {~H~} ALPHA ^^ [K’ % O . reenter] pr {~H~} ALPHA’
and {~H~} ALPHA’ ew [K’ % O <- O . *]
and pending({~H~} ALPHA’, O’, O, K)
and compatibleStates(ALPHA, ALPHA’)
and readOnly(ZZL, ALPHA, ALPHA’)
and ({ASUM && GUAR} ALPHA implies {ASUM && GUAR} ALPHA’) .

*** Definition T25 (Parallel Activity Interleaving Predicate)
eq interleave(ASUM, O, ALPHA, H) =

lwf(H, O)
and {~H~} ALPHA pr H
and {~H~} ALPHA / (out[O] | ctl[O]) == H / (out[O] | ctl[O])
and {ASUM} ALPHA implies {ASUM} ALPHA [~H~ |-> H] .
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eq compatibleStates(emptyState, emptyState) = true .
eq compatibleStates([Z |-> V] SIGMA, SIGMA’ [Z |-> V’] SIGMA’’) =

typeOf(V) == typeOf(V’)
and compatibleStates(SIGMA, SIGMA’ SIGMA’’) .

eq compatibleStates(SIGMA, SIGMA’) = false [otherwise] .

*** Definition T20 (Local History Well-Formedness)
eq lwf(H, O) = wf(H) and H == H / O .

*** Definition T19 (History Well-Formedness)

*** slightly altered to take advantage of the naming scheme enforced by

*** the interpreter
eq wf(emptyHistory) = true .
eq wf(H ^^ [O -> O’ . new C[VL]]) =

wf(H) and parent(O’) == O and seq(O’) >= nextChild(H, O) .
eq wf(H ^^ [K % O -> O’ . M @ C[VL]]) =

wf(H) and K >= nextLabel(H, O) .
eq wf(H ^^ [K % O <- O’ . M @ C[VL ; WL]]) =

wf(H) and pending(H, O, O’, K) .
eq wf(H ^^ [O . initialized]) =

wf(H) and not [O . initialized] in H .
eq wf(H ^^ [O . release]) = wf(H) .
eq wf(H ^^ [K % O . reenter]) =

wf(H) and pending(H, O, O, K) and not [K % O . reenter] in H .

*** Definition T22 (Pending Call Predicate)
eq pending(H, O, O’, K) =

[K % O -> O’ . *] in H and not [K % O <- O’ . *] in H .

*** Definition T23 (Read-Only Predicate)
eq readOnly(epsilon, ALPHA, ALPHA’) = true .
eq readOnly((ZZ0, ZZL), ALPHA, ALPHA’) =

{ZZ0} ALPHA == {ZZ0} ALPHA’ and readOnly(ZZL, ALPHA, ALPHA’) .

*** Definition T21 (Processor Acquisition Predicate)

*** slightly altered to make it executable
eq mayAcquireProcessor(H, O, O’, K) =

H / (out[O] | ctl[O]) ew ([O . initialized] | [O . release])
or (O == O’ and H / (out[O] | ctl[O]) ew [K % O . reenter])
or (H / (out[O] | ctl[O]) ew [* <- O]

and not [trailingReplySeqNum(H) % O . reenter] in H) .

eq replyEvent(H ^^ [K % O’ -> O . M @ C[VL]] ^^ H’, O, O’, K, WL) =
[K % O’ <- O . M @ C[VL ; WL]] .

eq replies(emptyHistory, O) = emptyMSet .
eq replies(H ^^ [K % O <- O’ . M[VL ; WL]], O) =

Reply(K, WL) ++ replies(H, O) .
eq replies(H ^^ EV, O) = replies(H, O) [otherwise] .

eq trailingReplySeqNum(emptyHistory) = -1 .
eq trailingReplySeqNum(H ^^ [K % O <- O’ . M @ C[VL ; WL]]) = K .
eq trailingReplySeqNum(H ^^ EV) = trailingReplySeqNum(H) [otherwise] .

eq nextLabel(emptyHistory, O) = 0 .
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eq nextLabel(H ^^ [K % O -> O’ . M @ C[VL]], O) = K + 1 .
eq nextLabel(H ^^ EV, O) = nextLabel(H, O) [otherwise] .

eq nextChild(emptyHistory, O) = 0 .
eq nextChild(H ^^ [O -> O # N . new C[VL]], O) = N + 1 .
eq nextChild(H ^^ EV, O) = nextChild(H, O) [otherwise] .

*** Rewrite Rule S1’alpha (Object Bootstrapping)
crl [object-bootstrapping’] :
{

bootstrap object O := new C[VL] with parent O’
CONFIG

}
=>

{
< O : C | Pr: initialPr(C[VL], CONFIG) ;

~H~ := ~H~ ^^ [O . initialized],
LVar: emptyState,
Att: initialAtt(C, CONFIG) [~H~ |-> H][self |-> O],
MsgQ: emptyMSet, Asum: ASUM, Guar: GUAR,
ROAtt: classROAtt(C, CONFIG) >

CONFIG
}
if H := [O’ -> O . new C[VL]]

/\ parent(O) == O’
/\ < ASUM, GUAR > := classAGSpec(C, CONFIG) .

*** Rewrite Rule S1’beta (Method Bootstrapping)
crl [method-bootstrapping’] :
{

bootstrap method O . M @ C’[VL]
with class C, caller O’, label K, history H,

attributes ZL := WL
CONFIG

}
=>

{
< O : C | Pr: S, LVar: BETA,

Att: [~H~ |-> H][self |-> O][ZL |-> WL],
MsgQ: replies(H, O), Asum: ASUM, Guar: GUAR,
ROAtt: classROAtt(C, CONFIG) >

CONFIG
}
if lwf(H, O)

/\ H bw [* -> O . new C[*]]
/\ mayAcquireProcessor(H, O, O’, K)
/\ [K % O’ -> O . M @ C’[VL]] in H
/\ pending(H, O’, O, K)
/\ < S, BETA > := boundMtd(if C’ == none then C else C’ fi, O’,

K, M, VL, CONFIG)
/\ < ASUM, GUAR > := classAGSpec(C, CONFIG) .

*** Rewrite Rule S13’ (Object Creation)

*** slightly altered to make it executable
crl [object-creation’] :
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< O : C | Pr: ZZ := new C’[EL] ; S, LVar: BETA, Att: ALPHA, ETC >
=>

< O : C | Pr: ZZ := O’ ; S, LVar: BETA, Att: ALPHA [~H~ |-> H], ETC >
if O’ := O # nextChild({~H~} ALPHA, O)

/\ H := {~H~} ALPHA ^^ [O -> O’ . new C’[{EL} ALPHA BETA]] .

*** Rewrite Rule S14’ (Process Suspension and Reactivation)
crl [process-suspension-and-reactivation’-nonexec] :
< O : C | Pr: S, LVar: BETA, Att: ALPHA, MsgQ: Q, Asum: ASUM,

Guar: GUAR, ROAtt: ZZL, ETC >
=>

< O : C | Pr: clearWait(S), LVar: BETA, Att: ALPHA’,
MsgQ: replies({~H~} ALPHA’, O), Asum: true, Guar: GUAR,
ROAtt: ZZL, ETC >

if not enabled(S, ALPHA BETA, Q)
and release(ASUM, GUAR, O, {caller} BETA, {label} BETA, ZZL, ALPHA,

ALPHA’)
and enabled(clearWait(S), ALPHA’ BETA, replies({~H~} ALPHA’, O))

[nonexec] .

*** Rewrite Rule S14’ (Process Suspension and Reactivation)

*** alternative version that relies on user-supplied random data
crl [process-suspension-and-reactivation’] :
< O : C | Pr: S, LVar: BETA, Att: ALPHA, MsgQ: Q, Asum: ASUM,

Guar: GUAR, ROAtt: ZZL, ETC >
random data ALPHA’
=>

< O : C | Pr: clearWait(S), LVar: BETA, Att: ALPHA’,
MsgQ: replies({~H~} ALPHA’, O), Asum: ASUM, Guar: GUAR,
ROAtt: ZZL, ETC >

random data ALPHA’
if not enabled(S, ALPHA BETA, Q)

and release(ASUM, GUAR, O, {caller} BETA, {label} BETA, ZZL, ALPHA,
ALPHA’)

and enabled(clearWait(S), ALPHA’ BETA, replies({~H~} ALPHA’, O)) .

*** Rewrite Rule S16’ (Asynchronous Invocation)

*** slightly altered to make it executable
crl [asynchronous-invocation’] :
< O : C | Pr: LL ! OEXP . M[EL] ; S, LVar: BETA, Att: ALPHA, ETC >
=>

< O : C | Pr: S, LVar: BETA [LL |-> K], Att: ALPHA [~H~ |-> H], ETC >
if K := nextLabel({~H~} ALPHA, O)

/\ H := {~H~} ALPHA
^^ [K % O -> {OEXP} ALPHA BETA . M[{EL} ALPHA BETA]] .

*** Rewrite Rule S17’ (Local Asynchronous Invocation)

*** slightly altered to make it executable
crl [local-asynchronous-invocation’] :
< O : C | Pr: LL ! M @ C’[EL] ; S, LVar: BETA, Att: ALPHA, ETC >
=>

< O : C | Pr: S, LVar: BETA [LL |-> K], Att: ALPHA [~H~ |-> H], ETC >
if K := nextLabel({~H~} ALPHA, O)

/\ H := {~H~} ALPHA ^^ [K % O -> O . M @ C’[{EL} ALPHA BETA]] .
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*** Rewrite Rule S20’ (Method Return)
crl [method-return’] :
< O : C | Pr: return EL ; S, LVar: BETA, Att: ALPHA, ETC >
=>

< O : C | Pr: S, LVar: BETA, Att: ALPHA [~H~ |-> H], ETC >
if H := {~H~} ALPHA ^^ replyEvent({~H~} ALPHA, O, {caller} BETA,

{label} BETA, {EL} ALPHA BETA) .

*** Rewrite Rule S23’ (Local Reentry and Continuation)
crl [local-reentry-and-continuation’-nonexec] :
< O : C | Pr: LL ?[ZZL] ; S, LVar: BETA, Att: ALPHA, Asum: ASUM,

Guar: GUAR, ROAtt: ZZL, ETC >
=>

< O : C | Pr: LL ?[ZZL] ; S, LVar: BETA, Att: ALPHA’, Asum: ASUM,
Guar: GUAR, ROAtt: ZZL, ETC >

if pending({~H~} ALPHA, O, O, {LL} BETA)
and reenter(ASUM, GUAR, O, {caller} BETA, {label} BETA,

{LL} BETA, ZZL, ALPHA, ALPHA’) [nonexec] .

*** Rewrite Rule S23’ (Local Reentry and Continuation)

*** alternative version that relies on user-supplied random data
crl [local-reentry-and-continuation’] :
< O : C | Pr: LL ?[ZZL] ; S, LVar: BETA, Att: ALPHA, Asum: ASUM,

Guar: GUAR, ROAtt: ZZL, ETC >
random data ALPHA’
=>

< O : C | Pr: LL ?[ZZL] ; S, LVar: BETA, Att: ALPHA’, Asum: ASUM,
Guar: GUAR, ROAtt: ZZL, ETC >

random data ALPHA’
if pending({~H~} ALPHA, O, O, {LL} BETA)

and reenter(ASUM, GUAR, O, {caller} BETA, {label} BETA, {LL} BETA,
ZZL, ALPHA, ALPHA’) .

*** Rewrite Rule S25’ (Parallel Activity)
crl [environment-activity’] :
< O : C | Pr: S, Att: ALPHA, MsgQ: Q, Asum: ASUM, ETC >
=>

< O : C | Pr: S, Att: ALPHA [~H~ |-> H], MsgQ: replies(H, O), ETC >
if interleave(ASUM, O, ALPHA, H) [nonexec] .

*** Rewrite Rule S25’ (Parallel Activity)

*** alternative version that relies on user-supplied random data
crl [environment-activity’] :
< O : C | Pr: S, Att: ALPHA, MsgQ: Q, Asum: ASUM, ETC >
random data H
=>

< O : C | Pr: S, Att: ALPHA [~H~ |-> H], MsgQ: replies(H, O),
Asum: ASUM, ETC >

random data H
if interleave(ASUM, O, ALPHA, H)

and H =/= {~H~} ALPHA .
endm
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B.7 All Creol Tools

***(
creol-tools.maude

This file loads all the modules necessary to use the Creol assertion
analyzer, the interpreter for closed systems, or the interpreter for
open systems. See Appendix A for a user’s guide.

)

load creol-program.maude .
load creol-assertion-utilities.maude .
load creol-assertion-analyzer.maude .
load creol-interpreter-core.maude .
load creol-closed-interpreter.maude .
load creol-open-interpreter.maude .

*** pas de jaloux
select CREOL-PROGRAM .



Appendix C

Specifications of the Case Studies

This appendix presents the complete Maude specification of the case studies that
were presented in Chapter 7. The code is put in the public domain.

C.1 Bank Account

***(
bank-account.maude

This file specifies the ’NetBankAccount class presented in Section
7.1 of Verification of Assertions in Creol Programs, together with
the associated simplification rules.

)

load creol-tools.maude .

mod BANK-ACCOUNT-SIMPLIFICATION-RULES is
including CREOL-SIMPLIFICATION-RULES .

vars A A’ A1 A2 A3 : AExp .
var EEXP : EventExp .
var HEXP : HistoryExp .
var OEXP : OExp .
var PHI : Assn .

*** simplification rules derived from the definition of ’noNegatives
rl ’noNegatives[emptyHistory] => true .
rl ’noNegatives[HEXP ^^ [A % OEXP -> self : any . ’deposit[A’]]] =>

A’ ge 0 && ’noNegatives[HEXP] .
rl ’noNegatives[HEXP ^^ [A % OEXP -> self : any . ’payBill[A’]]] =>

A’ ge 0 && ’noNegatives[HEXP] .
crl ’noNegatives[HEXP ^^ EEXP] => ’noNegatives[HEXP]
if EEXP cannot match invoke .

*** simplification rules derived from the definition of ’sum
rl ’sum[emptyHistory] => 0 .
rl ’sum[HEXP ^^ [A % OEXP <- self : any . ’deposit[A’ ; epsilon]]] =>
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’sum[HEXP] plus A’ .
rl ’sum[HEXP ^^ [A % OEXP <- self : any . ’payBill[A’ ; epsilon]]] =>

’sum[HEXP] minus A’ .
crl ’sum[HEXP ^^ EEXP] => ’sum[HEXP]
if EEXP cannot match reply .

*** additional simplification rule
rl ((A1 le A2 && ’noNegatives[HEXP]

&& [A % OEXP -> self : any . ’deposit[A3]] in HEXP
&& PHI) ==> A1 le A2 plus A3) =>

true .
endm

fmod BANK-ACCOUNT-PROGRAM is
including CREOL-PROGRAM .

op prog : -> Config .

eq prog =
interface ’BankAccount
begin with any :

op ’deposit[in ’amount : int]
op ’payBill[in ’amount : int]

asum ’noNegatives[~H~]
end

class ’NetBankAccount
implements ’BankAccount

begin
var ’balance : int

with any :
op ’deposit[in ’amount : int] is

’balance := ’balance plus ’amount

op ’payBill[in ’amount : int] is
await ’balance ge ’amount ;
’balance := ’balance minus ’amount

guar ’balance ge 0 && ’balance eq ’sum[~H~]
end

class ’Student [’account : ’BankAcount]
begin

op ’run is
while true do

’account . ’payBill[200 ;]
od

end

class ’LoanAuthority [’account : ’BankAccount]
begin

op ’run is
while true do
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’account . ’deposit[500 ;]
od

end

*** test driver
class ’Main
begin

op ’run is
var ’account : ’BankAccount, ’student : any,

’authority : any ;
’account := new ’NetBankAccount ;
’student := new ’Student[’account] ;
’authority := new ’LoanAuthority[’account]

end
.

endfm

mod BANK-ACCOUNT-CLOSED-SYSTEM is
including BANK-ACCOUNT-PROGRAM .
including CREOL-INTERPRETER-FOR-CLOSED-SYSTEMS .

op init : -> GlobalConfig .

eq init =
{

prog
bootstrap system ’Main

} .
endm

mod BANK-ACCOUNT-VERIFICATION is
including BANK-ACCOUNT-PROGRAM .
including CREOL-ASSERTION-ANALYZER .

op init : -> GlobalConfig .

eq init =
{

prog
verify class ’NetBankAccount

with simplifications ’BANK-ACCOUNT-SIMPLIFICATION-RULES
} .

endm

C.2 Read–Write Lock

***(
read-write-lock.maude

This file specifies the ’WriterFriendlyRWLock class presented in
Section 7.2 of Verification of Assertions in Creol Programs, together
with the associated simplification rules.

)
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load creol-tools.maude .

mod READ-WRITE-LOCK-SIMPLIFICATION-RULES is
including CREOL-SIMPLIFICATION-RULES .

var A : AExp .
var EEXP : EventExp .
var HEXP : HistoryExp .
var OEXP : OExp .
var PHI : Assn .

*** simplification rules derived from the definition of ’numReaders
rl ’numReaders[emptyHistory] => 0 .
rl ’numReaders[HEXP ^^ [A % OEXP <- self : any .

’beginRead[epsilon ; epsilon]]] =>
’numReaders[HEXP] plus 1 .

rl ’numReaders[HEXP ^^ [A % OEXP <- self : any .
’endRead[epsilon ; epsilon]]] =>

’numReaders[HEXP] minus 1 .
rl ’numReaders[HEXP ^^ [A % OEXP <- self : any .

’beginWrite[epsilon ; epsilon]]] =>
’numReaders[HEXP] .

rl ’numReaders[HEXP ^^ [A % OEXP <- self : any .
’endWrite[epsilon ; epsilon]]] =>

’numReaders[HEXP] .
crl ’numReaders[HEXP ^^ EEXP] => ’numReaders[HEXP]
if EEXP cannot match reply .

*** simplification rules derived from the definition of ’numWriters
rl ’numWriters[emptyHistory] => 0 .
rl ’numWriters[HEXP ^^ [A % OEXP <- self : any .

’beginRead[epsilon ; epsilon]]] =>
’numWriters[HEXP] .

rl ’numWriters[HEXP ^^ [A % OEXP <- self : any .
’endRead[epsilon ; epsilon]]] =>

’numWriters[HEXP] .
rl ’numWriters[HEXP ^^ [A % OEXP <- self : any .

’beginWrite[epsilon ; epsilon]]] =>
’numWriters[HEXP] plus 1 .

rl ’numWriters[HEXP ^^ [A % OEXP <- self : any .
’endWrite[epsilon ; epsilon]]] =>

’numWriters[HEXP] minus 1 .
crl ’numWriters[HEXP ^^ EEXP] => ’numWriters[HEXP]
if EEXP cannot match reply .

*** additional simplification rules
rl [A % OEXP -> self : any . ’endRead[epsilon]] in HEXP

&& ! ([A % OEXP <- self : any . *] in HEXP)
&& ’lwf[HEXP, self : any]
&& #[HEXP / [* -> self : any . ’endRead[*]]] le

#[HEXP / [* -> self : any . ’beginRead[*]]]
&& 0 eq ’numReaders[HEXP] =>
false .

rl [A % OEXP -> self : any . ’endWrite[epsilon]] in HEXP
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&& ! ([A % OEXP <- self : any . *] in HEXP)
&& ’lwf[HEXP, self : any]
&& #[HEXP / [* -> self : any . ’endWrite[*]]] le

#[HEXP / [* -> self : any . ’beginWrite[*]]]
&& 0 eq ’numWriters[HEXP] =>
false .

rl (([A % OEXP -> self : any . ’endRead[epsilon]] in HEXP
&& ! ([A % OEXP <- self : any . *] in HEXP)
&& ’lwf[HEXP, self : any]
&& #[HEXP / [* -> self : any . ’endRead[*]]] le

#[HEXP / [* -> self : any . ’beginRead[*]]]
&& PHI) ==>

0 lt ’numReaders[HEXP]) =>
true .

endm

fmod READ-WRITE-LOCK-PROGRAM is
including CREOL-PROGRAM .

op prog : -> Config .

eq prog =
interface ’RWLock
begin
with any :

op ’beginRead
op ’endRead
op ’beginWrite
op ’endWrite

asum #[~H~ / [* -> self . ’beginRead[*]]] ge
#[~H~ / [* -> self . ’endRead[*]]]
&& #[~H~ / [* -> self . ’beginWrite[*]]] ge

#[~H~ / [* -> self . ’endWrite[*]]]
guar ’numWriters[~H~] eq 0

|| [’numWriters[~H~] eq 1 && ’numReaders[~H~] eq 0]
end

class ’WriterFriendlyRWLock
implements ’RWLock

begin
var ’nr : int, ’nw : int, ’dw : int

with any :
op ’beginRead is

await ’nw eq 0 && ’dw eq 0 ;
’nr := ’nr plus 1

op ’endRead is
prove ’nr gt 0 ;
’nr := ’nr minus 1

op ’beginWrite is
’dw := ’dw plus 1 ;
await ’nr eq 0 && ’nw eq 0 ;
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’dw := ’dw minus 1 ;
’nw := ’nw plus 1

op ’endWrite is
prove ’nw gt 0 ;
’nw := ’nw minus 1

guar ’nr eq ’numReaders[~H~] && ’nw eq ’numWriters[~H~]
end

class ’Reader [’lock : ’RWLock]
begin

var ’n : int

op ’run is
while true do

await ’lock . ’beginRead[] ;
’n := ’n plus 1 ;
! ’lock . ’endRead[]

od
end

class ’Writer [’lock : ’RWLock]
begin

var ’n : int

op ’run is
while true do

await ’lock . ’beginWrite[] ;
’n := ’n plus 1 ;
! ’lock . ’endWrite[]

od
end

*** test driver
class ’Main
begin

op ’run is
var ’lock : ’RWLock, ’o : any ;
’lock := new ’WriterFriendlyRWLock ;
’o := new ’Reader[’lock] ;
’o := new ’Reader[’lock] ;
’o := new ’Reader[’lock] ;
’o := new ’Writer[’lock] ;
’o := new ’Writer[’lock] ;
’o := new ’Writer[’lock]

end
.

endfm

mod READ-WRITE-LOCK-CLOSED-SYSTEM is
including CREOL-INTERPRETER-FOR-CLOSED-SYSTEMS .
including READ-WRITE-LOCK-PROGRAM .

op init : -> GlobalConfig .
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eq init =
{

prog
bootstrap system ’Main

} .
endm

mod READ-WRITE-LOCK-VERIFICATION is
including CREOL-ASSERTION-ANALYZER .
including READ-WRITE-LOCK-PROGRAM .

op init : -> GlobalConfig .

eq init =
{

prog
verify class ’WriterFriendlyRWLock

with simplifications ’READ-WRITE-LOCK-SIMPLIFICATION-RULES
} .

endm

C.3 Factorial

***(
factorial.maude

This file specifies the ’IterativeFactorial, ’RecursiveFactorial, and
’NonterminatingFactorial classes presented in Sections 7.3 and 7.4 of
Verification of Assertions in Creol Programs, together with the
associated simplification rules.

)

load creol-tools.maude .

mod FACTORIAL-SIMPLIFICATION-RULES is
including CREOL-SIMPLIFICATION-RULES .

vars A A’ A1 A2 : AExp .
var EEXP : EventExp .
vars HEXP HEXP’ HEXP’’ : HistoryExp .
var N : Int .
var OEXP : OExp .
var PHI : Assn .

*** simplification rules derived from the definition of ’G
rl ’G[emptyHistory] => true .
rl ’G[HEXP ^^ [A % OEXP <- self : any . ’compute[A1 ; A2]]] =>

’G[HEXP] && A2 eq ’fact[A1] .
crl ’G[HEXP ^^ EEXP] => ’G[HEXP] if EEXP cannot match reply .

*** simplification rules derived from the definition of ’fact
rl ’fact[N] => if N > 1 then N * ’fact[N - 1] else 1 fi .
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*** additional simplification rules
rl ((1 le A && PHI) ==>

’fact[A plus 1] eq ’fact[A] times (A plus 1)) =>
true .

rl ’fact[A] eq 1 => A le 1 .
rl ((’G[HEXP’]

&& ’lwf[HEXP’, self : any]
&& HEXP ^^ [A % self : any -> self : any . ’compute[A’ minus 1]]

^^ [A % self : any . reenter] pr HEXP’
&& PHI) ==>
’fact[A’] eq A’ times ’returnVal $ 1[HEXP’, self : any, A]) =>

true .
rl HEXP ^^ [A % self : any -> self : any . ’compute[A’]]

^^ HEXP’’ pr HEXP’
&& HEXP’ ew [A % self : any <- self : any . *]
&& ! ([* <- self : any . ’compute[*]] in HEXP’) =>
false .

endm

fmod FACTORIAL-PROGRAM is
including CREOL-PROGRAM .

op prog : -> Config .

eq prog =
interface ’Factorial
begin
with any :

op ’compute[in ’x : int out ’y : int]

guar ’G[~H~]
end

class ’IterativeFactorial
implements ’Factorial

begin
with any :

op ’compute[in ’x : int out ’y : int] is
var ’i : int ;
’i := 1 ;
’y := 1 ;
inv ’G[~H~] && ’i ge 1 && [’i le ’x || [’i eq 1 && ’x lt 1]]

&& ’y eq ’fact[’i]
while ’i lt ’x do

’i := ’i plus 1 ;
’y := ’y times ’i

od
end

class ’RecursiveFactorial
implements ’Factorial

begin
with any :

op ’compute[in ’x : int out ’y : int] is
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if ’x le 1 th
’y := 1

el
’compute[’x minus 1 ; ’y] ;
’y := ’y times ’x

fi
end

class ’NonterminatingFactorial
implements ’Factorial

begin
with any :

op ’compute[in ’x : int out ’y : int] is
’compute[’x ; ’y]

guar ! [[* <- self . ’compute[*]] in ~H~]
end

*** test driver
class ’Main
begin

op ’run is
var ’fact1 : ’Factorial, ’fact2 : ’Factorial, ’y1 : int,

’y2 : int ;
’fact1 := new ’IterativeFactorial ;
’fact1 . ’compute[7 ; ’y1] ;
’fact2 := new ’RecursiveFactorial ;
’fact2 . ’compute[7 ; ’y2]

end
.

endfm

mod FACTORIAL-CLOSED-SYSTEM is
including CREOL-INTERPRETER-FOR-CLOSED-SYSTEMS .
including FACTORIAL-PROGRAM .

op init : -> GlobalConfig .

eq init =
{

prog
bootstrap system ’Main

} .
endm

mod FACTORIAL-VERIFICATION is
including CREOL-ASSERTION-ANALYZER .
including FACTORIAL-PROGRAM .

op init1 : -> GlobalConfig .
op init2 : -> GlobalConfig .
op init3 : -> GlobalConfig .

eq init1 =
{
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prog
verify class ’IterativeFactorial

with simplifications ’FACTORIAL-SIMPLIFICATION-RULES
} .

eq init2 =
{

prog
verify class ’RecursiveFactorial

with simplifications ’FACTORIAL-SIMPLIFICATION-RULES
} .

eq init3 =
{

prog
verify class ’NonterminatingFactorial

with simplifications ’FACTORIAL-SIMPLIFICATION-RULES
} .

endm
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