University of Oslo
Department of Informatics

Relating computer
systems to sequence
diagrams with
underspecification,
inherent
nondeterminism and
probabilistic choice

Part 2

Atle Refsdal,
Ragnhild Kobro
Runde,

Ketil Stglen

Research Report 347

[SBN 82-7368-304-4
ISSN 0806-3036

December 21, 2007

Relating computer systems to sequence diagrams
with underspecification, inherent nondeterminism
and probabilistic choice

Part 2: probabilistic choice

Atle Refsdal!2, Ragnhild Kobro Runde!, Ketil Stglen'+2

! Department of Informatics, University of Oslo, Norway
2 SINTEF ICT, Norway

Abstract. Having a sequence diagram specification and a computer sys-
tem, we need to answer the question: Is the system compliant with the
sequence diagram specification in the desired way? We present a pro-
cedure for answering this question for three variations of sequence dia-
grams. The procedure does not require access to information about the
internals of the system such as program code.

The semantics of sequence diagrams is denotational and based on traces.
In order to answer the initial question, the procedure starts by obtaining
a basic representation of the system by e.g. testing. This representation
is then transformed into the same semantic model as that used for the
sequence diagram. Finally, a formal definition of compliance is applied
to determine whether the system complies with the specification.
Compliance is closely related to refinement, and the definitions of com-
pliance are based on refinement definitions. Therefore refinement as well
as compliance is addressed. Compliance is not identical to refinement
due to the partial nature of sequence diagram specifications.

The work is split in two parts. Part 1 [RRS07| introduces the neces-
sary definitions for using the compliance checking procedure on sequence
diagrams with underspecification and sequence diagrams with inherent
nondeterminism. This paper presents Part 2, in which we introduce the
necessary definitions for using the compliance checking procedure on se-
quence diagrams with probabilistic choice. Part 1 is a necessary prereq-
uisite for Part 2.

1 Introduction

Having a sequence diagram specification and a computer system, we need to
answer the question: Is the system compliant with the specification in the desired
way?

Sequence diagrams are widely used for specifying computer systems within a
broad range of application domains. They are used for different methodological
purposes including requirements capture, illustrating example runs, test scenario

specification and risk scenario documentation. Although sequence diagrams are
widely used in practice, their relationship to real computer systems is neverthe-
less surprisingly unclear. This is partly caused by the fact that sequence diagrams
are used for different purposes, but even more so because in contrast to most
other techniques for specifying dynamic behaviour they give only a partial view.

Answering the initial question above requires an understanding of what is
meant by a computer system and to what extent such a system is different from
a sequence diagram. Obviously, we need a formal model for computer systems.
Also, the answer clearly depends on the expressiveness of the sequence diagram
dialect we are using. In this paper we study the problem with respect to sequence
diagrams with probabilistic choice, as formally defined in the denotational trace
semantics of probabilistic STAIRS (pSTAIRS) [RHS07a].

The notion of compliance is closely related to that of refinement. Whereas
compliance relates a specification to (a mathematical representation of) a sys-
tem, refinement is a way of relating different specifications of the same system
at different levels of abstraction. The idea is that a refinement should be a more
detailed description containing all the constraints given by the original specifi-
cation, in addition to some new ones.? Different development stages may require
different notions of refinement. For example, in early stages one may wish to al-
low introduction of new alternative ways to solve a certain task (i.e. to introduce
more underspecification). Toward the end of the development process the only
allowed refinement might be to decide on how each task will actually be solved,
which amounts to removing underspecification by making design decisions. The
final specification used when implementing the system is the result of several
successive refinement steps. The system should be compliant not only with the
final specification, but also with all specifications in the chain of refinements.
Consequently, we may need several notions of compliance corresponding to the
various notions of refinement.

As a computer program or other system representation may be viewed as
a specification, one might ask why compliance is not identical to refinement.
The reason for defining compliance separately from refinement is that a system
representation is (ideally) complete, while sequence diagrams are partial specifi-
cations. Sequence diagrams may include so-called implied scenarios, as explained
under “Restricted compliance relation” in Section 4.2 of [RRS07]. Implied sce-
narios must be taken into account when defining compliance. For example, some
refinement relations allow only behavior that is explicitly described as acceptable
at the abstract level to be acceptable at the concrete level. If compliance was
identical to refinement this would imply that specifications with implied scenar-
ios could not be complied with, since the implied scenarios would occur explicitly
in the system representation but not in the sequence diagram specification.

3 Note that we use the term “constraint” rather loosely. For instance, the addition of
a new constraint may result in the specification requiring more behaviours of the
system.

In this paper we only consider compliance for probabilistic sequence diagrams
without external input and output. For such sequence diagrams, we propose the
following compliance checking procedure:

1. Given a computer system I and a sequence diagram d, use e.g. testing on
I to obtain a probability space representing the system behavior, where the
sample space is the set of all traces that may be produced by I.

2. Transform this probability space into the same semantic model as that used
for d.

3. Depending on the kind of compliance desired, select the appropriate compli-
ance relation.

4. I is compliant with d if this compliance relation holds between the semantics
of d and the representation of I obtained in step 2.

In practice, a test will always give an imperfect picture of the system, since
the test will necessarily be finite. Only a finite number of trace instances can be
observed. Firstly, this means that the set of all observed traces may be only a
subset of the traces that the system is actually able to produce. Secondly, since
the probabilities obtained from a test will be based on frequencies of observed
trace instances, the probabilities will necessarily be inaccurate. However, the
accuracy of the obtained probabilities can always be increased by increasing the
number of observed trace instances. Thirdly, even if a system is in principle able
to produce infinitely long traces, we can only observe finite traces. In such cases
the best we can do is to make an estimate based on the observed behaviour. For
example, if the same output has been transmitted continuously for a long period
of time, then we may assume that an infinite loop has been entered.

The above imperfections are unavoidable for any method of judging compli-
ance based on testing, in contrast to methods based on full information about the
internals of the system such as program code. But such information is usually too
complex or not even accessible for those responsible for determining whether the
system complies with the specification. Therefore a procedure based on testing
is more useful in practice. It is up to those responsible for the test to decide how
extensive the test should be, i.e. how many and how long observations should
be made. This will depend on the nature of the system under consideration.

Different development stages may not only involve different notions of refine-
ment and compliance, but also different requirements as regards probabilities. In
early stages the focus may typically be on what alternatives the system should
be able to produce, and developers will describe these alternatives until a suit-
able level of abstraction is reached. In these stages developers are not concerned
with probability values. Therefore sequence diagrams with inherent nondeter-
minism, together with the appropriate refinement and compliance relations, of-
fer a sufficient level of expressiveness. At a later stage it may be necessary to
introduce probabilities for the different alternatives. To ensure that the intended
relationships between specifications (or between specifications and system rep-
resentations) are preserved when introducing probabilities two issues must be
resolved. Firstly, a probabilistic interpretation of inherent nondeterminism must

be established. Obviously, this interpretation must allow a large degree of free-
dom with respect to the actual probabilities; otherwise the developers would not
be able to choose suitable probability values for the alternatives. Secondly, we
need probabilistic counterparts to the refinement and compliance relations used
for specifications with inherent nondeterminism. These relations should fulfill
the following condition for all specifications of practical interest: If a certain
relation holds for specifications with inherent nondeterminism then the proba-
bilistic counterpart of this relation holds for the probabilistic interpretation of
the specifications.

The rest of this paper is organized as follows: In Section 2 we state the re-
quirements that a step-wise procedure for checking computer systems against
probabilistic sequence diagrams needs to fulfill. The semantics of probabilistic
STAIRS is explained in Section 3. Section 4 gives a number of alternative defini-
tions of refinement. These definitions are evaluated and compared with respect
to mathematical properties that are desirable from a practical point of view.
Based on the refinement definitions given in Section 4 we define what it means
for a system to be compliant with a probabilistic sequence diagram in Section
5. In Section 6 we give a probabilistic interpretation of sequence diagrams with
inherent nondeterminism, and explore correspondence between refinement and
compliance relations when switching from sequence diagrams with inherent non-
determinism to sequence diagrams with probabilistic choice, as discussed in the
previous paragraph. We present some related work in Section 7 before concluding
in Section 8.

Some new definitions and notations to facilitate formal proofs are introduced
in Appendix A, while shorthand notation used in the proofs is explained in
Appendix B. Finally, the proofs are contained in Appendix C.

2 Requirements

In order to motivate the following discussion and formal definitions, we formu-
late a number of requirements that our procedure has been designed to fulfill.
That these requirements are met, is demonstrated throughout the discussion and
summed up in Section 8.

1. The procedure should be independent of the choice of programming lan-
guage in which the system is implemented. A sequence diagram does not
prescribe any particular programming language, and the procedure should
be sufficiently general to capture all possible choices. In general, we cannot
assume that we have access to the source code of the system. This means
that the only knowledge about the system that may be used by the proce-
dure, is what can be obtained by testing. Although not feasible in practice,
we assume that we are able to observe infinite runs. Otherwise, only safety
properties could be falsified.

2. The notion of compliance should be a special case of refinement. Given a
sequence diagram and its refinement, the procedure should give that a system

is compliant with the refinement only if the system is also compliant with
the original sequence diagram.

3. The procedure should allow inherently nondeterministic choices in a speci-
fication to be replaced by probabilistic choices at some point in the devel-
opment process. This allows developers to focus on specifying the relevant
alternatives in the early stage of the process, and then add probabilities
later. It should therefore be possible to interpret a specification with inherent
nondeterminism as a probabilistic specification with a large degree of under-
specification with respect to probabilities. The compliance and refinement
relations used the for the specification with nondeterministic choice should
have probabilistic counterparts such that for all practical specifications the
relations are preserved when switching to the probabilistic interpretation.

4. The procedure should be faithful to the underlying ideas and principles of
UML 2.1 [OMGO6] sequence diagrams. UML is the leading specification lan-
guage within the software industry of today, and our goal is that our ap-
proach should be of help for UML practitioners.

3 The semantics of probabilistic STAIRS

In this section we explain and define the semantics of pSTAIRS. We start by
giving a thorough explanation of the operator palt for probabilistic choice.

3.1 Generalizing xalt into palt

Using xalt to specify inherent nondeterminism is not necessarily sufficient to
capture the desired system behavior. Most likely, the owner of the gambling
machine in Section 5.3 in [RRS07] wants it to be profitable. Hence, the chance
of winning should be significantly less than the chance of losing.

In order to specify probabilities for each alternative, the palt operator (first
introduced in [RHS05]) may be used instead of the xalt operator. The palt oper-
ator describes the probabilistic choice between two or more alternative operands
whose joint probability should add up to one. Each operand is assigned a set of
probabilities, and each operand should be chosen with a probability in its prob-
ability set. By using sets of probabilities instead of a single probability for each
operand we allow underspecification with respect to probabilities. This allows us
to specify for example a coin toss where any probability between 0.4 and 0.6 is
acceptable for the two possible outcomes.

At the semantic level, interaction obligations are replaced by p-obligations
of the form ((p,n),Q), where (p,n) is an interaction obligation and @ a set of
allowed probabilities. A p-obligation (o, Q') refines a p-obligation (o, Q) if o
refines o and Q' C Q. For the time being we assume the notion of general refine-
ment (defined on page 10 in [RRS07]) lifted from sets of interaction obligations
to sets of p-obligations in the obvious way.

Probabilities other than 1 can only be introduced in a p-obligation by the
palt operator. Any specification without a palt operator will contain exactly one

p-obligation, and the probability set of this p-obligation will be {1}. The defini-
tion of the palt semantics is fairly complicated and involves some new operators
on p-obligations and probability sets. We therefore introduce this definition in
a stepwise manner. First we give three preliminary definitions and explain why
these do not work as desired. The preliminary definitions are (3), (5) and (8).
Then we present Definition (9), which is how the palt-semantics is defined. Def-
inition (5) is a strengthening of (3), (8) is a strengthening of (5) and (9) is a
strengthening of (8).

Before defining the semantics of the palt, we define the notion of probability
decoration, which is used to assign probabilities to each operand of the palt
operator. Probability decoration may only occur in the operands of a palt and is
denoted by d;@ in the textual syntax, where d is a sequence diagram and @ is a
set of probabilities. Intuitively, d;(Q) states that the operand d should be selected
with a probability in (). Semantically, probability decoration is defined by:

def

[dQ'] = {(0,Q+Q)[(0,Q) €[]} (1)
Multiplication of probability sets is defined by

QuQ2 = {a1%a2| a1 €Q1 A € Qs (2)
A diagram on the form palt(di;Q1, - . . , dn;Qr) can be read as “one of the operands

di,...,d, should be selected; operand d; should be selected with a probability
in @7 and ... and the operand d,, should be selected with a probability in @,

It would be intuitively tempting to define the palt semantics in a similar
way as the xalt semantics, with the only difference being that each operand is
assigned a probability set. This would give the following definition:

[palt(di;Q1.. -, dnsQu) 1 = (JI Q5] (3)
j=1

where we use = to show that this is a preliminary definition. However, Defi-
nition 3 is not satisfactory. The reason is that we allow underspecification with
respect to probabilities, but the definition does not ensure that the probabilities
of the operands are chosen so that they add up to 1. To see this, assume we
want to specify a coin toss with a coin that is not necessarily completely fair, so
we accept any probability between 0.4 and 0.6 for the two alternatives, leaving
the exact amount of unfairness open for the implementers to decide. The two
acceptable outcomes are heads and tails, represented by the corresponding mes-
sages. It is not acceptable for the coin to come to rest standing on its side. We
try to express this by the specification in Figure 1. In the graphical notation we
write the probability sets for each operand to the palt operator after the operator
name. The first probability set belongs to the first operator, the second prob-
ability set to the second operator, and so on. The operators alt and refuse are
used to define the positive and the negative traces of the interaction obligations
representing heads and tails. Formal definitions are given in Definition (15) and
Definition (16) in Section 3.2. Now let

sd Coin1

|

! ‘ alt i heads
palt [0.4,0.6] [0.4,0.6]) ! 1
| |
| |
refuse J
ref Heads !
|
| | ait | tails
| | 1
ref Tails 1 side
I
T
|
I

alt | tails |
| |

} J

| L

refuse J }
| |

| |

alt } heads }

) 1

! side !

I 1

T T

| |

| |

Fig. 1. A coin toss with underspecification with respect to probabilities

s = {(lheads, Theads)}
st = {(!tails, 7tails)}
ss = {{!side, ?side) }

on = (8h, st U sg)

o1 = (8¢, 5n U Ss)

According to Definition (3) we then get
[Coinl | = {(on, [0.4,0.6]), (o, [0.4,0.6]) }.

But this does not ensure that if probability 0.4 is chosen for the heads alternative
then probability 0.6 is chosen for the tails alternative, and Coinl could be refined
by a specification where the probability of both the heads and tails alternatives
are 0.4 — which leaves room for behavior that is not acceptable in any of these
alternatives. For example, the specification Coin2 in Figure 2 would be a valid
refinement of Coinl, since (op,[0.4,0.6]) would be refined by (op,{0.4}) and
(0¢,[0.4,0.6]) would be refined by (ot,{0.4}). This was not intended, as Coin2
allows the coin to come to rest standing on its side with the probability of 0.2.

sd Coin2 J sd Side

‘ ; alt | side |
palt {0.4} {0.4} {0.2}) | ‘ !
: : ? ?
refuse) }
ret Heads ! !
| |
| | alt } heads |
1 1 1 1
ref Tails | tais |
| | } 1

[[|
| | 3 |

ref Side

Fig. 2. A coin toss where the coin may come to rest standing on its side

To ensure that the chosen probabilities of the operands add up to 1 we
strengthen the palt semantics with an additional p-obligation representing the
combination of all the p-obligations we obtain from the operands. The only ac-
ceptable probability for this combined p-obligation is 1. This formalizes that one

of the operands must be chosen; i.e. the probabilistic choice will be made among
the specified operands. For the Coinl specification this means that we add a
p-obligation (opt, {1}) representing the combination of the heads and the tails
alternatives. The positive and negative traces of op; are determined by the inter-
action obligations of the original p-obligations (o, [0.4,0.6]) and (o, [0.4, 0.6]).
If a trace is positive in one of these then it is acceptable for the system to produce
this trace. Therefore, if a trace is positive in at least one p-obligation (and not
inconclusive in any p-obligation) then it is positive in the combined p-obligation.
For the Coinl specification this means that traces in sp U s; are positive. If a
trace is negative in all the original p-obligations then this means that it should
not be produced at all. Hence it is also negative in the combined p-obligation.
For the Coinl specification this means that traces in s, are negative. If a trace
is inconclusive in at least one of the original p-obligations then it has not been
considered for all alternatives. It is therefore considered to be inconclusive also
in the combined p-obligation. In the Coinl specification the union of positive
and negative traces is the same for all the p-obligations of the operands of palt —
as discussed later we believe that from a practical point of view this is normally
advisable.

The interaction obligation of the combined p-obligation is formalized by the
@ operator, whose operand is a set of p-obligations:

es < ((J »nC N pun. () n (4)

((p:n),Q)€S ((p:n),Q)€S ((p,n),Q)eS

As explained above, a trace is negative only if it is negative in all p-obligations; a
trace is inconclusive if it is inconclusive in at least one p-obligation, and positive
otherwise. In the Coinl specification the interaction obligation of the combined
p-obligation is

ont = ®{((sn, st U ss),[0.4,0.6]), ((st, 81 U Ss),[0.4,0.6])} = (sp, U st, Ss)

To include the combined p-obligation in the palt semantics we add another
line to the previous definition:

pre

[[pa|t(d1;Q1, e d/n»Qn)]] = (5)
U[[dj;Q;] U (a)

(@ Ul Qs L1} (b)

Note that line (b) in Definition (5) implies that nesting of palt operators is
significant. This means that a specification with nested palt cannot in general
be rewritten into an equivalent specification with only a single palt operator.
As an example, consider the specifications Nested and Flat in Figure 3. The
specifications are represented as interaction overview diagrams with probabil-
ity decorations for each palt-operand. Specification Nested is stricter than Flat,

sd Nested J

ref J d1 ref J d2 ref J d3 ref J d4

sd Flat J

Q Q@ QQ

ref) 41 ref J d2 ref) 43 ref) 44

Ze

Fig. 3. Specification Nested is stricter than specification Flat

because Nested requires that the probability of selecting one of d3 and d4 is a
value in). This is not required by Flat. For example, let Q = [%, %], which gives
QR+xQ = [%6, %] According to Flat it would be acceptable to select d1 with prob-
ability %, d2 with probability %, d3 with probability % and d4 with probability
1—16. According to Nested this is not acceptable, since the probability of selecting
one of d3 and d4 is then %, which is not a value in [%, %] This illustrates the

extra expressiveness obtained by including line (b) in Definition 5.

But Definition 5 is also unsatisfactory. The reason is that it allows more than
one p-obligation at the abstract level to be represented by the same p-obligation
at the concrete level. To see this we look at an example where a palt operator has
more than two operands. Assume we want to specify a system that simulates a
player of the game Rock, Scissors, Papers. The system must be able to produce
traces representing each of the outcomes rock, scissors and paper, and we allow
the probability of each of these alternatives to be between % and % This is
specified by the diagram Rspl in Figure 4. Intuitively, it is clear that the Rspl
specification should not allow the trace (lrock,?rock) to be produced with a
probability higher than %, since this trace is negative both in the p-obligation
representing scissors and the p-obligation representing paper. Since each of these
two p-obligations have a lowest acceptable probability of %, this specification
should ensure that the trace (lrock, ?rock) is not produced with a probability
higher than i—i—i = % But this is not ensured; we may circumvent this intuitive
requirement by letting the three p-obligations in | Rspl] representing rock,
scissors and paper be refined by one and the same p-obligation at the concrete

10

sd Rsp1 J

sd Rock1 J

‘ :User ‘ ‘ :Player ‘ ‘ :User ‘ ‘ Player ‘
T T T T
palt [V4,V4] [Va, V4] [Va,V4]) alt | | 1
: : | rock |
S S —
rei) Rock } }
1 1 refuse) i
| | | |
ref i alt |
J Scissors1 } scissors i
| | | |
; ; | paper |
ref) Paper1 1]
| | | |
1 1 1 1
sd Scissors1 J sd Paper1 J
‘ :User ‘ ‘ :Player ‘ ‘ :User ‘ ‘ Player ‘
T T T T
alt) | } alt] | |
| scissors | | paper |
S S — S —
| | | |
1 | 1 |
refuse) i refuse) i
| | | |
alt | alt |
| rock ! | rock !
| | %
! paper | | scissors |
| | | |
T T T T
| | | |
1 1 1 1

Fig. 4. Rock, Scissors, Paper

11

level, while at the same time adding two additional p-obligations that refine only
the p-obligation representing rock. This is illustrated by the specification Rsp2 in
Figure 5. Figure 6 shows how Rspl is refined by Rsp2. The upper row represents
[Rspl] and the lower row represents [Rsp2]. Each p-obligation is illustrated
by a circle representing the interaction obligation and a probability set. The
upper part of the circle contains the positive traces and the lower part contains
the negative traces. We have used the following trace names: r = (Irock, ?rock),
s = (Iscissors, ?scissors), p = (Ipaper, Tpaper) and t = (ltwine, Ttwine). The
rightmost p-obligations are those we get from line (b) in Definition (5). The
arrows indicate the refinement relation between p-obligations. Rspl is refined by
Rsp2 since each p-obligation in [Rspl] is refined by at least one p-obligation in
[Rsp2]. But according to Rsp2, the trace r may well occur with a probability
greater than %, since it is allowed by all the p-obligations of [Rsp2 | except
number 2 from the left.

To avoid the above situation we strengthen the semantics of palt with p-
obligations representing the combined sum of any subset of p-obligations from
the original specification. For example, we include a p-obligation representing the
combined sum of the rock outcome and the scissors outcome, i.e. a p-obligation
where both these outcomes are possible. As before, the interaction obligation
of a combined p-obligation is produced by the & operator. But since each new
combination represents only a subset of the original p-obligations, we cannot use
1 as the only acceptable probability. Instead we use the sum of the probability
sets of each p-obligation of the subset. The combined sum operator & combines
an indexed set {(0;, Q;) }ien of p-obligations into a single p-obligation as follows:

B({(01, Q)}ien) E (&{(01,Q)) i€ N}, D" Qi) (6)

€N

Summation of probability sets is done by choosing one value from each set and
then adding those combinations that do not exceed 1. Formally, summation of
n probability sets is defined by:

S Qi & (min(Y q5.1) [Vitg; € Q) (7)
i=1 j=1

Note that ®{(0,Q)} = (0, Q) for any Q C [0, 1].

The following definition of palt, in which line (a) in Definition (5) has been
replaced, ensures that all possible combinations of p-obligations coming from the
operands of the palt are included:

pre

[[palt(dl;le---;dn;Qn)]] = (8)
{E_B({poi}ieN) | N C {1,...,n}/\N7é D AVie N :po; € [[di;Q;]]} @] (a)

n

{0 Ul 5@, 1. {11} (b)

Jj=1

12

sd Rsp2 J

sd Rock2 J

‘ :User ‘ ‘ :Player ‘ ‘ :User ‘ ‘ :Player ‘
T T T T
palt [Va,V2] [Vs,Y4] [%,1/21) alt) | |
: ‘ | rock |
S —
| |
ref | Rock2 ! !
1 1 refuse) |
| | | }
ref ; alt |
J Scissors2 } scissors i
| | | |
; ; | paper |
ref) Paper2 1]
‘ ‘ | twine !
T T ’%‘
| | | |
| |
i i
| |
sd Scissors2 J sd Paper2 J
‘ :User ‘ ‘ ‘Player ‘ ‘ :User ‘ ‘ :Player ‘
! ! T T
alt) | . 1 alt) | _ !
| twine | ! twine !
S — S —
| | , '
1 : | rock |
refuse } =1
T | ! !
alt . | refuse J 1
{ scissors | |
| | ! |
| paper | alt ‘ rock i
<
| | I I
| rock | | scissors |
i ‘ !
| |
| | | |
| | ! 1
1 1 i i

Fig. 5. An undesired refinement of Rock, Scissors, Paper

13

[V4, 4] [V4,v4] [V4, 4] {1}

[N
NG

l\l%

[V, V4] [V, V4] [V, V4] {1}

N
NG

:S,P

Q
Q
®

r,s,p,t

Q
Q
®

Fig. 6. Rspl is refined by Rsp2

Note that the set of p-obligations we get from (8a) is a superset of the set we
get from (5a).

Figure 7 illustrates the semantics and refinement relations of Rspl and Rsp2
when Definition (8) is applied. With this definition it is clear that Rsp2 is not a
refinement of Rspl, since one of the p-obligation in [Rsp1] (the one representing
the combination of the scissors and paper outcomes) is not refined by any p-
obligation from [Rsp2].

The vertical dotted lines in Figure 7 illustrate from which part of Definition
(8) the p-obligations come. For the p-obligations coming from (8a) we have
indicated the number of p-obligations that have been combined by #N = x for
x € {1,2,3}. Note that the set of p-obligations we get from Definition (5) is a
subset of the set we get from Definition (8). This is because po = ®{po} for any
p-obligation po.

The p-obligations illustrated by dotted circles in Figure 7 are repetitions of
p-obligations that are already in the set. They have been included to make it
easier to understand how the palt semantics is calculated.

Note that Definition (8) implies that a single palt operand at the abstract level
may be split into several operands in a refinement. Consider the specifications
Rsp3 og Rsp4 in Figure 8. The only difference between these two specifications
is the following: Rsp3 requires that the rock and/or scissors outcomes are pro-
duced with a probability of %, but it does not say anything about the internal
distribution between these outcomes. Rsp4, on the other hand, requires that the
probability of producing each of the outcomes rock and scissors is % Clearly,
this is a stricter requirement that implies the requirement from Rsp3. Therefore
Rsp4 should be a refinement of Rsp3. However, if we used Definition (5) instead
of Definition (8), then this would not be the case. To see this, note that [Rsp3 |
includes the p-obligation (({r,s},{p}),{2}), whether we use Definition (5) or

14

[v4,72)

Def (8a)
#N=1

[v4,72)

Def (8a) Def(8a) Def (8b)
#N=2 #N=3
[V21] [Va1] [%,1] !

[V4, 4]

[V4,Y4]

N

|
|
[Va, V%] [V2,1] [¥2,1] [Ve,1] [%4,1] | {1}
s e ~
TN 7w N e N e\ e
r————- ir——-- i |
s,p A\ Sp /N sp
U N -__.7 _/|_/

Fig. 7. With Definition (8), Rspl is not refined by Rsp2

sd Rsp4 J

‘ :User ‘ ‘ Player ‘ ‘ :User ‘ ‘ :Player ‘
T T T T
palt{2/3}{1/3}J i palt {1/3} {1/3} {1/3})
| T T
i i
alt 3 ook 3 ref) Rock1
T
| scissors | ‘
1 1 J Scissors1
| |
refuse i :
|
| Paper | ref) papert
1 1 ‘
1 1 ‘ *
ref) papert
T T

Fig. 8. Splitting of palt operands

15

Definition (8). This p-obligation need to be refined by a p-obligation in [Rsp4].
But if we use Definition (5) then [Rsp4]| will not contain any p-obligation with
probability set {%}, so the refinement relation does not hold. On the other hand,
using Definition (8) we get a p-obligation representing the combined sum of the
rock and the scissors alternatives (from the first and second palt-operands of
Rsp4). This combined sum is identical to (({r, s}, {p}),{2}), so it follows that
each p-obligation in | Rsp3 | is refined by a p-obligation in [Rsp4 |.

One last consideration has to be made before we give the final definition of
palt. This consideration regards the p-obligation representing the combination
of all other p-obligations that we introduced in Definition 5. The palt operator
is meant to represent a complete probabilistic choice in the sense that the sum
of the probabilities chosen for each operand should not be less than 1. If this
cannot be achieved then no system should comply with the specification. We
ensure this by substituting {1} with {1} N 3°7 | Q; in (8b). This gives us the
following definition:

def

[palt(di;Q1,...,dn;Qn)] = (9)
{&{poitien) | N C{l,....,n} AN #DAVi€ N :po; € [di;Q; [} U (a)

{(@ Ul Qi 1. {110 Y- Qi) (b)

i=1 j=1

As explained further in Section 5, no system can comply with a specification
whose semantics contains a p-obligation with an empty probability set.

Note that, due to Definition (7), Definition (9b) means that {1}N>"" , Q; will
be equal to {1} even if all possible choices of one probability from each probabil-
ity set @Q; gives a sum that is greater than 1. This means that it may be possible
to comply with such a specification, as long as the operands of the palt is over-
lapping in the sense that there exists a behavior that is allowed by more than one
operand. For example, assuming it is possible to comply with the specification
d, then it is also possible to comply with the specification palt(d;{1},d;{1})%.

3.2 Generalizing the other operators

& denotes the set of all events. The semantics of an event e € £ is generalized
by assigning 1 as the only allowed probability:

[e] = {(((e),0), {1})} (10)

4 Another example is the following case: assume that [di] contains a single p-
obligation that according to the chosen compliance relation allows any traces except
t1. Similarly, assume that [[ds]] allows any traces except t2. Assume furthermore
that [is a system that produces the trace ¢1 with probability 0.4, t2 with probability
0.3, and t3 with probability 0.3. From Section 5 it will be clear that I complies with
the specification palt(dy;{0.6}, d2;{0.7}), partly because the trace t3 is allowed by
both di1 and d-.

16

Before giving the generalized semantics of seq, par, alt and refuse we need to
extend the definitions of the semantical composition operators to sets of p-
obligations. The composition of two sets of p-obligations is the set we may
obtain by choosing one p-obligation from each set and composing these two
p-obligations. Since these choices are made independently from each other, prob-
ability sets are multiplied. Hence, parallel composition (]|), sequential composi-
tion (77), underspecification (W) and refusal (T) carry over from sets of interaction
obligations to sets of p-obligations in a straightforward manner:

01 op O2 &f {(01 0p 02,Q1 % Q2) | (11)
(01,Q1) € O1 A (02,Q2) € Oz}
101 € {(101,Q1) | (01,Q1) € O1} (12)

where op is one of ||, 7 and W. We may then define seq, par, alt and refuse as
follows:

[dipardy] < []| [d>] (13)
[[dlseqdz]]déf[[dﬂ]i[[dﬂ] (14)
[dyaltds] & [dyJw]da] (15)
[refused] & 1] d] (16)

As in [RRS07] we also introduce the macro operator veto defined by:
veto d & skip alt refuse d (17)

where
[skip] < {(({0}.0),{1})} (18)

Notice that in all the examples the p-obligations of the different palt-operands
have the same set of inconclusive traces. For practical specifications we believe
that this should normally be the case. Specifying probabilistic alternatives does
not make much sense unless they are mutually exclusive in the sense that the
positive traces in one operand are negative in the other. Consider again the spec-
ification of a coin toss. If traces representing heads are inconclusive in the tails
alternative then they can in a refinement be introduced as positive in the tails
alternative, which is obviously not the intention behind the specification. Actu-
ally, for practical purposes we believe the following macro operator for ensuring
mutual exclusion is useful:

[expalt(di;Qs, ... dn;Qn) | & (19)

[palt((dy alt refuse(ds alt ... alt d,));Q1,

(dy, alt refuse(d; alt ... alt d,—1));Qn) |

17

4 Refinement

Refinement means to add more information to the specification in order to bring
it closer to a real system. When performing a series of refinement steps it is
important that the end result refines the original specification. Since practical
specifications may be quite large, it is also important that different parts of a
sequence diagram may be refined separately. In this section we present a number
of refinement relations and evaluate these against the above criteria.

In [RRS07] two basic refinement relations ~-, and ~-,, are defined at the
semantic level. They characterize what it means for one interaction obligation to
refine another interaction obligation. These two basic definitions are then used to
define the various refinement and compliance relations at the syntactic level (i.e.
at the level of specifications expressed as sequence diagrams). Furthermore, the
syntactic relations are investigated formally with respect to desirable properties.
In this paper we follow a similar strategy, with the exception that we operate
with three basic relations, not just two as in the non-probabilistic case. The third
basic relation (~-,,) is introduced as an alternative to the ~-,,. relation.

4.1 Refinement relations for single interaction obligations

The refinement relations ~-,., ~,, and ~,, are defined as follows:

(pyn) ~» (p'sn) € nCn/ ApCp un (20)
(pn) ~rr (1) & (p,0) w0 (1) AP Cp (21)
(D) ~onr (0,1 € (pyn) =y (B, 0)) ApUn=p Un! (22)

As explained in [RRS07], the refinement relation ~-, allows the incompleteness
of a specification to be reduced by introducing more positive and/or negative
behaviors to the specification, and hence reduce the set of inconclusive traces.
In addition, underspecification may also be reduced by redefining positive traces
as negative.

At some stage in the development process it may be natural to fix the set
of positive traces, with the intention that at least one of these traces should be
present in a system compliant with the specification. A valid refinement step
may therefore only redefine positive and inconclusive traces as negative, while
extending the set of positive traces is not allowed. This is represented by the
refinement relation ~-,,.. The idea is that refinement relations based on ~-, and
~. Will be used in different phases of the development process.

However, as will be clear from Section 4.5, there are certain desirable proper-
ties that the refinement relations based on ~~,,. do not fulfill in the probabilistic
case. We have therefore introduced a third refinement relation ~v,, for inter-
action obligations, where the n stands for narrowing. This relation is intended
as an alternative to ~,,. for probabilistic specifications. It will be shown that
refinement relations based on ~v,, fulfill the desirable properties also in the
probabilistic case. The intuitive motivation for narrowing refinement is quite

18

similar to that of restricted refinement. During the specification process we may
reach a point where all behavior we consider to be relevant and interesting has
been described. This includes normal behavior, exceptional behavior and erro-
neous behavior. At this point we may decide that supplementing (introducing
new traces) is no longer allowed, which is ensured by the right-hand conjunct of
(22). However, some design decisions may still be open. Hence, the specification
may include underspecification in form of positive behavior that need not occur
in a valid implementation.

The essential difference between ~+,,. and ~+,, is that ~»,,. allows inconclu-
sive traces to be redefined as negative. This is not allowed by ~~,,. Refinement
relations based on ~-,, should therefore only be used after all relevant and in-
teresting behavior (including negative behavior) has been identified.

4.2 Refinement relations for single p-obligations

A p-obligation is refined by refining its interaction obligation and/or reducing
its set of allowed probabilities. The interaction obligation may be refined either

by My e O Mgl

def

(0,Q) ~px (0/7 QI) = o0 e 0 ANQNCQ (23)

where z € {r,rr,nr}.

4.3 General, restricted general and narrowing general refinement

General refinement of specifications is defined for each of the three variants of
refinement of a single p-obligation:

[d]—~.[d] ¥ (24)
Vpoe[d]:0¢ m.po=3po’ € [d']:po~, po

where (z,y) € {(pg, pr), (prg, prr), (png, pnr)}. Apart from the antecedent allow-
ing p-obligations with 0 as an acceptable probability to be ignored, the consid-
erations regarding refinement of probabilistic sequence diagrams are exactly the
same as for sequence diagrams with inherent nondeterminism. The antecedent is
neccessary to allow a proper treatment of soft real-time requirements, which are
requirements such as “after event A has occurred, event B should occur within
5 seconds with a probability of at least 0.9”. A system that always produces
event B within 5 seconds of producing event A would certainly comply with this
requirement. We enable expression of soft real-time requirements by allowing
that p-obligations with 0 as an acceptable probability are not represented at the
concrete level. A soft real-time requirement can then be expressed with a palt
operator with two operands: one for the case where event B occurs within 5 sec-
onds, and another where it does not. This latter operand will have 0 as one of its
acceptable probabilities. For simplicity time constraints have not been included
in this report. For more on specifications with soft real-time requirements, see
[RHSO7a].

19

4.4 Limited, restricted limited and narrowing limited refinement

Limited refinement of specifications is defined for each of the three variants of
refinement of a single p-obligation:

[d]~.[d] % (25)
[d]~y [d A
Vpo' €[d]:3SC[d]J:3poe[d]:pd €SApo~,dS

where (z,y,2) € {(pl,pg, pr), (prl, prg,prr), (pnl, png, pnr)}.
The additional requirement for limited refinement is intuitively that each p-

obligation at the concrete level represents a p-obligation at the abstract level.
However, it is perfectly acceptable to split a p-obligation at the abstract level
into several p-obligations at the concrete level. For example, if (0,{0.5}) is a p-
obligation of the abstract level, then this may be represented by the combination
of (01,{0.3}) and (04, {0.2}) at the concrete level, where both o] and o} are re-
finements of 0. This means that these two p-obligations are not valid refinements
of any p-obligation at the abstract level, since {0.3} and {0.2} are not subsets
of {0.5}. However, the combination &{ (0}, {0.3}), (05,{0.2})} is a refinement of
(0,{0.5}). Therefore the additional requirement for limited refinement is that
each p-obligation at the concrete level is a member of a set whose combination
is a refinement of an abstract p-obligation.

4.5 Transitivity and monotonicity

In this section we present results concerning transitivity and monotonicity for
the refinement relations.

A refinement relation ~- is transitive if the following holds: If d; is refined
by do and ds is refined by ds, then d; is refined by ds. Formally:

[di]~[de]Alde]~[ds]=[di]~[d5] (26)

Transitivity of refinement is important since it ensures that the result of succes-
sive refinement steps is a valid refinement of the original sequence diagram. The
following table summarizes results with respect to transitivity. “Y” (for “Yes”)
in a cell indicates that the refinement relation is transitive, while “N” (for “No”)
indicates that it is not. In addition, each cell contains a reference to the relevant
theorem. We write Tx for Theorem x in the table. The theorems can be found
in Appendix C along with their proofs.

|“"’pg |“’“’pr9 |“’“’pl |“’“’pTl |ang |“’“’Zml |

[Y: T1 in [RHSO7a][Y: T11]Y: T12]N: T13]Y: T14]Y: T15]

A binary operator op is monotonic with respect to refinement if the following
holds: If d; is refined by d} and ds is refined by di, then d; op ds is refined by
dy op d}. Formally:

[di]l~[dIAlde]~[dy]=[diopda]~[dyopdy] (27)

20

Monotonicity ensures that different parts of a sequence diagram may be refined
separately. The following table summarizes results with respect to monotonicity
of operators for different refinement relations.

|Operator|wpg |““>prg |Wpl |Wprl |“"’png |“’"zml |
refuse |Y: T21 Y: T23Y: T28|Y: T33|Y: T38|Y: T43
seq Y: T3 in [RHSO7a||Y: T24|Y: T29|N: T34|Y: T39|Y: T44
par Y: T4 in [RHSO07a||Y: T25[Y: T30|N: T35|Y: T40|Y: T45
alt Y: T5 in [RHSO07a]|Y: T26|Y: T31|N: T36|Y: T41|Y: T46
palt N: T22 N: T27(Y: T32|N: T37|N: T42]Y: T47

From the evaluation summarized in the above tables we identify two “win-
ners” among the proposed refinement relations; ~+,; and ~-,,; are the only re-
finement relations that fulfill all desired properties with respect to transitivity
and monotonicity of all composition operators.

None of the general refinement relations (~pg, ~>prg and ~>png) gives momno-
tonicity for palt®. Intuitively, the reason is that the definition of the semantics
for each operator ensures that there is always a p-obligation with 1 as the only
acceptable probability, see in particular (9b). This p-obligation restricts all be-
havior of a valid system, which means that new behavior that does not refine
existing alternatives cannot be added. Therefore STAIRS may be more suit-
able than pSTAIRS at an early stage of the development process where not all
alternatives have been identified.

The tables show that ~-,,; does not fulfill the desired transitivity and mono-
tonicity properties. This suggests that ~,,; should be used instead of ~-,,; for
probabilistic specifications.

5 Compliance

In this section we define what it means for a system to be compliant with a
probabilistic sequence diagram. To do this we need 1) a mathematical represen-
tation of the computer system, and 2) a characterization of the relation between
a specification and the mathematical representation of the system.

5.1 Representation of a system

In the non-probabilistic case [RRS07] we assume that we know the set traces(I)
that the system [is able to produce. In the probabilistic case we need in addition
information about probabilities. The basic mathematical model of a probabilistic
process is a probability space [Sko05],[Bré94]. A probability space is a triple
(2, F, f) where

— {2 is a sample space, i.e. a set of outcomes.

5 The extra criteria given in [RHSOT7a| to ensure monotonicity with respect to palt for
~~prg is basically similar to limited refinement.

21

— Fisao-field on {2, i.e. a set of subsets of {2 that is closed under complement
and countable union, and that contains 2.

— [is a probability measure on F, i.e. a function from F to [0, 1] assigning prob-
abilities to the sets in F such that f(2) = 1 and for any sequence w1, ws, . ..
of disjoint sets from F, the following holds: f(lU;2, wi) = > oy f(wi).

To ensure that information about probabilities are included in the represen-
tation of the system I, we assume that I is represented by a probability space
(traces(I), Fr, fr). (This means that traces(I) is the sample space of this prob-
ability space.)

Clearly, we are not interested in an arbitrary F;. We need to ensure that
the probability space gives the necessary information with respect to probabil-
ities. Fr contains all sets for which the probability is known, and we could for
example let F; be the o-field {0, traces(I)}. But a probability space with this
o-field would tell us nothing about probabilities, except that the probability of
producing a trace in traces(I) is 1. To ensure that the necessary information
about probabilities is contained in the probability space we require F; to be the
cone-o-field of traces(I).

The cone-o-field is the smallest o-field [Dud02, p. 86] generated from the set
Cr of cones we obtain from traces(I). The cone ¢; of a finite trace t is the set
of all traces with t as a prefix, formally defined by:

e (¢ etraces(I) |t Tt} (28)
The set of cones C; contains the cone of every finite trace that is a prefix of a
trace in traces(I), formally defined by:

c {ct | #t € Ng A 3t' € traces(I) : t C t'} (29)
One may ask why we did not simply require F; to be the power set of
traces(I). This would ensure that a representation of a system would contain
information about the probability of every subset of traces(I). The answer is
that not all processes can be represented by a probability space whose o-field is
the power set of its sample space. For example, assume [is a process that flips
a fair coin infinitely many times. Then the set traces(I) is uncountable, and the
probability of each single trace is 0. According to the continuum hypothesis —
which states that there is no set whose size is strictly between that of the integers
and that of the real numbers — the cardinality of traces(I) then equals the
cardinality of the real numbers, and hence of [0, 1]. The following theorem taken
from [Dud02, Appendix C| by Banach and Kuratowski then implies that there
is no measure f; on P(traces(I)) such that fr({t}) = 0 for each t € traces(I)
and fr(traces(I)) = 1:

Assuming the continuum hypothesis, there is no measure p defined on
all subsets of 2 =[0,1] with p(£2) =1 and p(z) = 0 for each = € £2.

Our decision to use a cone-based probability space to represent probabilistic
systems is inspired by [Seg95]. In [Seg95, p. 52| probability spaces whose o-
fields are cone-o-fields are used to represent fully probabilistic automata, i.e.

22

automata with probabilistic choice but without nondeterminism. This is done in
order to define formally how to compute probabilities for trace sets. A cone-based
probability space is a suitable representation of a probabilistic system, since it
gives maximum information about probabilities while still allowing processes
such as an infinite coin toss to be represented.

Note that for any trace ¢ in traces(I) we have {t} € F; (which is proved in
Lemma 27, Appendix C). As F7 is closed under countable union, this means that
for any countable s C traces(I) we have s € F;. Consequently, the probability
of every finite subset of traces(I) is included in the system representation, and
if traces(I) is finite then F; = P(traces()).

In order to check whether a system complies with a pSTAIRS specification we
represent the system as a set of p-obligations. To ensure that all information from
the cone-o-field is contained in the representation we generate one p-obligation
from every trace set in F;. The pSTAIRS representation (I) of the system I is
defined by:

(I (s, HY DN\), {f1(s)}) | s € Fr A s # 0} (30)

The superscript p means that (1)) is a probabilistic representation, and is some-
times omitted when this is obvious from the context. The subscript d means
that the representation is related to the specification d, i.e. that only traces that
occur exclusively on lifelines in d are included as negative.

5.2 Compliance relations for single p-obligations

As for refinement, we first define compliance relations for single p-obligations
since compliance with probabilistic specifications is defined in terms of compli-
ance for single p-obligations:

def

(0,Q) —pa (Oval) = 0—,0NQ CQ (31)

where x € {r,rr,nr}. The compliance relations for interaction obligations are
defined by:

o
o

(p,n)—, (p',n) = nCn' ApCp un (32)
(p,n) = (P0)) € (pyn) = (0, 0) ApOpP £ 0 (33)
(p,n) e (0s1") & (D) = (P, 1) (34)

The compliance relations .. and ;- allow inconclusive traces to be produced
by the system, even if the corresponding refinement relations ~-,,. and ~~,,
do not allow inconclusive traces at the abstract level to become positive at the
concrete level. The reason why the compliance relations allow inconclusive traces
to be produced is the potential for implied scenarios (see “Restricted compliance
relation” in Section 4.2 of [RRS07]). Implied scenarios must be taken into account
when defining compliance relations since the system representations are complete
while sequence diagram specifications may be partial.

23

The reason why —,, has been defined as a separate relation even though it
is identical to +,,. is to get matching subscripts on refinement and compliance
and relations that belong together.

5.3 General, restricted general and narrowing general compliance

Similar to general refinement, a system [is a (restricted) general compliance of
a sequence diagram d if every p-obligation in [d | where 0 is not an acceptable

probability is implemented by at least one p-obligation in (I)%:

[d] e (D)F Vpoe[d]:0¢ m.po= Tpd € (D)5 i po —y po’ (35)
where (z,y) € {(pg, pr), (prg,prr), (png, pnr)}. Note that the relations ., and
—png are identical since the relations ., and —,,, are identical.

5.4 Limited, restricted limited and narrowing limited compliance

Similar to limited refinement, we now also require that every p-obligation ob-
tained by Definition (30) is a member of a set whose combined sum is in com-
pliance of at least one p-obligation in [d]:

[d]—. () € (36)
[d]=y (DA
Vpo' € (INF:3S C (D) :Fpoe [d] :po € SApors. DS

where (z,y,2) € {(pl,pg,pr), (prl,prg,prr), (pnl, png, pnr)}. Again note that
the relations +,; and ~,; are identical.

5.5 Example

The specification S3 in Figure 9 is a probabilistic version of the gambling machine
specified in the diagram S2 in [RRS07]. S3 requires that the probability of losing
is exactly 0.9 and that the probability of winning is 0.1. Its semantics is given
by

[531 = {(01,{0.1}), (02,{0.9}), (03, {1})}

The interaction obligations o1, 02 and o3 are given by

({ (M, ?di, 'm(yw), ?m(yw), !do, 7do) , (Iqu, ?qu, !m(yw), ?m(yw), !do, ?do) ,
(di, ?di, !m(yw), 'do, Tm(yw), ?do) , {\qu, ?qu, !m(yw), do, Tm(yw), ?do) },
{ (i, 2di, m(yl), 2m(y)), ('qu, 2qu, 'm(y0), ?m(yl)),
(\dz, ?di, 'm(yl), Tm(yl), do, 7d0> (lqu, 7qu, 'm(yl), Tm(yl), do, ?do) ,
(\dz, ?di, 'm(yl), \do, Tm(yl), ?do) , (Iqu, ?qu,!m(yl), do, ?m(yl), ?do) })

24

sd SS)

sd wiry

Fig. 9. A probabilistic gambling machine

. . :Gambling . . :Gambling
/O unit Machine /O unit Machine
T T T T
| | | |
alt ! dime ! ! msg("You won”) !
<1
1 1
S |
quarter ! j
palt {0.1}{0.9} J sd Ioss)
|
! ! . . :Gambling
at) \ VG unit Machine
N T T
ref win | msg("Youlost) !
=1
: : | |
: | veto J | |
refuse J | %
1 I ; ;
ref loss : :
T T
; 1
T T
1 1
| |
alt J
ref loss
i 1
]
refuse J !
| |
ref win

09 =
({1, i, iy, (o), g, 2qu, iy, ()
{ (i, ?di,!m(yw), ?m(yw), ldo, ?do) , {lqu, ?qu, !m(
(di, ?di, !m(yw), 'do, Tm(yw), ?do) , {!qu, ?qu, 'm(
(di, ?di, !m(yl), ?m(yl), do, ?do) , (lqu, ?qu, !m(yl
(\dz, ?di, 'm(yl), \do, Tm(yl), ?do) , (Iqu, ?qu, 'm(yl

}
w), ?m(yw),do, 7do) ,
w), !do, Tm(yw), 7do) ,
?m(yl), do, ?do) ,

Yy
Yy
)
), ldo, ?m(yl), ?do) })

Y
)

03 = ®{o1,02} =
({ (Mdi, ?di, 'm(yw), Tm(yw), !do, ?do) , (Iqu, ?qu, !m(yw), ?m(yw), ldo, ?do) ,
(di, ?di, !m(yw), 'do, Tm(yw), ?do) , (\qu, ?qu, !m(yw), do, ?m(yw), ?do) ,
(i, i, m(yl)., Pm(y1)) , {lqu. 7qu. m(y1), ?m(y)) },
{ (i, ?di,'m(yl), ?m(yl), do, ?do) , (!qu, ?qu, 'm(yl), ?m(yl), !do, ?do) ,
(di, ?di, !m(yl), do, Tm(yl), ?do) , {!qu, ?qu, !m(yl), \do, Tm(yl), ?do) })
Let I be a system represented by the probability space (traces(I), Fr, fr) where
Fr is the cone-o-field on traces(I) and
traces(I) = {t1,ta,t3}
t1 = (Idi, ?di, !m(yw), ?m(yw), ldo, ?do)
to = <!d2, ?di, !m(yw), 'do, Tm(yw), ?do)
fl({tl}) ({tz}) =0.05
fi({ts}) = 0.9
Since traces(I) is finite, every subset of traces(I) is a member of Fy, and we

get fr({ti,t2}) = 0.1 and fr({t1,t2,t3}) = 1. Every member of F; gives rise to
a p-obligation in (I)%. In particular, we have that

(({ta}, H'SDN {ta}), {0.9}) € (D)
(({ta, 82}, HISDN {11, 123), {0.13) € (D)
(({tlv t27t3}7H”(S3) \ {t17t27t3})7 {1}) € <I>Z

The first of these three p-obligations complies with (02, {0.9}), the second com-
plies with (01, {0.1}) and the third with (o3, {1}) according to all of the compli-
ance relations — ., —prr and >, defined for single p-obligations. We therefore
get

—~

[S3] +=pg (I)s3

[S31 —prg (153

[S3 1 —png (153
We also have

[S3] —p (I)gs

[S3] —pr (153

[S3] —pm (153

26

To see this, observe that &(I)%, = (({t1,t2,t3}, U\ {t1,t2,t3}), {1}). Since
this p-obligation complies with a p-obligation in [S3], the condition that any
p-obligation in (1), is a member of a subset S of (I)%, such that &S complies
with a p-obligation in [S3] is easily fulfilled by choosing S = (I)%.

5.6 Transitivity between refinement and compliance

Transitivity between refinement and compliance means that if d is refined by d’
and system I complies with d’, then I complies also with d. Formally:

[d] e [d IATd] e (DG = [d]—a (D)g (37)

Transitivity between refinement and compliance is important as it ensures that
a system complies with a specification if it complies with a refinement of the
specification.

The following table summarizes results with respect to transitivity between
refinement and compliance for different refinement and compliance relations. As
~prl 1S NOt transitive it is not relevant here.

|“’“’pg |“’“’prg |“’“’pl |”"png |“’“’pnl |

[Y: T16[Y: T17]Y: T18[Y: T19][Y: T20]

6 The relation between inherent nondeterminism and
probabilistic choice

Intuitively it seems clear that inherent nondeterminism (expressed by xalt in
STAIRS) is closely related to probabilistic choice (expressed by palt in pSTAIRS).
From a methodological perspective, it might be natural to use STAIRS in the
early stage of a development process. At this stage the essential question is:
what alternatives need to be possible? Later in the process we may want to
specify with what probability the different alternatives should occur. This can
be achieved by replacing all xalt operators with palt. Switching from pSTAIRS to
STAIRS (by replacing palt operators with xalt) in a development process would
not make much sense, since this would mean that all information regarding
probabilities would be lost. In essence, this means that we want to ensure that
compliance and refinement relations are preserved when switching from STAIRS
to pSTAIRS (but not the other way around).

To facilitate a development process where xalt may be replaced with palt
at some point we first provide a translation function from specifications with
inherent nondeterminism to specifications with probabilistic choice. Then we
show how the result of a translation corresponds to the original specification
with respect to refinement and compliance.

27

6.1 Probabilistic interpretation of inherent nondeterminism

The xalt expresses a choice between alternatives that must all be represented
both in further refinements of the specification and in a system that complies
with the specification. Apart from this, nothing is said about the probabilities of
each alternative. The palt expresses a probabilistic choice between alternatives.
Unless 0 is an acceptable probability for an alternative, the alternative must
be represented both in further refinements of the specification and in a system
that complies with the specification. Therefore there should be some way of
interpreting xalt in terms of palt. There are at least two approaches for doing
this:

— Interpret an xalt operator as a set of palt operators, where each operand is
assigned exactly one probability so that the sum of probabilities is 1. This
means that a specification of the form d; xalt ds is interpreted as a set of
specifications of the form dy;{q:} palt d2;{q1}, where ¢1,92 > 0 and ¢1 +¢2 =
1. Recall that if g1 + g2 # 1 then we obtain a p-obligation with an empty
probability set due to definition (9b), which means that the specification can
not be complied with.

— Interpret an xalt operator as a single palt operator, where each operand may
be assigned a set of probabilities. This means that a specification of the form
dy xalt ds is interpreted as a specification of the form di;Q1 palt do;Q2 for
some suitable probability sets @1 and Q.

With the first approach the underspecification with respect to probabilities im-
plied by the xalt is reflected by the fact that a specification with xalt is translated
to a set of specifications with palt instead of a single specification. This means
that developers will have to maintain a set of specifications instead of a single
specification if they want to retain some underspecification with respect to prob-
abilities after switching from STAIRS to pSTAIRS. To avoid this we choose the
second approach, in which a single specification with xalt corresponds to a single
specification with palt. This also keeps things simple when we later explore the
correspondence between specifications with xalt and specifications with palt.

The next question is what probability sets should be assigned to the operands
when replacing an xalt operator with a palt operator. Since the only requirement
of xalt is that all alternatives are represented both in further refinements and
in the final system, the following probability sets are the natural candidates to
evaluate: [0,1], (0,1) and (0, 1].

When deciding on which of these to choose we have to consider the different
expressiveness of STAIRS and pSTAIRS. In STAIRS there is no way to distin-
guish between alternatives that need to occur with a probability higher than 0
and alternatives that that simply need to be possible; the only thing we know is
that each alternative of an xalt operator needs to be possible. That an alterna-
tive can be possible even though its probability is 0 is illustrated by the process

28

where a coin is tossed infinitely many times: the probability is 0 for each trace
of this process.%

In pSTAIRS the refinement and compliance relations allow p-obligations with
0 as an acceptable probability to be ignored at the concrete level”. This design
choice was made in order to allow specification of cases where an undesirable
alternative is acceptable as long as its probability is not too high, but where it
is also perfectly acceptable if the undesirable alternative does not occur at all.
This allows us to capture and reason about soft real-time constraints [RHS05].
STAIRS cannot distinguish such alternatives, and requires all interaction obli-
gations to be represented in a refinement and in the specified system. Therefore
0 cannot be a member of the probability sets we assign to the operands when
replacing xalt with palt. Otherwise the requirement that every operand should be
represented in further refinement steps and the final system would be lost when
replacing xalt with palt. This means that the set [0, 1] is out of the question.

The next candidate we look at is (0, 1). Intuitively, this seems to be a good
choice. By excluding 0 as an acceptable probability we ensure that each operand
of the original xalt is represented in refinements and the specified system. And
if 0 is not an acceptable probability for any operand then it seems natural that
1 should not be an acceptable probability for any operand. But this actually
only applies in cases where the operands are mutually exclusive. Consider the
specification d = e xalt e where e is a single event. There is nothing wrong with
this specification, even if the use of xalt in this case is unnecessary and the spec-
ification is of little practical relevance. It is clear that any system I such that
traces(I) = {(e)} complies with the specification. But consider now the specifi-
cation d’ = palt(e;(0,1), e;(0,1)). This specification requires that ()5, contains
a p-obligation whose probability set is a subset of (0, 1). But if traces(I) = {{e)}
then fr({(e)}) =1, and there is no p-obligation in (I)%, whose probability set is
a subset of (0,1). So I does not comply with d’, even if it complies with d. We
therefore also reject (0, 1).

Hence we are left with (0, 1]. Luckily, using the set (0, 1] we ensure that

— each operand of the original xalt is represented in refinements and the spec-
ified system (by excluding 0 from the acceptable probabilities),

— there is a correspondence between STAIRS and pSTAIRS in cases like the
example with d and d’ above (by including 1 among the acceptable proba-
bilities) and

6 To specify an infinite coin toss in STAIRS/pSTARIS requires use of the loop operator.

This operator is defined in [HHRS06| for STAIRS and [RHS07a| for pSTAIRS, but
is outside the scope of this paper.
This does not mean that a specification of an infinite coin toss is meaningless in
pSTAIRS. For such a specification will require that the system is able to produce
any finite prefix of all traces representing the infinite coin toss with the appropriate
probability, due to combined p-obligations obtained from Definition (9b). For ex-
ample, the probability of producing a trace starting with heads should be 0.5, the
probability of producing a trace starting with two consecutive heads should be 0.25,
and so on.

29

— the xalt represents a very large degree of underspecification with respect to
probabilities.

Based on these considerations we define a translator function g that translates
a sequence diagram with underspecification and inherent nondeterminism to a
sequence diagram with underspecification and probabilistic choice:

d if d € €U {skip}
op g(d1) if d = op dy for
o(d) def . opf {refuse, veto} (38)
g(d1) op g(da) if d =d; op dy for
op € {alt, seq, par}
palt(g(d1);{0,1],...,9(d,);{0,1])) if d =xalt(dy,...,dn)

For use in proofs and formulation of results we let D* denote the set of all
sequence diagrams with underspecification, D¢ denote the set of all sequence
diagrams with underspecification and inherent nondeterminism, and DP denote
the set of all sequence diagrams with underspecification and probabilistic choice.
In other words:

— D" denotes the set of all sequence diagrams that contains only operators
from the set OP = {refuse, seq, par, alt, skip},
— D' denotes the set of all sequence diagrams that contains only operators

from the set OP U {xalt}, and
— DP denotes the set of all sequence diagrams that contains only operators

from the set OP U {palt}.

Hence, D¢ is the domain of the translator function g. We easily see that g(d) € DP
for any d € D°.

6.2 Correspondence

In this section we present results concerning correspondence with respect to
refinement and compliance when switching from STAIRS to pSTAIRS. Based on
the evaluation in Section 4 we restrict our attention to the winners, i.e. limited
and limited narrowing refinement and compliance.

As refinement and compliance relations for STAIRS specifications based on
~ope and oy, were not defined in [RRS07], we need to give these definitions
before presenting the correspondence results. The definitions are obtained by
replacing ~~, with ~-,, and +, with +,, in the obvious way:

[d] ~ong [d] E Yoe[d]:30 €[d] :0~n o (39)

[d] = [d) € [d] ~ng [d] (40)
AVY €[d] :Foe[d] :0~p o

[d] g (D < Yoe[d]:30 € T)}: 0y o (41)

[d] = (D & AT =g (1 (42)

AV e (D)y:Foe[d]" :0rp o

30

We are now ready to give the relevant correspondence results. Theorem 1
states the correspondence with respect to limited compliance:

Theorem 1 (Correspondence between —; and ;). Let d € D'. Then
(V(o.{a}) € D) q>)AL d] =i (Dg= [g(d) I” —p (1)

The left conjunct of the antecedent in Theorem 1 requires an explanation.
Since the probability sets assigned to the operands of a palt when translating an
xalt does not contain 0, it is possible to produce an example where a system is
in limited compliance with a STAIRS specification, but not with its translation
to pSTAIRS. This is done by ensuring that the system produces a trace with
probability 0 so that the resulting p-obligation in the system representation does
not represent any p-obligation in the specification. This is illustrated in Lemma
55 in Appendix C. Hence correspondence between —; and —; holds only for
systems where the probability for all p-obligations is greater than 0.

For the correspondence with respect to narrowing compliance another con-
dition has to be added, which is due to the & operator used when defining the
semantics of palt. For any set S of p-obligations, all traces that are inconclusive
in at least one p-obligation in S are inconclusive also in the p-obligation ®S.
Hence, the use of palt may generate p-obligations with more inconclusive traces
than any of the original p-obligations in S. If these new p-obligations are not
represented in a system then we may have compliance in the non-probabilistic
case, but not in the probabilistic case. An example of such a case is given in
Lemma 56 in Appendix C.

Since xalt is translated to palt when switching from the non-probabilistic
to the probabilistic case, the above situation can be avoided by ensuring that
the inconclusive traces are the same for every interaction obligation of every
operand of an xalt. We use the predicate E(d) to denote that the diagram d
fulfills this condition. Formally, F(d) holds iff for every subdiagram of d of the

form xalt(dy, ..., d,,) there exists a set of traces s such that
V(p,n)EU[[di]]:pUnzs (43)
i=1

Theorem 2 states the correspondence with respect to narrowing limited com-
pliance when switching from STAIRS to pSTAIRS:

Theorem 2 (Correspondence between +—,; and ;). Let d € Dt. Then
E(d) A (Y(o,{g}) € ()5 : ¢ >)AL d] = (Dg= [g(d) 1P —=pm (1)}

We now look at correspondence theorems with respect to refinement. For
limited refinement we need to ensure that the specification at the concrete level
is xalt-normal in order to achieve correspondence. A specification d € D? is xalt-
normal, written N(d), iff either it does not contain any xalt at all or it is of
the form xalt(d1, ..., dn), where none of the operands d; contains xalt. In other

31

words, if d contains an xalt then xalt may occur only at the outermost level.
Formally:

N(d) % deD" Vv (d=xalt(dy,...,dn) AVj <m:d; €D*) (44)

The reason why we need this requirement is that palt, unlike xalt, is not distribu-
tive with respect to the composition operators in general. This is because @ is
not distributive with respect to all operators at the semantic level; for example
B(S1 77, S2) = ®S1 I, BS2 does not hold for all sets of p-obligations S and Ss.
In the example given in Lemma 59 in Appendix C this is exploited to produce
specifications where correspondence does not hold because the specification at
the concrete level is not xalt-normal.

Theorem 3 states the correspondence with respect to limited refinement when
switching from STAIRS to pSTAIRS:

Theorem 3 (Correspondence between ~»; and ~»p;). Let d and d' be se-
quence diagrams in D'. Then

N@)AB@)AN[AT~ [d] = [g(d) [P ~p [g(d)]

In the case of narrowing limited refinement, we also need to require that the
specification at the abstract level is xalt-normal. The need for this requirement
is illustrated by the example given in Lemma 62 in Appendix C.

Theorem 4 states the correspondence with respect to narrowing limited re-
finement when switching from STAIRS to pSTAIRS:

Theorem 4 (Correspondence between ~-,; and ~+p,,;). Let d and d' be
sequence diagrams in D'. Then

N(d) AN@)AE@)A[AT~ [d 1= [g(d) 7 ~pmi [9(d) 7

One may ask whether the extra conditions of the form E(d) and N(d) that
are included in the antecedents of the correspondence theorems have a significant
negative impact on the usefulness of the theorems from a methodological point
of view. Fortunately this is not the case, since these requirements can easily
be fulfilled. The requirement E(d) can be fulfilled by using exxalt® for exclusive
alternatives instead of xalt in d. As argued in Section 3.2, exxalt will normally
be a suitable operator in all cases where an xalt could be used in a practical
specification.

With respect to the requirements of the form N(d), it is shown by Lemma 38
in Appendix C that any specification d € D’ can be rewritten into an equivalent
specification d’ that is xalt-normal, i.e. that [d] = [d’]* and N(d’) holds. This
rewrite, which could be automated, can therefore be performed before switching
to pSTAIRS without affecting the refinement relations established in STAIRS.

8 This operator is defined by Definition (56), Appendix A.

32

7 Related work

In [RRS07] we investigated the relationship between computer systems and se-
quence diagrams for sequence diagrams with underspecification and sequence
diagrams with both inherent nondeterminism and underspecification. The basis
of [RRS07] as well as this paper is sequence diagrams as defined in e.g. UML
2.1 [OMGO6]. As the focus of this paper is on compliance relations and not se-
quence diagrams as such, we have covered only the most essential of the UML
2.1 operators. In addition, we have considered operators for specifying inherent
nondeterminism and probabilistic choice. These operators are not found in UML
2.1, and neither in most other variants of sequence diagrams such as Message
Sequence Charts (MSCs) [ITU99|.

For related work on the relationship between computer systems and sequence
diagrams without probabilistic choice we refer to [RRS07]. For probabilistic se-
quence diagrams, we are not aware of any paper about refinement or the rela-
tionship to computer systems. However, these issues has been investigated for
other specification languages.

In [MMO5] a probabilistic extension of Dijkstra’s Guarded Command Lan-
guage called pGCL is presented. The language allows nondeterministic (de-
monic/angelic) choice as well as probabilistic choice to be expressed, and pGCL
is a specification language as well as a programming language. Hence there is no
distinction between refinement and compliance. Refinement is defined in terms
of sets of behaviours. Abstraction is inclusion and refinement is reverse inclusion.

In [JHSY94], refinement is defined for transition systems with nondetermin-
istic choice and probabilistic choice. As in [MMO05]|, nondeterministic choice is
used to represent underspecification, and refinement corresponds to restricting
the possible behaviour. In [JHSY94] a test is a probabilistic transition system
with a defined set of success states; the probabilities of success is obtained by
composing a test with the system to be tested. This kind of probabilistic tests
have very strong distinguishing power, so that certain systems that are equiv-
alent in non-probabilistic testing will no longer be equivalent in probabilistic
testing. Therefore an alternative weaker notion of testing called reward testing
is proposed. A reward test does not have probabilistic choice. Instead the end
states are assigned a nonnegative reward, and the outcome of a test is given as
expected rewards instead of probabilities of success.

Both pGCL [MMO05]| and the transition systems of [JHSY94| are complete
specifications in the sense that there is no notion of inconclusive behavior as
there is for sequence diagrams.

8 Conclusions

Building on [RRS07] we have defined different refinement relations and their cor-
responding compliance relations for sequence diagrams with probabilistic choice.
Furthermore we have investigated these relations with mathematical properties

33

that are desirable from a methodological point of view. For the relations that ful-
fill the desired properties we have established correspondence theorems between
the non-probabilistic and the probabilistic case.

Our general compliance checking procedure for relating systems and sequence
diagrams was given in Section 1. Together with the defined refinement and com-
pliance relations, as well as the correspondence theorems, the procedure meets
the requirements stated in Section 2 in the following sense:

1. The procedure is independent of any particular programming language or
paradigm. All we require, is that there exists some means to obtain the
probability space representing the system (with respect to an asynchronous
communication paradigm).

2. The notion of compliance is a special case of refinement, as we use the re-
finement relations in the definitions of the compliance relations. Whatever
refinement relation is used between two sequence diagrams, any implemen-
tation of the refinement is also an implementation of the original diagram.

3. The translator function g defined in Section 6.1 shows how a sequence dia-
gram with inherent nondeterminism can be translated to a sequence diagram
with probabilistic choice. The correspondence theorems presented in Section
6.2 give the necessary conditions for ensuring that refinement and compliance
relations are preserved when ¢ is used to switch from the non-probabilistic
to the probabilistic case by the application of g. These conditions can eas-
ily be fulfilled for practical specifications. Together, the translator function g
and the correspondence theorems therefore facilitates a development method
where probabilistic information can be left out during the early stages of de-
velopment.

4. The approach is faithful to the UML 2.1 standard, both with respect to the
underlying semantic model using sets of positive and negative traces, and
with respect to the semantics given for each concrete operator. In partic-
ular, all of our definitions take into account the partial nature of sequence
diagrams.

In this paper we have only considered sequence diagrams without external
input and output. Our results may be generalized to handle also sequence dia-
grams with such external communication by in each case defining an adversary
representing the environment of the system, and then checking compliance under
the assumption of this adversary.

The research on which this paper reports has been carried out within the
context of the IKT-2010 project SARDAS (15295/431) and the IKT SOS project
ENFORCE (164382/V30), both funded by the Research Council of Norway. We
thank Thomas Weigert, Qystein Haugen, Rolv Brak, Birger Mgller-Pedersen,
Mass Soldal Lund and Judith Rossebg for useful discussions related to this work.

References

[Bré94] Pierre Brémaud. An Introduction to Probabilistic Modeling. Springer, 1994.

34

[Dud02]

Richard M. Dudley. Real Analysis and Probability. Cambridge studies in
advanced mathematics. Cambridge, 2002.

[HHRS05] @ystein Haugen, Knut Eilif Husa, Ragnhild Kobro Runde, and Ketil Stglen.

STAIRS towards formal design with sequence diagrams. Journal of Software
and Systems Modeling, 22(4):349-458, 2005.

[HHRS06] @ystein Haugen, Knut Eilif Husa, Ragnhild Kobro Runde, and Ketil Stglen.

[ITU99|

[JHSY94]

[MMO5]
[OMGO6]

[RHS05]

[RHS07a]

[RHSO7b]

[RRS07]

[Seg95]

[SkoO5]

Why timed sequence diagrams require three-event semantics. Technical Re-
port 309, Department of Informatics, University of Oslo, 2006.
International Telecommunication Union. Recommendation Z.120 — Mes-
sage Sequence Chart (MSC), 1999.

Bengt Jonsson, Chris Ho-Stuart, and Wang Yi. Testing and Refinement
for Nondeterministic and Probabilistic Processes. In H. Langmaack, W.-P.
de Roever, and J. Vytopil, editors, Formal Techniques in Real-Time and
Fault-Tolerant Systems, volume 863, pages 418-430. Springer, 1994.
Annabelle Mclver and Carroll Morgan. Abstraction, Refinement and Proof
for Probabilistic Systems. Springer, 2005.

Object Management Group. UML 2.1 Superstructure Specification, docu-
ment: ptc/06-04-02 edition, 2006.

Atle Refsdal, Knut Eilif Husa, and Ketil Stglen. Specification and refinement
of soft real-time requirements using sequence diagrams. In Proc. Formal
Modeling and Analysis of Timed Systems: Third International Conference,
FORMATS, 2005, number 3829 in Lecture Notes in Computer Science, pages
32-48. Springer, 2005.

Atle Refsdal, Knut Eilif Husa, and Ketil Stglen. Specification and refinement
of soft real-time requirements using sequence diagrams. Technical Report
323, Department of Informatics, University of Oslo, 2007.

Ragnhild Kobro Runde, @ystein Haugen, and Ketil Stglen. Refining UML
interactions with underspecification and nondeterminism. Technical Report
325, Department of Informatics, University of Oslo, 2007.

Ragnhild Kobro Runde, Atle Refsdal, and Ketil Stglen. Relating computer
systems to sequence diagrams with underspecification, inherent nondeter-
minism and probabilistic choice, Part 1. Technical Report 346, Department
of Informatics, University of Oslo, 2007.

Roberto Segala. Modeling and Verification of Randomized Distributed Real-
Time Systems. PhD thesis, Massachusetts Institute of Technology, 1995.
A. V. Skorokhod. Basic Principles and Applications of Probability Theory.
Springer, 2005.

35

A Additional definitions

In the main section of this report we combined some definitions in order to save
space. For better reference in proofs we now give individual definitions. Let O
and Oz be sets of p-obligations. Then

01|02 = {((o1][02), Q1% Q2) | (01,Q1) € O1 A(02,Q2) € Oz} (45)
017202 & {((01 5 02),Qux Q) | (01,Q1) € O1 A (02,Q2) € O} (46)
0180y & {((01W02),Q1%Q2) | (01,Q1) € 01 A (02,Qs) € Oz} (47)

{01 = {(101,Q1) | (01,Q1) € O1} (48)

Operations for parallel composition, weak sequencing, inner union and negation
for p-obligations were not explicitly defined in the main section. They are defined
by

49
50
51
52

(01,Q1) || (02, Q2
(01,Q1) Z (02, Q2
(01,Q1) W (02, Q2
T(o1, @1

01 || 02, Q1 * Q2)
01 7 02,Q1 % Q2)
01 W 02,Q1 * Q2)

(
(
(
(To1,Q1)

) (49)
= (50)
) £ ((51)
) € (52)

We also define multiplication of a p-obligation or a set of p-obligations with a
probability set:

(07 Q) * Q/ = (07 Q * Q/) (53)
0+Q ¥ {(0,Q+Q")]| (0,Q) € O} (54)

When exploring the relationship between STAIRS and pSTAIRS it is convenient
to have an n-ary xalt operator, where n > 2. This is defined by

[xalt(dy,...,d,)]' = U[[d; |° (55)

We easily verify that any specification with n-ary xalt operators can be rewritten
into an equivalent specification with only binary xalt operators.

Corresponding to expalt for probabilistic specifications we define the operator
exxalt for specifications with inherent nondeterminism.

[exxalt(dy,. .. dn)] &

[xalt((dy alt refuse(ds alt ... alt dy,)),

(56)

(dy, alt refuse(d; alt ... alt dp—1)))]

36

B Shorthand notation

To save space in the proofs we will sometimes use o, 0; and o' as shorthand
notation for (p,n), (p;,n;) and (p’,n’), respectively. We also use po, po; and po’
as shorthand notation for (o, @), (0;,@;) and (o', Q’), respectively. This means
that as a notational convention we have

bo = (07 Q) = ((pvn)vQ)
poi = (0i, Qi) = ((pi,ni), Qi)
LQN) =((p,n),Q")

For simpler notation we also introduce the function ¢rs that returns the positive
and negative traces of a p-obligation. Formally:

trs(((p,n), Q) & pun (57)

for any p-obligation ((p,n), Q).

For the example specifications given in proofs we write ab as shorthand for
la seq 7a seq b seq 7b, and assume that the specification contains only one lifeline,
which is both transmitter and receiver for all messages. Similarly, we write (ab)
as shorthand for (la, ?a, !b, 7b).

37

C Proofs

In this section we state and prove each individual theorem. Theorems that are
proved in other technical reports are not included. The following tables give the
page number for each theorem and lemma. A reference is also given to results
whose proof uses the relevant lemma or theorem. Some lemmas that are not
used in any other proofs are included because they illustrate why alternative

(and usually stronger) versions of certain theorems do not hold.

|Result |Page|Used in the proof of

Lemma 1 43|L13, L17, L19, T12, T32

Lemma 2 44|L7, L11, L18, L21, L42, T12, T15, T18, T20
Lemma 3 45|L11, T29, T30, T31, T44, T45, T46
Lemma 4 46|L11, L22, T29, T44

Lemma 5 51|L11, L23 T30, T45

Lemma 6 51|L11, T31, T46

Lemma 7 52|L11

Lemma 8 53|L11, T28, L54, T43

Lemma 9 54|L11, L45, T28, L54

Lemma 10| 54|L11, L20, T32

Lemma 11| 55|L12, T12, T18, T29, T30, T31, T32
Lemma 12| 58|L13, L22, L23, L24, T15, T20, T44, T45, T46, T47
Lemma 13| 58|T15, T20, T47

Lemma 14| 60|T43

Lemma 15| 60|T17

Lemma 16| 60|L17

Lemma 17| 63|T18

Lemma 18| 64|T29, T30, T31, T44, T45, T46,
Lemma 19| 65|L24, T31, T46

Lemma 20| 67|T47

Lemma 21| 67|T32, T47

Lemma 22| 68|T44

Lemma 23| 71|T45

Lemma 24| 71|T46

Lemma 25| 72|T44, T45, T46

Lemma 26| 73|T44, T45, T46

Lemma 27| 73|L28

Lemma 28| 76|T1, T2

Lemma 29| 76|L30, L33

Lemma 30| 77|L35

Lemma 31| 78|L32, L36

38

| Result

[Page|Used in the proof of

Lemma 32

79

L33, T1, T2, T3, T4

Lemma 33

82

T1, T2, T3, T4

Lemma 34

84

39, 143, L44, T1, T2, T3, T4

Lemma 35

86

L44, T1, T3, T4

Lemma 36

88

T1, T2, T3, T4

Lemma 37

90

L38

Lemma 38

91

Lemma 39

91

T3, T4

Lemma 40

95

T29, T44

Lemma 41

97

T30, T45

Lemma 42

98

T29, T30, T31, T44, T45, T46

Lemma 43

99

L4, T4

Lemma 44

102

T2

Lemma 45

116

T21

Lemma 46

118

T23, Lb4

Lemma 47

119

T38

Lemma 48

119

T24

Lemma 49

120

T39

Lemma 50

120

T40

Lemma 51

121

T41

Lemma 52

121

T25

Lemma 53

122

T26

Lemma 54

127

T33

Lemma 55

139

Lemma 56

144

Lemma 57

144

Lemma 58

154

Lemma 59

154

Lemma 60

155

Lemma 61

156

Lemma 62

156

|Resu1t

|Page|Used in the proof 0f|

Theorem 1

135)-

Theorem 2

139|-

Theorem 3

145|-

Theorem 4

148|-

Theorem 5

A1|T4, T14, T15, T47

Theorem 6

A1[T2, T20

Theorem 7

A1|L14, 147

Theorem 8

42|L49

Theorem 9

42|L50

39

[Result [Page[Used in the proof of]
Theorem 10| 42|L51
Theorem 11| 102|-
Theorem 12| 103|-
Theorem 13| 105|-
Theorem 14| 106|T15
Theorem 15| 106|-
Theorem 16| 108|T18
Theorem 17| 109|T19
Theorem 18| 109
Theorem 19| 110|T20
Theorem 20| 110
Theorem 21| 117|T28
Theorem 22| 117|-
Theorem 23| 119|-
Theorem 24| 121|-
Theorem 25| 121|-
Theorem 26| 122|-
Theorem 27| 122|-
Theorem 28| 123|-
Theorem 29| 124|-
Theorem 30| 125|-
Theorem 31| 125|-
Theorem 32| 126|-
Theorem 33| 128|-
Theorem 34| 128|-
Theorem 35| 129|-
Theorem 36| 129|-
Theorem 37| 129
Theorem 38| 130|T43

Theorem 39| 130|T44, T45, T46
Theorem 40| 130|-
Theorem 41| 130|-
Theorem 42| 130|-
Theorem 43| 130|-
Theorem 44| 131
Theorem 45| 132
Theorem 46| 133
Theorem 47| 133|-

C.1 Specifications without probabilistic choice related to ~,.

This section includes proofs for specification without probabilistic choice related
to the refinement relation ~~,,.. These proofs are included in this report (Part
2) since the refinement relation ~-,, was not included in [RRS07].

40

Theorem 5 (Transitivity of ~~,,). Let d, d' and d” be sequence diagrams in
D*. Then

[l ~wne Ld T ATd T e [d" " = [d]" e [d"]

Proor.
(1)1. ASSUME: [d] ~pr [d J“A[d]* ~onr [d7]
PROVE: [d]* ~pr [d”]
L [d]* ~, [d"]"
PROOF: By assumption (1)1 and Lemma 26 in [HHRSO06]
(2)2. LET: (p,n)=[d]“
(p/,n/) _ [[d]]u
(p//7,n///) — [[d//]]u
(2)3. pUn=p'Un’Ap'uUn’ =p"un”
PROOF: By assumption (1)1
(2)4. Q.E.D.
PROOF: By (2)1 and (2)3
(1)2. Q.E.D.
PROOF: =-rule

O

Theorem 6 (Transitivity between refinement and compliance for ~-,,.).
Let dy and ds be sequence diagrams in D*. Then

[[dy]]u ~nr [[da]]u A [[da]]u nr <I>32 = [[dy]]u Pnr <I>31

PROOF. This is a special case of Theorem 7 in [RRS07], since [dy |* ~nr
[do]* implies [dy]J* ~pr [d2]*, and the definitions of +—,, and +,, are
identical. ([l

Theorem 7 (Monotonicity of refuse w.r.t ~~,,). Let d € D*. Then
[d]" ~n [d]" =] refuse d]* ~p, [refuse d' |*

PROOF.

(1)1. ASSUME: [d " ~pr [d']*
PROVE: [refuse d |* ~~p, [refuse d’ |*
(2)1. [refuse d]| ~=, [refuse d' |
B [d]" o []
PROOF: By assumption (1)1
(3)2. Q.E.D.
PROOF: By (3)1 and Lemma 4 in [RHS07D]
(2)2. mp.[refuse d |* U ma.[refuse d |* = m1.[refuse d’ |* U ma.[refuse d’]“
(3)1. LET: (p,n)=1]d
(,n) =
(3)2. pUn=p'un

]]’U.
d/]]’U.

41

PROOF: By assumption (1)1
(3)3. [refuse d J*“ = (0,pUn) A[refuse d' J* = (0,p’ Un’)
PROOF: By definition (8) in [RRS07]
(3)4. Q.E.D.
PROOF: By (3)2 and (3)3
(2)3. Q.E.D.
PROOF: by (2)1 and (2)2
(1)2. Q.E.D.
PROOF: =-rule

O

Theorem 8 (Monotonicity of seq w.r.t ~-,,). Let di, da, di and df be
sequence diagrams in D*. Then

[di 1" ~nr [di]“ AL d2]" ~onr [dy 1" = [di seq da [* ~pr [dy seq dy]"
PROOF.

(1)1. AsSUME: [dy [* ~nr [d J“A[d2]* ~ne [dy]*
PROVE: [dy seq da |* ~nr [df seq dfy]*
(2)1. [dy seq da | ~, [d} seq db |*
PROOF: By assumption (1)1 and Lemma 30 in [HHRSO06]
(2)2. m1.([di seq da [*“)Uma.([d1 seq da |*) = m1.([df seq db |*)Uma.([d) seq db |*)
(3)1. LET: (piyni) =[d;] and (p},n;) =[d;] for i € {1,2}
(3)2. p1Uny =pjUn) ApaUng = phUni
PROOF: By assumption (1)1
(3)3. (p1 Z p2) U (n1 Z p2) U Z m2) U(pr 2 n2) = (p) Z pa) U (0
ph) U (3=) U (8 2=)
PROOF: By (3)2
(3)4. Q.E.D.
PROOF: By (3)3 and definition (7) in [RRS07]
(2)3. Q.E.D.
PROOF: By (2)1 and (2)2
(1)2. Q.E.D.
PRrROOF: =-rule

O

Theorem 9 (Monotonicity of par w.r.t ~,,). Let di, da, d} and d} be se-
quence diagrams in D*. Then

[di]* ~nr [dy [* AL d2 [" ~onr [dy [" = [di par da [* ~n, [dy par dy]*

PROOF. The proof is similar to the proof for Theorem 8; just replace seq with
par, - with || and the reference to Lemma 30 in [HHRS06] with a reference to
Lemma 31 in [HHRS06]. O

Theorem 10 (Monotonicity of alt w.r.t ~,,). Let di, da, d; and d be
sequence diagrams in D". Then

[di J% ~nr [dy] AT d2]" ~nr [dy |" = [di alt da J* ~pr [dy alt df "

42

PROOF.

(1)1. AsSUME: [dy [“ ~nr [d J“A[d2]* ~one [d5]*
PROVE: [dy altdy |* ~p, [d} alt d |
(2)1. [dy alt do J* ~, [d] alt db]“
PROOF: By assumption (1)1 and Theorem 11 in [RRS07]
(2)2. m1.([dy altda [*)Uma.([dy alt do |*) = m1.([df alt db [*)Uma.([df alt db]“)
(3)1. LET: (piyni) =[d;] and (p},n,) =[d;] for i € {1,2}
(3)2. p1Uny =pjUn) ApaUng = phUnij
PROOF: By assumption (1)1
(3)3. (p1Up2) U(n1 Ung) = (py Ups) U (n] Uny)
PROOF: By (3)2
(3)4. Q.E.D.
PROOF: By (3)3 and definition (9) in [RRS07]
(2)3. Q.E.D.
PROOF: By (2)1 and (2)2
(1)2. Q.E.D.
PRrROOF: =-rule

C.2 Specifications with probabilistic choice

In this section [...] is always interpreted as [...]*, and (I)q as (I)%.

General lemmas

Lemma 1. Let O and O’ be sets of p-obligations. Then
O ~p O = B0 ~, 30’

PROOF.

(1)1. ASSUME: O ~»p; O
ProOVE: @O ~-, @0’
(2)1. ASSUME: @O v, &0’
Prove: L
(3)1. LET: @0 = (p,n) and &0’ = (p',n’)
32. nZn'VpgZp Un
PROOF: By assumption (2)1
(3)3. CASE: n ¢ n’
(4)1. LET: t € H such that t e n At & n’
PROOF: By assumption (3)3
(4)2. LET: ((p},n}), Q%) € O" such that t ¢ n}
PROOF: By (4)1 and definition 4
4)3. VS C O : ((p),n}), Q) €S=t¢m.dS
PROOF: By (4)2
<4>4 V((pl,nl), Ql) e0:ten

43

PROOF: By (4)1 and definition 4

(5. Y(p1,m), Q1) € 0,8 C O+ (ph 1), Q%) € S = (p1,m1) For BS
PROOF: By (4)3 and (4)4

(4)6. Q.E.D.
PROOF: By assumption (1)1 and (4)5

(3)4. CAsE: pZp'uUn’

(4)1. LET: t € Hsuch that t ep At ¢ p Un’
PROOF: By assumption (3)4

(4)2. LET: ((p},n}), Q") € O such that t ¢ pj Un
PROOF: By (4)1 and definition 4

(4)3. VS C O : ((p1,n)), Q) €eS=t¢m. ®@SUm. &S

PROOF: By (4)2 and definition 4
(4)4. Y((p1,m1),Q1) €0 tEPp1Um
PROOF: By (4)1 and definition 4
(5. ¥(p1,m1), Q1) € 0,8 C O+ (1), Q%) € S = (p1,m1) for B8
PROOF: By (4)3 and (4)4
(4)6. QED.
PRrROOF: By By assumption (1)1, definition 25 and (4)5
(3)5. Q.E.D.
PROOF: By (3)2 the cases (3)3 and (3)4 are exhaustive
(2)2. Q.E.D.
ProOF: L-rule
(1)2. Q.E.D.

PROOF: =-rule

Lemma 2. Let d € DP. Then

PROOF.

(1. 3poe[d]:Q C {1}
(2)1. CASE: d consists of a single event e or d = skip
G [d]={{}0),{1)}vId]={{0}0), {11}
PROOF: By assumption (2)1
(3)2. Q.E.D.
PROOF: By (3)1
(2)2. CASE: d contains at least one operator
(3)1. AssuME: For every sequence diagram d’ that occur in an operand of
d the following holds: 3po’ € [d’'] : @ C {1} (ind. hyp.)
PrROVE: Jpoe[d]:Q C {1}
(4)1. CASE: d = palt(d1;Q1, ... dn;Qn)
(5)1. Gpoe[d] :mpo={1}N>" Q;
PROOF: By (4)1 and definition 9
(5)2. Q.E.D.
PROOF: By (5)1 and definition 7

44

(4)2. CASE: d = d; seq da
(5)1. LET: poy € [dy] s.t. Q1 C {1}
poz € [da] s.t. Q2 C {1}
PROOF: By assumption (3)1
(5)2. por Zpox €[d]
PROOF: By (5)1 and assumption (4)2
(5)3. ma.(po1 Z po2) C {1}
PROOF: By (5)1
(5)4. Q.E.D.
PROOF: By (5)2 and (5)3
(4)3. CASE: d = d; par do
PROOF: Similar to (4)2
<4>4 CASE: d =d; alt do
PROOF: Similar to (4)2
(4)5. CASE: d = refuse d;
(5)1. LET: (0,Q) €[d1]st QC{1}
PROOF: By assumption (3)1
(5)2. (10,Q) € [d]
PROOF: By (5)1 and assumption (4)5
(5)3. Q.E.D.
PRrROOF: By (5)1 (Q C {1}) and (5)2
(4)6. Q.E.D.
PROOF: The cases (4)1, (4)2, (4)3, (4)4 and (4)5 are exhaustive
(3)2. Q.E.D.
PROOF: Induction step
(2)3. QED.
PROOF: Induction with (2)1 as base case and (2)2 as induction step
(1)2. Q.E.D.
PROOF: By (1)1, Definition 6 and Definition 7

d

Lemma 3 (Monotonicity of 77, || and & w.r.t ~,, for p-obligations). Let
(017 Ql): (025 QQ)) (0/17 Qll) and (0I25 Q/Q) be p—obligations. Then

(01, Q1) ~pr (01, Q1) A (02,Q2) ~pr (05,Q5) =
(01,Q1) Z (02, Q2) ~pr (01, Q1) T (03,Q3) A
(01, Q1) || (02,Q2) ~pr (07, Q1) || (05, Q5) A
(01, Q1) W (02, Q2) ~pr (01, Q1) W (05, Q3)

PROOF.

<1>1 ASSUME: (01; Ql) ~pr (0/15 Qll) A (02; QQ) ~or (0/25 Q/Z)
PROVE: (01,Q1) % (02,Q2) ~pr (01,Q1) T (05, Q%) A
(Oval) ” (027Q2) ~pr (Olvall) ” (0/27Ql2) A
(01,Q1) W (02, Q2) ~pr (07, Q1) W (05, Q3)
(2)1. Q1 Q5 CQ1xQ2

45

(3)1. Q1 CQ1AQ; C Q2
PROOF: By assumption (1)1
(3)2. Q.E.D.
PROOF: By (3)1 and definition 2
(2)2. (01,Q1) Z (02, Qa) ~pr (01, Q1) Z (05, Q)

(3)1. 01 ZZ 03 ~y 0) 7 0h

~

PROOF: By assumption (1)1 and Lemma 30 in [HHRS06]
(3)2. Q.E.D.

PROOF: By (2)1 and (3)1
(2)3. (01,@1) || (02,Q2) ~pr (07, Q1) || (02, Q2)
(3)1. 01 [02 vy 07 || 0

PROOF: By assumption (1)1 and Lemma 31 in [HHRS06]
(3)2. Q.E.D.

PROOF: By (2)1 and (3)1
(2)4. (01,Q1) W (02, Q2) ~pr (01, Q1) W (05, Q5)

(3)1. 01 Wog ~~, 0} Wb

PROOF: By assumption (1)1 and Theorem 11 in [RRS07]
(3)2. Q.E.D.

PROOF: By (2)1 and (3)1
(2)5. Q.E.D.

PROOF: By (2)2, (2)3 and (2)4
(1)2. Q.E.D.
PROOF: =-rule

Lemma 4. Let O1 and Oz be sets of p-obligations. Then

@01 7 ®02 ~, (01 7 02)

PROOF. In this proof we introduce the predicate I defined by

I(t,tl,tQ) sSte {tl} ?:/ {tg}

<1>1 7T2.(®01 ?:/ @02) g 9. D (01 i: 02)
<2>1 . D (01 ?:/ 02) =
{t eEH | Vpo1 € O1,poz € Oy : Ity,ts € H : I(f,tl,tg) AN
(tl €Eni Nita Epg)\/
(tl € p1 Nta E’ng)\/
(tl eni Nty € ng)}

46

PROOF: m3. & (01 ij 02)
= ﬂ n
po€01702
By definition 4
= N n Zp2Upt ZneUni Zne
(po1,po2)€01 XO2
By definition 46 and definition (4) in [RRS07]
= m ({t€H|3t1E?’Ll,t2€p2:l(t,t1,t2)}u
(po1,po2)€01 X O2
{t eEH | dt1 € pr1,ta € no I(f,tl,tg)}u
{t eEH | dt1 € nq,ta € ng I(f,tl,tg)})
By definition (2) in [RRS07]
= {t € H|Vpor € O1,pos € Os :
dt, € ni,to2 € p2: I(t,tl,tQ)\/
dt1 € p1,ta Enog: I(t,fl,tg)\/
dt1 € ny,ts Eng : I(t,fl,tg)}
By set theory
= righthand side of (2)1
<2>2 7@.(@01 i @02) =
{t eH | E'tl,tQ EH: I(t,tl,tg) A
((Vpol €01 :t1 €ny Adpos € O : to €p2/\vp0/2 € 0y : ty Ep’QUné)\/
(3])01 €01 : 1 € p1 /\VpOll €01 :t1 6p'1Un'1/\Vp02 € Oq : tg 6712)\/
(Vpol €01 :t1 €ny AVpos € Os ity € ng))}
PROOF: Wg.(@ol i EBOQ)
=M. @01 T D02 Um. @01 25 ma. ® O Uma. @ O 2 ma. ® O
By Definition (4) in [RRS07]
= N mz(U pn N pUn)U

po1€01 po2 €02 po2 €02
(U mn N pUn)z (1 neU
po1€01 po1€01 po2€02
N mz N n
po1€01 po2€02

By definition 4
= righthand side of (2)2
(2)3. ASSUME: t € m.(®01 7 ®02)
PROVE: t € m. @ (01 Z O2)
<3>1 VpOl S 01,p02 €0y 3t1,t2 eH: I(t,tl,tg) A
((tl eny Nty sz)\/(tl € p1 Nta Eng)\/(tl eny Nty Eng))
(4)1. ASSUME: po; € O1,pos € O
PROVE: (ﬂ(tl,fg EH: I(t,tl,tg) AN
t1 Enl/\tgepg)\/
(tl € p1 Nita 6712)\/
(tl eEny Nty € TLQ))
(5)Y1. 3y, th € H : I(t,t),t5) A
(Vpoi € O1 : t} € nf ATpol, € O : th € ph A
Vpoh € Og : th € phUnb) V
(Fpo} € O1 :) € py AVpoy € O1 : 8] € pj Un) A

47

Vpohy € Oy 1 th, € n) V
(Vpo) € Oy : t) € ny ANVpoh, € Oy : t), € nby)
PROOF: By (2)2 and assumption (2)3
(5)2. CASE: Vpojl €0 : tjl € nl'l A 3}90’2 € Oy : th € ph A
<6>1 t/l € nq /\t/2 € p2Une
PROOF: By assumption (5)2 and (4)1
<6>2 (t/l eny N t/Q S pz) V (tll eEny Nty € 7’L2)
PRrOOF: By (6)1
(6)3. T(t,4, 1) A
((t/l S TL1</\>t/2 S p2<) \>/ (tll ep1 A t/2 S ng) \Y (t/l (S WA t/2 S ’ng))
ProOF: By (5)1 and (6)2
(6)4. Q.E.D.
PRrROOF: By (6)3
(5)3. CASE: Hpojl €0 : tjl € p'} AVpoy € O1 : t) € pj Unj A
VpOQ € 02 : t2 € Ny
<6>1 t/l cprUng /\té € na
PROOF: By (5)3 and (4)1
<6>2 (tll SN /<\t>12 S ’IZQ) \Y (tll eEny N\ t/Q S 712)
Proor: By (6)1
(6)3. T(t,1},t4) A
((ty € p1</\>t’2 € n2<) \>/ (t] € ni Ath € p2) V (t] € ni Ath € no))
ProOOF: By (5)1 and (6)2
(6)4. Q.E.D.
PRrROOF: By (6)3
(5)4. CASE: Vpoj € O1 :t) € n) AVpoh € Oq : th, € nfy
<6>1 t/l € ny /\t/2 € No
PROOF: By assumption (5)4 and (4)1
<6>2 (t/l € ny ?\Z;IQ TPQ)\/()I?& Epl/\té ETLQ)\/(t/l 6711/\t/2 6712)
Proor: By (6)1 (V-intro
(6)3. T(t,1,t) A
((tll € TL1</\>t/2 € p2<) \>/ (tll ep1 A t/2 S nz) \Y (tll [SE WA tlz S ng))
ProOF: By (5)1 and (6)2
(6)4. Q.E.D.
PRrOOF: By (6)3
(5)5. Q.E.D.
PROOF: By (5)1 the cases (5)2, (5)3 and (5)4 are exhaustive
(4)2. Q.E.D.
PROOF: V-rule
(3)2. Q.E.D.
PROOF: By (3)1 and (2)1
(2)4. Q.E.D.
PROOF: C-rule
<1>2. Wl.(@Ol ?\‘/ @02) Cm.® (01 i: 02) Uma. P (01 i: 02)

48

<2>1 7r1.(6901 i: @02) =
{t€H|3p01GOl,pOQGOQ,tlGpl,tQEPQZI(t,tl,tQ)/\
Vpoy € Oy :t1 € pi Un) AVpol € Os : ty € phUnf}
PRrROOF: Wl.(@ol i EBOQ)
=7r1.6901§7r1.6902
By definition 50
=(U pn(C N mUm)z(U p20n((1 p2Una))

po1€01 po1 €01 po2€02 po2€02
By definition 6
= {tl eH | 3])01 €01 :t1 epl/\Vpo’l €01 :t EpﬁUn’l}i
{tg eEH | dpos € O3 : Lo Epg/\VpOIQ € 0y : 1ty Ep/QUTLIQ}
By set theory
= righthand side of (2)1
By definition (2) in [RRS07]
<2>2 mT. D (01 ?:/ 02) =
{t eEH | dpo1 € O1,pos € Oa,t1 € p1,ta € pa: I(f,tl,tg) A
Vpoy € O1,poh € Oy : It} € pLun, th € phUnb : I(t,t],t5)}
PROOF: 7. @ (01 i 02)
= U »pn(C N pun)
po€017502 po€01 702
By definition 4
= {t eEH | dpo1 € O1,pos € Oz : t1 € p1,to € pa: I(t,tl,tg)}ﬂ
{t eEH | Vpo1 € O1,poz € Oz : Ity € p1Ung,to EpaUnsg : I(t,tl,tg)}
By definition 46
= righthand side of (2)2
By set theory
<2>3 Fl.(@ol i @02) Cm.d (01 i 02)
(3)1. ASSUME: t € m1.(®01 7 ®02)
PROVE: tem.® (017 02)
<4>1 ASSUME: ¢ ¢ 1. D (01 ij 02)
ProvE: L
<5>1 E|p01 S 01,p02 S Oz,tl € p1,ta EPa: I(t,tl,tQ) A
Vpo € O1 : t1 € pyUnj AVpoh € Oz : ta € phUni
PROOF: By assumption (3)1 and (2)1
<5>2 —|(E|p01 € O1,pos € Oa,t1 € p1,ta € Po : I(t,tl,tg) A
Vpoy € O1,pohy € Oz : 3t} € plUnf,th € ph Unb 1 I(E,1],15))
PROOF: By assumption (4)1 and (2)2
<5>3 Vpo1 € O1,pos € Oa,t1 € p1,ta € pa: ﬁl(t,tl,tg) Vv
po € O1,poy € Og : Vit € pj Un,th € phunb : —I(t,t],th)
PROOF: By (5)2
<5>4 CASE: VpOl S 01,p02 S 02, t1 € p1,l2 Epa: —‘I(t, tl,tQ)
(6)1. Q.E.D.
PRrROOF: By (5)1 and (5)4
(5)5. CASE: Jpo} € O1,poh € Oy :
Vi € pi Uni, th € phUnb - —I(E,t],t5)
(6)1. Q.E.D.

49

Proor: By (5)1 and (5)5
(5)6. Q.E.D.
PROOF: By (5)3 the cases (5)4 and (5)5 are exhaustive
(4)2. QED.
PROOF: L-rule
(3)2. Q.E.D.
PrROOF: C-rule
(2)4. Q.E.D.
PRrROOF: By (2)3
(1)3. Q.E.D.
PROOF: By (1)1 and (1)2
O
Note, however, that $01 22 $02 ~»p, &(01 7 O2) does not in general hold,
due to the probability sets. To see this, let

O1 = {(04,{0.2})}
02 = {(Oba <O5a 1])7 (OCa <O57 1])}

This means that

01 = (04,{0.2})
®02 = (&{op, 0}, {1})
T (B0 = ®0,) = {0.2} % {1} = {0.2}
m2.3(01 = 03) = {0.2} % (0.5, 1] + {0.2} % (0.5, 1]
= (0.1,0.2] + (0.1,0.2]
=(0.2,0.4]

So 7@.@(01 i 02) ,@ 7T2.€_901 i E_BOQ.
Note also that neither @01 7, ®O02 ~>,. B(0O1 7 O2) nor &(O1 7 O3) ~pp

~

@0 =, 05 holds in general. To see this, let

O1 = {(({{a)},0), Q1), ({(ab)},0),Q2)}
02 = {(({{c), (bc) },0), Q3)}

This means that

012 02 = {(({{ac) , (abc)},0), Q1 * Q3), ({{abe) , {abbe) }, 0), Q2 + Q) }
®01 = (0,0)
®02 = ({(0), (be)},0)
&(01 2 02) = ({(abe)}, 0)
®01 7 03 = (0,0)

So 301 7 BO02 ~>r.. &(01 7 O2) does not hold since (abe) is positive in &(0; 7
03) but not in ®0; 7 ®O4, while &(0;1 7= O3) ~>. 01 7 ®O2 does not hold
since (abc) is positive in &(O; 7z O2) but inconclusive in @0y 22 GO0s.

50

Lemma 5. Let O1 and Oz be sets of p-obligations. Then
@01 || @0z ~, ®(01 || O2)
PROOF. Similar to Lemma 4; just replace - with ||. O
Lemma 6. Let O1 and Oz be sets of p-obligations. Then
P01 W DOy ~,. (01 W Oy)

PROOF.

<1>1 7T1.(EB01 L‘U@OQ) =m.901Um. 05 = (Up01601 1 mﬂp01€O1 (pl Unl))U
(Uporco, P2 N Mposco, (P2 Un2))
PROOF: By definition 4 and definition 51
<1>2 7T2.(®01] @02) = To. D 01 U To. D 02 = mp01601 n1 U mp02602 no
PROOF: By definition 4 and definition 51
<1>3 7T2.(EB01 (] @02) C mo. B (01] 02)
(2)1. ASSUME: t € m.(®01 W ®O02)
PROVE: t € ma. ® (01 WO02)
3Lt €Nporeo, M1 VEENo,c0, N2
PROOF: By assumption (2)1 and (1)2
(3)2. CasE: t € (), c0, M1
(1. t € Npocoywo, ™
PROOF: By assumption (3)2 and definition 47
(4)2. Q.ED.
PROOF: By (4)1 and definition 4
(3)3. CasE: t € (),,,c0, N2
PROOF: Similar to (3)2
(3)4. Q.ED.
PROOF: By (3)1 the cases (3)2 and (3)3 are exhaustive.
(2)2. Q.E.D.
ProOOF: C-rule
<1>4 7T1.(EB01 (] @02) Cm.® (01 (] 02) Uma. B (01 (] 02)
(2)1. ASSUME: t € m1.(®01 W ®O03)
PROVE: t€m.® (01 W02)Uma. ® (01 W 02)
(3)1. ¢ 6))(Upoleol P10 Npoye0, (PrUN1))VEE (Upo,eo, P2N(Nposeo, (P2 U
2
PROOF: By assumption (2)1 and (1)1
<3>2 CASE: t € Up01€O1 p1 N ﬂp01€O1 (pl @] nl)
(1. te UpoEOl&JO2 p
PROOF: By assumption (
(2. 1 € Npoeoruo, 0 UN)
PROOF: By assumption (3)2 (¢t € (,,,co, P1 Un1) and definition 47
(4)3- € Upoco,w0, PN Npoco,w0, P UN)
PROOF: By (4)1 and (4)2
<4>4 tem.d (01 (] 02)
PROOF: By (4)3 and definition 4

3)2 (t € Upo, co, P1) and definition 47

o1

(4)5. Q.E.D.
PROOF: By (4)4
(3)3. Case: t € (Upo,e0, P2 N Mpoyeo, (P2 Un2))
PROOF: Similar to (3)2
(3)4. Q.E.D.
PROOF: By (3)1 the cases (3)2 and (3)3 are exhaustive.
(2)2. Q.E.D.
ProOOF: C-rule
(1)5. Q.E.D.
PROOF: By (1)3 and (1)4

O

Lemma 7. Let di and dy be sequence diagrams in DP, and let op € {7, ||, W}.
Then

mo.(B] di] op & da]) =m.B([di] op [d2])
PRrROOF.

(D1, .8 d1] C {1} Am.&[d2] C{1}
PRroor: By Lemma 2
<1>2 WQ.(@[[dl]] op @[[dz]]) g {1}
PROOF: By (1)1
(1)3. m.®([dr [op [da2]) € {1}
ProoFr: By Lemma 2
4. 1em.(@®][d]op®de])=1em&(di]op[da])
(2)1. ASSUME: 1 € mo.(®] d1]| op D[d2])
PROVE: 1em.&([diJop[da])
<3>1 WQ.E_B[[dq]] #* (Z)/\7r2.6_9[[ds]] #+ 1]
PROOF: By assumption (2)1
<3>2 1e 7T2.G_9[[dy]] ANl e 7T2.G_9[[ds]]
PROOF: By (1)1 and (3)1
(3)3. AsSUME: 1 ¢ m.®([d1] op[d2])
ProvE: L
(1. m.&([di] op[da])=0
PROOF: By (1)3 and assumption (3)3
(4)2. Fpoy € [dy] : m2por =0V Ipog € [da | : m2.poa =0
(5)1. Fpoe[diJop[da]:mepo=10
PROOF: By (4)1
(5)2. LET: poy € [dy],poz € [d2] s.t. ma.(po1 op pos) =0
PRrROOF: By (5)1
(5)3. m2.poy * ma.pog =
PROOF: By (5)2
(5Y4. mo.po1 = OV ma.poy =
PROOF: By (5)3
(5)5. Q.E.D.
PROOF: By (5)4 and (5)2
(4)3. CASE: Jpoy € [dy] : ma.por =0

52

(5)1. mp.®[dr] =10
PROOF: By assumption (4)3, definition 6 and definition 7
(5)2. Q.E.D.
PROOF: By (3)2 and (5)1
<4>4 CASE: 3]?02 S [[ds]] I M2.pO2 = 1]
PROOF: Similar to case (4)3
(4)5. Q.ED.
PROOF: By (4)2 the cases (4)3 and (4)4 are exhaustive
(3)4. Q.E.D.
PRrROOF: L-rule ({(3)3)
(2)2. QED.
PROOF: =-rule
5. 1em®([di]op[da]) =1€m.(B][d] op®[d2])
(2)1. ASSUME: 1 € mo.®([dy Jop [d2])
PROVE: 1e€m.(®[di]op B[da])
(3)1. ASSUME: 1 ¢ ma.(®] d1] op B[d2])
ProvE: L
1. mo.(B[di Jop B[da]) =0
PROOF: By (1)2 and assumption (3)1
<4>2 Fg.(@[[dq]]) = (Z)VFQ.(E_B[[ds]] =
G)1. mo. (@[dr [) ¥ ma. (D] d2 [) = 0
PROOF: By (4)1
(5)2. Q.E.D.
PROOF: By (5)1
(4)3. CASE: mo.(®][d1]) =10
<5>1 3]?01 S [[dy]] I M2.p01 = 0
PROOF: By assumption (4)3, definition 6 and definition 7
(5)2. poediJop[da]:mepo=10
PROOF: By (5)1
(5)3. m2.®([dr Jop [d2]) =0
PROOF: By (5)2, definition 6 and definition 7
(5)4. Q.E.D.
PROOF: By (5)3 and assumption (2)1
(4)4. CASE: mo.(®][d2) =10
PROOF: Similar to case (4)3
(4)5. QED.
PROOF: By (4)2, the cases (4)3 and (4)4 are exhaustive
(3)2. Q.E.D.
PRrROOF: L-rule
(2)2. Q.E.D.
PROOF: =-rule
(1)6. Q.E.D.
PROOF: By (1)2, (1)3, (1)4 and (1)5

0

53

Lemma 8. Let O be a set of p-obligations. Then

@710 = 100
Proor.
<1>1 7T1.E_BTO = 7T1.TE_BO
Proor: _

m.270 = &10 By definition 6
= (UpoeTop N ﬂpoeTO(p Un), mpOETO n) By definition 4
= (0,NpocoPUn) By definition 48
= J[(Upoeop N ﬂpoeo(p Un), ﬂpoeo n) By definition 52
=700 By definition 4
= m.1®0 By definition 6

<1>2 WQ.@TO = WQ.T@O
(2)1. m.HT0 = ZpoETO To.po = ZpOGO m.p0 = To. PO = mo.7HO
PROOF: By definition 6, definition 48 and definition 52
(2)2. Q.E.D.
PrOOF: By (2)1
(1)3. Q.E.D.
PROOF: By (1)1 and (1)2

Lemma 9. Let (0,Q) and (o',Q’) be p-obligations. Then
(07 Q) Wp?“ (0/5 Q/) = T(Ov Q) WPT T(Olv Q/)

PROOF.

(1)1. ASSUME: (0,Q) ~pr (o', Q")
PROVE: 1(0,Q) ~pr 1(0', Q")
(2)1. to ~>, 0
(3)1. 0~y 0
PROOF: By assumption (1)1
(3)2. Q.E.D.
PROOF: By (3)1 and Lemma 4 in [RHS07b] (note that the proof of Lemma
4 in [RHSO07b| applies for any interaction obligation).
22 Q' CQ
PROOF: By assumption (1)1
(2)3. Q.ED.
PROOF: By (2)1 and (2)2
(1)2. Q.E.D.
PROOF: =-rule

Lemma 10. Let O; and O} be sets of p-obligations. Then

(Wgn:@oiwr@og):»@OOiWT@OO’

=1 i=1

54

PROOF.

(1)1. ASSUME: Vi < n : ®O; ~, ®O0;
ProveE: @J!,0; ~, ®J, O
(2)1. CASE: n=1
(induction basis)
(3)1. ©01 ~, O
PROOF: By assumption (1)1
(3)2. Q.E.D.
PRrOOF: By (3)1
(2)2. CASE: n > 1 (induction step)
(3)1. ASSUME: @ Ule O ~r @ Ule O’ for k < n (ind. hyp.)
Prove: @) O~ @ UL Of
(1. Opq1 ~r @OZH
PROOF: By assumption (1)1
(4)2. Q.E.D.
PROOF: By (4)1, assumption (3)1 and Lemma 6 in [RHS07a|
(3)2. Q.E.D.
PROOF: Induction step
(2)3. QED.
PROOF: By induction with (2)1 as basis and (2)2 as induction step
(1)2. Q.E.D.
PROOF: =-rule

Lemma 11. Let d € DP. Then
Jpoe[d]:po~p &[d]AQC {1}

PROOF.

(1)1. CASE: d consists of a single event e or d = skip
@21 [d]=1{(({(e},0),{1})} ={e[d]}V
[d] = {010, (1N} = ([d]}
PROOF: By assumption (1)1
(2)2. Q.E.D.
PrROOF: By (2)1 and reflexivity of ~-,,
(1)2. CASE: d contains at least one operator
(2)1. AssuME: For every sequence diagram d’ that occur in an operand of an
operator in d the following holds:
Ipo’ €[d]| :po ~pr B[d] AQ C {1} (ind. hyp.).
PROVE: Jpo € [d]:po~p @[d]
(3)1. CASE: d = palt(d1;Q1,. .., dn;Qn)
(1. LET: poo = (® UL [dis@: [{1} N 3201, Qi)
(4)2. pog €[d]
PROOF: By assumption (3)1 and definition 9

(4)3. Qa € {1}

55

PRrROOF: By (4)1
<4>4 POa ~pr @[[d]]
5. m. B[d] C Qa
(6)1. mo.®[d] C {1}
Proor: By Lemma 2
(6)2. CAsE: m.®[d] ={1}
M1 1y, Q
(8)1. AsSUME: 1¢ Y " Q;
ProvE: L
(91. Qu=10
PROOF: By (4)1 and assumption (8)1
Q=0
PROOF: By (9)1 and
(9)3. m.B[d] =10
PROOF: By (9)2
(9)4. Q.E.D.
PROOF: By (9)3 and assumption (6)2
(8)2. Q.ED.
ProOOF: L-rule
(1Y2. 1€ Q,
PROOF: By (7)1 and (4)1
(7)3. Q.E.D.
PROOF: By (7)2 and assumption (6)2
(6)3. CASE: m.0[d] =10
PROOF: By assumption (6)3
(6)4. Q.E.D.
PROOF: By (6)1, the cases (6)2 and (6)3 are exhaustive
(5)2. 0 ~r B[d]
O)1. o d] = ® U [diQi |
PROOF: By assumption (3)1
(6)2. 00 = © U, [i |
PRrROOF: By (4)1
(6)3. Q.E.D.
PROOF: By (6)1 and (6)2
(5)3. Q.E.D.
PROOF: By (5)1 and (5)2
(4)5. Q.E.D.
PROOF: By (4)2, (4)3 and (4)4; po, is the po we are looking for.
(3)2. CASE: d = d; seq da
(4)1. LET: poy € [dy] such that poy ~p, [di] A Q1 C {1}
pog € [da] such that pog ~p @[d2] A Q2 C {1}
PROOF: By assumption (2)1
(4)2. por Zpox € [d]
PROOF: By (4)1 and assumption (3)2
(4)3. ma.(po1 Z po2) C {1}

4)2

56

PRrROOF: By (4)1
(4)4. po1 Z pog ~=pr B dr | Z @[d2]
PROOF: By (4)1 and Lemma 3
@5 ol dr] Z Ol dy | ~pr &[] Z[da])
Gl old] zold]~ oldlzld])
PRroor: By Lemma 4
(5)2. m.®([di] Z[do]) Cme(@][dr] T B[d2])
PRroor: By Lemma 7
(5)3. Q.E.D.
PROOF: By (5)1 and (5)2
(4)6. por Z poz ~pr &([di] Z [d2])
PrOOF: By (4)4, (4)5 and Lemma 1 in [RHS07a] (transitivity of ~»p,)
(4)7. Q.ED.
PROOF: By (4)2, (4)3 and (4)6; po; 7 pos is the po we are looking for.
<3>3 CASE: d=d; par do
PROOF: Similar to case (3)2, with - replaced by ||, and the reference to
Lemma 4 replaced by a reference to Lemma 5.
<3>4 CASE: d = djalt do
(4)1. LET: poy € [di] such that poy ~p, [di] A Q1 C {1}
pog € [da] such that pog ~p @[d2 [A Q1 C {1}
PROOF: By assumption (2)1
<4>2 po1 W poa € [[d]]
PROOF: By (4)1 and assumption (3)4
(4)3. ma.(po1 Wpoz) C {1}
PrOOF: By (4)1
<4>4 Po1 W pog ~o E_B[[dq]] (G @[[do]]
PRrROOF: By (4)1 and Lemma 3
45, Ol dr 6 D[dz | ~pr B([dr JW[d2])
G)l. e]dy Jwa[da] ~r®B([di W] da])
ProoF: By Lemma 6
(5)2. m2.®([di [W[d2]) S (S dr JW D] d2])
ProoF: By Lemma 7
(5)3. Q.E.D.
PROOF: By (5)1 and (5)2
(4)6. po1 Wpog ~pr &([di JW[d2])
PRrROOF: By (4)4, (4)5 and Lemma 1 in [RHS07a] (transitivity of ~»,,.)
(4)7. QE.D.
PROOF: By (4)2, (4)3 and (4)6; po1 W pos is the po we are looking for.
(3)5. CASE: d = refuse d;
(4)1. LET: poy € [d;] such that poy ~ [d1 [A Q1 C {1}
PROOF: By assumption (2)1
(4)2. tpoy €[d]
PROOF: By (4)1 and assumption (3)5
3. m3.(tpor) C {1}
PRrROOF: By (4)1

57

()4, tpos ~pr 18] di |
PROOF: By (4)1 and Lemma 9
(0)5. tpoy ~pr B[da |
PROOF: By (4)4 and Lemma 8
(4)6. Q.ED.
PROOF: By (4)2, (4)3 and (4)5; fpo; is the po we are looking for.
(3)6. Q.E.D.
PROOF: The cases (3)1, (3)2, (3)3, (3)4 and (3)5 are exhaustive.
(2)2. QED.
PRrooF: Induction step
(1)3. Q.E.D.
PROOF: By induction with (1)1 as basis and (1)2 as induction step

Lemma 12. Let d € DP. Then
Jpoe[d]:po~pnr B[d]NQ {1}

PROOF.

(1)1. LET: po; € [d] such that poy ~, @[d] A Q1 C {1}
ProoOF: By Lemma 11
(1)2. LET: po) =@[d]
(1)3. phuni =pUny
(2)1. prUng CpjUn)
PrOOF: By (1)1
(2)2. piUnf Cp1Uny
(3)1. ASSUME: t € pj Un)
PROVE: tepiUn
4)1. Vpoe[d]:tepun
PROOF: By assumption (3)1
(4)2. Q.E.D.
PROOF: By (4)1 and (1)1 (po1 € [d])
(3)2. Q.E.D.
PrROOF: C-rule
(2)3. Q.ED.
PROOF: By (2)1 and (2)2
(1)4. Q.E.D.
PROOF: By (1)1, (1)2 and (1)3; po; is the po we are looking for.

Lemma 13. Let d; and ds be sequence diagrams in DP. Then
[[d]]“’“’pnl[[d/]]i@[[d]]wnr@[[dl]]

PROOF.

(1)1. ASSUME: [d] ~pu [d']
PrROVE: @[d] ~nr [d]

58

(2)1. LET: (p1,m1) =[d]
woont) = ']
(2)2. (p1,n1) ~r (P}, 11)
G [d]~p[d]
PROOF: By assumption (1)1
(3)2. Q.E.D.
PROOF: By (3)1 and Lemma 1
(2)3. p1Uny =pj Unj
(3)1. p1Uny CpjuUn]
PROOF: By (2)2
(3)2. pfuUni CpyUny
(4)1. ASSUME: t € pj Un)
PRrROVE: tepiUn
(5)1. LET: pog € [d] s.t. pog ~opnr B[d] A Q2 C {1}
ProoF: By Lemma 12
(5)2. 0 ¢ Qo
PROOF: By (5)1
(5)3. LET: po) € [d'] s.t. pog ~>pnr POY
PROOF: By (5)1, (5)2 and assumption (1)1
(5)4. t € phUn)
(6)1. Ypoe [d]:tepUn
PROOF: By assumption (4)1
(6)2. Q.E.D.
ProoF: By (6)1 and (5)3 (poy € [d'])
<5>5 t € p2Ung
PROOF: By (5)4 and (5)3
(5)6. Ypoe [d]:tepUn
(6)1. AssUME: Jpoe [d]:t¢pUn
Prove: L
<7>1 t ¢ p1Uny
PROOF: By assumption (6)1
<7>2 t ¢ P2 Unsg
PROOF: By (7)1 and (5)1
(7)3. Q.E.D.
PROOF: By (7)2 and (5)5
(6)2. Q.E.D.
PROOF: L-rule
(5)7. Q.E.D.
PRrOOF: By (5)6
(4)2. Q.ED.
PROOF: C-rule
(3)3. Q.E.D.
PROOF: By (3)1 and (3)2
(2)4. Q.ED.
PROOF: By (2)1, (2)2 and (2)3

59

(1)2. Q.E.D.
PROOF: =-rule

Lemma 14. Let (0,Q) and (o', Q") be p-obligations. Then
(0, Q) ~pnr (0,Q") = 1(0,Q) ~pnr (0, Q')

PROOF. The proof is similar to the proof of Lemma 9; replace ~~,., with ~»,.,
~opr With ~= ., and the reference to Lemma 4 in [RHSO7b] with a reference to
Theorem 7. [l

Lemma 15. Let (01,Q1), (02,Q2) and (03,Q3) be p-obligations. Then
(01, Q1) ~prr (02,Q2) A (02,Q2) —prr (03, Q3) = (01,Q1) —prr (03,Q3)

PROOF.

(1. ASSUME: (01,@Q1) ~prr (02,Q2) A (02, Q2) —prr (03, Q3)
PRrROVE: (01, Ql) —prr (037 Qg)
(2)1. 01 oy 03
<3>1 01 ~=pp 02 N\ 02 F=pp 03
PROOF: By assumption (1)1
(3)2. Q.E.D.
PROOF: By (3)1 and Theorem 7 in [RRS07] (note that the proof of The-
orem 7 in [RRS07] applies for all interaction obligations).
(2)2. Qs C Q1
(31 Q3 CQ2NQ2C Q1
PROOF: By assumption (1)1
(3)2. Q.E.D.
PROOF: By (3)1 and transitivity of C
(2)3. Q.ED.
PROOF: By (2)1 and (2)2
(1)2. Q.E.D.
PROOF: =-rule
O

Lemma 16. Let I be a system, di and ds be sequence diagrams in DP and let
@1 g, = (p1,n1) and &) g, = (p2,n2). Then HU) C HU) implies

1. p1 C p2
2. n1 g no
3. (pz \pl) U (n2 \m) - Hll(d2) \le(dl)

Proor.
(1)1. AssumE: H!Md) C plild2)
PROVE: p1 CpaAni CnaA(pa\p1)U(na\ ng) C HIE)\ D)
(2)1. LET: m be a bijective mapping from (I)4, to (I)4, such that Vpo €

(I)g, : m1.(m1.p0) = m1.(m1.m(po)) A ma.(71.po) = ma.(m1.m(po)) N
2¢l1(dr)

60

PROOF: By assumption (1)1 and definition 30
(2)2. (p2 \ p1) U (2 \ 1) C HM2)\ 1)
(3)1. ASSUME: ¢t € (p2 \ p1) U (n2 \ n1)
PROVE: ¢ € H!Hd2) \ pld)
(4)1. CASE: t € pa \ p1
(5)1. LET: poh € (I)q4, such that ¢t € p)
PROOF: By assumption (4)1
(5)2. LET: po} € (I)q, such that m(po}) = poh
PRrROOF: By (2)1
(5)3. t € p}
PROOF: By (5)2 and (2)1
(5Y4. Fpo € (I)g, :t¢pUn
PROOF: By (5)3 and assumption (4)1
(5)5. t ¢ HUd)
PROOF: By (5)4 and definition 30
(5)6. t € H!!(d2)
(6)1. ASSUME: t ¢ H!(d2)
Prove: L
(1. Vpo € (I}a, :t¢n
PROOF: By assumption (6)1 and definition 30
(7)2. Vpo € (I}g, :tE€D
PROOF: By (7)1 and assumption (4)1 (¢t € p2)
(7)3. ¥po € (I)g, :tE€p
< >PROOF: By (7)2 and (2)1
4. :tepm
< >PROOF: By (7)3
7)5. Q.E.D.
PROOF: By (7)4 and assumption (4)1
(6)2. Q.E.D.
PROOF: L-rule
(5)7. Q.E.D.
PROOF: By (5)5 and (5)6
(4)2. CASE: t € ng\ my
(5)1. Vpo € (I}a, :t €N
< >PROOF:]l3l§(fda)ssumption 4)2 (t € ng)
5)2. t € H"™2
PROOF: By (5)1 and definition 30
(5)3. t ¢ HU(dD)
(6)1. ASSUME: t € H!(d1)
Prove: L
(T)1. Vpo € (I}g, :t€pUn
PROOF: By assumption (6)1 and definition 30
<7>2 teprUny
PROOF: By (7)1
(7)3. Wpo € {Thay <t ¢ p

61

PROOF: By (5)1 and definition 30
(7). Wpo € {Thg, <t ¢ p
PROOF: By (7)3 and (2)1 (only the negative sets are different
between ()4, and (I)4,)
(T)5. t ¢
PROOF: By (7)4
<7>6 ten
PROOF: By (7)5 and (7)2
(7)7. Q.E.D.
PROOF: By (7)6 and assumption (4)2
(6)2. Q.E.D.
ProOOF: L-rule
(5)4. Q.E.D.
PROOF: By (5)2 and (5)3
(4)3. Q.E.D.
PROOF: By assumption (3)1 the cases (4)1 and (4)2 are exhaustive
(3)2. Q.E.D.
PrROOF: C-rule
<2>3 ny g no
(3)1. ASSUME: t € ng
PROVE: t € nsy
(4)1. ASSUME: ¢ ¢ ng
Prove: L
(5)1. LET: poh € (I)g, such that ¢ ¢ nj
PROOF: By assumption (4)1
(5)2. LET: po} € (I)4, such that m(po}) = pol
PRrROOF: By (2)1
(5)3. nf = nh N HIM)
PROOF: By (5)2 and (2)1
(5)4. t ¢ nj
PROOF: By (5)3 and (5)1
<5>5 t ¢ ny
PROOF: By (5)4 and (5)2 (po} € (I)q,)
(5)6. Q.E.D.
PROOF: By (5)5 and assumption (3)1
(4)2. Q.E.D.
PROOF: L-rule
(3)2. Q.E.D.
PrROOF: C-rule
(2)4. p1 C po
(3)1. ASSUME: t € py
PROVE: t € po
(4)1. ASSUME: t ¢ po
Prove: L
(5)1. LET: po} € (I)q4, such that t € p}

62

PROOF: By assumption (3)1

(5)2. LET: poh € (I)q, such that m(po}) = poh
PROOF: By (2)1

(5)3. t € ph
PROOF: By (5)1, (5)2 and (2)1

(5)4. LET: poly € (I)q, such that ¢ & py Un)
PROOF: By (5)3 (there is a p-obligation in (I)4, where ¢ is positive)
and assumption (4)1

(5)5. LET: pof € (I)4, such that m(po!) = poy
PRrROOF: By (2)1

(5)6. t ¢ pi Unf
PROOF: By (55, (5)4 and (2)1

(B)7. t ¢ p1
PROOF: By (5)6 and (5)5

(5)8. Q.E.D.
PROOF: By (5)7 and assumption (3)1

(4)2. Q.ED.
PRrROOF: L-rule
(3)2. Q.E.D.
PROOF: C-rule
(2)5. Q.E.D.
PROOF: By (2)2, (2)3 and (2)4
(1)2. Q.E.D.
PRrROOF: =-rule

Lemma 17. Let d and d’ be sequence diagrams in DP. Then
[di]~plda]ALd2]=p (Da, = S di] —=r &(I)a,

PROOF.

(1)1. ASSUME: [di [~p [de A d2] —p (D)a,
PrOVE: @[d; | —r &),
2)1. @[di] ~r @[d2]
PROOF: By assumption (1)1 and Lemma 1
(2)2. @[da] —r &) g,
PROOF: By assumption (1)1, Lemma 1 and definition 32
(2)3. @[dr | —=r ®(D)a,
PROOF: By (2)1, (2)2 and transitivity of —, /~, (these are the same)
(2)4. HH(dr) C plid=)
PROOF: By assumption (1)1
<2>5 LET: @[[dl]] = (pl,nl)
@ (Da, = (P1,n1)
@ <I>d2 = (p/27nl2)
(2)6. p1 C phUny, Ang Cnh
PROOF: By (2)3

63

(2)7. prUny C R
PRrROOF: By (2)5

(28 (6 \ 7) U (nh \) €)\ 3ll)
PRrROOF: By (2)5 and Lemma 16

(2)9. p1 CpiUni Ang Cnj
PROOF: By (2)6, (2)7 and (2)8

(2)10. Q.E.D.
PROOF: By (2)9

(1)2. Q.E.D.

PROOF: =-rule

Lemma 18. Let di and da be sequence diagrams in DP. Then

po1 ~pr B[di | A pog ~pr B[do | = m2.(B([di seq da |)) C ma.(po1 5 po2) A
m2.(([d1 par dz])) C ma.(por || poz) A
FQ(E_B([[dy alt do]])) C mo (pOl UpOg)

PROOF.

<1>1 ASSUME: po; ~S o 6_9[[dq]] N Pog ~pr 6_9[[do]]
PrOVE: Fg(@([[dy seq do]])) C mo. (pOl = p02) AN
72.(B([d1 par da])) C ma.(por || pos) A
m2.(B([dy alt d2])) C ma.(po1 W po2)
<2>1 Fg(@([[d1 seq d2]])) - 9. (pO = p02)
(3)1. m2.®([d1seqds]) C {1}
ProoF: By Lemma 2
(3)2. 1 € m2.®([d1 seq dz2]) = 1 € ma.(po1 7 po2)
(4)1. ASSUME: 1 € m.®([d1 seq dz])
PROVE: 1 € ma.(po1 7 po2)
(5)1. ASSUME: 1 ¢ ma.(po1 7 po3)
ProvE: L
(6)1. 1 ¢ ma.po1 V1 ¢ ma.pog
PROOF: By assumption (5)1
(6)2. CASE: 1 ¢ m3.poy
(M1. 1¢m.®]di]
PROOF: By assumption (6)2 and assumption (1)1
(2. m.®[d1] =0
PROOF: By (7)1 and Lemma 2
(7)3. poe[di]:mpo=10
PROOF: By (7)2
<7>4. Jpo € [[1]] [[]] I M2.pO = 0
PRrROOF: By (7)3
(M5 ma([d [z [d])=0
PROOF: By (7)4 and deﬁmtlons 6 and 7
(7)6. Q.E.D.

64

PROOF: By (7)5 and assumption (4)1
(6)3. CASE: 1 ¢ ma.pog
PROOF: Similar to (6)2
(6)4. Q.E.D.
PROOF: By (6)1, the cases (6)2 and (6)3 are exhaustive
(5)2. Q.E.D.
PRrROOF: L-rule
(4)2. Q.E.D.
PROOF: =-rule
(3)3. Q.E.D.
PROOF: By (3)1 and (3)2
(202, m2.(@([di par dz) C ma.(pou | poz)
PROOF: Similar to (2)1; just replace seq with par and 27 with ||.
<2>3 Fg(@([[dy alt dy]])) - 7T2.(p01 L‘H]DOQ)
PROOF: Similar to (2)1; just replace seq with alt and = with .
(2)4. QED.
PrOOF: By (2)1, (2)2 and (2)3
(1)2. Q.E.D.
PROOF: =-rule

Lemma 19. Let Oy, Oz, O} and O} be sets of p-obligations. Then
O1 ~p1 O A Og ~=pp O = B(01 W 03) ~, B(0] WO5)

PROOF.

(1)1. ASSUME: Oj ~=p; O A Og ~p Of
PROVE: @(01 W O3) ~, ®(0] W O))
(2)1. ®O; ~~, RO N BO2 ~, O}
PROOF: By assumption (1)1 and Lemma 1
<2>2 LET: (pg,’ﬂg) = @(01 W 02)
(P4, na) = &(01 W Os)
<2>3 ns Q Ny
(3)1. ASSUME: t € ng
PROVE: te€ny
(4)1. Vpoe O1 W02 :t€n
PROOF: By assumption (3)1
(4)2. (Vpo€ O1:te€n)V (¥po€ Oz :t€n)
(5)1. ASSUME: (Fpo€ O1:t ¢ n)A(Ipo€ Oz :t¢n)
ProvE: L
<6>1 LET: po; € O s.t. t % n1
pog € Oy st t % N9
PROOF: By assumption (5)1
<6>2 t ¢ n1 Une
PrOOF: By (6)1
(6)3. poe O1 W02 :t¢n

65

< >PROOF: By (6)1 and (6)2
6)4. Q.E.D.
5 PROOF: By (6)3 and (4)1
5)2. Q.E.D.
Proor: L-rule
(4)3. CASE: Vpo; € O1 :t €my
<5>1 t e m. @O0
PROOF: By assumption (4)3 and definition 4
(5)2. t € M. ® O]
< >PROOF: By/<5>1 and (2)1
5)3. Vpoe Oy :ten
PROOF: By (5)2
(5)4. Vpo e O1 W05 :t€n
PROOF: By (5)3 and definition 47
(5)5. Q.E.D.
PROOF: By (5)4 and definition 4
(4)4. CASE: Vpog € Oy : t € ngy
PROOF: Similar to case (4)3
(4)5. Q.ED.
PROOF: By (4)2 the cases (4)3 and (4)4 are exhaustive
(3)2. Q.E.D.
PrROOF: C-rule
(2)4. p3 CpsUny
(3)1. ASSUME: t € p3
PROVE: t € pysUny
(4)1. ASSUME: t ¢ py Uny
ProvE: L
(5)1. Fpoe O WO, :t ¢ pUn
PROOF: By assumption (4)1
(5)2. LET: poj € Of,poy € Of s.t. t ¢ pj Un) UphUnj
PRrROOF: By (5)1
(5)3. LET: pof € O1,51 C O] s.t. po} € S1 A polf ~p 54
PROOF: By assumption (1)1
<5>4 t ¢ 1. D Sl U Y. D Sl
PROOF: By (5)2 and (5)3
(5)5. t ¢ py Unf
PROOF: By (5)3 and (5)4
(5)6. LET: pof € Oz,85 C Of s.t. poh, € So A poly ~pr BSo
PROOF: By assumption (1)1
<5>7 t ¢ 1. D SQ U Y. D SQ
PROOF: By (5)2 and (5)6
(5)8. t ¢ py Unjy
PROOF: By (5)6 and (5)7
(5)9. & & pll Un’ U Ung
ProOF: By (5)5 and (5)8

66

(5)10. IJpo € O1 WO :t ¢ pUn
ProOOF: By (5)9
<5>11 t ¢ pP3 U ns
PRrROOF: By (5)10
(5)12. Q.E.D.
PROOF: By assumption (3)1 and (5)11
(4)2. Q.E.D.
ProOOF: L-rule
(3)2. Q.E.D.
PROOF: C-rule
(2)5. Q.ED.
PROOF: By (2)3 and (2)4
(1)2. Q.E.D.
PROOF: =-rule

Lemma 20. Let O; and O be sets of p-obligations. Then

(Vign:@Oiwnr@og):»@OOiwm@OO’

i=1 =1
PROOF.

(1)1. ASSUME: Vi < n : @O; ~p, ©O;
PROVE: @ J, O; ~nr @[, O’
(2)1. LET: (p,n) = UL, O
(r',n) =o UL, O;
(pi,ni) = ®O; for each i <n
(p;,n}) = ®0; for each i <n
(2)2. (p,n) ~, (p',1)
PROOF: By assumption (1)1 and Lemma 10
(2)3. pUn=p'Un’
3)1. Vi <n:p;Un; =p,Un]
PROOF: By assumption (1)1
(3)2. Q.E.D.
PROOF: By (3)1 and definition 4
(2)4. QED.
PROOF: By (2)2 and (2)3
(1)2. Q.E.D.
PROOF: =-rule

Lemma 21. Let d = palt(d1;Q1,...,dn;Qn) and d' = palt(d};QY,...,d,;Q.),

where dy, .. .dy,d}, ..., d,, are sequence diagrams in DP. Then

(Vi<n:[di]~pg [di]AQIC Qi) = meB[d] Cma®[d]

67

PROOF.

(1)1. AsSUME: Vi <n:[d; | ~ps [d,] ANQLC Q;
PROVE: m.®[d | Cm.8[d]
21l lemd[d]=1emd[d]
(3)1. ASSUME: 1 € m.®[d']
PROVE: 1€ m.®[d]
(4)1. Ypoe [d]| :mpo#0
PROOF: By assumption (3)1
(4)2. Vi<n,poe[d;]:mepo#0
PRrROOF: By (4)1
(4)3. Vi <m,po€[d;]:mapo#0
PROOF: By (4)2 and assumption (1)1 (since each p-obligation in every
[d;] must be represented in [d;])
4. Vi<n:Q,#0
PROOF: By assumption (3)1
A)5. Vi<n:Q; #0
PROOF: By (4)4 and assumption (1)1
(4)6. Ypoe [d]:mapo#D
PROOF: By (4)3 and (4)5
<4>7 2. 6_9[[]] 75 (Z)
PRrROOF: By (4)6
(4)8. QED.
PROOF: By (4)7 and Lemma 2
(3)2. Q.E.D.
PROOF: =-rule
(2)2. Q.E.D.
PROOF: By (2)1 and Lemma 2
(1)2. Q.E.D.
PRrROOF: =-rule

Lemma 22. Let dy, do, di and dy be sequence diagrams in DP. Then
Tdi] ~pm [dyINTd2] ~pni [dy] = trs(®] di seq da) = trs(D[d} seq dy)

PROOF.

(1)1. AssUME: [di | ~pu [di AT de] ~pmi [d5]
PROVE: trs(®] di seq da |) = trs(B[d} seq dj])
(2)1. trs(®] d1 seq da |) C trs(B[di seq dy])

(3)1. ASSUME: t € trs(®[di seq da |)

PROVE: t € trs(®[d) seq dy])
(4)1. ASSUME: t ¢ trs(® [[d’ seq df |)
Prove: L
(5)1. LET: po’ € [d} seq d}] such that ¢ & trs(po’)

PROOF: By assumption (4)1

68

(5)2. LET: po} € [d}]| and poh € [d5 | such that po’ = po} 7z pol
PROOF: By (5)1
<5>3 LET: po; € [[dl]], S1 C [[dll]] such that p0/1 € 51 Apoy ~ o DS,
pog € [da], S2 C [db] such that poy € Sa Apog ~ppr BSo
PROOF: By (5)2 and assumption (1)1
(5)4. t ¢ trs(poy Z poy)
PROOF: By (5)1 and (5)2
<5>5 t §é t’I”S(@(Sl ij Sz))
(6)1. pol - pohy € S1 77 5o
PRrROOF: By (5)3
(6)2. Q.E.D.
PROOF: By (6)1 and (5)4
(5)6. ¢ & trs(®S1 7 ®S2)
(6)1. ®S1 Z BS2 ~r B(S1 Z S2)
Proor: By Lemma 4
<6>2. tTS(@Sl = E_BSQ) - tTS(@(Sl = Sz))
PRrROOF: By (6)1
(6)3. Q.E.D.
PRrOOF: By (6)2 and (5)5
(5)7. t & trs(po1 7 po2)
(6)1. trs(po1) = trs(®S1) Atrs(pos) = trs(6Ss)
PRroOF: By (5)3
(6)2. trs(por 7, poz) = trs(®S1 77 ®Sa2)
PRrROOF: By (6)1
(6)3. Q.E.D.
PROOF: By (6)2 and (5)6
(5)8. po1 ZZ pog € [d1 seq ds |
PRrOOF: By (5)3
(5)9. t ¢ trs(B[di seq da])
PROOF: By (5)7 and (5)8
(5)10. Q.E.D.
PROOF: By assumption (3)1 and (5)9
(4)2. Q.ED.
ProOOF: L-rule
(3)2. Q.E.D.
PROOF: C-rule
(2)2. trs(®] di seq dy]) C trs(B[di seq da])
(3)1. ASSUME: t € trs(®[d} seq dy])
PROVE: ¢ € trs(®[di seq dz])
(4)1. LET: po) € [d}|] s.t. po} ~pnr [di A QL C {1}
Proor: By Lemma 12
(4)2. LET: poy € [dfy] s.t. poh ~pnr ®[dy] A QL C {1}
Proor: By Lemma 12
(4)3. t € trs(poy 77 pob)
()1 pol 2 poj € [d} seq dy |

69

PROOF: By (4)1 and (4)2
(5)2. Vpoe [dyseqdy,] :tepUn
PROOF: By assumption (3)1
(5)3. Q.E.D.
PROOF: By (5)1 and (5)2
(4Y4. Ypoe [diseqda] :tepUn
(5)1. ASSUME: po” € [dy seq da |
PrRoOVE: tep’un”
(6)1. LET: t1 € pj Un],ta € phUn, st t € {t1} Z {t2}
PRrROOF: By (4)3
(6)2. LET: pof € [d1],pohy € [d2] s.t. po” = po = poly
PROOF: By assumption (5)1
(6)3. t1 € pf Unf
(7)1. ASSUME: t; ¢ p{ Unf
ProvE: L
(8)1. Vpoe[di]:t1€pUn
91, ty etrs(®[d}])
PROOF: By (6)1 and (4)1
(9)2. Q.E.D.
PRrROOF: By (9)1
<8>2 LET: pos € [[dy]] S.t. po3 ~>pnr E_B[[dq]] ANQs C {1}
Proor: By Lemma 12
<8>3 t1 ¢ p3Uns
1. Fpoe[di]:t1¢pUn
PROOF: By assumption (7)1 and (6)2
<9>2 1 ¢ tTS(@[[d1]])
PRrROOF: By (9)1
(9)3. Q.E.D.
PROOF: By (9)2 and (8)2
(8)4. LET: pos € [d} | s.t. pos ~pn, %
PROOF: By (8)2 (pos € [d1]| and 0 ¢ Q3) and assumption
(1)1
(8Y5. t1 ¢ piUnk
PROOF: By (8)3 and (8)4
(8)6. t1 € psUnj
PROOF: By (8)1 and (8)4
(8)7. Q.E.D.
PRrOOF: By (8)5 and (8)6
(71)2. Q.E.D.
PRrROOF: L-rule
(6)4. ty € pi Unf
PROOF: Similar to (6)3
(6)5. Q.E.D.
PROOF: By (6)1, (6)2, (6)3 and (6)4
(5)2. Q.E.D.

70

PROOF: V-rule
(4)5. Q.E.D.
PROOF: By (4)4
(3)2. Q.E.D.
PROOF: C-rule
(2)3. Q.E.D.
PROOF: By (2)1 and (2)2
(1)2. Q.E.D.
PROOF: =-rule

Lemma 23. Let dy, do, di and dfy be sequence diagrams in DP. Then
[di] ~pm [y INLd2 | ~pni [dy] = trs(S[da par dy [) = trs(S[dy par dj])

PROOF The proof is similar to the proof of Lemma 22; just replace seq with

par, 7 with || and the reference to Lemma 4 with a reference to Lemma 5 O

’ o~

Lemma 24. Let dy, do, di and dfy be sequence diagrams in DP. Then
Tdi]~p [di TN d2] ~pmi [dy] = trs(B] dy alt do |) = trs(B] d] alt dj])

PROOF.

(1)1. AssUME: [di | ~pu [di AT de] ~pmi [d5]
PRrROVE: trs(®] dy alt d2]) = trs(B] dy alt df])
(2)1. trs(®] dy alt da]]) Citrs(@[dy alt dj])
V. [y] ~pt [y 1ALz]~ [5]
PROOF: By assumption (1)1
(3)2. ®[dy alt dg | ~, & d} alt dj]
PROOF: By (3)1 and Lemma 19
(3)3. Q.E.D.
PROOF: By (3)2
(2)2. trs(®] d} alt dy |) Ctrs(®] dy alt da])
(3)1. ASSUME: tetrs(@[[d) alt djy])
PROVE: t € trs(®[d; alt d2])
(4)1. ASSUME: t ¢ trs(®[dy alt d2])
Prove: L
(5)1. Vpoe [dyaltdy]:tepUn
PROOF: By assumption (3)1
(5)2. Fpoe[dyaltde] :t¢pUn
PROOF: By assumption (4)1
(5)3. Ipoedi]:t¢pUnATpoc|da]:t¢pUn
PROOF: By (5)2
<5>4 LET: po; € [[dl]] s.t. po1 ~pnr Q_B[[dq]] ANQp C {1}
ProoF: By Lemma 12
(5)5. LET: poj € [d}] s.t. po1 ~pnr pol

71

PROOF: By (5)4 and assumption (1)1
(5)6. LET: poa € [da | s.t. pog ~>pnr B[d2 [A Q2 C {1}
ProoF: By Lemma 12
(5)7. LET: poh € [dfy] s.t. pog ~>pnr poh
PROOF: By (5)6 and assumption (1)1
(5. t ¢ g, Unf
6)1. t ¢ trs(®] di])
PRrOOF: By (5)3
<6>2 t ¢ p1Uny
PRrROOF: By (6)1 and (5)4
(6)3. Q.E.D.
PRrOOF: By (6)2 and (5)5
(9. t ¢ ph U
6)1. t ¢ trs(®B] d2])
PRrROOF: By (5)3
<6>2 t ¢ P2 Ung
PRrOOF: By (6)1 and (5)6
(6)3. Q.E.D.
PRrOOF: By (6)2 and (5)7
(5)10. t ¢ trs(po} W poh)
PROOF: By (5)8 and (5)9
(5)11. pol Wpos € [dy alt di]
PRrOOF: By (5)5 and (5)7
(5)12. Fpoe[djaltd,]:t¢pUn
PRrROOF: By (5)11
(5)13. Q.E.D.
PROOF: By (5)12 and (3)1
(4)2. Q.ED.
ProOF: L-rule
(3)2. Q.E.D.
PROOF: C-rule
(2)3. Q.E.D.
PROOF: By (2)1 and (2)2
(1)2. Q.E.D.
PROOF: =-rule

Lemma 25. Let O be a set of p-obligations. Then

PROOF.

(1. LET: (p/,n') = @0, i.e. trs(®0) =p' Un’
(1)2. AssuME: ((p,n),Q) € O
ProvE: p'Un’ CpUn
(2)1. ASSUME: t € p’Un’

72

PrOVE: tepUn
(3)1. V((p",n"),Q") € O :tep”Uun”
PROOF: By assumption (2)1, (1)1 and definition 4
(3)2. Q.E.D.
PROOF: By assumption (1)2 and (3)1
(2)2. Q.E.D.
ProOOF: C-rule
(1)3. Q.E.D.
PROOF: =-rule

O

Lemma 26 (Transitivity of ~-,,.). Let po1, pos, and pos be p-obligations.
Then
pPO1 ~>pnr PO2 A po2 ~pnr PO3 = PO1 ~pnr PO3

PROOF.

(1)1. ASSUME: po1 ~=pnr DO2 A PO2 ~ppy PO3
PROVE: po1 ~pnr DO3
(2)1. @3 C 1
(3. Q2C Q1 NQ3C Q2
PROOF: By assumption (1)1
(3)2. Q.E.D.
PRrROOF: By (3)1
(2)2. (p1,m1) ~r (P3,n3)
(3)L. (p1,m1) ~» (p2,n2) A (p2,m2) ~r (P3,13)
PROOF: By assumption (1)1
(3)2. Q.E.D.
PROOF: By (3)1 and Lemma 26 in [HHRSO06]
<2>3 p1Uny =p3Uns
(3)1. p1Uny =paUng Apa Ung = p3Ung
PROOF: By assumption (1)1
(3)2. Q.E.D.
PRrOOF: By (3)1
(2)4. Q.E.D.
PROOF: By (2)1, (2)2 and (2)3
(1)2. Q.E.D.
PROOF: =-rule

O

Lemma 27. Let (traces(I), Fy, f1) be a probability space representing system I
as described in Section 5. Then

Vit € traces(I) : {t} € Fi

ProOF. Note: In this proof we write ¢(t) instead of ¢; for notational reasons.

(1)1. ASSUME: t; € traces(I)

73

ProOVE: {t1} € Fr
(2)1. CASE: #t1 € Ny (i.e. t; is finite)
(1. c(t1) € Fr
<4>1 C(tl) e Cr
PROOF: By assumption (1)1, assumption (2)1 and definition 29
(4)2. Q.E.D.
PROOF: By (4)1, since C; C Fy, which is ensured by the requirement
that F is the cone-o-field of traces(I)
(3)2. LET: S={teH|#t=#t1+1AFH €c(t1):tC ¢}
(3)3. Vte S:#teN
PROOF: By (3)2 and assumption (2)1
(3)4. Case: S=10
W1 e(tr) = {11}
PROOF: By (3)2 and assumption (3)4
(4)2. Q.E.D.
PRrROOF: By (4)1 and (3)1
(3)5. CASE: S #10
(4)1. Vte S:c(t) € Fr
(5)1. Vte S:¢(t) e Cy
PROOF: By (3)3, (3)2 and definition 29
(5)2. Q.E.D.
PRrOOF: By (5)1, since C; C Fy
4)2. U clt) € Fr
tes
(5)1. JyeN:Vte S:#t=
PROOF: By assumption (2)1 and (3)2
(5)2. |S] =NgV |S] € N, ie. S is countable
PROOF: By (5)1 (assuming a countable number of events)
(5)3. Q.E.D.
PROOF: By (4)1 and (5)2, since o-fields are closed under countable
union.

(4)3. c(t1)\ U c(t) € Fr
tesS
PROOF: By (3)1 and (4)2, since o-fields are closed under \ (setminus).

(A4, c(t)\ U ct) = {ta}
G c(t) \ U et) € {ta}

(6)1. ASSUME: t3 € ¢(t1)\ U c(t)
tes
PROVE: 5 € {tl}, ie. .ty =1
(7)1. ASSUME: to # t;
PrOVE: L

(8)1. t1 Cto

PROOF: By assumption (6)1 (t2 € c(t1))
(8)2. #ty > #t;

PROOF: By assumption (7)1 and (8)1
(8Y3. It e S:taec(t)

74

PROOF: By assumption (6)1 (t2 € c(t1)) and (8)2
(8)4. ta € U c(t)
tes
PROOF: By (8)3
(8)5. Q.E.D.
PROOF: By assumption (6)1 and (8)4
(71)2. Q.E.D.
PRrROOF: L-rule
(6)2. Q.E.D.
PROOF: C-rule

(6)2. {t1} € c(t1) \ tLeJS c(t)

<6>1 t € C(tl)
PROOF: By assumption (1)1 and definition 28

6)2. t1 ¢ U c(¥)

tes
(7)1. AssuME: t; € | ¢(?)
tes
Prove: L

<8>1 LET: t3 € Ss.t. tg € C(tg)
PROOF: By assumption (7)1
<8>2 Vt € C(fg) : #t > #to
PROOF: By definition 28
(8)3. #ta = #t1 + 1
PROOF: By (8)1 and (3)2
(8Y4. Wt € c(te) : #t > #t1 + 1
PROOF: By (8)2 and (8)3
(8)b. #t1 > #t1+1
PROOF: By (8)1 (#1 € c(t2)) and (8)4
(8)6. Q.E.D.
PROOF: By assumption (2)1 and (8)5
(7)2. Q.E.D.
PRrROOF: L-rule
(6)3. Q.ED.
PROOF: By (6)1 and (6)2
(5)3. Q.E.D.
PROOF: By (5)1 and (5)2
(4)5. QED.
PROOF: By (4)3 and (4)4
(3)6. Q.E.D.
PROOF: The cases (3)4 and (3)5 are exhaustive
(2)2. CASE: #t1 =0
<3>1. Vi e N: C(t1|i) e Fr
<4>1 Vi e N: C(tlli) e Cy
PROOF: By definition 29 and assumption (1)1
(4)2. Q.E.D.
PROOF: By (4)1, since C; C Fy

75

(3)2. N c(t1li) € Fr
i=1
PROOF: By (3)1, since o-fields are closed under countable intersection
(3)3. _Olc(tlh) = {t:}
PROOF: By assumption (1)1 and definition 28
(3)4. Q.E.D.
PROOF: By (3)2 and (3)3
(2)3. Q.E.D.
PROOF: The cases (2)1 and (2)2 are exhaustive
(1)2. Q.E.D.
PROOF: V-rule

d

Lemma 28. Let d be a sequence diagram and (traces(I), Fr, f1) be a probability
space representing a system I. Then

t € traces(I) = 3g € [0,1] : ({t}, HUD\ {t}), {q}) € ()",

PROOF.

(1)1. ASSUME: t € traces(I)
Prove: Jg € [0,1]: ({th, "D\ {t}). {a}) € ()}
<2>1. {t} e Fr
PROOF: By assumption (1)1 and Lemma 27
@02 ({8}, HUO\ {13), f1({})) € (1),
PROOF: By (2)1 and definition 30
(2)3. Q.E.D.
PRrROOF: By (2)2; fr({t}) is the ¢ we are looking for
(1)2. Q.E.D.
PRrROOF: =-rule

Lemma 29. Let O be a set of p-obligations. Then
VSCO:S#0 =00 ~, &S

PROOF.

(1)1. AssuMmE: S C O
PROVE: S # 0 = ®O ~, ®S
(2)1. ASSUME: S # ()

PrROVE: @O ~»,. ®&S
(3)1. LET: (p1,m1) = @0
(p2,n2) = ©S

(3)2. p1 C paUng

(4)1. ASSUME: t € py
PROVE: t € paUne

76

G)Lte(U pn(N (pun)

po€O po€O
PROOF: By assumption (4)1

(5)2. te ﬂo(pUn)

PRrROOF: By (5)1
(5)3. te N (pUn)

po€S
PROOF: By (5)2 and assumption (1)1
(5)4. Q.E.D.
PROOF: By (5)3
(4)2. Q.E.D.
PrOOF: C-rule
<3>3 ni - no
(4)1. ASSUME: t € ng
PROVE: t € ng
®)l.te N n
poeO
PROOF: By assumption (4)1
52.te N n
po€S
PROOF: By (5)1 and assumption (1)1
(5)3. Q.E.D.
PROOF: By (5)2
(4)2. QED.
PROOF: C-rule
(3)4. Q.E.D.
PrROOF: By (3)1, (3)2 and (3)3
(2)2. Q.E.D.
PROOF: =-rule
(1)2. Q.E.D.
PROOF: V-rule

Lemma 30. Let O be a set of p-obligations. Then
V(0,Q) € O : ®O ~+, 0

PROOF.

(1)1. AssuME: (0,Q) € O
PrROVE: @O ~, 0

(2)1. LET: S ={(0,Q)}
(2)2. SCOANS#D

PROOF: By (2)1 and assumption (1)1
(2)3. ®O ~~, BS

PROOF: By (2)2 and Lemma 29
(2)4. ®S =0

PROOF: By (2)1 and definition 4

7

(2)5. Q.E.D.
PROOF: By (2)3 and (2)4
(1)2. Q.E.D.
PROOF: V-rule

Lemma 31.

VmEN:i(O,l]z(O,l]

j=1
PRrROOF.
(1)1. AssuME: m € N
PROVE: f;l 0,1 = (0,1]
i=

(2)1. CASE: m =1
1

31 2 (0.1] = (0,1]
j=
PROOF: By definition 7
(3)2. Q.E.D.
PROOF: By (3)1 and assumption (2)1
(2)2. CASE: m > 1

(3)1. ASSUME: mf (0,1] = (0,1] (ind.hyp.)

Prove: 3 (0,1] = (0,1]
j=1
(#)1. ﬁjjl 0,1 = (mg;: (0,1]) + (0, 1]

PROOF: By definition 7
(4)2. > (0,1] = (0,1] + (0,1]
j=1

PROOF: By (4)1 and assumption (3)1
(4)3. (0,1] + (0,1] = (0, 1]
(5)1. (0,1] + (0,1] € (0, 1]
(6)1. ASSUME: ¢ € (0,1] + (0,1]
PRrROVE: ¢ € (0,1]
(1. LET: 1 € (0,1],42 € (0,1] s.t. ¢ = min(q1 + g2, 1)
PROOF: By assumption (6)1
(7)2. CASE: ¢1 + 2 < 1
&)1 g=q +q
PROOF: By (7)1 and assumption (7)2
<8>2 g1 +q >0
PrOOF: By (7)1
(8)3. Q.E.D.
PRrROOF: By (8)1, (8)2 and assumption (7)2
(7)3. CASE: 1 +¢g2>1

78

8. ¢=1
PROOF: By assumption (7)3 and (7)1
(8)2. Q.E.D
PRrROOF: By (8)1
(74. Q.E.D.
PROOF: The cases (7)2 and (7)3 are exhaustive
(6)2. Q.E.D
ProOOF: C-rule
(5)2. (0,1 € (0,1] + (0,1

]
(6)1. ASSUME: q € (0,1]
ProVE: ¢ € (0,1] +(0,1]
(")1. LET: q =0.5x%q

(7)2. ¢’ € (0,1]
PROOF: By assumption (6)1 and (7)1
(M3 a=d +d
PRrOOF: By (7)1
(MH4. Q.E.D.
ProoOF: By (7)2 and (7)3
(6)2. Q.E.D.
PROOF: C-rule
(5)3. Q.E.D.
PROOF: By (5)1 and (5)2
(4)4. Q.E.D.
PROOF: By (4)2 and (4)3
(3)2. Q.E.D.
PROOF: Induction step
(2)3. QED.
PROOF: By induction with (2)1 as base case and (2)2 as induction step
(1)2. Q.E.D.
PROOF: V-rule

Lemma 32. Let d € Dt. Then

Ypoe Lgd) 7+ @ = {1}V (0,1 € Q
Proor.
(1)1. ASsuME: po € [g(d)]?
ProvE: Q={1}Vv(0,1]CQ
(2)1. CASE: d consists of a single event e or d = skip

B Lold) I = { ({(e)} 0,411 }V [o(d) [P = £ ({O}.0), {11) }
PROOF: By assumption (2)1

(3)2. po = (({{e)},0), {1}) Vpo = ({0},), {1})
PROOF: By (3)1 and assumption (1)1

(3)3. Q.E.D.
PROOF: By (3)2

79

(2)2. CASE: d contains at least one operator
(3)1. AssuME: For every sub-diagram d; occurring in an operand of d the
following holds:
V(o' Q') €[g(d;) [": Q"= {1} v (0,1] € Q" (ind.hyp.)
ProvE: Q={1}Vv(0,1]CQ
(4)1. CASE: d = refuse d;
(5)1. g(d) = refuse g(dy)
PROOF: By assumption (4)1
<5>2 LET: ((plvnl)le) € [[g(dl)]]p s.t. ((p7 n)vQ) = (((Z)vplunl)7Q1)
PROOF: By assumption (1)1 and (5)1
(5)3. Q= {1}V (0,1] € @
PROOF: By (5)2 and assumption (3)1
(5)4. Q.E.D.
PROOF: By (5)2 and (5)3
(4)2. CASE: d = d; seq da
(5)1. g(d) = g(d1) seq g(dz)
PROOF: By assumption (4)2
(5)2. Let: (01, Q1) € [g(dy) 7, (01,@2) € [g(da) I7 st. (0,Q) =
(01 2 02,Q1 * QQ)
PROOF: By assumption (1)1 and (5)1
(5)3. (Q1={1}V(0,1] € Q1) A (Q2= {1} V(0,1] € @2)
PROOF: By (5)2 and assumption (3)1
(5)4. Case: Q1 = {1} A Q2 = {1}
(6)1. Q1+ Q2= {1}
PROOF: By assumption (5)4
(6)2. Q.E.D.
PRrROOF: By (6)1 and (5)2
<5>5 CASE: Ql = {1} A <O, 1] - QQ
6)1. Q1% Q2 = Q2
PROOF: By assumption (5)5
(6)2. (0,1 C Q1 * Qs
PROOF: By (6)1 and assumption (5)5
(6)3. Q.E.D.
PROOF: By (6)2 and (5)2
<5>6 CASE: <O, 1] - Ql A QQ = {1}
PROOF: Similar to (5)5
(5)7. CasE: (0,1] C Q1 A {0,1] C Q2
(6)1. (0,1 C Q1 * Qs
(7)1. ASSUME: ¢ € (0,1]
PROVE: ¢ € Q1 * Q2
(8)1. g€ Q1
PROOF: By assumption (5)7 and assumption (7)1
(8)2. 1€ Qs
PROOF: By assumption (5)7
(8)3. g*x1€Q1%Q2

80

PROOF: By (8)1 and (8)2
(8)4. Q.E.D.
PROOF: By (8)3
(71)2. Q.E.D.
PROOF: C-rule
(6)2. Q.E.D.
PROOF: By (6)1 and (5)2
(5)8. Q.E.D.
PROOF: By (5)3 the cases (5)4, (5)5, (5)6 and (5)7 are exhaustive
(4)3. CASE: d = d; par do
PROOF: Similar to case (4)2
<4>4 CASE: d = d; alt ds
PROOF: Similar to case (4)2
(4)5. CASE: d =xalt(dy,...,dm)
(5)1. g(d) = palt(g(d1);(0,1] ..., g(dm);(0,1])
PROOF: By assumption (4)5
(5)2. Case: poe {(® U {poj}, > Q;) | NC{1,....m} A
JEN JEN
N #DAVj €N :poj €[g(d;);(0,1] [}
(6)1. LET: N C{1,...,m} s.t. po=(d U {po,}, > Q,)
JEN JEN
AN #OAYj €N :poj € [g(d;);(0,1] [
PROOF: By assumption (5)2
(6)2. LeT: Q) C [0,1] s.t. (0,Q;) = (05,Q % (0,1]) A (05,Q%) €
[g(d;)]? for each j € N
PRrROOF: By (6)1
(6)3. Vj € N: (0,1 C Q;
(M1.VjeN:Q;={1}Vv(0,1] C Q]
PROOF: By (6)2 and assumption (3)1
(7)2. {1} % (0,1] = (0,1] % (0,1] = (0,1]
PROOF: By definition 2
(7)3. Q.E.D.
PrOOF: By (7)1, (7)2 and (6)2 (Q; = Q) * (0, 1] for each j € N)
64, (0,1]C 3 O
JEN
PRrROOF: By (6)3 and Lemma 31
(6)5. Q.E.D.
PrOOF: By (6)4 and (6)1 (Q = > @Q;)
JEN

(5)3. CASE: po = (& _Lijl[[d;;(0, 1]], {1} n 72::1 (0,1])

(6)1. jﬁ_n;l (0,1] = (0,1]
Proor: By Lemma 31
©)2 (130 % (0.1 = (1)

PROOF: BJ; (6)1

81

(6)3. Q.E.D.
ProoF: By (6)2 and assumption (5)3 (Q = {1} 1 3" (0,1])
j=1

(5)4. Q.E.D.
PROOF: By (5)1 the cases (5)2 and (5)3 are exhaustive
(4)6. Q.E.D.
PROOF: The cases (4)1, (4)2, (4)3, (4)4 and (4)5 are exhaustive
(3)2. Q.E.D.
PROOF: Induction step
(2)3. QED.
PROOF: By induction with (2)1 as base case and (2)2 as induction step
(1)2. Q.E.D.
PROOF: V-rule

Lemma 33. Let d € Dt. Then

(0. {1}) €[g(d) I" = V(. Q") € [g(d)]" : 0~ o
PROOF.

(1)1. AssuME: (o,{1}) € [g(d)]?
PrOVE: V(0,Q') €[g(d)]?:0~ o
(2)1. AssuME: (o/,Q") €[g(d)]?
PROVE: o0~ 0
(3)1. CASE: d consists of a single event e or d = skip
W1 [g(d) P = { ({10, {11 }V L g(d) P = { ({0}0), {1}) }
PROOF: By assumption (3)1
#2. (0,{1}) = (0", Q")
PROOF: By assumption (1)1, assumption (2)1 and (4)1
(4)3. Q.ED.
PROOF: By (4)2, since o ~», o for any o
(3)2. CASE: d contains at least one operator
(4)1. AssuME: For every sub-diagram d; occurring in an operand of d
the following holds:
(05, {1}) € [9(d;) I" = V(0}, Q)) € [9(d;) [" : 0j ~r 0]
(ind.hyp.)
PROVE: o0~ 0
(5)1. CASE: d = refuse d;
(6)1. LET: ((p1,m1),{1}) € [g(d1)]P s.t. 0= (0,p1 Unaq)
PROOF: By assumption (1)1 and assumption (5)1
(6)2. Lut: (9, 7), QL) € [g(d) P sit. (0, Q") = (0, 95 Un}), Q%)
PROOF: By assumption (2)1 and assumption (5)1
(6)3. (p1,m1) ~r (p1,77)
PRrROOF: By (6)1, (6)2 and assumption (4)1
(6)4. Q.E.D.
PROOF: By (6)3 and Lemma 4 in [RHS07b]

82

(5)2. CASE: d = d; seq da
(6)1. LoT: (o1, {1}) € [g(dh) 17, (02, {1}) € [g(da) P 5.t
0=017 09
PROOF: By assumption (1)1 and assumption (5)2
(6)2. LeT: (0}, Q") € [(dl) [7; (05, @3) € [g(d2)] s:t.
(o, Q") = (0} Z 03, Q1 xQ3)
PROOF: By assumption (2)1 and assumption (5)2
(6)3. 01~ O] A 03 ~p 0
PRrROOF: By (6)1, (6)2 and assumption (4)1
(6)4. Q.E.D.
PRrROOF: By (6)1, (6)2, (6)3 and Lemma 30 in [HHRS06]
(5)3. CASE: d = d; par dy
PROOF: Similar to case (5)2; refer to Lemma 31 in [HHRS06] instead
of Lemma 30 in [HHRS06]
(5)4. CASE: d=d; alt dy
PROOF: Similar to case (5)2; refer to Theorem 11 in [RRS07] instead
of Lemma 30 in [HHRS06]
(5)5. CASE: d = xalt(dy ..., dn)
<6>1 g(d) - palt(g(dl);«)v 1])t ag(dm>;<07 1])
PROOF: By assumption (5)5

©)2 0= Ulo(@):0.0]

(1. vQ C [0,1]: @+ (0,1] £ {1}
PROOF: By definition 2

(112 %00, Q) € ULo:(0.1117: Qs # {1}
PRrOOF: By (7)1

m3. U La(d):0.117 € [o(d) I
PROOF: By (6)1 and definition 9

()4 ¥(0;,Q) € ULa(@):0.1] 17+ 0.1] € @,
PROOF: By (7)2, (7)3 and Lemma 32

M5 %5 € Ulo@s0.01: ¥ @ #1{1)

(0;,Q5)€S
PROOF: By < Y4
(7)6. Q.E.D.
PROOF: By assumption (1)1, (7)5 and definition 9 (by (7)5,
(0,{1}) must result from line b in definition 9)

(6)3. CASE: po' = (@ L:jl[[9(d;);(0,1] JP, {1} N g:l (0,1])

(V1. Q.E.D.
PROOF: By (6)2 and assumption (6)3

(6Y4. CASE: po’ € {(® gN{pol} Z mo.po;) | N C{1,...,m} AN #
OAVieN: pOzE[[g(i):(0, 1) [7}

83

(M1 Ler: S € U g(d):(0.1] 17 s.t. S £ A0 = @S
PROOF: By asZsIllmption (6)4
@2 ® U101 I = 05

PROOF: By (7)1 and Lemma 29
(7)3. 0~ ®S
PROOF: By (7)2 and (6)2
(T4. Q.E.D.
PRrROOF: By (7)3 and (7)1 (o' = ®59)
(6)5. Q.E.D.
PROOF: By (6)1 the cases (6)3 and (6)4 are exhaustive
(5)6. Q.E.D.
PROOF: The cases (5)1, (5)2, (5)3, (5)4 and (5)5 are exhaustive
(4)2. QED.
PRroOF: Induction step
(3)3. Q.E.D.
PROOF: By induction with (3)1 as base case and (3)2 as induction step
(2)2. Q.E.D.
PROOF: V-rule
(1)2. Q.E.D.
PROOF: =-rule

O

Note that Lemma 33 holds only for sequence diagrams on the form g(d), and
not for sequence diagrams in general.

Lemma 34. Let d € D'. Then
[d] S{o](0,Q) €[g(d)]}

PROOF.

(1 Yoe [d]:3QC[0,1): (0,Q) € [g(d) I
(2)1. ASSUME: 01 € [d]"
Prove: 3Q C [0,1]: (01, Q) € [g(d)
(3)1. CASE: d consists of a single event e or d = skip
(4)1. CASE: d consists of a single event e
G [d] ={ {(e)},0) }Alg(d) " ={ ({{e)},0),{1}) }
PROOF: By assumption (3)1
(5)2. Q.E.D.
PROOF: By (5)1; {1} is the Q we are looking for
(4)2. CASE: d = skip
PROOF: Similar to (4)2; just replace (e) with ()
(4)3. Q.ED.
PROOF: By (3)1 the cases (4)1 and (4)2 are exhaustive
(3)2. CASE: d contains at least one operator

84

(4)1. AssuME: For every sub-diagram d; occurring in an operand of d
the following holds:
Yoeld;]':3Q C [0,1]: (0,Q) € [g(d) I (ind.hyp)
Prove: 3Q C[0,1]: (01,Q) € [g(d)]
(5)1. CASE: d = refuse d;
(6)1. LET: (pi,n}) €[di]’ st. o1 = (0,p) Un))
PROOF: By assumption (2)1 and assumption (5)1
(6)2. Lot Q) C [0,1] st. ((#h,n), Q1) € [g(da)
PROOF: By (6)1 and assumption (4)1
(6)3. (0,5, Un}), Q)) € [g(d)
(7)1, g(d) = refuse g(dy)
PROOF: By assumption (5)1 and definition 38
(7)2. Q.E.D.
ProoF: By (7)1 and (6)2 (s}, 7)), Q4) € [g(d1) [?)
(6)4. Q.E.D.
PRrOOF: By (6)3 and (6)1 (01 = (0,p} Un})); Q) is the Q we are
looking for
(5)2. CASE: d = d; seq da
<6>1 LET: 0/1 S [[d1]]i,O/Q S [[dz]]i s.t. 01 = 0/1 ?:/ 0/2
PROOF: By assumption (2)1 and assumption (5)2
()2, Let: Q) C [0,1] st (0}, QL) € [gldy) 7
Qb € [0,1] st (0h, Q) € [g(da) [P
PROOF: By (6)1 and assumption (4)1
(6)3. (o} % o @)+ Qb) € [9(d) J?
(1. g(d) = g(d1) seq g(d2)
PROOF: By assumption (5)2 and definition 38
(7)2. Q.E.D.
ProoF: By (7)1 and (6)2 (0}, @%) € [g(di) I? A (0, Q%) €
[g(d2) I7)
(6)4. Q.E.D.
PROOF: By (6)3 and (6)1 (01 = 0] 77 0h); Q) * Q% is the Q we are
looking for
(5)3. CASE: d = d; par da
PROOF: Similar to case (5)2
<5>4 CASE: d = dj alt do
PROOF: Similar to case (5)2
(5)5. CASE: d =xalt(dy,...,dn)
(6)1. 01 € <U1[[d; I'
j=
PROOF: By assumption (2)1 and assumption (5)5
(6)2. LET: k€ {1,...,m} s.t. 01 € [di]
PRrROOF: By (6)1
(6)3. LET: Q) C [0,1] s.t. (01,Q%) € [9(dk)]
PROOF: By assumption (6)2 and assumption (4)1

(6)4. (01, Qr +(0,1]) € [g(d) [*

85

-5 9(d2);(0,1])

(T)L. g(d) = palt(g(d1);(0, 1],
(5)5 and definition 38

PRroOOF: By assumption
(7Y2. Q.E.D.
PROOF: By (6)3 ((01,Qk) € [g(dx)]?), (7)1 and definition 9
(from line (a) with N = {1})
(6)5. Q.E.D.
PROOF: By (6)4; Q. * (0,1] is the Q we are looking for
(5)6. Q.E.D.
PROOF: The cases (5)1, (5)2, (5)3, (5)4 and (5)5 are exhaustive
(4)2. QED.
PRroOF: Induction step
(3)3. Q.E.D.
PROOF: By induction with (3)1 as base case and (3)2 as induction step
(2)2. QED.
PROOF: V-rule
(1)2. Q.E.D.
PROOF: By (1)1

Lemma 35. Let d € D'. Then
V(0,Q) €[g(d)JP:30 €[d]" :0~ o

PROOF.

(1)1. AssuME: (0,Q) €[g(d) |?
PROVE: o' €[d]':0~, 0
(2)1. CASE: d consists of a single event e or d = skip
(3)1. CASE: d cousists of a single event e
WL [d] ={{(e},0) }rlg(d)[" ={ (({{e)},0),{1}) }
PROOF: By assumption (3)1
(4)2. Q.E.D.
PRrOOF: By (4)1; ({{e)},0) is the o’ we are looking for
(3)2. CASE: d = skip
PROOF: Similar to (3)1; just replace (e) with ()
(3)3. Q.E.D.
PROOF: By (2)1 the cases (3)1 and (3)2 are exhaustive
(2)2. CASE: d contains at least one operator
(3)1. AssuME: For every sub-diagram d; occurring in an operand of d the
following holds:
V(0", Q") €[g(d;)]P : 30 €[d;]": 0"~ o (ind.hyp.)
PROVE: o' €[d]':0~, 0
(4)1. CASE: d = refuse d;
(5)1. LET: ((p1,m1),Q1) € [9(d1) [* s.t. (0,Q) = ((0,p1 Un1), Q1)
PROOF: By assumption (1)1 and assumption (4)1
(5)2. LeT: (p),m) € [di] st (pr,ma) ~r (ph,01)
PROOF: By (5)1 and assumption (3)1

86

(5)3. (0,1 Unt) ~r (0,55 Un))
PROOF: By (5)2 and Lemma 4 in [RHS07Db]
(). (0,94 Unl) € [
PROOF: By assumption (4)1 and (5)2
(5)5. Q.E.D.
PRrROOF: By (5)3, (5)4 and (5)1 (0 = (0, p1 Uny)); (0,p] Un)) is the
o' we are looking for
(4)2. CASE: d = d; seq da
(5)1. LET: (01,Q1) € [g(d1) [7,(02,Q2) € [g(d2) [* s.t. (0,Q) =
(01 Z 02,Q1 * Q2)
PROOF: By assumption (1)1 and assumption (4)2
(5)2. LET: 0o} € [d1]* s.t. 01 ~ 0}
oy € [da]* s.t. 03 ~. 0h
PROOF: By (5)1 and assumption (3)1
(5)3. 01 77 03 ~y 0) 7 0f
PROOF: By (5)2 and Lemma 30 in [HHRSO06]
(). of oy e [d]
PROOF: By assumption (4)2 and (5)2
(5)5. Q.E.D.
PROOF: By (5)3, (5)4 and (5)1 (0 = 01 Z 02); 0] 7 of is the o' we
are looking for
(4)3. CASE: d = d; par da
PROOF: Similar to case (4)2 (replace the reference to Lemma 30 in
[HHRSO06] with a reference to Lemma 31 in [HHRSO06])
(4)4. CASE: d =d; alt dy
PROOF: Similar to case (4)2 (replace the reference to Lemma 30 in
[HHRSO06] with a reference to Theorem 11 in [RRS07])
(4)5. CASE: d = xalt(dy,...,dn)
<5>1 g(d) = palt(g(dl);<0a 1]) 7g(dm);<0a 1])
PROOF: By assumption (4)5
(5)2. CASE: (0,Q) = (& U {poi}, > m2.po;), where N C {1,...,m}A
iEN ieEN
N #QAYie N :po; € g(d;);{0,1]]P
(6)1. LET: j € N and po; € [9(d;);{0,1]]? s.t. po; € U {po:}
iEN
PROOF: By assumption (5)2 (N # 0AYi € N : po; € [g(d;);(0,1] J?)
(6)2. LET: pof € [g(d;) [P s.t. o = o,
Proo¥: By (6)1 (po; € [9(d;);(0,1] [7)
(6)3. LET: 0} € [d; |’ s.t. 0f ~ 0
PROOF: By (6)2 and assumption (3)1
(6)4. 0j ~, 0}
PROOF: By (6)3 and (6)2
©)5. © U {poi} — o,
iEN
(M1 @ U {poi} ~r o
iEN

PRrROOF: By (6)1 (po; € J {po;}) and Lemma 30
iEN

87

(7)2. Q.E.D.
PROOF: By (7)1, (6)4 and Lemma 26 in [HHRSO06]
(6)6. o e[d]’
PROOF: By (6)3 (o) € [d;]") and assumption (4)5
(6)7. Q.E.D.
PrOOF: By (5)2 (0 = @ U {poi}), (6)5 and (6)6; 0} is the o' we
are looking for <

(5)3. Case: (0,Q) = (© U[[g(1)3(0, 1]]]P,{1}m§<o,1])

(6)1. LET: (01,Q1) € [[(dl) g
(6)2. LET: o} € [dy]* s.t. 01 ~ 0}
PROOF: By (6)1 and assumption (3)1

(6)3. (01,Q1 #(0,1]) € Gl[[o(d:):(0,1] 7

PROOF By (6)1

(6)4. @U[[9(di);(0, 1] JP ~= 01
PROOF By (6)3 and Lemma 30

(6)5. @U[[9(di);(0, 1] J7 ~=p 0
PROOF: By (6)2, (6)4 and Lemma 26 in [HHRS06]

(6)6. o) €[d]" _
PROOF: By (6)2 (0] € [d1]') and assumption (4)5

(6)7. Q.E.D.
PROOF: By (6)5, (6)6 and assumption (5)3 (o = (& U [g(d;);(0, 1]]?);

i=1
0} is the o’ we are looking for
(5)4. Q.E.D.
PROOF: By (5)1 and definition 9 the cases (5)2 and (5)3 are exhaus-
tive
(4)6. Q.E.D.
PROOF: The cases (4)1, (4)2, (4)3, (4)4 and (4)5 are exhaustive
(3)2. Q.E.D.
PROOF: Induction step
(2)3. Q.ED.
PROOF: By induction with (2)1 as base case and (2)2 as induction step
(1)2. Q.E.D.

PROOF: V-rule

Lemma 36. Let d € D*. Then
o0, Q) el g(d)]": Q@ ={1}

PROOF.

(1)1. CASE: d consists of a single event e or d = skip

88

@)1 Tg(d) J7 ={ (({{e) ,?)7{1}) pvIald) [P ={ ({0} 0),{1}) }

PROOF: By assumption (1)1
(2)2. Q.E.D.
PrOOF: By (2)1
(1)2. CASE: d contains at least one operator
(2)1. AssuME: For every sub-diagram d; occurring in an operand of d the
following holds:
3(0,Qy) € Lg(d;) 17 : @; = {1} (indhyp.)
PrOVE: F(0,Q) €[g(d)]P: Q = {1}
(3)1. CASE: d = refuse d;
(4)1. g(d) = refuse g(dy)
PROOF: By assumption (3)1
(02, Lot ((p1, 1), Q1) € [g(d) J? . Q1 = {1}
PROOF: By assumption (3)1 and assumption (2)1
(4)3. ((0,n1 Up1), Q1) € [g(d)]
PROOF: By (4)2 and (4)1
(4)4. Q.E.D.
PROOF: By (4)3 and (4)2
(3)2. CASE: d = d; seq da
(4)1. g(d) = g(d1) seq g(d2)
PROOF: By assumption (3)2
(2. Let: (01, Q1) € [g(dy) P st Qu = {1}
(02, @2) € [g(da) [P 5t Q2 = {1}
PROOF: By assumption (3)2 and assumption (2)1
(03, (o1 % 02, {1} {1}) € [g(d)
PROOF: By (4)2 and (4)1
(4)4. Q.E.D.
PRrOOF: By (4)3, since {1} « {1} = {1}
(3)3. CASE: d = d; par dy
PROOF: Similar to case (3)2
(3)4. CASE: d=d; alt dy
PROOF: Similar to case (3)2
(3)5. CASE: d = xalt(dy,. .., dn)
<4>1 g(d) = palt(g(dl);«)v 1])t ag(dm>;<07 1])
PROOF: By assumption (3)5

@2 (@ ULo@)0.11, (110 3 01D € o)
PRrOOF: By MH1
@3 10 52 0.1 = (10 (0,1) = 1)

PRrOOF: By Lemma 31
(4)4. Q.E.D.
PROOF: By (4)2 and (4)3
(3)6. Q.E.D.
PROOF: The cases (3)1, (3)2, (3)3, (3)4 and (3)5 are exhaustive

89

(2)2. Q.ED.
PROOF: Induction step
(1)3. Q.E.D.
PROOF: By induction with (1)1 as base case and (1)2 as induction step

Lemma 37. Let d € Dt. Then
Yoc[d] :3d eD":[d " =0
PROOF.

(1)1. CASE: d = e for some event e or d = skip
(2)1. d e D"
PROOF: By assumption (1)1
(2)2. Q.E.D.
PROOF: By (2)1; d is the d’ we are looking for
(1)2. CASE: d contains at least one operator
(2)1. AssuME: For each operand d; occurring in an operand of d the following
holds: (ind. hyp.)
Yoj €[d;] :3d; eD*: [d
PROVE: Yoe[d]':3d eDv:[d']
(3)1. ASsUME: o€ [d]’
ProvE: Id' eD“:[d J*=o
(4)1. CASE: d = refuse d;
(5)1. LET: (p1,m1) € [d1] s.t. o= (0,p1 Uny)
PROOF: By assumption (4)1 and assumption (3)1
(5)2. LET: d} € D" s.t. [d}]* = (p1,m1)
PROOF: By (5)1 and assumption (2)1
(5)3. [refuse d} J* =o
PROOF: By (5)1 and (5)2
(5)4. refuse dj € D"
PROOF: By (5)2
(5)5. Q.E.D.
PROOF: By (5)3 and (5)4; refuse d} is the d’ we are looking for
(4)2. CASE: d = d; seq da
(5)1. LET: 01 € [dy]',02 € [d2]' s.t. 0 =01 75 02
PROOF: By assumption (4)2 and assumption (3)1
(5)2. LET: dj,db e D¥st. [di [“=o01 N[dy " = 02
PROOF: By (5)1 and assumption (2)1
(5)3. [dyseqdy [“ =0
PROOF: By (5)1 and (5)2
(5)4. d} seq dy € D*
PROOF: By (5)2
(5)5. Q.E.D.
PROOF: By (5)3 and (5)4; d} seq d} is the d’ we are looking for
(4)3. CASE: d = d; par d

' 1% = o

J
U

90

PROOF: Similar to (4)3; replace seq with par and - with ||
<4>4 CASE: d = d; alt ds
PROOF: Similar to (4)3; replace seq with alt and > with W
(4)5. CASE: d = d; xalt da
<5>1 OE[[dl]]i\/OE [[dg]]l
PROOF: By assumption (3)1 and assumption (4)5
(5)2. CASE: o€ [dy]*
(6)1. LET: d} € D¥s.t. [d) [“ =0
PROOF: By assumption (5)2 and assumption (2)1
(6)2. Q.E.D.
PRrROOF: By (6)1; d is the d’ we are looking for
(5)3. CASE: o€ [da]’
PROOF: Similar to (5)2
(5)4. Q.E.D.
PROOF: By (5)1 the cases (5)2 and (5)3 are exhaustive
(4)6. Q.ED.
PROOF: By assumption (1)2 the cases (4)1, (4)2, (4)3, (4)4 and (4)5
are exhaustive
(3)2. Q.E.D.
PROOF: V-rule
(2)2. QED.
PROOF: Induction step
(1)3. Q.E.D.
PROOF: By induction with (1)1 as base case and (1)2 as induction step

Lemma 38.
deD' = 3d Nd)A[d]' =[d]

PROOF.

(1)1. ASSUME: d € D'
ProvE: 3d : N()A[d] =[d |’
(2)1. LET: m e Ns.t. #[d] =m
PROOF: By assumption (1)1
(2)2. LET: dj € D" s.t. [dj |* = o, for each o; € [d]
Proor: By Lemma 37
(2)3. [xalt(dy,...,dn) ' =[d]*
PROOF: By (2)2
(2)4. Q.ED.
PROOF: By (2)3 and (2)2; [xalt(dy,...,d,,)]’ is the d’ we are looking for
(1)2. Q.E.D.
PROOF: =-rule

91

Lemma 39. Let d € D'. Then
(N(d)AIsCH:V¥(p,n)e[d] :pUn=s)=

m pUn = ﬂ pUNA

(pm)el d]’ ((p:n),Q)€[g(d) 7

ﬂ n= ﬂ n

(pyn)el d ¢ ((p,n),Q)€[g(d) I»
PROOF.

(1)1. AssuME: 1. N(d)
2.3sCH:V(p,n)e[d] :pUn=s
PROVE: N pUn= N pUnA
el d i (pm), @€l 9(d) 17
n= N n
(pm)el d] ((p,n),Q)€l 9(d) 17
(2)1. LET: sCHst.V(pn)e[d] :pUn=s
Proo¥F: By assumption 2
(2)2. LET: m € N s.t. d = xalt(dy, ..., dn)
PRrROOF: By assumption 1
(203, V) <m: #1d, | =1
PROOF: (2)2 and assumption 1
(2)4. g(d) = palt(dy;(0,1],...,dmn;{(0,1])
PRrROOF: By (2)2 and assumption 1 (which ensures that g(d;) = d; for 1 <
j<m)
(2)5. N pUn= N pUn
(pm)el d J* ((pn),Q)€[g(d) 1?
(3)1. N »pUncC N pUn
(p)el d T ((pn),Q)€l g(d) I»
(4)1. ASSUME: t € N pUn
(pm)el d]
PROVE: t€ N puUn
((p:n),Q)€[g(d) 7
(5)1. ASSUME: t ¢ N pUn
((pn),Q)€l g(d) I»
ProvE: L
(6)1. LET: po’ € [g(d) [P st. t ¢ p'Un’
PROOF: By assumption (5)1
(6)2. Case: po’ € {(® U {po;}, > Qj) | N C {1,...,m} AN #
JEN JEN
O AVj €N :poj €[dy:(0,1] [P}
(7)1. LET: N C{1,...,m}s.t.po’ = (& U {po;}, > Q;) AN #
JEN JEN
(Z)/\Vj eN 1 poj € [[dj;<071]]]p
PROOF: By assumption (6)2
(M2 U {poj} = U [d;;{0, 1]]
JEN JEN
PROOF: By (7)1 and (2)3
(1)3. o' =@ U [dy;0,1] 7
JEN

92

PROOF: By (7)2 and (7)1

M4 UldI"cldl
JEN

PROOF: By (2)2 and (7)1 (N C {1,...,m})

(7)5. Vpoe |J[d;;(0,1]]P:tepUn
JEN

PROOF: By (7)4 and assumption (4)1
(6. tep Un’

PRrooOF: By (7)5 and (7)3
(7)7. Q.E.D.

PROOF: By (7)6 and (6)1

(6)3. CasE: po = (@ ‘le[[dj;m,u IP, {1} N §<o,11)

(1. LET: k<mst. [di]" = {(pr,nk)} At & pr Uny
PROOF: By assumption (6)3, assumption (6)1 and (2)3
(M2 (pr,mi) €[]
PROOF: By (7)1 and (2)2
<7>3 t € prUng
PROOF: By (7)2 and (4)1
(74. Q.E.D.
PROOF: By (7)1 and (7)3
(6)4. Q.E.D.
PROOF: By (6)1 (po € [g(d)]?) and (2)4 the cases (6)2 and (6)3
are exhaustive
(5)2. Q.E.D.
Proor: L-rule
(4)2. Q.E.D.
PROOF: C-rule
(3)2. N pUn C N pUn
((pn),Q)€[g(d) I» (p)el d J*
(4)1. ASSUME: t € N pun
((p:n),Q)€[9(d) J*
PRrROVE: te€ N »pUn
(p)el d J?
©)1. V((p,n),Q) €[g(d) [P :tepUn
PROOF: By assumption (4)1
(5)2. V(p,n) €l gld)]':tepUn
PRrROOF: By (5)1 and Lemma 34
(5)3. Q.E.D.
PROOF: By (5)2
(4)2. Q.ED.
ProOF: C-rule
(3)3. Q.E.D.
PROOF: By (3)1 and (3)2
(2)6. N n= N n

(pm)el d J* ((p:n),Q)€[9(d) 7

93

(3)1. N n C N n
(p)el d] ((pn),Q)€l g(d) I»
(4)1. ASSUME: t € N n

(pm)el d]
PROVE: t€ N n
((p:n),Q)€[g(d) 7
(5)1. ASSUME: t ¢ N n

((p,n),Q)€[g(a) 1?
Prove: L

(6)1. LET: po’ € [g(d)]P s.t. t ¢ n/
PROOF: By assumption (5)1

(©)2. Case: o € {(® U {pog), 52 @) | N € {Loom} AN

JEN
O AVj e N:po; € dJ,<O 1] J7}

(1. LET: N C{1,...,m} s.t. po' = (& UN{poj} E Q) AN #

(Z)/\Vj eN 1 poj € [[dj;<071]]]p
PROOF: By assumption (6)2
(M2 U {poj} = U [dj;0,1] J?
JEN
PRrROOF: By (7 and (2)3

)1
(1)3. o' =& gNﬂda< 1y
PROOF: B;< 7)2 and (7)1
@ UT4TClay
PR(;OF: By (2)2 and (7)1 (N C{1,...,m})
(7)5. Vpoe |J[d;:0,1]]P:ten
JEN
PROOF: By (7)4 and assumption (4)1
(6. ten
ProoF: By (7)5 and (7)3
(7)7. Q.E.D.
PROOF: By (7)6 and (6)1

(6)3. CASE: po’ = (& U [d;;(0,1)]7, {1} N E (0,1))

(1. LET: E<m s.t. [[di |' = {(pk,nk)} A t ¢ ny
PROOF: By assumption (6)3, assumption (6)1 and (2)3
(M2 (ki) €[]
PROOF: By (7)1 and (2)2
(7)3. t €ny
PROOF: By (7)2 and (4)1
(74. Q.E.D.
PROOF: By (7)1 and (7)3
(6)4. Q.E.D.
PrROOF: By (6)1 (po € [g(d) |?) and (2)4 the cases (6)2 and (6)3
are exhaustive
(5)2. Q.E.D.
ProOF: L-rule

94

(4)2. Q.ED.
PrRoOOF: C-rule
(3)2. N nc (1 n
((p:n),Q)€[g(d) 1» (pm)el d]
(4)1. ASSUME: ¢ € N n
((pn),Q)€[g(a) 1?
PROVE: t€ N n
(pm)el d J*
B)L. Y(p,7),Q) € [g(d) |P : £ €
PROOF: By assumption (4)1
(5)2. ¥(p,n) €[g(d) ' : ten
PROOF: By (5)1 and Lemma 34
(5)3. Q.E.D.
PROOF: By (5)2
(4)2. Q.E.D.
PROOF: C-rule
(3)3. Q.E.D.
PROOF: By (3)1 and (3)2
(2)7. Q.ED.
PRrOOF: By (2)5 and (2)6
(1)2. Q.E.D.
PROOF: =-rule

Lemma 40. Let Oy, Oz, O} and O} be sets of p-obligations. Then
O1 ~p1 OF A Oa ~p 05 = &(01 Z O2) ~ &(0] 2 05)

PROOF.

(1)1. ASSUME: O ~=p; O] A Oz ~p; 05
PROVE: @(0; 7 O3) ~, &(0] = O))
<2>1 LET: (p3,n3) = @(01 i 02)
(b1 1) = 3(0} = O)
(2)2. ASSUME: (ps,n3) ¥r (pa,n4)
Prove: L
(3)1. n3 L nyVps € psUny
PROOF: By assumption (2)2
(3)2. CASE: ng € ny
(4)1. LET: t € H such that t € ng At & ny
PROOF: By assumption (3)2
(4)2. Vpoe O1 5 Oz :t €n
PrOOF: By (4)1
(4)3. Vpo1 € O1,poz € Oz : t € (1 Z p2) U (n1 5 n2) U (pr
PROOF: By (4)2
(4)4. Fpoe O] Z O :t ¢ n
PROOF: By (4)1

95

(4)5. LET: po} € Of,poy € O} such that t ¢ (n} 7 py)U(n] = nh)U(p) =
n5)
PROOF: By (4)4
<4>6 VS, C Oll,SQ - 012 2p0/1 €S /\p0/2 €Sy =t ¢ . @ (Sl i Sg)
PROOF: By (4)5 and definition 4
(4)7. LET: S1 C O}, po1 € O; such that poj € Si A por ~pr BS1
Sy C 04, pos € O such that poly, € Sy A pog ~p, BSo
PROOF: By assumption (1)1
(4)8. t € (n1 Z p2) U (n1 Z m2) U (p1 Z n2)
PROOF: By (4)7 and (4)3
(4)9. CASE: t € ny 7 p2
<5>1 LET: t1 € nq,t3 € py such that ¢ € {tl} ?\: {tz}
PROOF: By assumption (4)9
(5)2. Vpoe S1:t1 €n
PROOF: By (5)1 and (4)7 (po1 ~~pr ©S1)
(5)3. Ypoe Sy :ta €pUn
PRrROOF: By (5)1 and (4)7 (po2 ~>pr ©52)
(5)4. Vpoe S1 - Sa:teEn
ProOF: By (5)2, (5)3 and (5)1 (¢t € {t1} = {t2})
<5>5. tem. ®(S1 22 Sg)
PROOF: By (5)4
(5)6. Q.E.D.
PRrROOF: By (5)5, (4)6 and (4)7 (po} € S1,poh € Sa)
(4)10. CASE: t € ny 7 ng
<5>1 LET: t1 € nq,ts € no such that t € {tl} i {tg}
PROOF: By assumption (4)10
(5)2. Vpoe S1:t1 €n
PRrROOF: By (5)1 and (4)7 (po1 ~+pr BS1)
<5>3 Vpo € Sy ity €n
PROOF: By (5)1 and (4)7 (pog ~~pr ©S2)
(5)4. Vpoe S1 72 S2:ten
PRrROOF: By (5)2, (5)3 and (5)1 (¢t € {t1} z {t2})
<5>5 tem. P (Sl ?:/ SQ)
PROOF: By (5)4
(5)6. Q.E.D.
PROOF: By (5)5 and (4)6 and (4)7 (po} € S1,poh € S3)
(4)11. CASE: t € p1 7 N2
PROOF: Similar to case (4)9
(4)12. QED.
PROOF: By (4)8 the cases (4)9, (4)10 and (4)11 are exhaustive
<3>3 CASE: p3 € paUny
(4)1. LET: t € H such that t € ps At ¢ psUny
PROOF: By assumption (3)3
(4)2. Vpo € O1 5 O2:t€pUn
PRrROOF: By (4)1

96

(4)3. Vpo1 € O1,po2 € Oz :t € (p1 Z p2) U (n1 Z p2) U (n1 Zne)U(p1 2
7’L2)
PROOF: By (4)2
(4)4. Fpoe O] 7 OL:t ¢ pUn
PRrROOF: By (4)1
(4)5. LET: po} € Of,pol € Of such that t ¢ (p} ZZ ph)U(n) Z ph)U(n)
n) U (5} 7)
PROOF: By (4)4
<4>6 VS, C Oll,Sé - 012 Zp0/1 € S /\pOIQ €S, =t ¢ 7r1.69(5’1 i
Sg) Uma. @ (Sl i Sz)
PROOF: By (4)5 and definition 4
(4)7. LET: S1 C Of,po1 € O such that po| € S1 A poy ~, OS]
Sy C O}, poa € Oy such that poly € So A pog ~», BSo
PROOF: By assumption (1)1 and (4)5
(4)8. t € (p1 Z p2) U (n1 Z p2) U(n 2 n2) U(pr Z n2)
PROOF: By (4)3 and (4)7
(4)9. CASE: t € p1 77 p2
<5>1 LET: t1 € p1,ts € ps such that t € {tl} i: {tz}
PROOF: By assumption (4)9
(5)2. Ypoe Sy :t1 €pUn
PRrROOF: By (5)1 and (4)7 (po1 ~pr ®S1)
<5>3 Vpo€ Syt €EpUn
PRrROOF: By (5)1 and (4)7 (po2 ~>pr $52)
(5)4. Vpoe S1 - Sa:teEpUn
PRrROOF: By (5)2, (5)3 and (5)1 (¢t € {t1} = {t2})
<5>5 tem.Pd (Sl i Sz) Uma. D (Sl i 52)
PROOF: By (5)4 and definition 4
(5)6. Q.E.D.
PRrROOF: By (5)5, (4)6 and (4)5 (po} € S1,po, € S2)
<4>10 CASE: t € nq i D2
PROOF: Similar to case (4)9
<4>11 CASE: t € nq i n9
PROOF: Similar to case (4)9
(4)12. CASE: t € p1 o ng
PROOF: Similar to case (4)9
(4)13. Q.ED.
PROOF: By (4)8 the cases (4)9, (4)10, (4)11 and (4)12 are exhaustive
(3)4. Q.E.D.
PROOF: By (3)1 the cases (3)2 and (3)3 are exhaustive
(2)3. Q.ED.
PRrROOF: L-rule
(1)2. Q.E.D.
PROOF: =-rule

97

Lemma 41. Let Oy, Oz, O} and O} be sets of p-obligations. Then
O1 ~p1 Oy A Oz ~py Oy = &(01 || O2) ~r @(0] || 03)

PROOF. The proof is similar to the proof for Lemma 40; just replace - with
II- O

Lemma 42. Let dy, da, di and dfy be sequence diagrams in DP. Then

[dy] ~pg [y IATda] ~pg [dy] = ma(S([di seq dy [)) € m2(S(] da seq dy]))
mo(B([dy par dy 1)) € ma(S([du par dy]))
mo(B([dy alt d5])) € ma(S([dy alt dy]))

2(6_9 A
2(6_9 A

PROOF.

(1)1 AssUME: [di]~y [dh TATda | ~pg [d]
PrROVE: WQ(E_B([[dll seq d/2]])) - Wz(@([[dy seq ds]]))/\
72(@([d, par dy 1)) € m2(([dy par d)
7o(@([d) alt dj 1)) C ma(D([da alt ds 1))
@1 ma(B([d seq dj 1)) € ma(B(] da seq dz 1))
(3)1. my.®[dy seq dy | C {1}
ProoF: By Lemma 2
<3>2 1e 7T2.€_9[[dll seq d/2]] =1€ 7T2.€_9[[dy seq ds]]
(4)1. ASSUME: 1 € mp.8[d} seq d5 |
PROVE: 1€ m2.®[dy seq da |
(5)1. Vpo € [dj seq dby | : ma.po # 0
PROOF: By assumption (4)1
(5Y2. Vpoe [d) JU[ds]:ma.po#0
PROOF: By (5)1
(5)3. Vpo e[dy JU[dz2]:mapo#D
PROOF: By (5)2 and assumption (1)1 (since each p-obligation in
[di] either has 0 in its probability set or is represented in [dj],
and each p-obligation in [da] either has 0 in its probability set or
is represented in [d5])
(5)4. Vpo € [d1 seq da | : ma.po #
PRrOOF: By (5)3
<5>5 WQ.E_B[[d1 seq d2]] 75 (Z)
PROOF: By (5)4
(5)6. Q.E.D.
PROOF: By (5)5 and Lemma 2
(4)2. Q.E.D.
PROOF: =-rule
(3)3. Q.E.D.
PROOF: By (3)1 and (3)2
2)2. ma(B([ds par dj])) C ma(@([d par dz)
PROOF: Similar to (2)1; just replace seq with par.
<2>3 WQ(@([[dll alt dIQ]])) - WQ(@([[dy alt do]]))

98

PROOF: Similar to (2)1; just replace seq with alt.
(2)4. Q.E.D.
PrOOF: By (2)1, (2)2 and (2)3
(1)2. Q.E.D.
PROOF: =-rule

Lemma 43.
Ed)=3seH :Y((p,n),Q) €[gd)] :pUn=s

PROOF.

(1)1. AssuMmE: E(d)
PrOVE: Is CH:V((p,n),Q)€[g(d)]P:pUn=s
(2)1. CASE: d consists of a single event e or d = skip
(3)1. d consists of a single event e
W1 [gld) 1" ={(({{e)},0), {11}
PROOF: By assumption (2)1
(4)2. Q.E.D.
PRrROOF: By (3)1; {(e)} is the s we are looking for
(3)2. d = skip
PROOF: Similar to (3)1; just replace (e) with ()
(3)3. Q.E.D.
PROOF: By assumption (2)1 the cases (3)1 and (3)2 are exhaustive
(2)2. CASE: d contains at least one operator
(3)1. AssuME: For every sequence diagram d’ that occurs in an operand of
d the following holds:
I CTH: V(' n), Q) e g(d)]:pUn =4 (ind. hyp.)
ProvE: Is CH:Y((p,n),Q)€gd)]:pUn=s
(4)1. CASE: d = refuse d;
(5)1. g(d) = refuse g(dy)
PROOF: By assumption (4)1
<5>2 LET: s1 C'H s.t. V((pl,nl), Ql) S [[g(dl)]] tp1Ung =8
PROOF: By assumption (3)1
(5)3. Y((p,n),Q) €[g(d) [P :p=0An=s
PROOF: By (5)2 and (5)1
(5)4. Q.E.D.
PROOF: By (5)3; s1 is the s we are looking for
<4>2 CASE: d=d; seq do
(5)1. g(d) = g(d1) seq g(dz)
PROOF: By assumption (4)2
(5)2. LET: s1 C H s.t. Y((p1,m1),Q1) € [9(d1) JP : p1Uny = 1
so C 'H s.t. V((pz,ng), Qg) S [[g(dz)]]p 1paUng = S9
PROOF: By assumption (3)1
(5)3. Vpoe [g(d) | :pUn =817 s2
(6Y1. ASSUME: po’ € [g(d)]?

99

PrROVE: p'Un' =s1 7 s9

(V1. To: por € [9(dr) [P, p0 € [g(d2) I? 5.5 po’ = por % pos
PROOF: By assumption (6)1 and (5)1

<7>2 prUny =81 ApaUng = S9
PROOF: By (7)1 and (5)2

(1)3. p'uUn’ = (p1 Z p2) U (p1 Z n2) U (n1 Z p2) U(n 2 na)
PROOF: By (7)1

(M4 (p1 Zp2) U (p1 Zn2)U(na Zp2)U(na Zne) =812 s2
PROOF: (p1 Z p2) U (p1 Z n2) U (n1 Z p2) U (n1 Z n2)

= (p1 Z (p2Un2)) U (n 2 (p2Uns))
By Lemma 14 in [HHRS06]

= (p1Um) Z (p2Una)
By Lemma 15 in [HHRS06]

= 51 i: S92
By (7)2
(15. Q.E.D.
PROOF: By (7)3 and (7)4
(6)2. Q.E.D.
PRrROOF: V-rule
(5)4. Q.E.D.

PROOF: By (5)3; s1 7 s2 is the s we are looking for
(4)3. CASE: d = d; par d
PROOF: Similar to case (4)2; just replace the references to Lemma 14
and Lemma 15 in [HHRSO06| with references to Lemma 12 and Lemma
13 in [HHRSO6]
(4)4. CASE: d = d; alt da
(5)1. g(d) = g(d1) alt g(d2)
PROOF: By assumption (4)4
(5)2. LET: 51 CH s.t. Y((p1,n1),Q1) € [g(d1) [P : p1Uny = 51
s2 C H s.t. V((p2,n2),Q2) € [g(d2) [P : p2Una = s2
PROOF: By assumption (3)1
(5)3. ¥((p,), @) € [g(d) [P : pUn = 51 U sy
(6)1. ASSUME: po’ € [g(d) P
PROVE: p'Un' =s1Usy
(7)1. LET: po1 € [g(d1) [P, po2 € [g(d2) [P s.t. po’ = po1 ¥ pos
PROOF: By assumption (6)1 and (5)1
<7>2 prUny =81 ApaUng = S9
PROOF: By (7)1 and (5)2
(13. pun’ = (p1 Upa) U (n1 Una)
PROOF: By (7)2 and (7)1
<7>4 (pl Upg) U (n1 U nz) =351 Usy
PROOF: By (7)2
(7)5. Q.E.D.
PROOF: By (7)3 and (7)4
(6)2. Q.E.D.

100

PROOF: V-rule
(5)4. Q.E.D.
PROOF: By (5)3; s1 U s2 is the s we are looking for
(4)5. CASE: d = xalt(dy,...,d,)
(5)1. g(d) = palt(g(d1);{0,1] ..., g(dn);(0,1])
PROOF: By assumption (4)5
(5)2. LET: ¢ CHst.Yoe |J [dj]":pUn=4¢

PROOF: By assumption (1)1 and assumption (4)5
(5)3. Vpoe [g(d) | :pUn=7¢
(6)1. AsSUME: po’ € [g(d)]?
ProveE: p'un' =5
(N1. Vje{l,....n}:Ypoe[g(d;) P :pUn=5s
(8Y1. AssuME: j € {1,...,n}
PROVE: Vpo e[g(d;) P :pUn=y¢
(9)1. LET: s, CH s.t.Vpoe[g(d;) P :pUn=s;
PROOF: By assumption (3)1
(9)2. s; =5
(10)1. LET: 0j €[d;]*
(10)2. LET: Q; € [0,1] s.t. (0j,Q;) €[g(d;)]*
PRrROOF: By (10)1 and Lemma 34
<10>3 p;Un; =s;
PRrROOF: By (10)2 and (9)1
(10)4. p; Un; =5
PRrROOF: By (10)1 and (5)2
(10)5. Q.E.D.
PRrROOF: By (10)3 and (10)4
(9)3. Q.E.D.
PROOF: By (9)1 and (9)2
(8)2. Q.E.D.
PROOF: V-rule
(M2. LET: SC U [g(d)]Pst. o =S
jefl,....n}
PROOF: By assumption (6)1 and (5)1
(71)3. Ypoe S:pUn=3s
Proor: By (7)2 (SC U [g(d;)]P) and (7)1

(7)4. Q.E.D.
PROOF: By (7)3 and (7)2
(6)2. Q.E.D.
PROOF: V-rule
(5)4. Q.E.D.
PROOF: By (5)3; s is the s we are looking for
(4)6. Q.E.D.
PROOF: By assumption (2)2, the cases (4)1, (4)2, (4)3, (4)4 and (4)5

are exhaustive

101

(3)2. Q.E.D.
PROOF: Induction step
(2)3. Q.E.D.
PROOF: Induction with (2)1 as basis and (2)2 as induction step
(1)2. Q.E.D.
PRrROOF: =-rule

Lemma 44.
E(d) =VY(0,Q) €[gld)]P:3 €[d] : 0~ o

PROOF.

(1)1. AssuME: E(d)
PROVE: V(0,Q) €[g(d)]P:30 €[d]" :0~n o
(2)1. ASSUME: (01,Q1) € [g(d)]?
PROVE: 3o’ € [d]’ : 01 ~opy 0
(3)1. LET: sCHst.Vpoe[g(d)]P:pUn=s
PROOF: By assumption (1)1 and Lemma 43
(3)2. LET: 03 € [d] s.t. 01 ~ 02
PROOF: By assumption (2)1 and Lemma 35
<3>3 01 ~pr 02
<4>1 p1Uniy =pa2Ung
5)L. p1Ung =s
PROOF: By assumption (2)1 and (3)1
(5)2. p2Ung =s
PROOF: By (3)2, (3)1 and Lemma 34
(5)3. Q.E.D.
PROOF: By (5)1 and (5)2
(4)2. Q.ED.
PROOF: By (4)1 and (3)2
(3)4. Q.E.D.
PROOF: By (3)2 and (3)3; 02 is the o’ we are looking for
(2)2. Q.E.D.
PROOF: V-rule
(1)2. Q.E.D.
PRrROOF: =-rule

Transitivity

Theorem 11 (Transitivity of ~-,,). Let d, d' and d” be sequence diagrams
in DP. Then

[[d]]“’“’prg[[d/]]/\[[d/]]“’“’prg[[d”]]é[[d]]“’“’prg[[d”]]

102

PROOF.

(1)1. ASSUME: [d] ~prg [d ITATd | ~prg [d"]
PROVE: Vpoe[d]:0¢ me.po= 3pd” €[d"]:po~pm po’
(2)1. ASSUME: po € [d]
PROVE: 0 ¢ ma.po = 3po” € [d"] : po ~prr po”
(3)1. AsSUME: 0 ¢ ma.po
ProvVE: Fpo” € [d"] : po ~»prr po”
(4)1. LET: po’ € [d'] s.t. po ~>ppr po’
PROOF: By assumption (1)1, assumption (2)1 and assumption (3)1
(4)2. Fpo” € [d"] : po" ~prr po”
(5)1. 0 ¢ ma.po’
PROOF: By assumption (3)1 and (4)1
(5)2. Q.E.D.
PROOF: By assumption (1)1, (4)1 and (5)1
(4)3. LET: po” € [d"] s.t. po’ ~s~=ppr po”
PROOF: By (4)2
(4)4. po ~py po”
(5)Y1. 0 ~pp 0"
(6Y1. 0 ~>pp 0 N O~y 0
PROOF: By (4)1 and (4)3
(6)2. Q.E.D.
PROOF: By (6)1 and Theorem 5 in [RRS07]
(512 Q" Q
PROOF: By (4)1 and (4)3
(5)3. Q.E.D.
PROOF: By (5)1 and (5)2
(4)5. Q.E.D.
PROOF: By (4)3 (po” € [d"]) and (4)4
(3)2. Q.E.D.
PROOF: =-rule
(2)2. Q.E.D.
PROOF: V-rule
(1)2. Q.E.D.
PRrROOF: =-rule

O

Theorem 12 (Transitivity of ~~,;). Let d, d’ and d” be sequence diagrams in
DP. Then

[d]=p[d IALd 1 wp[d"]=[d]~uld"]

PROOF.
(1)1. AssUME: [d] ~p[d IATd] ~pu[d"]

L[d]~pl[d]
2.[d] ~p [d"]

103

PrROVE: [d]~pu[d']
@1 [d]~py []
PROOF: By assumptions (1)1.1, (1)1.2 and transitivity of ~»,, (Theorem 1
in [RHSO05].)
(2)2. Vpo" e [d"]:38" C[d"]:3poe[d]:pod” €S Apo~sp &S’
(3)1. ASSUME: po” € [d"]
ProveE: 35" C[d"]:3poe[d]:pd € 5" Apo~sp B&S”
(4)1. Fpoe[d]:po~p S[d"]
(5)1. LET: po € [d] such that po ~,, [d]
ProoF: By Lemma 11
(5)2. m1.po ~, . B[d"]
6)1. m. B[d]~ m. B[d]
PROOF: By assumption (1)1.1 and Lemma 1
6)2. m.®[d]|~ m.B[d"]
PROOF: By assumption (1)1.2 and Lemma 1
(6)3. Q.E.D.
PRrROOF: By (5)1, (6)1, (6)2 and transitivity of ~-,
(5)3. me.®] d”]| C ma.po
6)1. 1 e me.®[d"]| = 1€ ma.po
(7)1. ASSUME: 1 € m.®[d"]
PrROVE: 1€ m.po
(8)1. LET: pof € [d”] such that pof ~,, [d”]
Proor: By Lemma 11
(8)2. Vpoy € [d"] : ma.po1 # 0
PROOF: By assumption (7)1 (since mo.8[d” | # 0)
(8)3. 1 € ma.pof
PROOF: By assumption (7)1 and (8)1
(8)4. VS C[d']:pof € S=1€mdS
PROOF: By (8)2, (8)3 and definition 7
(8Y5. LET: poj € [d'],S5) C [d’] such that
poy € S{ A poy ~pr &SY
PROOF: By assumption (1)1.2
(8Y6. 1 € ma.pof
PRrOOF: By (8)4 and (8)5
(8)7. Ypoe [d]:mapo#0
PROOF: By (8)2 and assumption (1)1.2 (since every p-obligation
in [d’] either has 0 in its set of probabilities or must be repre-
sented in [d”], and all combinations of p-obligations in [d”]
will have a non-empty probability set because of (8)2).
(8)8. VS C[d]:pd)€S=1€mdS
PROOF: By (8)6 and (8)7
(8)9. LET: poy € [d],S] C[d] such that poj € S1 Apor ~pr
Y
PROOF: By assumption (1)1.1
(8)10. 1 € ma.poy

104

PRrOOF: By (8)8 and (8)9

(8)11. Vpoe [d]:mapo#0
PROOF: By (8)7 and assumption (1)1.1 (with similar comment
as (8)7).

(8)12. 1 € m.®[d]
PROOF: By (8)10 and (8)11, since po; € [d]

(8)13. Q.ED.
PROOF: By (8)12 and (5)1

(71)2. Q.E.D.
PROOF: =-rule
(6)2. Q.E.D.
PROOF: By (6)1 and Lemma 2
(5)4. Q.E.D.
PROOF: By (5)2 and (5)3
(4)2. Q.E.D.
PRrROOF: By (4)1; [d”] is the S” we are looking for.
(3)2. Q.E.D.
PROOF: V-rule
(2)3. Q.ED.
PRrROOF: By (2)1, (2)2 and definition 25
(1)2. Q.E.D.
PRrROOF: =-rule

O

Theorem 13 (Non-transitivity of ~,,;). There exists sequence diagrams d,
d and d" in DP such that [d]| ~pr [d IA[d] ~pr [d" IATA] Fpri [d"]

ProoOF. To see this, let

d=a

d' = palt(a;(0,1], (a alt b);(0,1])

d" = palt((a alt (refuse b));{1}, (b alt (refuse a));{0})

This means that

[d]={poi}
[d [= {po1,poz, pos}
[d" [= {poa, pos, pos }

where
por = (({{a)},0),{1})
poz2 = (({{a)},9),(0,1])
pos = (({(a), (b)},0),(0,1])
pos = ({{a)}, {(b)}), {1})
pos = (({{b)}, {{a)}),{0})
pos = (({(a), (0)},0),{1})

Then poi ~»prr po1 and por ~>prr &{po1,po2,pos}, so [d] ~»pn [d]. Fur-
thermore, we have poi ~»pr D04, PO2 ~>prr PO4, PO3 ~>pry POs and poz ~prr
&{pos, pos, pog }, which means that [d’ | ~>pn [d”]. But there isno S C [d”]
such that po; ~p- @S and S contains pog, since (b) will be positive in &S for
any such S. So the p-obligation pos is not a member of any subset of | d” |
whose combination is a refinement of a p-obligation in [d | according to ~>p,,.

([

Theorem 14 (Transitivity of ~-,,4). Let d, d' and d’ be sequence diagrams
in DP. Then

[[d]]”‘)png[[d/]]/\[[d/]]“’“’png[[d”]]é[[d]]wpng[[d”]]

Proor. The proof is similar to the proof of Theorem 11, just replace ~=,.,
with ~»,n, and ~prg With ~p,4. In addition, refer to Theorem 5 in this paper
instead of Theorem 5 in [RRSO07].

O

Theorem 15 (Transitivity of ~,,;). Let d, d’ and d” be sequence diagrams
in DP. Then

[[d]]“’“’pnl[[d/]]/\[[dl]]“’“’pnl[[dl/]]é[[d]]“’“’zml[[d”]]
PRroOF.

(1)1. AssuME: 1. [d] ~pmu [d]
2. [] g ["]
PROVE: [d] ~pu[d"]
2L [d] ~png [d"]
PROOF: By assumptions (1)1.1, (1)1.2 and Theorem 14
(2)2. Vpo" € [d"]:38" C[d"]:3poe[d]:pod €S Apo~spn &S’
(3)1. AssUME: po” € [d"]
ProveE: 35" C[d"]:3poe[d]:pd” € S" Apo~pnr &S
(4)1. Gpoe [d] :po~pnr [d"]
(5)1. LET: po € [d] such that po ~pn, ®] d]
ProoFr: By Lemma 12
(5)2. m1.po ~opy m.B[d"]
6)1. M. B[d] ~onr m. B[d]
PROOF: By assumption (1)1.1 and Lemma 13
6)2. m. 0] d']| ~onr m-B[d"]
PROOF: By assumption (1)1.2 and Lemma 13
(6)3. Q.ED.
PRrROOF: By (5)1, (6)1, (6)2 and Theorem 5
(5)3. me.®] d”]| C ma.po
6)1. 1 e me.®[d"] = 1€ ma.po
(7)1. ASSUME: 1 € m0.®[d"]
PrROVE: 1€ m.po
(8)1. LET: pof € [d”] such that pof ~>pnr &[d” |

106

Proor: By Lemma 12
(8)2. Vpoy € [d"] : ma.po1 # 0
PRrROOF: By assumption (7)1 (since m2.&[d” | # 0)
(8)3. 1 € ma.pof
PROOF: By assumption (7)1 and (8)1
(8)4. VS C[d']:pof € S=1€m.dS
PROOF: By (8)2, (8)3 and definition 7
(8)5. LET: poy € [d 1,87 C [d’] such that pof € S/ A
POy ~pnr OSY
PROOF: By assumption (1)1.2
(8Y6. 1 € ma.pof
PRrOOF: By (8)4 and (8)5
(8)7. Vpoe|[d] :mepo#0
PROOF: By (8)2 and assumption (1)1.2 (since every p-obligation
in [d'] either has 0 in its probability set or must be repre-
sented in [d”], and all combinations of p-obligations in [d”]
will have a non-empty probability set because of (8)2).
(8)8. VS C[d]:po) €S=1€mdS
PRrOOF: By (8)6 and (8)7
(8Y9. LET: poy € [d],S] C[d] such that
poy € 81 A po1 ~pnr OS]
PROOF: By assumption (1)1.1
(8)10. 1 € ma.poy
PRrOOF: By (8)8 and (8)9
(8)11. Vpo e [d] :mapo# 0
PROOF: By (8)7 and assumption (1)1.1 (with similar comment
as (8)7).
(8)12. 1€ m.8[d]
ProOF: By (8)10 and (8)11, since po; € [d]
(8)13. Q.E.D.
PRrROOF: By (8)12 and (5)1
(7)2. Q.E.D.
PRrROOF: =-rule
(6)2. Q.E.D.
PROOF: By (6)1 and Lemma 2
(5)4. Q.E.D.
PROOF: By (5)2 and (5)3
(4)2. Q.ED.
ProOOF: By (4)1; [d”] is the S” we are looking for.
(3)2. Q.E.D.
PROOF: V-rule
(2)3. Q.E.D.
PRrROOF: By (2)1, (2)2 and definition 25
(1)2. Q.E.D.
PRrROOF: =-rule

107

Transitivity between refinement and compliance

Theorem 16 (Transitivity between refinement and compliance for ~+,,).
Let d1 and dy be sequence diagrams in DP. Then

[di]~pg[d2 AT d2]pg Tay = [di] —pg (Day

PROOF.

(1. AssuME: [dy | ~pg [d2 [A [da [—pg (T)a,
PROVE: [di]| pg (I)a,
(2)1. Vpo €[d1]:0¢ ma.po= Ipo € (I)g, : po+—pr po’
(3)1. ASSUME: po; € [d1]
PROVE: 0 ¢ ma.po1 = 3po’ € (I)q, : por —pr po’
(4)1. ASSUME: 0 ¢ ma.po;
PROVE: Jpo’ € (I)q, : po1 —pr po
(5)1. LET: pog € [dz] such that poy ~p, pos
PROOF: By assumptions (1)1, (3)1 and (4)1
(5)2. 0 ¢ m2.po2
PROOF: By (5)1 and assumption (4)1
(5)3. LET: poh € (I)q4, such that pog . pol
PRrROOF: By (5)1, (5)2 and assumption (1)1
(5)4. po1 —pr POy
PRrROOF: By (5)1, (5)3 and Lemma 1 in [RHSO07a] (transitivity of
~pr), a8 Fop, is identical with ~p,
(5)5. LET: po} = ((ph, ny N HMW), Q)
(5)6. pol € (I)a,
PROOF: By (5)5, (5)3 and definition 30 (notice that traces(I) and
Fr are independent of d; and dg, therefore (I)g4, and (I)4, only differ
w.r.t. the negative sets)
(5)7. por F—py poy
(6)1. (p1,n1) —r (Ph,15)
PRrROOF: By (5)4
<6>2 P1 Umnq Q H”(dl)
PROOF: By assumption (3)1
(6)3. (pro1) oy (phy M HIHED)
PRrROOF: By (6)1 and (6)2
(6)4. Q3 C Q1
PRrROOF: By (5)4
(6)5. Q.E.D.
PROOF: By (6)3 and (6)4
(5)8. Q.E.D.
PROOF: By (5)6 and (5)7; po} is the po’ we are looking for
(4)2. Q.E.D.
PROOF: =-rule

108

(3)2. Q.E.D.
PROOF: V-rule
(2)2. Q.E.D.
PrOOF: By (2)1
(1)2. Q.E.D.
PROOF: =-rule

d

Theorem 17 (Transitivity between refinement and compliance for ~,,).
Let dy and ds be sequence diagrams in DP. Then

[di]~prg [d2 INTd2] =prg (Da, = [di | =prg (D

PROOF.

The proof is similar to the proof for Theorem 16; just replace ~+,, with ~p.,
and ., with .. In addition, refer to Lemma 15 in step (5)4.

O

Theorem 18 (Transitivity between refinement and compliance for ~-,;).
Let d and d' be sequence diagrams in DP. Then

[di] ~p[de Al de] —p (Da, = [di | —=p (Da,

PROOF.

(1)1. ASSUME: [di | ~p[de JA[d2] —p (D)a,
PrROVE: [di] +—p (L),
2L [di] —pg (Day
PROOF: By assumption (1)1 and Theorem 16
(2)2. Vpoy € (I)g, : 3S C (I)g,,po1 € [d1] : po1 —pr S
(3)1. ASSUME: po} € (I)q,
ProvE: 3S C (I)a,,po1 € [di] : por —pr &S
(4)1. Vpo € (I)g, : m2.p0 £ 0
PROOF: By definition 30
<4>2 Vpo € [[da]] : Mo.po # 0
PROOF: By (4)1 and assumption (1)1 (since every p-obligation in [dz |
either has 0 in its set of probabilities or is represented in (I)4,)
(4)3. Ypo e [dy] :ma.po#0
PROOF: By (4)2 and assumption (1)1 (since every p-obligation in [d; |
either has 0 in its set of probabilities or is represented in [dz])
(4)4. mo.®[d1 | = {1}
PROOF: By (4)3 and Lemma 2
(4)5. mo.®(I)a, = {1}
PROOF: By definition 30 and definition 7, since f; is a measure
<4>6 7T2.G_9<I>dl g FQ.E_B[[dl]]
PROOF: By (4)4 and (4)5
M7, @[dy] —r &),

109

PROOF: By assumption (1)1 and Lemma 17
(4)8. @[di | —pr &(I)a,
PROOF: By (4)6 and (4)7
(4)9. LET: po € [dy | such that po ~p, ®[d1]
Proor: By Lemma 11
(4)10. po —pr S(I)a,
PRrROOF: By (4)8, (4)9 and Lemma 1 in [RHS07a| (transitivity of ~-,,),
as =, is identical with ~p,
(4)11. Q.E.D.
PROOF: By (4)9 and (4)10; po is the po; we are looking for and (I)4,
is the S we are looking for
(3)2. Q.E.D.
PROOF: V-rule
(2)3. QED.
PROOF: By (2)1 and (2)2
(1)2. Q.E.D.
PROOF: =-rule

O

Theorem 19 (Transitivity between refinement and compliance for ~+p,,).
Let d and d' be sequence diagrams in DP. Then

[di]~png [d2 IATda] =png (Dar = [di | —png (D)a,

PRroor.
(1)1 AssUME: [dy | ~png [d2 [A [da [=png (T)a,
PROVE: [di | —png (I)a,
QL [di] —=prg (Day
L [di] ~prg [d2 A d2] =prg (Das
PROOF: By assumption (1)1, definition 24 and definition 35
(3)2. Q.E.D.
PRrROOF: By (3)1 and Theorem 17
(2)2. QED.
PROOF: By (2)1 and definition 35
(1)2. Q.E.D.
PROOF: =-rule

O

Theorem 20 (Transitivity between refinement and compliance for ~,,;).
Let d and d' be sequence diagrams in DP. Then

[di] ~pm[d2 AT d2] —pu Day = [di | —pni {D)ay

PROOF.

()1, ASSUME: [dy | ~pmi [do [AT d2 | —pnt (Da,
PROVE: [di | —pn (D)a,

110

QL. [dy] —=png (D,
B)L [dy] ~png [da [AT d2 | =png (I)a
PROOF: By assumption (1)1
(3)2. Q.E.D.
PROOF: By (3)1 and Theorem 19
(2)2. Vpo' € (I)g, : 3S C(I)q, :Fpo €[dr]:po € SAporpr &S
(3)1. ASSUME: po} € (I)4,
ProOVE: 3S C (I)g, :3po €[di] :poy € SApopr BS
(4)1. LET: poy € [di] such that poy ~pp,r O di]
Proor: By Lemma 12
(4)2. po1 —prr ©(1)a,

<5>1 LET: ((pg,ng),Qg) = 6:9[[dl]]
((pa;na), Qa) = B[d2]
((p57n5)7 Q5) = G_9<I>d1
((p67n6)7 Qﬁ) = 69<I>dz

(5)2. (p3,n3) —rr (p5,M5)
<6>1 (pB,HS) Inr (p4;n4)
PROOF: By assumption (1)1 and Lemma 13
(6)2. (p3,n3) —r (ps5,n5)
<7>1 ns Q ns
(8)1. ASSUME: t € ng
PROVE: t € nj
<9>1 tEmny
PROOF: By assumption (8)1 and (6)1
(9)2. Vpoe[da]:ten
PRrOOF: By (9)1
(9)3. Vpo € (I}g, :t €N
(10)1. ASSUME: Jpo € (I)g, :t ¢ n
Prove: L
(11)1. LET: poy € (I)4, such that t ¢ n
PROOF: By assumption (10)1
(11)2. LET: S2 C (I)g,,poh € [dz2] such that poy €
S A poly —prr BSo
PRrROOF: By assumption (1)1 ([d2 | —prr (I)d,)
<11>3 t §é To. D SQ
PROOF: By (11)1 and (11)2
(11)4. t ¢ nh
PROOF: By (11)2 and (11)3
(11)5. Q.E.D.
PROOF: By (11)4 and (9)2
(10)2. Q.E.D.
PRrROOF: L-rule
<9>4. t € ng
PROOF: By (9)3
(9)5. t € HUd)

111

PROOF: By assumption (8)1
<9>6 (ne \n5) N H”(dl) = (Z)
PROOF: By definition 4 and definition 30
(9)7. Q.E.D.
PROOF: By (9)4, (9)5 and (9)6
(8)2. Q.E.D.
ProOOF: C-rule
(7)2. p3 € psUns
(8)1. ASSUME: t € p3
PROVE: t € psUns
<9>1 t€pgUny
PROOF: By assumption (8)1 and (6)1
(92. Vpoe[da]:tepUn
PRrROOF: By (9)1
(9)3. Vpo € (I}g, :t€pUn
(10)1. AssuME: Jpo € (I)4, such that t ¢ pUn
Prove: L
(11)1. LET: poly € (I)q, such that ¢ ¢ pi Un}
PROOF: By assumption (10)1
(11)2. LET: So C (I)g,,poh € [dz2] such that poj €
52 A POIQ = prr 6_952
PRrROOF: By assumption (1)1 ([d2 | —pni (I)a,)
<11>3 t §é 1. D Sy Ume. B So
PROOF: By (11)1 and (11)2
(11)4. ¢ ¢ ph Uni
PROOF: By (11)2 and (11)3
(11)5. Q.E.D.
PROOF: By (11)4 and (9)2
(10)2. Q.E.D.
PRrROOF: L-rule
<9>4 t € psgUng
PRrROOF: By (9)3
(9)5. t € HUd)
PROOF: By assumption (8)1
(9)6. ((ps Une) \ (ps Uns)) NH) =
PROOF: By definition 4 and definition 30
(9)7. Q.E.D.
PROOF: By (9)4, (9)5 and (9)6
(8)2. Q.E.D.
ProOOF: C-rule
(7)3. Q.E.D.
PROOF: By (7)1 and (7)2
(6)3. p3Nips #0
(7)1. CASE: traces(I) contains exactly one trace
(8Y1. LET: {t} = traces(I)

112

PROOF: By assumption (7)1
)2, (Da, = {(({th H1 \ {2}), {11}
PROOF: By (8)1 and definition 30
(8)3. (Day = {(({t}, H"*)\ {t}), {1})}
PROOF: By (8)1 and definition 30
(8Y4. t € ps
PROOF: By (8)2 and definition 4
(8)5. t € p3
(9)1. ASSUME: t ¢ ps3
ProvE: L
(10)1. (Bpoe[di]:t¢pUn)V(Vpoe[di]:ten)
PROOF: By assumption (9)1
(10)2. CASE: dJpoe[di]:t¢pUn
(11)1. LET: poj € [di] such that po} ~>pn, ® d1]
ProoFr: By Lemma 12
(11)2. 0 ¢
(12)1. 0 ¢ ma.®[di |
PRroor: By Lemma 2
(12)2. Q.E.D.
PROOF: By (12)1 and (11)1
(11)3. LET: poj € [da] such that po} ~=pn, pob
PROOF: By (11)2 and assumption (1)1
(11)4. ¢ ¢ ph Unl
<12>1 t ¢ P3 U?’Lg
PROOF: By assumption (10)2
(12)2. t ¢ pi Un)
PROOF: By (12)1 and (11)1
(12)3. Q.E.D.
PROOF: By (12)2 and (11)3
(11)5. 0 ¢ Qs
PROOF: By (11)2 and (11)3
<11>6 VpO € <I>d2 :pol2 ’7L>Prr po
PROOF: By (11)4 and (8)3
(11)7. Q.E.D.
PRrROOF: By (11)5, (11)6 and assumption (1)1 ([d2 | —pni
<I>d2)
(10)3. CASE: Vpoe[di]:ten
(11)1. Vpoe[dy] :ten
PROOF: By assumption (10)3 and assumption (1)1 ([d1 | ~>pnr
[d2])
(11)2. [do] oprr (D)as
PRrROOF: By (11)1 and (8)3
(11)3. Q.E.D.
PROOF: By (11)2 and assumption (1)1
(10)4. Q.E.D.

113

PROOF: By (10)1 the cases (10)2 and (10)3 are exhaustive
(9)2. Q.E.D.
PrROOF: L-rule
(8)6. Q.E.D.
PROOF: By (8)4 and (8)5
(7)2. CASE: traces(I) contains more than one trace
(8)1. ps € HUH)
(9)1. ASSUME: ¢ € ps
PROVE: t; € H!(d)
(10)1. ASSUME: t; ¢ H(d)
ProvE: L
<11>1 Vpo € <I>d1 it Ep
PROOF: By assumption (9)1, assumption (10)1 and def-
inition 30 (since t; ¢ H'"(41) we have Vpo € (I)g, : t; ¢
n)
(11)2. LET: tg € traces(I) such that t; # to
PROOF: By assumption (7)2
(11)3. LET: t},t, be finite traces such that ¢] C ¢t At T
to N £ 1)
PROOF: By (11)2
(11)4. t1 & ¢y
PROOF: By (11)3
(A15. (e, HID\), frlen,)) € (T)a,
PRrROOF: By definition 30
(11)6. Q.E.D.
PROOF: By (11)1, (11)4 and (11)5
(10)2. Q.E.D.
ProOF: L-rule
(9)2. Q.E.D.
PROOF: C-rule
(8)2. panps #0
(9)1. ASSUME: psNpg =10
PrOVE: L
(10)1. pg C M)
PROOF: Similar to the proof for (8)1
(10)2. traces(I) = pg
PRrROOF: By (10)1 and definition 30
(10)3. CASE: nyNtraces(I) =0
(11)1. LET: po) € [da] such that pol ~pn, B[da |
ProoF: By Lemma 12
(11)2. 0 ¢ Qs
PROOF: By (11)1 and Lemma 2
(11)3. pgNitraces(I) =10
PROOF: By (10)2 and assumption (9)1
(11)4. py Unyg = phUnj

114

PRrROOF: By (11)1
(11)5. (psUng) Ntraces(I) =0
PROOF: By (11)3 and assumption (10)3
(11)6. phNtraces(I) =10
PRrROOF: By (11)5 and (11)4
(11)7. Vpo € (I)a, : poy #>prr DO
PRroOF: By (11)6
(11)8. Q.E.D.
PRrOOF: By (11)7, (11)2 and assumption (1)1 (second
conjunct)
(10)4. CASE: ng Ntraces(I) # 0
(11)1. LET: t € ng Ntraces(I)
PROOF: By assumption (10)4
(11)2. LET: poy € (I)q4, such that ¢ € p}
PRrROOF: By (11)1 (¢ € traces(I))
(11)3. t ¢ ny
PROOF: By (11)2 and definition 30 (every p-obligation
in any (I) is consistent)
(11)4. LET: 8§ C (I)4y,p0y" € [d2] such that pj €
S N poly oy &SY
PROOF: By assumption (1)1 (second conjunct)
(11)5. t ¢ ma. ® SY
PROOF: By (11)3 and (11)4
(11)6. t € ny’
PRrOOF: By (11)1
(11)7. Q.E.D.
PROOF: By (11)4, (11)5 and (11)6
(10)5. Q.ED.
PROOF: The cases (10)3 and (10)4 are exhaustive
(9)2. Q.E.D.
Proor: L-rule
(8)3. pa C p3
PRrROOF: By (6)1
(8)4. p3Nips # 0
PRrOOF: By (8)2 and (8)3
(8)5. p3 € H!Md1)
PrOOF: By (5)1
(8)6. p3 Np € H!MM)
PROOF: By (8)5
(8)7. ps = pe N HMM)
PROOF: By (8)1, definition 30 and definition 4
(8)8. Q.E.D.
PROOF: By (8)4, (8)6 and (8)7
(7)3. Q.E.D.
PROOF: The cases (7)1 and (7)2 are exhaustive

115

(6)4. Q.E.D.
PRrOOF: By (6)2 and (6)3
(5)3. @5 C Q3
(6)1. Vpo & (T)gy : Q 40
PROOF: By definition 30
(6)2. Ypoe[da]:Q#0
ProOOF: By (6)1 and assumption (1)1 ([d2 | —pni (I)ds)
(6)3. Vpoe[di]: Q#0
PrROOF: By (6)2 and assumption (1)1 ([d1]| ~pni [d2])
(6)4. Qs 0
PRrROOF: By (6)3
(6)5. Qs = {1)
PROOF: By (6)4 and Lemma 2
(6)6. Q5 = {1}
PROOF: By definition 30 and definition 7
(6)7. Q.E.D.
PRroOF: By (6)5 and (6)6
(5)4. (p1,n1) —rr (ps5,15)
(6)1. (p1,m1) ~nr (p3,n3)
PRrROOF: By (4)1
(6)2. Q.E.D.
PROOF: By (6)1, (5)2 and Theorem 6
(5)5. @5 C Q1
(6)1. @3 C Q1
PRrROOF: By (4)1
(6)2. Q.E.D.
PRrROOF: By (6)1 and (5)3
(5)6. Q.E.D.
PROOF: By (5)4 and (5)5
(4)3. Q.E.D.
PROOF: By (4)2; po; is the po we are looking for and ()4, is the S we
are looking for.
(3)2. Q.E.D.
PROOF: V-rule
(2)3. Q.ED.
PROOF: By (2)1 and (2)2
(1)2. Q.E.D.
PROOF: =-rule

Monotonicity

Lemma 45 (Monotonicity of { w.r.t ~-,,). Let O and O’ be sets of p-
obligations. Then
O ~pg O = 10 ~>p, 1O/

116

PROOF.

(1)1. ASSUME: O ~»py O’
PROVE: 10 ~»p, 10/
(2)1. Vpo € 1O : 0 ¢ mo.po = Ipo’ € 1O : po ~+p, po’
(3)1. ASSUME: po € 1O
PROVE: 0 ¢ ma.po = Ipo’ € 1O’ : po ~~p, po’
(4)1. ASSUME: 0 ¢ ma.po
PROVE: Jpo’ € 10’ : po ~=p, po’
(5)1. LET: po; € O such that po = po;
PROOF: By assumption (3)1
(5)2. 0 ¢ ma.poy
PROOF: By (5)1 and assumption (4)1
(5)3. LET: po} € O’ such that poy ~~,, po}
PROOF: By (5)1, (5)2 and assumption (1)1
(5)4. 1por ~pr TpO}
PROOF: By (5)3 and Lemma 9
<5>5 PO ~pr Tpo/l
PROOF: By (5)4 and (5)1
(5)6. tpo} € 1O
PROOF: By (5)3
(5)7. Q.E.D.
PROOF: By (5)5 and (5)6; {po] is the po’ we are looking for
(4)2. Q.ED.
PROOF: =-rule
(3)2. Q.E.D.
PROOF: V-rule
(2)2. Q.ED.
PRrROOF: By (2)1
(1)2. Q.E.D.
PROOF: =-rule

d

Theorem 21 (Monotonicity of refuse w.r.t ~~,,). Let d and d’ be sequence
diagrams in DP. Then

[d]~pg[d]=1]refuse d] ~p, [refuse d' |

PROOF.

This follows immediately from Lemma 45. Lemma 45 has been stated as a sepa-
rate lemma to emphasize that the proof applies to all sets of p-obligations, and
not only those that are the semantics of a sequence diagram.

O

Theorem 22 (Non-monotonicity of palt w.r.t ~,). Letds, ..., dy,d}, ..., d),
be sequence diagrams in DP. Furthermore, let d = palt(di;Q1,-..,dn;Qn) and

117

d' = palt(dy;QY, . ..,d;Q"). Then

(Vi<n:([di]~pg [d;]NQ;C Qi) A [d]~pg[d]
PROOF. See the counter example given after Theorem 6 in [RHSO07a). O

Lemma 46 (Monotonicity of { w.r.t ~,.). Let O and O’ be sets of p-
obligations. Then

O ~prg O = 10 ~s g TO'

PROOF.

(1)1. ASSUME: O ~=p,9 O’
PROVE: {0 ~=p 10/
(2)1. ¥po € 1O : 0 ¢ ma.po = Ipo’ € 1O : po ~>ppr po’
(3)1. ASSUME: po € 1O
PROVE: 0 ¢ my.po = Ipo’ € 1O : po ~prp po’
(4)1. ASSUME: 0 ¢ ma.po
PROVE: Jpo’ € 1O’ : po ~>ppr po’
(5)1. LET: po; € O such that po = {po;
PROOF: By assumption (3)1
<5>2 0 ¢ T2.pO1
PROOF: By (5)1 and assumption (4)1
(5)3. LET: poj € O such that poy ~»prr po}
PROOF: By (5)1, (5)2 and assumption (1)1
<5>4 Tpol M prr Tpoll
<6>1 7T-l'Tpol e 7T1'Tp0/1
(1. 71.p01 ~>pp T1.00)
PRrOOF: By (5)3
(7)2. Q.E.D.
PROOF: By (7)1 and Theorem 8 in [RRS07]
(6)2. ma.Tpo} C ma.Tpoy
(1. m2.po} C ma.poy
PRrOOF: By (5)3
(7)2. Q.E.D.
PROOF: By (7)1
(6)3. Q.E.D.
PRrROOF: By (6)1 and (6)2
(5)5. PO ~ppr PO}
PROOF: By (5)4 and (5)1
(5)6. tpo} € 1O’
PROOF: By (5)3
(5)7. Q.E.D.
PROOF: By (5)5 and (5)6; {po] is the po’ we are looking for
(4)2. Q.ED.
PROOF: =-rule
(3)2. Q.E.D.

118

PROOF: V-rule
(2)2. Q.E.D.
PRrROOF: By (2)1
(1)2. Q.E.D.
PROOF: =-rule

O

Lemma 47 (Monotonicity of w.r.t ~,,,). Let O and O’ be sets of p-
obligations. Then
O ~png O' = 1O ~>ppg 1O’

PROOF. The proof is similar to the proof of Lemma 47; replace ~+,,, with
~ong, ~prr With ~pn. ~»p. with ~»,, and the reference to Theorem 8 in
[RRS07] with a reference to Theorem 7. O

Theorem 23 (Monotonicity of refuse w.r.t ~»,,.4). Let d and d' be sequence
diagrams in DP. Then

[[d]] ~prg [[d/]] = [[refuse d]] ~prg [[refuse d/]]
PROOF. This follows immediately from Lemma 46 O

Lemma 48 (Monotonicity of 7 w.r.t ~»p,.4.). Let O1,02,07, 05 be sets of
p-obligations. Then

O1 ~prg O AN Oy ~prg Oy = O1 77 Oz ~prg O1 7 Oy

PROOF.

(1)1. ASSUME: O1 ~>prg O1 A Oz ~=prg Of
PROVE: 01 75 O3 ~ppg Of 7 05
2)1. Vpo € O1 = O3 : 0 ¢ ma.po = dpo’ € OF = Of : po ~ppr po’
2 P
(3)1. ASSUME: po € O1 77 O2
PROVE: 0 ¢ m2.po = 3po’ € O] 75 O : po ~prp po’
(4)1. ASSUME: 0 ¢ ma.po
PROVE: Jpo’ € Of 7 O : po ~>ppr po’

(5)1. LET: poy € O1,pos € Os such that po = poy 7, pos

PROOF: By assumption (3)1
(5)2. 0 ¢ m2.po1 A O & ma.po2

PROOF: By assumption (4)1
(5)3. LET: po} € Of,pohy € O such that po; ~prr POy A PO ~=ppr DOb

PROOF: By assumption (1)1 and (5)2
(5)4. po Z poy € O 5 04

PRrOOF: By (5)3
(5)5. por Z pog ~prr PO 2 POY

(6)1. m1.(por T po2) ~rr T1.(pO} Z POY)

(1. m.(por Z poz) = (mipor) Z (m1.poz) A mi(poy Z poh) =
(m1.po}) ZZ (m1.po)

119

PROOF: By definition 50
(7)2. T1.p01 ~>pp T1.DO) A T1.D02 ~=pp 1.0
PRrOOF: By (5)3
(7)3. Q.E.D.
PROOF: By (7)2, Theorem 9 in [RRS07] and (7)1
(6)2. m2.(po 7 poh) € ma.(por Z po2)
(TVL. 5. (00}, = p0y) = Q) % QA 2. (pos = por) = Q1 = @
PRrROOF: By definition 50
(2. Q1 CQ1NQ, C Q2
PRrROOF: By (5)3
(7)3. Q.E.D.
PROOF: By (7)1 and (7)2
(6)3. Q.E.D.
PROOF: By (6)1 and (6)2
(5)6. Q.E.D.
PROOF: By (5)4 and (5)5; po) 7 po) is the po’ we are looking for
(4)2. Q.ED.
PROOF: =-rule
(3)2. Q.E.D.
PROOF: V-rule
(2)2. Q.E.D.
PRrROOF: By (2)1
(1)2. Q.E.D.
PROOF: =-rule

O

Lemma 49 (Monotonicity of 7o w.r.t ~»,,,). Let O1,02,0], 0} be sets of
p-obligations. Then

O1 ~png Oy A Og ~=png Oy = 01 Oy ~=ppg O 7 04

PROOF. The proof is similar to the proof of Lemma 48, with the following
replacements:

~prg 1S Teplaced with ~ 4

~prr 18 Teplaced with ~»p,,,

~>pp 18 replaced with ~,,,.

The reference to Theorem 9 in [RRS07] is replaced with a reference to The-
orem 8

Ll e

Lemma 50 (Monotonicity of || w.r.t ~,,,). Let O1,02,0},0% be sets of
p-obligations. Then

O1 ~png Oy N Og ~=png Oy = Oy || O ~png O || O

PROOF. The proof is similar to the proof of Lemma 48, with the following
replacements:

120

~prg 1S Teplaced with ~ 4

~prr 1S Teplaced with ~- ;.

~>pp 18 Teplaced with ~,,,.

7 is replaced with ||

The reference to definition 50 is replaced with a reference to definition 49
The reference to Theorem 9 in [RRS07] is replaced with a reference to The-
orem 9

S G o=

Lemma 51 (Monotonicity of W w.r.t ~,,,). Let O1,03,01, 0% be sets of
p-obligations. Then

04 ~png Oll A Og ~png 0/2 = 01 W0, ~png Oll () 0/2

PROOF. The proof is similar to the proof of Lemma 48, with the following
replacements:

~prg 1S Teplaced with ~ 4

~prr 1S Teplaced with ~-

~>pp 18 Teplaced with ~,,,.

>~ is replaced with W

The reference to definition 50 is replaced with a reference to definition 51
The reference to Theorem 9 in [RRS07] is replaced with a reference to The-
orem 10

S Uk =

Theorem 24 (Monotonicity of seq w.r.t ~>,.4). Let di, do, d} and dfy be
sequence diagrams in DP. Then

[di] ~prg [di IATd2] ~prg [do] = [di seqdy | ~prg [dy seqds]

PRrROOF. This follows immediately from Lemma 48
O

Lemma 52 (Monotonicity of | w.r.t ~-,.4). Let O1,02,0],0} be sets of
p-obligations. Then

O1 ~prg O A Oz ~sprg Oy = O1 27 Oz ~prg O1 || Of

PROOF. The proof is similar to the proof of Lemma 48; just replace 2 by ||,
refer to Theorem 10 in [RRS07] instead of Theorem 9 in [RRS07] and definition
49 instead of definition 50.

O

Theorem 25 (Monotonicity of par w.r.t ~»p.,). Let di, do, di and dfy be
sequence diagrams in DP. Then

[[dl]]“’“’prg[[d/l]]/\[[d2]]“’“’prg[[d/2]]:>[[dl pard2]]“’“’prg[[d/1 par dy |

PROOF. This follows immediately from Lemma 52.

121

Lemma 53 (Monotonicity of W w.r.t ~»p,.,). Let O1,02,01,0) be sets of
p-obligations. Then

Oq ~prg 0/1 A Og ~prg 0/2 = 01 W0, ~prg 0/1 () Ol2

PRrROOF. The proof is similar to the proof of Lemma 48; just replace =~ by W,
refer to Theorem 12 in [RRS07] instead of Theorem 9 in [RRS07] and definition
51 instead of definition 50.

O

Theorem 26 (Monotonicity of alt w.r.t ~,,4). Let di, d2, d; and d5 be
sequence diagrams in DP. Then

[[dl]]“’“’prg[[dll]]/\[[dQ]]WpTg[[d/z]]é[[dlaltd?]]wprg[[d/l alt dj |

PROOF. This follows immediately from Lemma 53
O

Theorem 27 (Non-monotonicity of palt w.r.t ~»,,¢). Letdy, ..., dp,d} ..., d,
be sequence diagrams in DP. Then

(Vign:q{diﬂwpm[[d;]]/\QggQi»?é’
[palt(di;Q1, ..., dniQn) | ~prg [PaIt(d;Q1, ..., d;Q0)]
PrROOF. To see this let
d1 =a
do=b
dy = b alt (refuse a)
d = palt(dy;{0.5},d2;{0.5})
d' = palt(dq;{0.5},d5;{0.5})

This means that

[di]={({{a)},0),{1})}

[da] ={({(®)},0),{1)}

[do T ={({®)} {{a)}), {1})}

[a]={(({{a)},0),{0,5}), ({(b)},0),{0,5}), ((0,0), {1})}
[d']={(({{a)},0),{0,5}), ({!} {{@)}), {0,5}), ({ (@)}, 0), {1})}

which gives

But [d] ~prg [d'] does not hold, because there is no p-obligation po in [d’]
such that ((0,0),{1}) ~>prr po.

122

Theorem 28 (Monotonicity of refuse w.r.t ~~,;). Let d and d' be sequence
diagrams in DP. Then

[d]~p[d]=1[refuse d] ~p [refuse d’]

PROOF.

(1)1. AssuME: [d] ~pu[d]
PROVE: [refuse d] ~»p; [refuse d’]
(2)1. [refuse d]| ~pg [refuse d']
G)L [d] ~pg [d']
PROOF: By assumption (1)1
(3)2. Q.E.D.
PRrROOF: By (3)1 and Theorem 21
(2)2. Vpo' € [refuse &’] : 3S C [refuse d’]| : 3po € [refuse d | : po’ €
S A po ~pr &S
(3)1. ASSUME: po’ € [refuse d’ |
PrOVE: 35 C [refuse d']| : 3po € [refuse d | : po’ € S A po ~+p, &S
(4)1. LET: po} € [d’] such that po’ = po}
PROOF: By assumption (3)1
(4)2. LET: poy € [d],S1 €[d] such that poj € S1 A por ~p, BS1
PROOF: By (4)1 and assumption (1)1
(4)3. 151 C [refuse d']
PRrROOF: By (4)2 (S1 C [d’']) and definition 48
(4)4. fpoy € [refuse d |
PRrROOF: By (4)2 (po1 € [d]) and definition 48
<4>5 Tpol ~pr @Tsl
<5>1 Tpo1 ~pr T®S1
PROOF: By (4)2 (po1 ~p, ®51) and Lemma 9
(5)2. 1®S1 = &5,
ProoF: By Lemma 8
(5)3. Q.E.D.
PROOF: By (5)1 and (5)2
<4>6. pOI €151
PROOF: By (4)1 (po’ = po}) and (4)2 (po} € S1)
(4)7. Q.ED.
PROOF: By (4)3, (4)4, (4)5 and (4)6; tpo; is the po we are looking for
and 157 is the S we are looking for
(3)2. Q.E.D.
PROOF: V-rule
(2)3. Q.ED.
PROOF: By (2)1 and (2)2
(1)2. Q.E.D.
PROOF: =-rule

123

Theorem 29 (Monotonicity of seq w.r.t ~-,;). Let di, ds, di and d) be
sequence diagrams in DP. Then

[y D ~p [y AT de] ~p [dy)= [di seq dy | ~p [di seq dy |

PROOF.

(1)1. ASSUME: [di | ~pu [diIATd2] ~pm[d5]
PROVE: [dy seq da] ~p [d seq df |
(2)1. [diseq da | ~pg [di seq db]
G)L [di] ~pg [dy INTda] ~pg []
PROOF: By assumption (1)1
(3)2. Q.E.D.
PROOF: By (3)1 and Theorem 3 in [RHS074a]
(2)2. ¥po' € [d seqdy]| :3S C[dyseqdy]:3poe€[diseqds]:po €
S A po ~p BS
(3)1. ASSUME: po’ € [d} seq dj |
ProvE: 35S C[dyseqd,] :3po € [diseqds]:po’ € SApo ~p. S
(4)1. LET: poy € [di] such that pos ~, ©[di]
poa € [da] such that pos ~»p, B[da |
ProOOF: By Lemma 11
(4)2. po1 7 po2 € [di1 seq da |
PrROOF: By (4)1
(4)3. por Z poz ~py @[di seq ds |
(5)1. m1.(po1 Z poz) ~>r &([di seq d; [)
<6>1 po1 r>_/p02 M pr éﬂ dl]] i: é[[d2]]
PROOF: By (4)1 and Lemma 3
(6)2. m1.(po1 Z po2) ~r O dr [Z @[d2]
PrOOF: By (6)1
6)3. e[dri [z @l dz2] ~rB([dr]2 [d2])
Proor: By Lemma 4
(6)4. Q.E.D.
PROOF: By (6)2, (6)3 and transitivity of ~-,
<5>2 WQ.E_B([[dl seq d2]]) - 7T2.(p01 ipOQ)
(6)1. Q.ED.
PROOF: By (4)1 and Lemma 18
(5)3. Q.E.D.
PROOF: By (5)1 and (5)2
()4, O dy seq dy | ~p, B di seq dy |
(5)1. @[dy seq da | ~ B[d seq djy]
PROOF: By assumption (1)1 and Lemma 40
(5)2. m.@[dj seq dy | C m2.8] di seq da |
0)1. [dy] ~pg [dr AT da] ~pg [ds]
PROOF: By assumption (1)1
(6)2. Q.ED.
PRrROOF: By (6)1 and Lemma 42
(5)3. Q.E.D.

124

PROOF: By (5)1 and (5)2
(4)5. po1 ZZ pog ~pr B[dy seq df |
PrOOF: By (4)3, (4)4 and transitivity of ~,, (Lemma 1 in [RHS07a])
(4)6. Q.E.D.
PRrROOF: By (4)2 and (4)5; po1 - pog is the po we are looking for and
[di seq dy] is the S we are looking for
(3)2. Q.E.D.
PROOF: V-rule
(2)3. Q.E.D.
PROOF: By (2)1 and (2)2
(1)2. Q.E.D.
PROOF: =-rule

O

Note that m2.(B(S1 7 S2)) C m2.(BS1)*m2.(©S1) does not hold for all sets Sy
and Sy, as explained after Lemma 4. Therefore poy ~=p,. ©S1 A pog ~p, &Sz =
po1 75 pog ~pr B(S1 27 S2) does not hold. This is the reason why the we have

chosen a somewhat cumbersome proof strategy for Theorem 29.

Theorem 30 (Monotonicity of par w.r.t ~-,;). Let di, do, d} and d5 be
sequence diagrams in DP. Then

[y J~p [y IATde] ~pi [dy] = [dy par dy | ~p [di par dy |

PROOF. The proof is similar to the proof of Theorem 29, with the following
replacements:

1. seq is replaced with par.

2. 7z is is replaced with ||.

3. Any reference to Theorem 3 in [RHS07a] is replaced by a reference to The-
orem 4 in [RHS07a].

4. Any reference to Lemma 4 is replaced by a reference to Lemma 5.

5. Any reference to Lemma 40 is replaced by a reference to Lemma 41

O

Theorem 31 (Monotonicity of alt w.r.t ~»,;). Let di, da, di and dj be
sequence diagrams in DP. Then

[di]~p [di TATd2] ~p [dy] = [dyaltdy]~p [daltdy]

PROOF. The proof is similar to the proof of Theorem 29, with the following
replacements:

1. seq is replaced with alt.

2. 7 is is replaced with W.

3. Any reference to Theorem 3 in [RHS07a] is replaced by a reference to The-
orem 5 in [RHS074a].

4. Any reference to Lemma 4 is replaced by a reference to Lemma 6.

125

5. Any reference to Lemma 40 is replaced by a reference to Lemma 19
O

Theorem 32 (Monotonicity of palt w.r.t ~»p). Let di,...,d,,d},....d,
be sequence diagrams in DP. Furthermore, let d = palt(di;Q1,-..,dn;Qn) and
d' = palt(dy;Qf,...,d Q). Then

Vi<n:[di] ~p[di INQ;CQi=[d]~puld]

PROOF.

(1)1. AssuME: Vi<n:[di] ~pu[d;]NQ; CQ;
PrOVE: [d]~u[d]
1. Vi<n:@[d; | ~r B[]
PROOF: By assumption (1)1 and Lemma 1
(2)2. [d] ~pg [d']
PROOF: By assumption (1)1, (2)1 and Theorem 6 in [RHS07a)
(2)3. Vpo' e [d']:3SC[d J|,poe[d]:pod €S Apo~s, OS
(3)1. ASSUME: po’ € [d']
ProvE: IS C[d |,poe[d]:pod €S Apo~sp &S
(4)1. LET: po, € [d] such that pog ~pr B[d]
Proor: By Lemma 11
(4)2. poq ~pr S d']
(5)1. m1.pog ~ @[d']
@1 efdl=eULld]lreld]=oUld]
PRrROOF: By definition 4 and definition 9
6)2. [d]~re@d]
PRrROOF: By (6)1, (2)1 and Lemma 10
(6)3. m1.pog ~r B[d]
PRrROOF: By (4)1
(6)4. Q.E.D.
PROOF: By (6)3, (6)2 and transitivity of ~-,
(5)2. m2.8[d']| C m2.pog
(6)1. m.®[d | Cm.®[d]
PROOF: By assumption (1)1 and Lemma 21
(6)2. 3. ®[d] C m2.pog
PRrROOF: By (4)1
(6)3. Q.E.D.
PROOF: By (6)1 and (6)2
(5)3. Q.E.D.
PROOF: By (5)1 and (5)2
(4)3. Q.E.D.
PROOF: By (4)1 and (4)2; po,, is the po we are looking for and [d’ | is
the S we are looking for.
(3)2. Q.E.D.
PROOF: V-rule
(2)4. Q.E.D.

126

PROOF: By (2)2, (2)3 and definition 25
(1)2. Q.E.D.
PROOF: =-rule

([
Lemma 54 (Monotonicity of { w.r.t ~»,,;). Let O, 0’ be sets of p-obligations.
Then
O ~pry O' = 10 ~oppy 1O’
Proor.

(1)1. ASSUME: O ~»py O/
PROVE: {0 ~»p 1O/
(2)1. 1O ~oppg 1O/
(3)1. O ~oprg O
PROOF: By assumption (1)1
(3)2. Q.E.D.
PROOF: By (3)1 and Lemma 46
(2)2. Vpo' € 10’ : 35 C 10’ : Fpo € 10 : po’ € S A po ~>ppr &S
(3)1. ASSUME: po} € 1O’
ProveE: 35S C 10’ : 3po € 1O : po} € S A po ~prr BS
(4)1. LET: pol € O’ such that po} = Tpoh
PROOF: By assumption (3)1
(4)2. LET: S C O, pos € O such that poy, € S2 A pog ~prr ©S2
PROOF: By (4)1 and assumption (1)1
(4)3. 152 C 1O’ A tpos € 1O
PROOF: By (4)2
(4)4. poy € 152
PROOF: By (4)2 and (4)1
<4>5 pr02 ~prr E_BTSZ
(1. 190 wopr 1052
PROOF: By (4)2 and Lemma 9
<5>2 7T1.T®SQ g 7T1.Tp02
PROOF: By definition 52 (71.1@S2 = 71.7po2 = 0)
<5>3 TPOQ M prr TE_BS2
PROOF: By (5)1 and (5)2
(5)4. Q.E.D.
PROOF: By (5)3 and Lemma 8
(4)6. Q.E.D.
PROOF: By (4)3, (4)4 and (4)5; 1S3 is the S we are looking for and
tpos is the po we are looking for.
(3)2. Q.E.D.
PROOF: V-rule
(2)3. Q.E.D.
PROOF: By (2)1 and (2)2
(1)2. Q.E.D.
PROOF: =-rule

127

Theorem 33 (Monotonicity of refuse w.r.t ~»,.;). Let d € DP. Then
[d]~p[d]=1]refuse d] ~spm [refuse d' |
ProoOF. This follows immediately from Lemma 54 O

Theorem 34 (Non-monotonicity of seq w.r.t ~,.). Let di,ds,d},d, be
sequence diagrams in DP. Then

[[dl]]“’“’prl[[dll]]/\[[d2]]“’“’prl[[dl2]]7é>[[dl5eqd2]]“’“’prl[[d/15eqdl2]]

PRrOOF. To see this, let

[di] ={(0,{(ab)}), {11}

[da] ={((0, {c2}), {11}

[d1] ={(({{a)}, {(ab)}),{0.4}), (({{x)}, {(ab}}), {0.6}), (0, {{ab)}), {1})}
[d 1 ={(({{pa)}, {(c)}),{0.3}), ({W)}, {(e) 1), 0.73), (@, {{a) D), {1}1)}

There exists syntactically correct sequence diagrams with the given semantics;
d} and d}, will have a binary palt as the outermost operand. From the above we
get

el dy 1= (0,

el dy] = (0,

[di seq dz | = {((0,{{abc)}), {1})}
[dy seq dy | = { (({{abe)}, {{ac) , (abe) , {abbe)}), {0.12}),
(ay)}, {{ac) , {abc) , {aby)}),{0.28}),
A{(ac), (abe)}),{0.4}),
(xbe) }, {{zc) , (abc) , (abbe)}), {0.18}),
(zy)}, {{xc) , {abe) , (aby)}), {0.42}),
A(ze) , (abe)}), {0.6}),
{(abe) , (abbe)}),{0.3}),
;{{abc) , (aby)}),{0.7}),
{{abe)}), {1}) }
&[di seq d; | = (({{abe)}, {{abe)}), {1})

[y 1~y [d;] holds since (8. {(ab}}). {13) ~oprr (0 {fab]}). (1)) this en-
sures both that the only p-obligation in [di] is represented in [d} | and
that each p-obligation in [d}] is a member of a subset S of [d}] such that
®S is represented in [dy]. For similar reasons [dz | ~>pr [db] holds. But
[diseq da]| ~pri [d) seq dy | does not hold, since any subset of [d} seq dj]

that contains (({{abc)}, {(ac), (abc), (abbc)}),{0.12}) will have (abc) as a posi-
tive trace. This trace is not positive in the only p-obligation in [d; seq d3 |.

{{ab)}), {1})
{(a@h),{1})

(
(

128

The specifications in the above counterexample is not implementable ac-
cording to — 1, since we have p-obligations with no positive traces. But this
could easily be fixed by adding new positive traces consisting only of new
events to all p-obligations. Note also that (abc) is both positive and negative

n (({(abe)}, {{ac) , {abe) , (abbey}), {0.12}). .

Theorem 35 (Non-monotonicity of par w.r.t ~,.). Let di,ds,d},d, be
sequence diagrams in DP. Then

[di] ~pri [di IATda] ~pri[dy] # [diparda] ~pm [dy pards |

PROOF. The counterexample is similar to for Theorem 34
O

Theorem 36 (Non-monotonicity of alt w.r.t ~,,;). Let dy,ds, d},d} be se-
quence diagrams in DP. Then

[di]~prldi IATd2] ~pr[dy]# [draltdy] ~pp [dyaltdy]
ProoF. To see this, let

[di] ={({(a),®)},0),{11}
[dv 1= {(({{a), ()}, {®)}),{0.5}), ({®)}, {{a)}), {0.5}), ({(a}, (b)}, 0), {1})}
[do] ={({{e)}; {{}): {1})}

[dy]=1d2]

There exists syntactically correct sequence diagrams with the given semantics;
d} has a binary palt as the outermost operand. From the above we get

[dvaltdy | ={(({{a),), (0}, {{d)}), {1})}
[dyalt dy | = {(({(a),{c),(d)},{(b).(d)}), {0.5}),
(({(0), (2} {{@), (d)}), {0.5}),
(({{a), b) ()}, {{)}), {1})}

(

[di] ~pr [di] holds since (({{a),(b)},0),{1}) ~prr (({{a),(®)},0),{1});

this ensures both that the only p-obligation in [dy] is represented in [d}]
and that each p-obligation in [d}] is a member of a subset S of [dj]
such that ®S is represented in [di]. [d2]| ~pr [d5] holds trivially since
[do] =1[dy] But [di alt da | ~pm [d) alt d5] does not hold, since the
trace (d) will be positive in @S for any subset S of [d} alt d;] that con-
tains (({{a), {c),{d)}, {{(b),(d)}),{0.5}), and (d) is not positive in the only p-
obligation in [d; alt d2].

(]

Theorem 37 (Non-monotonicity of palt w.r.t ~,,;). Let dy,...,dy,d},...,d,
be sequenced diagrams in DP. Then

Vi<n:[d]wpn [d1AQICQi%
[palt(d:Qr. .. duiQn) | ~prt [PAALQh -, QL)]

129

PROOF. The counter example is the same as for Theorem 27; just replace
~prg With ~pe.

O
Theorem 38 (Monotonicity of refuse w.r.t ~~,,,). Let d € DP. Then
[d]~png [d]=1refuse d] ~png [refuse d' |
PROOF. This follows immediately from Lemma 47 (]

Theorem 39 (Monotonicity of seq w.r.t ~»,,,). Let di, da, di and dy be
sequence diagrams in DP. Then

[di]~png [di INTd2] ~png [ds] = [diseqda] ~png [di seqds]
PROOF. This follows immediately from Lemma 49 (]

Theorem 40 (Monotonicity of par w.r.t ~,,,). Let di, d2, d} and dfy be
sequence diagrams in DP. Then

[di]~png [di IATd2] ~png [dy] = [dipardz] ~png [di pards]
PRrROOF. This follows immediately from Lemma 50 O

Theorem 41 (Monotonicity of alt w.r.t ~-,,4). Let di, d2, di and dy be
sequence diagrams in DP. Then

[di]~png [diIATd2]~png[dy]=[dialtds]~png[dialtd]
PRrROOF. This follows immediately from Lemma 51 (I

Theorem 42 (Non-monotonicity of palt w.r.t ~~p,,). Letdi, ... ,d,, d}, ..., d),

be sequence diagrams in DP. Furthermore, let d = palt(di;Q1,-..,dn;Qn) and
d' = palt(d};QY,...,d;Q"). Then

WS”3[[di]]wpng[[d”]/\Q;gQi#[[d]]”"png[[d/]]
PROOF. See the counter example given after Theorem 6 in [RHS07a). O
Theorem 43 (Monotonicity of refuse w.r.t ~»,,;). Let d € DP. Then
[d]~puld]=1]refuse d] ~pn [refuse d’]

PROOF. The proof is similar to the proof of Theorem 28, with the following
replacements:

~pg 1s replaced by ~~,n4

~pi is replaced by ~pn

~pr 18 Teplaced by ~>pn,

The reference to Theorem 21 is replaced by a reference to Theorem 38
The reference to Lemma 9 is replaced by a reference to Lemma 14

CU LN

130

O

Theorem 44 (Monotonicity of seq w.r.t ~-,,;). Let di, d2, di and df be
sequence diagrams in DP. Then

[di T~pm [y IATda] ~opmi [dy [= [dr seq da | ~pni [di seq dy |

PROOF.

(1)1. AsSUME: [di [~pu [d) IAT do] ~opri [d5]
PROVE: [di seq da]| ~pni [d] seq df]
(2)1. [dy seq d2] wpn? [d) seq d)] /
L [di] ~png [dy IN[d2] ~png [d5]
PROOF: By assumption (1)1
(3)2. Q.E.D.
PROOF: By (3)1 and Theorem 39
(2)2. Vpo' € [dy seqd;y | : 35 C [dyseqd;]:3po€[diseqds]:
po’ € S A po ~pnr S
(3)1. ASSUME: po’ € [dj seq dj |
PrOVE: IS C[diseqd,]:3poe€[diseqds]:
po’ € S A po~>pnr BS)
(4)1. LET: po; € [di] such that poy ~>pn, B[di]
pog € [da] such that pog ~pp, O da]
Proor: By Lemma 12
(4)2. poy ipoz ? [di seq ds]
Proor: By (4)1
(4)3. po1 ZZ pog ~>pnr B[di seq da |
<5>1 7T1.(p01 ipOQ) WT_EB([[dq sec_1 do]])
(6)1. por Z pos ~pr @[d1 | Z B[d2]
PRrROOF: By (4)1 and Lemma 3
(6)2. m1.(po1 ZZ po2) ~r B[dr | Z B[da]
PRrROOF: By (6)1
3. e[di]zeld]~ra(d]z[d])
Proor: By Lemma 4
(6)4. Q.E.D.
PROOF: By (6)2, (6)3 and transitivity of ~-,
(5)2. LET: po” = po1 = pog
< > 4 117/0/// :///69[[d/}/ seq dy]]
5)3. pun’ =p"uUn
<6>1. ' Un Cp"un”
PrOOF: By (5)1
(6)2. p" Un" C p"uUn’
PROOF: By (4)2 and Lemma 25
(6)3. Q.E.D.
PRroOF: By (6)1 og (6)2
<5>4 WQ.EB([[dq S%q do]]) - 7T2.(p01 ;]DOQ)
<6>1 po1 ~pr @[[dy]] N po2 I pr @[[do]]

131

PRrROOF: By (4)1
(6)2. Q.E.D.
PROOF: By (6)1 and Lemma 18
(5)5. Q.E.D.
PRrROOF: By (5)1, (5)3 and (5)4
(4)4. [di seq da | ~pnr B[d} seq db]
(5)1. ®[dy seq da | ~, B[dy seq df]
PROOF: By assumption (1)1 and Lemma 40
<5>2 WQ.E_B[[dll seq dIQ]] - FQ.E_B[[dl seq d2]]
(1. [d1] ~py [&5 IALda] ~py [d]
ProOOF: By (1)1
(6)2. Q.E.D.
PROOF: By (6)1 and Lemma 42
(5)3. ®[d seq dy | ~pr O dy seq dy |
PROOF: By (5)1 and (5)2
(5)4. LET: po” = @[dy seq da |
po” = ®[dy seq dj |
(5)5. p"Un” =p"un"
PROOF: By assumption (1)1 and Lemma 22
(5)6. Q.E.D.
PROOF: By (5)3 and (5)5
<4>5 po1 r>_/ Po2 ~pnr ®H d/l seq d/2]]
PROOF: By (4)3, (4)4 and Lemma 26
(4)6. Q.E.D.

PROOF: By (4)2 and (4)5; poy - pog is the po we are looking for and

[d| seq di] is the S we are looking for

(3)2. Q.E.D.
PROOF: V-rule
(2)3. Q.E.D.
PROOF: By (2)1 and (2)2

(1)2. Q.ED.

Theorem 45 (Monotonicity of par w.r.t ~>,,;). Let di, do, di and dy be

PROOF: =-rule

sequence diagrams in DP. Then

[[dl]]“’“’pnl[[dll]]/\[[d2]]“’“’zml[[d12]]:>[[dl pard2]]“’"zml[[d/1 par d |

PROOF. The proof is similar to the proof of Theorem 44, with the following

replacements:

G o

seq is replaced by par
7 is replaced by ||
The reference to Lemma 4 is replaced by a reference to Lemma 5
The reference to Lemma 40 is replaced by a reference to Lemma 41
The reference to Lemma 22 is replaced by a reference to Lemma 23

132

6. The reference to Theorem 39 is replaced by a reference to Theorem 40
O

Theorem 46 (Monotonicity of alt w.r.t ~»p,;). Let di, do, d} and di be
sequence diagrams in DP. Then

[[dl]]“’“’pnl[[dll]]/\[[d2]]“’“’pnl[[dl2]]:>[[dlaltd2]]“’"zml[[dllaltd/2]]

PROOF. The proof is similar to the proof of Theorem 44, with the following
replacements:

seq is replaced by alt

>~ is replaced by W

The reference to Lemma 4 is replaced by a reference to Lemma 6

The reference to Lemma 40 is replaced by a reference to Lemma 19
The reference to Lemma 22 is replaced by a reference to Lemma 24
The reference to Theorem 39 is replaced by a reference to Theorem 41

SOt N

d

Theorem 47 (Monotonicity of palt w.r.t ~-,,;). Let di,...,d,,d},...,d,
be sequence diagrams in DP. Furthermore, let d = palt(di;Q1,...,dn;Qn) and
d' = palt(dy;QY, . ..,d;Q"). Then

Vi<n:[di]~pn [di INQiCQi=[d] ~pm [d]

PROOF.

(1)1. AssuME: Vi<n:[d;] ~pu [d;]AQ;C Qs
PROVE: [d] ~pu[d]
1. Vi <n:0[d;]| »nr B[d}]
PROOF: By the assumption and Lemma 13
(2)2. [d] ~png [d']
(3)1. Vpoe [d]:0¢mapo=Ipo’ €[d]:po~pnr po
(4)1. ASSUME: po, € [d]
PROVE: 0 ¢ ma.po, = Ipo’ € [d'] : pog ~>pnr DO
(5)1. ASSUME: 0 ¢ m2.po,
PrOVE: Fpo’ € [d'] : pos ~pnr po’
(6)1. CASE: pog € {(® U {poi}, > me.po;) | N C{1,...,n} AN #
iEN iEN
WAVie N I po; € [[dzsz]]}
(1)1. LET: N C {1,...,n},po; € [d;;Q;] for each ¢ < n such
that N # 0 A pos = (O U;en{P0i}, DN T2-P05)
PROOF: By assumption (6)1
(7)2. LET: po) € [d};Q}] such that po; ~>pp, pol for alli € N
PROOF: By the overall assumption
(1)3. (@ Uien{poi}, 2ien m2-0i) ~pnr (& Ujen {0}, 2 ie v m2-007)
@)L (& Uen{poi}, 2iey m2-00i) ~pr (B Uien {0}, X icn m2.07)

133

PRrooOF: By (7)1, (7)2 and Lemma 6 in [RHS07a]
(8)2. LET: (p",n") =@ UieN{poi}
(p",n") = & Uien{po}
(8)3. Vie N:p;Un; =p,Un,
PRrROOF: By (7)2
(8)4. p" Un’ =p" Un"
PROOF: By (8)3 and definition 4
(8)5. Q.E.D.
PROOF: By (8)1 and (8)4
(M. (& U,y p0l} Yaey apol) € [&]
PROOF: By definition 9
(7)5. Q.E.D.
PROOF: By (7)3 and (7)4; (© U,y 1p0i}, D se v T2-p0;) is the po’
we are looking for.
(6)2. CasE: poq = (& U [disQi], {1} N 3227, Qi)
ML Y, QSN Y, @
PROOF: By the overall assumption (Vi < n:Q} C Q;)
(M2 @Uii [disQi | ~nr & Ui [Q7]
PROOF: By (2)1 and Lemma 20
M3 @U@ LNy, Q) el d]
PROOF: By definition 9
(74. Q.E.D.
PRroOF: By (7)1, (7)2 and (1)3; (& UL, [Q) L, {1100, Q)
is the po’ we are looking for
(6)3. Q.E.D.
PROOF: By definition 9 the cases (6)1 and (6)2 are exhaustive
(5)2. Q.E.D.
PROOF: =-rule
(4)2. Q.E.D.
PROOF: V-rule
(3)2. Q.E.D.
PRrOOF: By (3)1
(2)3. ¥po e [d']:3SC[d J,poe[d]:po €S NApo~spn &S
(3)1. ASSUME: po,, € [d']
Prove: IS C[d J,poe[d]:pol, €SNApo~spn &S
(4)1. LET: po, € [d] such that po, ~>pnr ®f d]
Proor: By Lemma 12
(4)2. Pog ~rpnr B[' |
(5)1. m1.pog ~onr B[d']
©1. eldl=aU_l[d]reld]=aeUld]
PROOF: By definition 9 and definition 4
(6)2. o[d] ~nr @] d]
PRrROOF: By (2)1, (6)1 and Lemma 20
(6)3. T1.p0g ~nr B[d]
PRrROOF: By (4)1

134

(6)4. Q.E.D.
PROOF: By (6)3, (6)2 and Theorem 5
(5)2. m2.8[d' | C m2.poq
6)1. . B[d' | Cm.®[d]
PRroOOF: By the overall assumption and Lemma 21
(6)2. ma.®[d] C m2.pog
PRrROOF: By (4)1
(6)3. Q.E.D.
PROOF: By (6)1 and (6)2
(5)3. Q.E.D.
PROOF: By (5)1 and (5)2
(4)3. Q.E.D.
PROOF: By (4)1 and (4)2; po, is the po we are looking for and [d’ | is
the S we are looking for
(3)2. Q.ED.
PROOF: V-rule
(2)4. Q.E.D.
PRrOOF: By (2)2 and (2)3
(1)2. Q.E.D.
PROOF: =-rule

Correspondence between [d]* and [g(d) P w.r.t. compliance

Theorem 1. Let d € D*. Then

(Vo {g) e (D5 :q>)AL d] =1 (DG =[g(d)]P —p (D)
PROOF.

(1)1. AssuME: V(o,{q}) € (I)F:q>0A[d]" — (I)§
Prove: [g(d) 17 o (1)
10 € o0 1208 Q= 30 € (20— i Lo 7
1)a
(3)1. ASSUME: po; € [g(d)]?
PROVE: 0¢ Q1 = 3po’ € (1)} : poy —p, po’
(4)1. AssuME: 0 ¢ Q
PROVE: Jpo’ € (1)l : poy —p, po’
(5)1. CAsE: @1 = {1}
(6)1. LET: po) = ((traces(I), H™D \ traces(I)),{1})
(6)2. poj € (17,
PROOF: By definition 30
(6)3. po1 —pr PO}
M1 {1} € Qr
PROOF: By assumption (5)1
(7)2. 01 —, 0]

135

8)1. pr CpjUN,
(O)1. pr C HI®
PROOF: By assumption (3)1
(9)2. HUD C traces(I) UHMUD \ traces(I)
PROOF: By set theory
(9)3. Q.E.D.
PROOF: By (9)1 and (9)2
(8)2. ny C nf, ie. ny € HMD N\ traces(I)
(9)1. ASSUME: t; € my
PROVE: t; € n), ie. t; € HMD\ traces(I)
(10)1. t; € HMD
PROOF: By assumption (9)1
(10)2. t1 ¢ traces(I)
(11)1. ASSUME: t; € traces(I)
ProvE: L
A1 ({81, HIO N {1} (D)
PROOF: By assumption (11)1
(12)2. LET: 0g € [d]* such that op s, ({t;}, HH D\
{t:}) .
PRrROOF: By (12)1 and assumption (1)1 ([d]* —;
()
<12>3 tl ¢ no
PRrROOF: By (12)2
<12>4 01 ~p 02
(13)1. Vpo € [g(d) |P : 01~ 0
PROOF: By assumption (3)1, assumption (5)1 and
Lemma 33
(13)2. Yo€ [d]": 01~y 0
PROOF: By (13)1 and Lemma 34
(13)3. Q.E.D.
PROOF: By (12)2 (02 € [d]?) and (13)2
(12)5. Q.E.D.
PROOF: By (9)1, (12)3 and (12)4
(11)2. Q.E.D.
ProOF: L-rule
(10)3. Q.E.D.
PROOF: By (10)1 and (10)2
(9)2. Q.E.D.
PrROOF: C-rule
(8)3. Q.E.D.
PROOF: By (8)1 and (8)2
(7)3. Q.E.D.
PROOF: By (7)1, (7)2 and (6)1
(6)4. Q.E.D.
PROOF: By (6)2 and (6)3; poj is the po’ we are looking for

136

(5)2. CasE: (0,1] C @
(6)1. LET: 0o} € [d]’ s.t. 01 ~ 0}
PROOF: By assumption (3)1 and Lemma 35
(6)2. LET: t; € traces(I) s.t. o} —, ({t1}, H¥ D\ {t;})
PROOF: By (6)1 (0} € [d]?) and assumption (1)1 ([d]* —; (I)%)
()3 01 o ({02}, HID {11})
PRrROOF: By (6)1, (6)2 and transitivity of ~», and +, (which are
identical)
(6)4. LET: g1 € [0,1] s.t. ({t}, H" D\ {t:1}), {a}) € (1)}
PROOF: By (6)2 and Lemma 28
(6)5. q1 > 0
PROOF: By (6)4 and assumption (1)1 (V(o,{q}) € (I}, : ¢ > 0)
(6)6. {q1} €@
PROOF: By assumption (5)2 and (6)5
(6)7. Q.E.D.
PROOF: By (6)3, (6)4 and (6)6; (({t1}, H'D\ {t;}),{q1}) is the
po’ we are looking for
(5)3. Q.E.D.
PROOF: By Lemma 32 the cases (5)1 and (5)2 are exhaustive
(4)2. Q.E.D.
PROOF: =-rule
(3)2. Q.E.D.
PROOF: V-rule
(2)2. Vpo' € (I)h - 3S C(I)Y : Fpo € [g(d) |P : po’ € S A po rpr ©S
(3)1. ASSUME: po} € (I)}
Prove: 35S C (I)g : Jpo € [g(d) [P : poy € SApo —p &S
(4)1. LET: poh = ®&(I)}
(4)2. LET: pos € [g(d) | s.t. Q2 = {1}
Proor: By Lemma 36
(4)3. pog —pr pol
(5)1. Q3 C Q2
(6)1. Q5 = {1}
(M1. Ypoe (I : g€ Q:qel0,1]
PROOF: By definition 30
(7)2. Ipo e (I)l: Q = {1}
PROOF: By definition 30
(7)3. Q.E.D.
PROOF: By (4)1, (7)1, (7)2 and definition 7
(6)2. Q.E.D.
PROOF: By (4)2 and (6)1
(5)2. 09 —, 0
(6)1. pa C ph Unk
(1. py € HMD
PROOF: By (4)2
(7)2. HMD C ply un)

137

(8)1. ¥po € (I)5 : H' D Cpun
PrROOF: By definition 30
(8)2. Q.ED.
PROOF: By (8)1 and definition 4
(7)3. Q.E.D.
PROOF: By (7)1 and (7)2
(6)2. ng C n}
(7)1. ASSUME: tg € ng
PROVE: {9 € n}
(8)1. Vpo € [g(d) [P : 02~ 0
PRrROOF: By (4)2 and Lemma 33
(8Y2. Ypoe [g(d)]P :ta €N
PROOF: By (8)1 and assumption (7)1
(8)3. to ¢ traces(I)
(9)1. ASSUME: tq € traces(I)
ProvE: L
AO)L. ({2}, MU\ {131) € (D)}
PROOF: By assumption (9)1
(10)2. LET: o3 € [d] s.t. 03—, ({ta}, HYD\ {t2})
PRrROOF: By (10)1 and assumption (1)1 ([d |* —,; (I)})
<10>3 tg ¢ ns
PRrROOF: By (10)2
(10)4. Q.E.D.
PROOF: By (8)2, (10)2 and (10)3
(9)2. Q.E.D.
PRrROOF: L-rule
(8)4. ty € HU(D)
PROOF: By assumption (7)1
(8)5. Vpo e (I)h :ta en
PROOF: By (8)4 and (8)3
(8)6. Q.E.D.
PRrOOF: By (8)5
(7)2. Q.E.D.
PrROOF: C-rule
(6)3. Q.E.D.
PRrROOF: By (6)1 and (6)2
(5)3. Q.E.D.
PROOF: By (5)1 and (5)2
(44. Q.E.D.
PROOF: By (4)1, (4)2 and (4)3;(I)", is the S we are looking for and pos
is the po we are looking for
(3)2. Q.E.D.
PROOF: V-rule
(2)3. Q.ED.
PROOF: By (2)1 and (2)2

138

(1)2. Q.E.D.
PROOF: =-rule

(]
Lemma 55 shows why the conjunct V(o, {q}) € (I} : ¢ > 0 is included in the
antecedent of Theorem 1.

Lemma 55 (Non-correspondence between —; and ;). Let d € D'.
Then

[d] =i D)g 7 19(d) 17 —p (D

PRrROOF. Let
d = refuse(a xalt ab)

and let I be the program

output a;
while random(0.5) skip;
output b;

where random(0.5) returns either true (with a probability of 0.5) or false, and
skip is a programming construct for doing nothing. The program I will produce
the trace (a) only if random(0.5) returns true infinitely many times, otherwise
it produces (ab). In the non-probabilistic case we get

[d]={®{{a}),®{{ab)}) }
traces(I) = {{a), {(ab)}

(g ={ (), 1D\ {{a)}), ({(ad)}, H D\ {{ab)}) }

This means that [d]* +—; (1)}, since (0, {(a)}) —, ({{ab)}, H* D\ {{ab)}) and
(0. {(ab)}) = ({{a)}, KD\ {{a)}).

The probability of producing the trace (a) is 0.5°° = 0. In the probabilistic
case we get

[9(d)]
(I)

(@, {(a)}), (0,1]), ((,{(ab)}), (0, 1]), ((2,0), (0, 1]), (0, 0),{1}) }
({{a)}, H D\ {{a)}), {01), (({{ab)}, H'D\ {(ab)}), {1}),
(({{a), (ab)}, H DN\ {(a) , (ab)}), {1}) }

So [d [P —p (I)5 does not hold, because the p-obligation ((@,{(ab)}), (0,1]) is

not represented by any p-obligation in (I)%. O

{
{

p
p
d

Theorem 2. Let d € Dt. Then

E(d) A (Y(o,{g}) € (D) : > 0) AL d] = (D)g = [9(d) [P —pmi (1)}
PRrROOF.

(1)1. AssuMmE: 1. E(d)
2. ¥(0,{q}) € (1) :q >0

139

3. L] ot ()
ProvE: [g(d) 1P —rpu (D)
(2)1. ?p;)é [g(@)]P:0¢ Q= 3pod € (I} : po —pnr po, ie. [g(d) P pg
I)g
(3)1. ASSUME: po; € [g(d)]?
PROVE: 0 ¢ Q1 = 3po’ € (1)} : po1 —ppr po’
(4)1. AsSUME: 0 ¢ Q
PROVE: dpo’ € (I)} : por —pnr po’
(5)1. CasE: Q1 = {1}
(6)1. LET: po} = ((traces(I), H"D \ traces(I)),{1})
(6)2. poy € (1)
PRrROOF: By definition 30
<6>3 Po1 —pnr poll
(M1 {1} S
PROOF: By assumption (5)1
(7)2. 01 oy 0
8)1. pr CpjUN,
(O)1. pr C HI®
PROOF: By assumption (3)1
(9)2. HUD C traces(I) UHMUD \ traces(I)
PROOF: By set theory
(9)3. Q.E.D.
PROOF: By (9)1 and (9)2
(8)2. ny C nf, ie. ny € HMD N\ traces(T)
(9)1. ASSUME: t; € ny
PROVE: t; € n), ie. t; € HMD\ traces(I)
(10)1. t; € HMD
PROOF: By assumption (9)1
(10)2. t1 ¢ traces(I)
(11)1. ASSUME: t; € traces(I)
ProvE: L
A1 ({th, HIO N {1} (D)
PROOF: By assumption (11)1
(12)2. LET: o0 € [d]" such that
02 =nr ({t1}, HYON {t1})
PRrROOF: By (12)1 and assumption (1)1.3
<12>3 tl ¢)
PRrROOF: By (12)2
<12>4 01 ~p 02
(13)1. Vpo e [g(d)]? : 01 ~, 0
PROOF: By assumption (3)1, assumption (5)1 and
Lemma 33
(13)2. Yoe [d]": 01 ~r 0
PROOF: By (13)1 and Lemma 34
(13)3. Q.ED.

140

PROOF: By (12)2 (02 € [d %) and (13)2
<12>5 tl ¢ ny
PROOF: By (12)3 and (12)4
(12)6. Q.E.D.
PRrROOF: By (12)5 and (9)1
(11)2. Q.E.D.
ProoOF: L-rule
(10)3. Q.ED.
PROOF: By (10)1 and (10)2
(9)2. Q.E.D.
PROOF: C-rule
3 p gt A0
(9)1. LET: o3 € [d]" s.t. 01 ~onyr 03
PROOF: By assumption (1)1.1, assumption (3)1 and Lemma
44
(9)2. LET: t € traces(I) s.t. ({t}, HYD\ {t}) € (1)} A
(93, 15) e ({6}, HIO\ {23)
PROOF: By assumption (1)1.3
(9)3. t € p3
PROOF: By (9)2
(9Y4. t € py
PROOF: By (9)3 and (9)1
(9)5. t € p}
PROOF: By (6)1 and (9)2 (¢ € traces(I))
(9%6. Q.E.D.
PROOF: By (9)4 and (9)5
(8)4. Q.E.D.
PROOF: By (8)1, (8)2 and (8)3
(7)3. Q.E.D.
PROOF: By (7)1, (7)2 and (6)1
(6)4. Q.E.D.
PROOF: By (6)2 and (6)3; po} is the po’ we are looking for
(5)2. Case: (0,1] C @
(6)1. LET: o} € [d]* s.t. 01 ~py 0}
PROOF: By assumption (3)1, assumption (1)1.1 and Lemma 44
(6)2. LET: t; € traces(I) s.t. o} —=n, ({t1}, HMD\ {t;})
PROOF: By (6)1 (0} € [d]) and assumption (1)1.3
(6)3. 01 e ({11}, HIO {11])
PROOF: By (6)1, (6)2 and Theorem 6
()4, LET: gy € [0,1] 5.6 ({02}, HUD\ {11}), {an}) € (1)
PROOF: By (6)2 and Lemma 28
(6)5. g1 > 0
PROOF: By (6)4 and assumption (1)1.2
(6)6. {q1} €@
PROOF: By assumption (5)2 and (6)5

141

(6)7. Q.E.D.
PrOOF: By (6)3, (6)4 and (6)6; (({t1}, H™D\ {t1}),{q1}) is the

po’ we are looking for
(5)3. Q.E.D.
PROOF: By Lemma 32 the cases (5)1 and (5)2 are exhaustive
(4)2. Q.ED.
PROOF: =-rule
(3)2. Q.E.D.
PROOF: V-rule
(2)2. Vpo' € ()5 35S C(I)Y :3po € [g(d)] : po’ € S A po —pnr BS
(3)1. ASSUME: po) € (I)}
Prove: 35 C (I)Z Jpo € [g(d) [P : po’ € S A po—pn, BS
(4)1. LET: poh = &(I),
(4)2. LET: pos € [g(d)] s.t. Q2 = {1}
Proor: By Lemma 36
(4)3. po2 —pnr PO
)1 Q€ Qs
()1 Q= {1}
(M1. Ypoe (I)): g€ Q:qel0,1]
PRrROOF: By deﬁnition 30
(7)2. Fpo € (I)g: @ ={1}
PRrOOF: By deﬁn1t1on 30
(7)3. Q.E.D.
PROOF: By (4)1, (7)1, (7)2 and definition 7
(6)2. Q.E.D.
PROOF: By (4)2 and (6)1
(5)2. 09 . 0l
(6)1. pa C phUnp
(T)1. pa € HID
PROOF: By (4)2
(1)2. HUD C ply Un
(8)1. Vpo € (I)h : HU D Cpun
PRrROOF: By definition 30
(8)2. Q.E.D.
PROOF: By (8)1 and definition 4
(7)3. Q.E.D.
PROOF: By (7)1 and (7)2
(6)2. ng C nj
(7)1. ASSUME: tg € ng
PROVE: {2 € nf
(8)1. Vpo € [g(d) [P : 02~ 0
PROOF: By (4)2 and Lemma 33
(8)2. Vpoe[g(d)]P :taen
PROOF: By (8)1 and assumption (7)1
(8)3. ta ¢ traces(I)

142

(9)1. ASSUME: tg € traces(I)
PrOVE: L
A0)1. ({ta}, HIO\ {12} € (1)}
PROOF: By assumption (9)1
(10)2. LET: o3 € [d]’ s.t. 03 =ny ({ta}, HHD\ {t5})
PRrROOF: By (10)1 and assumption (1)1.3
<10>3 t2 ¢ ns
PRrROOF: By (10)2
(10)4. Yoe [d] :taen
PROOF: By (8)2 and Lemma 34
(10)5. Q.E.D.
PROOF: By (10)2, (10)3 and (10)4
(9)2. Q.E.D.
ProOF: L-rule
()4, 1, € HII)
PROOF: By assumption (7)1
(8)5. Vpo e (I)h 1 ta en
PRrROOF: By (8)4 and (8)3
(8)6. Q.E.D.
PRrOOF: By (8)5
(7)2. Q.E.D.
PrROOF: C-rule
(6)3. Q.E.D.
PROOF: By (6)1 and (6)2
(5)3. paNph #0 ‘
(6)1. LET: o3 € [d] s.t. 02 ~>py 03
PROOF: By assumption (1)1.1 and Lemma 44
(6)2. LET: t € traces(I) s.t. ({t}, HY D\ {t}) € (I)}, A
03 e ({11, HIE (1))
PROOF: By assumption (1)1.3
(6)3. 02 —=nr ({t}, KD\ {t})
PRrROOF: By (6)1, (6)2 and Theorem 6
(6)4. t € po
PROOF: By (6)3
(6Y5. ph = traces(I)
PRrROOF: By (4)1
(6)6. Q.E.D.
PROOF: By (6)4, (6)5 and (6)2 (¢ € traces(I))
(5)4. Q.E.D.
PROOF: By (5)1, (5)2 and (5)3
(4)4. QED.
PROOF: By (4)1, (4)2 and (4)3;(I)% is the S we are looking for and pos
is the po we are looking for
(3)2. Q.E.D.
PROOF: V-rule

143

(2)3. Q.E.D.
PROOF: By (2)1 and (2)2
(1)2. Q.E.D.
PROOF: =-rule
O

Lemma 56 and Lemma 57 show why stronger formulations of Theorem 2 does
not hold.

Lemma 56 (Non-correspondence between +,; and +—,,;). Let d € Dl
Then

(Vo {a}) € (D) a>0A[d] = (D) # [9(d) I —=pmi (D)
PROOF. Let d = a xalt b and traces(I) = {(a), (b)}. This gives

[d]'={ {{a)}.0), {(+)},0) }
(N =1{ ()L, H" D\ {{a)}), {0}, HH DN} }

[g(d) 17 ={ ({{@)},0), (0, 1]), ({02}, 0), (0, 1]), (0, 0), (0,1]), (@, 0),{1}) }
(05 = { ({a), KO\ (). {a), (01 H DN\ LB}, {az}),

(({{a), ()}, H D\ {{a) , (0)}), {1}) }

for some g1, g2 > 0 such that ¢; + g2 = 1. This means that
[d] = (1)

since each interaction obligation in [d] is refined by an obligation in (I)? with
the same positive trace, and vice versa. But we also have

[9(d) I” Fopm (Dg,

since the no p-obligation in (I)}, complies with ((0,0),{1}) when using .
This is because the set of positive traces is empty. (I

Lemma 57 (Non-correspondence between +,; and +—,,;). Let d € Dt

Then
(3s € P(H) :¥(p,n) €[d] :pUn=sA
V(o,{q}) e ()} : ¢ > 0N
[d] = (D)a)
#
[9(d) I” —pm (1)
PRrROOF. Let

dy = a xalt aa
dy =b alt ab
ds = ab alt aaab
d = (dy seq dy) alt ds
traces(I) = {{aab)}

144

For the non-probabilistic case this means that

[di] ={({(a)}0), ({{aa)},0) }
[di seq da [' = { ({{ab), (aab)},0), ({(aab) , (aaab)},0) }
[d]"={ ({{ad),(aab),(aaab)},)}
(Na = { ({{aab)}, H"D\ {(aab)}) }

So [d]* —n (I)f holds. In the probabilistic case we get

[9(dr) " = { (({(a)},0), 0,1]), ({{aa)}, 0), (0, 1)),
((0,0), 0, 1)), ((,0), {1}) }
[g9(dr seq da) [P = { (({(ab), (aab)},0), (0, 1)), ({{aabd) , (aaab)},), (0, 1]),
((©,0),(0,1]), ((,0),{1}) }
[9(d) 1" = { (({{ab) , {aab) , (aaab)},), (0, 1]),

(({{ab) , (aaab)},0), (0, 1)), ({{ab) , (aaab)}, 0), {1}) }
(g = { ({{aab)}, KD\ {{aab)}), {1}) }

We see that
IseP(H):V cef[d] :pun=sA

(p,n) €

V(o {a}) € (I)g:q>0A
[d] = (Da)

holds. But [g(d)] —pmi (I)% does not hold, since {(ab) , (aaab)} N {({aab)} =

0
so not all p-obligations in [d |* are represented in (I)%, when using —p,r. O

Correspondence between [d | and [g(d)]? w.r.t. refinement

Theorem 3. Let d and d' be sequence diagrams in D'. Then

N@)ANB@)AT AT~ [d] = [9(d) [P ~p [g(d)]”

Proor
(1)1. AssuME: 1. N(d')
2. E(d')
B [d] i [d]
PrOVE: [g(d) [P ~p [g(d')]?

)

(2)1. LET: s€ P(H):V¥(p,n) e[d] :pUn=s

PROOF: By assumption (1)1.1 and assumption (1)1.2
(2)2. Ypoe[g(d) [P :0¢ Q= 3pd €[g(d)]F : po ~~pr po

(3)1. ASSUME: po; € [g(d)]?

PrROVE: 0 ¢ Q1= 3po’ €[g(d)]? : por ~pr po’
(4)1. AssuME: 0 ¢ Q
PRrROVE: Jpo’ € [g(d’)]P : po1 ~>pyr po’

145

(5)1. CAsE: @1 = {1}
(6)1. LET: poj € [g(d') JP s.t. Q) = {1}
PRroor: By Lemma 36
(6)2. por ~p, poy
(V1. 01 ~, 0}
(8Y1. Ypo € [g(d) JP : 01 ~r 0
PROOF: By assumption (3)1, assumption (5)1 and Lemma 33
(8)2. pr CpiUNM
(9)L. Vpo e [g(d) [P :p1 SpUn
PRrROOF: By (8)1
(9)2. Yoe [d] :p1 CpUn
PROOF: By (9)1 and Lemma 34
(9)3. Yoe [d'] :p1 CpUn
PROOF: By (9)2 and assumption (1)1.3
(9)4. Vpo e [g(d)]P:p1 SpUn
PROOF: By (9)3, assumption (1)1.1, (2)1 and Lemma 39
(9)5. Q.E.D.
PRrROOF: By (9)4 and (6)1 (po} € [g(d’) J?)
(8)3. n1 C nj
N1. Vpoe[g(d)]P:nm1Cn
PRrROOF: By (8)1
(992. Voe[d]" :n1 Cn
PROOF: By (9)1 and Lemma 34
(9)3. Voe [d]":n1 Cn
PROOF: By (9)2 and assumption (1)1.3
94. Vpoe[g(d)]P:n1Cn
PROOF: By (9)3, assumption (1)1.1, (2)1 and Lemma 39
(9)5. Q.E.D.
PROOF: By (9)4 and (6)1
(8)4. Q.E.D.
PROOF: By (8)2 and (8)3
(7)2. Q1 € Ca
PROOF: By assumption (5)1 and (6)1
(7)3. Q.E.D.
PROOF: By (7)1 and (7)2
(6)3. QED.
PROOF: By (6)1 an
(5)2. Case: (0,1] C @
(6)1. LET: 03 € [d]? s.t. 01 ~ 02
PROOF: By assumption (3)1 and Lemma 35
(6)2. LET: o) € [d']* s.t. 03 ~, 0}
PROOF: By (6)1 (02 € [d]*) and assumption (1)1.3
(6)3. Lot Q4 C [0,1] s:t. (o5, Qb) € [g(d@) P
PROOF: By (6)2 and Lemma 34
(6)4. poy ~p, poh

d (6)2; po} is the po’ we are looking for.

146

(Y1, 01 ~~, 0h
PROOF: By (6)1, (6)2 and Lemma 26 in [HHRSO06]

(1)2. @y C Q1

(8)1. 0¢ Qs
PROOF: By (6)3 ((0,@3) € [(')]")
(8)2. Q.ED.
PROOF: By (8)1 and assumption (5)2
(7)3. Q.E.D.
PROOF: By (7)1 and (7)2
(6)5. Q.E.D.
PROOF: By (6)4 and (6)3; po, is the po’ we are looking for
(5)3. Q.E.D.
PROOF: By Lemma 32 the cases (5)1 and (5)2 are exhaustive
(4)2. QED.
PROOF: =-rule
(3)2. Q.E.D.

PROOF: V-rule

(2)3. Ypol € [gld) 7135 C [g(d) [:3po € [g(d) 17 pof € §Ap0 ~+pr B
(3)1. AssuME: po} € [g(d')]”
(d)(p:ﬂpoe[[g(d)]]p:po’leS/\popr@S

ProveE: IS C[g(d)]
d) [P st. @ = {1}

<4>1 LET: (Ol,Ql) [[
PRroor: By Lemma 36
(4)2. (01, Q1) ~pr B[g(d)]
(5)1. LET: oh = @[g(d')]?
(5)2. 01 ~=, 0f
(6)1. Vpo € [g(d) [P : 01~ 0
PRrROOF: By (4)1 and Lemma 33
(6)2. N pUn= N pUnA
(p)el d’ J* ((pn), Q€[g(d) 7
n= N n
(pm)el @' ((p:n),Q)€[g(d’) 17
PROOF: By assumption (1)1.1, (2)1 and Lemma 39
(6)3. p1 C phUni
(N1. ¥Ypoe[g(d)]P:p1 CpUn
PROOF: By (6)1
(V2. Yoe[d]' :pr CpUn
PROOF: By (7)1 and Lemma 34
(3. Vo' e[d] :pr Cpun
PROOF: By (7)2 and assumption (1)1.3
M. pmc(U pn N pun)u N n

po€[g(d’) J» po€[g(d’) J» po€[g(d’) J»
(8)1. p1 € N pUn
(pm)el d']t
PRroOF: By (7)3
(8)2. p1 C N pUn

((p:n),Q)€l g(d’) I»
PROOF: By (8)1 and (6)2

147

(8)3. Q.E.D.
PROOF: By (8)2
(7)5. Q.E.D.
PROOF: By (7)4 and (5)1
(6Y4. ny Cnb
(N1. ¥Ypoe[g(d)]P:n1Cn
PROOF: By (6)1
(2. Yoe[d] :n1Cn
PROOF: By (7)1 and Lemma 34
(1)3. Vo' € [d [P :my Cn/
PROOF: By (7)2 and assumption (1)1.3
(M4. ny C N n
((pn), Q€[g(a) TP
(8)1. ny C N n
(pn)el d’
PRrROOF: By (7)3
(8)2. Q.E.D.
PROOF: By (8)1 and (6)2
(7)5. Q.E.D.
PROOF: By (7)4 and (5)1
(6)5. Q.E.D.
PRrOOF: By (6)3 and (6)4
(6)3. ma(B[g(d') J7) € Qu
(6)1. my(S[g(d') |P) = {1}
(M1 3, Q) € [g(d)]P: Q" = {1}
ProOOF: By Lemma 36
(12, Y0, Q) € [g(d) [P+ @ #0
ProoFr: By Lemma 32
(7)3. Q.E.D.
PRrROOF: By (7)1, (7)2 and definition 7
(6)2. Q.E.D.
PROOF: By (6)1 and (4)1
(5)4. Q.E.D.
PROOF: By (5)2 and (5)3
(4)3. Q.E.D.
PROOF: By (4)1 and (4)2; [g(d’)]? is the S we are looking for and
(01,@Q1) is the po we are looking for
(3)2. Q.E.D.
PROOF: V-rule
(2)4. Q.E.D.
PROOF: By (2)2 and (2)3
(1)2. Q.E.D.
PROOF: =-rule

148

Theorem 4. (Correspondence between ~+,; and ~»p,;). Let d and d” be
sequence diagrams in D'. Then

N AN@)ANE@) AT > [d 1 = [g(d) 1" ~pm [9(d)]°

Proor.
(1)1. ASSUME:

= N

PROVE:)
(2)1. LET: s€ P(H):V¥(p,n) e[d] :pUn=s
PROOF: By assumption (1)1.2 and assumption (1)1.3
(2)2. Vpoe [g(d)]?:pUn=s
(3)1. LET: s CHst.Vpoe[g(d)]P:pUn=15s
PROOF: By assumption (1)1.3 and Lemma 43
(3)2. s=4¢
M1. Yoe[d] :pun=+¢
PRrROOF: By (3)1 and Lemma 34
(4)2. Q.ED.
PROOF: By (4)1 and (2)1
(3)3. Q.E.D.
PROOF: By (3)1 and (3)2
(2)3. Vpoe[g(d) P :pUn=s
(3)1. Yoe[d] :pUn=s
(4)1. ASSUME: o€ [d]°
PROVE: pUn=s
(5)1. LET: o’ € [d']! s.t. 0~y 0
PROOF: By assumption (4)1 and assumption (1)1.4
(5)2. puUn’ =s
PROOF: By (5)1 (o' € [d’]?) and (2)1
(5)3. Q.E.D.
PROOF: By (5)2 and (5)1 (0 ~>p, o)
(4)2. Q.E.D.
PROOF: V-rule
(3)2. E(d)
PROOF: By (3)1 and assumption (1)1.1
(3)3. LET: s CHst.Vpoe[g(d)]P:pUn=ys
PROOF: By (3)2 and Lemma 43
(3Y4. s=4¢
1. Yoe[d] :puUn=y¢
PROOF: By (3)3 and Lemma 34
(4)2. Q.E.D.
PRrROOF: By (3)1 and (4)1
(3)5. Q.E.D.
PROOF: By (3)3 and (3)4

149

(2)4. Vpoe[g(d)J?:0¢ Q= 3pd €[g(d) P : po~>pnr po’
(3)1. ASSUME: po; € [g(d)]?
PROVE: 0¢ Q1 = 3po’ €[g(d')]P : por ~>pnr po’
(4)1. AssuME: 0 ¢ Q
PrROVE: Fpo’ € [g(d’) JP : po1 ~pnr po’
(5)1. CAsE: @1 = {1}
(6)1. LET: po} € [g(d’) |* s.t. Q) = {1}
Proor: By Lemma 36
<6>2 po1 ~pnr poll
(V1. 01 ~, 0}
(8)1. Vpo € [g(d) [P : 01~ 0
PROOF: By assumption (3)1, assumption (5)1 and Lemma 33
(8)2. pr CpiUN
(9)L. Vpoe [g(d) [P :p1 SpUn
PRrROOF: By (8)1
(9)2. YVoe [d]' :p1 CpUn
PROOF: By (9)1 and Lemma 34
(9)3. Voe [d]':pr CpUn
PROOF: By (9)2 and assumption (1)1.4
(9)4. Vpoe [g(d)]P:p1 SpUn
PROOF: By (9)3, assumption (1)1.2, (2)1 and Lemma 39
(9)5. Q.E.D.
PRrROOF: By (9)4 and (6)1 (po} € [g(d’) J?)
(8Y3. m1 Cnj
N1. Vpoe[g(d)]P:nm1Cn
PRrROOF: By (8)1
(9)2. Voe[d]':n1Cn
PROOF: By (9)1 and Lemma 34
(9)3. Voe [d]J':n1 Cn
PROOF: By (9)2 and assumption (1)1.4
94. Vpoe[g(d)]P:n1Cn
PROOF: By (9)3, assumption (1)1.2, (2)1 and Lemma 39
(9)5. Q.E.D.
PROOF: By (9)4 and (6)1
(8)4. Q.E.D.
PROOF: By (8)2 and (8)3
(7)2. p1Uny =pjunj
(&1, piUnf =s
PROOF: By (6)1 and (2)2
(8Y2. p1Ung =s
PROOF: By assumption (3)1 and (2)3
(8)3. Q.E.D.
PROOF: By (8)1 and (8)2
(3. Q) C @
PROOF: By assumption (5)1 and (6)1

150

(74. Q.E.D.
PROOF: By (7)1, (7)2 and (7)3
(6)3. Q.E.D.
PROOF: By (6)2 and (6)1; po} is the po’ we are looking for.
(5)2. CasE: (0,1] € Qq
6)1. Joe [d]’ s.t. 01 ~nr 0
(T)1. LET: 03 € [d] s.t. 01 ~ 02
PROOF: By assumption (3)1 and Lemma 35
<7>2 01 ~pr 02
<8>1 p1Uny =p2Ung
1. p1Uny =s
PROOF: By assumption (3)1 and (2)3
(9)2. p2Ung =s
(10)1. 3Q € [0, 1] s.t. ((p2,m2),Q) € [9(d) [P
PRrROOF: By (7)1 and Lemma 34

(10)2. Q.E.D.
Proor: By (10)1 (((p2,n2),@) € [g(d) I7) and (2)3
(9)3. Q.ED.
PROOF: By (9)1 and (9)2
(8)2. Q.E.D.
PROOF: By (7)1 (01 ~, 02) and (8)1
(7)3. Q.ED.
PROOF: By (7)1 (02 € [d]?) and (7)2; 0 is the o we are looking

for
(6)2. LET: 03 € [d] s.t. 01 ~py 02
PrOOF: By (6)1
(6)3. LET: 0 € [d']* s.t. 02 ~>p, 0h
PROOF: By (6)2 (02 € [d]?) and assumption (1)1.4
(6)4. Let: Q) C [0,1] s:t. (o5, Qb) € [9(d@) I
PROOF: By (6)3 and Lemma 34
<6>5 po1 ~pnr pO/Q
(TY1. 01 ~=py Oh
PROOF: By (6)2, (6)3 and Theorem 5
M2 Q4 < Q
(8)1. 0¢ Q)
PRrROOF: By (6)4 ((05, Q%) € [g(d')]P) and Lemma 32
(8)2. Q.E.D.
PROOF: By (8)1 and assumption (5)2
(7)3. Q.E.D.
PROOF: By (7)1 and (7)2
(6)6. Q.E.D.
PROOF: By (6)5 and (6)4; po, is the po’ we are looking for
(5)3. Q.E.D.
PROOF: By Lemma 32 the cases (5)1 and (5)2 are exhaustive
(4)2. Q.ED.

151

PROOF: =-rule
(3)2. Q.E.D.
PROOF: V-rule
(2)5. Vpo' € [g(d)]P:35 C[g(d)]P:3Tpo € [g(d)]?:po’ € SAPo ~>pnr S
(3)1. AssuME: poj €[g(d') JP
Prove: 3S C[g(d) [P :3poe [g(d)]P:poy € SApo~pn &S
<4>1 LET: (01,@1) S [[g(d)]];D s.t. Ql = {1}
Proor: By Lemma 36
@2, (01,@1) ~pur & 9(@) P
(5)1. LET: oh =] g(d')]?
(5)2. 01 ~=pr O
(6)1. ¥po € [g(d)]P : 01 ~nr 0
(7)1. ASSUME: po € [g(d)]?
PROVE: 01 ~p 0
(8Y1. 01 ~r 0
PROOF: By (4)1, assumption (7)1 and Lemma 33
(8Y2. p1Uny =pUn
N1 p1Uny =s
Proor: By (4)1 (01, Q1) € [9(d) J7) and (2)3
(9)2. pUn=s
PROOF: By assumption (7)1 and (2)3
(8)3. Q.E.D.
PROOF: By (8)1 and (8)2
(7)2. Q.E.D.
PROOF: V-rule

(6)2. N pUn= pUnNA
(pm)el d'] ((p:n),Q)€l g(d’) »
N n= N n
(pm)el d’]* ((p:n),Q)€[g(d’) »

PROOF: By assumption (1)1.2, (2)1 and Lemma 39
(6)3. p1 C ph Unk
()L Vpoe [g(d) " :p1 SpUn
PROOF: By (6)1
(2. Yoe[d] :p1 CpUn
PROOF: By (7)1 and Lemma 34
(3. Vo' e[d ' :pr CpuUn
PROOF: By (7)2 and assumption (1)1.4
(M pc(C U pn N punu N n

po€[g(d’) [P po€[g(d’) [P po€[g(d’) [P
(8)1. p1 C N pUn
(pn)el d']*
PRroOF: By (7)3
(8)2. p1 C N pun
((p,n),Q)€[g(a’)]»
PROOF: By (8)1 and (6)2
(8)3. Q.E.D.

PRrROOF: By (8)2

152

(7)5. Q.E.D.
PROOF: By (7)4 and (5)1
(6)4. n1 C nf
(M1. Vpoe[g(d)]P:nm1Cn
PRrROOF: By (6)1
(1)2.Yoe[d] :n1Cn
PROOF: By (7)1 and Lemma 34
(3. Vo' e[d] :n Cn'
PROOF: By (7)2 and assumption (1)1.4
(7Y4. ny C N n
((pn),Q)€l g(d) 7
(8Y1. ny C N n
(pm)el d"]
PRrROOF: By (7)3
(8)2. Q.E.D.
PRrOOF: By (8)1 and (6)2
(M5. Q.E.D.
PROOF: By (7)4 and (5)1
(6)5. pyUny =p1Um
(1. p1Uny =s
PRrOOF: By (4)1 and (2)3
(71)2. phUnh=s
PROOF: By (5)1 and (2)2
(71)3. Q.E.D.
PROOF: By (7)1 and (7)2
(6)6. Q.E.D.
PROOF: By (6)3, (6)4 and (6)5
(5)3. m2(@[9(d) |) € @
(6)1. m(&] (0P ={1}
(M1 3, Q) €[g(d)]7: Q" = {1}
PROOF: By Lemma 36
(12 (o, Q) € [g(d) P @ #0
Proor: By Lemma 32
(7)3. Q.E.D.
PRrROOF: By (7)1, (7)2 and definition 7
(6)2. Q.E.D.
PROOF: By (6)1 and (4)1
(5)4. Q.E.D.
PROOF: By (5)2 and (5)3
(4)3. Q.E.D.
PRrROOF: By (4)1 and (4)2; [g(d’)]? is the S we are looking for and
(01,Q1) is the po we are looking for
(3)2. Q.E.D.
PROOF: V-rule
(2)6. Q.E.D.
PROOF: By (2)4 and (2)5

153

(1)2. Q.E.D.
PROOF: =-rule

O

Lemma 58 and Lemma 59 show why stronger formulations of Theorem 3 do

not hold. Lemma 60, Lemma 61 and Lemma 62 show why stronger/alternative
formulations of Theorem 4 do not hold.

Lemma 58. Let d € Dt. Then
[dl ~i[d 1 #[g(d)]?~pulg(d)]?

PROOF. Let
d = aab
di = a xalt aa
do = b alt ab
d =d; seq ds
We then get
[d]] ={ ({{aab)},0) }
[d']"={ ({{ab), (aab)},0), ({{aad) , (aaab)},0) }

which means that [d | ~; [']*. We also get

g(d) = aab

g(d1) = a;(0,1] palt aq;(0,1]
g(d2) = b alt ab

9(d’) = g(dr) seq g(d2)

which means that

[9(d) 1P ={ (({{aab)},0),{1})}

[9(d) 1P ={ (({(a)},0),(0,1]), ({{aa)}, 0), (0, 1]), (0,), (0, 1]), (0, 0), {1}) }
[9(d2) " = { ({(b), (ab)},0), {1})}

[9(d)]7 = { (({{ab) , {aab)}, D), (0,1]), ({{aab) , (aaab)}, D), (0,1]),

((0,0),(0,1), ((,0),{1}) }

So [g(d) J? ~p [g(d')]P does not hold, because for every S C [g(d’)]?
such that ((0,0),{1}) € S we get (({{aab)},0),{1}) #pr &S, since (aab) will be
inconclusive in &S for any such S.

O
Lemma 59 (Non-correspondence). Let d and d’ be sequence diagrams in D*.
Then

B@ANB)N[d] i [d] # 1 g(d) 1P ~p [g(d)]?

154

PROOF. Let

d = refuse abc

dy = (ab alt refuse a) xalt (a alt refuse ab)
do = bc alt ¢

d = dy seq dy

This means that F(d) and E(d’) holds. We get

[d]"={© {(ab)}) }
[d' 1" ={ ({{abc), {abbe)}, {{ac) . (abe)}), ({{ac) , (abe)}, {{abe) , (abbe)}) }

which means that [d | ~; [d’]'. We also get

g(d) = refuse abe

g(dy) = (ab alt refuse a);(0, 1] palt (a alt refuse ab);(0,1]

g(da) = bc alt ¢
)=

g(d dy seq da

which means that

[g(d) 1P ={ (@, {(abc)}), {1})}
[9(dr)] = { (({{ad)}, {{a) }), (0, 1]), ({(a) }, {{ab) }), (0, 1)),
(({{a), (ab)},0),(0,1]), ({{a) , (ab)},0),{1}) }
[9(d2) " = { ({(be), ()}, 0), {1})}
[9(d) 1" = { ({{abc) , (abbe)}, {(ac) , (abe)}), (0, 1)),
(({{ac) , (abe)}, {{abe) , (abbe)}), (0, 1)),
(({{ac) , (abe) , {abbe)},0), 0, 1), ({{ac) , (abe) , (abbe) }, 0), {1}) }

So [g(d) [P ~p [g(d')]P does not hold, because for every S C [g(d’)]? such
that (({(ac) , (abc) , (abbe)}, 0), {1}) € S we get (0, {{abc)}), {1}) opr &S, since

(abey will not be negative in @S for any such S.

Lemma 60 (Non-correspondence). Let d and d' be sequence diagrams in D*.
Then

E@ANBA)A[A] ~u [d T # [9(d)]7 ~pm [9(d)]7

PROOF. The counter example is identical to the counter example for Lemma
59, except that we let d = ac alt (abbe alt (refuse abe)). This means that

[d]"={ ({{ac), (abbe)}, {{abc)}) }

and ensures that [d |* ~,; [&']* holds. O

155

Lemma 61. Let d € Dt. Then
[d] ~uld] #19(d)] ~pm [g(d)]?

PRrROOF. This follows immediately from Lemma 60. We include the following
counter example since it (unlike the counter example for Lemma 60) does not use
a specification where a trace is both positive and negative in the same interaction
obligation. Let

d = (ab alt aab) xalt (aab alt aaab)
diy = a xalt aa
de = b alt ab
d =d; seq ds
We then get

[d] ={ ({{ab), (aab)},0), ({(aad) , (aaab)}, 0) }
[d] =[d]

which means that [d |* ~,; [d']*. We also get

g(d) = (ab alt aab);{(0,1] palt (aab alt aaab);{0,1]
g9(d1) = a;(0,1] palt aa;(0, 1]

g(d2) = b alt ab

g(d") = g(d1) seq g(d2)

which means that

[g(d)]" ={ (({{ab) , (aab)},), (0,1]), ({(aab) , (aaab)}, D), (0, 1]),
(({(aab)},0),(0,1]), ({(aab)}, 0),{1}) }
[9(dr) 1" = { (({{a)}, 0), (0, 1)), ({{aa)}, 0), (0, 1)), ((©,0), (0, 1]), (0, 0),{1}) }
[9(d2) I" = { ({{b), (ab)},0),{1})}
[9(d) " = { (({{ab) , {aab}},0), (0, 1]), ({{aabd) , (aaab)}, D), (0, 1]),
((0,0),(0,1]), ((0,0),{1}) }
o[g(d)]P ~pl (d’) J? does not hold, because for every S C [g(di) 7 such
that E[(d,]]), {1 } € S we get S = ((0 ,(Z)) {1}), which gives po opn, ®S for all
po € P

Lemma 62. Let d and d’' be sequence diagrams in D*. Then
N@)YANE@)AN[A] ~u [d] A [9(d) [P ~p [9(d)]7
PRrROOF. Let
d1 = a xalt aa
de = b alt ab
ds = ab alt aaab
d = (dy seq da) alt ds
d' = ab alt (aab alt aaab)

156

Then d' does not contain any xalt operator, so N(d') A E(d') is trivially fulfilled.
Furthermore, we get

[d]'=[d"1 ={({{ad),(aab),(aaab)},0) }

which means that [d]* ~,; [d’]* holds. But in the probabilistic case we get

[9(dr) " = { (({{a)},0), 0,1]), ({{aa)}, 0), (0, 1]),
((@,0),0,1]), ((,0),{1}) }
[9(dr seq da) [P = { (({(ab), (aab)},0), (0, 1]), ({{aabd) , (aaab)},), (0, 1]),
((0,0), 0, 1)), ((,0),{1}) }
[9(d) I? = { (({{ab) , {aab) , (aaab)},), (0, 1]),
(({{ab) , (aaab)},0), (0, 1)), ({{ab) , (aaab)}, 0), {1}) }

[9(d) 17 = { (({(ab) , (aab), (aaab)},), {1}) }

This means that [g(d)]? ~pni [g(d")]P does not hold, since the p-obligations
in [g(d) J? where {(aab) is inconclusive are not represented in [g(d')]?.

157

