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Pneumococcal within-host diversity during 
colonization, transmission and treatment
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Characterizing the genetic diversity of pathogens within the host promises 
to greatly improve surveillance and reconstruction of transmission 
chains. For bacteria, it also informs our understanding of inter-strain 
competition and how this shapes the distribution of resistant and sensitive 
bacteria. Here we study the genetic diversity of Streptococcus pneumoniae 
within 468 infants and 145 of their mothers by deep sequencing whole 
pneumococcal populations from 3,761 longitudinal nasopharyngeal 
samples. We demonstrate that deep sequencing has unsurpassed sensitivity 
for detecting multiple colonization, doubling the rate at which highly 
invasive serotype 1 bacteria were detected in carriage compared with 
gold-standard methods. The greater resolution identified an elevated 
rate of transmission from mothers to their children in the first year of the 
child’s life. Comprehensive treatment data demonstrated that infants were 
at an elevated risk of both the acquisition and persistent colonization of a 
multidrug-resistant bacterium following antimicrobial treatment. Some 
alleles were enriched after antimicrobial treatment, suggesting that they 
aided persistence, but generally purifying selection dominated within-host 
evolution. Rates of co-colonization imply that in the absence of treatment, 
susceptible lineages outcompeted resistant lineages within the host. These 
results demonstrate the many benefits of deep sequencing for the genomic 
surveillance of bacterial pathogens.

Streptococcus pneumoniae is a highly recombinogenic human naso-
pharyngeal commensal and respiratory pathogen causing high rates 
of pneumonia, bacteremia and meningitis, particularly in young chil-
dren and the elderly1,2. Individual strains are observed to diversify 
through point mutation, recombination and mobile element acquisi-
tion during nasopharyngeal carriage and disease, affecting antimi-
crobial resistance, susceptibility to vaccine-induced immunity and 
the inference of transmission networks3,4. Further complexity arises 
from simultaneous carriage of multiple strains. The coexistence of 
resistant and sensitive strains, and the re-structuring of populations 

following vaccine introduction, suggest that within-host competi-
tion between strains could be critical in the population dynamics  
of S. pneumoniae5–7.

As with many bacterial pathogens, surveillance of S. pneumo-
niae has been revolutionized by large-scale whole-genome sequenc-
ing (WGS) efforts, which have greatly enhanced our ability to track 
antibiotic-resistant and vaccine-evading lineages at the population 
level8–10. However, similar to other bacterial pathogens, genomic sur-
veillance of S. pneumoniae typically relies on the analysis of a represent-
ative genome generated from a single colony from a patient or carrier. 
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PDS reveals hidden diversity
Using PDS we identified 23.6% (813/3,450) more serotypes compared 
with the most common method of identifying multiple colonization 
(latex sweep, Fig. 1c)11. Due to difficulties in distinguishing ambigu-
ous or poor-quality serotype calls from non-typables, we assigned 
such lineages with an ‘unknown’ serotype. Multiple distinct serotypes 
were observed in 1,028/2,940 (35%) samples, further highlighting the 
substantial genetic diversity that is obscured by standard surveillance 
using single representative genomes. The increased sensitivity was 
supported by microarray data on a subset of 32 samples performed in 
a previous study, which identified all 49 serotypes found by PDS, com-
pared with 32 found using latex sweeps11. Unlike PDS, microarray data 
only indicate the presence and absence of known genes and serotypes, 
and do not provide data over the entire genome.

Rates of multiple colonization were significantly higher in infants 
than in their mothers (P < 1 × 10−3, Poisson mixed model) (Fig. 1f). The 
most common serotypes, including 19F and 23F, were also significantly 
more likely to be found in infants (Fig. 1e), consistent with a greater 
repertoire of adaptive immunity in adults (adjusted P < 0.05, Fisher’s 
exact test)23. In agreement with past studies, serotype 3 was the only 
serotype likely to be found more frequently in mothers (Fig. 1e)24,25. It 
has been postulated that the high rate of invasive disease due to sero-
type 3 in adults may correlate with high antibody levels in children, 
which then wane26.

Other ‘epidemic’ serotypes (for example, 1, 2, 5, 7F, 8 and 12F) 
are known for causing outbreaks of disease in adults despite being 
rarely detected in infant carriage27. Strikingly, we found that such 
types were often present at low frequencies within the host (Fig. 1b). In 
particular, serotypes 1 and 8, and the associated GPSCs 2 and 28, were 
found at lower frequencies than other types (adjusted P value <0.05, 
Kolgomorov-Smirnov test). In 11/20 (55%) observed cases of serotype 
1 in our dataset, it was found as the minority serotype in multiple colo-
nization. This could partly explain its low detection rate in previous 
carriage studies9, which typically only detect each sample’s dominant 
strain. Given that invasiveness is usually calculated by comparing 
carriage and disease rates, this suggests that current estimates of the 
invasiveness of serotype 1 may be inflated. However, despite PDS iden-
tifying over twice as many serotype 1 lineages, the overall prevalence of 
this serotype was still low, making up <1% of all distinct serotype-host 
pairs in the dataset. Nevertheless, this serotype still appears to be highly 
invasive, justifying its targeting by current vaccines28.

We found that PDS identified an additional 14.6% (520/3,557) of 
resistance elements, including known resistance single nucleotide 
polymorphisms (SNPs) and mobile genetic elements, when com-
pared with using standard pipelines on the set of 1,158 single-colony 
whole-genome sequences (Extended Data Fig. 1c). Resistant lineages 
were frequently found alongside susceptible lineages within the same 
host. The rate of resistance in samples taken from infants was signifi-
cantly higher than that in mothers for 4/14 antibiotic classes, which cor-
responds with the difference in the composition of lineages observed 
between mothers and children (Extended Data Fig. 2b, adjusted 
P < 0.05). Thus, routine PDS provides substantial improvements over 
alternative approaches in surveillance of pneumococcal resistance, 
especially in children where rates of multiple colonization are higher.

Within-host diversity provides insights into transmission
Deep within-host population sequencing also allows for improved 
estimates of transmission links3,29. To provide a robust measure of the 
strength of a transmission link between any two samples in our dataset, 
we adapted the TransCluster algorithm to account for within-host diver-
sity information (Methods)30. There was a strong association between 
the probability of direct transmission, as inferred by the adapted Tran-
sCluster algorithm independently of location data, and the geographic 
proximity of households (P < 1 × 10−3, linear model t-test; Fig. 2a,b). This 
association remained after excluding within-household pairs involving 

This limits the sensitivity of surveillance, as carriage of multiple distinct 
pneumococcal lineages is frequent in areas with high prevalence11,12.

Previous studies of within-host diversity in bacteria predomi-
nantly rely on separately sequencing the genomes of multiple purified 
colonies isolated from an individual, which incurs substantial time and 
financial cost13,14. Conversely, within-host population deep sequencing 
(PDS) involves sequencing a pool of hundreds of colonies from a sample 
producing a high depth sampling of within-host diversity. While this 
provides a more detailed picture of the genetic diversity within the 
host15, these analyses predominantly focus on laboratory studies16, 
relatively small outbreaks17 or clinical isolates taken from symptomatic 
patients, particularly for bacterial species known to colonize patients 
with cystic fibrosis or other chronic lung diseases18,19.

Here, using a deep sequencing approach, we study the evolution-
ary dynamics of S. pneumoniae within healthy carriers, and during 
episodes of illness and antibiotic treatment, additionally examining 
the potential utility of within-host population sequencing in surveil-
lance. We analyse data from 3,761 samples collected during a large 
longitudinal carriage study conducted between 2007 and 2010 in the 
Maela refugee camp on the border of Thailand and Myanmar20. Naso-
pharyngeal swabs were collected from 965 infants and a subset of their 
mothers, from birth until 24 months of age (Fig. 1a).

Results
Deep sequencing accurately predicts lineage and serotype
We first examined whether accurate lineage and serotype calls could 
be made from pooled data obtained from deep sequencing hundreds 
of colonies from plate scrapes of pneumococci grown on selective 
agar, referred to as PDS. Lineages were defined using the Global Pneu-
mococcal Sequencing Cluster (GPSC) nomenclature9. GPSCs consider 
genome-wide variation to provide a more accurate picture of global 
pneumococcal population structure. Each GPSC is associated with a 
small number of serotypes (Supplementary Table 2). Alternatives such 
as multi-locus sequence typing are limited by the impact of recombina-
tion and only consider a small fraction of each genome. Throughout 
our analyses, we used a dual approach of deconvoluting the mixed 
samples and running standard analyses, additionally using methods 
designed for analysing population sequencing data directly (Methods).

We calibrated and verified the approach using a total of 1,210 cul-
ture replicates along with a further 192 samples that were sequenced 
in replicate with separate PCR amplification and library preparation 
steps. The culture replicates included 1,158 samples for which single 
colonies had been selected, cultured and sequenced in a previous study 
and have been re-cultured in this study21. In addition, we considered 44 
artificial laboratory mixtures for which sequencing data were also avail-
able22. Finally, a further 8 samples were cultured and deep sequenced 
in replicate. Of these, only 3 met our initial quality control thresholds 
for both samples.

The within-host PDS approach reliably detected lineages (GPSCs) 
in each sample, with a precision and recall of 100% and 93%, respec-
tively, on the artificial laboratory samples indicating that the approach 
has low false positive rates. It achieved a recall of 97.1% (1,149/1,158) of 
the lineages present in the larger set of carriage isolates (Extended Data 
Fig. 1a,b). As only single colony isolates were sequenced, it was impos-
sible to determine the precision in this case. Of the 3 samples that were 
cultured and deep sequenced in replicate, the approach achieved an 
accuracy of 100% (3/3). A similarly high accuracy of 97.5% (157/161) was 
found in the sequencing replicates. Figure 1d shows that the estimated 
frequency of each lineage was highly concordant between sequencing 
replicates, with a correlation of >0.99 (P < 1 × 10−3, Fisher’s Z-transform). 
Although lower, the concordance observed within the three culture 
replicates (ρ = 0.94, P = 0.059) was still strong. This indicates that the 
estimated frequencies are robust to potential artefacts of the experi-
mental pipeline, allowing us to confidently interpret relative changes 
in frequencies.
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mothers and their children (P < 1 × 10−3), suggesting that children living 
closer to detected cases of more invasive strains are at higher risk, which 
could motivate local interventions to reduce transmission in outbreaks. 
Of the inferred close transmission links (estimated to involve either 0 or 
1 intermediate hosts), 80.9% (871/1,077) contained at least one sample 
found to carry multiple pneumococcal lineages. This can be partly 
attributed to the high level of multiple colonization in the cohort, but 
nevertheless suggests that only considering the dominant lineage will 
substantially underestimate the number of close transmission links.

This high-resolution approach also allowed us to scrutinize the 
transmission bottleneck, which is the point of the pneumococcal life-
cycle blocked by immunity induced by current vaccines31. Laboratory 
experiments have indicated that there is a very tight bottleneck in the 
transmission of S. pneumoniae, consisting of only a single bacterial 
cell32. To understand how well these experiments generalize to trans-
mission in human hosts, we took a conservative approach, using only 
samples containing a single strain (Methods). The substantial increase 
in the number of shared polymorphic sites found in putative direct 
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Fig. 1 | Study design and the frequency of pneumococcal serotypes within 
the host. a, A schematic of the study sampling design. b, A barplot indicating the 
number of times each serotype was observed across all deep-sequenced samples. 
The distribution of the corresponding within-host frequencies of these serotypes 
is given in the adjacent plot, with overlapping points separated to indicate the 
density at each position along the x axis. Lineages with ambiguous serotype calls 
were excluded from this plot. Serotypes found at significantly lower frequencies 
using the Kolgomorov-Smirnov test are coloured red. c, Histograms indicating 
the distribution of the number of unique serotypes observed using either PDS or 

latex sweeps. d, Comparisons between the estimated GPSC lineage frequencies 
in 192 samples that were sequenced in replicate. The vertical red line indicates 
the minimum frequency required for consideration in the mSWEEP pipeline. e, 
Barplots indicating the differences in the representation of serotypes between 
mothers and infants. f, Boxplots indicating the distribution in the mean number 
of serotypes (excluding non-typables) observed in 107 mothers and 450 of their 
infants. The median and interquartile range are given by the horizontal lines, with 
the whiskers indicating the largest and smallest values excluding those outside 
1.5 times the interquartile range.
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transmission pairs relative to those estimated to involve intermediate 
hosts suggests that while tight, the transmission bottleneck between 
the donor and recipient is probably greater than one (P < 1 × 10−3, Pois-
son regression) (Fig. 2e,f). Mouse models of pneumococcal transmis-
sion have indicated that this bottleneck is likely to occur following exit 
but before establishment in the recipient host32.

To examine transmission within the home, we next considered the 
47 mother-child pairs for which a transmission link involving zero or 
one intermediate host was inferred using the TransCluster algorithm. 
To estimate a plausible direction of transmission, we required that the 
infector must have acquired the relevant lineage before the infectee, 
and that there could be at most one negative or missing sample in the 
infector in the 2 months before the infectee becoming infected with 
the same lineage (Fig. 2c). The vast majority (16/19) of mother to child 
transmissions occurred in the first year of the infant’s life (Fig. 2d). 
This was significantly different from the child to mother transmissions 
(14/31, P = 0.008 Fisher’s exact test). This difference remained after 
excluding transmission events in the first two months of the infant’s life 
allowing additional time for colonization to occur (12/15, P = 0.031). The 
observed asymmetry is consistent with <1-year-old infants being more 
susceptible to infections from within the household, and with the high 
proximity between mother and child. The exposure risk posed by adults 
has been observed in previous studies33,34, with routine vaccination of 
older children not found to have a significant effect on vaccine type 
carriage rates in unvaccinated infants35. Taken together, this suggests a 
possible benefit to a vaccination campaign targeting mothers or other 
adults with high contact rates to young infants before herd immunity 
in the adult population is established. However, this would not reduce 
the risk posed by non-vaccine type lineages.

Strong purifying selection and a unique mutational spectrum
To investigate selection acting at the scale of individual lineages within 
the host we restricted our analysis to within-host single nucleotide 
variants (SNVs) found in samples involving only a single pneumococcal 
lineage (Fig. 3c). This avoided the potential for biases or errors being 
introduced by the deconvolution of mixed samples. Minority variants 
were called using a conservative pipeline that included a scan statistic 
to filter out regions likely to be affected by homologous recombina-
tion, gene duplications and similarity with bacteriophages and other 
bacterial species (Methods). Many of the regions identified by this scan 
included genes coding for major pneumococcal autolysin proteins 
(including LytA) and other surface-associated choline binding proteins 
(CBP, including pneumococcal surface proteins A and C, PspA and PspC) 
and the Tuf elongation factor (Extended Data Fig. 3). Homologues to 
LytA and CBP domains are frequently found in pneumococcal phages 
or co-colonizing bacterial species, which may facilitate pneumococcal 
diversification and recombination in these regions36,37.

The remaining within-host single nucleotide variants displayed a 
mutational spectrum similar to that found in the genome phylogenies 
constructed from single colonies taken from separate hosts (Fig. 3a 
and Extended Data Fig. 4)21. This indicates that similar mutational pro-
cesses act across the different timescales. Although the spectra were 
similar, we observed elevated numbers of C→A transversions with weak 
sequence context in the deep-sequencing calls (P < 1 × 10−3, permuta-
tion test). This is consistent with oxidative- and deamination-induced 
damage, which is typically reduced in frequency by purifying selection 
over longer timescales38. A similar enrichment of C→A mutation was 
found in E. coli over short timescales, which may be driven by the mis-
incorporation of adenines into cytosine sites39. Finally, pneumococci 
carry the spxB gene that secretes hydrogen peroxide and has been 
shown to cause DNA damage to host lung cells and may contribute to 
the mutational spectrum of the bacterium itself.

To investigate signatures of selection, we calculated dN/dS ratios 
using a modified version of the dNdScv package40. Similar to other 
respiratory pathogens, we found a strong signal of purifying selection, 

particularly against nonsense mutations (Fig. 3b)13,19,41. This was also 
observed at the level of individual genes, with only the competence 
related gene (comYC) having an elevated rate of nonsense mutations 
(Benjamini–Hochberg adjusted P < 0.05) (Fig. 3b). The frequent inser-
tion of pneumococcal prophage into comYC causes premature stop 
codons that prevent the host cell from undergoing transformation and 
are associated with a reduced duration of carriage42–44.

The strongest evidence of purifying selection was observed in 
genes associated with the pneumococcal stress response, including 
heat-shock proteins dnaK and ftsH, as well as fabM which is neces-
sary for survival in high-acidity environments45. Multiple-antigen S. 
pneumoniae vaccines which include DnaK, as well as other heat-shock 
proteins, have been shown to protect against lethal pneumococcal chal-
lenge46. FabM has also been suggested as a potential target for novel 
chemotherapeutic agents47. The observed purifying selection indicates 
that it may be difficult for the pneumococcus to adapt to treatments 
targeting these genes over short timescales. Although we were able 
to detect purifying selection, using dN/dS we did not find evidence 
for short-term adaptive evolution in any genes. This probably reflects 
the long-term commensal lifestyle of S. pneumoniae in contrast to that 
seen in environmental or immunocompromised patient pathogens18,19.

Within-host competition between pneumococcal lineages
The majority of multiple colonization events between different GPSCs 
were observed at only a single timepoint in 92.3% (712/771) of events, 
indicating that long-term multiple colonization of the same lineages is 
rare. However, we did observe a number of carriage events where two 
lineages coexisted for well over the month-long time period between 
routine sampling. This suggests that competition between lineages 
within the host is not always strong enough for one to exclude the 
other (Extended Data Fig. 5). Despite the large sample size, we did not 
have the statistical power to identify any preferential co-colonization 
between particular pneumococcal lineages due to the high number of 
possible combinations.

While resistant lineages were frequently observed to co-colonize 
with susceptible lineages, this occurred less frequently than expected 
given the frequency of resistant lineages within the Maela camp  
(Fig. 4a). We found that rates of resistance in multiple colonization were 
significantly lower than expected in 5/14 antibiotic classes, including 
penicillin, indicating that susceptible lineages outcompete resistant 
lineages within the host48. Many models of the maintenance of anti-
biotic resistance in pneumococcal populations rely on assumptions 
about the competition between resistant and susceptible lineages5,6,49. 
However, studies have currently relied on serotype data alone to deter-
mine multiple colonization rates, which do not indicate whether the 
underlying lineages are resistant to antibiotics. This result confirms 
that resistant and susceptible lineages are found to co-colonize the 
same host, and that the expected fitness costs of resistance observed 
in laboratory experiments are consistent with the population dynamics 
observed in natural pneumococcal carriage.

Strong impact of treatment on within-host diversity
We next considered selection in response to antimicrobial treatment, 
both in terms of the displacement of pre-treatment strains and the 
microevolution of surviving pneumococci. Pairs of consecutive sam-
ples taken from the same infants within 100 d were selected, where 
a subset had received antibiotics between the sampling timepoints. 
GPSC1 was found at considerably higher frequencies than other GPSCs 
following treatment (Fig. 4c and Extended Data Fig. 6a). GPSC1 lineage 
is a known multidrug-resistant (MDR) lineage with a pre-dominant 
predicted MDR antibiogram of penicillin, cotrimoxazole, erythromy-
cin and tetracycline resistance9. A similar analysis using the penicillin 
binding protein (PBP) gene ‘types’ used in the in-silico classification of 
pneumococcal resistance by the US Centers for Disease Control and 
Prevention (CDC)50 identified the pbp2X-47 and pbp1A-13 types as being 
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Fig. 2 | Transmission dynamics within the Maela refugee camp. a, Top: the 
distribution of pairwise geographic distances between 411 different households 
versus the number of intermediate transmission events as inferred using the 
modified TransCluster algorithm. The median and interquartile range are given 
by the horizontal lines, with the whiskers indicating the largest and smallest 
values excluding those outside 1.5 times the interquartile range. Bottom: the 
distribution of estimated intermediate transmission events within households. 
b, A map of the Maela refugee camp, with inferred direct transmission links 
overlaid. Roads are shown in white. The direction of transmission is not 
estimated. Blue lines indicate transmission links that would typically be inferred 
using a representative genome per sample, while red lines indicate additional 
links that were found using PDS. c, A representative mother-child pair indicating 
how transmission direction was inferred. Coloured circles indicate the serotypes 

present, with PDS data available for those coloured in darker shade. Black lines 
indicate close transmission links inferred using the TransCluster algorithm, 
with the vertical red line indicating the time the child was one-year old. d, The 
distribution of the direction of transmission between mother and child split 
by whether the transmission event occurred before or after the child turned 
one. e, A schematic demonstrating that we would expect to see an elevated 
rate of polymorphic sites (represented by blue and red variants) among close 
transmission pairs. f, The distribution of the number of shared polymorphic 
sites in 3,663 potential transmission pairs involving an estimated 0, 1 or ≥2 
intermediate hosts. The elevated number of variants involving 0 intermediates 
hosts indicates a mean bottleneck size ≥1. The median and interquartile range are 
given by the horizontal lines, with the whiskers indicating the largest and smallest 
values excluding those outside 1.5 times the interquartile range.
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strongly associated with the persistence of a lineage post treatment 
(Extended Data Fig. 6b). These are the most common types in GPSC1 in 
Maela, representing 54% and 98% of the single colony isolates, respec-
tively21. Alterations in the PBPs reduce their affinity for penicillin and 
thus susceptibility to beta-lactam antibiotics while allowing them to 
maintain their role in cell wall metabolism.

Although it has been suggested that the increase in resistant iso-
lates following treatment is due to the elimination of susceptible line-
ages51, we found that this pattern is observed after controlling for the 
presence of GPSC1 in the first sample of a pair. This suggests that treat-
ment increases the frequency of GPSC1 by both eliminating competing 
lineages and reducing competition for colonizing resistant strains. This 
could motivate pre-emptive interventions, such as limiting contacts 
with high-risk individuals following antibiotic treatment.

To investigate selection acting within a single carriage event, we 
considered loci within the set of paired samples where the same line-
age was present in both samples of a pair (Methods). This revealed 
that the diversity of within-host variants reduced markedly following 
antimicrobial treatment (Fig. 4e). A number of variants were found at 
lower frequencies post treatment including in the capsular gene cpsE 
(Fig. 4f and Extended Data Fig. 7c). Point mutations in cpsE have been 
shown to alter the growth, adherence and competence of pneumo-
cocci52. Common variants with smaller effect sizes were observed in 
the adenylosuccinate synthetase gene (purA), and genes involved in 

the zinc (adcC) and magnesium transport (corA) systems, which have 
all been observed to be downregulated in response to sub-inhibitory 
concentrations of penicillin53. Taken together, antimicrobial treatment 
produces a strong bottleneck within the host even when the resident 
strain is resistant. The generation of low-frequency variants that are 
then eliminated after treatment may be an example of short-sighted 
evolution54.

While the paired-sample deep population genome-wide asso-
ciation study (GWAS) can identify changes occurring within a single 
carriage event, it is unable to identify variation associated with selec-
tion against whole lineages. By comparing the presence and absence 
of unitigs in samples taken within 28 d of treatment to those that had 
not been treated, we identified a number of sequence elements asso-
ciated with antimicrobial treatment (Fig. 4d). This included elements 
found in pbp2B, pbp2X and pbp1A—three of the genes that encode for 
the major penicillin binding proteins which are critical in determin-
ing non-susceptibility to beta-lactam antibiotics55. Interestingly, the 
strongest association was with pbp2B, which is the primary gene for 
low-level penicillin resistance, and is consistent with amoxicillin being 
used for treatment in the majority (66.9%) of cases56. The stronger 
association with pbp2B indicates that resistance conferred by these 
mutations is found across a diverse set of lineages, while the associa-
tions observed in the paired analysis of PBP types are driven primarily 
by particular lineages such as GPSC1.
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Fig. 3 | Mutational spectra and selection within the host. a, The relative 
fraction of different single-nucleotide base changes found within the host in 
1,627 samples involving only a single pneumococcal lineage compared to those 
changes observed between hosts inferred using ancestral state reconstruction. 
b, dN/dS ratios for genes found to be under significant selection (adjusted 
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indicating the separation of positive and negative selection. c, An example of the 
within-host variant allele frequencies over five consecutive samples, taken from 
a single infant colonized with a single pneumococcal lineage (GPSC 47), which is 
not a common ‘epidemic’ lineage. Each coloured line indicates the frequency of a 
different within-host variant.
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We also observed associations with the membrane protein FtsX, a 
ribosomal RNA methyltransferase (rlmL) and a ligand binding protein 
(YpsA). FtsX is involved in cell division and is thought to co-locate 
with both pbp2b and pbp2x in the outer-ring peripheral peptidogly-
can synthesis machine during cell division57. YpsA is also linked to 
pneumococcal cell division58. RmlL is thought to facilitate resistance 
occurring through other mutations59. Variation at these loci could 
allow pneumococci to slow down their metabolism and cell division, 
increasing the population’s chances of persisting over the time period 
when the antibiotic is present. We also observed a weak association 
with the insertion sequence IS1202, which has been closely linked to the 
MDR-associated serotype 19F and its capsular polysaccharide synthesis 
(cps) locus, which is predominantly found in GPSC160.

Discussion
Our ability to understand the within-host evolution and transmission of 
S. pneumoniae is essential to developing successful public health inter-
ventions. We have shown that deep within-host population sequenc-
ing can lead to substantial improvements in surveillance of high-risk 
genotypes, reconstruction of transmission chains, and understanding 
the impact of antibiotic resistance on co-colonization and competition. 
In particular, we were able to double our sensitivity for detecting the 
highly invasive serotype 1 in carriage. These lineages were often found 

at low frequencies, which may explain the disconnect between their 
high prevalence in invasive disease and scarcity in carriage studies that 
rely on either latex sweeps or representative genomes. The increased 
resolution of PDS also revealed an age-dependent rate of transmission 
between mothers and infants. This, coupled with the strong association 
between geographic distance and the likelihood of direct transmission 
within the Maela refugee camp, suggests that interventions targeting 
close contacts could be particularly important for reducing disease 
and colonization by resistant lineages in early childhood before vac-
cination and following antimicrobial treatment.

These results demonstrate the substantial improvement PDS can 
provide in the near-to-real time surveillance of pathogens with high 
rates of multiple colonization. In such pathogens, ignoring within-host 
diversity can lead to a substantial fraction of colonization and trans-
mission events being missed. The implementation of PDS in routine 
surveillance would require procedures very similar to those currently 
used in public health laboratories that make use of WGS. The initial 
culture step remains the same, with the main change being the depth 
of sequencing. This is rapidly becoming more affordable. However, the 
computational analysis of these data is substantially more complicated, 
which currently limits this surveillance to laboratories with advanced 
genomic analytics capabilities. This is likely to improve as analytical 
methods become more robust and easier to use.
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Our results provide a large-scale dataset on the natural 
co-colonization of both resistant and susceptible pneumococcal lineages 
within the same host. We provide clear evidence that such coexistence 
is frequent (previously an assumption made by a number of models5,6,49) 
and find that resistant lineages appear less often than expected in multi-
ple colonization given their overall frequency within the population, con-
sistent with the lower fitness of resistant lineages observed in laboratory 
experiments. The negative association between resistance and multiple 
colonization, combined with the association between antimicrobial 
treatment and subsequent colonization by a multidrug-resistant strain, 
indicates that reduced within-host competition following treatment 
plays a major role in the risk of an infant being colonized by an MDR line-
age. This emphasizes that the broader dynamics of pathogen population 
structure and inter-strain competition must be a key consideration in 
the design of vaccines and other interventions28. The observed compe-
tition could also motivate the use of pre-emptive probiotics to protect 
against colonization by more dangerous lineages, although trials of 
such approaches have returned mixed results61,62. The strong negative 
selection observed in heat-shock proteins suggests that multiple-antigen 
vaccines may provide a valuable alternative to current capsule-specific 
vaccines as they have the potential to elicit cross-serotype protection46. 
Overall, the added insights into selection and evolution within the host, 
coupled with the substantial improvements in transmission inference 
and surveillance, present a compelling case for the future routine use of 
deep within-host population sequencing in the research and surveillance 
of common bacterial pathogens.

Methods
Sample selection
Nasopharyngeal swabs were collected between November 2007 and 
November 2010 from an initial cohort of 999 pregnant women, leading 
to the enrolment of 965 infants as part of a previous study20. Ethical 
approval for the original study was overseen by the Faculty of Tropical 
Medicine, Mahidol University, Thailand (MUTM-2009-306) and Oxford 
University, UK (OXTREC-031-06). Swabs were taken monthly from 
birth for the first 24 months of the infant’s life. Of the original cohort, 
swabs were obtained from 952 mothers, with dropouts largely due to 
intrauterine deaths in the 3rd trimester and stillbirths. In total, 636 
infants completed the full 24 months of the study, with the majority of 
those lost having left the camp. The outcome of the full cohort is given 
in the supplementary data available on GitHub. A total of 23,910 swabs 
were collected during the original cohort study, including 19,359 swabs 
that were processed according to World Health Organization (WHO) 
pneumococcal carriage detection protocols63 and/or the latex sweep 
method64. All isolates were serotyped using latex agglutination as 
previously described11. In addition to swabs, the household location, 
episodes of infant illness and antibiotic treatment were all recorded 
over the 24-month sampling period for each infant.

Deep sequencing of sweeps of colonies was attempted on a subset 
of 4,000 swabs. All swabs taken before and after an antibiotic treatment 
event were selected. Further swabs were included if they were inferred 
to be within close transmission links corresponding to a distance of <10 
SNPs, using a previously sequenced set of 3,085 whole-genome sequences 
obtained from single-colony picks21. This allowed for increased resolution 
into both the impact of antibiotic treatment on within-host diversity and 
consideration of the transmission bottleneck. A subset of 25 mother-child 
pairs were also sequenced at a higher temporal resolution of at least 
once every 2 months. These mother-child pairs were chosen if they had 
completed the full 24 months of the study and if a number of samples had 
already been selected for sequencing in the first two sample selection 
steps. The remaining samples were selected randomly.

Culture and sequencing
Nasopharyngeal swabs (100 μl) stored at −80 °C in skim milk, tryptone, 
glucose and glycerine media were plated onto Columbia CNA agar 

containing 5% sheep blood (BioMerieux, 43071). These were incubated 
overnight at 37 ± 2 °C with 5% CO2. All growth was collected using sterile 
plastic loops and placed directly into Wizard genomic DNA purifica-
tion kit nuclei lysis solution (Promega, A1120). The Wizard kit extrac-
tion protocol was then followed, eluting in 100 μl of the provided 
DNA rehydration solution. DNA was quantified with a BioPhotometer 
D30 (Eppendorf) and then stored at −80 °C before sequencing. DNA 
extractions were sequenced if they contained more than 2.5 μg of DNA. 
Sequencing was performed at the Wellcome Sanger Institute on an 
Illumina NovaSeq at 192 plex using unique dual index tag sets.

Quality control filtering
In total, 3,961 samples were successfully sequenced, including 200 that 
were sequenced in replicate. To concentrate our efforts on those sam-
ples with sufficient data to retrieve reliable results, we excluded samples 
with a mean coverage below 50-fold, representing 20% of the median 
coverage observed across all samples (Extended Data Fig. 8a). While it 
is hard to choose an optimal coverage threshold, 50× has been shown 
to be a reasonable coverage for the assembly of bacterial genomes65.

To account for contamination from other species, Kraken (1.1.1) 
was run on all samples, with a histogram of the proportion of each 
sample assigned to S. pneumoniae given in Extended Data Fig. 8b. A 
threshold of requiring that at least 75% of reads were classified as S. 
pneumoniae was chosen as a compromise between avoiding exclud-
ing too many samples and ensuring that contamination did not bias 
our analyses. Further checks were also conducted at each stage of the 
downstream analyses to ensure results were not impacted by remain-
ing low levels of contaminating species. Overall, this resulted in 3,188 
samples including 164 replicates that were considered in the subse-
quent analysis steps.

Lineage deconvolution
Lineage deconvolution was performed via the mSWEEP (v1.4.0) and 
mGEMS (v1.0.0) algorithms66,67 using a reference database consisting of 
a high-quality subset of 20,047 genomes from the Global Pneumococcal 
Sequencing Project database9. Included in this subset were 2,663 genome 
assemblies from the original genome sequencing study of the Maela camp 
that relied on single colony picks21. The PopPUNK algorithm, which uses a 
k-mer-based approach to cluster genomes into major lineages, was used 
to assign each of these genomes to their respective global pneumococcal 
sequencing cluster68. The mSWEEP and mGEMS pipelines were then run 
using the fastq files for each deep-sequencing sample, with the exact com-
mands given in the Rmarkdown provided as part of the accompanying 
GitHub repository. The mSWEEP algorithm uses read pseudoalignments 
output by Themisto (v0.2.0) to quickly estimate the abundance of refer-
ence groups within a mixed sample using a statistical mixture model. 
mGEMS uses the resulting likelihood estimates output by mSWEEP to 
deconvolute the mixed reads into one or more groups. Importantly, 
reads may be assigned to multiple reference groups, accounting for the 
considerable homology between pneumococcal lineages. To reduce the 
possibility of false positives, lineages were only called if they were present 
at a frequency of at least 1%. The Mash Screen algorithm (v2.2.2), which 
similar to PopPUNK uses k-mers to assign reads to a reference database, 
was also run on each of the deconvoluted lineages using the same data-
base69. Only lineages that shared at least 990/1,000 hashes were retained.

Serotype calling
Serotypes were identified by taking the union of two pipelines (Extended 
Data Figs. 1e and 9a). The serocall (v1.0) algorithm was run on the raw 
fastq files for each sample22. As a second step, the seroBA (v1.0.2) algo-
rithm was run on each of the deconvoluted lineages identified by mGEMS 
pipeline70. By comparing the results of these pipelines on both artificial 
laboratory mixtures22 and samples for which single colony picks had also 
been performed, we were able to determine that while both algorithms 
generally agreed at the serogroup level, the serocall algorithm was more 
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sensitive and was able to detect lineages below the 1% cut-off used in run-
ning mGEMS. As the serocall algorithm was less precise at distinguishing 
serotypes at the sub-group level (Extended Data Fig. 1d), whenever the 
pipelines produced conflicting results at the sub-serogroup level, the 
seroBA result was chosen. After taking the union of these two pipelines, 
we were able to correctly recover 93.6% of serotypes originally identified 
by latex sweeps performed on the same set of samples. The analysis of the 
artificial laboratory mixtures also indicated that the combined pipeline 
achieved a sensitivity of 0.93 with a precision of 1.

Resistance calling
Similar to the calling of serotypes, resistance determinants were identi-
fied via two pipelines using the raw data and the deconvoluted output 
of the mGEMS pipeline. The pneumococcal-specific CDC resistance 
calling pipeline was run on each of the deconvoluted lineages identi-
fied using mGEMS50. This makes use of a database of PBP proteins with 
known resistance profiles. The combined mGEMS and resistance calling 
pipeline was found to achieve a sensitivity of 0.75 and precision of 0.825 
in identifying resistance calls from the artificial laboratory mixtures. The 
lower accuracy in identifying resistance was caused by small inaccura-
cies in the deconvolution of strains and a lower sensitivity in detecting 
resistance in the sample containing 10 lineages. As the maximum number 
of lineages observed in any sample in our dataset was six, this drop in 
sensitivity at very high multiplicities of infection was not of concern. To 
account for inaccuracies in the deconvolution of resistance-associated 
sequencing reads, we only report resistance calls at the sample level. 
After restricting the comparison of laboratory calls to those samples 
continuing <10 lineages, we achieved an accuracy of 1 at the sample level. 
To verify the pipeline on a more diverse dataset, we compared the resist-
ance calls found in 1,158 samples for which both single colony picks and 
whole-plate sweeps had been taken. The mGEMS + CDC pipeline was able 
to achieve a recall rate of 96.9%, indicating that the combined pipeline 
can accurately identify resistance from deep-sequenced plate sweeps. 
To check that the pipeline did not result in a high number of false posi-
tives, we compared the calls from single colony picks and plate sweeps 
on the subset of 584 samples that involve only a single lineage. Here we 
would expect the results of both approaches to be similar. Extended Data  
Fig. 2a indicates that there was no significant difference on this subset of 
samples, with only a very small increase of 2.7% (53/1,980) of resistance 
calls (P = 0.4, Poisson generalised linear model).

Resistance co-occurrence
To examine whether certain lineages or serotypes were more likely to 
be found in instances of multiple colonization, we performed a logistic 
regression using a generalized linear mixed model with a complemen-
tary log-log link function. Lineages were classified as ‘resistant’ to 
each antibiotic class using the pneumococcal CDC resistance calling 
pipeline48. To control for the increase in the probability of resistance 
being present in a sample with multiple lineages simply because there 
were more lineages present, we used an offset term. This is a common 
approach used in ecological studies to control for the differences in 
exposure when investigating a binary outcome. This allows us to test 
whether the presence of resistance as a binary dependent variable is 
associated with multiple colonization beyond what would be expected 
given the background frequency of resistance in the population.

To control for the lineages present within each sample, we per-
formed multidimensional scaling on a pairwise distance matrix inferred 
using the Mash algorithm71. The first ten components were included 
in the regression to control for population structure, as is common in 
bacterial GWAS studies72. Host effects were controlled for by including 
a random effect for the host.

Genome-wide association analyses
To better account for the extensive pangenome in S. pneumoniae, 
locus-level association analyses were performed using an alignment-free 

method which first identifies all unique unitigs (variable length k-mers) 
within the samples being considered. Unitigs have been shown to better 
account for the diverse pangenomes found in bacteria73. The frequency 
of each unitig in each sample was obtained by first running the Bifrost 
algorithm to define the complete set of unitigs present74. The count of 
each unitig in each sample was then obtained using a custom Python 
script available in the accompanying GitHub repository. To avoid testing 
very rare features, we only considered those unitigs present in at least 
1% of the samples of interest in our presence/absence-based analysis 
and in at least 2% of our paired analysis discussed below.

To investigate the impact of antibiotic treatment on S. pneumo-
niae carriage, we performed two main analyses. The first consisted of 
a typical case control design and compared samples that were within 
a recent antimicrobial treatment event to those where no treatment 
had occurred. This allowed us to investigate features associated with 
recent antibiotic treatment but does not consider the changes that 
occur within an individual that is already colonized with S. pneumoniae 
before treatment. To shed light on this scenario, our second analysis 
investigated the impact of treatment on pairs of consecutive samples 
from the same patient, where a subset of patients had received antibi-
otic treatment between samples (Extended Data Fig. 7a).

Standard design
Samples were classified as treated if they were within 28 d of an antimi-
crobial treatment event. This was chosen after reviewing the decline 
in the proportion of resistant isolates tested via disk diffusion and 
Etest minimum inhibitory concentration (MIC) testing of all swabs 
positive for S. pneumoniae (Extended Data Fig. 7b). The Python imple-
mentation of the Seer algorithm was then used to identify unitigs 
significantly associated with treatment75. Here, rather than using 
counts, unitigs were called as either present or absent. To control 
for population structure, Pyseer (v1.3.9) was run using a linear mixed 
model, with a kinship matrix generated by taking the cross prod-
uct of the binary unitig presence/absence matrix. Unitigs found to 
be significant were then aligned to a collection of pneumococcal 
reference genomes including all the single-genome assemblies of 
ref. 21, and assigned a gene annotation on the basis of the reference 
gene in which they aligned. Only those unitigs that were successfully 
aligned were considered for further analysis. To account for the large 
number of tests performed, we considered three P-value thresholds 
corresponding to an expected number of false discoveries (EFD) of 
0.1, 1 and 5. The 0.1 threshold corresponds with the commonly used 
Bonferroni method, while the more relaxed thresholds allowed us to 
consider weaker signals. All three thresholds were more stringent than 
controlling for the false discovery rate using q-values which has been 
suggested as an alternative to the Bonferroni method as it is often 
found to be overly conservative76. Combined with past knowledge 
of possible resistance elements in S. pneumoniae, we were able to 
confidently identify associations.

Paired design
Our unique sampling allows us to compare samples from the same 
individual before and after treatment. We first identified sample pairs 
where there were at most 100 d separating pneumococcal positive 
nasopharyngeal swabs from the same individual. We restricted our 
analysis to infants as treatment information for mothers was not avail-
able. To ensure that previous treatments before the first sample of 
an individual were not confounding our results, we excluded pairs 
with any treatment event within 28 d of the first swab. This resulted in 
615 sets of paired samples. We classified these pairs into treated and 
untreated groups on the basis of whether or not the individual had 
received antibiotic treatment in the time between swabs. A treatment 
event was defined to include any antibiotic class, although amoxicillin 
made up the vast majority (66.9%). The prescription of antimicrobials 
in the study participants was monitored by the study team and care 
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was taken to document both antimicrobials prescribed by the Shoklo 
Malaria Research Unit clinic and those obtained from other sources20.

We only considered paired samples where the infants were positive 
for S. pneumoniae in both samples. As a result, we are not considering 
the impact of antibiotic treatment on overall carriage rates but rather 
the differences in S. pneumoniae genomes pre and post antibiotic treat-
ment. Using this paired design, we considered the impact of treatment 
both at the lineage (GPSC) level as well as the locus level. Unlike many 
previous bacterial GWAS studies which typically focused on the presence 
or absence of a feature, we considered the frequency of both lineages 
and loci within each sample. This improves our ability to identify more 
subtle changes that can be obscured by ignoring within-host diversity.

Lineage level. At the lineage level, we considered the estimated fre-
quencies of each lineage obtained using the mSWEEP algorithm. We 
used a simple linear model to test whether treatment impacted the fre-
quency of the second sample of a pair after controlling for the observed 
frequency in the first sample as well as the difference in time between 
the two samples.

Locus model. To investigate locus-level effects, we considered the 
frequency of each unitig in each sample. To control for lineage-level 
effects, we concentrated on pairs where the same lineage was present 
in both samples. This reduced the analysis to 445 pairs.

Unlike the lineage-level analysis where we used estimated fre-
quencies, unitigs were represented by the number of times they were 
observed in the raw reads from each sample. This is a similar problem 
to that found in the analysis of RNA-seq datasets where the number 
of RNA reads aligned to a gene was used as a proxy for the expression 
of that gene. Using an approach similar to that commonly used in the 
analysis of RNA-seq data, we fit a linear model to the log unitig counts 
normalized by the number of reads sequenced in each sample. Similar 
to the commonly used analysis of covariance (ANCOVA) method for 
analysing pre and post treatment data, we used the pre-treatment count 
to control for the paired nature of the data. We also included a covariate 
to control for the time between when the samples were taken. Further 
explanation and the code used to run all the association analyses are 
available in the Supplementary Text included in the GitHub repository.

Within-host variant calling
To identify within-host variants, we ran the LoFreq (v2.1.5) variant call-
ing pipeline on all samples for which only a single GPSC lineage had 
been identified with mSWEEP. The Lofreq pipeline has been shown 
to generate robust minority variant calls and accounts for base call 
qualities and alignment uncertainty to reduce the impact of sequenc-
ing errors77. To mitigate the impact of reference bias, each sample was 
aligned to a representative assembly (the medoid) for the GPSC that it 
most closely resembled via Mash distance71. Reads were aligned to the 
chosen reference genomes using BWA v0.7.17-r118878. The Picard tools 
(v2.23.8) ‘CleanSam’ function was then used to soft clip reads aligned 
to the end of contigs and to set the alignment qualities of unaligned 
reads to zero. Pysamstats v1.1.2 was run to provide allele counts for each 
location of the aligned reference for use in the transmission analysis. 
The LoFreq pipeline was initially run with stricter filters, requiring a 
coverage of at least 10 reads to identify a variant. The resulting variant 
calls were used along with the read alignment as input to the GATK 
BaseRecalibrator tool (v4.1.9), as suggested in the LoFreq manual to 
improve the estimated base quality scores79. Finally, the LoFreq pipeline 
was run for a second time with a reduced coverage requirement of 3 
reads. The resulting variant calls were only considered if there was sup-
port for the variant on at least two reads in both the positive and minus 
strand. In the remaining within-host single nucleotide variants, there 
was strong agreement between variant calls in the set of 95 sequencing 
replicates for which only a single lineage was present, with a median of 
91.7% of variants recovered (Extended Data Fig. 10a). The distribution of 

minority variants among different coding positions was also consistent 
with real mutations rather than sequencing errors, with variants at the 
third codon position being most frequent (Extended Data Fig. 10b)80.

Filtering problematic regions
To identify problematic variants that were probably the result of 
low-level contamination or multi-copy gene families, we implemented 
an approach similar to that used to identify recombination in the tool 
Gubbins81. A scan statistic was used to identify regions of the alignment 
with an elevated number of polymorphisms. Assuming that within-host 
variants are relatively rare and should be distributed fairly evenly across 
the genome, regions with a high number of polymorphisms are likely 
to be the result of confounding factors and can thus be filtered out.

We assumed a null hypothesis (H0) that the number of polymor-
phisms occurring in a window sw follows a binomial distribution based 
on the number of bases within the window w and the mean density 
of polymorphisms across the whole alignment. We chose w for each 
sample such that Expected(sw) = 1. A window centred at each poly-
morphism was then considered and a one-tailed binomial test was 
performed to determine whether that window contained an elevated 
number of polymorphisms. After adjusting for multiple testing using 
the Benjamini-Hochberg method, windows with a P value <0.05 were 
selected and combined if they overlapped with another window82.

To define the edges of each region more accurately, we assumed 
that each combined window conformed to an alternative hypoth-
esis H1r, where the number of polymorphisms sr also followed a bino-
mial distribution, with a rate based on the length of the window lr and 
the number of polymorphisms within the window sr. Each end of the 
window was then progressively moved inward to the location of the 
next polymorphism until the likelihood of H1r relative to H0 no longer 
increased. The resulting final windows were then called as potential 
problematic regions if they satisfied the inequality

0.05
g/lf

> 1 −
i=sf−1
∑
i=0

(
lf

i
)di

0 (1 − d0) lf − i

where lf is the length of the final window, g is the length of the refer-
ence genome and d0 is the expected rate of polymorphisms under 
the null hypothesis. The left-hand side of the equation accounts for 
the possible number of similarly sized non-overlapping windows in 
the reference. To further reduce the chance that spurious alignments 
between homologous genes could bias our results, we took a conserva-
tive approach and excluded mutations that were found within a single 
read length (150 bp).

Mutational spectrum
In the mutational spectrum analysis of human cancers, normal samples 
are usually taken along with samples of the cancer to allow for somatic 
mutations to be distinguished from germline mutations. As we can-
not be sure which alleles were present at the start of a pneumococcal 
carriage episode, we cannot be certain of the direction a mutation 
occurred in. For example, it is difficult to distinguish between an A→C 
and a C→A mutation. Instead, we considered the difference between the 
consensus and minority variants at each site in the reference genome. If 
we assume that the colonizing variant typically dominates the diversity 
within an infection, then this approach corresponds with the direction 
of mutation. To account for the context of each mutation, we consid-
ered the consensus nucleotide bases on either side of the mutation. 
These were then normalized to account for the overall composition of 
the reference genome for each GPSC. The normalized mutation rates 
(r) for each of the 192 possible changes (j) in a trinucleotide context 
were calculated as:

rj =
nj

Lj∑j
nj

Lj

http://www.nature.com/naturemicrobiology


Nature Microbiology | Volume 7 | November 2022 | 1791–1804  1801

Article https://doi.org/10.1038/s41564-022-01238-1

where nj is the total number of mutations observed for a trinucleotide 
change j, and Lj is the total number of times that the corresponding 
trinucleotide is present in the reference genome. To avoid double 
counting the same mutation, each variant was only counted once 
per host. The resulting frequencies for within and between hosts are 
given in Extended Data Fig. 4. The frequencies of each of the single 
nucleotide changes without accounting for sequence context were 
calculated similarly.

To compare with the mutational spectrum observed across a 
longer timescale, we considered the recombination-filtered alignments 
of 7 major sequence clusters generated in the original publication of the 
single colony pick analysis of the Maela dataset21. We used Iqtree v2.1.2 
to build a maximum-likelihood phylogeny for each alignment using a 
General Time Reversible model with 4 rate categories and enabled the 
‘ancestral’ option to reconstruct the sequences at the internal nodes 
of the resulting phylogeny83. Mutations were called by considering 
changes in alleles between consecutive nodes of the phylogeny, and 
the mutational spectrum was normalized using the trinucleotide fre-
quencies in the reconstructed ancestral sequence of the root node. A 
permutation test was used to compare the proportion of each mutation 
type found in the within-host and between-host sets.

Selection
Selection analyses were performed using a modified version of the dNd-
Scv package40 to allow for the incorporation of variants called against 
multiple reference genomes. Distinct from traditional approaches to 
estimating dN/dS ratios that were developed to investigate selection in 
diverse sequences and rely on Markov-chain codon substitution models, 
dNdScv was developed to compare closely related genomes such as 
those found in somatic mutation studies where observed changes often 
represent individual mutation events. dNdScv uses a Poisson framework 
allowing for more complex substitution models that account for context 
dependence and the non-equilibrium of substitutions in estimating dN/
dS ratios40. This is particularly important in the case of sparse mutations 
in low-recombination environments, as is the case in pneumococcal 
carriage over short timescales. To avoid false signals of negative or posi-
tive selection that have been observed under simpler models40, dNdScv 
uses a Poisson framework to account for the context dependence of 
mutations and non-equilibrium sequence composition, and to provide 
separate estimates of dN/dS ratios for missense and nonsense mutations.

To extend dNdScv to allow for the use of multiple reference 
genomes, we first clustered the gene regions from the annotated ref-
erence genomes using Panaroo v1.284. The impact of each of the muta-
tions identified using the LoFreq pipeline was inferred with dNdScv for 
each sample separately, using the corresponding reference genome 
and gene annotation file. The combined calls for each orthologous clus-
ter were then collated and the collated set used to infer genome-wide 
and gene-level dN/dS estimates using a modified version of dNdScv 
available via the GitHub repository that accompanies this manuscript. 
We used the default substitution model in dNdScv, which uses 192 
rate parameters to model all possible mutations in both trends in a 
trinucleotide contact as well as two w parameters to estimate the dN/
dS ratios for missense and nonsense mutations separately. Due to the 
large number of samples, we used the more conservative dNdSloc 
method which estimates the local mutation rate for a gene from the 
synonymous mutations observed exclusively within that gene85. Care is 
needed when interpreting dN/dS ratios estimated from polymorphism 
data as they can be both time dependent, providing weaker signals of 
selection for more recent changes, and can be biased by the impacts 
of recombination86. However, these are unlikely to have caused sub-
stantial issues in this analysis as the short timescales involved mean 
that recombination was unlikely to have occurred at a rate sufficient to 
bias the results and as each variant call was derived at the sample level 
rather than by the comparison of two separate samples, as is typically 
the case in dN/dS studies relying on multiple sequence alignments 

of diverse sequences. As an extra precaution, we also excluded gene 
clusters identified as paralogous by the Panaroo algorithm to reduce 
the chance that spurious alignments between paralogous genes could 
bias the results.

Transmission inference
To identify the likelihood of transmission between each pair of hosts, we 
extended the TransCluster algorithm to account for genetic diversity 
within the host and to be robust to deep-sequencing data involving 
multiple lineages.

The TransCluster algorithm expands the commonly used approach 
of using an SNP distance threshold to exclude the possibility of direct 
transmission to account for both the date of sampling and the esti-
mated epidemiological generation time of the pathogen30. However, 
hypermutating sites, contamination, sequencing error, multi-copy 
gene families and multiple colonization all present additional chal-
lenges when investigating transmission using within-host diversity 
information15,41.

To account for these challenges, we took a conservative approach 
and estimated the minimum pairwise SNP distance that could separate 
any pair of genomes taken from two samples. Thus, two samples were 
only found to differ at a site if none of the alleles in either sample at 
that site were the same (Extended Data Fig. 9b). To allow for varia-
tion in sequencing depth across the genome, we used an empirical 
Bayes approach to provide pseudocounts for each allele at each site, 
informed by the allele frequency distribution observed across all sites. 
A multinomial Dirichlet distribution was independently fit to the allele 
counts for each sample via the maximum-likelihood fixed-point itera-
tion method. The inferred parameters were then used as pseudocounts 
and a frequency cut-off corresponding to filtering out variants less than 
2% was used. All variant calls that were observed were retained. This 
approach provides a lower-bound estimate of the genetic divergence 
separating any pair of pneumococcal genomes within each of the two 
samples while allowing for the possibility of multiple colonization (see 
Supplementary GitHub repository).

The estimated minimum SNP distance was then used as input to 
the TransCluster algorithm, assuming a mutation rate of 5.3 SNPs per 
genome per year and a generation time of 2 months. These values were 
inferred using an adapted version of the TransPhylo algorithm on the 
previously sequenced single colony picks from the Maela camp (see 
Supplementary Methods included in the accompanying GitHub reposi-
tory)21. The estimated substitution rate conforms with previous studies 
investigating short-term evolutionary rates in S. pneumoniae14 and the 
estimated generation time is consistent with previous estimates of pneu-
mococcal carriage durations and a uniform distribution of transmission 
events44. This resulted in estimates of the most probable number of 
intermediate hosts separating two sequenced pneumococcal samples. 
These estimates were then combined with epidemiological and serologi-
cal information to identify the most probable direction of transmission 
between mothers and their children, as is described in the main text.

To investigate the transmission bottleneck, we compared the 
distribution of the number of shared polymorphic sites in samples with 
the most probable number of intermediate hosts, as inferred using the 
TransCluster algorithm (Fig. 2e). The effects of hypermutable sites, 
sequencing errors and multiple infections, which have been shown to 
confound efforts to estimate the size of the transmission bottleneck, 
are likely to be similar irrespective of how close two samples are in 
the transmission chain41. Thus, any increase in the number of shared 
polymorphic sites between samples that are likely to be related by 
recent transmission is probably the result of multiple genotypes being 
transmitted (Fig. 2e).

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.
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Data availability
Metadata originally collected in ref. 20 are available from https://github.
com/gtonkinhill/pneumo_withinhost_manuscript. To protect the ano-
nymity of study participants, some epidemiological data have been 
obscured in the publicly available files. The original metadata files 
are available on request via the MORU Tropical Health Network Data 
Access Committee https://www.tropmedres.ac/units/moru-bangkok/
bioethics-engagement/data-sharing.
Raw sequencing data are stored with the ENA under project  
code PRJEB22771, with individual accessions given in Supplementary 
Table 1. The following previously published datasets were used: ref. 21; 
NCBI Sequencing Read Archive, ERP000435, ERP000483, ERP000485, 
ERP000487, ERP000598 and ERP000599; Global Pneumococcal 
Sequencing project; ENA RJEB3084.

Code availability
Supplementary code is available from https://github.com/gtonkin-
hill/pneumo_withinhost_manuscript. The transmission clustering 
implementation is available at https://github.com/gtonkinhill/fast-
transcluster. The modified version of the dndscv algorithm is available 
at https://github.com/gtonkinhill/dndscv.
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Extended Data Fig. 1 | Verification of lineage and serotype calling pipelines. 
(a) The number of true positive and false negative GPSC lineage calls in 44 
artificial laboratory mixtures from Knight et al., 2021. (b) Recall of GPSC 
lineage calls in 1158 samples which also had WGS performed on single colony 
pick in Chewapreecha et al., 2014. (c) The recall of resistance calls in the same 
1158 samples. (d) The number of mismatches between latex sweeps and either 

mGEMS/seroba or the serocall algorithms at the subgroup serotype level. 
As mGEMs/seroba was found to better agree with latex sweeps in cases of 
conflict between the two algorithms, the mGEMs/seroba result was chosen. 
(e) Intersection between the serotype calls of latex sweeps and the combined 
mGEMs/seroba and serocall pipeline for all typable isolates and (f) same as in e. 
but for non-typable.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Verification of resistance calling pipeline as well as 
the distribution of resistance calls in mothers and infants. (a) The number 
of resistance calls identified in 584 samples which consisted of only a single 
pneumococcal lineage and were sequenced using PDS and via single colony 
picks in Chewapreecha et al., 2014. The high correspondence between the 
two methods suggests PDS has a low false positive rate. (b) The number of 

samples found to be either resistant or susceptible to each antibiotic class for 
both mothers and infants. Resistance was determined by running the CDC 
pneumococcal resistance pipeline on the deconvoluted lineages output by the 
mGEMS pipeline. The individual lineage calls were collapsed to the sample level 
so that a sample was called as ‘resistant’ if resistance was observed in any of its 
lineage.
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Extended Data Fig. 3 | Distribution of SNV found in regions with elevated 
rates of polymorphisms. Boxplots indicating the distribution of the number 
of SNV found in regions with elevated rates of polymorphism from 1592 
samples classified by the spatial scan statistic (see Methods). The median and 
interquartile range is given by the horizontal lines with the whiskers indicating 

the largest and smallest values excluding those outside 1.5 times the interquartile 
range. The high rate of polymorphisms in these region indicates that these SNVs 
are unlikely to be the result of denovo mutation within the host and are instead 
likely to be driven by recombination, gene duplication, homology with phages 
and co-colonising bacterial species and hard to align regions.

http://www.nature.com/naturemicrobiology
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Extended Data Fig. 4 | Within and between host mutational spectra for each 
of 96 tri nucleotide substitution classes. Each spectra is displayed according 
to the 96 substitution classification defined by the substitution class (colour in 
the graph) and sequence context immediately 3′ and 5′ to the mutated base. The 

mutation types are given on the horizontal axes, while vertical axes depict the 
frequency of each type. Mutations observed using ancestral state reconstruction 
from genomes observed in different hosts are given above while mutations 
observed within a host are given in the bottom panels.

http://www.nature.com/naturemicrobiology
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Extended Data Fig. 5 | Distribution of multiple carriage duration. The 
distribution of the length of time multiple lineages colonised the same host in 
one of 59 multiple carriage events where the same lineages were observed in 
consecutive samples. Multiple colonisation events that were only observed at a 

single time point are excluded from this analysis. The median and interquartile 
range is given by the horizontal lines with the whiskers indicating the largest and 
smallest values excluding those outside 1.5 times the interquartile range.
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Extended Data Fig. 6 | Impact of antimicrobial treatment on GPSCs and 
lineages classified by PBP gene type of Li et al., 2016. (a) The proportion 
of lineages made up of each GPSC after treatment (red) and in the absence of 
treatment (blue). Only those GPSCs that are present at a prevalence of at least 
1% in the full data set are included. (b) The log odds ratio of clearance following 
treatment for 1,848 lineages containing previously classified PBP genes in Li 
et al., 2016 (left). Those in red are significantly more likely to persist following 

antimicrobial treatment whilst those in blue are likely to be eliminated. Error bars 
indicate the standard deviation of the coefficient point estimate in the GLM. The 
corresponding distribution of MIC profiles for lineages found to contain these 
PBP genes in Li et al. is given to the right. The median and interquartile range is 
given by the horizontal lines with the whiskers indicating the largest and smallest 
values excluding those outside 1.5 times the interquartile range.

http://www.nature.com/naturemicrobiology
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Extended Data Fig. 7 | GWAS study design and results of paired sample 
analysis. (a) A schematic indicating the design of the two GWAS analyses 
conducted in this study with red and blue points indicating within-host 
polymorphisms. A linear model on the log of the unitig counts per million similar 
to that commonly used in RNA-seq analyses was used in the paired design while 
the Pyseer algorithm was used in the standard design. (b) The proportion of 
resistant isolates following antimicrobial treatment. Those samples within 
a threshold of 4 weeks (28 days) of a treatment event were classified into the 

‘treated’ class. (c) A dot plot indicating the significance and average effect size of 
unitigs found to be associated with treatment in the analysis of paired samples 
taken from the same host where a subset have received antimicrobial treatment 
in between sampling events. Regressions were performed using a linear model 
with the frequency of the unitig within the host taken as the dependent variable 
(Methods). The horizontal red lines indicate the expected number of false 
discoveries (EFD) providing different significance levels to interpret the resulting 
variant calls.

http://www.nature.com/naturemicrobiology


Nature Microbiology

Article https://doi.org/10.1038/s41564-022-01238-1

Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Distribution of sequencing coverage and 
contamination used to determine quality control cut-offs. The distribution 
of the depth of sequencing coverage (a) and fraction of reads (b) that aligned to 
S. pneumoniae using the Kraken2 metagenomics read classification algorithm. 
The vertical red lines indicate the minimum thresholds chosen for samples 
to be included in the main analysis. (c) Boxplots indicating the distribution 
of the fraction of reads assigned to each species in each of the 3761 samples 

by the Kraken2 metagenomics read classification algorithm. Due to the large 
sequence diversity within, and similarity between, S. pneumoniae and S. 
pseudopneumoniae, a large fraction of reads assigned as ‘unclassified’ and as 
S. pseudopneumoniae may actually belong to S. pneumoniae genomes. The 
median and interquartile range is given by the horizontal lines with the whiskers 
indicating the largest and smallest values excluding those outside 1.5 times the 
interquartile range.

http://www.nature.com/naturemicrobiology
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Extended Data Fig. 9 | Schematics indicating the bioinformatics pipelines 
used to call serotypes, resistance elements and genetic distance in 
transmission calculations. (a) A schematic indicating the bioinformatics 
pipeline used to call both serotypes and resistance elements from the PDS 
data. (b) A schematic indicating how the pairwise SNP distance is calculated to 

account for within-host diversity and polymorphisms. Here, the red and blue 
indicate distinct nucleotides. A mismatch is only called if no alleles match at that 
location between the two samples. Variable sequencing coverage is accounted 
for using an empirical Bayes approach that made use of the multinomial Dirichlet 
distribution (methods).

http://www.nature.com/naturemicrobiology
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Extended Data Fig. 10 | Reproducibility of single nucleotide (SNV) variant 
calls and the distribution of variable site among different coding positions 
used to assess the reliability of SNVs. (a) The fraction of minority single 
nucleotide variant calls replicated in 95 samples which involve only a single 
pneumococcal lineage and were sequenced in replicate with separate reverse 
transcription, PCR amplification, and library preparation steps. The median 
and interquartile range is given by the horizontal lines with the whiskers 

indicating the largest and smallest values excluding those outside 1.5 times the 
interquartile range (b). The distribution of the number of variable sites among 
different coding positions. Variable sites are dominated by those seen at the 
third codon position similar to that observed in Dyrdak et al., 2019. The stability 
of the fractions at lower frequencies suggests that the variant calling pipeline 
has successfully filtered out erroneous variant calls. At higher frequencies, the 
reduction in the total number of variants leads to increased variability.

http://www.nature.com/naturemicrobiology
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Using sealed opaque envelopes containing an allocation code, women were randomly allocated to the pneumococcal 
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Sample size No formal sample size calculation was performed. However, the sample size was chosen to be sufficiently large such that: all samples 
collected in the original study by Turner et al., 2011 that occurred before and after antimicrobial treatment were included; all samples found 
to be within 10 SNPs in the study of Chewapreecha et al., 2014 could be included and; samples with a resolution of at least one every 2 
months could be included from a subset of 25 mother/child pairs. Culture and sequencing was attempted on a total of 4000 samples 
(including replicates) of which 3188 passed quality control checks.

Data exclusions Only samples that failed initial quality control as described in the methods section of the manuscript were excluded from subsequent 
analyses.
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as 'untreated'. No further allocation into groups was done. Other covariates such as the person being samples, the timing of samples and 
duration of pneumococcal carriage were included as variables in the regression analyses.

Blinding No blinding was performed. Antimicrobial treatment was given based on the health requirements of the infants as determined by a doctor 
and was not determined by this study.
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