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Characterizing the genetic diversity of pathogens within the host promises
to greatly improve surveillance and reconstruction of transmission

chains. For bacteria, it also informs our understanding of inter-strain
competition and how this shapes the distribution of resistant and sensitive
bacteria. Here we study the genetic diversity of Streptococcus pneumoniae
within 468 infants and 145 of their mothers by deep sequencing whole
pneumococcal populations from 3,761 longitudinal nasopharyngeal
samples. We demonstrate that deep sequencing has unsurpassed sensitivity
for detecting multiple colonization, doubling the rate at which highly
invasive serotype 1bacteria were detected in carriage compared with
gold-standard methods. The greater resolution identified an elevated

rate of transmission from mothers to their childrenin the first year of the
child’s life. Comprehensive treatment data demonstrated that infants were
atan elevated risk of both the acquisition and persistent colonization of a
multidrug-resistant bacterium following antimicrobial treatment. Some
alleles were enriched after antimicrobial treatment, suggesting that they

aided persistence, but generally purifying selection dominated within-host
evolution. Rates of co-colonization imply that in the absence of treatment,
susceptible lineages outcompeted resistant lineages within the host. These
results demonstrate the many benefits of deep sequencing for the genomic
surveillance of bacterial pathogens.

Streptococcus pneumoniae is a highly recombinogenic human naso-
pharyngeal commensal and respiratory pathogen causing high rates
of pneumonia, bacteremia and meningitis, particularly in young chil-
dren and the elderly"* Individual strains are observed to diversify
through point mutation, recombination and mobile element acquisi-
tion during nasopharyngeal carriage and disease, affecting antimi-
crobial resistance, susceptibility to vaccine-induced immunity and
the inference of transmission networks**. Further complexity arises
from simultaneous carriage of multiple strains. The coexistence of
resistant and sensitive strains, and the re-structuring of populations

following vaccine introduction, suggest that within-host competi-
tion between strains could be critical in the population dynamics
of S. pneumoniae®™.

As with many bacterial pathogens, surveillance of S. pneumo-
niae has been revolutionized by large-scale whole-genome sequenc-
ing (WGS) efforts, which have greatly enhanced our ability to track
antibiotic-resistant and vaccine-evading lineages at the population
level®'°. However, similar to other bacterial pathogens, genomic sur-
veillance of S. pneumoniaetypically relies on the analysis of arepresent-
ative genome generated from asingle colony from a patient or carrier.
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This limits the sensitivity of surveillance, as carriage of multiple distinct
pneumococcal lineagesis frequent in areas with high prevalence'2.

Previous studies of within-host diversity in bacteria predomi-
nantly rely onseparately sequencing the genomes of multiple purified
coloniesisolated from anindividual, which incurs substantial time and
financial cost>'. Conversely, within-host population deep sequencing
(PDS) involves sequencing a pool of hundreds of colonies fromasample
producing a high depth sampling of within-host diversity. While this
provides a more detailed picture of the genetic diversity within the
host”, these analyses predominantly focus on laboratory studies®,
relatively small outbreaks" or clinical isolates taken from symptomatic
patients, particularly for bacterial species known to colonize patients
with cystic fibrosis or other chronic lung diseases’".

Here, using adeep sequencing approach, we study the evolution-
ary dynamics of S. pneumoniae within healthy carriers, and during
episodes of illness and antibiotic treatment, additionally examining
the potential utility of within-host population sequencing in surveil-
lance. We analyse data from 3,761 samples collected during a large
longitudinal carriage study conducted between 2007 and 2010 in the
Maela refugee camp on the border of Thailand and Myanmar®. Naso-
pharyngeal swabs were collected from 965 infants and a subset of their
mothers, from birth until 24 months of age (Fig. 1a).

Results

Deep sequencing accurately predicts lineage and serotype

We first examined whether accurate lineage and serotype calls could
be made from pooled data obtained from deep sequencing hundreds
of colonies from plate scrapes of pneumococci grown on selective
agar, referred to as PDS. Lineages were defined using the Global Pneu-
mococcal Sequencing Cluster (GPSC) nomenclature’. GPSCs consider
genome-wide variation to provide a more accurate picture of global
pneumococcal population structure. Each GPSC is associated with a
small number of serotypes (Supplementary Table 2). Alternatives such
asmulti-locus sequence typing are limited by the impact of recombina-
tion and only consider a small fraction of each genome. Throughout
our analyses, we used a dual approach of deconvoluting the mixed
samples and running standard analyses, additionally using methods
designed for analysing population sequencing datadirectly (Methods).

We calibrated and verified the approach using a total of 1,210 cul-
ture replicates along with a further 192 samples that were sequenced
inreplicate with separate PCR amplification and library preparation
steps. The culture replicates included 1,158 samples for which single
colonieshadbeenselected, cultured and sequenced inaprevious study
and have been re-cultured in this study?. Inaddition, we considered 44
artificial laboratory mixtures for which sequencing data were also avail-
able?. Finally, a further 8 samples were cultured and deep sequenced
inreplicate. Of these, only 3 met our initial quality control thresholds
for both samples.

The within-host PDS approachreliably detected lineages (GPSCs)
in each sample, with a precision and recall of 100% and 93%, respec-
tively, ontheartificial laboratory samplesindicating that the approach
has low false positive rates. It achieved arecall of 97.1% (1,149/1,158) of
thelineages presentinthelarger setof carriageisolates (Extended Data
Fig.1a,b). As only single colony isolates were sequenced, it was impos-
sible to determine the precisionin this case. Of the 3samples that were
cultured and deep sequenced in replicate, the approach achieved an
accuracy of100% (3/3). A similarly high accuracy of 97.5% (157/161) was
foundinthesequencingreplicates. Figure 1d shows that the estimated
frequency of each lineage was highly concordant between sequencing
replicates, witha correlation of >0.99 (P <1x 107, Fisher’s Z-transform).
Although lower, the concordance observed within the three culture
replicates (p = 0.94, P=0.059) was still strong. This indicates that the
estimated frequencies are robust to potential artefacts of the experi-
mental pipeline, allowing us to confidently interpret relative changes
infrequencies.

PDS reveals hidden diversity

Using PDS we identified 23.6% (813/3,450) more serotypes compared
with the most common method of identifying multiple colonization
(latex sweep, Fig. 1c)". Due to difficulties in distinguishing ambigu-
ous or poor-quality serotype calls from non-typables, we assigned
suchlineages with an‘unknown’ serotype. Multiple distinct serotypes
were observedin1,028/2,940 (35%) samples, further highlighting the
substantial genetic diversity thatis obscured by standard surveillance
using single representative genomes. The increased sensitivity was
supported by microarray dataonasubset of 32 samples performedin
aprevious study, which identified all 49 serotypes found by PDS, com-
pared with 32 found using latex sweeps". Unlike PDS, microarray data
onlyindicate the presence and absence of known genes and serotypes,
and do not provide data over the entire genome.

Rates of multiple colonization were significantly higher ininfants
thanin their mothers (P<1x 107, Poisson mixed model) (Fig. 1f). The
most common serotypes, including 19F and 23F, were also significantly
more likely to be found in infants (Fig. 1e), consistent with a greater
repertoire of adaptive immunity in adults (adjusted P < 0.05, Fisher’s
exact test)”. In agreement with past studies, serotype 3 was the only
serotype likely to be found more frequently in mothers (Fig. 1e)***. It
hasbeen postulated that the high rate of invasive disease due to sero-
type 3 in adults may correlate with high antibody levels in children,
which then wane.

Other ‘epidemic’ serotypes (for example, 1, 2, 5, 7F, 8 and 12F)
are known for causing outbreaks of disease in adults despite being
rarely detected in infant carriage”. Strikingly, we found that such
types were often present at low frequencies within the host (Fig. 1b).In
particular, serotypes1and 8, and the associated GPSCs 2 and 28, were
found at lower frequencies than other types (adjusted P value <0.05,
Kolgomorov-Smirnov test). In11/20 (55%) observed cases of serotype
linour dataset, it was found as the minority serotype in multiple colo-
nization. This could partly explain its low detection rate in previous
carriage studies’, which typically only detect each sample’s dominant
strain. Given that invasiveness is usually calculated by comparing
carriage and disease rates, this suggests that current estimates of the
invasiveness of serotype 1 may be inflated. However, despite PDS iden-
tifying over twice as many serotype1lineages, the overall prevalence of
this serotype was still low, making up <1% of all distinct serotype-host
pairsinthe dataset. Nevertheless, this serotype stillappears to be highly
invasive, justifying its targeting by current vaccines®.

We found that PDS identified an additional 14.6% (520/3,557) of
resistance elements, including known resistance single nucleotide
polymorphisms (SNPs) and mobile genetic elements, when com-
pared with using standard pipelines on the set of 1,158 single-colony
whole-genome sequences (Extended Data Fig. 1c). Resistant lineages
were frequently found alongside susceptible lineages within the same
host. The rate of resistance in samples taken from infants was signifi-
cantly higher than thatin mothers for 4/14 antibiotic classes, which cor-
responds with the difference in the composition of lineages observed
between mothers and children (Extended Data Fig. 2b, adjusted
P<0.05). Thus, routine PDS provides substantialimprovements over
alternative approaches in surveillance of pneumococcal resistance,
especially in children where rates of multiple colonization are higher.

Within-host diversity provides insights into transmission

Deep within-host population sequencing also allows for improved
estimates of transmission links**°. To provide a robust measure of the
strength of atransmissionlink between any two samplesinour dataset,
we adapted the TransCluster algorithm to account for within-host diver-
sityinformation (Methods)*°. There was a strong association between
the probability of direct transmission, asinferred by the adapted Tran-
sCluster algorithmindependently of location data, and the geographic
proximity of households (P<1x 107, linear model ¢-test; Fig. 2a,b). This
association remained after excluding within-household pairs involving

Nature Microbiology | Volume 7 | November 2022 | 1791-1804

1792


http://www.nature.com/naturemicrobiology

Article https://doi.org/10.1038/s41564-022-01238-1
a Nasopharyngeal swabs taken  Entire growth from b
monthly for 24 months cultured swabs is
sequenced Serotype
999 pregrant £ A I —
women recruited 23F 4 e
° 6B - _ scemmn @ wo e o amesson emmiens o eme]
R " RN SRS o | S ——
Asubsetof @ 158/15C - | GGG crmw e wom son e o meael]
motherswere & -----° > J----)J----»J----» B6A _ ee emEses We c® W 0 —..-.q
swabbed 34 _ D EE L RTITTERPNPRY: |
4 4 ser sese o swoe  ee @l
Y S Y g B I - I8N - =
3s5a/35¢/42 - | I R |
! 157 - N — coeeee e ua]
! 6C - .o e same o]
M positive for selected for 13 A - @t o0 v eee LY '.l
Pneumococcus sequencing 33B - e o e o e eee s ""'I
108 + T T TR |
c 5 ' 21 4 - @€, 00 8 o e 8 4@ .-.'.-.:'
eep sequencing
2,500 A 1A 4 R cuieiiia |
2,000 o 1:00 1 / ov 4 N Conea e A |
1,500 4 2 N 16F | N - R
1,000 ’ % K 23A - - o . - . -'.’I
500 - . & 0.50 K .
0 - — = K 18C - N € e ee e e 2
3 5 025 s wee e ]
8 Latex sweep El . .
© 2,500 + g 104 - - - 1
2,000 + 5 0.10 A // 4 - . . e @ ge e |
1,500 -| g 2sF | IR - . |
1,000 - £ 0.01 1 oL es s o me o e
500 | 5 [ | 1
01 - | —— - 22 “ee eee
5 4 6 001 010 025 050 100 17F 4 | . . o
i i 23B - . o wiae ol
Number of unique serotypes in sample Lineage frequency replicate 1 3 - 'l
19B 4 - @g o P IR
T | ‘ =
e f 4 1 1R o B |
o 05 5 4 31l w e I
s u Infant £ 20 1 . . el
2 > o
S 04 " Mother 5 ssc - Il e 1
2 g ¢ | e
= > i -
3 03 S 1or 1 .- . |
‘3 3 5 - ¢ . . |
o u—
5 02 o 40 110 - . 9q
2 52* 22F - IR ! SR
i<l 5 R
5 o1 2 1ox { e . A
: J on | : -
& 0 I = 14 8 - -
T T T T T T T T T T T T T T T T T T T
14 15B/C19F 23F 3 6A 6B 9V Infant Mother 10 100 300 600 0 025 050 0.75 1.00
Count Frequency within host

Serotype

Fig.1|Study design and the frequency of pneumococcal serotypes within

the host. a, A schematic of the study sampling design. b, Abarplotindicating the
number of times each serotype was observed across all deep-sequenced samples.
The distribution of the corresponding within-host frequencies of these serotypes
isgivenin the adjacent plot, with overlapping points separated to indicate the
density at each position along the x axis. Lineages with ambiguous serotype calls
were excluded from this plot. Serotypes found at significantly lower frequencies
using the Kolgomorov-Smirnov test are coloured red. ¢, Histograms indicating
the distribution of the number of unique serotypes observed using either PDS or

latex sweeps. d, Comparisons between the estimated GPSC lineage frequencies
in192 samples that were sequenced in replicate. The vertical red line indicates
the minimum frequency required for consideration in the mSWEEP pipeline. e,
Barplots indicating the differences in the representation of serotypes between
mothers and infants. f, Boxplots indicating the distribution in the mean number
of serotypes (excluding non-typables) observed in 107 mothers and 450 of their
infants. The median and interquartile range are given by the horizontal lines, with
the whiskers indicating the largest and smallest values excluding those outside
1.5times the interquartile range.

mothersand their children (P <1x107%), suggesting that children living
closerto detected cases of moreinvasive strains are at higher risk, which
could motivatelocal interventions to reduce transmissionin outbreaks.
Oftheinferred close transmission links (estimated to involve either O or
lintermediate hosts), 80.9% (871/1,077) contained at least one sample
found to carry multiple pneumococcal lineages. This can be partly
attributed to the high level of multiple colonizationin the cohort, but
nevertheless suggests that only considering the dominant lineage will
substantially underestimate the number of close transmission links.

This high-resolution approach also allowed us to scrutinize the
transmission bottleneck, whichis the point of the pneumococcal life-
cycle blocked by immunity induced by current vaccines®. Laboratory
experiments haveindicated that thereis averytightbottleneckinthe
transmission of S. pneumoniae, consisting of only a single bacterial
cell”. To understand how well these experiments generalize to trans-
mission in human hosts, we took a conservative approach, using only
samples containingasingle strain (Methods). The substantial increase
in the number of shared polymorphic sites found in putative direct
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transmission pairsrelative to those estimated toinvolve intermediate
hosts suggests that while tight, the transmission bottleneck between
the donorand recipientis probably greater thanone (P <1x 107, Pois-
sonregression) (Fig. 2e,f). Mouse models of pneumococcal transmis-
sion haveindicated that this bottleneck s likely to occur following exit
but before establishment in the recipient host®.

To examine transmission within the home, we next considered the
47 mother-child pairs for which a transmission link involving zero or
oneintermediate host wasinferred using the TransCluster algorithm.
To estimate a plausible direction of transmission, we required that the
infector must have acquired the relevant lineage before the infectee,
and that there could be at most one negative or missing sample in the
infector in the 2 months before the infectee becoming infected with
thesamelineage (Fig. 2c). The vast majority (16/19) of mother to child
transmissions occurred in the first year of the infant’s life (Fig. 2d).
This was significantly different from the child to mother transmissions
(14/31, P=0.008 Fisher’s exact test). This difference remained after
excluding transmission eventsin the first two months of the infant’s life
allowing additional time for colonization to occur (12/15,P=0.031). The
observed asymmetry is consistent with <l-year-old infants being more
susceptible toinfections from within the household, and with the high
proximity between mother and child. The exposure risk posed by adults
hasbeenobserved in previous studies®>*, with routine vaccination of
older children not found to have a significant effect on vaccine type
carriage rates inunvaccinated infants®, Taken together, this suggests a
possible benefit toavaccination campaign targeting mothers or other
adults with high contact rates to young infants before herd immunity
inthe adult populationis established. However, this would not reduce
therisk posed by non-vaccine type lineages.

Strong purifying selection and a unique mutational spectrum
Toinvestigate selectionacting at the scale of individual lineages within
the host we restricted our analysis to within-host single nucleotide
variants (SNVs) found in samplesinvolving only asingle pneumococcal
lineage (Fig. 3¢). This avoided the potential for biases or errors being
introduced by the deconvolution of mixed samples. Minority variants
were called using a conservative pipeline thatincluded a scan statistic
to filter out regions likely to be affected by homologous recombina-
tion, gene duplications and similarity with bacteriophages and other
bacterial species (Methods). Many of the regions identified by thisscan
included genes coding for major pneumococcal autolysin proteins
(including LytA) and other surface-associated choline binding proteins
(CBP, including pneumococcal surface proteins Aand C, PspA and PspC)
and the Tuf elongation factor (Extended Data Fig. 3). Homologues to
LytA and CBP domains are frequently found in pneumococcal phages
or co-colonizing bacterial species, which may facilitate pneumococcal
diversification and recombination in these regions®*?,

The remaining within-host single nucleotide variants displayed a
mutational spectrum similar to that foundin the genome phylogenies
constructed from single colonies taken from separate hosts (Fig. 3a
and Extended DataFig. 4). Thisindicates that similar mutational pro-
cesses act across the different timescales. Although the spectra were
similar, we observed elevated numbers of C->A transversions with weak
sequence context in the deep-sequencing calls (P <1x 1073, permuta-
tiontest). Thisis consistent with oxidative- and deamination-induced
damage, whichistypically reducedin frequency by purifying selection
over longer timescales®. A similar enrichment of C>A mutation was
foundin . coliover short timescales, which may be driven by the mis-
incorporation of adenines into cytosine sites®. Finally, pneumococci
carry the spxB gene that secretes hydrogen peroxide and has been
shown to cause DNA damage to host lung cells and may contribute to
the mutational spectrum of the bacteriumiitself.

Toinvestigate signatures of selection, we calculated dN/dS ratios
using a modified version of the dNdScv package*’. Similar to other
respiratory pathogens, we found a strong signal of purifying selection,

particularly against nonsense mutations (Fig. 3b)">'**!, This was also
observed at the level of individual genes, with only the competence
related gene (comYC) having an elevated rate of nonsense mutations
(Benjamini-Hochbergadjusted P < 0.05) (Fig. 3b). The frequentinser-
tion of pneumococcal prophage into comYC causes premature stop
codons that prevent the host cell from undergoing transformation and
are associated with areduced duration of carriage****.

The strongest evidence of purifying selection was observed in
genes associated with the pneumococcal stress response, including
heat-shock proteins dnakK and ftsH, as well as fabM which is neces-
sary for survival in high-acidity environments*. Multiple-antigen S.
pneumoniaevaccines which include Dnak, as well as other heat-shock
proteins, have beenshownto protect against lethal pneumococcal chal-
lenge*®. FabM has also been suggested as a potential target for novel
chemotherapeuticagents”. The observed purifying selectionindicates
that it may be difficult for the pneumococcus to adapt to treatments
targeting these genes over short timescales. Although we were able
to detect purifying selection, using dN/dS we did not find evidence
for short-term adaptive evolutionin any genes. This probably reflects
thelong-term commensallifestyle of S. pneumoniaein contrast to that
seenin environmental orimmunocompromised patient pathogens'®".

Within-host competition between pneumococcal lineages

The majority of multiple colonization events between different GPSCs
were observed at only a single timepointin 92.3% (712/771) of events,
indicating that long-term multiple colonization of the same lineages is
rare. However, we did observe anumber of carriage events where two
lineages coexisted for well over the month-long time period between
routine sampling. This suggests that competition between lineages
within the host is not always strong enough for one to exclude the
other (Extended Data Fig. 5). Despite the large sample size, we did not
have the statistical power to identify any preferential co-colonization
between particular pneumococcal lineages due to the high number of
possible combinations.

Whileresistant lineages were frequently observed to co-colonize
with susceptible lineages, this occurred less frequently than expected
given the frequency of resistant lineages within the Maela camp
(Fig.4a). Wefound that rates of resistance in multiple colonization were
significantly lower than expected in 5/14 antibiotic classes, including
penicillin, indicating that susceptible lineages outcompete resistant
lineages within the host*®. Many models of the maintenance of anti-
biotic resistance in pneumococcal populations rely on assumptions
about the competition between resistant and susceptible lineages™**’.
However, studies have currently relied on serotype dataalone to deter-
mine multiple colonization rates, which do not indicate whether the
underlying lineages are resistant to antibiotics. This result confirms
that resistant and susceptible lineages are found to co-colonize the
same host, and that the expected fitness costs of resistance observed
inlaboratory experiments are consistent with the population dynamics
observed in natural pneumococcal carriage.

Strong impact of treatment on within-host diversity

We next considered selectionin response to antimicrobial treatment,
both in terms of the displacement of pre-treatment strains and the
microevolution of surviving pneumococci. Pairs of consecutive sam-
ples taken from the same infants within 100 d were selected, where
asubset had received antibiotics between the sampling timepoints.
GPSClwasfoundat considerably higher frequencies than other GPSCs
following treatment (Fig. 4c and Extended Data Fig. 6a). GPSCllineage
is a known multidrug-resistant (MDR) lineage with a pre-dominant
predicted MDR antibiogram of penicillin, cotrimoxazole, erythromy-
cinand tetracycline resistance’. A similar analysis using the penicillin
binding protein (PBP) gene ‘types’ used in thein-silico classification of
pneumococcal resistance by the US Centers for Disease Control and
Prevention (CDC)*°identified the php2X-47 and pbp1A-13 types as being
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Fig.2| Transmission dynamics within the Maela refugee camp. a, Top: the
distribution of pairwise geographic distances between 411 different households
versus the number of intermediate transmission events as inferred using the
modified TransCluster algorithm. The median and interquartile range are given
by the horizontal lines, with the whiskers indicating the largest and smallest
values excluding those outside 1.5 times the interquartile range. Bottom: the
distribution of estimated intermediate transmission events within households.
b, Amap of the Maela refugee camp, with inferred direct transmission links
overlaid. Roads are shown in white. The direction of transmission is not
estimated. Blue lines indicate transmission links that would typically be inferred
using arepresentative genome per sample, while red lines indicate additional
links that were found using PDS. ¢, A representative mother-child pair indicating
how transmission direction was inferred. Coloured circles indicate the serotypes

Number of intermediate hosts

present, with PDS data available for those coloured in darker shade. Black lines
indicate close transmission links inferred using the TransCluster algorithm,

with the vertical red line indicating the time the child was one-year old.d, The
distribution of the direction of transmission between mother and child split

by whether the transmission event occurred before or after the child turned

one. e, Aschematic demonstrating that we would expect to see an elevated

rate of polymorphicsites (represented by blue and red variants) among close
transmission pairs. f, The distribution of the number of shared polymorphic
sitesin 3,663 potential transmission pairs involving an estimated 0,1 or >2
intermediate hosts. The elevated number of variantsinvolving O intermediates
hosts indicates amean bottleneck size >1. The median and interquartile range are
given by the horizontal lines, with the whiskers indicating the largest and smallest
values excluding those outside 1.5 times the interquartile range.
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different within-host variant.

strongly associated with the persistence of a lineage post treatment
(Extended DataFig. 6b). These are the most common typesin GPSClin
Maela, representing 54% and 98% of the single colony isolates, respec-
tively?. Alterations in the PBPs reduce their affinity for penicillin and
thus susceptibility to beta-lactam antibiotics while allowing them to
maintain their role in cell wall metabolism.

Although it has been suggested that the increase in resistant iso-
lates following treatment is due to the elimination of susceptible line-
ages”, we found that this pattern is observed after controlling for the
presence of GPSClinthe first sample of a pair. This suggests that treat-
mentincreases the frequency of GPSC1 by both eliminating competing
lineages and reducing competition for colonizing resistant strains. This
could motivate pre-emptive interventions, such as limiting contacts
with high-risk individuals following antibiotic treatment.

To investigate selection acting within a single carriage event, we
considered loci within the set of paired samples where the same line-
age was present in both samples of a pair (Methods). This revealed
that the diversity of within-host variants reduced markedly following
antimicrobial treatment (Fig. 4e). Anumber of variants were found at
lower frequencies post treatment includingin the capsular gene cpsE
(Fig. 4f and Extended Data Fig. 7c). Point mutations in cpsE have been
shown to alter the growth, adherence and competence of pneumo-
cocci®’. Common variants with smaller effect sizes were observed in
the adenylosuccinate synthetase gene (purA), and genes involved in

thezinc (adcC) and magnesium transport (corA) systems, which have
all been observed to be downregulated in response to sub-inhibitory
concentrations of penicillin®’. Taken together, antimicrobial treatment
produces a strong bottleneck within the host even when the resident
strain is resistant. The generation of low-frequency variants that are
then eliminated after treatment may be an example of short-sighted
evolution®,

While the paired-sample deep population genome-wide asso-
ciation study (GWAS) can identify changes occurring within a single
carriage event, it is unable to identify variation associated with selec-
tion against whole lineages. By comparing the presence and absence
of unitigs in samples taken within 28 d of treatment to those that had
not been treated, we identified a number of sequence elements asso-
ciated with antimicrobial treatment (Fig. 4d). This included elements
found in pbp2B, pbp2X and pbp1A—three of the genes that encode for
the major penicillin binding proteins which are critical in determin-
ing non-susceptibility to beta-lactam antibiotics™. Interestingly, the
strongest association was with pbp2B, which is the primary gene for
low-level penicillin resistance, and is consistent with amoxicillin being
used for treatment in the majority (66.9%) of cases*®. The stronger
association with pbp2B indicates that resistance conferred by these
mutations is found across a diverse set of lineages, while the associa-
tions observed in the paired analysis of PBP types are driven primarily
by particular lineages such as GPSCI.
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Fig. 4| Within-host dynamics of antimicrobial resistance and the impact of
antibiotic treatment. a, The fraction of carriage events consisting of a single
lineage found to be resistant to each antibiotic class. Only those classes found
to beless likely to occur ininstances of multiple colonization than expected
given the background prevalence in the population are shown. b, The number
of resistance calls for each antibiotic class in 1,158 samples for which both single
colony picks and PDS had been performed. ¢, The distribution of the change in
frequency of the GPSC1 lineage in 182 pairs of consecutive samples that have
and have not received antimicrobial treatment. The median and interquartile

range are given by the horizontal lines, with the whiskers indicating the largest
and smallest values excluding those outside 1.5 times the interquartile range.

d, Adot plotindicating the significance and effect size of unitigs found to be
associated with antimicrobial treatment using a linear mixed model in Pyseer.

e, The number of within-host SNV in 1,192 samples taken from distinct carriage
episodesinvolving only a single pneumococcal lineage split by recently received
antimicrobial treatment. f, The normalized count of unitigs found in CpsE in pairs
of samples where asubset had received treatment between sampling events.

We also observed associations withthe membrane protein FtsX, a
ribosomal RNA methyltransferase (rlmL) and aligand binding protein
(YpsA). FtsX is involved in cell division and is thought to co-locate
with both pbp2b and pbp2x in the outer-ring peripheral peptidogly-
can synthesis machine during cell division®’. YpsA is also linked to
pneumococcal cell division®®, RmlL is thought to facilitate resistance
occurring through other mutations®’. Variation at these loci could
allow pneumococci to slow down their metabolism and cell division,
increasingthe population’s chances of persisting over the time period
when the antibiotic is present. We also observed a weak association
withtheinsertion sequenceS1202, which has been closely linked to the
MDR-associated serotype 19F and its capsular polysaccharide synthesis
(cps) locus, which is predominantly found in GPSC1°.

Discussion

Our ability tounderstand the within-host evolution and transmission of
S.pneumoniaeis essential to developing successful public healthinter-
ventions. We have shown that deep within-host population sequenc-
ing can lead to substantial improvements in surveillance of high-risk
genotypes, reconstruction of transmission chains, and understanding
theimpactofantibiotic resistance on co-colonization and competition.
In particular, we were able to double our sensitivity for detecting the
highly invasive serotype lin carriage. These lineages were often found

at low frequencies, which may explain the disconnect between their
high prevalenceininvasive disease and scarcity in carriage studies that
rely on either latex sweeps or representative genomes. The increased
resolution of PDS also revealed an age-dependent rate of transmission
between mothers andinfants. This, coupled with the strong association
between geographic distance and the likelihood of direct transmission
within the Maela refugee camp, suggests that interventions targeting
close contacts could be particularly important for reducing disease
and colonization by resistant lineages in early childhood before vac-
cination and following antimicrobial treatment.

Theseresults demonstrate the substantialimprovement PDS can
provide in the near-to-real time surveillance of pathogens with high
rates of multiple colonization. Insuch pathogens, ignoring within-host
diversity can lead to a substantial fraction of colonization and trans-
mission events being missed. The implementation of PDS in routine
surveillance would require procedures very similar to those currently
used in public health laboratories that make use of WGS. The initial
culture step remains the same, with the main change being the depth
of'sequencing. Thisis rapidly becoming more affordable. However, the
computational analysis of these datais substantially more complicated,
which currently limits this surveillance to laboratories with advanced
genomic analytics capabilities. This is likely to improve as analytical
methods become more robust and easier to use.
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Our results provide a large-scale dataset on the natural
co-colonizationof bothresistant and susceptible pneumococcal lineages
within the same host. We provide clear evidence that such coexistence
is frequent (previously anassumption made by anumber of models***°)
andfindthatresistant lineages appear less often than expected in multi-
ple colonization given their overall frequency within the population, con-
sistent with thelower fitness of resistant lineages observedin laboratory
experiments. The negative association between resistance and multiple
colonization, combined with the association between antimicrobial
treatmentand subsequent colonizationby amultidrug-resistant strain,
indicates that reduced within-host competition following treatment
playsamajorroleintherisk of aninfant being colonized by an MDR line-
age. Thisemphasizes that the broader dynamics of pathogen population
structure and inter-strain competition must be a key consideration in
the design of vaccines and other interventions®. The observed compe-
tition could also motivate the use of pre-emptive probiotics to protect
against colonization by more dangerous lineages, although trials of
such approaches have returned mixed results®*>, The strong negative
selection observedinheat-shock proteins suggests that multiple-antigen
vaccines may provide a valuable alternative to current capsule-specific
vaccines as they have the potential to elicit cross-serotype protection*’.
Overall, the added insightsinto selection and evolution within the host,
coupled with the substantial improvements in transmission inference
andsurveillance, present acompelling case for the future routine use of
deepwithin-host populationsequencinginthe research and surveillance
of common bacterial pathogens.

Methods

Sample selection

Nasopharyngeal swabs were collected between November 2007 and
November 2010 fromaninitial cohort of 999 pregnant women, leading
to the enrolment of 965 infants as part of a previous study?. Ethical
approval for the original study was overseen by the Faculty of Tropical
Medicine, Mahidol University, Thailand (MUTM-2009-306) and Oxford
University, UK (OXTREC-031-06). Swabs were taken monthly from
birth for the first 24 months of the infant’s life. Of the original cohort,
swabs were obtained from 952 mothers, with dropouts largely due to
intrauterine deaths in the 3rd trimester and stillbirths. In total, 636
infants completed the full 24 months of the study, with the majority of
thoselost having left the camp. The outcome of the full cohortis given
inthe supplementary data available on GitHub. A total 0of 23,910 swabs
were collected during the original cohort study, including 19,359 swabs
that were processed according to World Health Organization (WHO)
pneumococcal carriage detection protocols® and/or the latex sweep
method®*. Allisolates were serotyped using latex agglutination as
previously described". In addition to swabs, the household location,
episodes of infant illness and antibiotic treatment were all recorded
over the 24-month sampling period for each infant.

Deep sequencing of sweeps of colonies was attempted on a subset
of4,000 swabs. All swabs taken before and after an antibiotic treatment
event were selected. Further swabs were included if they were inferred
to be within close transmission links corresponding to a distance of <10
SNPs, using a previously sequenced set of 3,085 whole-genome sequences
obtained fromsingle-colony picks. This allowed for increased resolution
intoboth theimpact of antibiotic treatment on within-host diversity and
consideration of the transmission bottleneck. A subset of 25 mother-child
pairs were also sequenced at a higher temporal resolution of at least
once every 2 months. These mother-child pairs were chosenif they had
completed the full24 months of the study and ifanumber of samples had
already been selected for sequencing in the first two sample selection
steps. The remaining samples were selected randomly.

Culture and sequencing
Nasopharyngeal swabs (100 pl) stored at =80 °Cin skim milk, tryptone,
glucose and glycerine media were plated onto Columbia CNA agar

containing 5% sheep blood (BioMerieux, 43071). These were incubated
overnightat37 + 2 °Cwith 5% CO,. Allgrowth was collected using sterile
plastic loops and placed directly into Wizard genomic DNA purifica-
tion kit nuclei lysis solution (Promega, A1120). The Wizard kit extrac-
tion protocol was then followed, eluting in 100 pl of the provided
DNA rehydration solution. DNA was quantified with aBioPhotometer
D30 (Eppendorf) and then stored at —80 °C before sequencing. DNA
extractions were sequenced if they contained more than 2.5 pug of DNA.
Sequencing was performed at the Wellcome Sanger Institute on an
Illumina NovaSeq at 192 plex using unique dual index tag sets.

Quality control filtering
Intotal, 3,961 samples were successfully sequenced, including 200 that
were sequenced in replicate. To concentrate our efforts on those sam-
pleswithsufficient datatoretrieve reliable results, we excluded samples
with a mean coverage below 50-fold, representing 20% of the median
coverage observed across all samples (Extended Data Fig. 8a). While it
is hard to choose an optimal coverage threshold, 50x has been shown
tobe areasonable coverage for the assembly of bacterial genomes®.
To account for contamination from other species, Kraken (1.1.1)
was run on all samples, with a histogram of the proportion of each
sample assigned to S. pneumoniae given in Extended Data Fig. 8b. A
threshold of requiring that at least 75% of reads were classified as S.
pneumoniae was chosen as a compromise between avoiding exclud-
ing too many samples and ensuring that contamination did not bias
our analyses. Further checks were also conducted at each stage of the
downstream analyses to ensure results were not impacted by remain-
ing low levels of contaminating species. Overall, this resulted in 3,188
samples including 164 replicates that were considered in the subse-
quent analysis steps.

Lineage deconvolution

Lineage deconvolution was performed via the mSWEEP (v1.4.0) and
mGEMS (v1.0.0) algorithms®**’ using a reference database consisting of
ahigh-quality subset 0f 20,047 genomes from the Global Pneumococcal
Sequencing Project database’. Included in this subset were 2,663 genome
assemblies fromthe original genome sequencing study of the Maelacamp
thatrelied onsingle colony picks®. The PopPUNK algorithm, whichusesa
k-mer-based approach to cluster genomesinto major lineages, was used
toassign each of these genomes to their respective global pneumococcal
sequencing cluster®®, The mSWEEP and mGEMS pipelines were then run
using thefastqfilesfor each deep-sequencing sample, with the exact com-
mands given in the Rmarkdown provided as part of the accompanying
GitHubrepository. The mSWEEP algorithm uses read pseudoalignments
output by Themisto (v0.2.0) to quickly estimate the abundance of refer-
ence groups within a mixed sample using a statistical mixture model.
mGEMS uses the resulting likelihood estimates output by mSWEEP to
deconvolute the mixed reads into one or more groups. Importantly,
reads may be assigned to multiple reference groups, accounting for the
considerable homology between pneumococcal lineages. Toreduce the
possibility of false positives, lineages were only called if they were present
atafrequency of at least 1%. The Mash Screen algorithm (v2.2.2), which
similar to PopPUNK uses k-mers to assign reads to a reference database,
was also run on each of the deconvoluted lineages using the same data-
base®. Only lineages that shared at least 990/1,000 hashes were retained.

Serotype calling

Serotypes wereidentified by taking the union of two pipelines (Extended
Data Figs. 1e and 9a). The serocall (v1.0) algorithm was run on the raw
fastq files for each sample®. As a second step, the seroBA (v1.0.2) algo-
rithmwasrunoneach ofthe deconvoluted lineages identified by mGEMS
pipeline’’. By comparing the results of these pipelines on both artificial
laboratory mixtures??and samples for which single colony picks had also
been performed, we were able to determine that while both algorithms
generally agreed at the serogroup level, the serocall algorithm was more
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sensitive and was able to detect lineages below the 1% cut-offused in run-
ning mGEMS. As the serocall algorithm was less precise at distinguishing
serotypes at the sub-group level (Extended Data Fig. 1d), whenever the
pipelines produced conflicting results at the sub-serogroup level, the
seroBA result was chosen. After taking the union of these two pipelines,
wewereableto correctly recover 93.6% of serotypes originally identified
by latex sweeps performed on the same set of samples. The analysis of the
artificial laboratory mixtures alsoindicated that the combined pipeline
achieved a sensitivity of 0.93 witha precision of 1.

Resistance calling

Similar to the calling of serotypes, resistance determinants were identi-
fied via two pipelines using the raw data and the deconvoluted output
of the mGEMS pipeline. The pneumococcal-specific CDC resistance
calling pipeline was run on each of the deconvoluted lineages identi-
fied using mGEMS™. This makes use of a database of PBP proteins with
knownresistance profiles. The combined mGEMS and resistance calling
pipeline was foundto achieve asensitivity of 0.75and precision of 0.825
inidentifyingresistance calls fromthe artificial laboratory mixtures. The
lower accuracy in identifying resistance was caused by small inaccura-
cies in the deconvolution of strains and a lower sensitivity in detecting
resistanceinthe sample containing10 lineages. As the maximumnumber
of lineages observed in any sample in our dataset was six, this drop in
sensitivity at very high multiplicities of infection was not of concern. To
account forinaccuracies in the deconvolution of resistance-associated
sequencing reads, we only report resistance calls at the sample level.
After restricting the comparison of laboratory calls to those samples
continuing <10 lineages, we achieved anaccuracy of 1at the sample level.
To verify the pipeline onamore diverse dataset, we compared theresist-
ancecalls foundin1,158 samples for which both single colony picks and
whole-plate sweeps had beentaken. The mGEMS +CDC pipeline was able
to achieve arecall rate of 96.9%, indicating that the combined pipeline
can accurately identify resistance from deep-sequenced plate sweeps.
To check that the pipeline did not result in a high number of false posi-
tives, we compared the calls from single colony picks and plate sweeps
onthe subset of 584 samples that involve only a single lineage. Here we
would expect theresults of bothapproachestobe similar. Extended Data
Fig.2aindicates that there was no significant difference on this subset of
samples, with only avery smallincrease of 2.7% (53/1,980) of resistance
calls (P=0.4, Poisson generalised linear model).

Resistance co-occurrence

To examine whether certain lineages or serotypes were more likely to
befoundininstances of multiple colonization, we performed alogistic
regression using ageneralized linear mixed model withacomplemen-
tary log-log link function. Lineages were classified as ‘resistant’ to
each antibiotic class using the pneumococcal CDC resistance calling
pipeline*. To control for the increase in the probability of resistance
being presentinasample with multiple lineages simply because there
were more lineages present, we used an offset term. Thisisacommon
approach used in ecological studies to control for the differences in
exposure when investigating a binary outcome. This allows us to test
whether the presence of resistance as a binary dependent variable is
associated with multiple colonization beyond what would be expected
given the background frequency of resistance in the population.

To control for the lineages present within each sample, we per-
formed multidimensional scaling ona pairwise distance matrixinferred
using the Mash algorithm”. The first ten components were included
inthe regression to control for population structure, as iscommonin
bacterial GWAS studies’. Host effects were controlled for by including
arandom effect for the host.

Genome-wide association analyses
To better account for the extensive pangenome in S. pneumoniae,
locus-level association analyses were performed using an alignment-free

method which firstidentifies all unique unitigs (variable length k-mers)
withinthe samples being considered. Unitigs have been shownto better
account for the diverse pangenomes found in bacteria”. The frequency
of each unitigin each sample was obtained by first running the Bifrost
algorithm to define the complete set of unitigs present™. The count of
each unitig in each sample was then obtained using a custom Python
scriptavailable inthe accompanying GitHub repository. Toavoid testing
very rare features, we only considered those unitigs present in at least
1% of the samples of interest in our presence/absence-based analysis
andin atleast 2% of our paired analysis discussed below.

To investigate the impact of antibiotic treatment on S. pneumo-
niae carriage, we performed two main analyses. The first consisted of
atypical case control design and compared samples that were within
arecent antimicrobial treatment event to those where no treatment
had occurred. This allowed us to investigate features associated with
recent antibiotic treatment but does not consider the changes that
occur withinanindividual thatis already colonized with S. pneumoniae
before treatment. To shed light on this scenario, our second analysis
investigated the impact of treatment on pairs of consecutive samples
fromthe same patient, where asubset of patients had received antibi-
otic treatment between samples (Extended Data Fig. 7a).

Standard design

Samples were classified as treated if they were within 28 d of an antimi-
crobial treatment event. This was chosen after reviewing the decline
in the proportion of resistant isolates tested via disk diffusion and
Etest minimum inhibitory concentration (MIC) testing of all swabs
positive for S. pneumoniae (Extended Data Fig. 7b). The Pythonimple-
mentation of the Seer algorithm was then used to identify unitigs
significantly associated with treatment”. Here, rather than using
counts, unitigs were called as either present or absent. To control
for population structure, Pyseer (v1.3.9) was run using a linear mixed
model, with a kinship matrix generated by taking the cross prod-
uct of the binary unitig presence/absence matrix. Unitigs found to
be significant were then aligned to a collection of pneumococcal
reference genomes including all the single-genome assemblies of
ref. ?, and assigned a gene annotation on the basis of the reference
geneinwhich theyaligned. Only those unitigs that were successfully
aligned were considered for further analysis. Toaccount for the large
number of tests performed, we considered three P-value thresholds
corresponding to an expected number of false discoveries (EFD) of
0.1,1and 5. The 0.1 threshold corresponds with the commonly used
Bonferroni method, while the more relaxed thresholds allowed us to
consider weaker signals. All three thresholds were more stringent than
controlling for the false discovery rate using g-values which has been
suggested as an alternative to the Bonferroni method as it is often
found to be overly conservative’. Combined with past knowledge
of possible resistance elements in S. pneumoniae, we were able to
confidently identify associations.

Paired design

Our unique sampling allows us to compare samples from the same
individual before and after treatment. We firstidentified sample pairs
where there were at most 100 d separating pneumococcal positive
nasopharyngeal swabs from the same individual. We restricted our
analysis toinfants as treatment information for mothers was not avail-
able. To ensure that previous treatments before the first sample of
an individual were not confounding our results, we excluded pairs
with any treatment event within 28 d of the first swab. This resulted in
615 sets of paired samples. We classified these pairs into treated and
untreated groups on the basis of whether or not the individual had
received antibiotic treatmentin the time between swabs. A treatment
eventwas defined toinclude any antibiotic class, although amoxicillin
made up the vast majority (66.9%). The prescription of antimicrobials
in the study participants was monitored by the study team and care

Nature Microbiology | Volume 7 | November 2022 | 1791-1804

1799


http://www.nature.com/naturemicrobiology

Article

https://doi.org/10.1038/s41564-022-01238-1

was taken to documentboth antimicrobials prescribed by the Shoklo
Malaria Research Unit clinic and those obtained from other sources™.

We only considered paired samples where the infants were positive
for S. pneumoniae in both samples. As a result, we are not considering
the impact of antibiotic treatment on overall carriage rates but rather
thedifferencesin S. pneumoniae genomes pre and post antibiotic treat-
ment. Using this paired design, we considered the impact of treatment
both at the lineage (GPSC) level as well as the locus level. Unlike many
previous bacterial GWAS studies which typically focused onthe presence
or absence of a feature, we considered the frequency of both lineages
and loci within each sample. Thisimproves our ability to identify more
subtle changes that can be obscured by ignoring within-host diversity.

Lineage level. At the lineage level, we considered the estimated fre-
quencies of each lineage obtained using the mSWEEP algorithm. We
used asimplelinear model to test whether treatmentimpacted the fre-
quency of the second sample of a pair after controlling for the observed
frequency inthe first sample as well as the difference in time between
the two samples.

Locus model. To investigate locus-level effects, we considered the
frequency of each unitig in each sample. To control for lineage-level
effects, we concentrated on pairs where the same lineage was present
inboth samples. This reduced the analysis to 445 pairs.

Unlike the lineage-level analysis where we used estimated fre-
quencies, unitigs were represented by the number of times they were
observedinthe raw reads from each sample. Thisis asimilar problem
to that found in the analysis of RNA-seq datasets where the number
of RNA reads aligned to a gene was used as a proxy for the expression
of that gene. Using an approach similar to that commonly used in the
analysis of RNA-seq data, we fit alinear model to the log unitig counts
normalized by the number of reads sequenced ineach sample. Similar
to the commonly used analysis of covariance (ANCOVA) method for
analysing pre and post treatment data, we used the pre-treatment count
to control for the paired nature of the data. We also included a covariate
to control for the time between when the samples were taken. Further
explanation and the code used to run all the association analyses are
availablein the Supplementary Textincludedin the GitHub repository.

Within-host variant calling

Toidentify within-host variants, we ran the LoFreq (v2.1.5) variant call-
ing pipeline on all samples for which only a single GPSC lineage had
been identified with mSWEEP. The Lofreq pipeline has been shown
to generate robust minority variant calls and accounts for base call
qualities and alignment uncertainty to reduce the impact of sequenc-
ing errors”’. To mitigate the impact of reference bias, each sample was
aligned toarepresentative assembly (the medoid) for the GPSC that it
most closely resembled viaMash distance’. Reads were aligned to the
chosenreference genomes using BWA v0.7.17-r11887%. The Picard tools
(v2.23.8) ‘CleanSam’ function was then used to soft clip reads aligned
to the end of contigs and to set the alignment qualities of unaligned
readstozero. Pysamstatsvl.1.2wasrunto provide allele counts foreach
location of the aligned reference for use in the transmission analysis.
The LoFreq pipeline was initially run with stricter filters, requiring a
coverage of atleast 10 reads toidentify a variant. The resulting variant
calls were used along with the read alignment as input to the GATK
BaseRecalibrator tool (v4.1.9), as suggested in the LoFreq manual to
improve the estimated base quality scores”. Finally, the LoFreq pipeline
was run for a second time with a reduced coverage requirement of 3
reads. Theresulting variant calls were only considered if there was sup-
portforthevariant on atleast tworeadsinboth the positive and minus
strand. In the remaining within-host single nucleotide variants, there
was strong agreementbetween variant callsin the set of 95 sequencing
replicates for which only asingle lineage was present, with amedian of
91.7% of variantsrecovered (Extended Data Fig.10a). The distribution of

minority variants among different coding positions was also consistent
with real mutations rather than sequencingerrors, with variants at the
third codon position being most frequent (Extended Data Fig.10b)*°.

Filtering problematic regions

To identify problematic variants that were probably the result of
low-level contamination or multi-copy gene families, we implemented
anapproach similar to that used to identify recombinationin the tool
Gubbins®. A scanstatistic was used to identify regions of the alignment
withanelevated number of polymorphisms. Assuming that within-host
variants arerelatively rare and should be distributed fairly evenly across
the genome, regions with a high number of polymorphisms are likely
tobe theresult of confounding factors and can thus be filtered out.

We assumed a null hypothesis (H,) that the number of polymor-
phismsoccurringinawindows, follows abinomial distribution based
on the number of bases within the window w and the mean density
of polymorphisms across the whole alignment. We chose w for each
sample such that Expected(s,) = 1. A window centred at each poly-
morphism was then considered and a one-tailed binomial test was
performed to determine whether that window contained an elevated
number of polymorphisms. After adjusting for multiple testing using
the Benjamini-Hochberg method, windows with a Pvalue <0.05 were
selected and combined if they overlapped with another window®.

To define the edges of each region more accurately, we assumed
that each combined window conformed to an alternative hypoth-
esis H,,, where the number of polymorphisms s, also followed a bino-
mial distribution, with a rate based on the length of the window [, and
the number of polymorphisms within the window s,. Each end of the
window was then progressively moved inward to the location of the
next polymorphism until the likelihood of H,, relative to H, no longer
increased. The resulting final windows were then called as potential
problematic regions if they satisfied the inequality

0.05 i:sj—1<lf> )
—_— >1- di(1—dp)le—1i

where [;is the length of the final window, g is the length of the refer-
ence genome and d, is the expected rate of polymorphisms under
the null hypothesis. The left-hand side of the equation accounts for
the possible number of similarly sized non-overlapping windows in
thereference. To further reduce the chance that spurious alignments
between homologous genes could bias our results, we took aconserva-
tive approach and excluded mutations that were found within asingle
read length (150 bp).

Mutational spectrum

Inthe mutational spectrumanalysis of human cancers, normal samples
are usually taken along with samples of the cancer to allow for somatic
mutations to be distinguished from germline mutations. As we can-
not be sure which alleles were present at the start of a pneumococcal
carriage episode, we cannot be certain of the direction a mutation
occurredin. Forexample, itis difficult to distinguish betweenan A~>C
and aC~>Amutation.Instead, we considered the difference between the
consensus and minority variants ateachsite in the reference genome. If
we assume that the colonizing variant typically dominates the diversity
withinaninfection, then this approach corresponds with the direction
of mutation. To account for the context of each mutation, we consid-
ered the consensus nucleotide bases on either side of the mutation.
These were then normalized to account for the overall composition of
the reference genome for each GPSC. The normalized mutation rates
(r) for each of the 192 possible changes (j) in a trinucleotide context
were calculated as:
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where n;is the totalnumber of mutations observed for a trinucleotide
changej, and L; is the total number of times that the corresponding
trinucleotide is present in the reference genome. To avoid double
counting the same mutation, each variant was only counted once
per host. The resulting frequencies for within and between hosts are
given in Extended Data Fig. 4. The frequencies of each of the single
nucleotide changes without accounting for sequence context were
calculated similarly.

To compare with the mutational spectrum observed across a
longer timescale, we considered the recombination-filtered alignments
of 7major sequence clusters generated in the original publication of the
single colony pick analysis of the Maela dataset”. We used Iqtree v2.1.2
to build amaximum-likelihood phylogeny for each alignment using a
General Time Reversible model with 4 rate categories and enabled the
‘ancestral’ option to reconstruct the sequences at the internal nodes
of the resulting phylogeny®’. Mutations were called by considering
changes in alleles between consecutive nodes of the phylogeny, and
the mutational spectrum was normalized using the trinucleotide fre-
quenciesin the reconstructed ancestral sequence of the root node. A
permutation test was used to compare the proportion of each mutation
type found in the within-host and between-host sets.

Selection
Selection analyses were performed using a modified version of the dNd-
Scv package*’ to allow for the incorporation of variants called against
multiple reference genomes. Distinct from traditional approaches to
estimating dN/dS ratios that were developed toinvestigate selectionin
diverse sequences and rely on Markov-chain codon substitution models,
dNdScv was developed to compare closely related genomes such as
those found insomatic mutation studies where observed changes often
represent individual mutation events. dNdScv uses a Poisson framework
allowing for more complex substitutionmodels that account for context
dependence and the non-equilibrium of substitutionsinestimating dN/
dSratios*®. Thisis particularlyimportantin the case of sparse mutations
in low-recombination environments, as is the case in pneumococcal
carriage over short timescales. To avoid false signals of negative or posi-
tive selection that have been observed under simpler models*°, dNdScv
uses a Poisson framework to account for the context dependence of
mutations and non-equilibrium sequence composition, and to provide
separate estimates of dN/dS ratios for missense and nonsense mutations.
To extend dNdScv to allow for the use of multiple reference
genomes, we first clustered the gene regions from the annotated ref-
erence genomes using Panaroo v1.2%, Theimpact of each of the muta-
tionsidentified using the LoFreq pipeline was inferred with dNdScv for
each sample separately, using the corresponding reference genome
andgene annotation file. The combined calls for each orthologous clus-
ter were then collated and the collated set used to infer genome-wide
and gene-level dN/dS estimates using a modified version of dNdScv
available via the GitHub repository that accompanies this manuscript.
We used the default substitution model in dNdScv, which uses 192
rate parameters to model all possible mutations in both trendsina
trinucleotide contact as well as two w parameters to estimate the dN/
dSratios for missense and nonsense mutations separately. Due to the
large number of samples, we used the more conservative dNdSloc
method which estimates the local mutation rate for a gene from the
synonymous mutations observed exclusively within that gene®. Care is
needed wheninterpreting dN/dS ratios estimated from polymorphism
dataas they canbe both time dependent, providing weaker signals of
selection for more recent changes, and can be biased by the impacts
of recombination®®. However, these are unlikely to have caused sub-
stantial issues in this analysis as the short timescales involved mean
that recombination was unlikely to have occurred at arate sufficient to
bias the results and as each variant call was derived at the sample level
rather than by the comparison of two separate samples, as is typically
the case in dN/dS studies relying on multiple sequence alignments

of diverse sequences. As an extra precaution, we also excluded gene
clusters identified as paralogous by the Panaroo algorithm to reduce
the chance that spurious alignments between paralogous genes could
bias theresults.

Transmission inference

Toidentify thelikelihood of transmission between each pair of hosts, we
extended the TransCluster algorithm to account for genetic diversity
within the host and to be robust to deep-sequencing data involving
multiple lineages.

The TransCluster algorithm expands the commonly used approach
of using an SNP distance threshold to exclude the possibility of direct
transmission to account for both the date of sampling and the esti-
mated epidemiological generation time of the pathogen®’. However,
hypermutating sites, contamination, sequencing error, multi-copy
gene families and multiple colonization all present additional chal-
lenges when investigating transmission using within-host diversity
information®™*.

Toaccount for these challenges, we took a conservative approach
and estimated the minimum pairwise SNP distance that could separate
any pair of genomes taken from two samples. Thus, two samples were
only found to differ at a site if none of the alleles in either sample at
that site were the same (Extended Data Fig. 9b). To allow for varia-
tion in sequencing depth across the genome, we used an empirical
Bayes approach to provide pseudocounts for each allele at each site,
informed by the allele frequency distribution observed across all sites.
Amultinomial Dirichlet distribution wasindependently fit tothe allele
counts for each sample via the maximume-likelihood fixed-pointitera-
tion method. Theinferred parameters were then used as pseudocounts
and afrequency cut-off corresponding to filtering out variants less than
2% was used. All variant calls that were observed were retained. This
approach provides alower-bound estimate of the genetic divergence
separating any pair of pneumococcal genomes within each of the two
samples while allowing for the possibility of multiple colonization (see
Supplementary GitHub repository).

The estimated minimum SNP distance was then used as input to
the TransCluster algorithm, assuming a mutation rate of 5.3 SNPs per
genome per year and a generation time of 2 months. These values were
inferred using an adapted version of the TransPhylo algorithm on the
previously sequenced single colony picks from the Maela camp (see
Supplementary Methodsincludedinthe accompanying GitHub reposi-
tory)®. The estimated substitution rate conforms with previous studies
investigating short-term evolutionary rates in S. pneumoniae' and the
estimated generation timeis consistent with previous estimates of pneu-
mococcal carriage durations and auniform distribution of transmission
events**. This resulted in estimates of the most probable number of
intermediate hosts separating two sequenced pneumococcal samples.
These estimates were then combined with epidemiological and serologi-
calinformation toidentify the most probable direction of transmission
between mothers and their children, asis described in the main text.

To investigate the transmission bottleneck, we compared the
distribution of the number of shared polymorphicsitesin samples with
the most probable number of intermediate hosts, asinferred using the
TransCluster algorithm (Fig. 2e). The effects of hypermutable sites,
sequencingerrors and multiple infections, which have been shown to
confound efforts to estimate the size of the transmission bottleneck,
are likely to be similar irrespective of how close two samples are in
the transmission chain*’. Thus, any increase in the number of shared
polymorphic sites between samples that are likely to be related by
recent transmissionis probably the result of multiple genotypes being
transmitted (Fig. 2e).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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Data availability

Metadata originally collected inref.”° are available from https://github.
com/gtonkinhill/pneumo_withinhost_manuscript. To protect the ano-
nymity of study participants, some epidemiological data have been
obscured in the publicly available files. The original metadata files
are available on request via the MORU Tropical Health Network Data
Access Committee https:/www.tropmedres.ac/units/moru-bangkok/
bioethics-engagement/data-sharing.

Raw sequencing data are stored with the ENA under project
code PRJEB22771, withindividual accessions given in Supplementary
Table1. The following previously published datasets were used: ref.”;
NCBISequencing Read Archive, ERP000435, ERP000483, ERP000485,
ERP000487, ERPO00598 and ERP0O00599; Global Pneumococcal
Sequencing project; ENA RJEB3084.

Code availability

Supplementary code is available from https://github.com/gtonkin-
hill/pneumo_withinhost_manuscript. The transmission clustering
implementation is available at https://github.com/gtonkinhill/fast-
transcluster. The modified version of the dndscv algorithmis available
at https://github.com/gtonkinhill/dndscv.
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Extended Data Fig. 2| See next page for caption.
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Extended DataFig. 2 | Verification of resistance calling pipeline as well as
the distribution of resistance calls in mothers and infants. (a) The number
of resistance callsidentified in 584 samples which consisted of only asingle
pneumococcal lineage and were sequenced using PDS and via single colony
picks in Chewapreecha et al., 2014. The high correspondence between the
two methods suggests PDS has alow false positive rate. (b) The number of

samples found to be either resistant or susceptible to each antibiotic class for
both mothers and infants. Resistance was determined by running the CDC
pneumococcal resistance pipeline on the deconvoluted lineages output by the
mGEMS pipeline. The individual lineage calls were collapsed to the sample level
so thatasample was called as ‘resistant’ if resistance was observed in any of its
lineage.
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Extended Data Fig. 3| Distribution of SNV found in regions with elevated
rates of polymorphisms. Boxplots indicating the distribution of the number
of SNV found in regions with elevated rates of polymorphism from 1592
samples classified by the spatial scan statistic (see Methods). The median and
interquartile range is given by the horizontal lines with the whiskers indicating

O
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the largest and smallest values excluding those outside 1.5 times the interquartile
range. The high rate of polymorphismsin these region indicates that these SNVs
are unlikely to be the result of denovo mutation within the host and are instead
likely to be driven by recombination, gene duplication, homology with phages
and co-colonising bacterial species and hard to align regions.
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consecutive samples. Multiple colonisation events that were only observed at a
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Extended Data Fig. 7| GWAS study design and results of paired sample
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polymorphisms. A linear model on the log of the unitig counts per million similar
to that commonly used in RNA-seq analyses was used in the paired design while
the Pyseer algorithm was used in the standard design. (b) The proportion of
resistant isolates following antimicrobial treatment. Those samples within
athreshold of 4 weeks (28 days) of a treatment event were classified into the

Average effect size

‘treated’ class. (c) A dot plot indicating the significance and average effect size of
unitigs found to be associated with treatment in the analysis of paired samples
taken from the same host where a subset have received antimicrobial treatment
inbetween sampling events. Regressions were performed using alinear model
with the frequency of the unitig within the host taken as the dependent variable
(Methods). The horizontal red lines indicate the expected number of false
discoveries (EFD) providing different significance levels to interpret the resulting
variant calls.
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Extended Data Fig. 8 | Distribution of sequencing coverage and
contamination used to determine quality control cut-offs. The distribution
ofthe depth of sequencing coverage (a) and fraction of reads (b) that aligned to
S. pneumoniae using the Kraken2 metagenomics read classification algorithm.
The vertical red lines indicate the minimum thresholds chosen for samples

to beincluded in the main analysis. (c) Boxplots indicating the distribution
ofthe fraction of reads assigned to each species in each of the 3761 samples

by the Kraken2 metagenomics read classification algorithm. Due to the large
sequence diversity within, and similarity between, S. pneumoniae and S.
pseudopneumoniae, alarge fraction of reads assigned as ‘unclassified’ and as

S. pseudopneumoniae may actually belong to S. pneumoniae genomes. The
median and interquartile range is given by the horizontal lines with the whiskers
indicating the largest and smallest values excluding those outside 1.5 times the
interquartilerange.
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transmission calculations. (a) A schematic indicating the bioinformatics location between the two samples. Variable sequencing coverage is accounted
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Nature Microbiology


http://www.nature.com/naturemicrobiology

Article

https://doi.org/10.1038/s41564-022-01238-1

=

5 1.001
9 o %% @
.8 :’.r’: .
2 b e
£ 075

)] .

= ee’le

3

: o
2. 0501 . .
S ..
E .
£

5 0.251

=

S

B

©

£ 0,001 .

Extended Data Fig.10 | Reproducibility of single nucleotide (SNV) variant
calls and the distribution of variable site among different coding positions
used to assess the reliability of SNVs. (a) The fraction of minority single
nucleotide variant calls replicated in 95 samples which involve only asingle
pneumococcal lineage and were sequenced in replicate with separate reverse
transcription, PCR amplification, and library preparation steps. The median
andinterquartile range is given by the horizontal lines with the whiskers
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indicating the largest and smallest values excluding those outside 1.5 times the
interquartile range (b). The distribution of the number of variable sites among
different coding positions. Variable sites are dominated by those seen at the
third codon position similar to that observed in Dyrdak et al., 2019. The stability
ofthe fractions at lower frequencies suggests that the variant calling pipeline
has successfully filtered out erroneous variant calls. At higher frequencies, the
reductioninthe total number of variants leads to increased variability.
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Recruitment Samples were taken from those originally collected as part of the Maela pneumococcal carriage study (Turner et al., 2012).
Briefly the recruitment occurred between October 2007 and November 2008, when all pregnant women attending the SMRU
antenatal clinic at 28-30 weeks gestation were invited to consent to their infant’s participation in a pneumonia cohort study.
Using sealed opaque envelopes containing an allocation code, women were randomly allocated to the pneumococcal
carriage sub-cohort at enrolment. For this sub-cohort, women had a nasopharyngeal swab (NPS) taken at delivery and both
infant and mother had a NPS taken at monthly surveillance visits from 1-24 months of age.
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Sample size No formal sample size calculation was performed. However, the sample size was chosen to be sufficiently large such that: all samples
collected in the original study by Turner et al., 2011 that occurred before and after antimicrobial treatment were included; all samples found
to be within 10 SNPs in the study of Chewapreecha et al., 2014 could be included and; samples with a resolution of at least one every 2
months could be included from a subset of 25 mother/child pairs. Culture and sequencing was attempted on a total of 4000 samples
(including replicates) of which 3188 passed quality control checks.

Data exclusions  Only samples that failed initial quality control as described in the methods section of the manuscript were excluded from subsequent
analyses.

Replication To check for potential processing artifacts, 192 of the selected samples were sequenced in replicate with separate PCR amplification and
library preparation steps. The culture step was also replicated in a further 8 samples of which 3 passed initial quality control filters. A further
subset of 1158 the samples were separately cultured and single colony picks sequenced in the previous study of Chewapreecha et al., 2014.
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Randomization  Samples taken within 2 months of a antimicrobial treatment event were allocated to the 'treated' group with the remaining samples allocated
as 'untreated'. No further allocation into groups was done. Other covariates such as the person being samples, the timing of samples and
duration of pneumococcal carriage were included as variables in the regression analyses.

Blinding No blinding was performed. Antimicrobial treatment was given based on the health requirements of the infants as determined by a doctor
and was not determined by this study.
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