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1 Introdu
tionWith the advent of Internet-based development within e-business and e-government there is an in
reasing need to de�ne well-founded theories toguarantee the su

essful integration and interoperability of inter-organizational
ollaborations. It is now widely a

epted that in su
h 
omplex distributedsystems a 
ontra
t is needed in order to determine what are the responsi-bilities and rights of the involved parti
ipants. Su
h a 
ontra
t should also
ontain 
lauses stating what are the penalties in 
ase of 
ontra
t violations.Ideally, one would like to guarantee that the 
ontra
t is 
ontradi
tion-freeby being able to reason about it, and to ensure that the 
ontra
t is ful�lledon
e ena
ted. In order to do so the 
ontra
t should be written in a formallanguage amenable to formal analysis.In [PS07a℄ we have introdu
ed CL, a formal language for writing 
on-tra
ts, whi
h allows to write (
onditional) obligations, permissions and prohi-bitions of the di�erent 
ontra
t signatories, based on the so-
alled ought-to-doapproa
h. The ought-to-do approa
h 
onsiders the above normative notionsspe
i�ed over (names of) a
tions, as for example �The 
lient is obliged to payafter ea
h delivery�. In CL the above would be written as [d]O(p), where dis an a
tion representing the delivery, after whi
h O(p) is the obligation ofpaying. A
tions may be more 
omplex, involving 
on
urrent 
omposition,non-deterministi
 
hoi
e, negation (a, meaning any a
tion but a), et
. Wehave also given a formal semanti
s of the 
ontra
t language in a variant of µ-
al
ulus, but we have left the formalization of the underlying a
tion algebraunderspe
i�ed.In this paper we introdu
e a new algebrai
 stru
ture to provide a well-founded formal basis for the a
tion-based 
ontra
t language CL. Besides itsuse under the above-mentioned 
ontext, we believe the algebrai
 stru
turepresented here is interesting by itself. Though the algebrai
 stru
ture wede�ne is somehow similar to Kleene algebra with tests [Koz97℄, there aresubstantial di�eren
es due mainly to our appli
ation domain. A �rst di�er-en
e is that we do not in
lude the Kleene star (iteration) as it is not neededin our 
ontext (see [PS07a℄). A se
ond di�eren
e is that we introdu
e an op-erator to model 
on
urren
y. The main 
ontributions of the paper are: (1) Aformalization of 
on
urrent a
tions; (2) The introdu
tion of a di�erent kindof negation over a
tions; (3) A restri
ted notion of resour
e-awareness; (4)A standard interpretation of the algebra over spe
ially de�ned rooted trees;and (5) A 
ompleteness result. Among other, the interpretation using treesis intended to give in further work a parti
ular semanti
s for the a
tions ofthe 
ontra
t language of [PS07a℄.The paper is organized as follows. The rest of the Introdu
tion presents3



brie�y the CL 
ontra
t language [PS07a℄. In Se
tion 2 we provide somealgebrai
 ba
kground and useful terminology before introdu
ing a �rst (
ore)version of the algebra for 
on
urrent a
tions. In se
tion 3 we give a standardinterpretation of the algebra terms as rooted trees. The main result of thisse
tion is the 
ompleteness of the algebra over rooted trees. In se
tion 4we extend the algebra with boolean tests whereas in se
tion 5 we introdu
ea
tion negation and we dis
uss a 
anoni
al form for our algebra. In Se
tion6 we introdu
e the reader to a more formal relation between the presentalgebra and the 
ontra
t language CL.1 In the last se
tion we 
on
lude ourwork and give an extensive dis
ussion on related works.1.1 CL � A Formal Language for Contra
tsIn this se
tion we re
all the 
ontra
t language CL; for a more detailed pre-sentation see [PS07a℄.De�nition 1.1 (Contra
t Language Syntax). A 
ontra
t is de�ned by:
Contract := D ; C

C := φ | CO | CP | CF | C ∧ C | [α]C | 〈α〉C | C U C | © C | �C
CO := O(α) | CO ⊕ CO

CP := P (α) | CP ⊕ CP

CF := F (α) | CF ∨ [α]CFThe syntax of CL 
losely resembles the syntax of a modal (deonti
) logi
.Though this similarity is 
learly intentional sin
e we are driven by a logi
-based approa
h, CL is not a logi
. The interpretation of the CL syntax isgiven by translating it into an extension of µ-
al
ulus whi
h we 
all Cµ. Inwhat follows we provide an intuitive explanation of the CL syntax.A 
ontra
t 
onsists of two parts: de�nitions (D) and 
lauses (C). Wedeliberately let the de�nitions part underspe
i�ed in the syntax above. Dspe
i�es the assertions (or 
onditions) and the atomi
 a
tions present in the
lauses. φ denotes assertions and ranges over boolean expressions in
ludingthe usual boolean 
onne
tives, and arithmeti
 
omparisons like �the budgetis more than 200$�. We let the atomi
 a
tions underspe
i�ed, whi
h for ourpurposes 
an be understood as 
onsisting of three parts: the proper a
tion,the subje
t performing the a
tion, and the target of (or, the obje
t re
eiving)su
h an a
tion. Note that, in this way, the parties involved in a 
ontra
t areen
oded in the a
tions.1An extensive investigation in this dire
tion is 
arried out in a follow-up paper [PS08℄.4



C is the general 
ontra
t 
lause. CO, CP , and CF denote respe
tively obli-gation, permission, and prohibition 
lauses. O(·), P (·), and F (·), representsthe obligation, permission or prohibition of performing a given a
tion. ∧and ⊕ may be thought as the 
lassi
al 
onjun
tion and ex
lusive disjun
tion,whi
h may be used to 
ombine obligations and permissions. For prohibition
CF we have ∨, again with the 
lassi
al meaning of the 
orresponding oper-ator. α is a 
ompound a
tion (i.e., an expression 
ontaining one or moreof the following operators: 
hoi
e �+�; sequen
e �·�; 
on
urren
y �&�, andtest �?� �see [PS07b℄). Note that synta
ti
ally ⊕ 
annot appear betweenprohibitions.We borrow from propositional dynami
 logi
 [FL77℄ the syntax [α]C torepresent that after performing α (if it is possible to do so), C must hold. The
[·] notation allows having a test, where [φ?]C must be understood as φ ⇒ C.
〈α〉C 
aptures the idea that it must exist the possibility of exe
uting α, inwhi
h 
ase C must hold afterwards. Following temporal logi
 (TL) notationwe have U (until), © (next), and � (always), with intuitive semanti
s as inTL [Pnu77℄. Thus C1 U C2 states that C1 holds until C2 holds. ©C intuitivelystates that C holds in the next moment, usually after something happens, and
�C expresses that C holds in every moment. We 
an de�ne ♦C (eventually)for expressing that C holds sometimes in a future moment.To express CTDs we provide the following notation, Oϕ(α), whi
h issynta
ti
 sugar for O(α) ∧ [α]ϕ stating the obligation to exe
ute α, andthe reparation ϕ in 
ase the obligation is violated, i.e. whenever α is notperformed. The reparation may be any 
ontra
t 
lause whi
h is formed onlyof O and F expressions. Similarly, CTP statements Fϕ(α) 
an be de�nedas Fϕ(α) = F (α) ∧ [α]ϕ, where ϕ is the penalty in 
ase the prohibition isviolated. Noti
e that it is possible to express nested CTDs and CTPs.In CL we 
an write 
onditional obligations, permissions and prohibitionsin two di�erent ways. Just as an example let us 
onsider 
onditional obliga-tions. The �rst kind is represented as [α]O(β), whi
h may be read as �afterperforming α, one is obliged to do β�. The se
ond kind is modeled using thetest operator ?: [ϕ?]O(α), representing �If ϕ holds then one is obliged toperform α�. Similarly for permission and prohibition. For 
onvenien
e, inwhat follows we use the notation φ ⇒ C instead of the CL syntax [φ?]C.
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2 Algebra of Con
urrent A
tions2.1 Ba
kgroundWe re
all that a Kleene algebra is a stru
ture K = (K,+, ·, 0, 1,∗ ) withthe properties that (K,+, 0) is a 
ommutative monoid with the identityelement 0, and (K, ·, 1) is a monoid with the identity element 1. Moreover,the operator + is idempotent and thus the stru
ture (K,+, ·, 0, 1) is anidempotent semiring. The ∗ is an unary operator with the intuition that
a∗ = 1+a+a·a+. . . (e.g. if the elements of K are 
onsidered as relations overa set X, and 1, +, and · are the usual identity relation, relation union, andrelation 
omposition respe
tively then a∗ is the transitive re�exive 
losure ofrelation a). A ni
e axiomatization of ∗ was given in [Con71℄. In programmingtheory it is usual to interpret + as 
hoi
e, · as sequen
e and ∗ as iteration.

(K,+, 0) being a 
ommutative monoid means that the following shouldhold:
x+ (y + z) = (x+ y) + z (1)

x+ y = y + x (2)
0 + x = x+ 0 = x (3)Equations (1), (2), and (3) de�ne respe
tively the asso
iativity, the 
om-mutativity, and the identity element properties of the 
ommutative monoid.The + is de�ned to respe
t the following idempotent equivalen
e:
x+ x = x (4)For the monoid (K, ·, 1) we do not have 
ommutativity; i.e. we have asaxioms only the following:

x · (y · z) = (x · y) · z (5)
1 · x = x · 1 = x (6)We note that 0 is an annihilator of · operator:

0 · x = x · 0 = 0 (7)Moreover, · is de�ned to be distributive over + both on the left and onthe right: 6



x · (y + z) = x · y + x · z (8)
(x+ y) · z = x · z + y · z (9)The two monoid stru
tures above with the properties that we have seengiven by axioms (7), (8), and (9) form a stru
ture (K,+, ·, 0, 1) whi
h is
alled a semiring. A semiring is 
alled idempotent if the + operator respe
tsthe idempoten
e equivalen
e (4). A Kleene algebra with tests is a rathermore 
omplex stru
ture D = (K,B) where K is a Kleene algebra and B isa 
lassi
al Boolean algebra. The elements of the Boolean algebra are 
alledtest and are in
luded in the set of elements of the Kleene algebra K.2.2 The algebrai
 stru
ture CAWe start by de�ning an algebrai
 stru
ture CA = (A,Σ) whi
h is the basisof the algebra of 
on
urrent a
tions and tests CAT = (CA,B) presented inthis se
tion. CA de�nes the 
on
urrent a
tions, and the Boolean algebra Bof Se
tion 4 de�nes the tests.The algebrai
 stru
ture CA is de�ned by a 
arrier set of elements (
alled
ompound a
tions, or just a
tions) denoted A and by the signature Σ =

{+, ·,&, 0, 1,AB} whi
h gives the a
tion operators and the basi
 a
tions.More pre
isely CA is a family of algebras indexed by the �nite set of basi
(atomi
) a
tions AB. The non-
onstant fun
tions of Σ are: + for 
hoi
eof two a
tions, · for sequen
e of a
tions (or 
on
atenation), and & for
on
urrent 
omposition of two a
tions. Ea
h of the operators +, ·, and &takes two a
tions and generates another a
tion of A. The spe
ial elements
0 and 1 are 
onstant fun
tion symbols. The set AB ∪ {0, 1} is 
alled thegenerator set of the algebra. The basi
 a
tions of AB have the property that
annot be generated from other a
tions of A.To be more pre
ise about the synta
ti
 stru
ture of the a
tions of A weset the rules for 
onstru
ting a
tions. The operators +, ·, and & are some-times 
alled 
onstru
tors be
ause they are used to 
onstru
t all the a
tionsof A as we see in De�nition 2.1. This de�nes the term algebra TCA(AB) pa-rameterized by the set of basi
 a
tions AB whi
h is free in the 
orresponding
lass of algebras over the generators of AB ∪ {0, 1}. We will just use TCAwhenever AB is understood by 
ontext.De�nition 2.1 (a
tion terms).1. any basi
 a
tion a of AB is an a
tion of A;7



(1) α + (β + γ) = (α + β) + γ(2) α + β = β + α(3) α + 0 = 0 + α = α(4) α + α = α(5) α · (β · γ) = (α · β) · γ(6) α · 1 = 1 · α = α(7) α · 0 = 0 · α = 0(8) α · (β + γ) = α · β + α · γ(9) (α + β) · γ = α · γ + β · γ

(10) α&(β&γ) = (α&β)&γ(11) α&β = β&α(12) α&1 = 1&α = α(13) α&0 = 0&α = 0(14) α&(β + γ) = α&β + α&γ(15) (α+ β)&γ = α&γ + β&γ(16) α&(α′ · β) = α(1)&α′(1) · . . . · α(n)&α′(n) · βwhere l(α) = l(α′) = nTable 1: Axioms of CA2. 0 and 1 are a
tions of A;3. if α, β ∈ A then α&β, α · β, and α + β are a
tions of A;4. nothing else is an a
tion of A.Throughout this paper we denote by a, b, c, . . . elements of AB (basi
a
tions) and by α, β, γ, . . . elements of A (
ompound a
tions). When thedi�eren
e between basi
 and 
ompound a
tions is not important we just 
allthem generi
ally a
tions. For brevity we often drop the sequen
e operatorand instead of α · β we write αβ. To avoid unne
essary parentheses we usethe following pre
eden
e over the 
onstru
tors: & > · > +.To have a 
omplete algebrai
 theory we in
lude the two spe
ial elements 0and 1 whi
h are the neutral elements for +, respe
tively for · and & operators.We 
all a
tion 1 the skip a
tion. In Table 1 we 
olle
t the axioms that de�nethe stru
ture CA.The properties of the operators + and · are de�ned by the axioms (1)-(9)of Table 1. Axioms (1)-(4) de�ne + to be asso
iative, 
ommutative, withneutral element 0, and idempotent. Axioms (5)-(7) de�ne · to be asso
ia-tive, with neutral element 1, and with annihilator 0. The element 0 is anannihilator for the sequen
e operator both on the left and right side. We
all the two equations fail late (for α · 0 = 0) and fail soon (for 0 · α = 0).Axioms (8)-(9) give the distributivity of · over +; property whi
h we exploitmore in Se
tion 5 when we de�ne a 
anoni
al form of a
tions. Be
ause the
+ operator is idempotent (α + α = α) all these axioms give the algebrai
stru
ture of an idempotent semiring (A,+, ·, 0, 1).The third 
onstru
tor & is intended to model true 
on
urren
y. At thispoint we give an informal intuition of the elements (a
tions) of A: we 
on-sider that the a
tions are performed by somebody (being that a person, a8



program, or an agent). We talk about �performing� and one should not thinkof pro
esses exe
uting a
tions and operational semanti
s; we do not dis
usssu
h semanti
s in this paper. With this non-algebrai
 intuition of a
tions we
an elaborate on the purpose of &, whi
h models the fa
t that two a
tionsare performed in a truly 
on
urrent fashion. We 
all 
on
urrent a
tions anddenote by A& the subset of elements of A generated using only & 
onstru
tor(e.g. a, a&a, a&b ∈ A& and a + b, a&b+ c, a · b 6∈ A&).Axioms (10)-(13) give the properties of & to be asso
iative, 
ommutative,with neutral element 1, and annihilator 0 whi
h make the algebrai
 stru
ture
(A,&, 1) 
ommutative monoid with element 0 as annihilator for &. Axioms(10) and (11) basi
ally say that the synta
ti
 ordering of a
tions in a 
on-
urrent a
tion does not matter (the same as for 
hoi
e +). Axioms (14) and(15) de�ne the distributivity of & over +. From axioms (10)-(15) togetherwith the fa
t that (A,+, 0) is a 
ommutative monoid we may 
on
lude that
(A,+,&, 0, 1) is a 
ommutative and idempotent semiring.Note that throughout this se
tion we use well known notions like strings,sets, or multisets in asso
iation with our a
tions just for presentation pur-poses only. All de�nitions or explanations (e.g. De�nition 2.3) using these
lassi
al notions 
an be given in a purely synta
ti
al manner.For axiom (16) we need some preliminary notions introdu
ed in the fol-lowing. We 
onsider that basi
 a
tions are instantaneous with regard to theirexe
ution time and we introdu
e the notion of length of an a
tion.De�nition 2.2 (a
tion length).The length of an a
tion α is de�ned (indu
tively) as a fun
tion l : A → Nwhi
h takes as argument an a
tion and returns a natural number.1. l(1) = l(0) = 02. l(a) = 1 for any basi
 a
tion a of AB,3. l(α&β) = l(α + β) = max(l(α), l(β)),4. l(α · β) = l(α) + l(β).

max : N × N → N is the standard fun
tion returning the maximumvalue of the two arguments. For the spe
ial a
tions 0 and 1 the length is 0.The intuition of the length fun
tion is that it 
ounts the number of a
tionsin a sequen
e of a
tions given by the · 
onstru
tor. From this perspe
tivewe view the 
ompound a
tions as strings where the elements of the stringare separated by the sequen
e 
onstru
tor. We say that α(n) identi�es thea
tion on position n in the string of a
tions α. The position 0 < n ≤ l(α) isa stri
tly positive integer less than or equal to the length of the a
tion. For9



n = 0, α(0) = 1 returns the impli
it skip a
tion, whi
h is natural be
auseevery a
tion α 
an have as starting a
tion 1, i.e. α = 1 ·α. For example, fora
tion α = (a+ b) · c we have l(α) = 2, α(1) = a + b and α(2) = c.Spe
i�
 to our appli
ation domain we 
onsider it is natural to relate &and · as follows. The equation is based on some properties of the a
tionslengths.if l(α)= l(α′)=n then α&(α′ · β) = α(1)&α′(1) · . . . · α(n)&α′(n) · β (16)A similar equation 
an be given for the 
orresponding a
tion (α′ ·β)&α withthe sequen
e on the left side of the 
on
urren
y 
onstru
tor. Note that 1 isignored in the equation above be
ause 1 
an be removed from a sequen
e asit is the identity element for · operator; e.g. an a
tion a&(1 · b) is equivalentto a&b. More pre
isely the fun
tion α(·) ignores 1's; e.g. for α = a ·1 ·1 ·a&bthen α(2) = a&b.Let us take a look at the properties of + and & of being respe
tivelyidempotent and not idempotent; for + we have α + α = α, but for & theequation does not hold. If we take 
ompound a
tions 
onstru
ted only with
+ then be
ause of the idempoten
e we do not �nd the same basi
 a
tiontwi
e in the 
ompound a
tion. For example, a
tion a + a + b is the sameas a + b after we apply the idempoten
e equation. From this point of viewwe 
onsider that the basi
 a
tions of an additive 
ompound a
tion (i.e. a
ompound a
tion generated only with +) form a set in
luded in AB.On the other hand, we want to have a resour
e-aware algebra similarlyto what has been done for linear logi
 [Gir87℄. For this we do not allow theidempoten
e property for the & operator (a&a 6= a). As an example, if arepresents the a
tion of paying 100$ then paying 200$ would be represented as
a&a. Note that we 
an represent only dis
rete quantities with this approa
h.Therefore, for 
on
urrent a
tions of A& we may have any number of dupli
ateatomi
 a
tions in its 
omposition; i.e. a&a&b and a&b are di�erent therefore,the basi
 a
tions of a 
on
urrent a
tion α form a multiset over AB.We re
all here that the notion of a multiset M over a set A is a fun
tion
M : A→ N, where intuitivelyM(a) is the number of 
opies of element a ∈ A.Informally, a multiset is a set where the number of o

urren
es of an elementdoes matter.Pratt [Pra86℄ introdu
es the 
on
ept of partially ordered multisets (orpomsets) to model truly 
on
urrent pro
esses; i.e. pro
esses whi
h are se-quen
es of events denoting a
tions. Pratt's theory reasons about 
omplexsystems and (time) ordering of the a
tions of pro
esses, whi
h is too power-ful for our purpose. We do not want to model entire pro
esses that are truly
on
urrent, and we do not need true 
on
urren
y over time periods be
ause10



we do not have any notion of time in our model. For now we only want tomodel atomi
 a
tions exe
uting in a truly 
on
urrent fashion.Note that for our purpose the approa
h of 
onsidering the 
on
urrenta
tions as multisets over the basi
 a
tions is in the spirit of Pratt's theory.A pomset intuitively states that if two events labelled by some a
tions arerelated by the partial order of the pomset then the events are not 
on
urrent,but are exe
uted in the sequen
e given by their ordering. On the other hand,any events that are not related by the partial order are 
onsidered truly
on
urrent. We re
all that a multiset is equivalent to a pomset with theempty order as the partial order. The empty order intuitively means thatno event is related to another, whi
h in the theory of pomsets means thatall the events of the multiset are exe
uted 
on
urrently. Note that in thesame theory of pomsets a set is also a pomset with the empty order (and anadditional 
ondition of inje
tive labelling). The reason for whi
h we 
onsidermultisets and not just sets is that we want to model 
on
urrent exe
ution ofseveral 
opies of the same a
tion.With the view of 
on
urrent a
tions as multisets over AB we 
an de�nea stri
t partial order over 
on
urrent a
tions with the help of in
lusion ofmultisets. We re
all that M ⊂ N i� ∀a ∈ A we have M(a) ≤ N(a) and
∃a ∈ A su
h that M(a) < N(a), whi
h says that M is in
luded in N if andonly if we 
an remove from N ea
h element of M and not get the emptymultiset.De�nition 2.3 (demanding relation).We de�ne the relation <& as:

α <& β
def
= Mα ⊂Mβ (17)where α and β are 
on
urrent a
tions of A&, and Mα denotes the multisetasso
iated to α.We 
all <& the demanding relation with the intuition that β is moredemanding than α. We 
onsider the a
tion 1 as the empty multiset, withthe intuition that skiping means not doing any a
tion. Note that the leastdemanding a
tion is 1. On the other hand, if we do not 
onsider 1 thenwe have the basi
 a
tions of AB as the least demanding a
tions; the basi
a
tions are not related to ea
h other by <&.Proposition 2.1. The relation <& is a stri
t partial order over A&.Proof: It is easy to prove that <& is a stri
t partial order:1. ire�exivity: ∄α s.t. α <& α be
ause Mα 6⊂ Mα as ∀a ∈ α, Mα(a) ≤

Mα(a) so the se
ond part of the de�nition of ⊂ is not respe
ted;11



2. transitivity: if α <& β then Mα ⊂ Mβ, and if β <& γ then Mβ ⊂ Mγ .By the transitivity of the in
lusion relation of multisets we get ourresult of transitivity;3. antisymmetry: ∀α 6= β if α <& β then Mα ⊂ Mβ whi
h means that
Mβ 6⊂ Mα so β 6<& α. Note that antisymmetry is not required as itfollows from ire�exivity and transitivity.

2For a better intuitive understanding take the following examples: 1 <& a,
a <& a&b, a&b <& a&c&b, a 6<& b, a 6<& a, and a 6<& b&c.By now we have de�ned the demanding relation only on 
on
urrent 
om-pound a
tions (i.e. for a
tions of the form α = a1& . . .&an). In order toextend <& to the whole 
arrier set A we need to extend the de�nition withmultisets for the & to some more 
omplex de�nitions for · and +.As we have seen the length fun
tion 
onsiders a
tions as strings. Hen
e-forth we 
onsider a
tions as strings of multisets. As an example, take the
on
urrent 
ompound a
tions α, β, and γ with the asso
iated multisets Mα,
Mβ , and Mγ , respe
tively, then the a
tion α · β · γ has asso
iated the follow-ing string of multisets 〈MαMβMγ〉. With this representation one 
an giveseveral ways of extending the <& to the sequen
e a
tions; we take the mostnatural one: two sequen
e a
tions α1 · . . . ·αn and β1 · . . . ·βm are 
omparableby the <& order i� their asso
iated strings of multisets 〈Mα1

. . .Mαn
〉 and

〈Mβ1
. . .Mβm

〉 
an be 
ompared as follows:Without loss of generality, 
onsider n ≤ m with n,m ∈ N then1. if ∃1 ≤ i ≤ n s.t. ∀j ≤ i Mαj
6⊂Mβj

and Mβj
6⊂Mαj

and(a) Mαi
⊂Mβi

then α1 · . . . · αn <& β1 · . . . · βm;(b) Mβi
⊂ Mαi

then β1 · . . . · βm <& α1 · . . . · αn;2. if ∀i ≤ n, Mαi
6⊂ Mβi

and Mβi
6⊂Mαithen α1 · . . . · αn 6<& β1 · . . . · βm and β1 · . . . · βm 6<& α1 · . . . · αn.In the de�nition and explanations above we have used the asso
iatedmultisets Mα1

. . .Mβm
to give a better intuition for the notions. In a stri
tlymathemati
al exposition we would use the a
tions α1 . . . βm instead of themultisets and instead of the 
omparison using mutiset in
lusion Mα1

⊂ Mβ1we would use the demanding relation itself; like Mα1
<& Mβ1

.Intuitively for sequen
e a
tions the <& order starts to 
ompare from leftto right ea
h element of the sequen
e and it stops at the �rst 
omparable(by <& on 
on
urrent a
tions) pair and returns the 
orresponding result.12



Consider the following examples: a · b <& a · b&c; a · b&c <& b · a&b&c;
a · a&b 6<& b · a&c. Moreover, be
ause 1 <& a, ∀a ∈ AB and 1 
an beappended to any a
tion without 
hanging it then α <& α ·β as α ·1 <& α ·βenters under the 
ase 1. above.As we have seen, we 
an asso
iate sets to 
hoi
e a
tions. Let us 
onsider�rst the 
hoi
e only of 
on
urrent a
tions then for an a
tion α = α1+ . . .+αnwith αi = a1& . . .&am we asso
iate a set of multisets {Mα1

, . . . ,Mαn
}α wherethe supers
ript is the name of the a
tion α. We �rst give the extension of <&to this kind of 
ompound a
tions. Take two a
tions 
onstru
ted as above,

α = α1 + . . . + αn and β = β1 + . . . + βm and with their asso
iated sets ofmultisets {Mα1
, . . . ,Mαn

}α and {Mβ1
, . . . ,Mβm

}β. We say that α <& β i�there exists a fun
tion f : {. . .}β → {. . .}α de�ned on the set of multisetsgiven by a
tion β with the results in the set of multisets given by α su
h that
f(Mβi

) = Mαj
i� Mαj

⊂Mβi
. Otherwise we say that α 6<& β.For more 
omplex 
hoi
e a
tions where we have sequen
e of a
tions in-stead of just 
on
urrent a
tions the de�nition is similar just that we do nothave sets of multisets, but sets of strings of multisets and instead of using inthe de�nition of the fun
tion f the in
lusion of multisets we use ≤& de�nedfor strings of multisets. We denote by ≤& the relation <& ∪ =; i.e. α ≤& βi� either α <& β or α = β.We prove in Proposition 5.2 that the demanding relation <& is a stri
tpartial order over all the a
tions of CA as de�ned above. We do the proofafter we de�ne a notion of 
anoni
al form for the a
tions in Se
tion 5 asit simpli�es the presentation of the proof. The proof is also based on thefollowing proposition.SEE ABOUT THIS PROPOSITION IF WE NEED IT OR IS A CLAS-SICAL RESULTWe 
an now give the following result.Theorem 2.2. The operators &, ·, and + are monotoni
 with respe
t to thedemanding relation; i.e. for the relation <& and for any a
tions α, β, and

γ we have: if α <& β then α&γ <& β&γif α <& β then α · γ <& β · γ and γ · α <& γ · βif α <& β then α + γ <& β + γProof: The a
tions α, β, and γ 
an be any 
ompound a
tion of CA.Therefore, the proof should take into a

ount all the forms of an a
tion. Amu
h simpler and 
lear proof 
an be given after we de�ne the 
anoni
al form13



of an a
tion in Se
tion 5. We only take here a few simple 
ases to illustratethe proof pro
edure. The other 
ases are treated similarly.Case 1 (operator &).Let us take �rst a simple example: if a <& a&b then a&c <& a&b&c.For this 
ase we 
onsider only 
on
urrent 
ompound a
tions. For thea
tions α, β, and γ we have asso
iated the multisetsMα, Mβ , and Mγ . Notethat the operator & relates to the union of multisets; i.e. for a
tion α&γwe have asso
iated the multiset Mα ∪Mγ . It is now simple to see that if
α <& β then Mα ⊂ Mβ whi
h implies Mα ∪ Mγ ⊂ Mβ ∪Mγ whi
h gives
α&γ <& β&γ.Case 2 (operator ·).An example is: for a <& a&b we want a · c <& a&b · c (re
all that we havethe pre
eden
e &, >, · to avoid using parenthesis).For this 
ase we 
onsider that the a
tions are sequen
es of 
on
urrenta
tions. The a
tions α, β, and γ have asso
iated the strings of multisets
〈Mα1

. . .Mαn
〉, 〈Mβ1

. . .Mβm
〉, and 〈Mγ1

. . .Mγk
〉. Sequen
e of two a
tions α ·

γ is 
on
atenation of the 
orresponding strings of multisets 〈Mα1
. . .Mαn

Mγ1
. . .Mγk

〉.We have that α <& β whi
h by de�nition means that ∃i ≤ n su
h that ∀j ≤ i
Mαj

6⊂ Mβj
andMβj

6⊂ Mαj
and Mαi

⊂Mβi
. These fa
ts hold also after 
on-
atenation of strings of multisets; i.e. for strings 〈Mα1

. . .Mαn
Mγ1

. . .Mγk
〉and 〈Mβ1

. . .Mβm
Mγ1

. . .Mγk
〉. We have thus the de�nition satis�ed for thesequen
e a
tions, i.e. α · γ <& β · γ.The se
ond impli
ation is similar as the 
on
atenation of strigs of multi-sets is now 〈Mγ1

. . .Mγk
Mα1

. . .Mαn
〉 and 〈Mγ1

. . .Mγk
Mβ1

. . .Mβm
〉. Be
ausethe �rst part of the strings is the same (
oming from γ) these are in
ompa-rable by <& whi
h means that the 
omparison 
ontinues as for the a
tions αand β. Therefore we have the proof.Case 3 (operator +).An example is: if a <& a&b we have a+ c <& a&b+ c.For this 
ase we take 
hoi
e of 
on
urrent a
tions. The a
tions α, β, and

γ have asso
iated the sets of multisets {Mα1
, . . . ,Mαn

}α, {Mβ1
, . . . ,Mβm

}β,and {Mγ1
, . . . ,Mγk

}γ. The 
hoi
e + on a
tions relates to the union of sets ofmultisets. For example, for a
tion α+ γ we have the set {Mα1
, . . . ,Mαn

}α ∪
{Mγ1

, . . . ,Mγk
}γ = {Mα1

, . . . ,Mαn
,Mγ1

, . . . ,Mγk
}. By the hypothesis wehave α <& β whi
h by the de�nition means that there exists a fun
tion

f : {Mβ1
, . . . ,Mβm

} → {Mα1
, . . . ,Mαn

} su
h that ∀1 ≤ i ≤ m ∃1 ≤ j ≤ nsu
h that Mαj
⊆Mβi

.To prove that α+γ <& β+γ we have to �nd a fun
tion f ′ : {}β+γ → {}α+γsu
h that f ′(Mβ+γj
) = Mα+γi

means thatMα+γi
⊆Mβ+γj

. We de�ne f ′ as an14



extension of f where f ′(Mβj
) = f(Mβj

) and f ′(Mγj
) = Mγj

. The de�nitionof f ′ respe
ts the de�nition and thus we have that α+ γ <& β + γ.For 
hoi
e of sequen
e a
tions the proof is similar just that it takes ≤&instead of the in
lusion of multisets. 2Be
ause + is idempotent we 
an still de�ne as in Kleene algebra a partialorder ≥ on the elements of A. We 
all it the preferen
e relation. Thatis: α ≥ β means that a
tion α has higher preferen
e over a
tion β. Thepreferen
e relation is de�ned as:
α ≥ β

def
⇐⇒ α+ β = α (18)An intuition for this is that whenever one has to 
hoose among the twoa
tions α and β one always 
hooses α, the most preferable a
tion (i.e. α+β =

α). Note that 0 is the least preferable a
tion be
ause 0 + α = α; so 0 isnever preferred over another a
tion di�erent than itself.For the preferen
e relation to be a partial order we prove that the followingproperties hold:1. re�exivity: for all α we have α ≥ α;Proof: The proof is immediate from the idempoten
e property of +.
α ≥ α

def
⇐⇒ α + α = α whi
h is true from axiom (4). 22. transitivity: for all α, β, γ if α ≥ β and β ≥ γ then α ≥ γ;Proof: From α ≥ β and β ≥ γ we have to prove α+ γ = α. We havefrom the �rst inequality α + β = α then α + β + γ = α + γ from theasso
iativity of +. Together with β+γ = β from the se
ond inequalitywe get α + β = α + γ. Using again the �rst inequality we get that

α = α + γ whi
h is what we wanted. 23. antisymmetry: for all α, β, if α ≥ β and β ≥ α then α = β (α and βare the same element).Proof: From the �rst inequality we have by de�nition that α+β = α.By 
ommutativity of + we get that β + α = α whi
h by the se
ondinequality we get β + α = β, and thus α = β. 2Note that the three operators are monotoni
 with respe
t to the partialorder ≥. For example for any a
tions α, β, and γ, for + operator this meansthat: if α ≥ β then α + γ ≥ β + γ. This is easily proven [Con71℄.We 
onsider a relation over the set of basi
 a
tions AB whi
h we 
all
on�i
t relation and denote by #C . The intuition of the 
on�i
t relation15



is that if two a
tions are in 
on�i
t then the a
tions 
annot be exe
uted
on
urrently. This relation is de�ned in terms of the & operator and saysthat two a
tions that are in 
on�i
t, when exe
uted 
on
urrently yield thespe
ial a
tion 0. The 
onverse relation of #C is the 
ompatibility relationwhi
h we denote by ∼C. The intuition of the 
ompatibility relation is that iftwo a
tions are 
ompatible then the a
tions 
an be exe
uted 
on
urrently.De�nition 2.4 (
on�i
t and 
ompatibility relations).The 
on�i
t relation is de�ned as:
a#C b

def
⇐⇒ a&b = 0 (19)The 
ompatibility relation is de�ned as:

a ∼C b
def
⇐⇒ a&b 6= 0, where a, b 6= 0 (20)Proposition 2.3. The following standard properties of the 
on�i
t and 
om-patibility relations for basi
 a
tions hold:1. re�exivity of ∼C: a ∼C a. Any basi
 a
tion is 
ompatible with itself;Proof: if a 6= 0 then a&a 6= 0 then, by de�nition a ∼C a. 22. symmetry of #C or ∼C: if a#C b then b#C a, and if a ∼C b then

b ∼C a. There is no order on the a
tions that are in 
on�i
t or 
om-patible.Proof: The proof follows immediately from the symmetry of &. For
a#C b then a&b = 0 whi
h means that b&a = 0 whi
h is b#C a. 2Remark: There is NO transitivity of #C or ∼C : In general, if a#C band b#C c, not ne
essarily a#C c. This is natural as a
tion b may be in
on�i
t with both a and c but still a ∼C c. Moreover, be
ause ∼C is re�exiveit means that #C is not re�exive (by the fa
t that the two relations are dual
on
epts). Note also that the re�exivity of ∼C2 extends to all 
ompounda
tions.The de�nition of the 
on�i
t and 
ompatibility relations extend to alla
tions of A by extending #C and ∼C to the +, ·, and & operators.Proposition 2.4 (extension of #C to 
ompound a
tions).1. α#C β ⇒ α#C γ, ∀γ a 
on
urrent a
tion (i.e. 
onstru
ted from basi
a
tions only with &) s.t. β <& γ.16



Proof: α#C β
def
⇒ α&β = 0 whi
h ∀β ′ α&β&β ′ = 0&β ′ = 0 whi
hmeans that α#C β&β ′, i.e. α#C γ and β <& γ = β&β ′.Ex.: a#C b then a#C b&b and a#C b&c. 22. α#C β and α#C γ then α#C β + γ.Proof: α#C β ⇒ α&β = 0 and α#C γ ⇒ α&γ = 0. From these wehave that (α&β) + (α&γ) = 0 + 0 = 0

(14)
⇒ α&(β + γ) = 0 whi
h byde�nition means that α#C β + γ.Ex.: a#C b and a#C c then a#C b+ c. 23. α#C β ⇒ α#C β · γ, ∀γ ∈ A.Proof: α#C β ⇒ α&β = 0 whi
h means that (α&β) · γ = 0. On theother hand α&(β · γ)

(16)
= (α&β) · γ = 0 whi
h by de�nition α#C β · γ.Ex.: a#C b then a#C b · c. 2Proposition 2.5 (extension of ∼C to 
ompound a
tions).1. α ∼C α · γ , ∀γ 6= 0.Proof: By re�exivity of ∼C we have that α ∼C α ⇒ α&α 6= 0whi
h (be
ause γ 6= 0) means that (α&α) · γ 6= 0. On the other hand

α&(α · γ)
(16)
= (α&α) · γ 6= 0 and thus α ∼C α · γ.Ex.: a ∼C a · b. 22. α ∼C β ⇒ α ∼C β · γ , ∀γ 6= 0.Proof: α ∼C β ⇒ α&β 6= 0 whi
h means (be
ause γ 6= 0) that

(α&β) · γ 6= 0. More, α&(β · γ)
(16)
= (α&β) · γ 6= 0 and thus α ∼C β · γ.Ex.: a ∼C b then a ∼C b · c. 23. α ∼C β ⇒ α ∼C α + β and β ∼C α + β.Proof: We prove only the �rst part as the se
ond impli
ation is sim-ilar. α ∼C β ⇒ α&β 6= 0 whi
h means that (α&β) + (α&α) 6= 0 as itdoes not matter what is the se
ond argument of the + as long as the�rst argument is di�erent from 0. From (14) we get α&(β + α) 6= 0whi
h by de�nition is α ∼C α + β. 217



4. α ∼C β ⇒ α ∼C α&β and β ∼C α&β.Proof: α ∼C β ⇒ α&β 6= 0 together with re�exivity of ∼C we have
α&β&α 6= 0 whi
h by de�nition α ∼C α&β.Ex.: a ∼C b then a ∼C a&b ∼C b. 23 Standard Interpretation using TreesWe give the standard interpretation of the a
tions of A by de�ning a homo-morphism ICA whi
h takes any a
tion of the CA algebra into a 
orrespondingrooted tree and preserves the stru
ture of the a
tions given by the 
onstru
-tors. Before this, we de�ne what are rooted trees and the operations we
onsider over them.3.1 Rooted treesIn this se
tion we give the de�nition of rooted trees and give several operationsover rooted trees.De�nition 3.1 (rooted tree). A rooted tree is an a
y
li
 
onne
ted graph

(N , E) with a designated node r 
alled root node. N is the set of nodes and
E is the set of edges (where an edge is a pair of nodes (n,m)).An alternative de�nition of trees 
omes from ordered sets theory: a rootedtree is a partially ordered set (N , <) of nodes su
h that for ea
h node n ∈ Nall the nodes m ∈ N less than n with respe
t to the order < (i.e. m < n) arewell-ordered2 by the relation <, and there is only one least element r 
alledthe root node. In this de�nition the nodes m are 
alled the an
estor nodes ofnode n, and their property of being well-ordered gives the intuitive propertyof nodes in a tree (ex
ept the root node) to have one and only one parent3node. Be
ause of the partial order on the nodes of the tree we 
onsider thatwe have dire
ted edges (i.e. the tree is a spe
ial dire
ted graph), with thedire
tion of the edges going from the root node to the higher nodes withrespe
t to the partial order. Note that there 
annot be two edges (n,m) and
(m,n) in the same tree. All nodes {m | (n,m)} are 
alled the des
endents (or
hildren) nodes of n. The siblings of a node m are all the nodes whi
h have2The well-ordering of the set N = {m |m < n} with respe
t to the partial order <means that the partial order < transforms into a total order on N and for ea
h subset
S ⊂ N there exists a least element with respe
t to the total order.3A node m is the parent of node n i� m < n and ∄k ∈ N s.t. m < k and k < n.18
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Figure 1: Examples of �nite rooted trees with labeled edges.
ommon parent with m; i.e. sibl(m) = {m′ | (n,m), (n,m′) ∈ E}. Note thatthe root node has no siblings.We 
onsider rooted trees with labeled edges; i.e. ea
h edge (n,m) hasasso
iated a label α. We denote the labeled dire
ted edges of the tree with
(n, α,m) and the tree with (N , E,A). The labels α are multisets of basi
labels of A; e.g. α1 = {a, b} or α2 = {a, a}, or α2 = {a} with a, b ∈ A. Forthe sake of notation we use a instead of the singleton set {a}. Comparing twolabels α and β for equality means 
omparing the two asso
iated multisets.We denote by τ the spe
ial empty label that is the empty multiset. Whenthe label is not important (i.e. 
an be any label) we may use the notation
(n,m) instead of (n, α,m) ∀α ∈ A.We restri
t our presentation to �nite rooted trees. This means that thereis no in�nite 
hain of nodes r < n1 < n2 . . . (or equivalently, there is noin�nite path in the dire
ted graph starting from the root node). Su
h 
hainsare 
alled bran
hes of the tree. The �nal nodes on ea
h bran
h are 
alledleaf nodes. The height of a tree T denoted h(T ) is the number of edges inthe longest bran
h of the tree that are not labelled by τ .De�nition 3.2 (Tree isomorphism). Two trees T1 = (N1, E1,A1) and T2 =
(N2, E2,A2) are isomorphi
, denoted T1

.
= T2, i� A1 = A2 (the labels are thesame), and there is a bije
tive fun
tion rn : N1 → N2 s.t. rn(root1) = root2and ∀(n, α,m) ∈ E1 then (rn(n), α, rn(m)) ∈ E2.Equivalently, we say that the relation .

= denotes the equality modulo re-naming of the nodes between two rooted trees. Besides modulo renaming ofthe nodes the relation .
= is based on the usual equality on rooted trees wherefor example the bran
hes of a tree are not ordered.Examples of rooted trees with labeled edges are given in Figure 1:19



i. ({r}, ∅, ∅) - the tree with only one node the root, and no edges;ii. ({r, n}, {(r, α, n)}, {α}) - the tree with only one edge;iii. ({r, n,m}, {(r, α, n), (r, β,m)}, {α, β}) - the tree with two edges 
omingfrom the root r;iv. ({r, n,m}, {(r, α, n), (n, α,m)}, {α, β}) - the tree with only one path oftwo edges;v. ({r, n}, {(r, τ, n)}, {τ}) - the tree with only one edge labeled by theempty label τ .In the following we de�ne some operations on rooted trees. We 
onsiderthe 
lassi
al notion of subtree. The �rst operation is the join of two treesand we denote it by ∪. Take two trees T1 = (N1, E1,A1) with root r1 and
T2 = (N2, E2,A2) with root r2 as in Figure 2. Note that the two sets ofnodes are disjoint (thus also the sets of edges are disjoint), where the twosets of labels may have elements in 
ommon. Joining T1 and T2 
onsists inthe following steps:1. join the two root nodes r1 and r2 into a single root node (
all it r12);2. make the union of the two sets of nodes N12 = N1 \ {r1} ∪N2 \ {r2} ∪

{r12}, and the union of the two label sets A12 = A1 ∪A2;3. add to the empty set of edges E12 the edges on the �rst level of the twotrees, i.e. E12 = {(r12, n) | (r1, n) ∈ E1} ∪ {(r12, m) | (r2, m) ∈ E2};4. for ea
h two edges in E12 labeled with the same label ((r12, α, n) and
(r12, α,m)) keep only one edge in E12 and do the same joining operationfor the subtrees with roots n respe
tively m (in the 
ase when one ofthe subtrees has only the root node n and the other has several edgesthen 
onsider the tree with only one root node as the expanded treewith only one edge (n, τ, n′ :W )). For all other single edges (r12, k) justadd to E12 all the edges of the subtrees with the root node k.Note that the height of the new tree is the maximum of the heights of thetwo joined trees: if we have h(T1) and h(T2) then h(T12) = max(h(T1), h(T2)).The se
ond operation is the 
on
atenation of two trees and we denoteit by .̂ Take the two trees T1 and T2 as before. The pi
ture in Figure 3illustrates this operation. To 
on
atenate T1 with T2 follow the steps:1. take the resulting tree T12 to be T1 for start. That means that N12 =
N1, E12 = E1, and A12 = A1. 20
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Figure 2: Join of two rooted trees.
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1nFigure 3: Con
atenation of two rooted trees.2. repla
e ea
h of the leaf nodes of T12 with the whole tree T2. This means:(a) repla
e ea
h edge (n,m) with node m a leaf node of T12 with

(n, r2);(b) remove ea
h leaf node from N12;(
) add all the nodes of T2 to N12 renaming them su
h that ea
h nodein N12 has a di�erent name;(d) add all the edges of E2 to E12 with the nodes names 
hangeda

ordingly to step 2
.After the 
on
atenation operation the new tree T12 has the hight equalto the sum of the heights of the two trees: h(T12) = h(T1) + h(T2).A third operation over our rooted trees is the 
on
urrent join whi
h wedenote by ‖. Con
urrent joining involves also manipulating labels (basi
allyunion and 
omparison of multisets). The pro
edure of 
on
urrently joiningtwo trees T1 and T2 taken as before 
onsists in the following steps:21
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Figure 4: Example of 
on
urrent join of two rooted trees.1. join the two root nodes r1 and r2 into a single root node and 
all it r12;2. take the edges on the �rst level of ea
h tree {(r12, α1, n1) | (r1, α1, n1) ∈
E1} and {(r12, α2, n2) | (r2, α2, n2) ∈ E2} and 
ombine them as follows:(a) 
ombine the labels αi two by two.4 Ea
h new label α′ = α1 ∪ α2is the multiset union of the two 
omponent labels.(b) add a new edge (r12, α

′, m) to E12 and the new node m to N12;(
) for ea
h two edges (r12, α1, n1) and (r12, α2, n2) of the old edge sets
ombined as in step (a) 
ontinue re
ursively to 
on
urrently jointhe two subtrees with the roots in the nodes n1 and n2 and putthe root of the new tree in the new node m 
reated in step 2b.(d) for ea
h two new edges (r12, α
′, m1) and (r12, α

′′, m2) of E12, if
α′ = α′′ then unify the two edges into one and make the join ofthe two new trees with roots in m1 and m2 
reated in step (
).The height of the new tree is the maximum of the heights of the two
ombined trees. This is be
ause none of the steps (a)-(
) do not add to theheight of the new tree, and also the join in step (d) preserves the height. Anexample of 
on
urrent joining of two trees is given in Figure 4.In the ‖ operation we use the union of two labels whi
h is the union ofthe two asso
iated multisets. Note that the empty label τ "vanishes" whenis joined with another label be
ause τ is the empty multiset and ∅ ∪ {. . .} =

{. . .}. We sometimes abuse the notation and instead of the union of two labels
α ∪ β (as they are 
onsidered multisets of basi
 labels) we just write {α, β}.Moreover, the τ label is often omitted so we 
onsider {τ, α, β} = {α, β}.4As in a 
artesian produ
t of two sets. 22



For our purpose of giving a standard interpretation for CA in Se
tion 3.2we need to be able to interpret the spe
ial a
tions 1 and 0, and thereforewe make our rooted trees more parti
ular. Ea
h tree has two kinds of nodesthat we distinguish by 
olors: the normal nodes (we have seen until now) are
alled white nodes and the new kind of spe
ial nodes are 
alled bla
k nodes.The bla
k nodes are treated di�erent (as we see below) and are found seldomin a tree. Note that the operations on trees must preserve the 
olors of thenodes. We sometimes use the notation n : B and n : W to denote the fa
tthat node n is bla
k or white respe
tively. The exa
t use of bla
k nodes willbe
ome 
lear in Se
tion 3.2.Let us denote by RT the set of rooted trees. All the rooted trees inthis set are 
reated from a set of minimal trees using the operations join,
on
atenation, and 
on
urrent join that we have de�ned in this se
tion. Theset of minimal rooted trees is denoted by RT B and 
ontains the trees formedonly of one root node, and the trees with only one edge labeled with a basi
label of A or τ . Thus the number of basi
 trees is |RT B| = |A| + 2.We give a normalization te
hnique 
alled pruning a tree whi
h refersmostly to the empty label τ and to the bla
k nodes.De�nition 3.3 (pruned tree). A pruned tree is a rooted tree obtained fromany rooted tree with bla
k and white nodes and τ edges by applying the foursteps of the pro
edure below in that spe
i�
 order.1. 
ontra
t all the τ labels on ea
h path as follows:(a) for sets {τ, α, . . .} the τ "vanishes", i.e. we write the label {α, . . .};(b) for all edges (m, τ, n :W ) labelled with τ s.t. n is not a leaf nodewith siblings, remove the edge (and 
ombine the two nodes of theendge into one) unless 1
;(
) if the tree has only one edge (r, τ, n :W ) then do nothing;2. for ea
h bla
k node n:(a) �rst remove the subtree with root n;(b) afterwards label the edge (m,α, n) with τ , where α is an arbitrarylabel;3. for ea
h edge (m, τ, n) with n a bla
k node do either of:(a) if ∄(m,α, n′) a di�erent edge with an arbitrary label α then removethe one edge before m, i.e. remove (k, β,m);23



(b) if ∃(m,α, n′) a di�erent edge with an arbitrary label α then remove
(m, τ, n);4. repeat step 3 as long as possible.The above pro
edure refers mostly to the empty label τ and to the bla
knodes. Consider the set RT pruned ∈ RT a subset of rooted trees whi
h
ontains only pruned rooted trees obtained by appli
ation of this pro
edurewhi
h we denote by the fun
tion Prune : RT → RT pruned. Consider ea
htree to be pruned. After performing one of the operations ∪, ,̂ or ‖ the newtree may no longer be pruned, therefore we need to perform the pruning ofthe new tree every time.The height fun
tion h de�ned earlier is applied to pruned trees and hasone spe
ial 
ase for the tree with only one edge labeled with τ ; for these trees(with a white or bla
k node) it returns the height 0.Proposition 3.1 (Chara
terization of pruned trees).1. Any pruned tree either 
ontains no bla
k nodes, or it is the tree withonly one edge (r, τ, n : B) labeled with τ and ending in a bla
k node.2. A pruned tree has no label α whi
h 
ontains τ unless α = τ and it labelsan edge (n, τ,m :W ) and m is a leaf node with siblings or it is the treewith only one edge (r, τ, n).Proof: We prove the �rst part of the proposition.The proof follows the steps in De�nition 3.3 whi
h deal with bla
k nodes;i.e. steps 2, 3, and 4. The proof shows that these steps are su�
ient toeliminate all the bla
k nodes in the trees. Step 2 is applied on
e in twostages by 
he
king ea
h node in the tree: in the �rst stage (
orresponding tostep 2a) all the bran
hes of the tree whi
h 
ontain a bla
k node are trimmedsu
h that the bla
k node is the last node in the bran
h. The se
ond stage(
orresponding to step 2b) takes 
are that there is no transition whi
h endsin a bla
k node and is labeled with a 
ompound a
tion (i.e. every edge endingin a bla
k node is labeled with τ).Step 3 is applied several times until the stopping 
ondition is satis�ed.The repeted appli
ation of step 3 is assured by step 4. The appli
ation of step3 basi
ally tries exhaustively to remove bla
k nodes. The efe
tive removing ofthe bla
k nodes is done in step 3b. Step 3a shortens any bran
h 
ontaininga bla
k node su
h that to rea
h a 
ondition when to apply step 3b. Thestopping 
ondition is:

• Either there is no bla
k node remained and thus the �rst statement ofthe �rst part of the proposition is satis�ed.24



• or there exists a bla
k node n of an edge (m, τ, n) and there is no otheredge (m,α, n′) (i.e. no adja
ent edge, thus step 3b 
annot be applied)and also there is no edge (r, α,m) (i.e. no edge before , thus step 3a
annot be applied); and thus the se
ond statement of the �rst part ofthe proposition is now satis�ed.The proof of the se
ond part of the proposition is based on arguments wejust made for the proof of the �rst part.The τ labels are removed in stepf 1 almost 
ompletely. Step 1a doesnot distinguish between bla
k and white nodes thus there remains no label
α 
ontaining τ . There remain only edges labeled by only τ . Step 1b thenremoves from these remaining edges all the ones whi
h are labeled with awhite node. The step ignores only two kinds of edges: �rst is the 
ase whenthe tree is only a single edge, i.e. 
ondition in 1
, and thus we have proventhe se
ond part of the proposition. The se
ond 
ase is given by the 
onditionin step 1b and all the τ -labelled edges whi
h end in a leaf node that hassiblings are not removed. But this is the �rst part of the statement in parttwo of the proposition and thus we �nish the proof.There are stil the step 2b whi
h might introdu
e τ labels. But all theseedges are removed in step 3 unless the se
ond 
ondition of the �rst part ofthis proposition is satis�ed; i.e. the tree remains with only a single edge
(r, τ, n : B). Nevertheless we are respe
ting the se
ond statement of these
ond part of the proposition and thus we �nish the proof. 23.2 Standard interpretation of CA over rooted treesIn this se
tion we give a standard interpretation of the elements of the algebra
CA and of the algebrai
 operators using the rooted trees and the operationsde�ned in Se
tion 3.1. For this we 
onstru
t a map ICA whi
h takes everya
tion of CA into a rooted tree and preserves the stru
ture imposed by the
onstru
tors. This means that ICA is the homomorphi
 extension of ĪCA :
AB ∪ {0, 1} → RT whi
h is the map over the generators of CA.1. The de�nition of ĪCA(a) for basi
 a
tions a ∈ AB returns a basi
 rootedtree Ta = ({r, n}, {(r, a, n)}, {a}) with only one edge labeled with a andwith n : W a white node.2. For the spe
ial a
tions 1 and 0 we have respe
tively the trees:(a) ĪCA(1) = ({r, n}, {(r, τ, n)}, {τ}) with n : W(b) ĪCA(0) = ({r, n}, {(r, τ, n)}, {τ}) with n : B25



Informally the skip a
tion 1 means not performing any a
tion and itsinterpretation as an edge with an empty set of labels goes well with theintuition. The fail a
tion 0 is interpreted as taking the path into a bla
knode.We now extend ĪCA from basi
 a
tions to 
ompound a
tions of A usingindu
tion, and obtain a homomorphism ICA : CA → RT .3. ICA(α + β) = ICA(α) ∪ ICA(β);4. ICA(α · β) = ICA(α)̂ ICA(β);5. ICA(α&β) = ICA(α)||ICA(β).We still need to take 
are of the 
on�i
t relation #C of the algebra withrespe
t to the 
on
urren
y operator &; i.e. we need to interpret the fa
t that
a&b = 0 if a#C b. It is easy to de�ne the same 
ompatibility relation overthe basi
 a
tions of the algebra for the labels of the rooted trees. With thisde�nition we enfor
e ea
h label of an edge of the form (m, {α, β}, n) with
α#C β and n : W to be repla
ed by the τ label and n : B be
omes a bla
knode.Note that the length of an a
tion of CA 
orresponds to the height ofthe interpretation of the a
tion as a rooted tree. Be
ause we always prunethe trees (and work only with pruned trees) we 
onsider the fun
tion ÎCA :
CA → RT pruned whi
h is de�ned as ÎCA = Prune ◦ ICA. Note that ÎCA isnot a homomorphism and 
an be proven by giving a 
ounter example to therequirement ÎCA(α + β) = ÎCA(α) ∪ ÎCA(β).5 This means that the fun
tion
Prune is not homomorphi
 whi
h means that after 
omposing two prunedrooted trees the fun
tion Prune has to be applied again. On the other handLemmas 3.2, 3.3, and 3.7 give other useful properties of the Prune fun
tion.Lemma 3.2. If Prune(T1) = Prune(T2) and T ′

1 and T ′
2 are subtrees ofrespe
tively T1 and T2 s.t. there is the same path from rT1
to rT ′

1
and from

rT2
to rT ′

2
whi
h 
ontains no bla
k node, then Prune(T ′

1) = Prune(T ′
2).Proof: We do not have a 
omplete formal proof of this result but westrongly believe in its validity and thus we 
onje
ture it here. 2Lemma 3.3. The fun
tion Prune preserves the substitution property of theequality = on guarded trees.Take [op] ∈ {∪, ,̂ ‖} thenif Prune(T1) = Prune(T ′

1) and Prune(T2) = Prune(T ′
2) then

Prune(T1[op]T2) = Prune(T ′
1[op]T

′
2).5The 
ounterexample is ÎCA(a + 0) 6= ÎCA(a) ∪ ÎCA(0).26



Proof: The proof 
onsiders three 
ases, one for ea
h operator over therooted trees. In ea
h 
ase it will analyze the behavior of ea
h step in the
Prune fun
tion of De�nition 3.3.Case 1 (for ∪). We need to prove that Prune(T1∪T2) = Prune(T ′

1∪T
′
2).We need �rst to take a 
areful look at the operator ∪. It is 
lear that theoperator does not 
hange the labels of the edges of the old trees. Moreover,the ∪ operator just takes the sets of edges on ea
h level of the two trees andputs them together a
ting only in the 
ase when two edges are the same (arelabelled the same). When there are two edges labeled the same we have onespe
ial 
ase when one of the subtrees is just a single node. In this 
ase the

∪ operation adds one edge labeled with tau and ending in a white node tothe se
ond tree on the �rst level.We now use the proof prin
iple redu
tio ad absurdum to �nish the restof the proof for this 
ase. Therefore we try to prove the negation of the
on
lusion and get a 
ontradi
tion. We 
onsider that Prune(T1 ∪ T2) 6=
Prune(T ′

1 ∪ T ′
2) and thus ∃(n, α,m) with m : W an edge whi
h makes onepruned tree di�erent from the other. Without loss of generality 
onsider

(n, α,m) ∈ Prune(T1 ∪ T2). The spe
ial 
ase when m : B is a bla
k node istreated later. Also the se
ond spa
ial 
ase when α = τ is treated later.We then investigate the Prune fun
tion to note that step 1a takes ea
hlabel of ea
h edge and removes the τ and this operation may be done onparts of the tree, thus applying step 1a of Prune �rst to T1 and then to T2is the same as applying step 1a of Prune dire
tly to T1 ∪ T2. All other stepsof the Prune fun
tion do not deal with edges labeled by α 6= τ and endingin a white node. The other steps of Prune will be subje
t of investigationlater when we treat the spe
ial 
ases mentioned before.The dis
ussion above about step 1 of Prune and the behavior of ∪ sug-gests that the edge should have 
ome from one of the initial (unpruned) treesand thus either (n, α ∪ τ ∗, m) ∈ T1 or (n, α ∪ τ ∗, m) ∈ T2 where by α ∪ τ ∗we mean that the initial label 
ould have had, or not, a τ inside (whi
h wasremoved by the Prune). Note that the spe
ial 
ase of ∪ does not matterhere as the edge we 
onsider now is labeled by α 6= τ .Without loss of generality 
onsider (n, α ∪ τ ∗, m) ∈ T1. Thus, we apply
Prune(T1) = T̂1 and Prune(T ′

1) = T̂1, whi
h means that (n, α,m) ∈ T̂1, andthus we 
on
lude that (n, α ∪ τ ∗, m) ∈ T ′
1. Moreover, the edge (n, α ∪ τ ∗, m)will still be in the join T ′

1 ∪ T ′
2 of the two trees. Be
ause m : W is a whitenode by Prune(T ′

1∪T
′
2) the edge (n, α,m) will still be in the resulting prunedtree. This is a 
ontradi
tion with the initial (wrong) assumption and thusthe original 
on
lusion of the 
ase is true.27
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Figure 5: Example for the spe
ial 
ase of the tree T1 ∪ T2 whi
h is prunedinto T0.The rest of the proof treats the spe
ial 
ases of the pruned trees whi
hare given in Proposition 3.1. We treat now the 
ase when the edge thatmakes one pruned tree di�erent from the other is (r, τ, n : B). From the�rst statement of the Proposition 3.1 we know that by applying Prune allthe bla
k nodes are removed with the ex
eption when the remaining treehas only a single edge (therefore, is the tree representing 0). The spe
ial
ase mentioned before is when after pruning (without loos of generality)
Prune(T1 ∪ T2) = ({r, n}, {(r, τ, n :B)}, {τ}) = T0. By analyzing the Prunefun
tion it is 
lear that the only way to obtain su
h a pruned tree is if theoriginal T1 ∪T2 has a bla
k node on ea
h path (as the bla
k nodes propagateupwards, and the only way for a bla
k node to dissapear is when it hassiblings whi
h are white nodes, whi
h is not the 
ase here). Looking at thede�nition of ∪ it is 
lear that ea
h of the T1 and T2 also have on ea
h path abla
k node (the spe
ial 
ase of ∪ mentioned before 
learly does not in�uen
ethis observation). Therefore Prune(T1) = Prune(T2) = T0 = Prune(T ′

1) =
Prune(T ′

2). Therefore ea
h tree T ′
1 and T ′

2 has a bla
k node on every pathand thus Prune(T ′
1 ∪ T

′
2) = T0 whi
h is a 
ontradi
tion and thus the 
ase is�nished. This dis
ussion is pi
tured in Figure 5.The las 
ase that we need to treat is when the edge that makes thetwo pruned trees di�erent is when the edge is labeled by τ . By the se
ondstatement of the Proposition 3.1 we know that this edge is of two types:1. Either the edge is the only edge of the tree, and thus Prune(T1∪T2) =

({r, n}, {(r, τ, n : W )}, {τ}) = T1. After a 
loose look at the Prunepro
edure and the ∪ operation it is 
lear the Prune(T ′
1 ∪ T ′

2) = T128



whi
h is a 
ontradi
tion and thus the 
ase is proven.2. On the other hand the edge 
an be a terminal edge whi
h has otheradja
ent edges.Case 2 (for ̂ ). We need to prove that Prune(T1̂ T2) = Prune(T ′
1 T̂

′
2).We �rst look at the behavior of ̂ whi
h just appends the se
ond tree toea
h leaf of the �rst tree. We again analyze the behavior of Prune w.r.t. ̂operator.Note that applying Prune to T1̂ T2 behaves as applying �rst Prune to these
ond tree T2 and then applying Prune to the �rst tree so that to obtain inboth 
ases (i.e. Prune(T1̂ T2) and Prune(T ′

1 T̂
′
2)) the same pruned tree. Westill need to be 
areful to one thing. For ea
h bla
k node (
f. step 2) we haveto remove the subtree. In this 
ase we take a look at the �rst trees T1 and T ′

1whi
h may have at the leafs di�erent bla
k nodes. Anyway, be
ause we havethe same pruned tree T̂1 whi
h by Proposition 3.1 has no bla
k nodes thenwe do not 
are whi
h subtrees (
orresponding to the di�erent bla
k nodes inthe di�erent trees T1 and T ′
1) from the big 
on
atenated trees are removed,as in the end we ramain with the same leafs for the upper part of the trees.The only remaining problem is when the pruned upper trees are the basi
tree with one edge labeled by τ and ending in a bla
k node. In this 
ase thepruning of the whole big trees will end up in the same basi
 tree with oneedge labeled by τ and ending in a bla
k node (whi
h models the a
tion 0).Case 3 (for ‖). We need to prove that Prune(T1 ‖ T2) = Prune(T ′

1 ‖ T
′
2)in the hypothesis that Prune(T1) = Prune(T ′

1) and Prune(T2) = Prune(T ′
2).Note that ‖ operator manipulates the labels of the trees adding to the newtree new 
ompound labels to the edges. This makes the investigation of this
ase more di�
ult. Note more, that the ‖ operator is applied in stages onea
h level of the trees. Therefore we 
onsider �rst the behavior of Prune onea
h level w.r.t. ‖ operator.A fa
t is that after pruning of the small trees (T1, T ′

1, T2, T ′
2) their respe
-tive �rst levels will 
ontain exa
tly the same edges with the same labels (i.e.

T1 with T ′
1, and T2 with T ′

2). A �rst question is: Knowing the fa
t above, is itthe 
ase that after pruning the big trees (i.e. T1 ‖ T2 and T ′
1 ‖ T

′
2) we obtainat ea
h level indu
tively the same edges labeled with the same 
ompoundlabels?We prove the question by redu
tio ad absurdum: suppose in one of thebig trees there is one edge di�erent (i.e. whi
h does not appear in the othertree at the same level). Take edge (r, α, n) ∈ T1 ‖ T2. Note also that afterpruning there is no 
ompound label whi
h 
ontains the τ . This fa
t is easily29
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Figure 6: Example for Lemma 3.3.proven by looking at De�nition 3.3. Therefore, α does not 
ontain τ and isthe result of union of two 
ompound labels αT1
and αT2

of the same levelin the two trees. The labels αT1
and αT2

are also sets of basi
 a
tions anddo not 
ontain τ . Note that Prune does not add new basi
 a
tions to thelabels of the trees, nor does it remove basi
 a
tions from the 
ompoundlabels6. Therefore, αT1
∪ τ ∗ must have been a label of T1 whi
h be
ause

Prune(T1) = Prune(T ′
1) it means that αT1

must be also a label of T ′
1 at thesame level. The same argument is valid for αT2

whi
h must be a label of T ′
2at the same level. Therefore, in the 
ompound tree T ′

1 ‖ T ′
2 there must beat the same level a label formed just of αT1

, αT2
and possibly τ (whi
h afterpruning is removed). This is in 
ontradi
tion with our supposition that thereis no label α at the same level in the pruned tree of T ′

1 ‖ T
′
2.We want to analyze one more deli
ate 
ase when at one level there is anedge labeled just with τ and it ends in a bla
k node (the most simple 
aseis pi
tured in Figure 6). One may say that this edge would insert in thebig trees new and di�erent edges labeled with τ ∪ αTi

where αTi
is a labelof an edge in the other tree. This is true, but su
h an edge ends in a bla
knode and is subje
t to the sequen
e of steps 2a, 2b, and 3b from the Prunefun
tion whi
h removes the edge in the pruned tree.This 
on
ludes the proof of the third 
ase and of the lemma. 2Lemma 3.3 suggests the following result.Corollary 3.4. ∀α, α′, β, β ′ ∈ CA if ÎCA(α) = ÎCA(α′) and ÎCA(β) = ÎCA(β ′)then ÎCA(α[op]β) = ÎCA(α′[op]β ′) where [op] ∈ {+, ·,&}.Theorem 3.5 (Completeness of CA over RT ).For any two a
tions α and β of A then α = β is a theorem of CA i� the
orresponding trees ÎCA(α) and ÎCA(β) are isomorphi
.6The removing is done only in the spe
ial steps and it removes labels all together withthe edge. 30



Note: logi
ians would 
all the forward impli
ation the soundness and theba
kword impli
ation the 
ompleteness.Proof: The forward impli
ation (⇒) 
an be rewritten as:
CA ⊢ α = β ⇒ ÎCA(α)

.
= ÎCA(β).We use indu
tion on the derivation and prove as base 
ase that the im-pli
ation holds for the axioms of CA. The rooted trees in the theorem areonly pruned trees. Thus, after the standard interpretation generates a tree,then the tree is pruned.We 
onsider the usual basi
 rules of equational reasoning whi
h are re-�exivity, symmetry, transitivity, and substitution.We have as basis step of the indu
tion the axioms of Table 1 and we takea 
ase for ea
h axiom.For the next four 
ases related to axioms (1)-(4) we are looking at the ∪operator on rooted trees. The main behavior of ∪ is that for ea
h level of thetree it 
ombines any two edges with the same label and pro
eeds the samefor the subsequent levels. So, if we may regard the edges of one level of atree as a set of edges one 
an easily see that ∪ makes the union of the edges.7We know that union for sets is asso
iative, 
ommutative and idempotent.Case 1 (axiom (1)). Let α = α1 + (α2 + α3) and β = (α1 + α2) + α3.Be
ause ICA is homomorphi
 then ICA(α) = ICA(α1)∪(ICA(α2)∪ICA(α3)) and

ICA(β) = (ICA(α1) ∪ ICA(α2)) ∪ ICA(α3). Following the dis
ussion above, for
ICA(α) the ∪ operator, for ea
h level of the trees �rst identi�es the 
ommonedges of ICA(α2) and ICA(α3) and 
ombines them and afterwards 
ombinesthe remaining edges with the 
ommon ones of ICA(α1) and pro
eeds to thenext levels. This behavior results in the same edges for the ICA(β) where�rst the 
ommon edges of ICA(α1) and ICA(α2) are identi�ed, whi
h are partof the edges identi�ed in the se
ond 
ombination for the ICA(α) before. Inthe next step ∪ 
ombines the edges also 
ommon to ICA(α3).Case 2 (axiom (2)). For 
ommutativity it is simple as ∪ has also a
ommutative behavior and also think of the dis
ussion before.Case 3 (axiom (3)). Form 
ommutativity it is simple to see the �rstequality α+0 = 0+α. The se
ond equality α+0 = α is treated at the level of
Prune fun
tion. Note that the tree ICA(0) is the tree with one edge labeledwith τ and ending in a bla
k node. For this the 
ombination ICA(α)∪ ICA(0)gives the tree in Figure 7ii. whi
h when applying the Prune fun
tion it isapplied the step 3b whi
h removes the newly added edge 
orresponding to
ICA(0) thus resulting in the same pruned tree and so ÎCA(α + 0) = ÎCA(α).7Where remember that for sets the union keeps only one 
opy of ea
h element.31
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Figure 7: Example for Case 3.Case 4 (axiom (4)). For the idempoten
e it is simple to see that whenjoining the tree ICA(α1) with itself we obtain the same tree as all the edgesof one of the trees are removed as being equal with the edges of the �rst tree.Case 5 (axiom (5)). This 
ase for α · (β ·γ) = (α ·β) ·γ is simple and weleave it to the reader. Basi
ally it does not matter in whi
h order the treesare joined one to the end of the other.Case 6 (axiom (6)). This 
ase is also treated at the level of the Prunefun
tion by the step 1b of the De�nition 3.3 whi
h removes the edges labeledwith τ and ending in a white node. This would 
orrespond to the tree ICA(1).Thus we have ÎCA(α · 1) = ÎCA(α).Case 7 (axiom (7)). This 
ase is proven at the level of Prune fun
tionby 
onsidering steps 2�3a. The rest of the proof is pi
tured in Figure 8.For the part 0 · α = 0 we have to 
on
atenate trees ICA(0) and ICA(α)into the tree in Figure 8i. The fun
tion Prune applies step 2a whi
h removesthe subtree starting in a bla
k node and we obtain the tree T0 and thus
ÎCA(0 · α) = ÎCA(0).For the part α · 0 = 0 we 
on
atenate to the tree ICA(α) the tree ICA(0),whi
h means that at ea
h leaf node of tree ICA(α) we atta
h the tree ICA(0)whi
h is formed of only one edge labelled with τ and ends in a bla
k node.A simple example for this se
ond part of the 
ase is pi
tured in Figure 8ii.It is simple to see that fun
tion Prune applies step 3a for the bla
k nodes atthe leafs of the tree and removes the immediate upper edges (from the tree
ICA(α)). In the next round step 3b is applied. This pro
ess of applying thesequen
e of steps 3a and 3b goes up the tree until it removes all the edgesand remains with the tree ICA(0). 32
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Figure 8: Illustration of Case 7.Case 8 (axiom (8)). Take α = α1 · (α2 + α3) and β = α1 · α2 + α1 ·
α3. Be
ause ICA is homomorphi
 then ICA(α) = ICA(α1)̂ ICA(α2 + α3) and
ICA(β) = ICA(α1 · α2) ∪ ICA(α1 · α3). Therefore Tα is 
omposed �rst of thetree Tα1

and at ea
h leaf it is 
on
atenated the tree Tα2+α3
. On the otherhand tree Tβ has to be a joint of trees Tα1·α2

and Tα1·α3
, whi
h when joiningthe su�x trees Tα1

whi
h are equal we obtain the same tree Tα1
at the topfollowed at the leafs by the joining of the remaining trees Tα2

and Tα3
. Thusgiving the same tree. Pruning the same tree gives the same pruned tree andthus ÎCA(α) = ÎCA(β).The 
ase for axiom (9) is treated similarly.Case 9 (axiom (10)). We need to prove that ÎCA(α&(β&γ)) =

ÎCA((α&β)&γ). For this 
ase it is su�
ient to 
onsider only ICA and thus weneed to prove that ICA(α) ‖ (ICA(β) ‖ ICA(γ)) = (ICA(α) ‖ ICA(β)) ‖ ICA(γ)(as ICA is homomorphi
). The behavior of the ‖ operator is to make the
artesian produ
t of the labels of the trees on ea
h level and then des
endsre
ursively to the other levels to apply the same 
on
urrent join operation.Be
ause the 
artesian produ
t is asso
iative we obtain on ea
h level of thetrees the same edges and for ea
h new edge we use indu
tively the hypothesisto obtain the same subtrees. Thus we have the desired 
on
lusion.Case 10 (axiom (11)). Follows immediately from the 
ommutativityof ‖ operator; i.e. the fa
t that the order of the edges of the trees does notmatter.Case 11 (axiom (12)). This 
ase is proven at the level of Prune fun
tionby the step 1a whi
h removes the τ from the multiset labels thus resulting33



in the same pruned tree.Case 12 (axiom (13)). This 
ase is proven at the level of Prune fun
tionalso by 
onsidering steps 2-3a. This is be
ause 0 introdu
es bla
k notes intothe tree ICA(α).Case 13 (axiom (14)). For this proof we do not need to take into
onsideration the Prune fun
tion appli
ation as we 
an manage to showthe following: ICA(α) ‖ (ICA(β) ∪ ICA(γ)) = (ICA(α) ‖ ICA(β)) ∪ (ICA(α) ‖
ICA(γ)). It is known that for sets the 
artesian produ
t is distributive overthe union of sets. Therefore, in our 
ase we get in both big trees the samenew edges at ea
h level. We need to take 
are only of the 
ommon partsof the trees. In the left tree the ∪ operator joins the two subtrees for ea
h
ommon edges and afterword the edge is 
ombined with the edges in the tree
ICA(α) and the subtrees are also 
ombined thus o�ering the oportunity toapply indu
tively the same reasoning. For the tree on the right �rst the ‖operator 
ombines the edges of the trees and be
ause of the fa
t above we willhave the same set of identi
al edges whi
h will join the subtrees (obtainedby 
on
urrent 
omposition ‖). Thus, applying the hypothesis indu
tively weobtain the same trees.The 
ase for axiom (15) is treated similarly.Case 14 (axiom (16)). The proof is natural as it basi
ally states thatthe 
on
urrent join ‖ operates on levels of the tree and then des
ends to thesubsequent levels until no more join is possible and from that point on theremaining part of the tree is just 
opied.For the indu
tive step we have the following 
ases 
orresponding to thederivation rules:Case 1 (re�exivity). CA ⊢ α = α then be
ause ÎCA is a fun
tion it isimeediate by the de�nition that ÎCA(α) = ÎCA(α) and thus ÎCA(α)

.
= ÎCA(α).Case 2 (symmetry). If CA ⊢ α = β then CA ⊢ β = α, whereby the indu
tion hypothesis we have that from CA ⊢ α = β implies that

ÎCA(α) = ÎCA(β). We know that the equality .
= on rooted trees is symmetri
and thus we have the 
on
lusion CA ⊢ β = α⇒ ÎCA(β)

.
= ÎCA(α).Case 3 (transitivity). If both CA ⊢ α = β and CA ⊢ β = γ then

CA ⊢ α = γ. The proof argument is similar to that in Case 2 and is basedon the fa
t that .
= is transitive. 34



Case 4 (substitution). We must 
onsider ea
h of the three operatorson a
tion +, ·,&. We look only at + where if CA ⊢ α = α′ and CA ⊢ β = β ′then CA ⊢ α + α′ = β + β ′. By the indu
tion hypothesis we have that
ÎCA(α) = ÎCA(α′) and ÎCA(β) = ÎCA(β ′) whi
h by Lemma 3.3 we have our
on
lusion ÎCA(α + α′)

.
= ÎCA(β + β ′).For the 
onverse impli
ation (⇐) of the theorem we need to prove thatthe standard interpretation restri
ted to pruned tress ÎCA is an isomorphism.This means that if ICA(α) is applied to a
tion α it returns a normal rooted tree

Tα whi
h is then pruned and from the pruned tree one 
an get by applying theinverse fun
tion another a
tion α′. The obtained a
tion α′ has to be equal bythe axiom system with the original a
tion α = α′. Having this isomorphismthen from two a
tions α and β we get the same tree Tγ from where wetranslate ba
k to the same a
tion γ = α = β whi
h is our 
on
lusion.Remember that the term algebra TCA is free in the 
lass of algebras overthe generators AB. The fa
t that ÎCA is an algebrai
 isomorphism makesthe RT algebra also free in the 
lass of algebras CA, whi
h means that anyproperty on the rooted trees holds on the a
tion terms and the 
onverse.First we take the usual way of de�ning a relation indu
ed by the equalityon a
tion terms and the derivation relation ⊢.De�nition 3.4. Consider the relation ≡⊆ TCA × TCA de�ned as:
α ≡ β ⇔ CA ⊢ α = βThe proof that ≡ is a 
ongruen
e is 
lassi
al based on the dedu
tion rulesand we leave it to the reader.The rest of the proof is based on the following lemma whi
h basi
allyestablishes the existen
e of the inverse fun
tion of the standard interpretation

ÎCA thus proving that ÎCA is an isomorphism.Lemma 3.6 (Existen
e of the inverse of the interpretation).There exists a map Î−1
CA : RT pruned → CA whi
h is the inverse map up to

≡ of ÎCA.Proof: The proof of the lemma involves three parts:1. ∀T̂ ∈ RT pruned then ∃α ∈ CA2. ∀T̂1
.
= T̂2 then Î−1

CA(T̂1) = Î−1
CA(T̂2)The �rst two guarantee that Î−1

CA is a 
orre
tly de�ned fun
tion andtheir proof will be part of the 
onstru
tion of Î−1
CA.3. Î−1

CA ◦ ÎCA = Id/≡ i.e. ∀α ∈ CA then Î−1
CA ◦ ÎCA(α) = α′ and α ≡ α′35



We de�ne Î−1
CA as the restri
tion of the fun
tion I−1

CA : RT → CA to
RT pruned the set of pruned trees. Note that one should not regard the no-tation I−1

CA as the inverse fun
tion of ICA, our intension is just to keep anintuitive notation. The 
onstru
tion of I−1
CA is �rst done for the basi
 treesand in the se
ond stage it is extended homomorphi
 to the tree operators.The set of basi
 trees (nontrivial ones) 
ontains the trees with only one edgelabeled with a basi
 a
tion or τ ; i.e. {TB = ({r, n}, {(r, δ, n)}, {δ}) | δ ∈

AB ∪ {τ} and n : W or n : B}. The Prune fun
tion transforms all basi
trees with bla
k nodes and a label a 6= τ into a basi
 tree with label τ . Thismeans that Î−1
CA is applied only to trees with labels a 6= τ and white nodes forwhi
h it returns the a
tion a ∈ AB, the tree labeled with τ and white nodefor whi
h it returns a
tion 1, and to the tree labeled with τ and bla
k nodefor whi
h it returns a
tion 0.The extension of I−1

CA to the tree operators is natural:
• I−1

CA(T1 ∪ T2) = I−1
CA(T1) + I−1

CA(T2)

• I−1
CA(T1̂ T2) = I−1

CA(T1) · I
−1
CA(T2)

• I−1
CA(T1 ‖ T2) = I−1

CA(T1)&I
−1
CA(T2)With this 
onstru
tion we have proven that I−1

CA is de�ned on the wholedomain RT and thus Î−1
CA is de�ned on the whole RT pruned. Now we haveto prove that it returns a unique value for ea
h input, in order to 
all it afun
tion.Note that the de�nition of Î−1

CA does not take into 
onsideration the namesof the nodes of the trees thus, for any two trees T̂1
.
= T̂2 it will return thesame a
tion. It remains to show that if two trees are equal in the usual sense(T̂1 = T̂2) than the fun
tion Î−1

CA returns the same a
tion. This is obvious astwo equal trees have the same nodes, the same edges (with the same labels),and thus the same stru
ture. It does not matter the order of the edges ofa node or the order of the basi
 labels in a 
ompound label, but these aredealt with at the level of the a
tions by the 
ommutativity of the + and the
ommutativity of the & operators. Consider just the following 
ase when twobran
hes of a tree are inter
hanged so to give a se
ond tree. This gives thesame a
tion in the algebra modulo 
ommutativity axiom. We 
on
lude that
Î−1
CA is a well de�ned fun
tion.Lemma 3.7. Fun
tion Prune preserves the relation ≡ on a
tions, meaningthat ∀T ∈ RT if Prune(T ) = T̂ then I−1

CA(T ) ≡ I−1
CA(T̂ ).Proof: The proof uses indu
tion on the pruned tree and thus 
onsidersa 
ase for ea
h step in the De�nition 3.3 of the Prune fun
tion. We inves-36



tigate how Prune 
hanges the tree and how these 
hanges take the a
tion
orresponding to the initial tree into a equivalent a
tion w.r.t. ≡ relatio.The basis of the indu
tion 
onsiders only basi
 trees RT B for whi
h the
Prune fun
tion returns the same tree (i.e. has no efe
t on the initial tree)and thus I−1

CA(T ) = I−1
CA(Prune(T )) ⇒ I−1

CA(T ) ≡ I−1
CA(Prune(T )).The indu
tive step 
onsiders 
ompound trees and makes use of the homo-morphi
 de�nition of I−1

CA 
onsidering a 
ase for ea
h step of the De�nition3.3.
• Case for step 1a when the τ is removed from the 
ompound labels.In this 
ase we 
onsider the initial tree 
hanged only by step 1a whi
hmeans that there are no bla
k nodes (and thus steps 2-4 are not applied)and also there are no edges labeled just with τ (ne
essary for step 1b).In this 
ase relevant is 
omposition of trees by means of ‖ operator.
I−1
CA(T ) ≡ I−1

CA(T̂ ) be
ause of the axiom (12) of Table 1. Thus, for a
hain of appli
ations of the step 1a the old a
tion I−1
CA(T ) be
omes anequivalent a
tion I−1

CA(T̂ ) be
ause of a 
hain of appli
ation of axiom(12).
• Case for step 1b is related to axiom (6). Now we 
onsider indu
tivelyalso pruned trees obtained by applying step 1a. Note that for one appli-
ation of step 1b from the old a
tion it is obtained a new a
tion whi
his equivalet be
ause of the appli
ation of axiom (6). This is be
ause theedge labeled just with τ and ending in a white node would have beentranslated by I−1

CA into the 1 a
tion. This small tree is 
on
atenatedwith the big one whi
h be
ause of the homomorphism property of I−1
CAit is related to the sequen
e 
omposition α · 1 or 1 · α at the level ofthe a
tions. In 
on
lusion, from a 
hain o appli
ations of step 1b it isobtained by a 
hain of axiom (6) an equivalent a
tion.

• Case for step 1
 takes 
are that the tree whi
h interprets 0 is apruned tree (the edge is not removed).We now 
onsider bla
k nodes, and we look at one bla
k node at a timeand apply the sequen
e of steps from 2 onwords.
• Case for step 2 is related to axiom (7) and (13). This step basi
allystates that on
e entered into a bla
k node it si the same as saying atthe level of the a
tions that a fail 0 has o

ured, and thus axiom (7) isthe 
ase. First step 2a removes the tree below the bla
k node (at thea
tion level is equivalent to 0 ·α = 0) and then in step 2b it transformsthe edge (by 
hanging the label into τ) su
h that it is translated by I−1

CAinto 0 a
tion. 37



• Case for step 3a is related to part α·0 of axiom (7) as it moves up thebran
hes of the tree the spe
ial edge (n, τ,m : B) whi
h is transformedby I−1
CA into 0.Note that the last two 
ases are also related to axiom (13) be
ause thebig tree may be result of 
on
urrent join between ICA(α) and ICA(0).

• Case for step 3b is related to axiom (3). Basi
ally the Prune fun
tionremoves the edges (n, τ,m : B) from the tree the same as axiom (3)removes 0 a
tions from 
hoi
es.Note that the last two steps are applied repetedly, whi
h at the level ofthe a
tions it is the same as moving the 0 a
tion through the a
tion.
2From Lemma 3.7 we 
on
lude the following useful 
ongruen
es:

I−1
CA ◦ ICA ≡ I−1

CA ◦ ÎCA (21)whi
h by restri
tion implies
I−1
CA ◦ ICA ≡ Î−1

CA ◦ ÎCA (22)The proof of part 3 of Lemma 3.6 uses stru
tural indu
tion on the stru
-ture of the a
tion α. Proving part 3 we prove that Î−1
CA is the isomorphi
image of ÎCA up to the 
ongruen
e on a
tions ≡.Basis:

• For α = a. ICA(a) = ({r, n}, {(r, a, n)}, {a}) with n : W whi
h bypruning remains the same tree and by the inverse Î−1
CA we have thesame a
tion a.

• For α = 1 or α = 0 the same as above applies.Indu
tive step:
• For α = α1 + α2.By (22) we have that Î−1

CA ◦ ÎCA(α) ≡ I−1
CA ◦ ICA(α) = I−1

CA(ICA(α1 + α2))where be
ause ICA is a homomorphism we have that it is equal to
I−1
CA(ICA(α1) ∪ ICA(α2)) where by applying the homomorphi
 de�ni-tion of I−1

CA we get that I−1
CA ◦ ICA(α) = I−1

CA(ICA(α1)) + I−1
CA(ICA(α2)).Again by equation (22) we have that I−1

CA(ICA(α1)) ≡ Î−1
CA(ÎCA(α1)) and

I−1
CA(ICA(α2)) ≡ Î−1

CA(ÎCA(α2)). By the indu
tive hypothesis we know38
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Figure 9: Example of applying the isomorphism ÎCA.that Î−1
CA ◦ ÎCA(α1) = α′

1 ≡ α1 and that Î−1
CA ◦ ÎCA(α2) = α′

2 ≡ α2.Whi
h is equivalent to saying that CA ⊢ α′
1 = α1 and CA ⊢ α′

2 =
α2 whi
h by the substitution rule of equational reasoning we havethat CA ⊢ α′

1 + α′
2 = α1 + α2 whi
h is our desired 
on
lusion; i.e.

Î−1
CA ◦ ÎCA(α) ≡∗ α′

1 + α′
2 ≡ α1 + α2 = α.

• For α = α1 · α2 or α = α1&α2 the reasoning is similar.Consider as an example the spe
ial 
ase when α = a+0 whi
h is pi
turedin Figure 9. ICA(α) = ({r, n1, n2}, {(r, a, n1), (r, τ, n2)}, {a, τ}) with n1 :
W and n2 : B. Applying the Prune fun
tion we obtain the tree T̂α =
({r, n1}, {(r, a, n1)}, {a}), where applying the Î−1

CA we obtain the a
tion a ∈
CA. We have that CA ⊢ a + 0 = a as an instan
e of the axiom (3) of Table1 and thus we have our 
on
lusion α = a + 0 ≡ a = Î−1

CA ◦ ÎCA(α). 2To �nish the proof of the se
ond impli
ation, i.e. ÎCA(α) = ÎCA(β) ⇒
CA ⊢ α = β we make use of Lemma 3.6. From ÎCA(α) = ÎCA(β) we apply
Î−1
CA and obtain α′ = Î−1

CA ◦ ÎCA(α) and β ′ = Î−1
CA ◦ ÎCA(β) with α′ = β ′ ashypothesis and α ≡ α′ and β ≡ β ′ from Lemma 3.6. Thus we have the
on
lusion α ≡ α′ = β ′ ≡ β whi
h is CA ⊢ α = β. 2We 
an take another way of viewing the rooted trees as the set of all pathsstarting from the root node. This is similar to the way of giving semanti
sto a
tions in pro
ess logi
 [Pra79℄ where ea
h a
tion is interpreted as a setof traje
tories.4 The Boolean testsIn this se
tion we extend CA with a Boolean algebra of tests to obtain ana
tion algebra with tests whi
h we denote by CAT ; we follow the work ofKozen [Koz97℄ on de�ning Kleene algebra with tests.39



The stru
ture CAT = (CA,B) 
ombines the previous de�ned algebrai
stru
ture CA with a Boolean algebra B in a spe
ial way we see in this se
tion.A Boolean algebra is a stru
ture B = (A1,∨,∧,¬,⊥,⊤) where the fun
tionsymbols (∨, ∧, and ¬) and the 
onstants (⊥ and⊤) have the usual meaning ofdisjun
tion, 
onjun
tion, negation, falsity, and truth respe
tively. Moreover,the elements of set A1 are 
alled tests and are in
luded in the set of a
tionsof the CA algebra (i.e. tests are spe
ial a
tions; A1 ⊆ A). We denotetests by letters from the end of the Greek alphabet φ, ϕ, . . . followed by aquestion mark ?. Our notation for tests is more related to the notation usedin Propositional Dynami
 Logi
 (PDL).For a more 
lear presentation, we abuse the syntax and use, e.g. (φ ∧
ϕ)? instead of φ? ∧ ϕ?. More generally, we 
onsider ? only at the end ofan expression from A1; i.e. if ψ is a test expression generated using any
ombination of the 
onstru
tors of the boolean algebra then the notation forthe test is just ψ?.The intuition behind tests is that in an a
tion φ? · α formed of a test
φ? followed by an a
tion α is the 
ase that a
tion α 
an be performedonly if the test su

eeds (the 
ondition φ is satis�ed). Tests are sometimes
alled guards and have been used to model while programs whi
h involve pro-gramming 
onstru
ts like loops and 
onditionals. For example, 
onsider the
if φ then a else b programming 
onstru
t. We 
an model this using testsas: φ? · a + ¬φ? · b. Some other properties of systems 
ould be modelled bygiving equations involving both a
tions and tests. For example the following
ommutative equation φ? ·α = α ·φ? models an a
tion invariant8; i.e. if φ istrue before a
tion α then we should 
onsider it also true after performing α.We do not go into details about the properties of a Boolean algebra asthese are 
lassi
al results in the literature. For a more thorough understand-ing see [Koz97℄ and referen
es therein. In the reminder of this se
tion wepresent the relation between tests and a
tions.The �rst relation between the CA algebra and the boolean algebra B isthat ⊤? = 1 with the intuition that testing a tautology allways su

eeds. Thedual is ⊥? = 0 meaning that testing a falsity never su

eeds. Furthermore,
1 ·α = α = ⊤? ·α whi
h is obvious as testing a tautology allways su

eeds sothe a
tion α 
an allways be performed. For the dual we have 0·α = 0 = ⊥?·αwith the intuition that be
ause testing a falsity never su

eeds the a
tion αis never performed (the sequen
e of a
tions stops when it rea
hes the falsitytest).We 
onsider the sequen
e a
tions as strings separated by · 
onstru
tor.With the extension with tests we no longer have strings but guarded strings8Performing any a
tion α does not a�e
t the truth value of proposition φ.40



[Kap69℄. A guarded string (in our algebra) is a sequen
e of a
tions interpla
edwith tests; e.g. φ1? a φ2? φ3? b φ4? is a guarded string (re
all that wesometimes omit the · for brevity). Moreover, note that is not ne
essary tohave more tests in a row be
ause the sequen
e of test a
tions from CA algebrais pushed inside the boolean algebra and shrunken into only one test withthe use of 
onjun
tion operator of B; e.g. φ2? φ3? = (φ2 ∧ φ3)? . Thus aguarded string is an alternation of tests and a
tions:
φ0? α1 φ1? . . . αn φn? (23)Note that a normal string of a
tions is a guarded string where instead of tests

φi? we have the tautology test ⊤? = 1.For a better intuition of tests and a
tions we give the following example.Take the test φ? to be: "The bank a

ount is less than 500$", and an a
tion
a of "deposit 1000$". We 
an give the more 
omplex a
tion φ? · a whi
hstates that "when the bank a

ount is less than 500$ deposit 1000$ into thea

ount". Another example is: φ? to test that "The bank a

ount is lessthan 500$" and ϕ? to test that "The bank a

ount is greater than 500$".The 
omplex test (φ ∧ ϕ)? whi
h (be
ause ϕ = ¬φ) is an instan
e of thegeneral falsity test (φ ∧ ¬φ)? never su

eeds. The example is that wheneverone waits to "deposit 1000$" after the test (of falsity) (φ∧ϕ)? su

eeds thenthe a
tion of depositing the money will never be performed.We extend the de�nition of the length fun
tion to apply it also to tests.As we have seen the relation between 1 and ⊤? we 
onsider the length of atest is 0; i.e. l(φ?) = 0. In other words, the length fun
tion does not takeinto 
onsideration the tests; e.g. l(φ? a) = l(φ? a ϕ?) = 1. Moreover, theposition syntax α(n) skips the tests; e.g. if α = φ1? a φ2? φ3? b φ4? then
α(2) = b.Other relations between CA and B are:1. 
on
urrent 
omposition of two tests φ?&ϕ? is (φ ∧ ϕ)? whi
h is thesame as the sequen
e of two tests.2. 
on
urrent 
omposition of a test and an a
tion φ?&a or a&φ? is thesame as the sequen
e of the test and the a
tion φ? · a. An intuitivemotivation for this is that when performing at the same time an a
tionand a test one expe
ts that the test is satis�ed before the 
ompletionof the a
tion; and be
ause we do not have a notion of start and end ofan a
tion we have to 
onsider the test before the a
tion. This approa
his also motivated by the fa
t that an a
tion 
an 
hange the world andthus the test may hold no longer.41



3. 
on
urrent 
omposition of two sequen
e a
tions ea
h formed of one testfollowed by an a
tions; i.e. (φ? · a)&(ϕ? · b) whi
h is (φ ∧ ϕ)? · a&b.Note that this way of 
on
urrently 
omposing sequen
e of tests anda
tions 
onforms with the axiom (16) of CA. More pre
isely, re
allthat the length fun
tion (and the position syntax) for guarded stringsof a
tions do not take into 
onsideration the tests. Thus, in the general
on
urrent 
omposition of two guarded strings φ0? α1 φ1? . . . αn φn?and ϕ0? β1 ϕ1? . . . βm φm? the axiom 
onsiders pairs of (φ0? ·α1)&(ϕ0? ·
β1).Example 4.1. Let us 
onsider some simple examples.i. The a
tion a&(ϕ? ·b) is an instan
e of the 
ase 3. above where a
tion ais pre
eded by test ⊤?. Thus, the a
tion is the same as (⊤∧ϕ)?·(a&b) =
ϕ? · (a&b).ii. An example of the distributivity axion (9) of Table 1 is the a
tion (a+
φ?) · b whi
h is equivalent to a · b+ φ? · b.iii. The a
tion (a&φ?) · b transforms using the 
ase 2. above into φ? · a · b.The synta
ti
 stru
ture of the a
tions in CAT is given through de�ningthe term algebra TCAT . In the following we de�ne indu
tively two kinds ofterms: the boolean terms and the a
tion terms. The 
arrier set of the termalgebra TCAT is the set of all a
tion terms.De�nition 4.1 (a
tion terms of CAT ).1. ⊤? and ⊥? are boolean terms;2. if φ? and ϕ? are boolean terms then (φ ∧ ϕ)?, (φ ∨ ϕ)?, and ¬φ? areboolean terms;3. nothing else is a boolean term;4. any boolean term is an a
tion term;5. any basi
 a
tion a ∈ AB is an a
tion term;6. if α and β are a
tion terms then α&β, α · β, and α + β are a
tionterms;7. nothing else is an a
tion term. 42
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Figure 10: Example of 
on
atenation of two guarded rooted trees.4.1 Standard interpretation of CAT over guarded rootedtreesIn this se
tion we extend the rooted trees of Se
tion 3.1 with tests and 
allthem guarded rooted trees. On this trees we give the standard interpretationof the CAT algebra.The extension is simple by asso
iating with ea
h node a boolean expres-sion φ. We denote the new nodes by n : {φ} where φ is generated by theBoolean algebra B of Se
tion 4. The two 
olors of the nodes are now spe
ial
ases in the extended trees: a white node is n : {⊤} and the bla
k node is
n : {⊥}.All the 
onstru
tions for rooted trees are the same with minor modi�
a-tions. The operators ∪, ,̂ and ‖ for guarded rooted trees when 
ombining twonodes n1 : {φ} and n2 : {ϕ} make the 
onjun
tion of the Boolean expressionsinto n12 : {φ ∧ ϕ}. The pruning pro
edure also adheres to this 
onjun
tionof the Boolean expressions of the two nodes that need to be 
ombined.Example 4.2. We give in Figure 10 an example of 
on
atenating two trees;the �rst representing an a
tion a and the se
ond 
onsisting of an empty label
τ and a test φ. The resulting guarded rooted tree represents the a
tion ofperforming a after whi
h the Boolean expression φ is tested. Note that in a�rst step the two trees are just 
ombined using the 
on
atenation operationand only afterwards the tree is pruned by removing the τ edge. In the �rststep the 
ombination of the nodes n1 and r2 into m gives the expression
⊤∧⊤ = ⊤. After pruning of the tree the nodes m and n2 are 
ombined into
p with the resulting 
onjun
tion ⊤ ∧ φ whi
h is the same as just φ.The standard interpretation of CAT algebra over the guarded rooted treesis given through a map ICAT whi
h maps every a
tion term of TCAT into aguarded rooted tree and preserves the stru
ture imposed by the 
onstru
tors.
ICAT is the same as ICA of Se
tion 3.2 with the following di�eren
es:43



1. for basi
 a
tions a ∈ AB the white nodes of the trees are repla
ed bynodes with the ⊤ expression inside; i.e. r : {⊤} and n : {⊤}.2. the spe
ial a
tions 1 and 0 have the white nodes repla
ed with ⊤ andthe bla
k node with ⊥; i.e. n1 : {⊤} and n0 : {⊥}.3. the tree operators are 
hanged as dis
ussed above.4. the major di�eren
e is that ICAT interprets test φ.
ICAT (φ) = ({r, n}, {(r, τ, n)}, {τ}) and n : {φ} is the tree with one edgelabeled with τ and the leaf node has φ inside.As we have dis
ussed there is only one test needed between any twoa
tions in the CAT algebra. At the level of the guarded trees this is respe
tedbe
ause of the pruning and of the 
onjun
tion of the expressions inside the
ombined nodes. The interpretation of tests gives trees with hight 0 (as wehave seen for 1 and 0 earlier). Note that we 
an still interpret an a
tionformed of only one test.We 
onje
ture here that the algebra CAT is 
omplete with respe
t to theguarded rooted trees, and the proof is similar to the proof of the 
orrespond-ing Theorem 3.5 for CA algebra.5 Canoni
al Form of A
tionsIt is known that for regular expressions there is no standard normal form;for example, see the Starr-Height problem [Egg63℄ whi
h looks at regularexpressions normal forms from the perspe
tive of Kleene ∗. Similarly, thereis no a
tion normal form for the a
tion algebra of PDL.A �rst attempt to identify a normal form for the 
lassi
al a
tion operatorsof Kleene algebra 
hoi
e ∪, sequen
e ;, and Kleene star ∗ underlying PDL is:

α = ∪
a∈A

a;α′where α is a 
ompound a
tion, a is an atomi
 a
tion, A is a subset of atomi
a
tions, and α′ is in normal form. For the semanti
s of a
tions given withtraje
tories, as in Pro
ess Logi
s [Pra79℄ this way of representing a
tionsgives all the traje
tories of an a
tion.The problem with this de�nition is that it takes into a

ount the ∗ oper-ator whi
h has an in�nitary interpretation as the re�exive transitive 
losureon binary relations. Looking at its unfolding a∗ = 1+a+a ·a+ . . . it respe
tsthe normal form above. But, when we take one of the equations that de�ne44



it; a∗ = 1+a ·a∗ it is 
lear that we 
an not prove the existen
e of the normalform. This is be
ause the normal form of α = a∗ would be based on the fa
tthat α′ = a∗ is in normal form, and we get nontermination.For our a
tion algebra CAT de�ned in Se
tion 2 we have a 
anoni
al formsimilar to the one above. The de�nition below shows how any a
tion term
onstru
ted by the term algebra TCAT 
an be written in a 
on
ise and 
learway.De�nition 5.1 (
anoni
al form for CAT ). For a
tions α de�ned with theoperators +, ·, &, and tests we have a 
anoni
al form denoted by ACF α andde�ned as
α = +

ρ∈R
ρ · α′Where R 
ontains elements either from basi
 a
tions, 
on
urrent a
tions,or tests, and α′ is a 
ompound a
tion in 
anoni
al form.Theorem 5.1. For every a
tion α of the algebra CAT we have a 
orrespond-ing ACF α.Proof: We use stru
tural indu
tion on the stru
ture of the a
tions of Agiven by the 
onstru
tors of the algebra. In the indu
tive proof we take one
ase for ea
h a
tion 
onstru
t. The proof also makes use of the equations ofthe algebra.Basis:a) If α is a base a
tion a of AB it is immediately proven to be in 
anoni
alform just by looking at the de�nition of the 
anoni
al form. A
tion ais a 
anoni
al form with the set R 
ontaining only one element, namely

a and the · 
onstru
tor is applied to a and to skip a
tion 1 (a · 1 = a).Note that we appeal to the 
ommon sense and the 
hoi
e (+) of onlyone a
tion (+a a) should be understood as 
hoi
e among fail a
tion 0and a (+a a
def
= 0 + a = a).b) If α = φ? is a test of B then it is 
onsidered in ACF α by de�nition. This
ase is similar to the one for base a
tions. The set R of the 
anoni
alform 
ontains only one test, and the a
tion α′ is the skip a
tion whi
his in 
anoni
al form.
) The spe
ial a
tions 1 = ⊤? and 0 = ⊥? are given by tests and thereforeare 
onsidered by de�nition to be in 
anoni
al form.45



In the indu
tive step we 
onsider only one step of the appli
ation of the
onstru
tors; the general 
ompound a
tions should follow from the asso
ia-tivity of the 
onstru
tors.Indu
tive steps:a) If α = β + β ′ is a 
ompound a
tion obtained by applying on
e the +
onstru
tor. By the indu
tion supposition β and β ′ are in 
anoni
alform. It means that β should be β = +bi
bi · βi and β ′ = +b′j

b′j · β
′
j.Be
ause of the asso
iativity and 
ommutativity of +, β + β ′ is also in
anoni
al form:

β + β ′ = +
bi∈B

bi · βi + +
b′j∈B′

b′j · β
′
j = +

a∈B∪B′

a · βawhere a and βa are related in the sense that if a = bi then βa = βi andif a = b′j then βa = β ′
j . Be
ause the indu
tive hypothesis states thatall βi and β ′

j are in 
anoni
al form it follows that also βa (whi
h is justa 
hange of notation) is in 
anoni
al form.b) If α = β ·β ′ with β = +bi
bi ·βi and β ′ = +b′j

b′j ·β
′
j in 
anoni
al form. Wenow make use of the distributivity of · over +, and of the asso
iativityof · and + 
onstru
tors. α transforms in several steps into a 
anoni
alform. In the �rst step α is:

α = β · β ′ = ( +
bi∈B

bi · βi) · ( +
b′j∈B′

b′j · β
′
j)and if we 
onsider |B| = m then α be
omes:

α = b1 · β1 · ( +
b′j∈B′

b′j · β
′
j) + . . . + bm · βm · ( +

b′j∈B′

b′j · β
′
j)Subsequently α distributes the · over all the members of the 
hoi
ea
tions. In the end α be
omes a 
hoi
e of sequen
es; when we 
onsider

|B| = m and |B′| = k.
α = b1 · β1 · b

′
1 · β

′
1 + . . . + bm · βm · b′k · β

′
kThis is 
learly a 
anoni
al form be
ause all a
tions βi · b′j · β

′
j are in
anoni
al form due to the indu
tive hypothesis.
) If α = β&β ′ with β = +bi

bi · βi and β ′ = +b′j
b′j · β

′
j in 
anoni
al form.The proof of this 
ase is fairly lengthy and we show here only a simpleparti
ular 
ase. 46



Let us 
onsider a
tions β = b · β ′, γ = c · γ′, and δ = d · δ′ in 
anoni
alform. They are the 
omponents of α = (β + γ)&δ. We apply thedistributivity of & with respe
t to + and get:
α = β&δ + γ&δ = (b · β ′)&(d · δ′) + (c · γ′)&(d · δ′)By applying equation (10) we get:

α = b&d · β ′&δ′ + c&d · γ′&δ′This shows that α is in 
anoni
al form be
ause by the indu
tive sup-position β ′&δ′ and γ′&δ′ are in 
anoni
al form.
2Proposition 5.2. The demanding relation <& de�ned in De�nition 2.3 is astri
t partial order over the whole a
tions of CA.Proof: We have to prove the two properties of ire�exivity and transitivity.We make use of the 
anoni
al form of the a
tions. The proof uses indu
tionover the stru
ture of the a
tions. The basi
 
ase is proven by Proposition 2.1for 
on
urrent a
tions.1. ire�exivity : ∄α ∈ A s.t. α <& α. We use the proof prin
iple redu
tio adabsurdum and 
onsider that it exists a 
ompound a
tion α for whi
h

α <& α. Without loss of generality we 
onsider α = +ρ∈R ρ · α′,where R 
ontains 
on
urrent a
tions (therefore also basi
 a
tions asthey 
an be 
onsidered as an instan
e of 
on
urrent a
tions). For thede�nition of <& to 
hoi
e a
tions it implies that we 
an �nd a fun
tion
f : {. . .}α → {. . .}α where {. . .}α is a set 
ontaining all the 
ompounda
tions ρi · α′

i of the 
hoi
e with 0 < i ≤ |{. . .}α| an index. Thede�nition of <& says that f(ρk ·α′
k) = ρk′ ·α′

k′ s.t. ρk′ ·α′
k′ <& ρk ·α′

k and
f(ρk′ ·α′

k′) = ρk′′ ·α′
k′′ s.t. ρk′′ ·α′

k′′ <& ρk′ ·α′
k′, and so on for all elements

ρk·α′
k ∈ {. . .}α. Note that starting with any k and applying the fun
tion

f we get a des
ending 
hain . . . <& ρk′′ · α′
k′′ <& ρk′ · α′

k′ <& ρk · αk.But be
ause the set {. . .}α is �nite this 
hain 
annot 
ontain all thea
tions of {. . .}α whi
h means that there is a point where the 
hainis broken. This means that there exists a a
tion ρj · αj s.t. f(ρj · αj)
annot have a value be
ause there exists no other a
tion ρj′ · αj′ with
ρj′ · αj′ <& ρj · αj. Therefore we 
annot de�ne the fun
tion f and thusthe supposition that α <& α is wrong. Therefore ire�exivity holds.47



2. transitivity : The proof of transitivity is more simple. Take α1 <& α2and α2 <& α3 and we have to prove that α1 <& α3. We again 
onsiderthe a
tions αi in 
anoni
al form. By the de�nition of <& we know thatwe have two fun
tions f 12 : {. . .}α2 → {. . .}α1 and f 23 : {. . .}α3 →
{. . .}α2. We have to prove that it exists a fun
tion f 13 : {. . .}α3 →
{. . .}α1 s.t. ∀ρk · α′

k ∈ {. . .}α3 f 13(ρk · α′
k) = ρk′ · α′

k′ with ρk′ · α′
k′ ∈

{. . .}α1 s.t. ρk′ · α′
k′ <& ρk · α′

k. It is simple to 
onstru
 the fun
tionas f 13 = f 12 ◦ f 23. It is 
lear that the de�ned fun
tion f 13 satis�esthe requirement of the de�nition: ∀ρk · α′
k ∈ {. . .}α3 f 13(ρk · αk) =

f 12 ◦ f 23(ρk · αk) = f 12(ρk′ · αk′) = ρk′′ · αk′′. By the de�nition of thetwo other fun
tions f 12 and f 23 we know that ρk′′ ·αk′′ <& ρk′ ·αk′ and
ρk′ · αk′ <& ρk · αk, whi
h means that ρk′′ · αk′′ <& ρk · αk.Note that in both proofs we have used the indu
tive hypothesis over thesmaller 
omponents of the 
hoi
e a
tions. 25.1 A
tion negationOne of the purposes of the investigation of the algebra in this paper is to beable to give a natural notion of a
tion negation. There have been a few worksrelated to negation of a
tions [Mey88, HTK00, LW04, Bro03℄. In [Mey88℄, thesame as in [HTK00℄ a
tion negation is with respe
t to the universal relationwhi
h, for example for PDL gives unde
idability. De
idability of PDL withnegation of only atomi
 a
tions has been a
hieved in [LW04℄. A so 
alled"relativized a
tion 
omplement" is de�ned in [Bro03℄ whi
h is basi
ally the
omplement of an a
tion (not with respe
t to the universal relation but) withrespe
t to a set formed of atomi
 a
tions 
losed under the appli
ation of thea
tion operators. This kind of negation still gives unde
idability when severala
tion operators are involved.A natural and useful view of a
tion negation is to say that the negation

α of a
tion α is the a
tion given by all the immediate traje
tories that takeus outside the traje
tory of α [BWM01℄. With ACF α it is easy to formallyde�ne α.De�nition 5.2 (a
tion negation). The a
tion negation is denoted by α andis de�ned as:
α = +

ρ∈R
ρ · α′ = +

b∈R

b + +
ρ∈R

ρ · α′where ρ is either a basi
 a
tion, a 
on
urrent a
tion, or a test. α′ is a
ompound a
tion in ACF α′. The set R is de�ned in the following.48



Dis
ussion: We elaborate here on a dis
ussion we had [PS07b℄ about thenature of a
tio negation. Literaly one may 
onsider two kinds of a
tionnegation: one �anything else but a� and another �not doing a�. We 
hoosethe �rst type as in our setting the se
ond type of a
tion negation is not found.We 
onsider a
tive systems whi
h are systems that allways do an a
tion.It is simple to model passivity by a
tion 1 skip. Moreover, in a subsequentpaper we add time for a
tions (i.e. the duration of an a
tion) and with timeit is natural to model idleing by the skip a
tion with a 
ertain duration.Thus, not doing a
tion a may be represented by doing a
tion skip or may berepresented by doing another expli
it a
tion.When adding time the �doing� of an a
tion will be
ome more 
ompli-
ated...We in
lude a
tion negation as a restri
ted operator of the CAT algebra.A
tion negation is restri
ted to being applied only on
e in an a
tion, i.e. we
annot �nd negation applied to the negation of an a
tion (e.g. a or a + b).On the other hand, we 
an have 
ombination using the normal operators ofnegated a
tions and normal a
tions (e.g. a + b).In the 
onstru
tion of the set R we in
lude several things. First we lookat the negation of a single test (i.e. when ρ is the test φ?) φ? whi
h isjust the negated test in the Boolean algebra (¬φ)?. The problemati
 partis the negation of a basi
 a
tion a. For example, another basi
 a
tion bdi�erent from a is part of a, but also any 
on
urrent 
omposition with itself(b&b, . . . b&b&b . . .) is part of a. This gives an in�nite number of a
tionsbe
ause operator & is not idempotent.We 
onsidered any a
tion of CAT to be �nite as it is 
onstru
ted byapplying the 
onstru
tors of the algebra a �nite number of times. For this wealso 
onsidered �nite rooted trees. Note that be
ause of the a
tion negationand of the non-idempoten
e of & we get in�nite a
tions and rooted trees within�nite bran
hing. We try to avoid this problem by giving a pro
edure forgenerating the a
tions of R using the demanding order <& of the algebra,and by de�ning tree s
hemas for interpreting the a
tion negation.Let us take one more parti
ular 
ase of the negation of the 
hoi
e betweentwo basi
 a
tions a + b. Any a
tion whi
h does not "
ontain" neither a nor
b is part of the negation of a + b; e.g. a&c 6∈ a+ b, but c, c&c, c&d ∈ a + b.Formally, any 
on
urrent a
tion c ∈ A& with the properties that a 6<& c and
b 6<& c is a negation of a+ b.We de�ne the set R to 
ontain:1. {(¬φ)? |φ ∈ R}; all the negation of the tests in R.2. {α |α ∈ A&, and ∀β ∈ R, β 6<& α}; all a
tions α (
onstru
ted using49



only &) with the property that there is no a
tion β of R whi
h is lessthan α with respe
t to the demanding order <&.This de�nition still generates an in�nite set R whi
h means that we stillhave in�nite bran
hing in the rooted tree asso
iated to the a
tion negation.The in�niteness of the a
tion negation is not so problemati
 as it 
an be
hara
terized. We have in�nite bran
hing be
ause whenever we 
an put inthe set R a 
ompound a
tion, e.g. a&b we have to put also all the a
tions
a&b&b& . . . and more. With this observation we 
an 
hara
terize the in�niteset R as a �nite set in terms of a
tion s
hemas. An a
tion s
hema is de�nedwith respe
t to basi
 a
tions and is denoted a|∞k . The a
tion s
hema repre-sents the 
hoi
e between an in�nite number of 
on
urrent a
tions: ∀a ∈ ABthe a
tion s
hema a|∞1 = a+ a&a+ a&a&a+ . . .; the general de�nition a|∞kstarts with the a
tion a& . . .&a︸ ︷︷ ︸

k

and 
ontinues with larger a
tions. An a
tions
hema a|∞1 may be exe
uted 
on
urrently with another a
tion b and resultsin a new s
hema b&a|∞1 = b&a + b&a&a + . . ..Tree s
hemas are introdu
ed to interpret the a
tion s
hemas. A trees
hema is a guarded rooted tree with spe
ial edge s
hemas. An edge s
hemais a spe
ial edge labeled with an a
tion s
hema. An edge s
hema (n, a|∞1 , m)represents an in�nite set of normal edges {(n, α,m) |α ∈ a|∞1 } where α isone of the a
tions in the in�nite 
hoi
e a
tion represented by a|∞1 . Note thata tree s
hema is a �nite representation of a guarder rooted tree with in�nitebran
hing.Note that as expe
ted the negation of an a
tion is also in ACF α. We
onje
ture that if we equip Propositional Dynami
 Logi
 with su
h an a
tionnegation we still have de
idability.6 Relation between CAT and CLIn this se
tion we give a dire
t semanti
s to the CL language using the CATalgebra.We start by de�ning some preliminary notions. Consider standard labelledKripke stru
tures and guarded rooted trees. We give now the de�nition oflabeled Kripke stru
ture that we use.9De�nition 6.1 (Labelled Kripke Stru
ture). A labeled Kripke stru
ture is astru
ture K = (W,R
N
AB ,V) where W is a set of worlds (states), V : P →

2W is a valuation fun
tion of the propositional 
onstants returning a set ofworlds where the 
onstant holds. AB is a �nite set of basi
 labels (
alled9The de�nition is standard, but several de�nitions of Kripke stru
tures exist.50



basi
 a
tions), NAB is the set of multisets built with the elements of AB, and
R

N
AB : NAB → 2W×W is a fun
tion returning for ea
h multiset a set of pairsof worlds (intuitively RN

AB gives a relation on the worlds for ea
h multisetlabel).The rooted trees and the guarded rooted trees are de�ned as in se
tions3.1 and 4 respe
tively. We use the notation Tn to denote the subtree of Twith root in the node n of T .De�nition 6.2 (Simulation for rooted trees). We say that a rooted tree T =
(N,E,A) is simulated by a labeled Kripke stru
ture K = (W,R

N
AB ,V) withrespe
t to a state r of K, denoted TSrK, i�whenever TSrK thenif (r, γ, n) ∈ E is an edge in T and γ ∈ A is a label10 then

∃w ∈W with (r, w) ∈ RN
AB (γ) and TnSwK.De�nition 6.3 (Simulation for guarded rooted trees). We say that a guardedrooted tree T = (N,E,A) is simulated by a labeled Kripke stru
ture K =

(W,RN
AB ,V) with respe
t to a state r of K, denoted TSrK, i�

r ∈ V(φ) where φ the guard of node r : {φ} of the tree T , andwhenever TSrK thenif (r, γ, n) ∈ E is an edge in T , γ ∈ A is a label, and ϕ of n : {ϕ} is theguard of node n then
∃w ∈W with (r, w) ∈ RN

AB (γ) and w ∈ V(ϕ), and TnSwK.De�nition 6.4 (Partial simulation). We say that a guarded rooted tree T =
(N,E,A) is partially simulated by a labeled Kripke stru
ture K = (W,R

N
AB ,V)with respe
t to a state r of K, denoted TS ′

rK, i� ∃Tr a subtree of T startingat node r11 su
h that TrSrK.We 
onsider a slight variation of a Kripke stru
ture whi
h we 
all nor-mative stru
ture and usually denote by KN . The normative stru
ture wasde�ned in [PS07a℄ but not with this parti
ular name, here we just restatethe de�nition for the sake of presentation.De�nition 6.5 (Normative stru
ture). A normative stru
ture is a normallabeled Kripke stru
ture as in De�nition 6.1 with the following extensions:
• The labels are multisets on a set of basi
 a
tions AB10Remember that the labels of the rooted trees are multisets.11Whi
h is the root node in our 
ase. 51



• There is a set Pc of spe
ial propositional 
onstants Oa and Fb indexedby the basi
 a
tions of AB

• The transitions are deterministi
; i.e. the fun
tion RN
AB asso
iates toea
h label a fun
tion now instead of a relation, therefor for ea
h labelfrom one world there is only one rea
hable world.We have given in [PS07a℄ the semanti
s of CL with the help of a trans-lation fun
tion whi
h translated ea
h CL syntax into Cµ syntax (a variantof the µ-
al
ulus [Koz83℄). The semanti
s of the logi
 is given in a set the-oreti
al way on a Kripke stru
ture. We take the equivalent way of givingsemanti
s in terms of satis�ability w.r.t. a model and a state. Our model isthe normative stru
ture KN .

KN , r |=O(α) i� ICA(α)SrK
N and

∀n 6= r ∈ Nα with ICA(α) = (Nα, Eα,Aα)
∀a ∈ AB with Mγ(a) ≥ 1 where (p, γ, n) ∈ Eα, p < n then
n ∈ V(Oa)

KN , r |= P (α) i� ICA(α)SrK
N and

∀n 6= r ∈ Nα with ICA(α) = (Nα, Eα,Aα)
∀a ∈ AB with Mγ(a) ≥ 1 where (p, γ, n) ∈ Eα, p < n then
n ∈ V(¬Fa)

KN , r |= F (α) i� whenever ICA(α)S ′
rK

N then, 
onsidering ICA(α) = T ,
∀Tr a subtree s.t. TrSrK

N , and ∀σ a bran
h in Tr

∃(n, β, n′) ∈ σ an edge in Tr = (NTr , ETr ,ATr) s.t.
∀(n, γ,m) ∈ KN with β <& γ then
∀a ∈ AB with Mβ(a) ≥ 1, m ∈ V(Fa)We pause now for some 
omments on the semanti
s above. For the Fmodality we use partial simulation S ′

r between the tree and the normativestru
ture in order to have our intuition that if an a
tion is not present asa label of an outgoing transition of the model then the a
tion is by default
onsidered forbidden. In the se
ond line we 
onsider all subtrees and forea
h of them all bran
hes in order to respe
t the intuition that F (a + b) =
F (a) ∧ F (b), prohibition of a 
hoi
e must prohibit all. In the third linewe 
onsider just the existan
e of a node on ea
h path in order to respe
tthe intuition that F (a · b) = F (a) ∨ [a]F (b), forbidding a sequen
e meansforbidding some a
tion on that sequen
e. The last lines of the semanti
s of
F look for all the transitions of the normative stru
ture from the 
hoosennode whi
h have a label more demanding than the label of the tree; this isin order to respe
t the intuition that F (a) ⇒ F (a&b), forbidding an a
tionimplies forbidding any a
tion more demanding.52



With the above semanti
s we have the following holding:
F (a) ⇒ F (a&b) (24)

F (a+ b) ≡ F (a) ∧ F (b) (25)
P (a+ b) ≡ P (a) ∧ P (b) (26)
F (a · b) ≡ F (a) ∨ [a]F (b) (27)
P (a · b) ≡ P (a) ∧ [a]P (b) (28)All these have to be proven. For equation (24) for example the proof hasto follow the standard way that ∀M a model of F (a) we must prove that itis also a model of F (a&b), i.e. if M |= F (a) then M |= F (a&b). We provea generalisation of equation (24) where instead of a and a&b we have any
on
urrent 
ompound a
tions α and β s.t. the se
ond is more demandingthan the �rst.Proposition 6.1. F (α) ⇒ F (β), ∀α, β ∈ A& and α <& β, i� ∀M anormative stru
ture s.t. M |= F (α) then M |= F (β)Proof: PROOF HERE 2Moreover, the following do not hold (and this follows the intuition drawnfrom pra
ti
e):

F (a&b) 6⇒ F (a) (29)
P (a&b) 6⇒ P (a) (30)

CL does not allow expressions like F (a)∧(ϕ⇒ P (a)) whi
h are not valid,but whi
h may be intuitive for the reader as (s)he may think of real exampleswhere some a
tion is de
lared forbidden and only in some ex
eptional 
asesit is permitted. In this 
ase the same intuitive example 
an be modelled in
CL as (¬ϕ ⇒ F (a)) ∧ (ϕ⇒ P (a)) whi
h from a logi
al point of view is alsomore natural.For the other operators of CL (the dynami
 modality [·] and 〈·〉 or thetemporal modalities �, ♦, or U) the semanti
s is the usual one. Note thatfor O, P , or F the semanti
 interpretation �walks� through the nodes of thewhole tree of the a
tion, where in the 
ase of [α] it looks only at the nodesat the boundery of the tree (the leaf nodes). The semanti
s of O, P , or Frelates to the tra
e-based semanti
s of Pro
ess Logi
 [Pra79℄ and to someextent to the modalities of [VdM90℄ (if we think instead of ea
h transition tobe green that the states are green).We may see the semanti
s given in terms of �a
tions as trees� as a uni�
a-tion of the two semanti
s known for Dynami
 Logi
s: the one given in terms53



of relations over the states of the Kripke stru
ture, and the other given interms of tra
es over the Kripke stru
ture. The semanti
s for our language
ombines the two: for O, P , or F the semanti
s is given in terms of tra
eswhere for [·] or 〈·〉 the semanti
s is given in terms of relations.7 Con
lusionIn this paper we have introdu
ed a new algebrai
 stru
ture for true 
on
ur-rent a
tions. The algebra faithfully formalizes the properties of the a
tionsused in the 
ontra
t language introdu
ed in [PS07a℄. A natural question hereis, why to in
lude true 
on
urren
y in the 
ontext of ele
troni
 
ontra
ts?There are many reasons for 
hoosing true 
on
urren
y instead of interleaving.First, it re�e
ts more naturally what it is expressed in natural languages whenwriting a 
ontra
t, where some obligations 
an be stated on a
tions o

urringsimultaneously. Se
ond, even in 
ases where true 
on
urren
y is not reallyrequired, or whenever it is impossible to dete
t simultaneity �as in run-timemonitoring of events� true 
on
urren
y provides a more 
on
ise representa-tion of the 
ontra
t to be analyzed. This is indeed the 
ase in the followingtwo kinds of analysis. (1) When model 
he
king 
ontra
ts, the state-spa
e isdramati
ally redu
ed by using true 
on
urren
y instead of interleaving; thisapplies even in the presen
e of partial order redu
tion te
hniques. (2) Inrun-time monitoring (for instan
e to monitor that 
ontra
t violations do noto

ur) the monitor (automaton) obtained is de�nitely smaller if it has labels
ontaining 
on
urrent a
tions than in the presen
e of interleaving.Besides the 
on
urrent operator, the new features 
omprise: the de�ni-tion of negation over non-atomi
 a
tions, in
luding a pro
edure to �push� thenegation only to atomi
 a
tions; test a
tions; and an a
tion 
anoni
al form.Moreover, we have provided an interpretation of the algebra terms into rootedtrees. Though the trees are in theory potentially in�nite bran
hing due toa
tion negation, for our pra
ti
al purposes in the 
ontext of 
ontra
t spe
i�-
ation (and run-time monitoring), this does not 
ause any problem. Indeed,when using the negation a of an a
tion a, we never need to generate, or testagainst, all possible a
tions di�erent from a: it only su�
es to identify thatthe a
tion is not a. The tree s
hema we have presented is thus extremelyuseful in pra
ti
e.We have also introdu
ed a 
on�i
t relation to determine when two a
tions
annot be performed 
on
urrently. In pra
ti
e, when writing a 
ontra
t,we provide the 
on�i
t relationship by listing whi
h a
tions are in 
on�i
t.In this way we are able to reason and dete
t possible in
onsisten
ies and
ontradi
tions. 54



The de
ision to de�ne a new a
tion-based algebrai
 stru
ture instead ofusing previous work was not driven by a mere 
apri
ious intelle
tual 
hal-lenge. In what follows we dis
uss and 
ontrast our approa
h with otherrelated work, showing why they are not suitable to our needs.7.1 Related WorkSome of the most known and studied a
tion algebras 
ome from the workon dynami
 logi
s [Pra76℄. We base our work on Kleene algebra whi
h wasintrodu
ed by Kleene in 1956 and further developed by Conway in [Con71℄.For referen
es and an introdu
tion to Kleene algebra see the extensive workof Kozen [Koz81, Koz90, Koz97℄. In these resear
h e�orts the authors used,for example, regular languages as the obje
ts of the algebra, or relationsover a �xed set and analyze properties like 
ompleteness [Koz94℄, 
omplexity[CKS96℄ and appli
ations [Coh94℄ of variants of Kleene algebra. Some vari-ants in
lude the notion of tests [Koz97℄, and others add some form of types ordis
ard the neutral element 1 [Koz98℄. An interpretation for Kleene algebrawith tests has been given using automata over guarded strings [Koz03℄. Anintrodu
tion to the method of giving interpretation using trees and opera-tions on trees 
an be found in [Hen88℄.Our algebra has three major di�eren
es with respe
t to the above works(di
tated mainly by our appli
ation to e-
ontra
ts): (1) it has no Kleenestar, (2) it has a true 
on
urren
y operator &, and (3) it 
an model dis
retequantities.In the following we relate the resear
h done in this paper to other works.Q-algebra [CK07℄: An algebrai
 stru
ture 
alled Q-algebra is presentedin [CK07℄ whi
h is similar to our CA algebra be
ause it has the same threeoperators 
hoi
e, sequen
e, and 
on
urrent 
omposition. Basi
ally Q-algebrais two idempotent semirings (whi
h authors 
all �
onstraint semirings�) butno further analisis of the relations between the operators is given. There areno axioms of the algebra and not mu
h intuitive explanations nor appli
ationexamples. Q-algebras do not have a
tion negation, nor the notion of 
on�i
ta
tions, nor tests. Our interpretation as rooted trees is more appealing forthe semanti
s of our 
ontra
t language than the Q-automata.On the other hand the theory of [CK07℄ is questionable in itself as itis based on wrong notions. For example the authors restate the de�nitionof a 
onstraint semiring (or 
-semiring [BMR97℄) as a normal idempotentsemiring with the additive operation a binary operation. This de�nition is in
ontradi
tion with the original de�nition of 
-semirings [BMR97℄ where thefeature of a 
-semiring (di�erent than the 
lassi
al idempotent semirings) is55



that the additive operator is applied on a set of elements (i.e. either to zero,one, two, or all elements of the domain).We would like to refer here more to the work on 
-semirings [BMR97℄whi
h has similar notions to ours as most of the results presented for 
-semirings are just restatements and adaptations of the 
lassi
al results fromidempotent semirings theory. The novelty of 
-semirings is in the treatmentof the additive operation, as it is applied (not as in 
lassi
al semirings ontwo elements) on (possibly in�nite) sets of elements. The appli
ation of 
-semirings is to model 
onstraints and thus they adopt a desirable propertythat the identity element 1 of the multipli
ative operation is also an ab-sorption element for the additive operation. This is be
ause addition of allelements in the domain is de�ned to be equal to 1 in a 
-semiring. Anyway,in any semiring the addition of all the elements of the domain gives a ab-sorption element, and in parti
ular in our CA at the level of the basi
 a
tion,the �nite 
hoi
e of all the basi
 a
tions of AB is absorption element for the
hoi
e operator +.mCRL2 [GMR+07℄: The language mCRL2 for the spe
i�
ation and anal-ysis of distributed systems introdu
ed in [GMR+07℄ by Groote et al, is basedon well-founded algebrai
 theories. With the ex
eption of the a
tion negationintrodu
ed in our algebra, the underlying a
tion algebra of mCRL2 
ontainsall the other features we need, in
luding true 
on
urrent a
tions, and more.For our purposes, however, it seems more natural to de�ne a new algebrasin
e we do not need all the expressive power of the mCRL2 a
tion algebra,and we need a spe
ial a
tion negation not present there. Moreover, we pro-vided a semanti
s of a
tions over rooted trees to make the 
onne
tion withthe 
ontra
t language CL.Dynami
 Deonti
 Logi
 [Mey88℄: A
tions similar to ours have beeninvestigated in the framework of a deonti
 logi
 of a
tions by Meyer [Mey88℄.The di�eren
es are that the 
on
urren
y operator of Meyer is basi
ally theinterse
tion of sets (as in extensions of PDL) and he does not 
onsider thenon-idempoten
e of it (as we do). Moreover, Meyer's a
tion negation isde�ned with respe
t to the universal relation.In [Mey88℄, as well as in [HTK00℄, a
tion negation is with respe
t to theuniversal relation whi
h, for example for PDL [Pra76℄ gives unde
idability.De
idability of PDL with negation of only atomi
 a
tions has been a
hievedin [LW04℄. A so 
alled "relativized a
tion 
omplement" is de�ned in [Bro03℄whi
h is basi
ally the 
omplement of an a
tion (not with respe
t to theuniversal relation but) with respe
t to a set formed of atomi
 a
tions 
losed56



under the appli
ation of the a
tion operators. This kind of negation stillgives unde
idability when several a
tion operators are involved.Our a
tion negation is more general than just negation of atomi
 a
tionsand at the same time it does not involve the universal relation. This leadsus to 
onje
ture that PDL extended with our kind of a
tion negation doesnot yield unde
idability.Meyer's approa
h of de�ning obligation (i.e. O(α) = [α]V ) 
an be foundin some variant in [And58℄ as Oϕ ≡ �(¬ϕ ⊃ s) where s is a propositional
onstant whi
h means violation (something bad). This relation is dis
ussedalso by Meyer.SCCS [Mil83℄: Syn
hronous CCS (introdu
ed in [Mil83℄) is a rather gen-eral 
al
ulus developed in the same style as CCS. It has many features thatwe needed but the main drawba
k is that we 
ould not see the way to inte-grate it (or a similar variant) within our logi
al setting. Many of the mainfeatures of SCCS are also found in our algebra CAT . These are: atomi
a
tions as building blo
ks of the 
al
ulus; a produ
t 
ombinator whi
h 
om-bines 
on
urrently two agents and the 
ombination of the a
tions is the sameas in our 
ase (forming a set of basi
 a
tions); an a
tion 
ombinator whi
hbasi
ally is 
onstru
ting the agents sequen
ely from basi
 a
tions; the nonde-terministi
 summation or our 
hoi
e. Besides these there is also a restri
tionoperator; an idling operator; and an a
tion morphism operator. There is alsoa re
ursion 
ombinator with a �x point behavior. The re
ursion operator hasthe purpose of modelling persistent agents. The semanti
s of the operators isgiven with derivation rules (like in CCS) and later the equational propertiesof the operators are analyzed in a way similar to ours. We 
an view thederivation trees asso
iated to ea
h agent as similar to our rooted trees.We do not have the Kleene ∗ for re
ursion but we have the µ �x pointoperator at the level of the language. SCCS 
onsiders in�nite summationthus generating in�nitely bran
hing derivation trees whi
h is not what wedesired. Our sequen
e operator is more general and 
ompositional as it 
anput in sequen
e any arbitrary two a
tions in 
ontrast with SCCS operatorwhi
h 
an append only a basi
 a
tion to an agent. The 
on
urren
y produ
toperator of SCCS is not in�nitary 
ontrary to ours. On the other hand theargument in Milner [Mil83℄ that it is not so realisti
 to have this behavior ispertaining.Milner has an interesting notion of inverse of a basi
 a
tion with respe
tto the 
on
urrent 
omposition of two a
tions, i.e. aa = 1 in SCCS notation.
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State
harts [Har87℄: We should relate our CAT algebra also with Harel'sstate
harts [Har87℄ be
ause, as our algebra 
laims to model a kind of 
on
ur-rent exe
ution of a
tions, state
harts are one of the well known 
on
urren
yformalisms. The relation is not so obvious as in the 
ase of Milner's SCCSas state
harts are oriented towards a graphi
al representation of the rea
tivesystem (State
harts are one of the �rst visual languages).The main features of the state
harts are: they are a state-based formalism(extending Finite State Ma
hines) whi
h from one state, the system 
an
hange state in respe
t with events, 
onditions on states, and also have aMealy-like output modelling a
tions. The 
onditions 
an be viewed as ourguards on a
tions: if in state
harts an a
tion does not have a 
ondition thenin CAT the guard is just ⊤?. A �rst extension of the FSMs is that state
hartsin
lude te
hniques for 
lustering of states into a superstate and re�nementof one state into substates. This gives the formalism modularity and a well-stru
tured hierar
hi
al representation of a system (being now able to zoom-inand zoom-out of the model).A se
ond 
lass of features of state
harts in orthogonality whi
h in
ludes
on
urren
y and independen
e. State
harts, as well as Milner's SCCS orPratt's pomsets are models on 
on
urren
y whi
h do not take the interleavingview. Con
urren
y in state
harts models how a system 
an be in several(
lustered) states at the same time and exe
ute several a
tions at the sametime (from several of the 
on
urrent states). This is not far from our view; inour 
ase we 
onsider only one state from whi
h several a
tions 
an be exe
uted
on
urrently. We do not have the notion of re�nement or 
lustering of statesso we kind of en
ode this into one state with several propositional 
onstantsholding in ea
h state. Orthogonality is a more graphi
al-friendly and withfewer states of giving a syn
hronous produ
t of the FSMs 
orresponding tothe several 
on
urrent 
omponents.It is 
lear that we 
annot use state
harts for our purpose of using the
on
urrent a
tions inside the logi
al language CL. On the other hand manyinteresting ideas 
an be taken from this formalism and more, our way of 
on-sidering 
on
urrent a
tions goes well with the ideas presented in state
harts,whi
h gives us a degree of 
on�den
e in our formalism.Esterel [BG92℄: Esterel is a syn
hronous language introdu
ed in [BG92℄(the journal version). Esterel is not well suited to be introdu
ed inside our
CL language as the basi
 theory and semanti
s for our a
tions, but manyinteresting ideas 
an be found. Firstly, Esterel has an in
ompatibility relationover events the same as ours over a
tions. Esterel adopts the syn
hronyhypothesis whi
h basi
ally states that every intera
tions in the model are58



instantaneous. We adopted for now this same simpli�ed view for our a
tions(as our a
tions do not take time to exe
ute; or equivalently, at ea
h ti
k of the
lo
k all possible a
tions at that step are exe
uted). We plan to extend thea
tions with parameters where one parameter may be of type real numberssu
h that it will be interpreted as the duration of the a
tion. This extensionwill give greater modelling power for our a
tions, as it is needed for modellingreal-life 
ontra
ts.In the following we dis
uss models of 
on
urren
y whi
h have as primaryobje
t of dis
ourse events, (partial) orderings over events and other kinds ofrelations. All these resear
h e�orts were motivated by the need to modelexe
utions of parallel and distributed 
omputation. We have no preferen
eon the order in whi
h we base our presentation of the di�erent models. Thereis not mu
h distin
tion between events and a
tions as is the 
ase in Esterel.Event stru
tures [NPW79℄: Event stru
tures were introdu
ed in [NPW79℄as a model of 
on
urren
y based on events partially ordered by a 
ausal depen-den
y relation and with additional stru
ture given by a 
on�i
t relation andan enabling relation. We base our presentation on [Win88℄. Con�gurations(or 
omputation states) are viewed as subsets of events (left-
losed w.r.t. the
ausal dependen
y order) whi
h for one event all the events it depends on arein
luded. Note that parallel pro
esses 
omputations are modeled by 
ausalindependen
e between events. Event stru
tures are based on the fundamen-tal axiom of �nite 
auses whi
h basi
ally states that any event depends on a�nite number of events. We like to note that our interpretation of a
tions astrees mimi
 event stru
tures with the · as a 
ausal dependen
y relation andany node respe
ts the axiom of �nite 
auses.The 
on�i
t relation # is similar to our 
on�i
t relation and to the onefound in Esterel. The 
on�i
t relation is de�ned over events and its intuitiveinterpretation is to express how the o

urren
e of an event rules out theo

urren
e of another. More general event stru
tures (E,#,⊢) are obtainedby relaxing the partial order to a enabling relation ⊢ with the intuition thatnow it is su�
ient for an event to be enabled by a single 
hain of enabledevents starting with an event e0 whi
h is enabled by no event.Event stru
tures are mu
h related to Petri nets [Pet73℄. We do notanalyze here the extensive literature on Petri nets, but we try to relate to thebasi
 
on
epts of Petri nets for modelling 
on
urren
y. A transition in a Petrinet may be triggered by o

urren
e 
on
urrently of a set of events and someset of 
onditions. Moreover, a transition 
onsumes the set of (pre)
onditionsand inserts a new set of (post)
onditions. It is shown how via the Mazuriewi
ztra
es [Maz84℄ a safe Petri net is equivalent to a (prime) event stru
ture whose59



events 
orrespond to o

urren
es of events in the net.Tra
e theory [Maz88℄: As we have seen, event stru
tures andMazuriewi
ztra
es, and we will see that also pomsets have many notions in 
ommon.Tra
e theory is also based on events (a
tually tra
es of events whi
h may bethought as strings for 
on
urrent pro
esses) with a partial order and a 
ausaldependen
y relation. As the (binary) 
ausal dependen
y relation is de�nedon the set (alphabet) of events there is the natural relation of independen
eof two events. In tra
es one 
an see the notion of interleaving12 as with theindependen
e relation one may 
onstru
ts equivalen
e 
lasses of tra
es (setsof strings of events): e.g. if (a, b) ∈ I ⇒ ab ≡ ba where I is the independen
erelation and ≡ is the equivalen
e relation de�ned as shown. It turns outthat the algebra of tra
es has a ni
e isomorphi
 graphi
al formalism 
alleddependen
y graphs whi
h make visually expli
it the ordering of events withintra
es. Tra
e theory also has a ni
e notion of individual and global historyof pro
esses.Pomsets [Pra86℄: Pomsets have been long advo
ated by Pratt [Pra86℄and many of the initial theoreti
al results were published as [Gis84℄. Ourpresentation here is also based on [Gai88℄. Pomsets are multisets of a
tionswith two partial orders: 
ausal pre
eden
e and temporal pre
eden
e.13 Thetheory of pomsets is among the �rst in 
on
urren
y theory to make a distin
-tion between events and a
tions. Normally a multiset is NA and assigns toea
h a
tion of A a multipli
ity from N. In pomset theory they are more: EAwhi
h assigns to ea
h a
tion of A a set of events from E, and more, eventsare ordered by the temporal partial order. Thus, an a
tion may be exe
utedseveral times and ea
h exe
ution of an a
tion is an event.Pomsets make the distin
tion between simultaneous events (whi
h arein
omparable by the temporal pre
eden
e) and 
on
urrent events (whi
h arein
omparable by the 
ausal pre
eden
e). Sequentiality is given by 
ompa-rability of two events with respe
t to the 
ausal pre
eden
e (whi
h is thesmallest of the two).Another feature of the pomset theory is that it is independent of thegranularity of the atomi
ity ; i.e. events may be either atomi
 or may have aeven more elaborated stru
ture. Moreover, the view of time does not matteras event may o

upy time points or time intervals with no di�eren
e to the12Interleaving is not mentioned expli
itly in the related literature.13Causal pre
eden
e is in
luded in the temporal pre
eden
e, so Gaifmans's presentationdoes not diverge from Pratt's presentation.60



theory. There is also a large number of operations de�ned over pomsets (see[Pra86℄), more than in the other theories we have seen.EXTEND THE PART WITH mCRL2
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