
  

 

 
Abstract— This paper aims to propose an efficient machine 

learning framework for maritime big data and use it to train a 

random forest model to estimate ships’ propulsion power based 

on ship operation data. The comprehensive data include  

dynamic operations, ship characteristics and environment. The 

details of data processing, model configuration, training and 

performance benchmarking will be introduced. Both 

scikit-learn and Spark MLlib were used in the process to find 

the best configuration of hyperparameters. With this 

combination, the search and training are much more efficient 

and can be executed on latest cloud-based solutions. The result 

shows random forest is a feasible and robust method for ship 

propulsion power prediction on large datasets. The best 

performing model achieved a R2 score of 0.9238. 

I. INTRODUCTION 

The International Maritime Organization (IMO) continues 
to push for the reduction of Green House Gas (GHG) 
emissions from ships. The environmental requirements for 
ships are becoming stricter. From the latest discussion within 
the Marine Environment Protection Committee (MEPC) 77 
[1], the Committee recognized the need to further strengthen 
the ambition to cut the GHG emissions from ships. As of 
today, the current strategy requires international shipping to 
reduce CO2 emissions by at least 40% by 2030, 70% by 2050 
compared to 2008 and to peak the GHG emissions from 
international shipping as soon as possible. In order to achieve 
this, it is crucial to have an appropriate and accurate method to 
evaluate the performance of international shipping. The 
Maritime industry is, like other industries, subject to an 
ongoing digital transformation. As a result, increased data 
availability and advanced analytics create opportunities for 
novel data-driven services, for example for real-time 
performance monitoring of ocean-going ships. Ship 
propulsion power is one of the most important parameters of 
ship operational performance. If the propulsion power is 
known, other performance related parameters, e.g., engine 
load factor, fuel consumption and different kinds of emissions 
could be calculated from it.  Traditional techniques for ship 
propulsion power prediction rely on analysis of calm water 
resistance, added resistance due to environment or on towing 
tank tests at model scale [2]. It has advantages but is time 
consuming and requires many parameters to do the evaluation. 
To implement these methods on a fleet can be extremely 
difficult and might not be possible to achieve good accuracy. 
On the other hand, simplified methods based the relationship 
between speed and power can be applied to the fleet, but it 
ignores the fluctuations for weather and have many 
uncertainties. A model which can monitor the performance of 
global fleet accurately and efficiently becomes demanding  

and important to monitor and  tackle the reduction of GHG 
emissions. 

In this paper, an efficient random forest (RF) model for 
ship propulsion power prediction is proposed. Automatic grid 
search was adopted in the training process to find the best 
performed model in an optimized manner. Normally, 
scikit-learn will be used for different machine learning studies. 
Considering compatibility with big data and requirements for 
parallel computing, Spark MLlib was also used in this study. 
Based on the evaluation of the performance, RF was found to 
be a viable, robust technique and scalable to  big data like 
global fleet.  

The comprehensive ship operation data used in this paper 
include Automatic Identification System (AIS), IHS Fairplay, 
ECMWF (European Centre for Medium-Range Weather 
Forecasts) and onboard performance monitoring data. AIS is a 
GPS-based ship tracking system required on all internationally 
trading ships with 300 or more gross tonnage (GT) or 
passenger ships of any size. It can monitor and track most of 
the international shipping activities, and provides data on 
position, heading, speed, etc. The IHS Fairplay is one of the 
largest maritime databases which cover ship characteristics 
and technical information. The ECMWF data include global 
weather and sea state  information from satellite and available 
observations. The onboard performance monitoring data 
include verified noon reports and torque meter measurements. 
In previous related studies [3][4] various machine learning 
methods and artificial neural networks (ANN) for ship 
propulsion power prediction have been explored thoroughly 
[2, 3]. In these previous studies, Spark was used to process the 
data because of its speed and capability to handle huge 
amounts of data by parallelization. For the machine learning 
part, however, a single node implementation was adopted. In 
this paper, the usage of Apache Spark was  extended for both 
data processing and analytics. 

Apache Spark a popular big data processing framework. 
More end users start to transfer on-premises databases to 
cloud-based data warehouses or data lakes. From these 
transitions, efficient and accurate data-driven models which 
can be executed on these modern platforms should be 
explored.  

ANN models have been  used in a number of different 
applications due to their strong ability to summarize insights 
from complex and abstract data. However, several limitations 
of ANNs are well known. First, it requires a huge amount of 
training data with good quality. This can be difficult to achieve 
from real-world scenarios. For example, the monitoring data 
in this study require human efforts and installation of logging 
devices onboard. Second, ANNs need expensive hardware and 
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much longer training time compared to many other  machine 
learning. Lastly, the trained network is usually treated as a 
black box, where it is almost impossible to know the meaning 
of the trained parameters in the network. ANNs are capable of 
handling a variety of data problems, but for certain problems, 
other machine learning models may fit better than ANNs. That 
is one of the reasons why RF was chosen. The other reasons, 
details of data processing, model training and evaluation of 
different RF will be introduced and discussed. In the end, a 
machine learning life cycle management framework based on 
the trained RF model for maritime big data will be proposed. It 
can be used as a reference for other maritime data applications 

II. METHODS 

A. Random forest 

Random forest is a kind of supervised machine learning 
algorithm based on ensemble learning. It was proposed by Leo 
Breiman in 2001 [5] . RF has been extremely successful as a 
general-purpose classification and regression method [6]. 
Ensemble learning means several types of algorithms, or 
several instances of the same algorithm are combined multiple 
times to form a more powerful model. For RF, numerous 
randomized decision trees will be created on each subsample 
of the dataset, then  the outputs will be aggregated to improve 
prediction accuracy and avoid overfitting. After iterative 
searching, a ‘randomized decision tree’ model will be trained.  

RF is a popular ML algorithm that has been used widely 
for different prediction problems in the maritime domain. For 
example, Budonov et al. [7] developed a model with a 
combination of different RF and decision tree methods for 
ship destination prediction with an accuracy of 97%. Zhong et 
al. [8] trained a RF model based on AIS data for vessel 
classification. The model can be used to classify three major 
ship types from geometric features. These two examples used 
RF for classification, it can also be used for regression when a 
continuous value is predicted. 

There are several outstanding features being the reasons 
that RF was selected in this study. With RF, the complex 
relationships of the input features with each other can be 
modelled and considered relatively robust with regards to 
outliers. Many studies have shown that RF has a high level of 
predictive accuracy even with the presence of noise, outliers, 
and with regards to overfitting. Compared to other ML 
algorithms (e.g. ANN and Support Vector Regression), RF has 
fewer  hyperparameters that need to be tuned which reduce the 
subjectivity of training. Because of the characteristics of its 
own structure, RF does not need to normalize the input data. 
This reduces the possibility of potential error due to data with 
different scales. In addition, random forest provides 
convenience with handling of gaps in the data. Hence, RF as 
an efficient and robust algorithm was selected in this study.   

B. Spark parallel data processing and MLlib 

The transition towards digitalization and automation is 
speeding up in the maritime industry. Digital technologies are 
being used to increase competitiveness and enhance 
operational efficiency. With the development of Internet of 
Things (IoT), sensors, communication between ship and 
shore, onboard edge computing and storage, more data 
become available. Huge amounts of data are being transferred 
and stored. To process and analyze these big data efficiently 

become essential and crucial. There is a certain number of 
distributed data processing frameworks. The high pace of 
development leads to some of these becoming outdated and 
gradually disappearing from the community, while others 
become more popular, like Apache Spark. The core principle 
of big data processing is parallel processing with a cluster of 
computing nodes. Compared with a single node, there is no 
bottleneck on individual performance. The Spark master node 
can scale up the cluster automatically based on user’s 
configuration and requirements. In this study, Azure 
Databricks from Microsoft was used as Spark environment 
and data processing platform. Databricks is a unified data 
analytics platform also a company founded by the original 
creators of Apache Spark. 

Scikit-learn is one of the most popular machine learning 
libraries in Python. It provides various classification 
regression and clustering algorithms including support vector 
machines, random forest, gradient boosting and k-means [11]. 
Scikit-learn uses in-memory processing and provide very 
good performance if the data can be fit into memory.  If the 
data  are too large for in-memory processing, either it is not 
possible to train models, or it requires complex data operations 
to execute. 

Apache Spark’s Machine Learning Library (MLlib) is 
designed for simplicity, scalability, and easy integration with 
other data processing tools [12]. It is built on top of Spark and 
integrates seamlessly with other Spark components, etc., 
Spark SQL, Spark Dataframe and Spark Streaming. MLlib is a 
scalable machine learning library consisting of common 
learning algorithms and utilities like scikit-learn, including 
classification, regression, clustering, collaborative filtering, 
dimensionality reduction, and underlying optimization 
primitives [13] . 

C.  Machine learning steps  

 To create an efficient machine learning cycle in this study, 
both scikit-learn and MLlib were used. Data exploration and 
visualization is an important step before the implementation of 
machine learning. Because of Spark’s lazy evaluation 
principle (no actual expectation until a check operation), it is 
difficult to explore the data. On the contrary, scikit-learn 
supports Pandas and Matplotlib which makes the exploration 
and test process very efficient.  

In this study, scikit-learn was used in the first stage to test 
and explore appropriate configuration for the random forest 
model. Then the summarized configuration was applied to the 
major scope of machine learning with Spark MLlib. The 
detailed machine learning flow is illustrated  in Fig. 1. 

Figure 1. Machine learning flow 
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III. COMPREHENSIVE SHIP OPERATION DATA 

A. Composition of the data 

The comprehensive ship operation data includes data from 
different data sources with different sampling rates. For 
example, AIS provides basic information with position 
updates with a varying sample rate from 3s to 3 minutes [14]. 
The sampling frequency of the ECMWF weather data is once 
per hour with a resolution of 9 km. The performance 
monitoring data have different sampling rates from its two 
reporting sources. The data from noon reports are daily, and 
the data from onboard measurement are every 15 minutes. The 
IHS Fairplay data save ships’ technical information which 
does not update frequently.  

The dataset includes a total number of 231 ships in 
different size categories, ranges from 140 m to 400 m. In Fig. 
2 the specific number of ships in each size category is 
illustrated. The well-distributed size categories suggest the 
compatibility of the trained model so that it can be 
implemented in the larger scope of a bigger fleet of ships. 

 
Figure 2. Distribution of length overall 

B. Synchronization of data 

The fragmented data from different sources cannot be 
directly used for machine learning. It is essential to implement 
appropriate data processing and synchronization. The AIS 
data can be joined with IHS Fairplay data with primary and 
foreign keys. Then this dataset can be joined with wave and 
wind data. The details of this synchronization operation can be 
found in [3]. As the final step, this dataset can be joined with 
the operation data based on IMO and timestamp. Fig. 3 shows 
the data processing flow. 

 

Figure 3. Data processing flow 

C. Data quality and features 

Machine learning models are powerful only if they are 
trained properly on data with high quality. Due to the 
increasing complexity of systems, a variety of factors can 
influence the data quality through the data flow from sensors 
to the final data storage. There is a certain number of types of 
data quality issues, e.g., noise, outliers, missing or duplicate 
records, and bad schema. Several data quality checks, 

corrections and filters were adopted to the synchronized 
comprehensive dataset. 

• Data quality with heading, course over ground, wave 
direction and wind direction. The range of these 
values should be between 0 and 360. Due to different 
logging principles, values can be over the desired 
range. These values will be converted to the desired 0 
to 360. In addition, the direction of the wind and wave 
has been altered to be relative to the direction of the 
ship instead of global coordinates. 

• Propulsion power out of range. Ship cannot have a 
propulsion power that is higher than its installed 
power. If this kind of error is detected, the operation 
speed will be checked to make sure both values are in 
the desired range.  If the operation speed is qualified, 
the propulsion power will be corrected to the installed 
power. Otherwise, this record will be erased. 

• Operational speed out of range. A ship cannot have an 
operational speed higher than its design speed. The 
operational speed is based on the distance between 
two reporting points. To avoid filtering away too 
much data, a 20% margin was added to the design 
speed as the threshold for when operational speed is 
out of range. 

• In port or at anchor. The model aims to predict the 
operational propulsion power. There are many 
sampling points recorded when the ships are in port or 
at anchor. Many uncertainties exist in these data. 
Therefore, data with operation speed lower than 1.5 
knots were filtered out.  

• Non-steady conditions. Data generated during ship 
acceleration and deceleration should be filtered out. 
For example, normal operational speed with low 
propulsion power (deceleration).  

Table 1 includes all the features used in this study. There 
are more features available, these selected features are based 
on experience from previous studies [4].  These features have 
four categories: operation related, ship characteristics related, 
machinery and operation environment related.  

 Figure 4. Correlation before data quality check 
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TABLE I.  FEATURES FOR TRAINING 

Feature category Features 

 

 

 
Operation related 

Speed over ground 

Course over ground 

Heading 

Trim 

Speed through water 

 

 

 
Ship characteristics related 

Breadth moulded 

Depth moulded 

Design draught 

Length overall 

Length between perpendiculars 

Deadweight 

Displacement 

Ship machinery related Installed propulsion power 

Design speed 

Operation environment related Significant wave height 

Mean wave direction 

Wind speed 

Mean wind direction 

 

 Figure 5. Correlation after data quality check 

After the filter, the correlation between propulsion power 
and other features was improved significantly.The operational 
data for the 231 vessels are not unevenly distributed. For 
ships’ data from noon reports, fewer records were recorded 
and reported less frequently. Therefore, the split of training 
and testing data considers the balancing of ships from different 
data sources.  In general, the percentage of separation of 
training and test is around 80% and 20% based on number of 
records.  

IV. RESULTS 

A. Random Forest configuration 

Compared to other machine learning methods, RF has 
fairly fewer number of hyperparameters to tune. In this study, 
6 parameters were adapted to find the well performing model. 

• max_features: The maximum number of features that 
RF is allowed to try in an individual tree. If ‘auto’, 
then max_features equals number of features. If 
‘sqrt’, max_features equals the square root of number 
of features. 

• max_depth: The maximum depth of an individual tree. 

• n_estimators: The number of trees that will be built 
before taking the average of predictions or maximum 
voting. Higher number of trees can provide better 
prediction performance, but it will slow down the 
training. 

• min_sample_leaf: The minimum number of samples 
in a leaf.   

• min_samples_split: The minimum number of samples 
required to split an internal node. 

• bootstrap: Whether bootstrap samples are used when 
building trees. If False, the whole dataset is used to 
build each tree. 

In scikit-learn a large RF grid was created as the initial 
configuration. Then this configuration was adopted to part of 
the comprehensive data. The next step is searching the grid to 
find the best performing model. There are two types of 
searching functions in scikit-learn , one is ‘GridSearchCV’, 
the other is ‘RandomizedSearchCV’. ‘GridSearchCV’ will go 
through all the intermediate combinations of hyperparameters. 
It  makes the search computationally very expensive, but it can 
find the best combination based on the cross-validation score.. 
‘RandomizedSearchCV’ solves the drawbacks of 
‘GridSearchCV’, as it goes through only a fixed number of 
hyperparemetet settings. It tries to search randomly in the grid 
to find the best combination of hyperparameters. It helps to 
reduce unnecessary computation, but it does not guarantee to 
provide the best hyperparameter combination. Considering the 
computational difficulty, ‘RandomizedSearchCV’ was used in 
the initial RF grid. Based on the performance and the 
parameters of the best performing model, the scope of initial 
RF grid can be reduced. Fig. 5 shows the initial random forest 
grid.  

 
Figure 5. Initial random forest grid 

After previous step ,the optimized RF grid can be adapted 
in the Spark environment with MLlib. The naming and 
structure of hyperparameters in scikit-learn and Spark MLlib 
is slightly different. The match list between these two libraries 
can be found in table 2.  

TABLE II.  MATCH LIST OF LIBRARIES 

Hyperparameters in scikit-learn Hyperparameters in Spark Mllib 

max_features featureSubsetStrategy 

max_depth maxDepth 

n_estimators numTrees 

min_samples_split 
minInstancesPerNode 

min_samples_leaf 

bootstrap bootstrap 

In Spark MLlib, ‘min_sample_leaf’ and 
‘min_samples_split’ are merged and managed together 
through ‘minInstancesPerNode’.Another point to be noted, 
MLlib only provide the normal grid search function which 
requires the grid to be searched should only be necessary. 
Otherwise, it can result in long search time and unnecessary 
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computational cost. Fig. 6 shows the optimized random forest 
grid. 

 

Figure 6. Optimized random forest grid 

B. Best performing model 

 In this study, 3-fold cross-validation was adopted.  R2 was 
used as evaluation metric in the training process. The RF 

model does not have overfitting problem[17]. During the grid 
search, when certain number of trees were created at certain 
stage, the performance of the model will stabilize around a 
specific value. From that moment, the test performance of 

random forest does not increase as the number of trees 
increases. In this study, the best performing model has the 

following parameters as shown in Fig. 7. 

 

Figure 7. Parameters of best berforming model 

The operational propulsion power is a continuous value. 
Hence, it is taken as a regression problem. R2 score, also 
called the coefficient of determination was used as the major 
metric to evaluate the performance of the model. R2 score 
ranges from 0 to 1, and the higher the R2 score, the better and 
more accurate prediction was made. R2 score can be 

calculated from the following equations.  is the total sum 

of squares.  is the regression sum of squares.  is the 
prediction result from the model. 

                                            (1) 
 

 

                                       (2) 
 

                                                          (3) 
The R2 of both training and test data were calculated. The 

R2 of training data is 0.9926. Because it is from training data, 
it is only used for reference. For the test data, the R2 is 0.9238 
which is very good.  Higher R2 values represent smaller 
differences between the target data and the predicted values. 
R2 also has limitations, as it does not represent the reliability 
of the model. Two kinds of visualization inspection were 
adapted to evaluate the performance of the model. 

The timeseries plots show how the prediction follows the 
operation over time. In addition to the random forest model, 
the cubic law model based on load factor was added as 
reference[18]. Two container vessels with longer operation 
histories were selected. For both timeseries plots Fig. 8 and 10, 
parts of the time series were selected instead of all the historic 
records for better visibility. The scatter plots Fig. 9 and 11 can 
present the distribution of prediction against targets. The 
model which fits perfectly to the target will be a straight line 
along the diagonal. 

 

Figure 8. Ship 1 timeseries prediction  

 

Figure 9. Ship 1 scatter distribution 

 

Figure 10. Ship 2 timeseries prediction 

 

Figure 11. Ship 2 scatter distribution 

The random forest model performs well on both the 
selected ships. Unlike the cubic law model, the random forest 
model takes more variables into account, such as ship 
characteristics and environment related variables. These 
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features can provide the model with more information about 
how the prediction should be made according to the specific 
condition. The cubic law model only takes the speed over 
ground as the dynamic input, however, in reality higher speed 
does not necessarily mean high propulsion power, and 
different environmental conditions can contribute 
significantly to the needed propulsion power.  

 

Figure 12. Propulsion power and speed for ship 2 

On the other hand, the operational propulsion power 
should follow the trend of operational speed. As shown in Fig. 
12, the predicted propulsion power follows the operational 
speed well and align with the target propulsion power. 

 

Figure 13. Test data with outliers scatter distribution 

The performance of the RF model on the test data are 
visualized in Fig. 13. Several selected outliers were kept in the 
test data to evaluate the sensitivity of the model performance 
to the occurrence of outliers. These outliers have a normal 
operational speed, but the target propulsion power is 
extremely low which represent the deceleration process. On 
the left side of Fig. 13, some predictions with low target 
propulsion power, the random forest model predicts normal 
propulsion power based on the correct speed. They look like 
‘outliers’, but the model is doing the right prediction with the 
normal operational speed. 

C. Life cycle management of the trained RF model 

As the digital transformation proceeds, huge amounts of 
data are being produced. More stakeholders are building 
cloud-based platforms or migrating their data to cloud-based 
infrastructure. Most of these data are stored in a way 
compatible with big data, e.g., Apache Spark, Google 
BigQuery and Apache Flink. Machine learning models should 

also be compatible with environments, can be trained, 
executed, and managed. The trained RF model in this study 
will be taken as an example to illustrate how the machine 
learning lifecycle with bigdata can be managed, as illustrated 
in  Fig. 14. 

 
Figure 14. Machine learning life cycle framework with Spark 

Not all ships are installed with edge monitoring devices. It 
means the amount of accurate monitoring data can be limited. 
These data can be used to search the boundary of the random 
forest grid. After that, the optimized grid can be adapted to the 
large scope of machine learning.  

Different data sources can be saved in a data lake [19] 
which are then accessible by the Spark cluster. After that, 
complex data processing e.g., cleaning, interpolation and 
synchronization will be performed on the data.  Then this 
comprehensive dataset will be used to train a Random Forest 
model with Spark MLlib. Because it was originally trained 
with Spark, it can be easily and efficiently applied with fleet 
monitoring data to do the monitoring of performance and 
emission. When a new data stream is arriving, the machine 
learning loop will be activated to re-train the model. If the new 
RF model performs better than the existing model, the new RF 
model will be deployed for further usage. Similarly, new edge 
monitoring data can also contribute to the selection of RF 
parameters. 

V. CONCLUSION 

In this paper, both single node and parallel machine 
learning methods were adopted to train a RF model for ship 
propulsion power prediction. Compared with many other 
machine learning methods, RF has many advantages, e.g., can 
handle missing values, is robust to outliers and requires no 
scaling. The performance of the best performing model was 
explored. From both timeseries and scatter visualization, the 
RF model can make accurate and reliable prediction. Several 
outliers were deliberately kept in the test data to check the 
reliability of the model. The RF model works well against 
these outliers. The result shows random forest is a feasible and 
robust method for ship propulsion power prediction on large 
datasets. The best performing model achieved a R2 score of 
0.9238. 

This paper also proposed an efficient machine learning 
framework for maritime big data based on Apache Spark 
environment. Both scikit-learn and Spark MLlib were used in 
the process to find the best configuration of hyperparameters. 
The trained RF model has high compatibility and can be 
executed on modern cloud platforms for fleet monitoring. 
With this framework, the search and training time of RF 
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model can be significantly reduced. This becomes more and 
more important when huge amount of data are continuously 
landing on cloud-based infrastructures.  
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