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Abstract

In the following essay we shall describe models for the theory MINPAR,
the theory for finite binary trees, described in Jervell [2003]. In particular
we shall investigate non-standard models simpler than the one presented by
Roger, denoted M?. These include the models for both right and left oriented
ω-ladders and the zik-zak model. We believe that M? is the maximal non-
standard model for MINPAR, and that it is constructively inaccessible from
any simpler model, not only those presented in the paper.

1 The theory of binary trees

A theory for binary trees has been presented by Jones [1997] and axiomatized in
Jervell [2003]. In the following essay we shall investigate non-intended modells for
this theory. We know that the theory is strong enough to be incomplete in the sense
of Gödel [1931]. But, since the theory is quite weak we can easily find concrete
sentences that ought to be provable, which are not. The first example is taken from
number theory, where we give a direct translation of ¬sx = x into MINPAR. This
will result in an exciting study of various non-standard models for binary trees. We
always have the term modell in mind, when constructing a modell. Expressions in
the language are underlined, meaning nil is the linguistic expression denoting nil.

We define the language L for MINPAR by recursion as follows

Definition 1 The terms of L is defined by

1. nil is a label in L, and therefore also a term in L.

2. The variables x, y, z, . . . are terms in L.

3. If t1 and t2 are terms in L, then (t1.t2) is a term in L.

Definition 2 The sentences in L, is defined as follows;
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1. t1 and t2 are terms in L then t1 = t2 (equality of trees), t1 < t2 (contain-
ment of trees) are the atomic sentences in L.

2. If A and B are sentences in L, then ¬A, A → B, ∀x < yA(x), ∀xA(x),
are all sentences in L.

Then ∧, ∨, ↔, ∃x < yA(x) and ∃xA(x) are defined in the obvious way. The
theory of finite binary trees might be extended, and we consider extentions of the
label set denoted

�
. In L, the label set is a singleton set;

�
= {nil}.

2 The axioms of MINPAR

We consider Jervell’s theory MINPAR, denoted T, over the language L with the
standard axioms for equality;
` x = x (ER)
` x = y → y = x (ES)
` x = y ∧ y = z → x = z (ET)
` x = u ∧ y = v → (x.y) = (u.v) (EF)
` (x.y) = (u.v)→ x = u ∧ y = v (EI)

(ER), (ES), (ET) says that equality is respectively reflexive, symmetric and tran-
sitive. (EF) states that the pairing operator is a function, while (EI) requires that
this function is injective. Next we give axioms specific for the theory MINPAR:
` ¬x < nil (A1

<)
` x < (y.z)↔ x = y ∨ x < y ∨ x = z ∨ x < z (A2

<)
` ¬nil = (x.y) (A3

=)
` x = nil ∨ ∃y∃z(x = (y.z)) (A4

=)

(A1
<) states that nil is the minimal element, while (A2

<) defines the containment
relation, that the tree x is contained in the tree (y.z). (A3

=) states that nil is not
a pair (analogous to (A1

<)), while (A4
=) is the weak induction axiom defining the

totality of elements in MINPAR.
In addition all true ∆0

0 sentences are axioms of T.

3 The intended model

The standard model for MINPAR, denoted M, is the one capturing finite binary
trees, with nil in the leaf nodes, where we can decide whether a tree t1 is either
equal to ar contained in t2. We also require that < is monotone and transitive cap-
tured respectively by (A5

<) and (A6
<):
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` x < y ∧ z < w → (x.z) < (y.w) (A5
<)

` x < y ∧ y < z → x < z (A6
<)

Inside M we can represent the numerals, and even sequences of numerals,
hence M is a model for elementary arithmetic: By interpreting the successor sym-
bol for arithmetic as nil, we define the successor of x as the function (nil.x). Given
the functions head and tail, denoted hd(x), tl(x); Then internally we have all the
natural numbers represented by numerals of the form:

NAT(x)↔ x = nil ∨ ∀y < x(hd(y) = nil ∨ y = nil)

If + and × are introduced as new symbols, then we can interpret the axioms of for
instance Robinson Arithmetic inside MINPAR.

` s(x) = s(y)→ x = y (<1)
` x = 0 ∨ ∃y(x = s(y)) (<2)
` ¬0 = s(x) (<3)
` x+ 0 = x (<4)
` x+ s(y) = s(x+ y) (<5)
` x× 0 = 0 (<6)
` x× s(y) = x× y + x (<7)

The following theorems are not provable in Robinson arithmetic:

` ¬ s(x) = x (<8)
` 0 + x = x (<9)
` s(y) + x = s(x+ y) (<10)
` 0× x = 0 (<11)
` s(y)× x = x× y + x (<12)
` x+ y = y + x (<13)
` x+ (y + z) = (x+ y) + z (<14)
` x× s(0) = x (<15)
` x× y = y × x (<16)
` x× (y × z) = (x× y)× z (<17)

This shows how weak Robinson arithmetic is, almost nothing is provable in it.

Observation 1 There is a modell for Robinson arithmetic evaluating <8 - <17 to
false.

Proof: We consider the model N∞ by interpreting + and ×. The proof is easy
once an interpretation is settled. By the modell proposed by Jervell [2003] due to
?.
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n n+ 1
∞0 ∞0

∞1 ∞1

+ m ∞0 ∞1

n n+m ∞1 ∞0

∞0 ∞0 ∞1 ∞0

∞1 ∞1 ∞1 ∞0

× 0 m ∞0 ∞1

n 0 n+m ∞0 ∞1

∞0 0 ∞1 ∞1 ∞1

∞1 0 ∞0 ∞0 ∞0

We present the proofs of N∞ 6|= <10, N∞ 6|= <12 and N∞ 6|= <14 as one-liner
rewrites of equations and leave the rest to the reader.
<10: s(∞1) +∞0 =∞1 +∞0 =∞1 6=∞0 = s(∞0) = s(∞0 +∞1)
<12: s(∞1)×∞0 =∞1 ×∞0 =∞0 6=∞1 =∞1 +∞0 =∞0 ×∞1 +∞0

<14: ∞0 + (∞1 +∞0) =∞0 +∞1 =∞0 6=∞1 =∞0 +∞0 = (∞0 +∞1) +∞1

�

4 Non-standard models for MINPAR

Let now MR be a non-standard model for MINPAR defined as follows: First we
extend the language by a new constant LL = L ∪ {∞} . Then we obtain a
new model MR, where∞ in the modell can be seen as a new label in the trees in
addition to nil. The interpretation is obvious; ∞MR = ∞ and nilMR = nil . The
label∞ is its own successor, that is

∞ = (nil.∞) (AR∞)

Hence our theory is extended with to a new theory TR = T ∪ {∞ = (nil.∞)}
Then we see that the theorem of arithmetic

∀x¬s(x) = x <8,

translated into T as
¬(nil.x) = x <L

8

does not hold in MR, although it holds in the standard model M for T.

Proposition 1 Let LR and TR be as described above. Then MR is a non-standard
model for MINPAR, that evaluates (<8) to false.

Proof: We have already seen that <L
8 (and hence <8) does not hold in MR, al-

though it holds in the standard (arithmetical) model M for T. But this is not
enough. We need to argue that the other axioms of T are true in MR. Define the
following four sentences to be true inside MR:

nil <∞ (1) ¬∞ < nil (2) ¬nil =∞ (3).
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We observe first that the standard equality axioms, (ER), (ES), (ET) holds for
every element in MR and hence ∞ = ∞ (†). Composition of trees is still a
function and introducing the non-standard element does not violate the injectivity
of pairing, hence (EF) and (EI) is also true in MR. In addition (A1

<) holds in case
x =∞, because of (2).

The containment axiom, (A2
<), is a bit more delicate; the truth value of a sen-

tence x < (y.z) is evaluated by recursively nesting (y.z) and x if it can not be
decided directly. But this is possible. A case analysis shows that tree containment
is interpreted in MR. Consider therefore

∞ < nil (a) nil <∞ (b) ∞ <∞ (c) ∞ < (∞.nil) (d) ∞ < (∞.∞) (e)

(a) is false according to (2), while (b) is true because of (1).
Consider (c): Since ∞ = (nil.∞) it is sufficient to treat ∞ < (nil.∞). Writing
out the axiom (A2

<) gives nil =∞ ∨ nil <∞ ∨∞ =∞ ∨∞ <∞, and by (†),
reflexivity of∞, the third disjunt makes (c) true in MR.
Consider (d),∞ < (∞.nil). Since∞ = ∞ ∨∞ < ∞ ∨∞ = nil ∨∞ < nil is
true by (†) or (c), we conclude that (d) is also true.
Consider (e), ∞ < (∞.∞): Plugging the instance into the axiom gives the for-
mula∞ = ∞ ∨∞ < ∞ ∨∞ = ∞ ∨∞ < ∞, where each of the disjuncts are
true according to either (†) or (c), hence MR |=∞ < (∞.∞).

The truth of (A3
=) is not violated by introducing more labels since nil is still a

minimal element in the extended theory according to (3).
(A4

=) holds in the extended model. Since the non-standard trees introduce even
more elements (nil.∞), the non-standard labels are making the second disjunct
true; that is each label is of the form x = nil∨x =∞, i.e. x = nil∨x = (nil.∞),
hence x = nil ∨ ∃y∃z(x = (y.z)). �

Consider the non-standard MR tree, ((∞.((nil.nil).nil)).((∞.∞).nil)), de-
noted π. For non-standard trees, there is a finite representation. The tree π, can be
represented by πc:

∞

nil nil

nil ∞ ∞

nil

An infinite representation of π, can be obtained by expanding the tree by 3 × ω
applications of the equation (AR∞), giving the tree πe;
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nil

nil

nil

nil ..

nil nil

nil

nil

nil

nil

nil ..

nil

nil

nil

nil ..

nil

where each occurence of ∞ by (AR∞) corresponds to what we call a right
oriented ω-ladder. We say that the tree πe is the complete expansion of π, written
ex(π), if each non-standard label in π is replaced by ω times applications of its
defining equation. Conversely, πc is the complete contraction of a tree π, written
co(π), if every ω-ladder is replaced by the non-standard object defining it.

Observation 2

1. co(ex(π)) = co(π) = co(co(π)).

2. ex(ex(π)) = ex(π) = ex(co(π)).

Observation 3 Every non-standard infinite tree in MR can be collapsed to a finite
non-standard tree with

�
R = {nil,∞} and vice verca.

Observation 4 Every tree in MR has cardinality ≤ ω.

Proposition 2 There is an interpretation of the Robinson axioms in MINPAR, in
the right oriented modell MR, where <1 - <7 are true but <8 is false.

Proof: We already know now that <8 is false in MR, so our goal is to explore
the modell MR. This is done by investigating the right oriented numerals, denoted
ron:

nil0R := nil niln+1
R := (nil.nilnR)

Then we define the interpretation of the function symbols s, + and × as follows.

s

nilnR (nil.nilnR)
∞R (nil.∞R)

+ nilmR ∞R

nilnR niln+m
R ∞R

∞R ∞R ∞R

× nil nilmR ∞R

nil nil nil nil
nilnR nil niln×mR ∞R

∞R nil ∞R ∞R
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<1 is a special case of the injectivity axiom for MINPAR. <2 holds by the defini-
tion the right oriented numerals. <2 is true since nil 6= (nil.nil). A case analysis of
ron gives the result. We prove that the recursion equations for addition is satisfied
in the modell, MR |= <4 and MR |= <5, and leave the rest as exercises.

(<4) nilnR + nil = niln+0
R = nilnR ∞R + nil =∞R + nil0R =∞R

Then consider the axiom <5, x+ s(y) = s(x+ y). There are four cases; either

x = nilnR and y = nilmR (a), or
x = nilnR and y =∞R (b), or
x =∞R and y = nilmR (c), or
x =∞R and y =∞R (d).

We prove (b) and leave the other as exercises.

(<5) nilnR + (nil.∞R) =1 nilnR +∞R =2 ∞R.

=1 follows by AR∞ and =2 by the definition of +. �

By using ron from the previous proof, the concept of ’right oriented ω-ladder’
can be defined precise:

ex(∞R) = lim
n→∞ nilnR

The previous definition is not a formal definition in the logical sense of the word
since it is not formulated in the language of logic. A formal definition, that is an
arithmetization of the infinite object ex(∞R), is given by the formula

ex(∞R) ↔ ∃x∀y < x (hd(y) = nil ∧ ∃z(y < z ∧ z < x))

Since the containment relation collaps in case of non-standard elements, a more
explicit statement of containment must be made in order to compare standard ele-
ments with non-standard.

Lemma 1 ∀n (nilnR <∞R ∧ nilnR 6=∞R)

Proof: By induction over n. Basis is observed to be correct by recapitulating the
construction of MR; nil1R = nil <∞R and nil1R = nil 6=∞R.

Suppose therefore as the lemma holds for n:

nilnR <∞R ∧ nilnR 6=∞R

Then by axiom (A5
<), we have the instance;

nilnR <∞R → (nil.nilnR) < (nil.∞R)
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which by the definition of ron and AR∞ is the same as;

nilnR <∞R → niln+1
R <∞R

Furthermore by contraposition of the axiom of injectivity (EI)

nilnR 6=∞R → (nil.nilnR) 6= (nil.∞R)

which by a similar argument gives;

nilnR 6=∞R → niln+1
R 6=∞R

�
The construction of right oriented ω-ladders was a bit arbitrary, since the represen-
tation of numbers could equally have been represented by the equations:

0 := nil n+ 1 := (n.nil)

Hence the corresponding collapsing equation for this representation is;

∞L = (∞L.nil) (AL∞)

Proposition 3 Let LL = L ∪ {∞L} and TL = T ∪ {∞L = (∞L.nil)}. Then
ML is a non-standard model for MINPAR making (<8) false.

Proposition 4 There is an interpretation of the Robinson axioms in MINPAR, in
the right oriented modell ML, where <1 - <7 are true but <8 is false.

The tree π presented previously, relabelled from ∞ to ∞L and completely ex-
panded yields:

. . . nil

nil

nil

nil

nil nil

nil

. . . nil

nil

nil

nil

. . . nil

nil

nil

nil

nil

8



4.1 The limits of complete expansions

To avoid confushion let ∞R denote the right oriented element ∞ introduced be-
fore. In taking the limit of big trees we are only interested in its infinite behaviour.
This is captured by the purely non-standard trees. A tree π is purely non-standard
if its complete contraction co(π) contains only non-standard labels. Then we can
define two limit trees for each of the nonstandard models ML and MR. Hence
by recursion on the natural numbers we define two specific classes of purely non-
standard trees.

Definition 3 The purely non-standard trees∞n
L and∞n

R are defined as follows;

∞1
L =∞L ∞1

R =∞R

∞n+1
L = (∞L.∞n

L) ∞n+1
R = (∞n

R.∞R)

Both ∞n
L and ∞n

R defines an infinite sequence of purely non-standard trees. Al-
though it seems at face value that the trees are not grounded, one can consider the
constructor as “pushing” the tree upwards. The limit is then given by:

∞ω
L = lim

n→∞ ∞n
L ∞ω

R = lim
n→∞ ∞n

R

Observation 5 Neither ex(∞ω
L) nor ex(∞ω

R) are balanced trees.

4.2 Mutually recursively defined labels

Non-standard elements can be defined by mutual recursion. Consider for instance
the extension of T with two labels∞1 and∞2:

∞1 = (nil.∞2) ∞2 = (∞1.nil)

Consider the tree∞1. The complete expansion of∞1 is the infinite tree depicted
to the right

∞1

nil ∞2
nil

∞1
nil

nil

nil ∞2

nil

. . .

nil

nil

nil
...

nil

nil

Is the zik-zak model Mz generated by extending the language and the theory;

Lz = L ∪ {∞1,∞2} Tz = T ∪ {∞1 = (nil.∞2),∞2 = (∞1.nil)}
a non-standard modell? The answer is yes:
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Proposition 5 Let Lz and Tz be as defined above. Then there is a non-standard
zik-zak model Mz for MINPAR that evaluates (<8) to false.

Proof: First observe we need only consider finite trees, the complete contraction,
and expand the trees finitely if necessary (no complete expansion will be made).
We define Mz as follows:

First we give another interpretation of the numerals to ensure that (<8) is false
in Mz . Let s(x) be interpreted in Mz as the function giving the slalom numerals
(nil.(x.nil)). The slalom numerals are defined inside zik-zak models by the ∆0

0

formula:

NAT(x)↔ x = nil ∨ ∀y < x (hd(y) = nil ∧ tl(tl(y)) = nil ∨ y = nil).

By a two-step expansion of∞2, we can make (<8) false by considering the equa-
tion∞1 = (nil.∞2) = (nil.(∞1.nil)), hence∞1 = s(∞1).

Then we declare that ∞1 = ∞1 (1) and ∞2 = ∞2 (2). This makes the
reflexivity axiom (ER) true. But then symmetry and transitivity also holds, i.e.
(ES) and (ET) are both true.

Moreover, let both Mz |= ¬∞1 < nil (3) and Mz |= ¬∞2 < nil (4). This
makes (A1

<) true. Since a one step expansion of both ∞1 and ∞2 results in a
composite tree, we also require that nil 6= ∞1 (5) and nil 6=∞2 (6). Hence (A3

=)
is true since both Mz |= ¬nil = (nil.∞2) and Mz |= ¬nil = (∞1.nil).

Pairing is still a function, hence Mz |= EF. To guarantee that pairing is in-
jective we require ∞1 6= ∞2. If not we would have by one-steps expansions on
each side of the equation (nil.∞2) = (∞1.nil), and then by (EI) we would have
nil =∞1 and∞1 = nil which are false by (5) and (6).

The axiom (A3
=) is true since by (5) and (6), Mz |= nil 6= ∞1 ∧ nil 6= ∞2,

and therefore also Mz |= nil 6= (nil.∞2) ∧ nil 6= (∞1.nil).
The Robinson axiom (A4

=) holds in Mz , since ∞1 and ∞2 by a one step ex-
pansion yields a composite tree: The labels in a contracted zik-zak tree are of
three kinds, Mz |= x = nil ∨ x = ∞1 ∨ x = ∞2, hence the one step ex-
pansion gives Mz |= x = nil ∨ x = (nil.∞2) ∨ x = (∞1.nil), which yields
Mz |= x = nil ∨ ∃y∃z (x = (y.z)).

Finally we consider containment with respect to the non-standard labels, the
axiom (A2

<). There are four cases:

∞1 <∞2 (a) ∞1 <∞1 (b) ∞2 <∞1 (c) ∞2 <∞2 (d)

Consider (a): Expanding ∞1 < ∞2 gives∞1 < (∞1.nil), and since ∞1 = ∞1

is true by (1), the first disjunct in (A2
<) gives Mz |=∞1 <∞2.

Consider (b): Expanding∞1 <∞1 gives∞1 < (nil.∞2) and since∞1 <∞2 is
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true by (a), (b) is also true by the fourth disjunct in (A2
<) , i.e. Mz |=∞1 <∞1.

Consider (c): Expanding ∞2 < ∞1 gives∞2 < (nil.∞2). But since ∞1 = ∞1

by (2) we get from the third disjunct in (A2
<), Mz |=∞2 <∞1.

Consider (d): Expanding ∞2 < ∞2 gives ∞2 < (∞1.nil). Similarly by (c) the
second disjunct in (A2

<) gives Mz |=∞2 <∞2.
This case analysis is exhaustive since any contracted tree in the zik-zak model can
be compared with respect to the labels. �

4.3 The Roger label

Let ? denote the Roger label. Extend the language L with the non-standard Roger
label, L? = L ∪ {?} and augement the theory with equations saying

? = (?.?) (A?)

In other words, T? = T ∪ {? = (?.?)}.

Observation 6 The expansion of the single Roger tree ? gives a infinite balanced
binary tree without labels.

Proposition 6 M? is a model for MINPAR.

Proof: See forthcomming essay by Roger Antonsen. �

A step wise expansion of ? gives for instance the following expansion sequence:

?

? ? ?

? ? ? ? ? ?

. . .

The complete expansion of ? is the infinite tree depicted below:

...
...

...
...

...
...

...
...

Proposition 7 The Roger tree ? can not be reached constructively from any combi-
nation of ML, MR or Mz . ? can not even be reached from any transfinite closure
of the models presented in the paper.
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Proof: The first part is obvious. That no transifinite closure can ever reach ? is left
as a problem to the reader. �

Conjecture 1 The Roger tree ? is constructively inaccessible from any non-standard
modell simpler than M?.

The problem for deciding this one is to give precise meaning to ’simple’ and ’con-
structively’. This is left as an open problem.

5 Conclusion

The non-standard models presented in the paper are all making the theorem <8 of
arithmetic false except the M?. But more general we observe that what makes them
non-standard is the fact that the containment relation collaps, i.e. there are objects
x that are self identical, x = x, yet contained in themselves, x < x. The obvious
theorem in MINPAR making this false ¬x < x, which is not provable. The reason
why the models are so simple is that MINPAR has no power of comparing every
element. The elements are not totally ordered, as in number theory given by the
theorem x = y ∨ x < y ∨ y < x.
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Exercises

At the end we present some easy and some difficult exercises to the reader who
wants to go deeper into this subject.

Exercise 1 (Easy) Suppose that everything you know is MR. Are the following
true? Give a formal proof of your answer.

1. (∞.((nil.nil).nil)) < ((∞.((nil.nil).nil)).((∞.∞).nil))

2. ((∞.∞).nil) < ((∞.((nil.nil).nil)).((∞.∞).nil))

3. ((∞.((∞.∞).nil)).((∞.∞).nil)) < ((∞.((nil.nil).nil)).((∞.∞).nil))

4. (∞.((nil.nil).nil)) < ((∞.∞).nil)
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5. ((∞.∞).nil) < (∞.((nil.nil).nil))

6. ((nil.(nil.(nil.∞))).((nil.nil).nil)) < ((∞.((nil.nil).nil)).((∞.∞).nil))

7. ((∞.((nil.nil).nil)).((∞.∞).nil)) < ((∞.((nil.nil).nil)).((∞.∞).nil))

Exercise 2 (Easy) Now jump over to the left oriented modell ML and interpret the
label∞ in the previous exercise as∞L instead. Decide which of the sentences in
the previous exercise that are true or false.

Exercise 3 (Intermediate) Prove formally that ML is a model for MINPAR. This
means prove Proposition 3.

Exercise 4 (Easy) Complete the proof of Observation 1.

Exercise 5 (Easy) Complete the proof of Proposition 2.

Exercise 6 (Intermediate) Define left orient numerals, lon. Prove formally that
ML is a model for the Robinson axioms. This means prove Proposition 4.

Exercise 7 (Easy) Consider the zik-zak tree π given as follows:

((((nil.((nil.∞2).nil)).∞1).((nil.((nil.(∞1.nil)).nil)).nil)).(nil.(∞1.∞2)))

How many 1-step contractions can be performed to get the normal form of the
previous zik-zak tree? Draw both trees. (This means that you shall compute co(π)
by counting each rewrite step.)

Exercise 8 (Intermediate) Show that to be a left oriented ω-ladder is definable
using the language L. This means by using only (.), nil and logic. (You can of
course also use hd() and tl().) Show that you can not define it with a ∆0

0 sentence.

Exercise 9 (Hard) Decide how to solve the conjecture and do it.
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