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Abstract

In the famous paper of Kurt Gödel he proved that number theory, con-
taining axioms for addition and multiplication is incomplete. But what about
simpler theories? Are they complete? The answer is yes. The theories of
addition and multiplication are both complete, but the argument that they
are decidable is far from trivial. In the following essay we shall present the
weak fragments of number theory and outline the proofs why they provide
an algorithm answering yes or no on questions about truth.

1 Introduction

The most cited and well-known result in mathematical logic is due to Kurt Gödel
[G3̈1], and is called first incompleteness theorem. The theorem states that any
theory that contains addition and multiplication is incomplete, that is there are true
sentences that are not provable in the theory.

An interesting question is where the borderline between completeness and in-
completeness lies. If full arithmetic is incomplete, then what about fragments of
arithmetic? They should be complete if we strip off enough expressive power. But
the completeness results do not come for free, technically speaking. The results due
to Presburger and Skolem [Sko70], concerning respectively completeness of addi-
tion and multiplication, makes extensive use of quantifier elimination and number
theory.

The essay is organized as follows. First, we present the theorem of quantifier
elimination, that says that any theory permitting elimination of existential quan-
tifiers over conjunctions of atomic formulas, permits elimination of quantifiers in
general. Secondly, we go deeper into the proofs of Presburger and Skolem, and
give the proof of the decidability of the addition-fragment of arithmetic. Finally,
we shall consider negative aspects, what can not be defined and why this is so.
Since expressibility of a language is the key to understand the decidability, we
shall spend some time explaining it using the Ginsburg Spanier Theorem. Having
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this result and its close relatives, in the tool-box, one is able to reason precisely
about non-definability.

2 General Quantifier elimination

Both the proof by Presburger and Skolem rely on the possibility to eliminate quan-
tifiers. Quantifier elimination is a standard technique, and we base our presentation
on [Men97], [Sho67], [Smo91]:

Lemma 1 Th ` ∃x∨ki=1

∧m
j=1 ϕ

j
i (x)↔ ∨k

i=1 ∃x
∧m
j=1 ϕ

j
i (x)

Proof: Induction on k. Induction basis is trivial. Consider induction step:
Th ` ∃x∨k+1

i=1

∧m
j=1 ϕ

j
i (x) ↔def ∃x(

∨k
i=1

∧m
j=1 ϕ

j
i (x) ∨∧mj=1 ϕ

j
k+1(x)) ↔FOL

∃x(
∨k
i=1

∧m
j=1 ϕ

j
i (x)) ∨ ∃x(

∧m
j=1 ϕ

j
k+1(x))↔I.H.∨k

i=1 ∃x(
∧m
j=1 ϕ

j
i (x)) ∨∨k+1

i=k+1 ∃x(
∧m
j=1 ϕ

j
i (x))↔def

∨k+1
i=1 ∃x

∧m
j=1 ϕ

j
i (x) �

Lemma 2 If every formula on the form ∃x∧m
i=1 ϕi(x), where each ϕi(x) is a

literal is equivalent to a quantifier free formula Ψ, i.e.
Th ` ∃x∧mi=1 ϕi(x)↔ Ψ, then Th permits quantifier elimination.

Proof: (Shoenfield/Smorynski) Let (∃−red) denote the sentence:

For every set of literals {ϕi | 0 ≤ i ≤ m} there exists a quantifier free
formula Ψ, such that Th ` ∃x∧mi=1 ϕi(x)↔ Ψ.

and let (Conj) denote the sentence

For every formula ξ over the language L, there exists a quantifier free
formula Ψ∗ such that Th ` ξ ↔ Ψ∗.

We are going to prove that ∃−red =⇒ Conj. The elimination begins with the
innermost quantifiers first, and then removes the rest successively. The algorithm
starts with the formula ξ and only redesign sub-formulas of ξ.

By induction on deg(ξ) (where deg() denotes the syntactic complexity of the
formula defined in the obvious way), we prove the implication.

Basis case: If deg(ξ) = 0, then ξ is atomic, and hence quantifier-free. By
ξ = Ψ∗, the lemma obviously holds, since Th ` Ψ∗ ↔ Ψ∗.

Induction step: In case deg(ξ) = k + 1 there are 5 cases to consider.

ξ = ¬ξ1. By induction hypothesis there exists a quantifier-free Ψ∗1, such that
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Th ` ξ1 ↔ Ψ∗1. But then by PL Th ` ¬ξ1 ↔ ¬Ψ∗1, and ¬Ψ∗1 is of course
quantifier-free.

The case for ∧ and ∨ is similar. Consider ξ = ∃x ξ1(x). By induction hy-
pothesis Th ` ξ1(x) ↔ Ψ∗1(x). Since Ψ∗1(x) is quantifier-free, it can be writ-
ten on disjunctive normal form; Th ` Ψ∗1(x) ↔ ∨k

i=1

∧m
j=1 ξ

j
i (x) were each

ξji (x) is a literal. Then from the fact that Th ` ξ1(x) ↔ ∨k
i=1

∧m
j=1 ξ

j
i (x) gives

Th ` ∃x ξ1(x) ↔ ∃x ∨k
i=1

∧m
j=1 ξ

j
i (x) ↔ ∨k

i=1 ∃x
∧m
j=1 ξ

j
i (x). By (∃−red)

then since the premiss of the lemma gives ` ∃x ∧m
j=1 ξ

j
i (x) ↔ Ψj

i (x) for each i,
the result follows. �

3 Elementary number theory

The language of elementary number theory is a finite language in the sense that it
contains finitely many constants. The following functions are definable in elemen-
tary arithmetic, and shall be used later on:

x is a divisor in y: x|y ↔def ∃z ≤ y(y = zx)
the greatest integer in x/y: z = [x/y]↔def ∃r ≤ x(x = zy + (r − 1))
equality modulo n x = y (mod n)↔def ∃z (x = y + (z + . . .+ z︸ ︷︷ ︸

n

)).

By the famous result of Gödel we know that the language containing successor
s, addition +, and multiplication × are prone to incompleteness. The reason for
this is that the expressibility of the language increases. A beautiful result by Gins-
burg and Spanier gives a very precise answer to the question of definability within
such restricted languages.

The language of addition is then the finite language consisting of the primi-
tives 0, s, +, = and <. Recall that the greatest integer function [x/y], returns
the rounded down-wards integer closest to x/y, hence [3/4] = 0, [8/3] = 2. The
proof by Skolem uses an extended language, the greatest integer function and con-
stant multipliers. Constant multipliers, written q · x can be viewed as abbrevia-
tions for q number of additions, x+ . . . + x︸ ︷︷ ︸

q

. Whenever only scalar multiplica-

tion is present we write ·, and if general multiplication is part of the signature
we write ×. So, instead of proving that quantifiers can be eliminated directly for
(

�
;<,+, 0, 1) directly, Skolem proves the result for ( � ;<,+, 0, 1) by working in-

side ( � ; � ;<,+, {q ·|q ∈ � }, [/], 0, 1). To justify the transfer of reasoning between
various different structures we need the concept of realizations:
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Definition 1 Let A and B be two structures for a language L , and suppose that
A is a substructure of B, A ⊆ B. Let |A| = A and |B| = B denote the domain of
these two structures. Suppose that |A| is definable in B by a formula x ∈ B. Then
for any formula ϕ in LA, its relativization, ϕA to the set A, is defined by

(i) ϕA = ϕ, if degr(ϕ) = 0
(ii) (¬ϕ)A = ¬(ϕA)
(iii) (ϕ1 ∨ ϕ2)A = ϕA1 ∨ ϕA2 and (ϕ1 ∧ ϕ2)A = ϕA1 ∧ ϕA2
(iv) (∃x ϕ(x))A = ∃x (x ∈ A ∧ ϕ(x)A) and (∀x ϕ(x))A = ∀x (x ∈ A→ ϕA)

Then we can prove the relativization theorem 1

Theorem 1 For every ϕ in LA, A |= ϕ if and only if B |= ϕA.

Proof: Induction over degr(ϕ). Ind. basis follows direct from definition 1. Sup-
pose that ϕ = ∃x ϕ(x): Then B |= (∃x ϕ(x))A iff B |= ∃x (x ∈ A ∧ ϕ(x)A) iff
there exists aB ∈ |B| such that B |= ϕ(a) where aB ∈ AB iff
there exists an aA ∈ |A| such that A |= ϕ(a) where aA ∈ AA by induction hy-
pothesis and the fact that A ⊆ B iff there exists an aA ∈ |A| such that A |= ϕ(a)
iff A |= ∃x ϕ(x). �

Theorem 2 (Skolem) Th(Z,<,+,0,1) permits quantifier elimination, relative to the
extended language of constant multipliers q · () and greatest integer function [/].

Proof: In the proof we follow Smorynski’s exposition of Skolem’s argument. From
the quantifier elimination lemma we know that, it is sufficient to prove that
` ∃x ∧α

j=1 ϕ
j
L(x) ↔ φ(x), where φ(x) is quantifier free and each ξjL(x) is a lit-

eral. The proof is split into three main steps.

I. ` ∃x ∧α
i=1 ϕ

i
L(x)↔ ∨β

j=1 ∃x
∧
j=1 ϕ

ij
ATO(x)

II. ` ∃x ∧α
j=1 ϕ

j
ATO(x)↔∨m−1

l=0 ∃w (
∧γ
i=1 w < si ∧

∧δ
j=1 tj < w ∧∧ε

k=1w = uk)

III. Elimination of ∃w in ∃w (
∧γ
i=1 w < si ∧

∧δ
j=1 tj < w ∧∧ε

k=1w = uk)

Note that ϕjATO(x) is atomic. The rational number chosen for m is going to be
explained later in the proof.

In step I. the negated atomic sentences are removed in the equivalent sentence,
such that only positive atomic formulas occur. In step II. the positive atomic for-
mulas are replaced by formulas where the existential variable occurs alone at one

1[Hod97] p. 101-102 or [Smo91] p. 309. For standard definitions of the concepts signature,
structure and substructure, see [Hod97] p. 2-6
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side of the (in)equalities. Finally, step III. performs the actual elimination of the
existential quantifier.

Step I. Each of the ϕjL(x) are either positive or or negative. If ϕjL(x) is posi-
tive then do nothing. If ϕjL(x) = ¬ϕjATO(x), then there are two possibilities either
¬t = s or ¬t < s. But by replacing the former with s < t ∨ t < s and the latter
with s = t ∨ s < t, we achieve
` ∃x ∧α

i=1 ϕ
i
L(x) ↔ ∃x ∧α

i=1

∨b
j=1 ϕ

ij
ATO(x), where 1 ≤ b ≤ 2. The

quantifier part of the formula can be transformed to DNF, by α applications of the
distribution law A ∧ (B ∨ C)↔ (A ∧ B) ∨ (A ∧ C), which gives rise to at most
2α disjunctions.
Explicitly this states ` ∃x ∧α

i=1

∨b
j=1 ϕ

ij
ATO(x) ↔ ∃x ∨β

j=β

∧α
i=1 ϕ

ij
ATO(x),

where β ≤ 2α. Then finally by lemma 1,
` ∃x ∨β

j=1

∧α
i=1 ϕ

ij
ATO(x) ↔ ∨β

j=1 ∃x
∧α
i=1 ϕ

ij
ATO(x), which concludes the

proof of I.
In reduction II, we show that every atomic sentence can be written on a form,

where the variable occurs alone on one of the sides of either < or =. The difficult
part in isolating only one occurrence of a variable, is to free it from multipliers.
Suppose that x occurs in the scope of the multipliers q0 = n0

m0
, . . . , qr = nr−1

mr−1
in

the formula
∧α
i=1 ϕ

i
ATO(x). Now collect the denominators of every “binding” mul-

tiplier into a big number m = m0 · . . . ·mr−1. Then by replacing each occurrence
of the variable x by m · w + l, denoted x/m · w + l;

∃x
α∧

i=1

ϕiATO(x)↔
m−1∨

l=1

∃w
α∧

i=1

ϕiATO(x/m · w + l)

But by elementary algebra each occurrence of the new variable w can be singlet
out to stand alone on the side of an < or =. Hence
m−1∨

l=1

∃w
α∧

i=1

ϕiATO(m·w+l)↔
m−1∨

l=1

∃w (

α1∧

i=1

w < si∧
α2∧

j=1

tj < w∧
α3∧

k=1

w = uk∧Ψ)

where Ψ is does not contain w, neither does si, tj nor uk. Since w does not occur
free in Ψ,

∃w (

α1∧

i=1

w < si ∧
α2∧

j=1

tj < w ∧
α3∧

k=1

w = uk ∧Ψ)↔ ∃w (

α1∧

i=1

w < si ∧
α2∧

j=1

tj < w ∧
α3∧

k=1

w = uk) ∧Ψ

which means that we end up with the problem of removing existential quantifiers
in formulas of the form

∃w (

α1∧

i=1

w < si ∧
α2∧

j=1

tj < w ∧
α3∧

k=1

w = uk). (?)
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Then finally in step III, we remove each existential quantifier ∃w that after perform-
ing exhaustive II reductions. The reduction can be split into three cases according
to the way (?) looks.

(i) There is an equation (or more) such that w = ur.
(ii) There are no equations and only one of the inequalities are true.
(iii) At least two of the different inequalities are true.

Case (i): by substitution, we get

α1∧

i=1

ur < si ∧
α2∧

j=1

tj < ur ∧
∧

k∈{d|1≤d≤α2}−{r}
ur = uk ∧ [ur] = ur.

The latter equation is added, since w ranges over integers to ascertain that ur is of
correct kind. It gives an inherent type-checking of the term.

Case (ii): If there are no equations then (?) is of the form (a) ∃w (
∧α1
i=1w < si)

or (b) ∃w (
∧α2
j=1 tj < w). In case (a), since we can choose a minimal element of

the finite conjunction w < s1∧w < s2∧ . . .∧w < sα1 , lets say umin because � is
unbounded down-wards, hence umin < si∧umin < si∧. . .∧umin < si. In case (b)
we choose a maximal element of the conjunction t1 < w∧ t2 < w∧ . . .∧ tα2 < w,
denoted umax and replace (b) in a similar manner by

∧α2
j=1(tj < umax), since �

are unbounded up-wards.
Case (iii): We have that (?) is of the form

∃w (

α1∧

i=1

w < si ∧
α2∧

j=1

tj < w).

The sentence says that there is an integer between each of the tj’s and the si’s.
Therefore w splits the two sets of terms by the conjunction

∧α1
i=1

∧α2
j=1 tj < si,

which is quantifier free. But recall that although the replacing formula is still true,
information about the squeezing integer w is lost. �

Since we know that the tj’s and si’s are split by an integer, we might more
faithfully search for one of these splitting terms by approximation from below
usplit = max {tj |1 ≤ j ≤ α2}, by taking the greatest integer, but since [·] returns
the closest integer rounded down-wards, we must increase it by one: [usplit] + 1.
This allow us to write

∧α2
j=1 tj < [usplit] + 1 ∧∧α1

i=1[usplit] + 1 < si.

Corollary 1 Th(Z,<,+,0,1) is decidable.
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Proof: Since any formula φ constructed over Th(Z,<,+,0,1) is equivalent to a quantifier-
free formula Ψ by the Skolem’s theorem, the truth value of Ψ can be computed by
a program. The reason is that the theory contains only equality, =, and inequality,
<. We know that the theory of equality is decidable. Since inequalities can be
expressed by x < y ↔ ∃z(y = s(z) + x), the theory can be reduced to a theory of
equality. �

4 Why + can not define ×
Now we return to some interesting results, that are, by no means controversial,
although they characterize the limits of theory Th(Z,<,+,0,1), in very precise way.
We shall do this by using the Ginsburg Spanier Theorem, and some properties of
number theory.

We say that X a subset of the natural numbers
�

is ultimately periodic if and
only if ∃p ∈ � ∃x0 ∈

� ∀x ≥ x0(x ∈ X ⇐⇒ x+ p ∈ X).

Lemma 3 Ultimately periodic sets are closed under finite union and complemen-
tation

Proof: We prove only that the ultimatic periodic sets are closed under complemen-
tation and union. Then by DeMorgan it is closed under intersection. We therefore
need to prove

If X and Y are ultimately periodic, then both {X and X ∪ Y are
ultimately periodic.

Suppose X is ultimately periodic. Then by definition
∃p ∈ � ∃x0 ∈

� ∀x ≥ x0(x ∈ X ⇔ x+ p ∈ X), hence by logic
∃p ∈ � ∃x0 ∈

� ∀x ≥ x0(x /∈ X ⇔ x+ p /∈ X)
In case of union we need to build an ultimately periodic set based on X and Y . Let
X be ultimately periodic with x0 and p as above and let Y be ultimately periodic
with y0 and q. The idea is to use both the period p and q to construct a new
ultimately periodic set. Let r = lcm(p, q) denote the least common multiple of p
and q, and let z0 = max(x0, y0) denote the maximum of x0 and y0. Then we must
prove;

∀x ≥ z0 x ∈ X ∪ Y ⇔ x+ r ∈ X ∪ Y.
Since both X and Y are periodic, we have
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(a) x ∈ X ⇔ x+ p ∈ X ⇔ x+ p+ p︸ ︷︷ ︸
2 times

∈ X ⇔ . . .⇔ x+ p+ . . .+ p︸ ︷︷ ︸
q times

∈ X

︸ ︷︷ ︸
q times

and

(b) x ∈ Y ⇔ x+ q ∈ Y ⇔ x+ q + q︸ ︷︷ ︸
2 times

∈ Y ⇔ . . .⇔ x+ q + . . .+ q︸ ︷︷ ︸
p times

∈ Y

︸ ︷︷ ︸
p times

But this means that for r = p · q, we have x + r ∈ X and x + r ∈ Y , hence for
every x ≥ z0, x ∈ X ∪ Y ⇔ x ∈ X ∨x ∈ Y ⇔(a),(b) x+ r ∈ X ∨x+ r ∈ Y ⇔
x+ r ∈ X ∪ Y

Then finally we observe that
x ∈ X ∩ Y ⇔ x ∈ {({X ∪ {Y ) ⇔ x ∈ X ∧ x ∈ Y ⇔ x + r ∈ X ∧ x + r ∈
Y ⇔ x+ r ∈ X ∩ Y �

In the following section we shall write ω and (
�

;<,+, 0, 1) interchangingly.
We say that an arithmetical progression is a function f :

� 7−→ �
such that

∃m∃m(f(x) = m + n × x). A set X ⊆ �
is semi-linear if it is the union of

the image of finite number of arithmetical progressions, i.e. X = ∪f∈IRang(f)
where |I| is finite. Then we come to the most important concept, the notion of
definability, which is emphasized by the following distinguished definition:

Definition 2 We say that a set X ⊆ �
is definable in the language (

�
;<,+, 0, 1)

if there exists a formula φ(y) over the language with only y as free variable such
that ∀x ∈ �

(x ∈ X ⇔ (
�

;<,+, 0, 1) |= φ(x))

Lemma 4 Definability in (
�

;<,+, 0, 1) is an boolean algebra.

Proof: The compositionality of definability for boolean operators is proven by
showing

(a) {X is definable⇐⇒ X is definable
(b) X ∩ Y is definable⇐⇒ X and Y are definable
(c) ⇐⇒ X ∪ Y is definable

(a) follows directly from the definition of definability, since ∀z ∈ �
, we have

z ∈ {X ⇐⇒ (
�

;<,+, 0, 1) |= ¬φ(z) iff z /∈ X ⇐⇒ (
�

;<,+, 0, 1) 6|= φ(z)
iff z ∈ X ⇐⇒ (

�
;<,+, 0, 1) |= φ(z).

The directions ⇐= for (b) and (c) follows directly: If both X and Y are definable
there are formulas φ1 and φ2 with only one free variable such that for every z ∈ �

,
z ∈ X ⇐⇒ ω |= φ1(z) and z ∈ Y ⇐⇒ ω |= φ2(z)

But this gives by logic, z ∈ X ∧ z ∈ Y ⇐⇒ ω |= φ1(z) ∧ ω |= φ2(z) hence
z ∈ X ∩ Y ⇐⇒ ω |= φ1(z) ∧ φ2(z), which means that X ∩ Y is definable,
since φ1 ∧ φ2 has been chosen to contain only one single free variable z.
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Then observe that:
z ∈ X ∩ Y ⇐⇒ (

�
;<,+, 0, 1) |= (φ1 ∧ φ2)(z)

z ∈ X ∪ Y ⇐⇒ (
�

;<,+, 0, 1) |= (φ1 ∨ φ2)(z)
If X ∩ Y is definable, then there is a formula φ = φ1 ∧ φ2 with only one single
free variable z such that X is defined by φ1, and Y is defined by φ2. �

Lemma 5 If X is ultimately periodic then X is semi-linear.

Proof: Suppose that X is ultimately periodic. Choose one period p > 0 and an
initial argument x0 such that ∀x ≥ x0(x ∈ X ⇐⇒ x+ p ∈ X)). For every i, such
that 0 ≤ i < p, xi = x0 +iwith xi ∈ X , define an arithmetical progression, as fol-
lows: fi(x) = xi+p×x and for j ≤ x0 such that j ∈ X , define gj(x) = j+0×x.
Then we have X =

⋃
{0≤i<p} Rang(fi) ∪

⋃
{j<x0|j∈X}Rang(gj) �

Lemma 6 IfX is semi-linear thenX is definable in the language of (
�

;<,+, 0, 1).

Proof: Suppose that X is semi-linear. Then X is the range of finitely many
arithmetical progressions. Let us say that the number is t. Each these functions
are on the form fi(x) = mi + ni · x. Each of these are definable by formulas
∃vt+j(vj = mj + nj · vt+j). Let f1(x), . . . , fi(x), . . . , ft(x) be a listing of the
finite number of arithmetical progressions. Then
∃vt+1(v1 = m1 +n1 ·vt+1), . . . ,∃vt+t(vj = mt+nt ·vt+t) defines the ranges

Rang(f1), . . . ,Rang(ft) , but then by lemma 4, generalized to finite disjunctions,
gives the result since ∃vt+1(v1 = m1 + n1 · vt+1) ∨ . . . ∨ ∃vt+t(vj = mt +
nt · vt+t) defines the finite union Rang(f1) ∪ . . . ∪ Rang(ft). But recall that
X = Rang(f1) ∪ . . . ∪ Rang(ft) and we are done.
�

Lemma 7 If X is definable in the language of (
�

;<,+, 0, 1) then X is ultimately
periodic.

Proof: Suppose now that X is definable in the language of (
�

;<,+, 0, 1) by a
formula φ(y). From the discussion above we know that φ(y) is equivalent to a
quantifier free and positive formula Ψ with only one free variable. Then obviously
Ψ also defines X . Then by induction over deg(Ψ) we prove that if X is definable
in (

�
;<,+, 0, 1) by then X is ultimately periodic.

The basis case is the hard one. If Ψ is atomic with free variable x, then we can
assume that Ψ can be written on then forms
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(a) m · x = k, (b) m · x < k,
(c) k < m · x or (d) m · x ≡ k(mod n).

The assumption is justified by the following argument: For arbitrary terms t1(x),
t2(x), either (i) t1(x) < t2(x) or (ii) t1(x) = t2(x). Start a simplification of (i) by
rewriting the sentence by canceling each occurrence of + x and + 1 successively
on both sides of <. Then finally remove each occurrence of + 0. Then Ψ has the
form x+ . . .+ x︸ ︷︷ ︸

m

< 1 + . . .+ 1︸ ︷︷ ︸
k

or the form 1 + . . .+ 1︸ ︷︷ ︸
k

< x+ . . .+ x︸ ︷︷ ︸
m

. But this

exactly (b) and (c). The case of equality is a bit more difficult, since the procedure
to simplify ordering might give negative numbers. If this does not happens the
simplification gives in a similar manner (a). Observe that (d) covers the case where
simplifications would give a negative constant.

Both (a) and (b) defines a finite set, hence also an ultimate periodic set. Since
the complement of (c) defines a finite set, by previous lemma itself defines an
ultimate periodic set. Consider (d): Let c be the greatest common divisor of m and
n, c = gcd(m,n). Then there are two options: Either d is a divisor in k or not.

If ¬d|k, then m · x 6≡ k(mod n). But then (d) defines the empty set, which is
an ultimately periodic set.

If d|k then by dividing out (d), m0 · x ≡ k0(mod n0), where m0 and n0 are
relatively prime. But since ... m0 has a multiplicative inverse m−1. Then m0 · x ≡
k0(mod n0)⇐⇒ m−1 ·m0 · x ≡ m−1 · k0(mod n0)⇐⇒ x ≡ k1(mod n0). But
x ≡ k1(mod n0) defines a periodic set, and hence an ultimately periodic set.

Induction step: Suppose that X is definable by the formula Ψ = Ψ1 ∧ Ψ2.
This means that ∀x ∈ �

(x ∈ X ⇔ (
�

;<,+, 0, 1) |= (Ψ1 ∧Ψ2)(x) with at most
one free variable x. But then by previous lemma X can be partitioned into the
intersection of two sets X = Z1 ∩ Z2, such that both Z1 and Z2 are definable
by respectively Ψ1 and Ψ2. Then by induction hypothesis, Z1 and Z2 are both
ultimately periodic. Since ultimately periodic sets are closed under intersections,
X = Z1 ∩ Z2 is ultimately periodic.

The cases where X is definable by formulas Ψ1 ∨ Ψ2 is similar and therefore
omitted. �

Theorem 3 (Ginsburg Spanier) Let X ⊆ �
. Then the following is equivalent:

(i) X is definable in the language of (
�

;<,+, 0, 1)
(ii) X is ultimately periodic
(iii) X is semi-linear

Proof: Given the three previous lemmas the proof is easy, since (ii) =⇒ (iii) by
lemma 5, (iii) =⇒ (i) by lemma 6 and finally (i) =⇒ (ii) lemma 7. �
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The original result by Ginsburg Spanier occurred in [GS66]. Their primary aim
was to investigate relations between Presburger formulas and automatas.

The next corollary is the one telling us what limits of expressibility for such
theories are:

Corollary 2 In the language of (
�

;<,+, 0, 1), the following is not definable in
the language: (i) z = x× y , (ii)x is a square (iii) z = x|y, (iv) x is prime.

Proof: The proof follows from the Ginsburg Spanier theorem. In each case (i) -
(iv), it is sufficient to classify the sets as either not ultimately periodic or semi-
linear. Since (ii) - (iv) are defined by (i), that is; x|y ↔ ∃z ≤ y (y = x × z),
x2 = x × x and Prime(x) ↔ ∀y < x(y|x → y = 1), it is sufficient to
prove that x × y is not semi-linear. Suppose for contradiction that multiplica-
tion F (x, y) = x × y is semi-linear. This means that F (x, y) is the union of the
range of finitely many arithmetical progressions. Consider this set:

⋃
f∈I Rang(f),

where |I| = n and n ∈ �
. This means that we can choose from functions

f1(y) = m1 + k1 · y, . . . , fn(y) = mn + kn · y. By assigning 0 to the constants
m1, . . . ,mn, we get f1(y) = k1 · y, . . . , fn(y) = kn · y. But in order to approach
x× y. we need an infinite number of ki’s to construct arbitrary x’s. If we order the
functions with the natural numbers we get f1(y) = 1× y, f2(y) = 2× y, . . .. But
since fx(y) = x × y defines infinitely many arithmetical progressions F (x, y) is
not semi-linear. �

5 Completeness of multiplication

A method for deciding theories form multiplication was presented in [Sko70].
Since Skolem was presenting his method through examples, he did not actually
prove the theorem. The full proof was given by Andrzej Mostowski in [Mos52].
Mostowski’s proved the decidability of multiplication by reducing the question of
decidability of addition. By the fundamental theorem of arithmetic, every posi-
tive number can be written uniquely as the product of a prime number exponent.
Moreover if p0 = 2, p1, . . . , pm denotes the first prime numbers. Then the pos-
itive natural numbers x and y can be written on the form x = pn0

0 × . . . × pnrr ,
y = pm0

0 × . . .×pmss , where x×y = pn0+m0
0 × . . .×pnt+mtt where t = max(r, s).

Moreover the unit, is given by 1 = p0
0 × . . .× p0

t . Then Th( � ;×,1) is isomorphic to
the weak directed power of Th( � ;+,0).

Theorem 4 (Mostowski) If T is a decidable theory with a unique distinguished
constant, then the theory of weak directed powers of models of T is decidable.
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Theorem 5 (Skolem/Mostowski) Th( � +;×,1) is decidable.

Proof: (Sketch) The theory (Th( � ;+,0) is decidable theory with a unique distin-
guished constant 0, as we know by Presburger and Skolem’s result discussed ear-
lier. But Th( � ;×,1) is isomorphic to the weak directed power of Th( � ;+,0); with
the correspondance 0 ≈ 1 and + ≈ ×. But this gives that the theory Th( � ;×,1) is
decidable, since it is the theory of weak directed powers of Th( � ;+,0). �

A direct method for quantifier elimination of Th( � +;×,1) based on quantifier
elimination of Th( � ;+,0) was given by [Ceg81].

6 Concluding remarks

Similar results can be obtained for the weaker theories of successor Th( � ;s,0), and
successor with ordering Th( � ;<,s,0). Variants of the Ginsburg Spanier theorem
accompanied by appropriate quantifier eliminations can also be used to show rather
surprising results, e.g. that < is not definable in the structure ( � ; +, 0, 1).

From the history of science it is interesting, maybe not accidential, that the
incompleteness of full arithmetic was proven in the same year as the decidability
of the weak fragments of arithmetic was settled. This might have come to be from
a general interest at the time, in foundational issues by the leading researchers in
logic.
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