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Abstract

The Solar Dynamics Observatory (SDO), a NASA multispectral decade-long mission that has been daily producing
terabytes of observational data from the Sun, has been recently used as a use case to demonstrate the potential of
machine-learning methodologies and to pave the way for future deep space mission planning. In particular, the idea
of using image-to-image translation to virtually produce extreme ultraviolet channels has been proposed in several
recent studies, as a way to both enhance missions with fewer available channels and to alleviate the challenges due
to the low downlink rate in deep space. This paper investigates the potential and the limitations of such a deep
learning approach by focusing on the permutation of four channels and an encoder–decoder based architecture,
with particular attention to how morphological traits and brightness of the solar surface affect the neural network
predictions. In this work we want to answer the question: can synthetic images of the solar corona produced via
image-to-image translation be used for scientific studies of the Sun? The analysis highlights that the neural network
produces high-quality images over 3 orders of magnitude in count rate (pixel intensity) and can generally
reproduce the covariance across channels within a 1% error. However, the model performance drastically
diminishes in correspondence to extremely high energetic events like flares, and we argue that the reason is related
to the rareness of such events posing a challenge to model training.

Unified Astronomy Thesaurus concepts: Solar activity (1475); Solar extreme ultraviolet emission (1493); GPU
computing (1969); Solar active regions (1974); Solar telescopes (1531); Convolutional neural networks (1938)

1. Introduction

Since its launch in 2010, NASA’s Solar Dynamics
Observatory (SDO; Pesnell et al. 2012) has monitored the
evolution of the Sun. SDO data have enabled researchers to
track the evolution of the Sun’s interior plasma flows over solar
cycle 24 and beyond. SDO also continuously monitored the
evolution of the solar corona, capturing dynamical evolution at
timescales of seconds and minutes. This capability is due to the
suite of four telescopes on the Atmospheric Imaging
Assembly (AIA; Lemen et al. 2012) instrument, which captures
full-Sun images at two ultraviolet (UV) bands, seven extreme
UV (EUV) bands, and one visible band. The seven EUV
channels are designed to capture photons from emission lines
in highly ionized metals in plasmas at the transition region (TR;
105 K T 106 K) and coronal temperatures (10 106 K).
This combination of channels with sensitivity to different
temperatures allows researchers to track how transition regions
and coronal plasmas heat and cool (e.g., Cheung et al. 2015),

and to use these thermal histories to test theories of coronal
heating and of flares.
The high spatial resolution (∼1 5, 4096× 4096 pixels),

high cadence (12 s for EUV channels) full-disk observing
capability is possible because of SDO’s ground system
providing a sustained downlink rate of ∼ 67 Mbps. The
collection of continuous data, over more than one solar cycle,
provides not only numerous opportunities to perform data-
driven scientific studies but also research with the potential to
help optimize future solar physics missions.
For instance, the idea of using SDO images for image-to-

image translation has been explored in several papers, most
notably by Daz Baso & Asensio Ramos (2018), Galvez et al.
(2019), Szenicer et al. (2019), Park et al. (2019), and Salvatelli
et al. (2019). Image-to-image translation can potentially provide
a way to enhance the capabilities of solar telescopes with fewer
channels or less telemetry than is available to SDO. The SDO
image-translation problem can be defined as follows: given a set
of N (nearly) contemporaneous images taken in different EUV
channels, can a model be developed that maps the N input
images to the image of a missing (not in input) EUV channel?
Notably, Lim et al. (2021) adopted a widely used image-

translation method (Pix2Pix; Isola et al. 2017) to tackle the
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SDO image-translation problem and to understand which
subset of channels can better translate other channels. They
trained and evaluated models for all combinations of input
channels for both N= 2 and N= 3 variants of the problem, and
compared global image quality metrics to pick out the channel
combinations that perform the best. For some channel
combinations, the reported pixel-to-pixel correlation coefficient
approaches unity.

In this paper, we build on the method presented in Salvatelli
et al. (2019) for one single channel and we delve deeper into
the opportunities and the limitations of applicability of such
“virtual telescopes.” We focus on a permutation of a subset of
channels (4 out of 10) and we explore in greater detail what is
the quality of this synthetic generation on a number of metrics
(figures of merit) and in relation to periods and regions of
different levels of activity of the Sun.

Together with this paper we also open source the code we
used for the analysis Salvatelli et al. (2022)13 and that can be
used by the community to train and evaluate similar models on

the publicly available SDO data set released by Galvez et al.
(2019).

2. Data

The work presented in this project is based on data from
SDO’s AIA. The AIA instrument takes full-disk, 4096× 4096
pixels, imaging observations of the solar photosphere, chromo-
sphere, and corona in two UV channels and in seven EUV
channels. The original SDO data set was processed in Galvez
et al. (2019) into a machine-learning ready data set of ∼6.6 TB
(hereafter SDOML) that we leveraged for the current work.
The SDOML data set is a subset of the original SDO data

ranging from the year 2010 to 2018. Images are spatially
coregistered, have identical angular resolutions, are corrected
for the instrumental degradation over time, and have exposure
corrections applied. All the instruments are temporally aligned.
AIA images in the SDOML data set are available at a sampling
rate of 6 minutes. The 512× 512 pixel full-disk images have a
pixel size of ∼4 8.
The images are saved in a single-precision floating point to

preserve the high dynamic range (14 bits per channel per
pixel). For numerical performance purposes, the images of each
channel are rescaled by a per-channel constant factor, which is

Figure 1. U-Net based architecture used to synthesize solar EUV images. Each box corresponds to a multichannel feature map. Gray boxes are copied maps. The
number of channels is shown on top of the box. Resolution in pixels is indicated on the left of the box. Arrows represent operations. For images of size 512 × 512
pixels, the trainable parameters are 34, 513, and 857. The figure is taken from Salvatelli et al. (2019).

Table 1
Performance of the DNN on Different Permutations of Input/Output Channels in the Set (94, 171, 193, 211 Å) and for Different Scaling of the Input Data

Deep Neural Network 211_sqr 211 193_sqr 193 171_sqr 171 94_sqr 94

NMSE 0.010024 0.008748 0.013414 0.013015 0.015270 0.010151 0.009482 0.013643
NRMSE 0.195127 0.182286 0.225717 0.222332 0.240829 0.196360 0.189773 0.227641
|1—SSIM| 0.040844 0.046189 0.022866 0.024522 0.030636 0.034892 0.114447 0.138455
(NRMSE + |1—SSIM|)/2 0.117985 0.114237 0.124292 0.123427 0.135732 0.115626 0.152110 0.183048

Note. In every column the input channels are the channels in the set but the one indicated in the column name that corresponds to the output channel. Each value is the
mean over the whole test data set. For each metric in this table lower is better. For 94 Å the similarity index is higher than for the others channels. This can be
explained by the fact that the average value in this channel is higher and the metric is affected by the absolute values. See Section 3 for explanation of the metrics.

13 Zenodo: ML pipeline for Solar Dynamics Observatory (SDO) data https://
doi.org/10.5281/zenodo.6954828.
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approximately the average count rate for that channel. The per-
channel constant factors can be found in Table 6.

3. Methodology

Our approach of synthesizing solar EUV images is to
perform image translation from multiple input channels to one
single output channel. For the development of this work we
focused on the permutations of four channels (94, 171, 193,
211Å). These channels are sensitive to coronal plasmas at
different temperatures (Cheung et al. 2015).

To perform the image translation we used a deep neural
network (DNN; Goodfellow et al. 2016), more specifically we
adopted a U-Net architecture (Ronneberger et al. 2015), an
encoder–decoder with skip connections that was first designed
for image segmentation on medical images. We used Adam
optimizer (Kingma & Ba 2014) and Leaky ReLU (Maas et al.
2013) activations, and implement the code using the open
source library PyTorch (Paszke et al. 2019). The full details of
the adopted architecture are given in Figure 1.

We limit the number of channels to four for computational
resources constraints. For the training and inference of the
architecture presented above we used 4×NVIDIA Tesla T4s.
We trained each model for 600 epochs.

For comparison we experimented also with a simpler
baseline model, described by the following equation:

a b g d= + + +Y X X X , 1pred 1 2 3 ( )

where Ypred is the reconstructed pixel of the output channel, Xi

are the pixel values of the input channels, α, β, and γ are the
weights, and δ the bias of the linear combination of the
channels. α, β, γ, and δ are trainable parameters of the model.

The metrics we use to evaluate the accuracy of our results for
each permutation are:

1. The difference between predicted and ground-truth
images in the form of normalized mean squared error
(NMSE; Equation (2)) and normalized root mean squared
error (NRMSE; Equation (3)).
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2. The structural similarity index (SSIM; Wang et al. 2004),
a metric commonly used in computer vision to compute
similarity between images, measuring the difference in
terms of visually perceived texture and morphology.
Identical images have SSIM equal to 1.

3. The average of NRMSE and SSIM, as described in
Equation (4). Lower values mean better performance in
this metric.
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4. The average pixel-to-pixel Pearson correlation
coefficient.

In order to assess how much the DNN is able to learn the
physical correlations between channels and to correctly
reproduce them in the synthetic images, we also evaluate the
difference between the real and the synthetic covariance of the
channels. With the aim of better understanding the error, in
addition to the standard covariance we compute the neighbor-
hood covariance. In this case the output is a map of the same
size of the input images, where each value in the map
corresponds to the covariance on a squared patch centered in
the pixel and of size 20× 20 pixels as described in
Equation (5):

å
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where N is the total number of pixels in the patch.
Each model has been trained on 6444 images (1611

timestamps, one image per channel for each timestamp) in
the intervals 2011 January 1 to 2011 July 31 and 2012 January
1 to 2012 July 31. For testing 2668 images (667 timestamps)
have been used, taken in the intervals 2011 August 1 to 2011
October 31 and 2012 August 1 to 2012 October 31. Each

Table 2
DNN Model

Deep Neural Network Model Output

Scaling 211 Å 193 Å 171 Å 94 Å

Non-root 0.994 ± 0.004 0.991 ± 0.006 0.993 ± 0.003 0.991 ± 0.003
Root 0.993 ± 0.004 0.996 ± 0.004 0.990 ± 0.005 0.994 ± 0.004

Note. Average Pearson correlation coefficient pixel-to-pixel, mean, and standard deviation over the full test data set for permutations of input/output channels in the
set (94, 171, 193, 211 Å). For each channel combination the average Pearson correlation coefficient pixel-to-pixel was calculated for both trained models, with and
without root scaling. The results observed are impressive and in all cases the performance is superior to 0.99.

Table 3
For Comparison with Table 1, Performance of the Linear Model on Different
Permutations of Input/Output Channels in the Set (94, 171, 193, 211 Å) for

Standard (No Square Root) Scaling

Linear Model 211 193 171 094

NMSE 0.749594 0.742833 0.741476 0.875264
NRMSE 1.687336 1.679708 1.678174 1.823300
1—SSIM 0.588910 0.441623 0.490644 0.976495
(NRMSE + |

1—SSIM∣)/2
1.138123 1.060665 1.084409 1.399897

Note. The DNN consistently improves results of one order of magnitude in
each of these metrics. The comparison demonstrates nonlinear patterns between
channels are important for a correct reconstruction of the images.
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timestamp is at least 61 hr apart from the closest ones. These
time ranges have been selected to ensure we were testing on
images significantly different from the training ones. Only
timestamps for which all the channels of interest were available
have been included in the above data sets.

4. Experiments

For this analysis we trained eight models using the data and
architecture described in Section 2 and in Section 3, two
models for each of the four channel permutations. For each
channel permutation we trained (1) a model where the input
data was scaled by a constant factor (see Table 6) and (2) a
model where the square root of the input data was taken, in
addition to the constant scaling. The second scaling technique
is used to explore the impact of pixels with extreme ranges on

the training. Each model has been evaluated by studying both
the aggregated performance on the full test data and the
performance on specific timestamps. Namely, timestamps in
the neighborhood of the Valentine’s Day flare (2011-2-15
1:50:00 UT) and in a quiet day of the same month (2011-02-10
00:00:00 UT). The focus of these experiments is to evaluate the
robustness of the image-to-image translation approaches in
normal and extreme conditions of the Sun’s activity. For
comparison, we trained also four linear models, one model for
each of the four channel permutations, using Equation (1) and
input scaled by a constant factor.

5. Results

In Table 1 we explore the permutations of three input
channels and one output channel and the effect of applying a

Figure 2. Predicted intensity vs. real intensity for each of the four channels, for all the pixels contained in the 667 images on the test set. From top to bottom: 211, 193,
171, 94 Å channels. For each channel: the top plot shows the error on the predicted count rate as a function of the real count rate in log10. The error band represents
the standard deviation and the line corresponds to the median. In green is the standard U-net model. In blue is the same architecture with square root scaling applied to
the input images. The bottom plot shows the histogram of the pixel count rate distributions over the test set. The model performs well over 3 orders of magnitude but
its accuracy degrades quickly in the extreme regions where fewer pixels are available.
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root scaling transformation to the input images. In addition, in
Table 2 we show the correlation pixel by pixel for each of the
permutations. We found that the same architecture produces
similar reconstruction errors and correlation values over all of
the channels with an NMSE of about 0.01. We observe that the
similarity index of 94Å is worse than an order of magnitude
with respect to the other channels. This can be explained by the
fact that the SSIM is a not normalized metric and the average
test value for this channel is higher than for the others (see
Table 7 in Appendix A). The results are remarkable. For
example, for 94Å the peak emission lies at a considerably
higher temperature than the input channels (see Figure 1 of
Cheung et al. 2015), which makes the reconstruction task a
particularly challenging one. These results are in agreement
with the results in Salvatelli et al. (2019) and Lim et al. (2021).
Please note that the values reported in Table 1 of Salvatelli
et al. (2019) are not normalized. The squared-root scaling
model shows a roughly equivalent performance with the model
with no squared-root applied to input data, except for the
channel 94Å.

It is interesting to compare the results in Table 1 with those
in Table 3, where the same set of metrics are computed for the
linear model. The DNN consistently improves by one order of
magnitude over the linear model performance. This result
clearly displays the value of using a DNN over a simpler model
for the synthesis of the image. The comparison also
demonstrates the strength of nonlinearity between EUV
channels and the fact that it cannot be neglected for a
meaningful reconstruction.

In order to further evaluate the performance of both models,
we calculate in Table 2 the average pixel-to-pixel Pearson
correlation for pixels inside the solar disk for each channel
combination. Agreeing with Table 1 results, the average pixel-
to-pixel correlation shows that both models have a remarkable
performance where none of the channel combinations had a

performance lower than 0.99. These results outperform all the
channel combinations presented in Lim et al. (2021), which
tries several combinations of EUV channels translations using
the DL method “Model B” from Park et al. (2019) and Isola
et al. (2017).
Notably Lim et al. (2021) did not report on other metrics that

we can use to compare the quality of the corresponding
synthetic images. We demonstrate in the following analysis that
the elevate visual quality of the images and the excellent pixel-
to-pixel Pearson correlation values are not enough to guarantee
the absence of artifacts, which may impact the scientific utility
of the synthetic images. This is illustrated in Figure 2 and
Table 4. Whether the discrepancies between the real and
synthetic images are sufficiently small to neglect clearly
depends on the science case. For this reason, we argue that
metrics such as covariance between real and synthetic image
and accuracy by intensity should be standard metrics to be
considered when reporting on models for the synthesis of solar
images.
While useful to evaluate the overall performance of the

algorithm, the aggregated metrics do not provide insights about
the range of validity of the algorithm and the reasons behind its
errors. First, to understand how to possibly improve the model,
and second, to clarify what could be a concrete use of the
algorithm in future missions, it is helpful to evaluate the
prediction uncertainty at different intensities. For all the
permutations, in Figure 2 we show the uncertainty on the
predicted count rate (top) and the pixel distributions (bottom)
as a function of the real count rate. These plots highlight three
important factors:

1. The algorithm does well over about 3 orders of
magnitude of true count rate (intensity) and it largely
increases its error when trying to predict the highest and
lowest count rates. It means the global metrics would be
much more favorable if removing these extreme pixels.
This behavior also implies the algorithm could be used

Table 4
Errors in Reconstructing the Covariance between 211 Å and the Other Three

Channels When Using the Synthetically Produced Image for 211 Å in
Correspondence to a Highly Energetic Event (Valentine’s Day Flare on 2011-

2-15:1:50:00 UT)

Timestamp Channel True Cov. Pred Cov. Diff. %Diff.

2011-2-15-0-0 94 0.278 0.256 0.022 7.9
2011-2-15-1-0 94 0.262 0.246 0.016 5.9
2011-2-15-2-0 94 13.9 92.3 −78.5 −565
2011-2-15-3-0 94 1.69 1.54 0.150 8.9
2011-2-15-4-0 94 0.392 0.375 0.017 4.4

2011-2-15-0-0 171 0.117 0.115 0.002 2.1
2011-2-15-1-0 171 0.114 0.112 0.002 1.9
2011-2-15-2-0 171 1.29 13.1 −11.8 −913
2011-2-15-3-0 171 0.186 0.178 0.008 4.3
2011-2-15-4-0 171 0.139 0.136 0.003 2.3

2011-2-15-0-0 193 0.048 0.047 0.001 1.4
2011-2-15-1-0 193 0.047 0.047 0.001 1.3
2011-2-15-2-0 193 0.191 0.605 −0.414 −216
2011-2-15-3-0 193 0.065 0.063 0.003 4.0
2011-2-15-4-0 193 0.055 0.054 0.001 2.1

Note. Interestingly the reconstructed covariance has a much higher error than
what has been seen in a quiet period, cf., Table 5, at least 1 hr before the flare
has been detected.

Table 5
Errors in Reconstructing the Covariance between 211 Å and the Other Three

Channels When Using the Synthetically Produced Image for 211 Å in
Correspondence to a Quiet Period a Few Days before the Valentine’s Day Flare

Timestamp Channel True Cov. Pred Cov. Diff. %Diff.

2011-2-13-0-0 94 0.1506 0.1504 0.0002 0.1
2011-2-13-1-0 94 0.1672 0.1654 0.0018 1.1
2011-2-13-2-0 94 0.1601 0.1588 0.0013 0.8
2011-2-13-3-0 94 0.1713 0.1718 −0.0004 −0.3
2011-2-13-4-0 94 0.1652 0.1650 0.0002 0.1

2011-2-13-0-0 171 0.1213 0.1210 0.0002 0.2
2011-2-13-1-0 171 0.1261 0.1254 0.0007 0.5
2011-2-13-2-0 171 0.1227 0.1223 0.0004 0.3
2011-2-13-3-0 171 0.1241 0.1244 −0.0002 −0.2
2011-2-13-4-0 171 0.1226 0.1219 0.0007 0.6

2011-2-13-0-0 193 0.0449 0.0448 0.0000 0.1
2011-2-13-1-0 193 0.0470 0.0468 0.0002 0.4
2011-2-13-2-0 193 0.0439 0.0439 −0.0000 −0.1
2011-2-13-3-0 193 0.0465 0.0468 −0.0003 −0.7
2011-2-13-4-0 193 0.0471 0.0470 0.0001 0.2

Note. The percentage difference is below 1% for all of the channels.
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with confidence for applications that do not require
accuracy on the most extreme values of count rates.

2. The difficulty in predicting the pixels with the highest and
the lowest count rate is not surprising if looking at the
count rate distributions (histograms in Figure 2). The tails
of the distributions, where the model’s accuracy and
uncertainty increase, are severely underrepresented in the
distribution. This implies the image-to-image translation
algorithm has not been trained or trained in a very limited
way on pixels having these count rate values. This
observation also provides a clear indication of which
strategies can improve the algorithm performance, i.e.,
techniques to compensate the magnitude imbalance rather
than larger architectures.

3. Applying root scaling to the input images during the
training tends to improve the results for low count rate

pixels and reduces the uncertainty on the prediction.
Some channels (193, 211Å) are more positively
impacted than others by this change. This behavior is
explained by the fact that root scaling improves the
sensitivity to small values during the training. We
hypothesize that further exploration of different scaling
strategies for the training can also be a way to extend the
accuracy of the algorithm over more orders of magnitude.

Examples of the resulting recovered images when adopting
the DNN architecture are described in Section 3, and a model
with root scaled input is given in Figures 3 and 4. The root
scaling is reverted in the illustrated images. The first are
examples of reconstructions on a quiet day, where the Sun
shows less activity, while the second are during the well-known
Valentine’s Day flare. In these figures, the first column

Figure 3. Real vs. synthetic images on a quiet timestamp (2011-02-10 00:00:00 UT) when using the model with root scaling. From left to right: real image, image
synthesized by looking at the other three channels, residuals relative to the ground-truth (GT) value, and the difference between the two images. From top to bottom:
211, 193, 171, and 94 Å channels.
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corresponds to the original images, while the second column
corresponds to the ones generated by the DNN. Based on visual
inspection, the synthetic image reproduces the morphology of
coronal loops in the ground-truth image for channels 211 and
171Å, and the prediction is instead a bit less realistic for 193Å
for both quiet and active days. Clearly, during the quiet day all
three channels have better performance than in the Valentine’s
Day flare. It is also interesting to observe that 94Å is the best
performing channel during the quiet day, but the worst
performing channel during the active day. This aligns to the
results shown in Tables 1 and 2. It is unsurprising since
the input AIA channels 94, 171, and 193Å channels have
sensitivity to the plasma observed in the 211Å channel. This
outperforms previous results in Park et al. (2019), where a
conditional generative adversarial network (CGAN) had been

trained to translate magnetograms from the Helioseismic and
Magnetic Imager (HMI) to AIA images.
In the third column of Figures 3 and 4 we included the

residuals relative to the real image and in the fourth column of
the same figures we display the differences between the real
and the generated images. Dark blue and bright red correspond
to the regions where the differences are the largest, and can be
seen to be located where the active regions (shown as the
brightest regions in the original and the generated images) are.
Interestingly, the model well reconstructs coronal holes

(CHs) in both the active and the quiet Sun cases described
above, despite the low signal in these regions. This could be
due to the fact that the physics of these regions is easier to
model than the active region coronal loops as the field lines are
open and have relatively simpler configuration. A quantitative

Figure 4. Real vs. synthetic images during a flare (2011-02-15 02:00:00 UT) when using the model with root scaling. From left to right: real image, image synthesized
by looking at the other three channels, residuals relative to the GT value, and the difference between the two images. From top to bottom: 211, 193, 171, and 94 Å
channels.
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comparison between CHs and the full disk is shown in Figure 5
for channel 193Å (for the quiet Sun data represented in
Figure 3), where CHs are most distinctly visible due to their
contrast. The segmentation mask identifies the CH regions
based on the simple but robust adaptive intensity threshold
technique (similar to the technique employed in Rotter et al.
2012, 2015), and the histograms show the difference between
the ground truth and the predicted intensities (on a pixel-by-
pixel basis) for pixels both within the CH boundaries and the
full disk. It is to be noted that the segmentation mask is
constructed for both the predicted and ground-truth images
independently using the same intensity threshold criterion.
Clearly, the predicted AIA intensities are well constrained not
just over the full disk but also on the relatively quieter CH
areas.

In Tables 4 and 5 we report the reconstruction error on the
covariance between channels, over 4 hr, for the cases 94, 171,
and 193Å to 211Å in correspondence to a flare and on a
normally quiet day. Not surprisingly, in light of the results
above, the reconstructed covariance has great accuracy (less
than 1% of error) on a quiet day but its error increases in
several orders of magnitude in correspondence to the extreme
event. The results reported in Tables 4 and 5 are obtained using
the model without square root scaling, the most sensitive to
extreme values. They should therefore be interpreted as an
upper bound on the error that a similar image translation
would have.

With the aim of better understanding the source of error, in
addition to the standard covariance, we compute a covariance
map with spatial mean on a rolling squared window of 20× 20
pixels, see Equation (5) for definition. The resulting covariance
map in correspondence to a flare is shown in Figure 6. The map
clearly shows that the error of the model is localized in the area
of the flare and it does not affect the rest of the map, in
agreement with the localized reconstruction error shown in
Figure 4. This result confirms that the results of the “virtual

telescope” would be accurate for most of the pixels, also in
presence of an extremely energetic event, but for the specific
area where the event happens. Similar results hold for the
covariance in other channel permutations.
Incidentally, the above covariance result suggests an increase

in its reconstruction error could also be used as a method for
early detection of flares as the error starts to increase before the
actual flare’s event. Variations in reconstruction errors are
commonly used in machine learning as anomaly detection
methods (e.g., An & Cho 2015; Zhou & Paffenroth 2017).
While directly detecting an increase in the data count could be
found to be more effective, the sensitivity to nonlinearity of the
reconstruction task could produce a stronger or complementary
signal that we think is interesting to consider in future work.

6. Concluding Remarks

In this study, we analyzed the performance of an image-to-
image translation DNN model in accurately reconstructing
extreme ultraviolet images from a solar telescope, focusing on
the permutations of four channels. We found that the
reconstruction error is extremely accurate over three orders of
magnitude in pixel intensity (count rate) and that it rapidly
increases when considering an extremely low and high range of
intensities. This behavior is explained by the pixel count rate
distribution in the training set; the rarer the value the more
difficult it is for the DNN to provide an accurate prediction.
Similarly, when looking at the reconstruction error on the
covariance at different times, we found that the model can
synthetically predict the covariance with less than 1% of error
on quiet days but its performance is severely affected in
correspondence to flares, in the active regions.
The results show that a virtual telescope would produce

accurate estimations on a range of intensities but, if built
following the methodology here described, would not be able
to accurately reproduce extremely energetic events like flares.
How and in which limit the reconstruction error for such

Figure 5. Coronal Holes for channel 193 Å. On the left is the segmentation mask obtained by thresholding; on the right are the histograms showing the difference
between the ground truth and the predicted intensities (on a pixel-by-pixel basis) for both the pixels within the CHs and for the full disk.
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Figure 6. Reconstruction error on the covariance in correspondence to the Valentine’s Day flare. From left to right: differences between the ground-truth and the
predicted images and differences between the real and predicted covariance maps between 211 Å—the predicted channel—and each of the input channels. From top to
bottom: each row corresponds to a different timestamp at an interval of 1 hr. The third line is the closest to the time of the flare.
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specific events could be improved is an area of research that
we leave for future work. The rareness of flare events poses a
challenge in training machine-learning algorithms to accu-
rately reproduce such events. Based on the results above, we
think that adopting oversampling techniques and different
scaling strategies would improve at least in some measure the
performance. To overcome this challenge, other strategies
like automatic detection of anomalies could also be adopted
in combination with image-to-image translation, in the design
of a virtual solar telescope.

In this paper, we did not explore the dependence of model
performance from spatial resolution. In principle, smaller
subpixel scales could have information that improve the global
performance of image synthesis and we think this is an
important question to be addressed in future work. Importantly,
we expect the deterioration of the synthetic accuracy for rare
events to happen regardless of the adopted scale because it is
caused by the scarcity of examples for training.
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learn (Pedregosa et al. 2011). All plots were done using
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Appendix A
Scaling Units for Each AIA Channel

In Table 6 we report the value the scaling units that have
been used to normalize data from each channel. This normal-
ization has been used for numerical reasons in the neural
network computations. In Table 7 we report the average value
over the test set, after having applied the normalization in
Table 6, these values are useful to correctly interpret results in
Table 1.

Appendix B
Code Description

In this appendix we describe the modular software used to
produce the analysis and made freely available online on
GitHub under GPL licence. Users are invited to consult the
code documentation for additional detail.

1. src/sdo—contains all the modules required to run the
pipeline plus additional functionalities that can be used as
a standalone library to interact with the SDO-ML data
set v1.

2. config—contains some configuration templates.
3. scripts—contains some analysis scripts specific to the

paper. They can be used to reproduce the results.
4. notebooks—contains some notebooks specific to the

paper that can be used to reproduce some of the plots
in the paper and some examples to show how to use some
functionalities (e.g., how to use the dataloader to load
timestamps of interest).

The most relevant modules under src are:

1. src/sdo/data sets/sdo_data set.py—this module contains the
SDO_Dataset class, a custom data set class compatible with
torch.utils.data.DataLoader. It can be used to flexibly load a
train or test data set from the SDO local folder. Data can be
selected according to the three criteria:

asking for a specific range of years and a specific
frequency in months, days, hours, and minutes,

passing a file that contains all the timestamps of
interest, and passing two timestamp ranges and a desired
step.

Table 6
Table of AIA Channel Scaling Units

AIA channel (Å) Scaling unit [DN/s/pixel]

94 10
171 2000
193 3000
211 1000

Table 7
Average Values over the Test Set after Scaling by Channel

AIA channel (Å) Ytest

94 26
171 0.13
193 0.087
211 0.26
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This class assumes a precomputed inventory of the
SDO data set exists.

2. src/sdo/pipelines/virtual_telescope_pipeline.py—this
module contains the VirtualTelescopePipeline class, the
class that contains all the training and test logic of the
modeling approach. This class also handles the metrics
logging and the files saving. Beyond being used for
reproducing the results of this work, this class can be
used as example of how to integrate the dataloader
above with other PyTorch models for a different set of
experiments.

3. src/sdo/parse_args.py—this module contains the descrip-
tion of all the parameters that can be passed as an input to
the pipeline and their default values.

Appendix C
Additional Figures

In this appendix we report some additional results not
included in the main text. In Figure 6 we show the results for
the Real versus synthetic images on a quiet timestamp (2011-
02-10 00:00:00), as we did in Figure 3, but when using a model
without root scaling for the synthetic images. In Figure 7 we
show the results for the Real versus synthetic images during a
flare (2011-02-15 02:00:00 UT), as we did in Figure 4, but
when using a model without root scaling for the synthetic
images. Figure 8 shows the real and predicted images during a
flare for a model without root scaling. It is to be compared with
Figure 4, that shows the model predictions for a model with
root scaling for the same timestamp.

Figure 7. Real vs. synthetic images on a quiet timestamp (2011-02-10 00:00:00) when using the model without root scaling. From left to right: real image, image
synthesized by looking at the other three channels, residuals relative to the GT value, and the difference between the two images. From top to bottom 211, 193, 171,
and 94 Å channels.
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