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Abstract 
Assuring high quality software is perceived as a key factor to succeed in the software 
industry. However, deliveries of products of poor quality are still common due to time 
constraints and limited resources. One way to address this problem is to try to make 
the software testing process more efficient, and hence find more faults in less time or 
with fewer resources. For example, fault proneness prediction models can be built on 
the basis of historic data about changes and faults combined with measures of the 
structural properties of the software. Assuming that a sufficiently accurate model can 
be built on the basis of the available data, the model can be applied on a forthcoming 
release of the software system – giving predictions that identify those software 
modules that are likely to contain faults. Having identified the fault-prone modules, 
the testing activities can focus on those modules to improve testing efficiency.  
 
This thesis investigates how one can build, evaluate and use class level fault-
proneness prediction models for the purpose of focusing testing in the context of a 
large, evolving Java legacy system. First, different data mining techniques for 
building the prediction model were evaluated both in terms of classification accuracy 
and cost-effectiveness. The results of this evaluation suggested that the best model 
was very accurate and could, for example, identify as many as 60 percent of the 
faults in only 10 percent of the system. Second, the practical usefulness of a 
prediction model based unit testing activity was evaluated: The model was used to 
rank classes in an upcoming release according to their fault proneness. The most 
fault prone classes then received additional unit testing, by augmenting the test suite 
to achieve higher branch and loop coverage on the fault-prone classes, assuming 
this would reveal additional faults. A relatively large number of faults were identified 
and corrected within a small subset of the most fault-prone classes, confirming the 
more theoretical cost-effectiveness estimates: in practice, the model had selected 
classes with at least ten times higher fault density than what would be expected 
based on fault data collected from previous releases. The time spent on the focused 
unit testing activity was recorded. Then interviews were conducted with the 
developers to elicit expert estimates on the potential cost savings of having 
performed the focused testing activity and thus preventing some faults from slipping 
through to later phases. The evaluation indicated that cost saved was 91.7 hours and 
time consumed during unit testing was 49.5 hours, indicating more than 50 percent 
cost reduction due to the focused testing activity. 
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1 Introduction 
Assuring high quality software at a realistic cost is a crucial issue to all organizations 
delivering software. Harder competition among software developing organizations in 
delivering the right product, at the right time, at the cheapest price is currently 
experienced by the software-industry. To meet these demands organizations have to 
improve their processes and products continually. The effectiveness of the software 
testing process is a key issue in meeting the increasing demand of quality without 
augmenting the overall costs of software development. Research has shown that at 
least 50 percent of the total software cost is comprised of testing activities. Planning 
and allocating resources for testing and analysis is difficult and it is usually done in an 
unsystematic manner, often leading to unsatisfactory results. Delay in testing and 
delivery of products of poor quality are common experiences in software production. 
 

1.1 Study design 
The motivation for our study was a practical problem occurring in a large Telecom 
company who is maintaining a Java legacy middleware system used for their mobile 
division. This system has evolved over several years and has been subject to 
frequent and substantial changes. The maintenance of old legacy systems like the 
one studied here is challenging. New requirements needs to be implemented due to 
business environment changes, and at the same time faults that are introduced as 
the software evolves has to be repaired. A constant shortage of resources for 
verification and validation yielded the need for a better way to focus the resources in 
a more cost-effective manner.   
 
Wanting to reduce costs when developing object-oriented systems, fault-proneness 
prediction models could be beneficial to adapt to allocate resources to risky parts of 
software where e.g. faults are more likely to occur, thus making e.g. verification and 
validation more cost-effective. 
 
In this study, fault-proneness of a software module is defined as the probability that 
the module will result in a fault. Fault-proneness cannot be directly measured in the 
software. However, fault-proneness can be estimated based on directly measurable 
attributes. More specifically, the process of building fault-proneness prediction 
models involves investigating whether a relationship (e.g., correlation) exists between 
the future event that a module (or in our case, a Java class) will result in a fault, and 
existing product- and process metrics in that software. Examples of such metrics 
include the structural characteristics of classes, the amount of changes a class may 
have been through (both requirements and fault corrections), the coding quality of 
classes, as in coding style and practices, and presence of redundant code and more, 
the fault history of classes in previous releases, and the skills and experience of the 
individual performing modifications to the product. 
 
The statistical techniques used to build and evaluate fault-proneness prediction 
models are many. Several studies have conducted research on fault-proneness 
models [Ostrand et al., #1, 2004], [Gill & Kemerer, 1991], but to this author’s 
knowledge, no existing studies have been performed to evaluate the practical 
usefulness of actually applying such models to focus verification and validation 
activities such as testing. Furthermore, the use of extensive historic change and fault 
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data to build such models is uncommon. In legacy systems past change and fault 
data are typically available and such data could be useful to help predict fault-
proneness.  
 
The study reported in this thesis consists of two parts. First, we present results from 
evaluating different data mining techniques for building fault-proneness prediction 
models in Java telecom software. Second, the results from a practical application of 
using such a technique to focus unit testing are presented.   
 

1.1.1 Model building and assessment 
This thesis documents the process of trying to build a fault-proneness prediction 
model in the context of an evolving legacy telecom system. The most common way to 
evaluate the prediction models is by assessing their classification accuracy by means 
of the so-called confusion matrix criteria (e.g., precision, recall). However, as the 
results presented in this thesis will show, such criteria do not clearly and directly 
relate to the cost effectiveness of using class fault-proneness prediction models when 
applied to focus verification and validation activities. To compare the potential cost-
effectiveness of alternative prediction models, we need to consider (surrogate) 
measures of verification cost for the subset of classes selected for verification. For 
many verification activities, e.g., structural coverage testing or even simple code 
inspections, the cost of verification is likely to be roughly proportional to the size of 
the class. What we want are models that capture other fault factors in addition to 
size, so that the model would select a subset of classes where we are likely to find 
faults but not just because they are large classes. 
 
To build such models there are a large number of modelling techniques to choose 
from, including standard statistical techniques such as logistic regression and data 
mining techniques such as decision trees [Witten & Frank, 2005]. The data mining 
techniques are especially useful since we have little theory to work with and we want 
to explore many potential factors (and their interactions) and compare many 
alternative models so as to optimize cost-effectiveness.  
 
In this thesis different data mining techniques and machine learning techniques is 
evaluated both in terms of classification accuracy and cost-effectiveness. Having 
good classification accuracy and cost effectiveness over different percentages of the 
code that will be subject to additional, focused verification is important in the context 
of practical adaptability. For example, if the model built is very accurate on just one 
specific percentage of the code, it would only be useful if having resources to achieve 
this exact percentage, but not if resources available upfront is unknown.  
 
The C4.5 decision tree algorithm was the best overall technique for different 
percentages of code (and across different test sets), suggesting that more complex 
modelling techniques may not be required. On the other hand, in our study, the 
Neural Network model building technique proved to be very useful if only very small 
percentages (say, 1 percent) of the code were subject to additional verification, but it 
performed much poorer than the C4.5 decision tree for larger percentages.  
 
Note that no “general” models have been developed yet that can be applied to a 
broader set of application domains. The research conducted so far (including what is 
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presented in this thesis) only applies to specific application domains and is tailored to 
fit in just that context.   
 

1.1.2 Practical evaluation 
This thesis also reports the practical evaluation of using fault-proneness prediction 
models in industry to focus verification and validation. At present, there exists much 
research on the theory behind building fault-proneness models, but no empirical 
evaluations of applying such models in industry to focus testing on the fault-prone 
classes. If fault-proneness prediction models are to be adapted in industry in general, 
evaluations of practical use are important.  
 
We adopted a strategy of selective unit retest of the most fault-prone classes. 
Selective retest techniques differ from a retest-all approach, which runs e.g. all unit 
tests in a software system. This strategy supports, to some extent, the cost-effective 
perspective we wanted to illustrate. When release 22 was finished (code-freeze), we 
collected the data required as input variables in the model and applied the model. 
Our initial strategy was to use the fault-proneness predictions so as to ensure that the 
unit test of fault-prone classes was reasonably complete, to minimize the number of 
faults that slipped through to system test. A sorted set of classes with the highest 
fault probability were thus provided to the participants of the additional unit testing to 
focus on the fault-prone classes. These classes were published on an editable 
webpage easing the unit testing. The participants could then update the webpage 
and keep track on which class was next and justifications made when skipping 
classes. Initially they were asked to perform a test coverage analysis to identify parts 
of these classes not fully covered in terms of loop and branch coverage. A coverage 
analysis tool was used to measure this. 
 
Further they were told to augment the initial test suites to increase test coverage. 
This typically involved modifying test cases within the test suite to exercise more of 
the code with tests and validating this by running a test coverage analysis. This 
process was repeated until the highest practically possible loop and branch coverage 
was achieved. We recorded effort used per class and how many faults found. We 
assumed that by exercising fault-prone classes with full loop and branch coverage, 
faults would be revealed. More specific we suspect faults to be associated with loops 
in practice, and by exercising loops zero times, one time, a representative number of 
times and a maximum number of times we assumed that faults could be detected. 
 
Seven faults were identified and corrected within a small subset consisting of the 26 
most fault-prone classes, confirming the previous evaluation based on historic data:  
in practice, the model had selected classes with much higher fault density than 
average: In a typical release, there would be somewhere between 7 – 83 faulty 
classes among the 2600 core Java classes in the studied system, thus the historic 
data indicated a fault density of between 7/2600 – 83/2600, or between 0.0027 – 
0.032 faults per class. Among the 26 most fault-prone classes, as selected by the 
prediction model, the additional unit-testing activity revealed 7 faults, implying a fault 
density of 7/26, or 0.27 faults per class. Thus, the practical evaluation clearly 
confirmed that the prediction model was sufficiently accurate to be a practically useful 
way to identifying fault-prone classes. 
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However, we also attempted to estimate potential cost-savings of the additional unit 
testing activity, which had incurred a certain cost that we had recorded. The question 
then was whether this cost would be less than the potential cost savings of detecting 
and correcting the faults early rather than in later testing phases or even after system 
delivery. When evaluating the costs of the additional unit testing relative to the 
potential cost of detecting and correcting the faults in other testing phases, potential 
cost savings could be estimated. To obtain estimates of the cost savings, we 
conducted interviews to collect expert estimates on probabilities and costs of 
detecting and correcting faults in the subsequent testing phases and in the delivered 
system. These data were parameters in a cost-effectiveness model developed to 
estimate potential cost savings by performing the unit testing. Having three 
participants involved, we performed a pilot interview with one of them to ensure we 
asked the right questions in getting the data we needed for our cost-effective model. 
The three interviews were compared to validate consistency among participant 
answers (also known as interrater reliability).  
 
The results from the practical evaluation showed that the potential cost-effectiveness 
of using such a technique appears to be beneficial. The additional unit testing cost 
was 49.5 hours. The evaluation indicated that cost saved from finding the faults at 
that point in time rather than later was 91.7 hours, indicating more than 50 percent 
cost reduction due to the focused testing activity. 
 

1.2 Contribution 
This thesis is part of a longitudinal research project that aims to build and evaluate 
fault-proneness prediction models and evaluate the costs and benefits of using such 
models to improve the quality of object-oriented software, e.g., by focusing testing on 
fault-prone classes. By means of an empirical study conducted in the Telecom 
application domain, this thesis demonstrates that the models can be built and cost-
effectively applied to focus testing on fault-prone classes, resulting in a more efficient 
testing process.   
 
More specifically, my contribution to the project has been two-fold: First, I collected 
the data necessary to build the fault-proneness prediction models for the system 
under study and assisted in building and evaluating the accuracy and cost-
effectiveness of the resulting models. The results of this work have been submitted to 
the International Symposium on Software Reliability Engineering (ISSRE 2007) 
[Arisholm et al., 2007]. Second, I helped defining the testing process for the practical 
evaluation, ensured that the developers followed it, and collected the data needed to 
evaluate costs and benefits. These data consists of both process data and expert  
estimates to better be able to conclude about practical usage. 
 

1.3 Thesis structure 
The reminder of this thesis is organized as follows. Section 2 considers quality 
models and more specific fault-proneness prediction models and its applications in 
terms of related work. Section 3 describes the empirical study in terms of the model 
building and assessment. Section 4 describes the practical evaluation. Section 5 
concludes the research and presents further work. 
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2 Fault-proneness Prediction Models and Applications 
Improvement of software quality is important to all organizations that rely on good 
software products to succeed – quality products depend on quality software. 
Although organizations agree upon the importance of software quality, they do not 
deterministically agree upon how to define and how to measure it. Consequently, 
different quality models have been developed using different approaches and 
different measurements. In addition differences in application domains yields for the 
necessity of these differences.  
 
A Software Quality Model was defined as a statistical relationship between a quality-
factor – a dependent variable – and product-and process metrics – independent 
variables [Khoshgoftaar et al., 1996]. 
 
A software quality factor is to be understood according to the definition of software 
quality. This includes i.e. maintainability, as the ability to facilitate updating to satisfy 
new requirements, reliability, as the ability to perform its intended functionality in a 
satisfactorily way, portability, as the ability to operate easily on computer 
configurations other than its current one, testability, as facilitating the establishment 
of acceptance criteria and supports evaluation of its performance and usability, as 
being convenient and practicable to use [Arisholm et al., 2005]. 
 
Software metrics are often divided into two categories: software product metrics and 
software process metrics [B.Henderson-Sellers, 1995]. Software product metrics are 
used to measure aspects of software products, e.g. source code metrics and design 
documents metrics. Software process metrics are used to measure e.g. software 
development processes, including development effort, staffing levels and developer 
experience. Software product metrics can be further divided into two categories: 
those measuring dynamic attributes and those measuring static attributes. Dynamic 
metrics can only be evaluated at run-time and are thus difficult to measure. These 
metrics are not widely used, except those measuring code coverage in software 
testing. Static metrics, in turn, are used to measure static attributes of software and 
they are widely used in software engineering.  
 
Another categorization of software metrics involves internal and external metrics. An 
internal metric only applies to the software product or process itself. These metrics 
are often easy to define and objectively measurable, i.e. software size and elapsed 
time are internal metrics of a product and process, respectively. An external metric of 
software can involve factors such as people or environments and describes how a 
software product or process relates to its surroundings. This metric is dependent on 
human and environmental factors making it more difficult to define than internal 
attributes. I.e. maintainability and costs are external metrics of product and process, 
respectively. Even tough external metrics are difficult to measure, decision-making 
people is very interested in these measures and the relationship between them. 
Hence, identifying connections between internal and external measurements is one 
of the important research areas of software metrics [B.Henderson-Sellers, 1995]. 
 
Using structural design properties, such as coupling, cohesion or complexity is 
considered to be a promising approach towards early quality assessment. To be able 
to use such measurements effectively, quality models are needed to quantitatively 
describe how these structural properties relate to external system qualities, such as 
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reliability or maintainability [Briand & Wüst, 2002]. The rationale is that a quality-
factor, as in external system qualities of software, is related to certain characteristics, 
as in metrics of that software, being e.g. product- and process metrics, making it 
possible to objectively predict various external quality aspects. Such prediction 
models can be used to help decisions-making during development and to reduce 
costs.  
 
In general and as outlined in [Slaugther et al., 1998], the costs of software quality is 
divided into conformance and non-conformance cost, where the first represents the 
costs associated with the amount spent to achieve quality products i.e. testing and 
inspection, and the second is associated with the costs incurring when things go 
wrong i.e. errors occurring after the system has been put into use. To illustrate, in an 
informal way, the twofold ness in cost of software quality, let the conformance costs 
be costs that are intended and non-conformance costs be costs that is not intended. 
In general, conformance costs are budgeted, while non-conformance costs are not. 
Looking at it this way, one may observe the fact that by eliminating non-conformance 
costs, one could also eliminate exceeding the budget. Wanting to improve e.g. 
reliability of software to eliminate non-conformance costs, quality assurance teams 
can use different techniques such as additional testing, inspection and reviews of 
code and design documents, as well as strategically assigning personnel to different 
programming tasks (conformance cost). Due to time constraints it is not always 
practically possible to assure such activities to all the parts of the software. In a large-
scale system, e.g. inspecting all the code is not feasible.  
 
The Pareto principle suggests that 80 percent of all faults in a system stems from 20 
percent of the code. Fault-proneness prediction models is one type of quality model 
that is motivated by the Pareto principle, and the assumption that certain 
characteristics of the software product and process used to develop it, is correlated to 
faultiness in the software. Predicting where e.g. faults are makes it possible to tune 
resource allocation e.g. testing to focus on those parts and detecting and fixing more 
faults with less time consumed, leaving additional time to test the reminder of the 
system. Potential consequences would be more faults found with less effort, making 
more reliable software at a decreased cost. Fault-proneness, or the number of 
defects detected in a software module (e.g., class), is the most frequently 
investigated dependent variable in research on quality models [Briand & Wüst, 2002]. 
 
In [Mockus & Weiss, 2000] fault-proneness for IMR’s (Initial Maintenance Requests) 
was predicted using Logistic Regression. Only metrics regarding the changes 
themselves was used as indicators of risk and the presence or absence of faults in 
the past, as in historical data was used as the dependent variable. The most 
significant predictors of risky faultiness were size, as in deltas or how much code was 
added due to the change, diffusion, as in the number of distinct parts of the software, 
such as files, that need to be touched, or altered, to make the change, the type of 
change, as in large or small change or new functionality, and developer experience.  
The applications of use included a web-based tool providing the probability of fault for 
an IMR before the software update is set to production, supplied by a risk flag 
explaining what might be the cause of the potential failure, suggesting actions to be 
taken trying to eliminate the fault. Such actions could be i.e. delaying the IMR for a 
later release or performing an additional code inspection. Fault-proneness was 
indicated as a probability on a continuous scale.  



 12

 
In [Khoshgoftaar et al., 1998] the configuration management system was analyzed 
and revealed that 99 percent of the unchanged modules had no faults, suggesting 
modules not changed in release n would not result in faults in release n+1. Knowing 
this only metrics from changed or new modules where used in the quality model as 
was in [Mockus & Weiss, 2000], but the modules focused on software modules not 
software changes. Classification trees where used to model quality software in terms 
of reliability. The dependent variable was based on historical data in the sense that a 
module classified to be fault-prone if faults were discovered by costumers, and not 
fault-prone if faults were not discovered by costumers. Different product-and process 
metrics were used as classifiers of the dependent variable, and classification miss-
accuracy was measured using Type I and Type II errors. To build the model CART 
(Classification and Regression Trees) algorithm was used. When evaluating the 
classification accuracy it appeared that a model with only 2 product metrics had 
similar data-splitting accuracy, than did a model with 40 candidate product- and 
process metrics. It was pointed out that this was due to confounding, as in correlation 
among variables. The number of distinct include files was the most significant 
individual explanatory variable. Distinct include files is a file-level statement metric 
and describes what is called coupling in object-oriented software. If this fault-
proneness model was to be used to guide extra reviews and testing, it was 
suggested that modules classified as Type I errors and those modules actually 
predicted as fault-prone would receive extra treatment. Further, in stating potential 
cost-effectiveness, it was pointed out that 30 percent of the total number of modules 
would be given extra treatment to discover faults early, as in pre-release, and 
effective reviews potentially would reveal 73 percent of the total number of faults in a 
release as opposed to randomly selecting 30 percent of the modules and potentially 
revealing 30 percent of the faults. Other models were not built to support usage with 
fewer percents of the code treated more thoroughly. Given the assumption of limited 
time available to perform such additional testing, this model has some limitations. 
Being able to build different models, also using different statistical techniques, to 
support cost-effectiveness on smaller parts of the total number of modules is 
considered more adaptive to practical usage. Figure 4 in this thesis illustrates the 
usefulness of building different models and assessing their potential cost-
effectiveness on 1,5,10 and so forth up to 100 percent of the code. Knowing this you 
could actually chose the model best suited for the percentage of the code you can 
afford to deploy more thoroughly testing on.  
 
In [Ostrand et al., 2005] fault-proneness was indicated in terms of number of faults a 
file probably would contain, as on a discrete scale. To calculate this, a negative 
binomial regression model using information from previous releases was developed. 
Different measurements were used as predictors of fault-proneness on file level, such 
as the file’s size, the files age, whether or not the file is new to the current release, 
and if it is not new, whether it was changed during the prior releases. Other 
measures considered were the number and magnitude of changes made to the file, 
the number of detected faults during early releases and the number of faults detected 
during early development stages. 
 
Instead of focusing on fault-proneness predictions in terms of a probability on module 
level, the number of faults per file was presented in a tool based on fault-proneness 
modelling in [Ostrand & Weyuker #1, 2002]. The scalable aspect of this approach 
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was described in terms of the tester being able to ask for the top 20 percent of the 
files with the most faults in the next release, thus being able to focus on these for 
testing purposes. This is an important disruption among studies on fault-proneness 
prediction models. Some models predict fault-proneness as a probability and others 
predicts number of faults per module. In other words, some use a discrete indicator 
while others use continuous indicator of fault-proneness. In [Denaro et al., 1994] it 
was argued that discrete classifications often were too coarse to be flexible enough 
to be applied in industrial environments. On the contrary, continuous indicators would 
allow for a much finer allocation of testing time and resources thus being preferable, 
or even required for many industrial applications. The continuous presentation of the 
fault-proneness can be more useful than discrete presentation as it allows us to plan 
testing activities since they can be adapted according to the available resources. For 
example, if we are supposed to increase testing effort only for a given percentage X 
of modules, continuous presentation allows us to directly consider X% of most fault-
prone modules, while the discrete presentation cannot do that. 
    
An empirical comparable study on quality models in object-oriented systems [Briand 
& Wüst, 2002] found several measures being consistent among studies. Explicitly, 
when predicting fault-proneness quality models based on structural measures, 
coupling proved to be a useful predictor. More specifically suggested, great emphasis 
should be put on method invocation import coupling since it has proved to be a 
strong, stable predictor of fault-proneness. In addition a separation of the coupling 
aspect into more specific measures could prove to be useful because of their ability 
to capture distinct dimensions in the data. A separation of import versus export 
coupling, coupling to library classes versus application classes and a separation of 
method invocation versus aggregation coupling is recommended due to validity 
among studies. Cohesion did not seem to be a useful predictor of fault-proneness. 
Two facts was pointed out to reflect this: (1) today the understanding of what this 
attribute is supposed to capture is weak, (2) when measuring the cohesion attribute, 
difficulties occur due to the fact that static analysis do not capture such an attribute 
e.g. the code must be analyzed at runtime to reveal this attribute. Inheritance 
measures appear not to be consistent indicators of fault-proneness between studies. 
In specific, the significance level of this attribute seems strongly to be related to 
developer experience and the use of inheritance as a strategy when developing, e.g. 
one could chose not to keep inheritance at a minimal level for project strategy 
purposes. Finally, measures of size proved consistently being a good predictor of 
fault-proneness. But the combination of the abovementioned coupling and 
inheritance with size outperformed a model with size only as predictor of fault-
proneness. In the same work it was discussed the concept of confounding. It was 
stated that the number of measures safely could be reduced without corrupting the 
potential overall quality-related effect.  
 
Considering the research briefly presented above and others [Gill & Kemerer, 1991], 
[Basili & Hutchens, 1983], [Frankl & Lakounenko, 1998], the process of building and 
using fault-proneness models consists of some general aspects being consistent 
over a lot of research conducted in the area [Denaro et al., 1994]. Generally, a 
construction and a usage phase are comprised in the use of fault-proneness models. 
Because no generally valid models exist a construction phase is required to account 
for different application domains.  
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Some key steps in the construction phase are: 
 
• Identifying the target domain: models are valid only within specific classes of 

applications. Using fault-proneness models for a set of programs that do not meet 
these requirements requires special care. This is especially important for the 
model validation and model tuning phase. 

• Analysis of historical data: models are built based upon fault-data from past 
applications. The completeness of the available data must be checked, and 
obviously the data must exist. This suggests that e.g. a configuration 
management system containing these data must be present to actually being able 
to build fault-proneness models. 

• Construction of fault-proneness models: this step involves using statistical 
techniques and tools to construct models based upon the data collected. 

• Selection of a significant model: the best model is selected by using methods for 
validating the quality of the constructed models. 
 

In the usage phase these steps normally applies: 
 
• The model selected above is used to predict fault-proneness of new releases or 

new products within the same application domain, before testing of these. 
• Validate the results during the testing phase or based upon previous the fault-

data: Possible disputes can be revealed at this stage. 
• Tune the model at the end of the testing phase: the introduction of new 

techniques may change the validity of the model. Fault-proneness models must 
be modified periodically to increase their precision by adding new data.    

 
In a cost-effective perspective, the applications of fault-proneness prediction quality 
models have proved to be useful in both theory and to some extent in practice 
[Mockus & Weiss, 2000]. There exists more research on the theory behind building 
fault-proneness models than do empirical studies on the usage of these models in 
industry. The majority of these studies conclude by suggesting the usage of such 
techniques in testing, but few or none have evaluated such an initiative, at least not 
in the context of an evolving telecom legacy system under maintenance.   
In [Denaro et al., 1994] it was argued that the reason fault-proneness models did not 
get adapted more in industry was due to bias occurring due to lack of empirical 
evaluations and tuning of models in industry. This yields the need for more empirical 
evaluation being conducted.    

2.1 Using Fault-proneness Prediction Models to Focus Verification 
and Validation 

Software development activities like verification and validation plays a critical role in 
the production of high quality dependable systems, and account for a significant 
amount of resources including time, money, and personnel. Research has shown that 
at least 50 percent of the total software cost is comprised of testing activities [Tahat 
et al., 2001]. Additionally, the fact that testing is the last phase in the development life 
cycle often results in that whenever schedule slips throughout the project and the 
release date is fixed, the testing is squeezed down to the bare minimum.   
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To monitor and control the quality of software and the effectiveness and costs of 
analysis and testing, the ability to both measure the amount of faults found with 
testing, as in software faultiness and predicting the distribution of faults before 
testing, as in software fault-proneness, is a key factor. 
  
It is relatively easy to measure software faultiness and this could help tune the 
software development process. If software faultiness data is recorded accurately and 
kept up to date, the software team is always aware of what problems are currently 
outstanding, and decisions about whether the product is ready for release can be 
made. However software faultiness is of little help in resource allocation and in 
anticipating costs and problems of analysis and testing, as in early project phases.  
Software fault-proneness cannot be directly assessed before testing and cannot be 
easily estimated, but it is extremely helpful in anticipating analysis and testing 
problems, and in planning effort [Denaro & Pezzê, 2002].  
 
Knowing in which parts of the system faults are most likely to occur one could test 
those parts earlier and more intensively than other parts, possibly revealing more 
faults with less effort. Since testing always is limited, more of the precious testing 
time could be allocated to parts of the system otherwise not covered as thoroughly, 
possibly leading to software with higher reliability, still using the same amount of 
resources. Potentially the time set aside to testing can be reduced, as the tester 
might uncover the same faults more quickly, leading to the same degree of reliability 
sooner and more cheaply than would otherwise be possible. 
 
In [Slaugther et al., 1998] the question is asked; whether and how much is to be 
invested in specific quality improvement initiatives. This question is approached by 
looking at the financial return on investments (ROI) and is called the return on 
software quality (ROSQ). The rationale behind ROSQ is to provide a justification of 
software quality expenses. Loosely speaking, investments should be made if they are 
smaller than expenses occurring if the investment was not made. A ROSQ being 
lower than 1 the investment is not financially justified. Defining fault-proneness 
prediction models as a model predicting modules with a high degree of faultiness, 
and focusing verification and validation on these parts as a quality improvement 
initiative, a justification can be made that the investment, i.e. hours used to perform 
such an activity is lower than hours used to correct defects occurring because this 
activity was not accomplished. More specific the conformance costs should be 
smaller than the non-conformance costs. 
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3 Data Mining Techniques for Building Fault-proneness 
Models in Telecom Java Software 

A case study was performed to build and evaluate alternative fault-proneness 
prediction models. These models are described in Section 3.1. In addition this section 
describes the development project, study variables, data collection, and model 
building and evaluation procedures. A related study is compared to ours.  
 

3.1 Fault-proneness modelling 
There exists a large number of modelling techniques to build a fault-proneness 
model, such as a classification model determining whether classes or files are faulty. 
A classical statistical technique used in many existing papers is Logistic Regression 
[Freund & Wilson, 1998]. But many techniques are also available from the fields of 
data mining, machine learning, and neural networks [Witten & Frank, 2005]. One 
important category of machine learning techniques focuses on building decision 
trees, which recursively partition a data set, and the most well-known algorithm is 
probably C4.5 [Quinlan, 1993]. In our context, each leaf of a decision tree would then 
correspond to a subset of the data set available (characterized by class source code 
characteristics and their fault/change history, as described in Section 3.4) and its 
probability distribution can be used for prediction when all the conditions leading to 
that leaf are met. Another similar category involves coverage algorithms that 
generate independent rules where a number of conditions are associated with a 
probability for a class to contain a fault based on the instances each rule covers. As 
opposed to the divide-and conquer strategy of decision trees, these algorithms 
iteratively identify attribute-value pairs that maximize the probably of the desired 
classification and, after each rule is generated, remove the instances that it covers 
before identifying the next optimal rule.  
 
Both decision tree or coverage rule algorithms generate models that are easy to 
interpret (logical rules associated with probabilities) and that therefore tend to be 
easier to adopt in practice as practitioners can then understand why they get a 
specific prediction. Furthermore they are easy to build (many freely available tools 
exist) and apply as they only involve checking the truth of certain conditions. Another 
advantage is that, instead of providing model-level accuracy (e.g., like for Logistic 
Regression), each rule or leaf has a specific expected accuracy. The level of 
expected accuracy associated with a prediction therefore varies across predictions 
depending on which rule or leaf is applied. 
 
Other common techniques include Neural networks, for example the classical back-
propagation algorithm [Werbos, 1994], which can also be used for classification 
purposes. A more recent technique that has received increased attention in recent 
years across various scientific fields [Vapnik, 1995], [Joachims, 2002], [Shipp et al., 
2002] is the Support Vector Machine classifier (SVM), which attempts to identify 
optimal hyperplanes with nonlinear boundaries in the variable space in order to 
minimize misclassification.  
 
Based on the above discussion, we will compare here one classification tree 
algorithm, namely C4.5 as it is the most studied in its category, the most recent 
coverage rule algorithm (PART) which has shown to outperform older algorithms 
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such as Ripper [Witten & Frank, 2005], Logistic Regression as a standard statistical 
technique for classification, Back-propagation neural networks as it is a widely used 
technique in many fields, and SVM. Furthermore, as the outputs of leaves and rules 
are directly comparable, we will combine C4.5 and PART predictions by selecting, for 
each class instance to predict, the rule or leaf that yields a fault probability distribution 
with the lowest entropy (i.e., the fault probability the furthest from 0.5, in either 
direction). This allows us to use whatever technique works best for each prediction 
instance.  
 
Machine learning techniques, such as classification trees, can be improved in terms 
of accuracy by using metalearners. For example, decision trees are inherently 
unstable due to the way their learning algorithms work: a few instances can 
dramatically change variable selection and the structure of the tree. The Boosting 
[Witten & Frank, 2005] method combines multiple trees implicitly seeking trees that 
complement one another in terms of the data domain where they work best. Then it 
uses voting based on the classifications yielded by all trees to decide about the final 
classification of an instance. How the trees are generated differ depending on the 
algorithm and one of the well-know algorithm we use here is AdaBoost [Freund & 
Schapire, 1995] that is designed specifically for classification algorithms. It iteratively 
builds models by encouraging successive models to handle instances that were 
incorrectly handled in previous models. It does so by re-weighting instances after 
building each new model and builds the next model on the new set of weighted 
instances.  
 
Another metalearner worth mentioning is named Decorate. This recent technique is 
claimed [Melville & Mooney, 2005] to consistently improve not only the base model 
but also outperform other techniques such as Bagging and Random forest [Witten & 
Frank, 2005], which we will not include here for that reason. Since it is also supposed 
to outperform boosting on small training sets and rivals it on larger ones, it is also 
considered in our study.  
 
Another way to improve classifier models is to use techniques to pre-select variables 
or features, to eliminate most of the irrelevant variables before the learning process 
starts. When building models to predict fault components or files, we often do not 
have a strong theory to rely on and the process is rather exploratory. As a result, we 
often consider a large number of possible predictors, which often turn out not to be 
useful or are strongly correlated. Though in theory the more information one uses to 
build a model, the better the chances to build an accurate model, studies have shown 
that adding random information tends to deteriorate the performance of C4.5 
classifiers [Witten & Frank, 2005]. This happens because as the tree gets built, the 
algorithm works with a decreasing amount of data, which may lead to chance 
selection of irrelevant variables. The number of training instances needed for 
instance-based learning increases exponentially with the number of irrelevant 
variables present in the data set. Strong inter-correlations among variables also 
affect variable selection heuristics in regression analysis [Freund & Wilson, 1998]. A 
recent paper [Hall & Holmes, 2003] has compared various variable selection 
schemes. The authors concluded by recommending a number of techniques which 
vary in terms of their computational complexity. Among them, two efficient techniques 
were reported to do well: CFS (Correlation-based Feature Selection [Hall, 2000], 
ReliefF [Kononenko, 1995]. In our case these two techniques yielded the same 
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selection of variables. Though we used CFS for all modelling techniques, we will only 
report it for C4.5 as the results were not significantly different for others (i.e., the 
impact of CFS was at 3 best small) and as, a discussed below, C4.5 will be the 
technique we ultimately retain to focus testing. 
 

3.2 Telenor COS development Environment 
A large Java legacy system (COS) is being maintained at Telenor, Oslo, Norway, and 
there is a constant shortage of resources and time for testing and inspections. The 
quality assurance engineers wanted to investigate means to focus verification on 
parts of the system where faults were more likely to be detected. As a first step, the 
focus was on unit testing in order to eliminate as many faults as possible early on in 
the verification process by applying more stringent test strategies to code predicted 
as fault-prone. Though many studies on predicting fault-prone classes on the basis of 
the structural properties of object-oriented systems have been reported [Briand & 
Wüst, 2002], one specificity of the study presented here is the fact that we need to 
predict fault-proneness for a changing legacy system. We therefore not only need to 
account for the structural properties of classes across the system, but also for 
changes and fault corrections on specific releases and their impact on the code, 
among a number of factors potentially impacting fault-proneness. Another interesting 
issue to be investigated is related to the fact that past change and fault data are 
typically available in legacy systems and such data could be useful to help predicting 
fault-proneness, e.g., by identifying what subset of classes have shown to be 
inherently fault prone in the past.  
 
The legacy system studied is a middleware system serving the mobile division in a 
large telecom company. It provides more than 40 client systems with a consistent 
view across multiple back-end systems, and has evolved through 22 major releases 
during the past eight years. We used 12 recent releases of this system for model 
building and evaluation. At any time, somewhere between 30 to 60 software 
engineers have been involved in the project. The core system currently consists of 
more than 2600 Java classes amounting to about 148K SLOC2. As the system 
expanded in size and complexity, the developers felt they needed more sophisticated 
techniques to focus verification activities on fault-prone parts of the system.  
 

3.3 Dependent Variable 
The dependent variable in our analysis is the occurrences of corrections in classes of 
a specific release which are due to field error reports. Since our main current 
objective is to facilitate unit testing and inspections, the class was a logical unit of 
analysis. However, it is typical for a fault correction to involve several classes and we 
therefore count the number of distinct fault corrections that was required in that class 
for developing the next release n+1. This aims at capturing the fault-proneness of a 
class in the current release n. Furthermore, in this project, only a very small portion of 
classes contained more than one fault for a given release, so class fault-proneness in 
release n is therefore treated as a classification problem and is estimated as the 
probability that a given class will undergo one or more fault corrections in release 
n+1. 
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3.4 Explanatory Variables 
The fundamental hypothesis underlying our work is that the fault-proneness of 
classes in a legacy, object-oriented system can be affected by the following factors: 

• the structural characteristics of classes (e.g., their coupling) 
• the amount of change (requirements or fault corrections) undertaken by the class 

to obtain the current release 
• the experience of the individual performing the changes 
• other, unknown factors that are captured by the change history (requirements or 

fault corrections) of classes in previous releases 
 
Furthermore, it is also likely that these factors interact in the way they affect fault-
proneness. For example, changes may be more fault-prone on larger, more complex 
classes. The data mining techniques used to build the models will account for such 
interactions. Explanatory variables are defined in Table 1. 
 

3.5 Collection Procedures 
Perl scripts were developed to collect file-level change data for the studied COS 
releases through the configuration management system (MKS [MKS]). In our context, 
files correspond to Java public classes. The data model is shown in Figure 1. Each 
change is represented as a change request (CR). The CR is related to a given 
releaseId and has a given changeType, defining whether the change is a critical or 
non-crititical fault correction, small, intermediate or large requirement change, or a 
refactoring change. An individual developer can work on a given CR through a logical 
work unit called a change package (CP), for which the developer can check in and 
out files in relation to the CR. For a CP, we record the number of CRs that the 
responsible developer has worked on prior to opening the given CP, and use this 
information as a surrogate measure of that person’s coding experience on the COS 
system. For each Class modified in a CP, we record the number of lines added and 
deleted, as modelled by the association class CP_Class. Data about each file in the 
COS system is collected for each release, and is identified using a unique MKSId, 
which ensures that the change history of a class can be traced even in cases where it 
changes location (package) from one release to the next. Finally, for each release, a 
code parser (JHawk [JHawk]) is executed to collect structural measures for the class, 
which are combined with the MKS change information. Independent and dependent 
variables (Faults in release n+1) were computed on the basis of the data model 
presented in Figure 1. 
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Table 1 Summary of the explanatory variables in the study 
Variable Description Source 

No_Methods  | NOQ | NOC Number of [implemented | query | command] methods in the class JHawk 

LCOM  Lack of cohesion of methods  JHawk 

TCC | MAXCC | AVCC [Total|Max|Avg] cyclomatic complexity in the class  JHawk 

NOS | UWCS Class size in [number of Java statements | number of attributes + number of 
methods]  JHawk 

HEFF Halstead effort for this class  JHawk 

EXT/LOC Number of [external | local] methods called by this class JHawk 

HIER Number of methods called that are in the class hierarchy for this class JHawk 

INST Number of instance variables  JHawk 

MOD  Number of modifiers for this class declaration  JHawk 

INTR Number of interfaces implemented JHawk 

PACK Number of packages imported JHawk 

RFC Total response for the class JHawk 

MPC Message passing coupling JHawk 

FIN The sum of the number of unique methods that call the methods in the class JHawk 

FOUT Number of distinct non-inheritance related classes on which the class depends JHawk 

R-R | S-R [Reuse | Specialization] Ratio for this class  JHawk 

NSUP | NSUB Number of [super | sub] classes JHawk 

MI | MINC Maintainability Index for this class [including | not including] comments JHawk 

[nm1|nm2|nm3]_CLL_CR The number of large requirement changes for this class in release [n-1 | n-2 | n-3] MKS 

[nm1|nm2|nm3]_CFL_CR The number of medium requirement changes for this class in release [n-1 | n-2 | n-
3] MKS 

[nm1|nm2|nm3]_CKL_CR The number of small requirement changes for this class in release [n-1 | n-2 | n-3] MKS 

[nm1|nm2|nm3]_M_CR The number of refactoring changes for this class in release [n-1 | n-2 | n-3] MKS 

[nm1|nm2|nm3]_CE_CR The number of critical fault corrections for this class in release [n-1 | n-2 | n-3] MKS 

[nm1|nm2|nm3]_E_CR The number of noncritical fault corrections for this class in release [n-1 | n-2 | n-3] MKS 

numberCRs  Number of CRs in which this class was changed MKS 

numberCps Total number of CPs in all CRs in which this class was changed  MKS 

numberCpsForClass Number of CPs that changed the class  MKS 

numberFilesChanged Number of classes changed across all CRs in which this class was changed MKS 

numberDevInvolved Number of developers involved across all CRs in which this class was changed MKS 

numberTestFailed Total number of system test failures across all CRs in which this class was 
changed MKS 

numberPastCr Total developer experience given by the accumulated number of prior changes MKS 

nLinesIn Lines of code added to this class (across all CPs that changed the class) MKS 

nLinesOut Lines of code deleted from this class  (across all CPs that changed the class) MKS 

 FOR CRs of type X={CLL, CFL, CKL, M, CE, E}:  

<X>_CR Same def as numberCRs but only including the subset of CR’s of type X.  MKS 

<X>_CPs Same def as numberCpsForClass but only including the subset of CR’s of type X MKS 

<X>numberCps Same def as numberCps but only including the subset of CR’s of type X MKS 

<X>numberFilesChanged Same def as numberFilesChanged  but only including the subset of CR’s of type X MKS 

<X>numberDevInvolved Same def as numberDevInvolved but only including the subset of CR’s of type X MKS 

<X>numberTestFailed Same def as numberTestFailed but only including the subset of CR’s of type X MKS 

<X>numberPastCr Same def as numberPastCr  but only including the subset of CR’s of type X MKS 

<X>nLinesIn Same def as nLinesIn but only including the subset of CR’s of type X MKS 

<X>nLinesOut Same def as nLinesOut but only including the subset of CR’s of type X MKS 
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3.6 Building the Prediction Models 
To build and evaluate the prediction models, class-level structural and change data 
from 12 recent releases of COS were used. The data was divided into three separate 
subsets, as follows. The data from the 11 first releases was used two form two 
datasets; a training set to build the model and a test set to evaluate the predictions. 
More specifically, 66.7 percent of the data (16311 instances) were randomly selected 
as the Training dataset, whereas the remaining 33.3 percent (8143 instances) formed 
the Excluded test dataset. Our data set was large enough to follow this procedure to 
build and evaluate the model without resorting to cross-validation, which is much 
more computationally intensive. Also, the random selection of the training set across 
11 releases reduced the chances for the prediction model to be overly influenced by 
peculiarities of any given release. Note that in the training set, there were only 307 
instances representing faulty classes (that is, the class had at least one fault 
correction in release n+1). This is due to the fact that, in a typical release, a small 
percentage of classes turn out to be faulty. For reasons further discussed in Section 
5.1, to facilitate the construction of unbiased models, we created a balanced subset 
(614 rows) from the complete training set, consisting of the 307 faulty classes and a 
random selection of 307 rows representing non-faulty classes. Finally, the most 
recent of the 12 selected releases formed the third distinct dataset, hereafter referred 
to as the COS 20 test dataset, which we will also used as a test set. The Excluded 
test set allows us to estimate the accuracy of the model on the current (release 11) 
and past releases whereas the COS 20 test set indicates accuracy on a future 

 
Figure 1 COS Data Model 
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release. This will give us insight on the level of decrease in accuracy to be expected, 
if any, when predicting the future.  
 
Having described our model evaluation procedure, we now need to explain what 
model accuracy criteria we use. First, we consider the standard confusion matrix 
criteria [Witten & Frank, 2005]: precision and recall. In our context, precision is the 
percentage of classes classified as faulty that are actually faulty and is a measure of 
how effective we are at identifying where faults are located. Recall is the percentage 
of faulty classes that are predicted as faulty and is a measure of how many faulty 
classes we are likely to miss if we use the prediction model.  
 
Another common measure is the ROC1 area [Witten & Frank, 2005]. A ROC curve is 
built by plotting on the vertical axis the number of faults contained in a percentage of 
classes on the horizontal axis. Classes are ordered by decreasing order of fault 
probability as estimated by a given prediction model. The larger the area under the 
ROC curve (the ROC area), the better the model. A perfect ROC curve would have a 
ROC area of 100%.  
 
Though relevant, the problem with the general confusion matrix criteria is that they 
are designed to apply to all classification problems and they do not clearly and 
directly relate to the cost effectiveness of using class fault-proneness prediction 
models in our context. Assuming a class is predicted as very likely to be faulty, one 
would take corrective action by investing additional effort to inspect and test the 
class. Such activities are likely to be roughly proportional to the size of the class. For 
example, that would be the case for structural coverage testing or even simple code 
inspections. So, if we are in a situation where the only thing a prediction model does 
is to model the fact that the number of faults is proportional to the size of the class, 
we are not likely to gain much from such a model. What we want are models that 
capture other fault factors in addition to size. Therefore, to assess the cost 
effectiveness, we compare two curves as exemplified in Figure 2. 
Classes are first ordered from high to low fault probability. When a model predicts the 
same probability for two classes, we order them further according to size so that 
larger classes are selected last. The solid curve represents the actual percentage of 
faults given a percentage of lines of code of the classes selected to focus verification 
according to the abovementioned ranking procedure (referred to as the model cost-
effectiveness (CE) curve). The dotted line represents a line of slope 1 where the 
percentage of faults would be identical to the percentage of lines of code (% NOS) 
included in classes selected to focus verification. This line is what one would obtain, 
on average, if randomly ranking classes and is therefore a baseline of comparison 
(referred to as the baseline). Based on these definitions, our working assumption is 
that the overall cost-effectiveness of fault predictive models would be proportional to 
the surface area between the CE curve and the baseline. This is practical as such a 
surface area is a unique score according to which we can compare models in terms 
of cost-effectiveness regardless of a specific, possibly unknown, NOS percentage to 
be verified. If the model yields a percentage of faults roughly identical to the 
percentage of lines of code, then no gain is to be expected from using such a fault-
proneness model when compared to chance alone. The exact surface area to 

                                            
1 Receiver Operating Characteristic 
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consider may depend on a realistic, maximum percentage of lines of code that is 
expected to be covered by the extra verification activities. For example, if only 5% of 
the source code is the maximum target considered feasible for extra testing, only the 
surface area below the 5% threshold should be considered.  
 
For a given release, it is impossible to determine beforehand what would be the 
surface area of an optimal model. For each release, we compute it by ordering 
classes as follows: (1) we place all faulty classes first and then order them so that 
larger classes are tested last, (2) we place fault-free classes afterwards also in 
increasing order of size. This procedure is a way to maximize the surface area for a 
given release and set of faulty classes, assuming the future can be perfectly 
predicted. Once computed, we can compare, for a specific NOS percentage, the 
maximum percentage of faults that could be obtained with an optimal model and use 
this as an upper bound to further assess a model, as shown by the dashed line in 
Figure 2.  
 

3.7 Related and comparable work 
There exists a lot of research on fault-proneness models in Object-Oriented-systems. 
As well as the related work mentioned in the introduction of this thesis, a survey is 
provided in [Briand & Wüst, 2002]. Due to the already mentioned differences in 
application domains, not all related work on fault-proneness prediction models is 
comparable.  
 
One of the main pieces of related work, that is comparable, has been reported in 
[Ostrand et al., 2005] and we therefore perform a detailed comparison of their study 
with ours. Their goal was also to predict fault-proneness in evolving systems mostly 
composed of Java code. One difference is that they predict fault proneness in files 

 
Figure 2 Computing a Surrogate Measure of Cost Effectiveness 



 24

instead of classes, as their systems were not only coded in Java. This should, 
however, be similar for most files as Java files normally contain one public class and 
possibly their inner classes. Another important difference was that their main focus 
was to support system testing whereas in our case the main goal was to support the 
focus of extra unit testing to prevent as many faults as possible to reach subsequent 
testing phases and deployment.  
 
They looked at two systems. For the first one (“Inventory”), all life cycle faults were 
considered whereas for the second one (“Provisioning”) only post unit testing faults 
were accounted for. They studied 17 Inventory releases and 9 Provisioning releases, 
but due to the small number of faults reported in the latter, they merged releases into 
three “pseudo” releases. The number of releases we considered in COS (12) is 
similar but we only accounted for post-release faults. 
 
Descriptive statistics of the systems reported in [Ostrand et al., 2005] and in this 
thesis (COS) are provided in Table 2. Inventory peaks at 1950 files and 538 KLOC in 
its last release whereas Provisioning is slightly above 2000 files and 437 KLOCS. 
Because it only accounts for post unit testing faults, the latter only has between 6 to 
85 faults per release whereas the former has between 127 and 988 faults per 
release. The COS system is smaller with 148 KLOC of Java code. The number of 
faults across COS releases is expectedly more comparable to the provisioning 
system: 1 to 117. 
 
A fault was defined as a change made to a file because of a Modification Request 
(MR), which seems identical to our definition. (If n MRs changes a file, this is counted 
as n faults.) One difference with our COS data collection though was that Ostrand et 
al. had no reliable data regarding whether a change was due to a fault. As a result, 
they used and validated a heuristic where changes involving less than three files 
were considered faults. 
 
Ostrand et al. used negative binomial regression [Ostrand et al., 2005], which is a 
natural technique to use when predicting small counts. Since on average, a faulty file 
contained 2-3 faults in their systems, their modelling approach is perfectly justified. In 
our case, most faulty classes contained one fault and we therefore resorted to 
Logistic Regression to classify a class as faulty or not. In addition to this statistical 
approach, because this is one important focus of this study, we tried out and 
compared many of the data mining techniques available to us for the sake of 
comparing prediction results. Some of those techniques have practical advantages 
discussed in Section 3.6, the main one being that they produce interpretable models, 

Table 2 System information for [Ostrand et al., 2005] and this 
study 
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something we noticed was important for the practitioners using these models. There 
are, however, very few studies performing comprehensive comparisons of modelling 
approaches. 
 
Based on their negative binomial regression model, for both systems, Ostrand et al. 
reported that the 20% most fault prone files contain an average of 83% of the faults 
across releases. These files represent an average of 59% of the source code 
statements. They used 20% as this was the “knee of the fault curve” where the 
number of faults contained in faulty files started to plateau. Comparisons with our 
results are provided in Section 3.8.4. 
 
The analysis in [Ostrand et al., 2005] used much fewer explanatory variables: 
number of LOCs per file, whether the file was changed from the previous release, the 
age of file in terms of number of releases, the number of faults in previous release, 
and the programming language. It was also reported that other variables were used 
but turned out not to be significant additional predictors: number of changes to file in 
previous release, whether a file was changed prior to the previous release, and 
cyclomatic complexity. 
 

3.8 Prediction models 
In this section, we compare the predictions of the various modelling techniques 
selected in Section 3.1. We first compare them in terms of the usual confusion matrix 
criteria (Recall, Precision, ROC area) and then in terms of cost-effectiveness as 
defined in Section 3.6. We then compare our results to the ones published in 
[Ostrand et al., 2005] in order to determine commonalities and differences. Other 
differences in terms of objectives and methodology were already discussed in 
Section 3.7. 
 

3.8.1 Precision, Recall and ROC Area 
First it is important to note that all results presented in this section are based on a 
balanced training set. As discussed in Section 3.7, there are a small percentage of 
faulty classes in COS, as it is usually the case in most systems. Nearly all the 
techniques we used performed better (sometimes very significantly) when run on a 
balanced dataset formed of all faulty classes plus a random sample of the same size 
of correct classes. The proportions of faulty and correct classes were therefore 
exactly 50% in the training set and the probability decision threshold for classification 
into faulty and correct classes for the test sets can therefore be 0.5 to achieve 
balanced precision and recall.2  

                                            
2 As you change the threshold, recall increases and precision decreases, or vice-versa 
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Table 3 provides confusion matrix statistics for faulty class predictions and we can 
see that differences among techniques in terms of precision, recall, and ROC area 
are in most cases very small, or at least too small to be of practical significance. The 
results are less consistent across techniques on the COS 20 test set but this is to be 
expected as this release had a small number of faults and it is therefore subject to 
more random variation. Therefore neither the metalearners (Boosting, Decorate) nor 
the variable/feature selection techniques (CFS, RELIEF) seem to make a clear, 
practically significant difference. One exception is that the combination of C4.5 and 
PART seems to bring notable improvement in terms of recall for COS 20. ROC areas 
are overall rather high and mostly above 80%, but the question remains about how to 
interpret such a result to assess the applicability of models. Despite small differences 
in classification accuracy, as discussed in Section 3.1, it is important to recall that 
certain techniques are easier to use and more intuitive than others. This is the case 
of classification trees such as the ones produced by C4.5 or coverage rule algorithms 
such as PART. Furthermore, the feature selection techniques tend to simplify the 
models. For example, the decision tree generated by C4.5 after using CFS went from 
24 leaves to 17 leaves and was built based on 29 variables instead of the original 
112 variables considered. This may be of practical importance when applying the 
models. 
 
The very small precision numbers are worth an explanation. This is due to the very 
imbalanced test sets, which are realistic, but which result nonetheless in low 
precision values. Even if there is a small misclassification probability of correct 
classes into faulty classes, when the proportion of correct classes is very large, this 
results into low precision. For example, based on a balanced test set with randomly 
selected correct classes and all faulty classes, we obtained precision numbers of 
0.857 and 0.726, for the COS 20 and Extended test sets, respectively. So we can 
see that for imbalanced test sets, it is not easy to interpret precision values. 
 

Table 3 Confusion Matrix for Precision, Recall and ROC 
Area for all Techniques 
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3.8.2 Cost-effectiveness 
We now turn our attention to Table 4 where cost-effectiveness values are reported for 
all techniques and for selected percentages of classes. Though we also report the 
results for 100% of the classes (entire CE area), one would in practice focus on small 
percentages as such prediction models would typically be used to select a small part 
of the system. But recall that computing a CE area is just a way to compare models 
without any specific percentage of classes in mind and based on a unique score. 
Note that in Table 4, the symbol “-“ stands for negative CE values, which we do not 
need to report. The reason why CE values may look small, though they have been 
multiplied by 100, is that the vertical and horizontal axes are percentages, and 
therefore values below 1. Admittedly such CE values are not easy to interpret but 
their purpose is only to facilitate the comparison among models based on a measure 
that should be directly proportional to cost effectiveness in our context. 
We can see that, as opposed to confusion matrix criteria, there are wide variations in 
CE across techniques and class percentages. For example, for 5% NOS in the 
Excluded test set, CE ranges from 0.014 (PART) to 0.406 (Boosting+C4.5). What we 
can also observed is that C4.5, though never the best, is never far from it for all class 
percentages and for both the COS 20 and Excluded test sets. On the other hand we 
see that some techniques provide unstable results which vary a great deal depending 
on the test set and the selected NOS percentage. For example, PART varies from 
reasonably good CE values to negative CE values. Based on these results, we 
selected C4.5 to apply within the COS project as it is both simple (very interpretable, 
easy to build and apply) and stable in terms of cost effectiveness. However, from a 
general standpoint, if one can pre-determine what percentage of the code will, for 
example, undergo additional verification and testing, one may be in a position to 
choose the specific model optimizing CE for this particular percentage. For example, 
though NN does not fare particularly well in general, it does well for 1%. We can also 
assess the gain of using a predictive model for a specific percentage in a way which 
is more interpretable than CE areas. Figure 2, which was presented earlier, 
corresponds to actual curves for C4.5 on the COS 20 test set. If we take these results 
as an example, we see that, for example, 10% of the lines of code lead to nearly 60% 
of the defects. If we now assume we would have a perfect, optimal model to predict 
the future, we would obtain 100% of the faults for that NOS percentage (see Figure 
2). The gain compared to what the average would obtain with random orders (10% of 
the faults) is substantial, but we also see that there is much room for improvement 

Table 4 Cost-Effectiveness for all Techniques 
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Figure 3 C4.5 Decision Tree 

when compared to an optimal order. This was not clearly visible when only 
considering the confusion matrix precision and recall, or the ROC area. 
 

3.8.3 Variables selected in the C4.5 Tree 
The C4.5 decision tree in Figure 3 has 24 leaves, implying that any one prediction will 
be assigned one of the possible 24 fault probabilities associated with these leaves. 
The tree makes use of 21 variables out of the 112 originally considered. 
 
From Figure 3, we can see variables that belong to two distinct, broad categories: 
 
• Nine variables relate to the amount of change undergone by classes in the current 

release or one of the last three releases. However, in some cases this should be 
carefully interpreted as it may also capture whether the class is new: for example, 
when nm1_CLL_CR = -1, this means the class did not exist in release n-1. 

• Eleven variables relate to the source code properties of the class, such as 
inheritance, number of methods, cyclomatic complexity, cohesion, and coupling 
(fan out). 

 
Of course, it is always difficult to interpret such results as many variables are often 
inter-correlated, as suggested by the fact that CFS only selected 29 variables out of 



 29

112 (Section 3.4). But what this variable selection tells us is that both properties of 
the class source code and change/fault history are useful and complementary 
predictors. If we compare the variables selected with the ones in [Ostrand et al., 
2005], a study which was discussed in Section 3.7, their Binomial regression model 
also used a code metric: file size in lines of code, and whether the file was changed 
in the previous release. Their variable coding the age of a file in terms of releases, is 
coded in our case across many variables (nm* measures in Table 1) capturing 
whether the class was new in one of the last three releases by assigning a -1 value to 
variables. The number of faults in the previous release is captured by the nm1_E_CR 
and nm1_CE_CR measures in Table 1, which separate critical from non critical 
faults. In addition, we also capture changes and fault corrections in the last three 
releases and distinguish requirements changes according to their size and 
complexity (as defined in Section 3.4). We also have many additional structural 
measures for cohesion, coupling, and many other attributes, some of them being 
selected in the predictive models as discussed above. 
 
Variables capturing the number of developers involved and their past experience on 
the COS system (numberPastCR measures) are also considered, but are not 
selected in the predictive C4.5 model we ended up choosing to focus verification. On 
the other hand, we do not have a programming language variable in our data set as 
all our predictions involve Java classes. 
 

3.8.4 Fault-distribution in Fault-prone classes  
In order to compare our results with the results of [Ostrand et al., 2005], let us look at 
the percentage of faults in the top 20% classes, a threshold that these authors 
indicated was the “knee of the curve” where the number of faults starts to plateau. 
Though their unit of analysis was a file, we explained above that it should be 
comparable for Java classes and we therefore compare our results to theirs using 
their evaluation criterion. We see that if we consider our C4.5 model, the 20% most 
fault prone classes account for 69% and 71% of faults for the Excluded and COS 20 
test sets, respectively. This is significantly less than the 83% average reported in 
[Ostrand et al., 2005]. However, if we look at other modelling techniques, some of 
them such as the one combining PART and C4.5 reach 72% and 90%, respectively. 
But if we look at the percentage of lines of code, 20% of classes correspond to 59% 
of the code in their study. If we go back to the C4.5 CE analysis in Figure 2, we can 
see that around 59% NOS we capture around 90% of the faults. Our results in terms 
are therefore comparable to what Ostrand et al. obtained, but it shows that one must 
be careful about using size measures such as number of 10 classes or files. The 
reason why we obtained a slightly larger percentage might be due to the additional 
variables we consider, but this is hard to ascertain. 
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4 Practical evaluation of the use of the prediction model to 
focus testing 

This section describes the test-process suggested by us, the actual implementation 
of the additional unit testing, the data reporting, our cost-effectiveness model, as well 
as the interview process. Finally the research results are discussed.    
 

4.1 Using prediction models to focus unit testing 
Many studies state that a large portion of software development cost is due to fixing 
reported faults [Khoshgoftaar et al., 1998]. Furthermore, the cost depends on when 
the faults are discovered and corrected [Bakkelund & Kvam, 2004]: faults should be 
discovered as early as possible because the cost of fixing them increases over time. 
Such early identification of faults is likely to increase the efficacy of the testing activity 
and to improve the overall quality of the evolving product. A challenge related to the 
above is to choose the right techniques for finding and correcting the faults early and 
in an efficient manner. We believe that an early identification of fault-prone 
components will allow an organization to take appropriate action. Explicitly, resources 
can be allocated to testing and subsequently correcting faults detected in these 
components in order to reduce the likelihood of software failures in new releases of 
the evolving software product. 
 
To facilitate this, a strategy of using the predictions in unit testing to focus on fault-
prone classes was adapted. Unit testing is typically performed early in the project life 
cycle and the costs of finding and fixing faults at this stage is considered more cost-
effective than in later phases of the project. This proved to be consistent with COS 
test strategy as well. COS uses a test driven development process, where unit tests 
are written early in the project life cycle (before anything is implemented and on the 
basis of the object-oriented analysis artefacts) and this applied nicely our initial 
strategy. 
 
More specifically, we wanted to ensure that the unit tests of fault-prone classes were 
reasonably complete, so as to minimize the number of faults that could slip through to 
subsequent testing phases or production. This was done due to the abovementioned 
increase in cost in later project phases, but also based on the so-called ripple-effect 
[Haney, 1972], suggesting a change in one module would necessitate a change in 
any other module. By making sure of that fault-prone modules work properly in 
isolation could reduce the likelihood of possible ripple-effects. This assumption is 
supported by the fact that we, through the model building, established a correlation 
between changes in a module and its fault-proneness, underlining a possible ripple-
effect.  
 
While testing can be used to measure the quality of your software, test coverage can 
be used to measure the quality of your tests. To analyse test coverage, means to 
measure how well the test exercise your product. The COS project guidelines specify 
that 80 percent or more of the code (executable statements) should be covered by 
tests in a test coverage analysis. In practice this was not achieved due to time 
constraints. In order to have a reasonable chance of demonstrating benefits of the 
prediction model, not even 80 percent statement coverage was perceived as 
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sufficient. We suggested that 100 percent loop and branch test coverage [Bullseye] 
was to be reached for the most fault-prone classes. 
 
Many faults can be associated with loops in practice, e.g. their stopping condition. It 
is therefore advised to go further in exercising them than just ensuring a loop 
condition evaluating to true and false as required by branch coverage. The loop 
coverage measure reports whether you executed each loop body zero times, exactly 
once, and more than once (consecutively). 
 
To fully exercise a loop it is usually advised to do as follows:  

• a test case should bypass the loop (i.e., the loop condition is false to start with) 
• a test case should execute the loop once  
• a test case should execute the loop a “representative” number of times 

(consecutively) 
• if possible, the loop should be executed a maximum number of times (assuming 

such a maximum exists) 
 

If we take an example of a search in a table:  

• we skip the loop if the table is empty 
• we find the element we search for in the first position of the table 
• we find the element we search for after the first position 
• we do not find the element after searching the entire table 
  
The statements that involve conditions in a Java program include if, while, and switch 
statements. Whereas the former two include exactly one condition, switch statements 
usually include at least two. The branch coverage strategy for testing requires that 
each of those conditions be exercised by having them evaluated to true in some test 
case executions and false in others. This coverage criteria is more demanding than 
simple statement coverage is, for example with the case of an if statement without 
else block, statement coverage does not always require a condition to be false in one 
test case execution to cover all statements.  
 
To verify these two test coverage criterions a test coverage tool can be used. Prior to 
initiating the unit testing based on the predictions, a tool was used at COS that did 
not report branch coverage properly. As part of our strategy we proposed the use of a 
new test coverage tool that reported this criterion properly.  
  
When trying to increasing test coverage in practice one typically tries to reach 
statements of the code not already covered by the initial test cases. This is known as 
statement coverage and reports whether each executable statement is encountered. 
The advantage of this measure is that it can be applied directly to object code and 
does not require processing source code. The disadvantage of statement coverage is 
that it is insensitive to some control structures. For example, consider the following 
Java code fragment and its corresponding test case: 
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When running the test case, the test coverage report yields that the statement where 
the comment is placed is not reached illustrated in red.   

 
This is due to the condition above, if (2*z==y) never evaluates to true. To find test 
inputs that will execute an arbitrary statement Q within a program source, the tester 
must work backward from Q through the program’s flow of control to input 
statements.  
 
For simple programs like above, this amounts to solving a set of simultaneous 
inequalities on the input variables of the program, each inequality describing the 
proper path through one conditional. Conditionals may be expressed in local variable 
values derived from the inputs and local variables must be substituted with input 
variables in the inequalities. 
 
In this example we have the z as local variable and x and y as input variables. Based 
on analysis of conditional statements, the following two inequalities must be solved: 
 

 
Figure 4 Java code fragment and corresponding test case 

 
 

Figure 5 Test coverage report 
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x > 3 
2(x+y) = x+y  x = -y 
 
One possible solution to cover the statement is therefore: x = 4, y = -4 
 
In practice, the presence of loops and recursion in the code makes it more difficult to 
solve such inequalities. But the above example is just aiming at illustrating the 
principles. 
 
When performing the unit test using the predictions, a practical procedure was 
developed to guide the developers (Appendix A). In short terms the procedure 
consisted of running the initial test suite and analyzing the results in terms of 
uncovered code. Then augmenting the test suite to achieve as high branch and loop 
coverage as possible, re-run it and correct any faults identified. 
 
During a meeting at COS it was discussed whether additional types of verification 
and validation (V&V) e.g., other kinds of tests, inspections, could be performed as 
part of the evaluation. Several developers thought this would be useful, and in the 
long term, we agreed that this probably was a good idea. However, the time allocated 
to unit testing was limited and we pointed out that it was essential that at least one 
activity, namely unit testing, was performed well. If we were to allow other kinds of 
V&V, we would only be able to cover very few fault-prone classes, and furthermore 
we would not be able to separate the effects of the focused unit testing activity from 
other kinds of V&V in a reliable way. It is not certain that unit testing is the best 
application of fault-proneness models. Maybe inspection is a beneficial technique as 
well. Either way this thesis documents the application of unit testing, and possible 
research directions in the future could include doing the same for e.g. inspection. 
 
A list of the 100 most fault-prone classes (see Appendix C for the top 30), guidelines  
explaining coverage criteria (Appendix A) and test report templates (Appendix B) 
were given to the developers to guide and document the unit testing. The list of fault-
prone classes was sorted by their size, as in LOC, if two classes had the same fault-
probability the smaller one was placed before the larger one. This was done to 
achieve a more efficient usage, as in more classes evaluated due to the limited time 
available. But this was also done due to the fact that our model predicted a relatively 
small amount of the total number of classes as fault-prone, and evaluating more 
classes could prove to be beneficial. 
 

4.2 The data reporting 
During the unit testing, the developers were told to document their increase in 
coverage by generating a before-and-after test coverage report to be able to observe 
what had been done. This was done for the entire system upfront of the unit testing 
and once after it was finished. In addition their IDE supported the generation of test 
coverage reports during test suite modifications, making them able to monitor their 
work in progress at code level for one specific class with one corresponding JUnit 
test class containing the test suite. Obviously this made the additional unit testing 
more effective, as in the participants not being forced to wait for the entire system to 
be analyzed to observe results of test suite modifications.  
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A test report was filled out to report hours used separated into time spent on 
augmenting the test suite and time used to correct the faults found. Justifications had 
to be made to explain cases where a class was not chosen to achieve higher branch 
and loop coverage. In addition, justifications on why not the coverage criteria posed 
were achieved were recorded. Finally, the numbers of faults found obviously needed 
to be recorded. 
 
All this information was to be documented in the test report template (Appendix B). 

4.3 Cost-effectiveness Model 
 
We developed a cost-effective model (CE model) and discounted potential costs from 
future test phases into net present values in terms of cost saved. 
The rationale of the model is that in each testing phase (System test, System 
Integration Test, Acceptance Test and Production (after delivery)), the faults found 
has probabilities of being detected, costs of detection and probabilities of actually 
being fixed in the phase it was detected. The interviewee then provided estimates for 
these parameters in the future and the model calculated present cost saved. 
Our definition of cost-effectiveness is the ratio cost saved by the unit testing / cost of 
unit testing. The parameters of the CE model are outlined in Table 5. 
 

 
Using these parameters, the CE model can be formally expressed as follows: 
 
CE = Cost Saved by additional Unit Testing / Cost of additional Unit Testing 
with 
Cost Saved by Focused Unit Testing Activity:  
∑i,x(PDx, i * (CDx, i + PCBF,x, i*CCBF, i + PCNMR,x, i*CCNMR, i + PCx, i*CCx, i) 
and 
Cost of Focused Unit Testing Activity: 
Cost of augmenting the unit test suite, running the tests, checking results and fixing 
any faults found in the 26 classes selected. 
 

Table 5 Parameters of the CE model 

Parameter  Description  
PDx, i   Probability of fault i being detected in phase x 
CDx, i Potential detection cost of fault i in phase x 

PCBF, x, i 
Probability that fault i detected in phase x will be corrected in Bugfix release 
(BF) 

PCNMR, x, 

i 
Probability that fault i detected in phase x will be corrected in Next main 
release (NMR) 

PCx, i Probability that fault i detected in phase x will be corrected in phase x 
CCx, i Potential correction cost of fault i  in phase x 
CCNMR, i Potential correction cost  of fault i in Next main release (NMR) 
CCBF, i Potential correction cost  of fault i in Bugfix (BF) 
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4.4 The interview process 
It is not always practically possible to collect all the data needed to get a valid result 
when conducting empirical studies in industry. While conducting empirical studies in 
industry, other more important activities might occur, forcing the involved parts to 
focus on these rather than the research, thus degrading the research initiatives and 
possibly reducing the amount of data collected. In our case, when the cost 
effectiveness of the unit testing was to be measured, the timeframe was not sufficient 
enough for us to collect data from all the testing phases in a release.  
The amount of data might be too small to be able to draw broader conclusions, rather 
than just being valid for the specific context and not being useful outside this context.  
We wanted to combine actual collected data with expert estimates to make our 
results more valid and to able to estimate cost-effectiveness in a discounted way 
using the model described in the previous section.   
 
To get expert estimates, the developers involved in the unit testing where asked to 
participate in an interview (Appendix D and E). We asked 3 developers about the 
probabilities for and cost of detecting and fixing faults in the different testing phases, 
but the first interview was just a pilot serving as an evaluation on our questions and if 
they captured what we wanted. The results from the last two interviews were used to 
its full extent. Our assumption was that the costs of fixing faults increased as the 
project moved forward. For each testing phase we asked for an interval with a 
practical minimum, a practical maximum and a most likely value for both hours 
possibly consumed and probabilities for fault detection and correction in the 
respective phases (Appendix F). Our assumption was that by having estimates of 
potential hours consumed in the different phases and probabilities for the 
occurrences of these, we could calculate the cost effectiveness of performing 
additional unit testing. 
 
More informally we informed that within the boundaries of practical minimum and 
maximum one would find 9 out of 10 cases, and explained this concept using the 
visual aid documented in Appendix F. We explained for that a distribution not 
necessarily had to be normally as in evenly distributed. There are cases where the 
most likely value could be closer to the practical minimum or maximum and this had 
to be taken into consideration. An additional visual aid was provided to explain how 
we were to work with the collected data after the interviews (Appendix G).  
 
It was viewed to us as very important to make the developers aware of all the costs 
associated with each phase. For this reason the test manager was asked what was 
done in each phase to detect and correct faults. Before each interview started the 
developers were reminded about this to take into account any hidden costs as well 
when providing their estimates. A sheet providing an overview of typical activities in 
each testing phase worked as visual aid to remind them during the interviews.  
 
The concept of bias and more specific the concept of availability, as in people 
retrieving events from long-term memory with different ease, was considered when 
asking the experts for estimates. One should be aware of that by asking 
straightforward, accurate estimates will not be provided accurately. In order to 
provide accurate estimates, the experts need to remember relevant information 
regarding the parameters to be estimated [Meyer & Booker, 1991]. Knowing this, we 
gave the test report and coverage report to the interviewee before we asked the 
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questions and told them to think through the origins of the fault and what was done to 
fix it. We made the interviewee think aloud. 
 
In addition, the interviewees were made aware of that the answers they provided was 
to be considered only rough estimates. This was due to another concept of bias, 
namely the over-confidence, as in the interviewee thinking that by being an expert 
implies the ability to give exact answers. 
 

4.5 Preliminary results and practical model evaluation 
In the pre-unit testing phase some issues regarding the validity of the model was 
emphasized from some members of the development team. It was pointed out that 
the list of fault-predicted classes was not optimal from a user point of view. More 
specific it was argued that about 70 percent of the top ranking fault-prone classes 
had a cyclomatic complexity of 1. Further it was stated a lot of the most fault-prone 
classes were only classes with set- and get methods or only classes containing 
constructors calling super constructors being just interface classes or abstract 
classes.  For that reason, performing the activity suggested by us did not make any 
sense to them. Of the top 20 most fault prone classes 70 per cent of them would, 
according to COS members, be meaningless to test. We argued that a prior 
evaluation of the model had been conducted in terms of using one release n and 
applying the prediction formula on these data and evaluating how well it predicted 
faults in release n+1. This evaluation stated that by checking 10 percent of the 
classes, one could detect 60 percent of the total number of faults.  
 
Another argument proposed by the COS team and its members was that the 
prediction model did not actually managed to state where the errors actually 
occurred. They argued that they have observed that in their configuration 
management system Change Requests had been reported as errors, when it for real 
not was an error.  
This type of things would obviously create noise in our statistical model. If they in 
some cases report error as maintenance or the other way around and it would lead to 
a worse model than if they where consequent all over in their logging. Actually we 
use the presence or absence of error to evaluate the classification accuracy of our 
model. But when these things are reported inconsistent or different between 
developers our model is build on inconsistent data and therefore contains more noise 
than it would have if this was consistent.  
 
They finally argued that by using a technique that combined both the prediction 
results and a so called expert considerations, which can be observed as e.g. domain 
knowledge in the sense of overview of the systems code and more specific what part 
of the code that was dead code (or code that really doesn’t do anything just sits 
there, but removing it would result in faults), would result in violations to the 
application of model. In other words by skipping a lot of classes one could ruin 
somewhat the intension of using the model to focus testing.  We stated that this did 
not ruin anything at all, but rather made the use of the predictions better. The optimal 
way to use the results is to combine the expert considerations and the prediction 
results to better focus verification. 
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Two days into the evaluation, a little breakthrough occurred. The change manager 
informed me that they had found a fault using the technique. They also found faults 
surrounding the class under scope. He thought the technique was very interesting 
and if we removed the irrelevant classes then this could be a good way to perform 
cost effective quality assurance. The motivation among participants in the evaluation 
was significantly better this day than earlier. The technique had some limitations 
because of the, in their opinion, irrelevant classes, but the technique was very 
promising and interesting was the change managers conclusion. 
 

4.6 Results 
The practical usage at COS summed up to involve 3 developers using 49.5 hours on 
augmenting the test suites for fault-prone classes, re-running the tests and correcting 
the faults found. 
 
Of the 100 top ranking classes 26 was subject of potentially receiving higher 
coverage, as in the participants got this far before the unit testing ceased. Of these 
26 classes 7 achieved higher coverage due to participant appraisal, that is. Before 
the unit testing began, the total test coverage on the classes being subject to the 
evaluation was 69 percent, underlining discordance with COS policy of test quality 
(80 percent coverage). Post-evaluation total test coverage was 82 percent being in 
accordance to COS policy. Average increase in test coverage among evaluated 
classes was 16 percent, with a standard deviation of 7 percent. 7 faults were 
detected in 3 classes and the distributions of faults among classes were not one-one. 
Two converter classes consisted of 1 actual fault and 4 robustness faults, where the 
first more specific had to do with converting a value and that this converting initially 
was wrong. The latter 4 robustness faults had to do with that faults occurred when a 
value was null. These 4 faults were joined to one fault due to the fact that, according 
to the person who found it, if one of these faults were found, then the rest of them 
would occur automatically, as in these faults having the same structure. One class 
predicted as fault-prone actually received extra inspection and modifications in 
parallel to the evaluation, not based on the predictions, but still supporting the 
classification accuracy of our model.  
 
Reviewing the results from the evaluation (Appendix H), a trend was observed in that 
DTO’s consistently was rejected as subject for increased test coverage. However this 
proved to be wrong, observing that two DTO classes actually contained faults.  
 
Skipping classes before achieving 100 percent loop and branch test coverage was 
justified several times due to huge workload developing stubs. A stub is a partial 
implementation of a component on which the tested component (here: class) 
depends upon, enabling it to be isolated from the rest of the system for testing. 
If this skipping suggest limitations regarding out initial unit testing strategy or the fact 
that COS has a low code quality in terms of unit test quality is not clear. Considering 
that this is a legacy system under maintenance, certainly actions should be taken to 
assure higher quality of the code, especially considering the recurring problem with 
bugfix releases yielding a serious root problem. Increasing conformance costs by 
developing better stubs could reduce non-conformance costs.  
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Table 6 Results CE calculations 

 
Our cost-effectiveness model was applied on the data collected and the detailed 
results are provided in (Appendix I). A summary the results are presented in Table 6. 
The results state a cost saving of roughly 50 percent by performing the additional unit 
testing when using only the most likely values as means to calculate cost saved. This 
is a very conservative measure, corresponding to the so-called mood (most frequent 
value) as opposed to the mean, because many of the estimates had distributions 
skewed to the left. In future work of this study and in replicates, using means instead 
and combining this with Monte Carlo simulation is suggested.    
 
One important reason for the difference between the estimates of Dev. 1 and Dev. 2 
in Table 6 was that Dev. 2 thought it was much more likely that Fault#3 and Fault#4 
would not be discovered in the later testing phases, and would result in faults 
remaining undetected until the system was released, in which case it was much more 
expensive to correct. Otherwise, results from the interviews yielded a fair interrater 
reliability between the actual interviewees. The majority of the answers were 
consistent between the two, although they had been interviewed separately and we 
ensured that the interview questions were not discussed between them upfront. Due 
to modifications of some uncertainties regarding the questions, the pilot interview 
differed a lot from the two actual interviews suggesting our modifications had good 
impact, as to ask the right questions in the right way.  
 
As mentioned earlier other V&V techniques were also discussed and considered prior 
to the unit testing. As future work, one possibility is to perform inspections on fault-
prone classes instead of (or in addition to) unit testing in the next release to evaluate 
if this is a even more suited technique as in being able to cover more faulty classes 
with the same amount of effort.  
 

 Fault#1 Fault#2 Fault#3 Fault#4 Sum 
Dev. 1 16 4 11.35 13.17 44.52 
Dev. 2 14.4 7 49.25 48.12 118.77 
Average 15.2 5.5 30.3 30.7 91.7 
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5 Conclusions and Further work 
One part of this thesis focused on comparing different data mining and machine 
learning techniques to build fault-proneness models in a Java legacy system. The 
usual and general way to compare classifier models is to use criteria based on the 
confusion matrix; precision, recall, ROC area. Our results show that the modelling 
techniques do not show, in most cases, practically significant differences in terms of 
these criteria. However, we believe that using such general evaluation criteria can be 
misleading as they are not direct, surrogate measures of the cost-effectiveness of 
using such fault-prone models. Cost-effectiveness models need to be context-
specific. In our context, where extra testing is applied to a subset of classes in their 
decreasing order of predicted fault-proneness, we wanted to detect as many faults as 
possible while covering the least amount of code possible with our extra testing.  
 
The underlying assumption is that the extra testing effort will be roughly proportional 
to the size of the code tested. Based on our proposed cost-effectiveness analysis 
procedure, we concluded that significant differences were indeed visible across 
modelling techniques, as opposed to what was concluded based on the confusion 
matrix. 
 
Though we use data coming from one large industrial project, the data was gathered 
across many releases during which significant organizational and personnel change 
took place. Furthermore, we do not believe that this project environment has any 
specificity that would somehow make it substantially different from other object-
oriented, legacy Telecom systems with frequent releases and high personnel 
turnover. This is also supported by the fact that we obtain results that are similar to 
those of other case studies in the Telecom domain. This is encouraging as this 
suggests such prediction models could be applicable in a variety of environments.   
 
From a more general standpoint, regardless of how it is defined in any specific 
context, we recommend to use a specific cost-effectiveness model in addition to 
standard confusion matrix criteria when building and evaluating fault-proneness 
prediction models.   
 
Another part of this thesis focused on the practical evaluation of adapting fault-
proneness prediction models to focus unit testing. Although only a small part of the 
system was subject to the evaluation, revealing 7 faults is considered a good 
indication of the usefulness of fault-proneness prediction models to focus testing, 
knowing that in a typical release, somewhere between 7 and 83 faulty classes exists 
among the 2600 core Java classes. The historic data indicated a fault density of 
between 7/2600 – 83/2600, or between 0.0027 – 0.032 faults per class. In our case 
26 classes were considered and 7 faults were found, giving a fault density of 0.27 
faults per class.  Furthermore, the results of a cost-effectiveness evaluation, using 
expert estimates to elicit cost savings, suggest a high return of investment from using 
this technique in unit testing. The evaluation indicated that cost saved was 91.7 
hours and time consumed during unit testing was 49.5 hours, indicating more than 50 
percent cost reduction due to the focused testing activity. 
 
Another interesting aspect was the clustering of faults surrounding the largest class 
that has been reported in other research [Ostrand & Weyuker #2, 2004]. Evidently 
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this supports the Pareto Principle, as a in the majority of the faults are grouped 
together in relatively small parts (classes) in the software.   
 
An unintended result from the practical evaluation was the need for more rigid fault-
reporting. Analyzing the change management system for errors during data collection 
revealed that the routines for reporting errors and what was considered an error were 
not consistent across the development team. 
 
Further the need for tuning the model proved to be of huge importance. Both to make 
the model accuracy better and more applicable from a users point of view, but maybe 
also as a mean to involve the users of the technique more, thus accomplishing better 
motivation among them, which proved to be a problem in this work.       
 
There are many open questions that need to be addressed before one can 
generalize the results and adapt the techniques described in this thesis to a wider 
context. For example, should data be collected for all modules in that system or just 
the modules modified? Using metrics from the entire system or just part of it, as in 
changed or new modules, seems to be divided in work in the area. Descriptive 
statistics before building the actual models could reveal which approach is most 
suited to follow. Second, what type of metrics should be gathered, in terms if being 
good predictors of external system qualities? Do some metrics or measures prove to 
be better predictors than others? An empirical comparable study on quality models 
concerning this revealed that coupling was a good predictor as well as size, while 
inheritance and cohesion proved not to be. Third, when building fault-proneness 
prediction models, should you use a discrete or continuous indicator of faultiness? 
 
Further work consists of ensuring a more robust and automated data collection 
procedure introducing a relational database with consistence checking supporting 
quality assurance of the data. In addition different views of the data are to be 
introduced, making it easier deriving models for, e.g., fault-proneness of change 
requests or modules of higher abstraction level. A GUI and fully automated data 
collection would make it possible for people at COS to use this technique as a test 
support tool without having any knowledge of the statistics involved.  
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Appendixes 
 
Appendix A: Guidelines 
 
Guidelines to apply the Simula fault-proneness prediction model on the COS 

project at Telenor 
 
 
E. Arisholm, L. Briand, M. Fuglerud 
Simula Research Laboratory 
 
Context: 
The prediction model developed by Simula indicates the classes that are the most 
likely to contain a fault. A ranking of the COS 22 classes according to the fault-
proneness has been provided by Simula to Telenor.  
 
Motivation:  
The question is now how to best use such a prediction model to focus testing efforts 
in the COS project, and in particular for the COS 22 release.  
Strategy:  
Our initial strategy to use such predictions is simple, though more complex 
strategies will be considered in the future. As a first step, we want to ensure that the 
unit test of fault-prone classes is reasonably complete, so as to minimize the number 
of faults that slip to system test. To evaluate the cost-effectiveness of using the 
prediction model to focus testing efforts on COS 22, an additional two-day unit 
testing phase will be conduced just before “code freeze”.  
 
Though, in theory, COS project guidelines specify that 80% of the code (executable 
statements) or more should be covered, this is not systematically achieved in 
practice due to time constraints. In order to have a reasonable chance of 
demonstrating benefits of the prediction model, even 80% statement coverage is 
probably not sufficient. We suggest that full loop and branch coverage should be 
reached for the most fault-prone classes according to the guidelines provided below. 
This strategy furthermore presumes that the developers use the Clover coverage 
tool to assess branch coverage (Cobertura does not properly report branch 
coverage).  
 
Note that during the presentation/meeting in December we also discussed whether 
additional types of V&V (e.g., other kinds of tests, inspections) could be performed 
as part of this evaluation. Several developers thought this would be useful, and in 
the long term, we agree that this is probably a good idea. However, given the limited 
time allocated to the focused testing activity in COS 22, it is essential that we 
perform at least one activity (unit testing) well. If we allow also other kinds of V&V, 
we would only be able to cover very few fault-prone classes, and furthermore we 
would not be able to separate the effects of the focused unit testing activity from 
other kinds of V&V in a reliable way. Thus, we propose the following procedure for 
COS 22. 
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Reaching uncovered statements  
 
To find test inputs that will execute an arbitrary statement Q within a program 
source, the tester must work backward from Q through the program’s flow of control 
to input statements.  
 
For simple programs, this amounts to solving a set of simultaneous inequalities on 
the input variables of the program, each inequality describing the proper path 
through one conditional. Conditionals may be expressed in local variable values 
derived from the inputs and local variables must be substituted with input variables 
in the inequalities.  
Let’s take for example the following program chunk (in C) where we wish to cover a 
specific statement (as indicated by the comment).  
 

 
where we have the following variables :  

Local variable: z 
Input variables: x , y 

 
Based on analysis of conditional statements, the two following two inequalities must 
be solved :  
 
X > 3 
2(x+y) = x+y  x = -y 
 
One possible solution to cover the statement is therefore: X=4, y=-4 
 
In practice, the presence of loops and recursion in the code makes it more difficult to 
solve such inequalities. But the above example is just aiming at illustrating the 
principles to be followed.  
 
Branch Coverage 
The statements that involve conditions in a Java program include if, while, and 
switch statements. Whereas the former two include exactly one condition, switch 
statements usually include at least two. The branch coverage strategy for testing 
requires that each of those conditions be exercised by having them evaluated to true 
in some test case executions and false in others. This coverage is more demanding 
than simple statement coverage as, for example with the case of an if statement 
without else block, statement coverage does not always require a condition to be 
false in one test case execution to cover all statements.  

int z; 
scanf(“%d%d”, &x, &y); 
if (x > 3) { 
 z = x+y; 
 y+= x; 
 if (2*z == y) { 
  /* statement to be covered */ 
… 
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Exercising loops 
Many faults can be associated with loops in practice (e.g., their stopping condition). 
It is therefore advised to go further in exercising them than just ensuring a loop 
condition evaluates to true and false (as required by branch coverage).  
To fully exercise a loop it is usually advised to do as follows:  

- a test case should bypass the loop (i.e., the loop condition is false to start 
with) 

- a test case should execute the loop once  
- a test case should execute the loop a “representative” number of times 
- if possible, the loop should be executed a maximum number of times 

(assuming such a maximum exists) 
 

For example, if we take the example of a search in a table:  
- we skip the loop if the table is empty 
- we find the element we search for in the first position of the table 
- we find the element we search for after the first position 
- we do not find the element after searching the entire table 

 
Practical procedure for unit testing in COS22 
 
The test manager ensures that a code “checkpoint” is provided at least four days 
before the unit testing phase will start <replace with date>. 
 
We will then collect change and code data for that checkpoint on the COS 22 
release, apply the fault prediction model on the data, and deliver a prioritized list of 
fault-prone classes before the unit testing phase starts <replace with date>.  
 
The two-day testing phase will start on January <xx>, before “code freeze”. The 
process consists of the following activities and deliverables: 
 
The test manager assigns the most fault prone classes, one at a time, to developers 
on the basis of the prioritized list of fault prone classes.  
 
The developer assigned to the class will: 
1. Analyze the branch coverage of their assigned class: Use Clover to identify the 

branches that are uncovered after executing the existing test suite. The code 
corresponding to uncovered branches can fall into three categories: 

a. Unreachable (e.g., dead code): No further action is required 
b. Changed functionality: The uncovered code corresponds to new or 

changed functionality and should be entirely covered by the test suite (see 
below for further guidelines). 

c. Unchanged functionality: The uncovered code should not be affected by 
the current release changes. However, one should be very careful that this 
is really the case. It is not always easy to determine the impact of 
changes. In this case, if there is any doubt that a change could have an 
impact, it is better to be conservative and ensure that all code be covered. 

2. Analyze the loop coverage of their assigned class: As described above, loops are 
fully exercised (“covered”) when they are bypassed, executed once, a 
representative number of times, and possibly a maximum number of times. If 
some of these options are not possible, a short justification should be provided 
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by the developer.  
3. Augment the class test suite to achieve branch and loop coverage, run it and 

correct any faults identified.  
4. Provide a test report to the test manager. This consists of  

• the tool coverage report after executing the initial (existing) test suite  
• the tool coverage report after executing the final (augmented) test suite 
• a justification in cases where there are still uncovered code (branches, loops) 
• number of additional faults found  
• estimate of time spent (hours) on augmenting the test suite and running the 

tests 
• estimate of time spent (hours) on correcting the faults 

 
Once the test manager approves the test report, the test manager assigns the next 
most fault prone class to be tested to the developer.  
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Appendix B: Test report 
 
 

Test Report to be used during the additional unit test phase  
 
 

1. Provide the tool coverage report after executing the initial (existing) test suite. 
To do this, simply save the report concerning the class under scope as it is 
before you start modifying the test suite. Name this report 
<klassenavn>_before.xxx 

2.  
 
Class Name: 
 

 

 
Developer: 
 

 

 
Justification if 
there still exists 
uncovered code 
(branches, 
loops): 
 

 

 
 
Number of 
additional faults 
found: 
 

 

 
Estimate of time 
spent (hours) on 
augmenting the 
test suite and 
running the tests 
 

 

 
Estimate of time 
spent (hours) on 
correcting the  
faults: 
 

 

 
3. Finally include the tool coverage report after executing the final (augmented) 

test suite. Name this report <klassenavn>_after.xxx 
4. Remember to save this template as <klassenavn>.doc 
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Appendix C: Fault-prone classes. The 30 sorted classes provided during the 
additional unit testing 
 
fileName FaultProb. Rank Assigned to: Not assigned because: 
AgreementContainerConverter 0.929 1   
CleanupFilesMDBean 0.929 2   
FileResult 0.929 3   
AgreementDtoStatus 0.929 4   
AgreementMemberDtoStatus 0.929 5   
ChordiantUtil 0.929 6   
ExternalTransactionInitialData 0.929 7   
ProductOfferRuleAssembler 0.929 8   
ModifiableAgreement 0.929 9   
ProductOfferSenderBase 0.929 10   
DealerInfoDto 0.929 11   
DealerIdDto 0.929 12   
AgreementContainer 0.929 13   
ExternalTransactionRepository 0.9 14   
ExternalTransactionLogException 0.9 15   
ExternalTransactionPaymentException 0.9 16   
ExternalTransactionValidationException 0.9 17   
ExternalTransactionException 0.9 18   
CommissionReportService 0.9 19   
ProductOfferValidator 0.871 20   
AgreementRepository 0.871 21   
ProductOfferServiceBean 0.871 22   
EurekaServiceBean 0.871 23   
OrderInformation 0.871 24   
OrderValidationServiceBean 0.871 25   
AgreementServiceBean 0.871 26   
ExternalTransactionDto 0.871 27   
ProductOfferStructToProductOfferInterceptor 0.871 28   
ProductOfferRepository 0.871 29   
SubscriptionFinder 0.871 30   
 
 



 47

Appendix D: Interview questionnaire 
 

Questions for fault # 
 
Date:               ______________________ 
 
Name of interviewee:  ______________________ 
 
Email of interviewee:  ______________________ 
 
Phone-number of interviewee: ______________________ 
 
Background 
 
In the following we would like you to give some information about your experience with 
respect to the COS system and Telenor 
 
1. How long have you been working with the COS project?  ________________ years 
 
 
2. How long have you been working with Telenor?  ______________________ years 
 
Questions regarding the cost of fault correction 
 
1. For this particular fault, in the context of the System testing phase and based on your 

experience: 
 
• In which range, according to your experience, is the cost for correcting this fault? 

 
_______ to _______ 
 

• What would you deem as a most likely cost for correcting this fault? 
 
________ 

 
 
2. For this particular fault, in the context of the System integration testing phase and 

based on your experience: 
 
• In which range, according to your experience, is the cost for correcting this fault? 

 
_______ to _______ 
 

• What would you deem as a most likely cost for correcting this fault? 
 
________ 

 
 
3. For this particular fault, in the context of the Value chain testing phase and based on 

The information 
given in this 
questionnaire will be 
kept confidential! 
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your experience: 
 
• In which range, according to your experience, is the cost for correcting this fault? 

 
_______ to _______ 
 

• What would you deem as a most likely cost for correcting this fault? 
 
________ 

 
 
4. For this particular fault, in the context of the Acceptance testing phase and based on 

your experience: 
 
• In which range, according to your experience, is the cost for correcting this fault? 

 
_______ to _______ 
 

• What would you deem as a most likely cost for correcting this fault? 
 
________ 

 
 
5. For this particular fault, in the context of Production (the delivered system – in which 

case the correction is known as a “krisepatch”) and based on your experience: 
 
• In which range, according to your experience, is the cost for correcting this fault? 

 
_______ to _______ 
 

• What would you deem as a most likely cost for correcting this fault? 
 
________ 

 
6. For this particular fault, and assuming that this fault is corrected as part of a bugfix 

release rather than in any of the abovementioned development phases, based on 
your experience: 
 
• In which range, according to your experience, is the cost for correcting this fault? 

 
_______ to _______ 
 

• What would you deem as a most likely cost for correcting this fault? 
 
________ 

 
7. For this particular fault, and assuming that this fault is corrected as part of the NEXT 

main release rather than in any of the abovementioned development phases, based 
on your experience: 
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• In which range, according to your experience, is the cost for correcting this fault? 
 
_______ to _______ 
 

• What would you deem as a most likely cost for correcting this fault? 
 
________ 

 
Questions regarding the cost of fault detection 
 
8. For this particular fault, in the context of the System testing phase and based on your 

experience: 
 
• In which range, according to your experience, is the cost for detecting this fault? 

 
_______ to _______ 
 

• What would you deem as a most likely cost for detecting this fault? 
 
________ 

 
 
9. For this particular fault, in the context of the System integration testing phase and 

based on your experience: 
 
• In which range, according to your experience, is the cost for detecting this fault? 

 
_______ to _______ 
 

• What would you deem as a most likely cost for detecting this fault? 
 
________ 

 
 
10. For this particular fault, in the context of the Value chain testing phase and based on 

your experience: 
 
• In which range, according to your experience, is the cost for detecting this fault? 

 
_______ to _______ 
 

• What would you deem as a most likely cost for detecting this fault? 
 
________ 

 
 
11. For this particular fault, in the context of the Acceptance testing phase and based on 

your experience: 
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• In which range, according to your experience, is the cost for detecting this fault? 
 
_______ to _______ 
 

• What would you deem as a most likely cost for detecting this fault? 
 
________ 

 
 
12. For this particular fault, in the context of Production (the delivered system) and based 

on your experience: 
 
• In which range, according to your experience, is the cost for detecting this fault? 

 
_______ to _______ 
 

• What would you deem as a most likely cost for detecting this fault? 
 
________ 

 
 
 
Questions regarding the probability of fault detection 
 
Please check that the above probabilities (for min, max, most-likely values, respectively) 
sum up to 100%.  
 
13. For this particular fault, in the context of the System testing phase and based on your 

experience: 
 
• In which range, according to your experience, is the probability of detecting this 

fault? 
 
_______ to _______ 
 

• What would you deem as a most likely probability for detecting this fault? 
 
________ 

 
14. For this particular fault, in the context of the System integration testing phase and 

based on your experience: 
 
• In which range, according to your experience, is the probability of detecting this 

fault? 
 
_______ to _______ 
 

• What would you deem as a most likely probability for detecting this fault? 
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________ 
 
15. For this particular fault, in the context of the Value chain testing phase and based on 

your experience: 
 
• In which range, according to your experience, is the probability of detecting this 

fault? 
 
_______ to _______ 
 

• What would you deem as a most likely probability for detecting this fault? 
 
________ 

 
16. For this particular fault, in the context of the Acceptance testing phase and based on 

your experience: 
 
• In which range, according to your experience, is the probability of detecting this 

fault? 
 
_______ to _______ 
 

• What would you deem as a most likely probability for detecting this fault? 
 
________ 

 
 
17. For this particular fault, in the context of Production (the delivered system) and based 

on your experience: 
 
• In which range, according to your experience, is the probability of detecting this 

fault? 
 
_______ to _______ 
 

• What would you deem as a most likely probability for detecting this fault? 
 
________ 

 
 
Questions regarding the probability of fault correction 
 
Please check that the probabilities for each question (for most-likely values) sum up to 
100%.  
 
18. For this particular fault, in the context of the System testing phase and based on your 

experience: 
 
• Assuming the fault is detected in this phase, what is the probability of correcting 
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this fault also in this phase? 
 
_______ to _______ 
 

• What would you deem as a most likely probability for correcting this fault? 
 
________ 

 
 

• Assuming the fault is detected in this phase, what is the probability of correcting 
this fault in a bugfix release? 
 
_______ to _______ 
 

• What would you deem as a most likely probability for correcting this fault? 
 
________ 

 
 

• Assuming the fault is detected in this phase, what is the probability of correcting 
this fault in the NEXT main release? 
 
_______ to _______ 
 

• What would you deem as a most likely probability for correcting this fault? 
 
________ 

 
19. For this particular fault, in the context of the System integration testing phase and 

based on your experience: 
 
• Assuming the fault is detected in this phase, what is the probability of correcting 

this fault also in this phase? 
 
_______ to _______ 
 

• What would you deem as a most likely probability for correcting this fault? 
 
________ 

 
• Assuming the fault is detected in this phase, what is the probability of correcting 

this fault in a bugfix release? 
 
_______ to _______ 
 

• What would you deem as a most likely probability for correcting this fault? 
 
________ 

 
• Assuming the fault is detected in this phase, what is the probability of correcting 
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this fault in the NEXT main release? 
 
_______ to _______ 
 

• What would you deem as a most likely probability for correcting this fault? 
 
________ 

 
20. For this particular fault, in the context of the Value chain testing phase and based on 

your experience: 
 
• Assuming the fault is detected in this phase, what is the probability of correcting 

this fault also in this phase? 
 
_______ to _______ 
 

• What would you deem as a most likely probability for correcting this fault? 
 
________ 

 
 

• Assuming the fault is detected in this phase, what is the probability of correcting 
this fault in a bugfix release? 
 
_______ to _______ 
 

• What would you deem as a most likely probability for correcting this fault? 
 
________ 

 
 
• Assuming the fault is detected in this phase, what is the probability of correcting 

this fault in the NEXT main release? 
 
_______ to _______ 
 

• What would you deem as a most likely probability for correcting this fault? 
 
________ 

 
21. For this particular fault, in the context of the Acceptance testing phase and based on 

your experience: 
 
• Assuming the fault is detected in this phase, what is the probability of correcting 

this fault also in this phase? 
 
_______ to _______ 
 

• What would you deem as a most likely probability for correcting this fault? 
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________ 
 
• Assuming the fault is detected in this phase, what is the probability of correcting 

this fault in a bugfix release? 
 
_______ to _______ 
 

• What would you deem as a most likely probability for correcting this fault? 
 
________ 

 
• Assuming the fault is detected in this phase, what is the probability of correcting 

this fault in the NEXT main release? 
 
_______ to _______ 
 

• What would you deem as a most likely probability for correcting this fault? 
 
________ 

 
22. For this particular fault, in the context of Production (the delivered system) and based 

on your experience: 
 
• Assuming the fault is detected in this phase, what is the probability of correcting 

this fault also in this phase (that is, a “krisepatch”)? 
 
_______ to _______ 
 

• What would you deem as a most likely probability for correcting this fault? 
 
________ 

 
• Assuming the fault is detected in this phase, what is the probability of correcting 

this fault in a bugfix release? 
 
_______ to _______ 
 

• What would you deem as a most likely probability for correcting this fault? 
 
________ 

 
• Assuming the fault is detected in this phase, what is the probability of correcting 

this fault in the NEXT main release? 
 
_______ to _______ 
 

• What would you deem as a most likely probability for correcting this fault? 
 
________ 
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Questions about the consequences and criticality of the fault 
 

For this particular fault, answer the following questions using the following scale, 
  
1 – Strongly agree 2 – Agree  3 – Not certain 4 – Disagree 5 – Strongly disagree 
 

 
Question: 
        

1. To fix this fault would be of the highest possible priority  1 2 3 4 5 
 � � � �            � 

 
 
        

2. This fault would be very expensive to fix if it were not  1 2 3 4 5 
discovered before delivery                                                         � � � �            � 

 
 

        
3. This fault would have caused system failures   1 2 3 4 5 

(e.g., data inconsistencies) in the production system   � � � � � 
and would have had a critical negative impact on the  
correct operation of the COS system 

 
 

 
4. This fault would have had a critical negative impact   1 2 3 4 5 

on the stability of the COS system, and would thus   � � � � � 
have caused system crashes in the production system 

 
 
   
 
5. System failures (in the production system) caused by  1 2 3 4 5 

this fault would result in substantial costs    � � � � � 
for the users 

 
 
 
 
6. System failures (in the production system) caused by  1 2 3 4 5 

this fault would result in substantial costs    � � � � � 
for the development team 
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Appendix E: Interview procedure 
 

 
 
 
 
 
 
 

 
• Explain the motivation for doing this (read letter of motivation) 
• Explain how the CE calculations will work, as discuss potential sources of bias with the  interviewee 
• For each interviewee, ask first questions regarding those faults that this person found. Then ask the 

questions for the faults that some of the other developers found (we assume that they have sufficient 
knowledge of each fault to give reasonable estimates). 

 
For each fault: 
• Present the fault report, coverage report etc to the developer. Let them study it to refresh their memory. 
• Read introduction of question.  
 
For questions regarding the fault detection costs:  
• Ask what are the typical verification activities that would be performed when the given fault being 

considered is detected in each of the phases (Integration testing, System testing, System Integration testing, 
Acceptance Testing, Production). For example, if a fault is detected in the production system (e.g., by 
causing a failure discovered by a user), there might be a user inquiry to a technical support help desk, who 
record the problem, then someone determines whether this is a fault, classifies it, etc, etc. Remind the 
interviewee about other activities that were mentioned in previous interviews or by the test manager, if any.  
Make a note of the type of activities mentioned. 

• Emphasize that we are interested in practical minimum and maximum values. Explain these values by 
means of the visualization of the response mode.  

• Ask: From your experience, in which practical situations would the detection effort be very high? What 
would be then a practical maximum value for the correction effort of the current fault?  

• Ask: From your experience, in which practical situations would the detection effort be very low? What 
would be then a practical minimum value for the detection effort of the current fault?  

• Ask: Is the most likely value closer to the minimum or the maximum? What would you deem to be the most 
likely value for the current fault?  

 
For questions regarding the fault correction costs:  
• Ask what are the typical activities that would be performed when the given fault is corrected in each of the 

phases (Integration testing, System testing, System Integration testing, Acceptance Testing, Production). For 
example, is a CR created, how is it allocated to developers, what quality assurance activities take place, etc. 
Remind the interviewee about other activities that were mentioned in previous interviews or by the test 
manager, if any. Make a note of the type of activities mentioned. 

• Emphasize that we are interested in practical minimum and maximum values. Explain these values by 
means of the visualization of the response mode.  

• Ask: From your experience, in which practical situations would the correction effort be very high? What 
would be then a practical maximum value for the correction effort of the current fault?  

• Ask: From your experience, in which practical situations would the correction effort be very low? What 
would be then a practical minimum value for the correction effort of the current fault?  

• Ask: Is the most likely value closer to the minimum or the maximum? What would you deem to be the most 
likely value for the current fault?  

 
For questions regarding fault probabilities: 
• Ask what are the factors that would affect the likelihood of detecting a fault in each of the phases 

(Integration testing, System testing, System Integration testing, Acceptance Testing, Production). 
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Appendix F: Visual Aid 1 
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Appendix G: Visual Aid 2 
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Appendix H: Quantitative results from the additional unit testing 
 

CLASS FAULT 
PROB. JUSTIFICATION FAULTS FOUND COVERAGE 

BEFORE 
COVERAGE 
AFTER 

EFFORT 
SPENT  

% 
INCREASE 
IN TEST- 
COVERAGE

AgreementContainerConverter 0.929  

1. A 
nullPointerException is 
generated because of 
the use of the wrong 
API. This is corrected 
in a CR.  

Conditionals: 62.5 
% 
Statements: 80 % 
Methods: 85.7 % 
Total: 77.8 % 

Conditionals: 
100 % 
Statements: 
100 % 
Methods: 100 
% 
Total: 100 % 

3 hrs. 22.2 % 

CleanupFilesMDBean 0.929 

Not tested due to 
huge workload 
developing 
mocks to test 
trivial stuff. Good 
coverage initially.

   2 hrs.  

FileResult 0.929 
DataHolder 
without logic and 
full coverage. 

     

AgreementDtoStatus 0.929 DTO, no logic to 
test.       

AgreementMemberDtoStatus 0.929 DTO, no logic to 
test.       

ChordiantUtil 0.929 
DataHolder 
without logic to 
test.  

     

ExternalTransactionInitialData 0.929 
DataHolder 
without logic and 
full coverage. 

     

ProductOfferRuleAssembler 0.929  

1. Found due to better 
unit test coverage. Also 
found during system 
test. 

Conditionals: 41.7 
% 
Statements: 51.3 %
Methods: 50 % 
Total: 48.4 % 

Conditionals: 
100 % 
Statements: 
100 % 
Methods: 100 
% 
Total: 100 % 

8.5 hrs.  51.6 % 

ModifiableAgreement 0.929 

Two exceptions 
are not tested. To 
test these would 
only involve 
testing the 
mocking. Not 
interresting. 

 

Conditionals: 92.9 
% 
Statements: 82.9 %
Methods: 100 % 
Total: 87.3 % 

Conditionals: 
100 % 
Statements: 
94.3 % 
Methods: 100 
% 
Total: 96.4 % 

2 hrs.  9.1 % 

ProductOfferSenderBase 0.929 Test class, shall 
not be tested      

DealerInfoDto 0.929 DTO, no logic to 
test       

DealerIdDto 0.929 DTO, no logic to 
test.       

AgreementContainer 0.929 
DataHolder 
without logic to 
test.  

     

ExternalTransactionRepository 0.9 Interface      

ExternalTransactionLogException 0.9 Exception, no 
logic      

ExtrenalTransactionPaymentException 0.9 Exception, no 
logic      

ExternalTransactionValidationException 0.9 Exception, no 
logic      

ExternalTransactionException 0.9 Exception, no 
logic      

CommissionReportService 0.9 Interface      

OrderInformation 0.871 Did not have time 
to test more.   

Conditionals: 44.9 
% 
Statements: 56.6 %
Methods: 61.5 % 
Total: 53.8 % 

Conditionals: 
64 % 
Statements: 
75.1 % 
Methods: 
85.2 % 
Total: 72.8 % 

7 hrs.  19 % 
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ProductOfferValidator 0.871 

Test coverage 
was initially 
alright (91%). 
Added a few 
extra tests, but 
after a while I got 
problems with the 
making of the 
setup to test some 
of the exception 
handling.  
The class is, in 
my opinion, too 
complex at the 
moment and has a 
lot to do. Very 
hard to mock 
everything. It is 
possible that 
some of the 
exception 
handling no 
longer can 
happen in 
production.  

 

Conditionals: 87.5 
% 
Statements: 91.6 %
Methods: 100 % 
Total: 91 % 

Conditionals: 
91.7 % 
Statements: 
94 % 
Methods: 100 
% 
Total: 93.7 % 

4 hrs.  2.7 % 

AgreementRepository 0.871 

This class was 
not tested due to 
the fact that 
others were going 
to do large 
changes to it at 
the same time the 
extensive unit 
testing where 
done. The people 
who did changes 
to the class did 
not generate any 
reports before 
this.  

     

ProductOfferServiceBean 0.871 

Good unit test 
coverage, only 
trivial code / 
empty methods 
lacking tests.  

     

EurekaServiceBean 0.871 

Huge bean, 
which’s only 
logic (with a 
couple of 
exceptions), is 
situated in 
converter classes. 
For that reason I 
chose to look into 
the converter 
classes (with 
same fault 
probability) and 
skip this class.  

 

Conditionals: 39.7 
% 
Statements: 22.9 %
Methods: 25.7 % 
Total: 24.5 % 

Conditionals: 
39.7 % 
Statements: 
22.9 % 
Methods: 
25.7 % 
Total: 24.5 % 

3 hrs.  0 % 

StructToDtoConverter 0.871   

Conditionals: 67.4 
% 
Statements: 82.2 %
Methods: 88.2 % 
Total: 77.7 % 

Conditionals: 
68.9 % 
Statements: 
83.2 % 
Methods: 
88.2 % 
Total: 78.8 % 

4 hrs. 1.1 % 

DtoToStructConverter 0.871  

1. A conversion error 
4. Minor null-value 
handling issues 
This class and the one 
above 
(DtoToStructConverter) 
were first put together 
in one report. This was 
due to the fact that the 

Conditionals: 80.9 
% 
Statements: 89.8 %
Methods: 89.8 % 
Total: 87.3 % 

Conditionals: 
85.3 % 
Statements: 
92.9 % 
Methods: 92 
% 
Total: 90.9 % 

16 hrs. 3.6 % 
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somewhat belong 
together. I made a 
generic class called 
ConverterTestHelper, 
that is to be used for all 
tests of converting 
(This class is at the 
moment,  as in 3 weeks 
after the extended unit 
test phase, being used 
other places as well. 
Because this new class 
uses reflection it will 
also catch up on future 
faults that will be 
introduced in 
convertings. 
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Appendix I: Cost-effective calculations per fault per developer 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Name Dev. 2 

Exp. COS: 6 

Exp. 
Telenor: 

6 

  

  

 

Phase x PDx,i CDx,i PCbf,x,i CCbf,i PCnmr,x,i CCnmr,i PCx,i CCx,i  

 L M H L M H L M H L M H L M H L M H L M H L M H  

S. test 1 1 1 3 6 9 0 0 0 16 18 20 0 0 0 16 18 20 1 1 1 9 10 15 15.2 

S. I. test 0 0.1 0 3 6 9 0 0 0 16 18 20 0 0 0 16 18 20 1 1 1 9 10 15 0.8 

V. C. test 0 0 0 6 9 12 0 0 0 16 18 20 0 0 0 16 18 20 1 1 1 9 10 15 0 

A. test 0 0 0 6 9 12 1 1 1 16 18 20 0 0 0 16 18 20 0 0 0 12 15 18 0 

Prod. 0 0 0 9 13 14 1 1 0.7 16 18 20 0.2 0.2 0.3 16 18 20 0.15 0.2 0.25 16 18 20 0 

Total Cost Saved 16 

Fault #1 CE for developer 1 
 

Name Dev. 2 

Exp. COS: 6 

Exp. 
Telenor: 

6 

  

  

 

Phase x PDx,i CDx,i PCbf,x,i CCbf,i PCnmr,x,i CCnmr,i PCx,i CCx,i  

 L M H L M H L M H L M H L M H L M H L M H L M H  

S. test 1 1 1 1 2 3 0 0 0 3 4 8 0 0 0 1 2 4 1 1 1 1 2 4 4 

S. I. test 0 0 0 2 3 4 0 0 0 3 4 8 0 0 0 1 2 4 1 1 1 1 2 4 0 

V. C. test 0 0 0 2 3 4 0 0 0 3 4 8 0 0 0 1 2 4 1 1 1 3 4 8 0 

A. test 0 0 0 2 3 4 0 0 0 3 4 8 0 0 0 1 2 4 1 1 1 3 4 8 0 

Prod. 0 0 0 8 10 16 0 0 0 3 4 8 0 0 0 1 2 4 1 1 1 6 8 16 0 

Total Cost Saved 4 

Fault #2 for developer 1 

Name Dev. 2 

Exp. COS: 6 

Exp. 
Telenor: 

6 

  

  

 

Phase x PDx,i CDx,i PCbf,x,i CCbf,i PCnmr,x,i CCnmr,i PCx,i CCx,i  

 L M H L M H L M H L M H L M H L M H L M H L M H  

S. test 0.5 0.6 0.9 2 4 6 0 0 0 4 6 8 0 0 0 4 6 8 1 1 1 4 6 8 6 

S. I. test 0.1 0.15 0.2 2 4 6 0 0 0 4 6 8 0 0 0 4 6 8 1 1 1 4 6 8 1.5 

V. C. test 0.1 0.15 0.2 4 6 8 0 0 0 4 6 8 0 0 0 4 6 8 1 1 1 6 8 10 2.1 

A. test 0 0.05 0.15 4 6 8 0 0 0 4 6 8 0 0 0 4 6 8 1 1 1 6 8 10 0.7 

Prod. 0 0.05 0.15 4 6 8 0 0 0.2 4 6 8 0 0 0 4 6 8 0.8 0.9 1 14 16 20 1.05 

Total Cost Saved 11.35 

Fault #3 for developer 1 
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Name Dev. 2 

Exp. COS: 6 

Exp. 
Telenor: 

6 

  

  

 

Phase x PDx,i CDx,i PCbf,x,i CCbf,i PCnmr,x,i CCnmr,i PCx,i CCx,i  

 L M H L M H L M H L M H L M H L M H L M H L M H  

S. test 0 0.01 0.1 3 3 6 0 0.04 0.1 4 5 8 0 0 0 4 5 8 0.9 0.96 1 8 8 16 0.1088 

S. I. test 0.8 0.85 0.9 4 5 10 0 0.04 0.1 4 5 8 0 0 0 4 5 8 0.9 0.96 1 8 8 16 10.948 

V. C. test 0.06 0.08 0.1 5 6 10 0 0.04 0.1 4 5 8 0 0 0 4 5 8 0.9 0.96 1 8 10 16 1.264 

A. test 0.03 0.04 0.1 5 6 10 0 0.04 0.1 4 5 8 0 0 0 4 5 8 0.9 0.96 1 9 10 18 0.632 

Prod.  0 0.02 0 5 6 10 1 1 1 4 5 8 0 0 0 4 5 8 0 0 0 16 18 24 0.22 

Total Cost Saved 13.1728 

Fault #4 for developer 1 

Name Dev. 2 

Exp. COS: 6 

Exp. 
Telenor: 

6 

  

  

 

Phase x PDx,i CDx,i PCbf,x,i CCbf,i PCnmr,x,i CCnmr,i PCx,i CCx,i  

 L M H L M H L M H L M H L M H L M H L M H L M H  

S. test 1 1 1 3 6 9 0 0 0 16 18 20 0 0 0 16 18 20 1 1 1 9 10 15 15.2 

S. I. test 0 0.1 0 3 6 9 0 0 0 16 18 20 0 0 0 16 18 20 1 1 1 9 10 15 0.8 

V. C. test 0 0 0 6 9 12 0 0 0 16 18 20 0 0 0 16 18 20 1 1 1 9 10 15 0 

A. test 0 0 0 6 9 12 1 1 1 16 18 20 0 0 0 16 18 20 0 0 0 12 15 18 0 

Prod. 0 0 0 9 13 14 1 1 0.7 16 18 20 0.2 0.2 0.3 16 18 20 0.15 0.2 0.25 16 18 20 0 

Total Cost Saved 14.4 

Fault #1 CE for developer 2 
 

Name Dev. 1 

Exp. COS: 2 

Exp. Telenor: 6 

  

  

 

Phase x PDx,i CDx,i PCbf,x,i CCbf,i PCnmr,x,i CCnmr,i PCx,i CCx,i  

 L M H L M H L M H L M H L M H L M H L M H L M H  

S. test 1 1 1 2 3 4 0 0 0 16 20 24 0 0 0 4 4 8 1 1 1 4 4 8 7 

S. I. test 0 0 0 2 3 4 0 0 0 16 20 24 0 0 0 4 4 8 1 1 1 4 4 8 0 

V. C. test 0 0 0 4 6 8 0 0 0 16 20 24 0 0 0 4 4 8 1 1 1 4 4 8 0 

A. test 0 0 0 4 6 8 0 0 0 16 20 24 0 0 0 4 4 8 1 1 1 16 20 24 0 

Prod.  0 0 0 8 10 12 0 0 0.2 16 20 24 0 0 0 4 4 8 0.8 0.9 1 16 20 24 0 

Total Cost Saved 7 

Fault #2 CE for developer 2 
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Name Dev. 1 

Exp. 
COS: 

2 

Exp. 
Telenor: 

6 

  

  

 

Phase x PDx,i CDx,i PCbf,x,i CCbf,i PCnmr,x,i CCnmr,i PCx,i CCx,i  

 L M H L M H L M H L M H L M H L M H L M H L M H  

S. test 0.04 0.05 0.06 8 12 16 0 0 0 24 27 32 0 0 0 1 1 2 1 1 1 1 1 2 0.65 

S. I. test 0.04 0.05 0.06 16 20 24 0 0 0 24 27 32 0 0 0 1 1 2 1 1 1 8 8 12 1.4 

V. C. 
test 

0.04 0.05 0.06 16 20 24 0 0 0 24 27 32 0 0 0 1 1 2 1 1 1 8 8 12 1.4 

A. test 0.04 0.05 0.06 24 28 32 0 0 0 24 27 32 0 0 0 1 1 2 1 1 1 24 27 32 2.75 

Prod. 0.75 0.8 0.95 24 28 32 0.08 0.1 0.12 24 27 32 0.08 0.1 0.12 1 1 2 0.7 0.8 0.9 24 27 32 41.92 

Total Cost Saved 48.12 

Fault #4 CE for developer 2 

Name Dev. 1 

Exp. COS: 2 

Exp. Telenor: 6 

  

  

 

Phase x PDx,i CDx,i PCbf,x,i CCbf,i PCnmr,x,i CCnmr,i PCx,i CCx,i  

 L M H L M H L M H L M H L M H L M H L M H L M H  

S. test 0.04 0.05 0.06 10 14 18 0 0 0 26 28 34 0 0 0 3 3 4 1 1 1 3 3 4 0.85 

S. I. test 0.04 0.05 0.06 18 22 26 0 0 0 26 28 34 0 0 0 3 3 4 1 1 1 6 6 8 1.4 

V. C. test 0.04 0.05 0.06 18 22 26 0 0 0 26 28 34 0 0 0 3 3 4 1 1 1 6 6 8 1.4 

A. test 0.04 0.05 0.06 24 28 32 0 0 0 26 28 34 0 0 0 3 3 4 1 1 1 26 28 34 2.8 

Prod. 0.75 0.8 0.95 24 28 32 0.08 0.1 0.12 26 28 34 0.08 0.1 0.12 3 3 4 0.7 0.8 0.9 26 28 34 42.8 

Total Cost Saved 49.25 

Fault #3 CE for developer 2 
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