
UNIVERSITY OF OSLO

Department of Informatics

RBC: A Relevance

Based Caching

Algorithm for P2P

Access Patterns

Master thesis

Kristoffer Høegh

Mysen

9th July 2007

3

Preface

This Master Thesis is written at the Distributed Multimedia Systems Research

Group at the Department of Informatics, University of Oslo, between August 2006

and August 2007.

I want to give my special thanks to both of my supervisors, Vera Goebel and Karl-

André Skevik. They have both given me outstanding advices and shown great pa-

tience throughout this process.

Kristoffer Høegh Mysen

University of Oslo

July, 2007

i

Abstract

The emerging of content providers such as YouTube induces a rapidly increas-

ing demand for multimedia streaming, which augments the network resource con-

sumption. Current content distribution networks however are not suited for the

high quality video streaming we can expect in the future. Nevertheless, Peer-to-

Peer (P2P) networking ensures a high degree of scalability and is a possible solu-

tion. On the other hand, P2P also imposes higher resource requirements on the end

users. The end users have to use disk access time and CPU resources in order to

serve requests. This resource consumption can reduce the playback quality, and it

is therefore desirable to reduce the resource cost of P2P networking. One method

is to employ caching.

While P2P networking seems promising with respect to scalability issues, it also

creates traffic patterns that make current caching strategies insufficient. This thesis

examines different caching techniques and their performance with P2P traffic pat-

terns. These differ from regular patterns since clients request individual blocks of

a file from multiple providers, instead of downloading the file as a whole from one

provider alone.

In this thesis we show that existing caching algorithms are inefficient in combin-

ation with P2P multimedia streaming. Multiple difficulties associated with P2P

traffic patterns have been detected. To solve these problems, we propose a new and

improved caching technique called Relevance Based Caching (RBC). RBC uses

prefetching, in which the most relevant blocks are cached. The caching algorithm

identifies the P2P access pattern, and together with the popularity of the individual

blocks and the files as a whole, it calculates relevance values for each block. We

show that by using this algorithm, we obtain a good performance, without exerting

too high resource demands on the end users.

Contents

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Problem Description . 2

1.3 Outline . 3

2 Distributing Multimedia Content 5

2.1 Multimedia Content . 7

2.1.1 Multimedia Characteristics 7

2.1.2 General Multimedia Use and End User Resources 8

2.2 Streaming . 9

2.2.1 Protocols Used for Multimedia Streaming 9

2.2.2 Streaming Requirements 10

2.3 Network Architectures . 12

2.3.1 Content Distribution Networks 12

2.3.2 Peer-to-Peer . 14

2.3.3 The SPP Architecture . 18

2.4 Caching . 19

2.4.1 Caching Techniques for Streaming Media 20

2.4.2 Memory Caching . 21

2.5 Summary . 23

3 Existing Caching Algorithms 25

3.1 Block-level Caching . 25

3.1.1 First-In First-Out Cache Replacement 25

3.1.2 Least Frequently Used Cache Replacement 26

iv CONTENTS

3.1.3 Least Recently Used Cache Replacement 26

3.1.4 Least/Most Relevant for Presentation Cache Replacement 27

3.2 Stream-Dependant Caching . 30

3.2.1 Interval Caching/Generalized Interval Caching 30

3.2.2 The BASIC Cache Replacement Algorithm 31

3.3 Summary . 32

4 Performance Analysis and Evaluation of Existing Caching Algorithms 33

4.1 Simulation Description . 33

4.1.1 Implementation . 34

4.1.2 Evaluation Method . 34

4.1.3 Metrics . 35

4.1.4 Factors . 35

4.1.5 Workloads . 36

4.2 Simulations . 38

4.2.1 Access Pattern . 39

4.2.2 Analysis of The Random Eviction Algorithm 40

4.2.3 Analysis of the LFU algorithm 44

4.2.4 Analysis of the LRU algorithm 46

4.3 Summary . 49

5 Design of a P2P Multimedia Streaming Caching Algorithm. 51

5.1 Design Objectives . 51

5.2 General Design . 52

5.3 Cost Prediction . 57

5.4 Summary . 60

6 Performance Analysis and Evaluation of the RBC Algorithm. 61

6.1 Simulation Description . 61

6.1.1 Implementation . 61

6.1.2 Metrics . 62

6.1.3 Factors . 62

6.1.4 Workloads . 63

6.1.5 Performance Goal . 64

CONTENTS v

6.2 Simulations . 64

6.2.1 Results from Default Setup 65

6.2.2 Experiments with Cache Sizes 67

6.2.3 Experiments with Relevance R 69

6.2.4 Experiments with Relevance A 71

6.2.5 Experiments with Window Sizes 73

6.2.6 Experiments with Combinations of Relevance Values . . . 75

6.2.7 Verification of Results using Workload 3 77

6.3 Summary . 79

7 Conclusions 81

7.1 Contributions . 81

7.1.1 Design and Implementation 81

7.1.2 Evaluation . 82

7.2 Critical Assessment . 83

7.3 Future Work . 83

Bibliography 84

A List of Abbreviations 89

B Running The Simulations 91

C Source Code 93

D The CD 101

List of Figures

2.1 Network traffic increase. 5

2.2 Network factors. 11

2.3 High Level Factors [25]. 14

2.4 Decentrialized P2P achitecture. 15

2.5 Client-Server request pattern. 15

2.6 P2P request pattern. 16

2.7 SPP architecture [32]. 19

2.8 Client-Server interaction. 21

2.9 P2P interaction. 22

3.1 LRU cache replacement. 27

3.2 L/MRP Client - Server interaction. 28

3.3 L/MRP . 28

3.4 Results from simulations with Q-L/MRP [17]. 29

3.5 Interval Caching . 30

4.1 A section of the trace file for Workload 1. 37

4.2 A section of the log file for Workload 2. 38

4.3 Showing how the client gets a block through a SCC. 38

4.4 Showing an access pattern on one client from Workload 1. 39

4.5 Showing an access pattern on one client from Workload 2. 40

4.6 Workload 1, cache size=102, Random Eviction. 41

4.7 Workload 1, cache size=204, Random Eviction. 42

4.8 Workload 2, cache size=102, Random Eviction. 43

4.9 Workload 1, cache size=102, LFU. 44

viii LIST OF FIGURES

4.10 Workload 1, cache size=204, LFU. 45

4.11 Workload 2, cache size=102, LFU. 46

4.12 Workload 1, cache size=102, LRU. 47

4.13 Workload 1, cache size=204, LRU. 48

4.14 Workload 2, cache size=102, LRU. 49

5.1 Relevance values connected to blocks in the cache. 53

5.2 A sorted list with the relevance values Rg 54

5.3 Five different peers with different connection speeds. 55

5.4 Request pattern from five peers. 56

5.5 Cache replacement in RBC. 57

5.6 Detailed description of the RBC algorithm. 58

5.7 Steps to calculate Rtotal. 58

6.1 Workload 1, default setup, RBC. 66

6.2 Workload 2, default setup, RBC. 67

6.3 Workload 1, Cache Size=204, RBC. 68

6.4 Workload 2, Cache Size=204, RBC. 69

6.5 Workload 1, Relevance R=2, RBC. 70

6.6 Workload 2, Relevance R=2, RBC. 71

6.7 Workload 2, Maximum Relevance A=20, RBC. 72

6.8 Workload 2, Relevance A Increase=0,10, RBC. 73

6.9 Workload 2, Window Size=40, RBC. 74

6.10 Workload 2, Window Size=10, RBC. 75

6.11 Workload 2, Relevance R only, RBC. 76

6.12 Workload 2, Relevance R and G, RBC. 77

6.13 Workload 2, Relevance R and A, RBC. 78

6.14 Workload 3, default setup, RBC 78

6.15 Workload 3, Window Size=10, Relevance A Increase=0.10, RBC. 79

7.1 Cache replacement proposal. 84

B.1 An example of a Gnuplot script. 92

List of Tables

2.1 Characteristics of typical multimedia streams [12] 7

5.1 Cost Analysis of RANDOM, LFU, LRU and RBC. 60

6.1 Formulas describing when we have cache misses with RBC. . . . 79

Chapter 1

Introduction

1.1 Background and Motivation

The demand for web content is increasing every day as people begin to use the

Internet as part of their daily lives. While people register the increasing availability

of the technology around them, they do not see the limitations of the Internet as

it is composed today. As users become more and more aware of the possibilities

Internet offers, an ever-increasing number of people start to use it. We make our

own homepages where we upload our photos, videos and other multimedia data,

which subsequently are distributed to large consumer populations. This imposes

new requirements on the underlying distribution architecture.

The main issue with today’s Internet is that the architecture is not built for the heavy

load many servers are experiencing today. All user requests for a single web page

or any other content are generally handled by a single server. This approach is not

scalable. When a large user population is requesting the same content from one site

at the same time, server resources like CPU capacity or bandwidth (BW) become

the bottleneck. Another problem is the distance between a web server and a web

client. When a user is requesting some content, he/she is not aware of its actual

location because this is transparent. If the content is located at a web server in the

USA and the user is located in Europe, the distance leads to significant delays. This

happens even if the server has enough resources to handle all its incoming requests.

Different approaches have been taken to meet the increasing demand of web con-

tent. One obvious approach, albeit a costly one, would be to simply increase the

available BW or CPU resources, or add other physical measures to secure a good

quality of service (QoS). These steps however, entail a high cost for the content

providers resulting in higher prices for the content consumers. Consumers will

generally choose a best-effort service if it is cheaper.

2 Introduction

Today several evolutionary steps have been taken to ease the server side’s bottle-

neck, all at which seem to work. One step is to distribute load at a centralized

server site, by establishing server farms where each web server shares the burden

of serving requests. This is normally handled by a load balancer which dispatches

the request to a server with enough available resources. Another step that is cur-

rently under intense investigation is distributing the content and employing cent-

ralized services. The basic idea is to move the content closer to the user by either

server replication or Web caches. Web caches work as a temporary storage space

for requested content and therefore reduce network traffic and retrieval time. The

final step for solving the increasing demand for Web content is to use Peer-to-Peer

(P2P) distribution architectures. P2P distribute the content and the services among

the end users, having them participating with their resources. By doing this, the

resource load is spread over a much larger user population, which results in a very

scalable architecture [29].

1.2 Problem Description

Multimedia content is increasing in popularity [24]. The demand for this type of

content is growing every day, although the current content distribution networks

are not suited for the heavy high quality multimedia streaming we can expect in

the future. P2P networking is one solution to this problem. By using end user re-

sources, it is possible to achieve a high degree of scalability.

Compared to servers or proxy caches, end users have a much more limited sup-

ply of resources. While a server or proxy cache is only concerned with serving

requests, end users have to simultaneously run playback with a proper quality.

However, the bottleneck at an end user is not the high CPU resource consumption

enforced by playback, but the disk retrieval times imposed by serving requests. We

measure disk access in ms, while we measure memory access in ns, which is a ratio

of 1:1000000. Disk I/O takes 1000000 times longer, and is more CPU consuming.

Therefore end user P2P applications must keep the relevant data close to hand,

stored in the memory.

There already exist multiple caching strategies, developed to decrease disk I/O

resource requirements, and to decrease response time. However, P2P multimedia

streaming creates new traffic patterns which make current caching strategies insuf-

ficient. This thesis’ objectives are:

• 1. Identify shortcomings of existing caching strategies when used with P2P

multimedia streaming.

1.3 Outline 3

• 2. Propose a new caching strategy especially designed for P2P traffic pat-

terns.

We will identify the shortcomings of existing caching strategies by implementing

a simulation environment for each of the selected strategies. Then we will evaluate

the results with respect to how much disk I/O we are able to avoid. Combining

these results with the learnings from the theoretical part of this thesis, we will

design, implement and analyze a new caching strategy, streamlined for use with

P2P multimedia streaming.

1.3 Outline

We begin the work for this thesis by creating a theoretical basis for designing,

implementing and evaluating a new P2P caching algorithm. Chapter 2 starts by

identifying different contents available in the Internet today, with a special focus

on multimedia content, as this is the content type we will work with throughout this

thesis. Then we give an overview of streaming characteristics and requirements,

and use this as a basis for evaluating different network architectures developed for

content distribution. Within the presented architectures, we will emphasize P2P.

Finally, we explain caching and different caching techniques used in combination

with multimedia streaming.

In Chapter 3, we explain a selection of already existing caching algorithms de-

signed for Client-Server architectures. We introduce block-level caching algorithms

and stream-dependant caching algorithms. Finally, we identify shortcomings of the

algorithms when these are used together with P2P multimedia streaming.

In Chapter 4, we give a performance analysis and evaluation of existing algorithms.

First, we explain how we implemented the different algorithms, and illustrate spe-

cial design decisions we have made. Then we introduce the evaluation method,

metrics, factors and workloads, followed by the different simulations and a sum-

mary where the obtained results are evaluated and discussed.

In the subsequent chapter, Chapter 5, we present our design of a caching algorithm

for use with a P2P-based architecture, which we call Relevance Based Caching

(RBC). The chapter starts by explaining the general ideas underlying our concept,

then we give a small example along with further description and cost prediction.

The chapter is concluded by a short summary.

4 Introduction

Then, in Chapter 6, we provide the performance analysis and evaluation of the

RBC algorithm. Here as well, we start by explaining how we implemented the al-

gorithm, then we illustrate the metrics, factors, new workloads and the performance

goal. Next, we show the results from the different simulations and conclude with a

summary of the chapter.

Finally, in Chapter 7 we draw some conclusions based on our results, summarize

the work on the thesis, and subject it to critical assessments. We also discuss future

work and contributions to this thesis.

Chapter 2

Distributing Multimedia Content

As multimedia content increases in popularity, it brings new challenges to the dis-

tribution architectures and the individual parts that compose them. Throughout this

chapter we will present different aspects which are challenging in order to distrib-

ute multimedia content. We start by giving a brief description of different content

available, for then to narrow our presentation to multimedia content and streaming.

Then we discuss different network architectures and caching.

Figure 2.1 Network traffic increase.

In the Internet, we have different types of content. We see new types of content

6 Distributing Multimedia Content

emerging as the available resources grow. In Figure 2.1, we show the increase

in BW usage for three different content categories. The graph is based on data

gathered in an article describing the current Internet traffic growth [24]. It shows

a sample of the increase in network traffic at the University of Waterloo. We use

this table as an indication of how much the different traffic increases with respect

to BW consumption. The categories are explained below:

• E-mail: E-mail has become an important communication channel for many

people. We have seen the creation of several E-mail services such as Hot-

mail [3], Gmail [2] and many more. These service providers offer E-mail

accounts with enough storage space for multiple GB, and covers the need

for most users. From Table 2.1, we see that E-mail typically utilize approx-

imately 1,5 % of the total BW. We also see that the increase is almost linear,

telling us that even today, E-mail would only utilize about 1,5 % of the avail-

able BW.

• World Wide Web: The World Wide Web (WWW) is a system of interlinked,

hypertext documents accessed via the Internet. This is traffic generated by

using regular web browsers. From Table 2.1, we see that this traffic has tra-

ditionally made up for over 50 % of the total BW usage. However, we see

that the ’Other’ traffic is taking over as the biggest BW consumer.

• Other: The other category involves both File Sharing and Multimedia Stream-

ing. File sharing can be done by many means. The methods for file sharing

are constantly changing. However, we see that P2P architectures have dom-

inated during the last years. The P2P file sharing applications have evolved

from being Client-Server based, like Napster [31], to having a decentrial-

ized architecture like we see with BitTorrent [11]. Streaming media lets users

watch or/and listen to multimedia content directly from a content provider.

Today most television broadcasters offer services where a user can watch

either live or stored content. We have also seen the immense popularity of

sites like YouTube [6], where users can upload homemade videos for others

to watch. This type of content is also included in the ’other’ tab of Table

2.1. Together with File sharing, this is the content which increases the most

today with regards to total BW usage in the Internet.

We see a large increase in the BW consumption of multimedia streaming. Multi-

media is often larger and has more requirements than other content such as HTML.

This implies new requirements on content providers. In order to look at the require-

ments imposed by this increase in multimedia streaming, we look at multimedia

characteristics and end user behavior in the next section.

2.1 Multimedia Content 7

2.1 Multimedia Content

From the previous section, we see that File sharing and Streaming media, has the

highest total BW increase of the content. This thesis is directed towards streaming

media, and we lay our emphasis on this subject. However, most ideas and practices

discussed throughout this paper, can also be applied to file sharing. To better under-

stand what the increase in multimedia streaming implies, we illustrate multimedia

characteristics next. When we write about a stream in this section, this refers to a

stream of data from disk to an application of some sorts.

2.1.1 Multimedia Characteristics

Multimedia content is a combination of content forms such as text, audio, anima-

tion and video. Multimedia content is continuous and time based. We can say it is

continuous because the content is represented as sequences of discrete values that

replace each other over time. For example, when watching a movie, you actually

watch an image array where each image in the array is presented continuously. It

is time based, because it matters at which time an element in a stream is played. If

some elements are played too early or too late, the multimedia object is no longer

valid. This means the multimedia object is no longer in its original form.

Data rate (approx-

imate)

Sample or frame

size

frequency

Telephone speech 64 Kbps 8 bits 8000/sec

CD-quality sound 1,4Mbps 16 bits 44 000/sec

Standard TV video

(uncompressed)

120 Mbps up to 640 x 480

pixels x 16 bits

24/sec

Standard TV

video (MPEG-1

compressed)

1.5 Mbps vaiable 24/sec

HDTV video (un-

compressed)

1000-3000 Mbps up to 1920 x 1080

pixels x 24 bits

24 -60/sec

HDTV video

(MPEG-2 com-

pressed)

10-30 Mbps variable 24-60/sec

Table 2.1: Characteristics of typical multimedia streams [12]

Table 2.1 shows the data rate at which an application has to move data in order to

give a correct presentation. The rates range from 64 Kbps to 3000 Mbps, and this

shows us that all types of multimedia content, except telephone speech, demand

8 Distributing Multimedia Content

large amounts of resources. Not only do they put a heavy demand on either disk

I/O or network BW1, they are also CPU intensive as the content data has to be

transformed to fit the media at which it is displayed. The heavy demand imposed

by high data rates are often solved by compression methods like MPEG-1, MPEG-

2 and MPEG-4 [4]. However, compression puts extra demands on the CPU as we

now have to decompress the data.

2.1.2 General Multimedia Use and End User Resources

When a user watches multimedia data, indifferent to whether the content is stored

locally or is streamed2, he/she expects VCR-like behavior. For example, a user may

request various interactive services such as fast forward or jump to skip uninterest-

ing parts of a movie [21]. However, users spend most of their time in playback

mode while watching/listening to multimedia content [14].

In order to watch a multimedia stream, the stream has to first be loaded into main

memory. When streaming over the Internet, the data is stored directly in the main

memory, while if the stream is stored on disk, the CPU has to load the stream into

main memory. When the data is in the main memory, the CPU resources used to

play the data, are dependent on the compression type. The CPU has to decompress

each frame before it is shown. The CPU cost per second can then be expressed as

the number of frames to be shown each second multiplied with the decompression

cost, as shown in Formula 2.1. From Coulouris, Dollimore and Kindberg et al [12].

we have that playing a standard TV video stream requires at least 10 % of the CPU

capacity of a 400 MHz PC.

Fps ∗ DecompressionCost (2.1)

This is for a scenario with a regular Client-Server architecture, where all clients

access the same server. The clients only concern is to receive, decompress and play

the data. However, with the high demand on BW from multimedia data, we get

scalability issues using such an architecture. If one server has to serve high quality

multimedia data to thousands of clients, the outgoing BW would soon be saturated.

To solve this scalability issue, P2P3 technology is now used in multiple multimedia

streaming solutions such as GnuStream [20], Joost [22] and SPP [32]4. However,

with P2P the clients have to participate with their own resources.

If a user should both run playback and serve requests from other clients in a P2P

fashion, the CPU resources would not impose a bottleneck. With today’s CPUs,

1Depends on whether you are playing the content locally or from a content provider on the Web.
2Streaming refers here to retrieval of data from a location on the Web.
3P2P will be covered later in this chapter.
4SPP is covered later in this chapter.

2.2 Streaming 9

which have multiple GHz, a user can easily saturate their uplink without spoiling

the playback. While disk I/O does not impose any CPU bottleneck, it imposes a

great increase in response time. If a node gets a request, it would be significantly

slower to serve the request from the disk, rather than from main memory. This is

due to access time differences. We measure access time to disk in ms, while we

measure access time to main memory in ns [34], which is a ratio of 1:1000000.

Disk access is one million times slower than access to main memory. If a client is

serving other clients in a P2P fashion, and the client starts to get page faults due

to too high main memory usage, the disk I/O can actually ’spoil’ the playback. If a

page fault occurs, and the disk is busy reading some multimedia content, we get a

large delay in playback as the CPU has to wait for the page to get loaded into main

memory from disk.

We see that multimedia content has a high BW demand, and calls for new distribu-

tion architectures such as P2P. With P2P, the clients have to participate with their

own resources, and this transmits efficiency bottlenecks such as CPU and disk I/O

from the server. However, the large bottleneck is disk I/O, as this limits the outgo-

ing BW. This BW is needed by other clients to get a proper playback. To further

analyze multimedia streaming, we look at the concept of streaming in the next

chapter.

2.2 Streaming

In this section, we will describe what streaming is, and what requirements stream-

ing imposes on a network architecture or application. Streaming in this section and

throughout the rest of the thesis, refers to retrieving a stream of data through the

network interface, and not from disk. We start by giving a brief overview of proto-

cols used for multimedia streaming, and subsequently we address the requirements

of multimedia streaming.

2.2.1 Protocols Used for Multimedia Streaming

Several protocols have been developed to meet the requirements of multimedia

streaming, and one solution is to use multicast [28]. Multicast is a method for

sending content to many different receivers at the same time. To support this, por-

tions of the IP address space are reserved for multicast purposes, known as Class

D Internet addresses. This method has never had its breakthrough, for several reas-

ons. The most important reason is that it is very complex to deploy and manage

multicast at the network layer.

10 Distributing Multimedia Content

Instead of multicast, a combination of RTP, RTCP and RTSP is often used. The

real-time transport protocol (RTP) which is the bearer channel, and the RTP con-

trol protocol (RTCP), which is a separate signaling channel. Finally, we have the

real-time streaming protocol (RTSP) which is used to select and control a stream.

This protocol actually uses the RTP protocol to get the media stream it controls.

While the RTSP protocol is very similar to HTTP/1.1, it applies a number of new

methods and has a different protocol identifier. All the mentioned protocols often

work together when a user wants streaming media.

When a user watches or listens to a media stream, he/she is oblivious to the fact that

the media often consist of multiple streams. These streams have to be synchron-

ized or else the media experience will be unsatisfactory. We can have one stream

for video, one for text and one for audio to make up a presentation. In order to

time these three streams so that the complexity seems transparent for the user, we

need something to control layout and time. To do this the synchronized multimedia

integration language (SMIL) is often used. It is based on XML, and allows users

to create presentations including audio, video, image and animation features.

2.2.2 Streaming Requirements

Streaming refers to multimedia data with time constraints and continuous data flow

such as audio or video transmissions. Streaming has many requirements to ensure

a minimum quality. It is time critical, it needs support for random access or time

based access, and it needs high BW. From Table 2.1 we see the different data rate

requirements for the different media formats. A tendency is that as the available

end user BW increases, the content providers offer more content with higher qual-

ity and higher requirements.

We can divide the streaming requirements in two categories, i.e., application re-

lated requirements, and network related requirements. Application related require-

ments are requirements such as start-up delay and interactivity. The delay a user

tolerates before leaving a system, is variable. A solution to this is to broadcast

video with the knowledge of the user delay preference, which is proposed in [8].

With the amount of available BW today, the users become more demanding. New

and improved methods shorten start-up delay and set new standards for fast deliv-

erance of multimedia data. However, most users are aware of quality differences,

and often accept more delay when waiting for a high quality movie. Start-up delay

is often correlated with jitter. The faster an application can start presenting the con-

tent, the less time it has to fill a buffer. The smaller buffer an application has, the

more likely it is that a user experiences jitter. A user expects the same interactivity

as he/she is used to from watching a movie with their DVD player, or listening

to their song with a CD player. Both the streaming application and the receiving

2.2 Streaming 11

application need support for this, and we have protocols like RTSP to offer this

functionality.

With application related factors, a provider often has control both at the provid-

ing end, and at the end user. However, the content provider has no control of the

intermediate network between the provider and the end user. Multimedia stream-

ing imposes requirements that have to be met by this intermediate network. We

have adapted Figure 2.2 from [33] and made some adjustments to fit a scenario

with a content provider and an end user. As we see in Figure 2.2, there are several

factors that influence the received signal. Throughput, transit delay, jitter and error

rate are all factors that have to meet the demands imposed by the users receiving

streaming content.

Figure 2.2 Network factors.

• Throughput: The network has to offer the required BW in order to give an

end user a proper playback. Without enough throughput, the end user may

experience transit delay and jitter.

• Transit Delay: In theory, data should be transmitted instantly between one

point and another. However, several factors influence the transmission, res-

ulting in transit delay. First, we have the delay imposed by the medium

which the data is transmitted through. For example, optical fiber limits the

propagation to the speed of light. Finally, intermediate routers and other pro-

cessing impose a further delay. Each encountered router uses time to examine

and possibly change the header of a packet.

12 Distributing Multimedia Content

• Jitter: Jitter is the fluctuation of end-to-end delay from one packet to the

next packet within the same packet stream. This is very annoying for the

end user. In fact, an article discussing network requirements for multimedia

streaming states: ’end-user perception of audiovisual quality is more sensit-

ive to changes in jitter than to changes in delay and loss’[33].

• Error Rate: The transmission of multimedia content is time critical. The

application presenting the content to an end user needs to get the packets in

correct order to give a meaningful presentation to the user. This can be made

more resilient with buffering mechanisms. A buffer is filled with blocks be-

fore the playback is started. By doing this, the application has time to re-

arrange the blocks in the correct order, before starting playback.

In this and the previous section, we identify the characteristics of both multime-

dia content and streaming. We further identify important distribution requirements,

both at the application layer, and at the network layer. The network layer require-

ments have to be solved by the intermediate network architecture, and brings us to

the next section, which describes different architectures used for distributing mul-

timedia content.

2.3 Network Architectures

Today, we have a wide range of network architectures streamlined for content dis-

tribution. It all began with basic Client-Server based architectures and has evolved

to specialized Content Distribution Networks and P2P networks. In this section, we

will address three different approaches, i.e., Content Distribution Networks, P2P

networks, and finally a novel architecture called SPP.

2.3.1 Content Distribution Networks

The precise characterization of a CDN and Content are described in [25]. "The

term Content Distribution Network (CDN) implies a networked infrastructure that

supports the distribution of content. Content in this context consists of encoded

data or multimedia data, e.g. video, audio, documents, images, web pages, and

metadata, i.e., data about data. Metadata allows identifying, finding and managing

the multimedia data, and also facilitates the interpretation of the multimedia data.

Content can be pre-recorded or retrieved from live sources; it can be persistent or

transient data within the system. Distribution refers to the active retrieval or the

active transmission of information. The infrastructure has to provide communica-

tion support and ought to contain mechanisms that facilitate effective delivery or

2.3 Network Architectures 13

increase availability of content (such as caching, replication, prefetching)".

Content Distribution Networks (CDN) are scalable and utilize the already existing

bandwidth and resources of the Internet to meet multimedia streaming demands. It

is an architecture of Internet structures to make delivery of content as fast as pos-

sible. Without this architecture the requests go directly to the server, or sometimes

server farms, and they are often situated far from the client creating latency. CDNs

however, strive to spread the content across the network with the use of replicas of

each hosted item to make sure the requested content is close to the user. However,

when a user requests data, it is not enough to use information such as geographic

locations and network connectivity to choose the best replica to fetch. This can lead

to a client sending a request to an overloaded server. Instead a CDN must gather

dynamic information such as network load, load on the different replicas and other

dynamically changing facts. One can look at a CDN as a network of a widely dis-

persed network of caches, with some small differences. The content residing on the

routers are often not determined by user requests but by other algorithms, and the

caches are governed by a rule that sends user requests to the best possible cache to

retrieve content from, meaning the cache with the lowest retrieval time.

The whole idea behind CDNs is to distribute content in the network based on the

metadata of the content and the load on the network nodes5. This can be done

manually by doing system analysis. Based on this information, network admin-

istrators distribute content with the use of proxies and caches. This makes the

scalability costly and inaccurate. The ongoing research today on the future CDNs

aim to automate the CDN management especially with concern on network condi-

tions [25]. If the applications which create and modify content also automatically

distribute the content in the network in an efficient way based on the content’s

metadata, and these operations are also supported by the infrastructure, we call it

a Content Network (CN) instead of a CDN. This is to differentiate the ongoing re-

search from the systems focusing on distribution of content only.

The architecture of a CN is closely related to the kind of operations they support

and the way content is handled. However, we generally differentiate three classes

of operations, i.e., content management operations, CDN management operations

and delivery mechanisms. Content management and CDN managements control

the delivery mechanisms. For example, they can make a decision on where to de-

ploy a new replica, based on meta-data from the content and the user patterns.

CDNs provide an architecture where factors such as throughput, transit delay, jitter

and error rate can be controlled by network administrators. With the use of caches,

replication and prefetching, CDNs offer a high reliability and quality. However, this

5A network node refers to caches, servers and other deployed infrastructure.

14 Distributing Multimedia Content

Figure 2.3 High Level Factors [25].

infrastructure implies a high cost. This leads to the next subsection, describing P2P

networks.

2.3.2 Peer-to-Peer

In a peer-to-peer (P2P) network, the resources of the end users are utilized. This

means that every user of the network contributes, ideally. A P2P network does not

differentiate between servers and clients, instead all users serve as both clients and

servers and are referred to as nodes. However, in existing P2P networks today like

Napster [31], certain methods such as searching, are using a Client-Server model

and are prone to failure. However, completely decentrialized P2P networks exist as

shown in Figure 2.4, where the nodes do not rely on any infrastructure. One such

example is Gnutella [15].

P2P networks are very different from Client-Server networks. In a Client-Server

network, a multimedia stream is served sequentially start to end from one location

as show in Figure 2.5. In a P2P network however, a multimedia stream is served

from multiple sources as shown in Figure 2.6. This implies that P2P nodes have

to use some sort of buffer in order to reduce the error rate. Because a node is re-

ceiving the multimedia stream from multiple sources, there is no guarantee that the

blocks are arriving in the correct order. The sorting has to be done by the applica-

tion before the playback is started.

The interesting part of P2P networks is that all nodes provide resources, including

bandwidth, storage space, and CPU resources. In a Client-Server model, the clients

2.3 Network Architectures 15

Figure 2.4 Decentrialized P2P achitecture.

Node

Node

Node Node

Node

have to share a limited BW. While in a P2P network, the more connected nodes, the

higher aggregate available BW we have. This is because each node is contributing

with its uplink. While P2P is very scalable, it is also dependent on a large user pop-

ulation. If there are only a few nodes participating, the aggregated BW is too small

to serve multimedia data with a decent quality. This means that P2P architectures

can not guarantee a minimal throughput.

Figure 2.5 Client-Server request pattern.

Server

Client

3

2

1

4

5

Because the nodes function as intermediate network nodes, they impose a transit

delay and can cause jitter. We have seen from Section 2.1.2 that if the content is

16 Distributing Multimedia Content

served from disk, this is one million times slower than serving the same content

from main memory. This means that in order to reduce network delay, P2P nodes

have to keep the relevant content in main memory. With relevant content, we mean

the content other nodes are asking for. Because of the possibility of serving content

both from disk and from main memory, this fluctuation in serving time can result

in jitter.

In a Client-Server architecture, a user almost always has a guarantee that the con-

tent he/she is looking for is available. The content providers have full control of the

distribution, and want to keep end users happy by keeping content available. But

when a P2P architecture is used, a lot of responsibility is handed to the users. In

a purely decentralized P2P architecture, the client with all the blocks of the multi-

media stream could suddenly disappear, making the content unavailable.

Figure 2.6 P2P request pattern.

Node

Node

Node

Node

Node

Node

1

2
3

4

5

Next, we present an example of how P2P works in practice. We chose to present

this, as we later in this thesis are evaluating P2P caching algorithms. We use Bit-

Torrent [27] for this example, and the basis for the example is a lecture given at the

University of Oslo. In a BitTorrent session6, we have several elements, i.e., a web

server, a static metadata file, a tracker, an original downloader, and finally a web

browser with BitTorrent support. The web server hosts a torrent file which contains

the IP address of the tracker. The tracker, as the name implies, tracks all nodes, and

needs to know at least one node with the complete file. A node who wants to down-

load the file, accesses the web server with its web browser, and gets the IP address

of the tracker. When the node gets contact with the tracker, the tracker provides the

node with a list of active nodes called the peer set. This list is usually composed

6A session equals the distribution of a single or a set of files.

2.3 Network Architectures 17

of 40 leechers and seeds7. All nodes regularly report their state8 back to the tracker.

The initial file is broken into chunks, or blocks. To ensure the integrity of each

block, the torrent file contains a SHA1 hash for each piece. Each node particip-

ating in the P2P session sends reports regularly to the tracker. This report con-

tains information such as an unique node ID, IP, port, quantity of data uploaded

and downloaded, status9. Nodes connect with each other using full duplex TCP.

When connecting, the nodes exchange their list of blocks. Each time a peer has

downloaded a block and checked its integrity, it advertises that it has a new block

to its peer set. Two nodes communicating have two states, i.e., ’Interested’ and

’Chocked’. If a node is ’Interested’, it tells the connected node that it has a block

it wants. If a node is ’Chocked’, it simply tells the other node that it can not send

data at the time.

When a node selects which block to request next, it has multiple strategies to chose

between. The simplest strategy is to use a random selection. With this strategy, a

node simply selects a block randomly among the available blocks in the node set.

BitTorrent uses another strategy, called Rarest-first. With this strategy, the node

choses the least represented missing block in the node set. This maximizes the

minimum number of copies of any given block in each node set.

BitTorrent serves only five nodes in parallel to ensure efficiency. The five nodes are

selected from mainly two criterions, i.e., which nodes also serves us, and which

nodes offer the best download rates. BitTorrent also tries to optimize the node set,

by randomly unchoking a node to see if this node offers a better service.

While P2P offers a high scalability, it offers no guarantees for throughput, network

delay, jitter or error rate. These factors have to be satisfactory in order for the

playback to have the wanted quality. However, the BW requirements of multime-

dia streaming mandates a P2P approach. A single server cannot serve thousands of

high quality streams. It is costly to deploy network nodes throughout a network in

order to provide the needed BW. In the next chapter, we will look at a hybrid P2P

solution called SPP which combines both infrastructures like in a CDN, and P2P

cooperation.

7A seed is a node with the entire file, and a leecher is a node which is still downloading the file.
8Percentage of download.
9Started, completed, stopped.

18 Distributing Multimedia Content

2.3.3 The SPP Architecture

As CDN networks are designed today, we are seeing a high cost at the server side,

and a high network load. With a P2P architecture the load is distributed among all

the nodes, thus resulting at a lower cost spread throughout the network. However,

P2P networks do not have the reliability offered by CDNs. At the University of

Oslo, Skevik has developed an architecture which uses both P2P and the best fea-

tures of CDNs. This architecture is called SPP [32].

SPP makes use of caches when they are available. The caches are integrated in the

architecture to provide the same services as caches have in CDNs. The architecture

is a hybrid system that shares both some properties from WWW and BitTorrent.

As we have seen earlier with the BitTorrent example, the end users have to access

a web server in order to request content. However, instead of being redirected to

a tracker, the content is stored locally on the server, with connections optionally

made through a proxy cache that caches content for an entire site or ISP. SPP does

not have any search function or indexing, and is only concerned with transmitting

data.

The SPP architecture is shown in Figure 2.7. We see two P2P parts; one at either

side of a firewall. The lower consists of local host caches (LHCs). These LHCs are

located at end user computers, and can be associated to nodes in the P2P structure.

The SCC, or the Site Content Cache, functions as a dedicated cache, and can be in-

stalled to reduce network traffic. The SCC node is permanent, adding reliability to

the architecture, and it also creates clusters of close nodes. We see from the figure

that the SCC is the outgoing interface from a LAN, reducing the firewall problems

P2P architectures often face. The SCCs and the server also communicate in a P2P

fashion.

The SPP architecture is hierarchical. The server and all SCC nodes maintain in-

formation about blocks located at child nodes. A typical SPP operation would be:

A node that wants some content sends a request to the parent, whether it is a server,

a SCC or a LHC. If we had only a P2P structure, the node with the relevant content

could disappear, resulting in a content starvation. However, with static infrastruc-

ture like SCCs and servers, this is avoided. The parent replies with a set of peers,

having the requested content. This is similar to a tracker in the BitTorrent architec-

ture. If the parent is a SCC, and the SCC does not have the requested content, it

retransmits the request transparently to the server, and the content is retrieved.

SPP combines the scalability of P2P networks, and the reliability and trustworthi-

ness of CDNs. Through the use of infrastructure and BW of participating nodes, it

can guarantee the needed BW with both few and many participating nodes. How-

ever, issues with network delay, jitter and error rate still have to be solved on the

2.4 Caching 19

Figure 2.7 SPP architecture [32].

Server

Server A

SCC A SCC B

Server B

WAN P2P

SCC

LHC A

LHC B

LHC C

LHC

LHC F

LHC E

LHC D

Media player

LAN P2P

Firewall

Proxy/cache -
ISP or site maintained

Client host}

Single administrative domain}
nodes in order to make them a qualified contributor to the network. We see from

Section 2.1.2 that the bottleneck and the fluctuating factor that can cause network

delay and jitter, is the disk I/O of nodes. The nodes have to keep the relevant data in

the memory in order to give the highest and most stable outgoing BW as possible.

This brings us to the next section, which is concerned with caching.

2.4 Caching

A cache can be looked at as a temporary storage space and is used for many dif-

ferent purposes. In this master thesis, we differentiate between Web caching and

Memory caching. The idea of Web caching is to replicate and store content closer

20 Distributing Multimedia Content

to the users, which reduces BW usage, server load and network latency. A Web

cache is often dedicated to storing copies of content passing through. However, to

further increase the BW and reduce network latency, disk I/O has to be avoided in

these Web caches. Memory caching keeps relevant content in main memory while

storing irrelevant content on disk. If a network architecture like P2P is used, each

node also has to function as a Web cache. To increase the aggregate BW and de-

crease the network latency, the nodes have to perform efficient memory caching.

We start this section by looking at caching techniques used by end users to improve

their multimedia streaming experience. Then, we look at memory caching and the

implications of P2P access patterns.

2.4.1 Caching Techniques for Streaming Media

While the nodes are functioning as Web caches, they also have to present a decent

playback to an end user. We will describe three techniques used to make multime-

dia streaming seem more fluent. All these techniques require some form for cach-

ing either at the client or at the server. These techniques are not cache replacement

techniques, however they mandate what, when and where to cache. The techniques

are audio/video smoothing, fast prefix transfer, and finally dynamic caching [18].

• Audio/Video Smoothing: Audio/Video Smoothing uses the cache to store

frames locally before passing them to the application. This method is used

because media content is built up by frames, and frame size differs in number

of bits, and the frames need to be displayed at a constant rate. To avoid being

influenced by network delay and other network related difficulties, an elastic

storage space called a buffer is used to store frames Smooth playback is

accomplished by implementing a small delay before playing, allowing the

buffer to fill.

• Fast Prefix Transfer: With audio/video smoothing the user suffers a delay

both from filling the buffer, and a small connection delay. To avoid this, the

prefix of the media stream is distributed to caches close to the user. While the

user streams the prefix of the file, the cache can ask the server to start sending

the rest. This does not deal with the buffer delay however. Fast prefix transfer

is a method to fill the client buffer faster than the frames are being played,

resulting in a shorter delay.

• Dynamic Caching: When two clients want the same media, they can both

use one stream. Let us say user A starts playback of the stream at time t, and

a second user starts playback at time t+4s. Then, if a cache shared by both

users can hold t+(t+4)s of the shared stream, both users can share it, thus

avoiding the need for two different streams. The second user will have to

2.4 Caching 21

patch his stream, meaning he has to retrieve the data that already has passed

either directly from the server, or from a stored prefix residing in the cache.

2.4.2 Memory Caching

We need efficient caching strategies to avoid disk access. We have an efficient

caching strategy as long as most requests are served from main memory. In order

to have relevant data in main memory, the caching algorithm has to predict the

interaction. It has been shown that the popularity of multimedia objects are Zipf

distributed [16]. This can be used to predict which multimedia objects are most

relevant at a current time, and should be kept in the cache. While the popularity

of multimedia objects is the same in both Client-Server and P2P architectures, the

access patterns differ.

Figure 2.8 Client-Server interaction.

Buffer

Playback

Server

Client

2

3

1

In a Client-Server architecture, the interaction is shown in Figure 2.8. A client

would send a request to a server, as shown in step one. Then, the server would

start serving the multimedia stream in a sequence of blocks. The client fills the

buffer, and after the block no longer is relevant, the block is discarded. The block

is no longer relevant the moment the data has been presented to the end user. The

only memory caching in this scenario, is in the server. Once the server receives a

request for a multimedia object, it knows that the requesting client wants a sequen-

tial stream of blocks.

In a P2P architecture however, caching has to be done at each node. Figure 2.9

shows the interaction between four nodes. In step one, Node A requests a block

22 Distributing Multimedia Content

Figure 2.9 P2P interaction.

Node B

Node C

Node D

Playback
Disk

Node A

Buffer

Cache

1

2

3

5

6

4

from Node B, and Node B sends the requested block back to Node A (step two).

This is equal to the Client-Server interaction as long as Node A only requests

blocks from Node B. However, in a normal P2P interaction, Node A would request

blocks from multiple nodes. This implies that Node A does not get the blocks se-

quentially, and would probably need to sort the blocks in a buffer before playback.

While clients in a Client-Server architecture discard irrelevant blocks, nodes in a

P2P architecture have to store them in order to serve other nodes. In step three

and four, Node C and D are requesting one block each. This being the case, both

blocks were cached at Node A (step five and six), resulting in faster retrieval time.

However, Node A can not predict the access pattern from either Node C or D from

this request alone. For example, in a Client-Server architecture, a server knows that

after serving a client block one, it will serve block two. In a P2P architecture how-

ever, a node can be asked for any block it has previously downloaded. This makes

it much harder to predict which blocks to keep in the cache, and which to store on

disk.

2.5 Summary 23

2.5 Summary

In this chapter, we look at different aspects of multimedia content distribution. As

multimedia streaming increases, it implies new requirements on content providers

and network architectures. With the high BW consumption of multimedia data,

and poor scalability of Client-Server architectures, CDN and P2P hybrids have

been proposed. However, to meet streaming requirements such as throughput, disk

I/O in P2P nodes has to be avoided. This is done with caching. We need caching

algorithms that make caching as effective as possible. With effective we mean a be-

havior that is compliant with the access pattern in such a way that we minimize the

number of data transfers from disk to main memory. Caching in P2P architectures

infers new challenges as the access pattern on the serving nodes is very unpredict-

able. To better understand the implications of a different access pattern, we will in

the next chapter present several Client-Server based caching strategies, in order to

later implement and evaluate a selection in Chapter 4.

Chapter 3

Existing Caching Algorithms

There exist several caching algorithms developed for Client-Server access patterns.

In this chapter, we present a selection of the most used algorithms, and some espe-

cially designed for streaming. We choose to divide the caching algorithms into two

categories, i.e. Block-Level caching and Stream-Dependant caching.

3.1 Block-level Caching

Block-Level caching considers a possibly unrelated set of blocks, where each block

is treated as an independent item. These are traditional algorithms that are still often

used today. This is due to their simplicity, and because these algorithms are effect-

ive with traditional Client-Server based networks. In this section, we will discuss

three traditional Block-Level Caching algorithms, and one that is especially de-

signed for multimedia files. We also look at the algorithm complexity for LRU and

LFU (with the use of O(N) notation). These two algorithms are chosen, because

new P2P caching algorithms are often compared with LRU and LFU [30], and for

this reason they are implemented and analyzed later in this thesis.

3.1.1 First-In First-Out Cache Replacement

First-In First-Out (FIFO) is a simple cache replacement algorithm, and it is ap-

plied in many areas. In this cache replacement algorithm, all objects are stored in a

queue in main memory. When the cache is full and an object needs to be replaced,

it removes the first object, and inserts the new object at the end of the queue.

FIFO is both simple and consumes little resources [9], which makes it a popular

choice for simple caches. The algorithm does not account for either popularity or

26 Existing Caching Algorithms

access patterns, which makes it a very static algorithm. For these reasons, this al-

gorithm suits P2P networking poorly. In a heterogeneous environment like P2P, the

caching algorithm has to be able to adapt to changes in access patterns and pop-

ularity.

3.1.2 Least Frequently Used Cache Replacement

The Least Frequently Used (LFU) algorithm is based on the assumption that in or-

der to get the highest cache hit ratio, we keep the most often referenced objects in

the cache, while we evict the least referenced ones whenever an object needs to be

replaced. In order to identify the most referenced objects, each object has a counter

that is incremented each time it is requested. This means that the object whitch

is least frequently requested, is always replaced. Although the LFU algorithm ac-

counts for object popularity, it does not account for the access pattern.

LFU has two drawbacks that create problems. A new object needs some time to

accumulate enough hits to avoid being replaced, and due to accumulated requests,

old objects have a tendency to stay in the cache longer than they are needed. To

remedy this problem, LFU-Aging and LFU-DA [26] is often used. They basically

decrease the request counter if certain conditions such as a timeout or a maximum

number of requests.

You need to have a simple data structure keeping a mapping between the objects

and each reference counter. Every time a request for an object arrives, you have a

worst case lookup cost of O(N). If it already is cached, we only have to increment

the reference counter and we are already positioned at the correct object, so this

has the cost of O(1). If the object is not currently in the cache however, we need to

iterate through the cache again, and imposes a worst case cost of O(N), and evict

the object which has the lowest reference counter. Finally we add the new object to

the cache which has the cost of O(1). So in the worst case scenario we have a cost

of O(2 * N + 1) if the object is not in the cache, and O(N + 1) best case.

3.1.3 Least Recently Used Cache Replacement

The idea behind the Least Recently Used (LRU) [13] algorithm is to look at locality

of reference seen in request streams. It basically replaces the object which has been

requested last of the objects in the cache. The basic LRU algorithm uses a stack.

Every time a request for an object that is not currently in the cache arrives, the

object is placed at the top of the stack. If the cache is full, the object at the bottom

of the stack is evicted. If the object that is requested is currently in the cache, it

3.1 Block-level Caching 27

gets moved to the top of the stack. Every object between the top and the previous

position of the requested object, are placed one position lower in the stack. The

remaining objects are unaffected by this rearrangement.

Figure 3.1 LRU cache replacement.

N

.

.

.

.

1

1

2

Main Memory
Disk

This algorithm works best when the requested objects exhibit a high degree of tem-

poral redundancy [9], i.e., the object is requested frequently in a specific period of

time. This behavior is compliant with serving multiple multimedia streams. For

example, if a client serves five other clients who are at the same point in their play-

back, they are likely to request the same object simultaneously.

The data structure needed is one stack. When a request for an object arrives, there

is a O(N) lookup cost. If the object is cached we have one operation in order to

move the object, and N - 1 operations in worst case to rearrange the stack. If the

object is not cached, we simply evict the object at the bottom, which is one oper-

ation. Then we place the new object at the top, which also is one operation. The

worst case operational cost when the object is in the cache, is O (2N - 1), while if

the object is not in the cache, it is O(N + 2).

3.1.4 Least/Most Relevant for Presentation Cache Replacement

Least/Most Relevant for Presentation (L/MRP) [23], is designed to handle one

single continuous data stream. It is intended for multimedia data and is based on

the fact that applications using multimedia data need a continuous time dependent

supply of blocks, called Continuous Presentation Units (COPU). These COPUs

have to be loaded into the cache before they are accessed by the application in or-

der to provide the needed Quality of Service (QoS).

Contrary to the previous caching algorithms which are based on heuristics, this al-

gorithm takes into account the presentation metadata. It considers so-called inter-

28 Existing Caching Algorithms

Figure 3.2 L/MRP Client - Server interaction.

1

2

3

Server COPUs Buffer

Application

action sets, which are a collection of COPUs. The COPUs are classified as different

types, i.e., rewind, referenced or skipped. Each COPU is given a set of values de-

fining which is replaced or prefetched. Thus, the algorithm aims to cache the most

relevant COPUs and replace the least relevant. Because the relevance value also

accounts for the number of the COPUs currently being presented, L/MRP evicts

the least relevant COPU, and prefetches the most relevant COPU to the current

presentation.

Figure 3.3 L/MRP

In Figure 3.3, we see one interval of COPUs. Each COPU which is marked as bold

underlined, is currently cached. At this present time COPU 527, 525, 523, 528,

520 etc have the lowest relevance values. During each round1, L/MRP chooses the

COPU with the lowest relevance value and evicts it. Then it fetches the COPU

with the highest reference value that is not currently cached. This guarantees that

1Every time one COPU passes the presentation point, i.e., is consumed.

3.1 Block-level Caching 29

the COPU that is to be consumed next always resides in the cache.

This algorithm is very costly with regards to CPU requirements. For each round, it

has to locate the COPU with the lowest and the highest reference value. It also has

to calculate new reference values for each COPU in the interval, which is costly.

Another drawback is that it is designed for one single stream only. However, this

algorithm gives very few disk accesses, and supports prefetching and interactivity.

Figure 3.4 Results from simulations with Q-L/MRP [17].

Q-L/MRP [17] is designed to solve this problem. This extension to L/MRP adds

support for multiple data streams and QoS. We chose to present the results the au-

thors of Q-L/MRP got from their simulations, because it is interesting to see the

effect of prefetching and relevance values. The author ran simulations with one

server and three clients, which had a cache size of 64 MB. Figure 3.4 shows the

results. It shows the amount of data that is transferred from disk to main memory

along the Y-axis, and the page size along the X-axis. The results show that with the

Q-L/MRP caching strategy, we get a decrease in disk access of 10.3 % compared

to the LRU algorithm. This illustrates how important it is to make use of the ac-

30 Existing Caching Algorithms

cess patterns and the inherent properties of multimedia streams. While this strategy

is developed for a regular Client-Server based architecture, it still proposes ideas

like prefetching and relevance values, which we take into consideration when we

design a caching algorithm for P2P based streaming in Chapter 5.

3.2 Stream-Dependant Caching

With the change of dominant content on the Internet from static web documents, to-

wards other content types such as multimedia, we have also seen a change in cach-

ing algorithms. Stream-Dependent caching considers a stream object as a whole,

meaning it treats all blocks in a stream in exactly the same manner.

3.2.1 Interval Caching/Generalized Interval Caching

Interval caching [37] caches entire intervals between requests for the same stream.

This means that every request for the same stream gets served by the preceding

stream. The cache size requirement is proportional with the interval length between

the requests. Each interval is measured and in order to get most cache hits, the re-

placement policy is to cache the shortest intervals while replacing the largest.

Figure 3.5 Interval Caching

In Figure 3.5 we have three different streams with respectively three, two and four

consecutive requests. In the example above, the cached entries are in the order 32,

33, 12, 31, 11, 21. If a new request for Video clip 1 arrives, creating a shorter inter-

val than e.g., 21, and the cache is full, the largest interval is swapped with the new,

3.2 Stream-Dependant Caching 31

smaller one.

In order to implement Interval Caching, it is necessary to keep track of the different

intervals. When a new request arrives and a new interval is created, the algorithm

makes a check to see if there is enough space in the cache for the new interval. If

there is enough space, it just keeps the blocks in the cache that is already being

served to the client preceding it.

A problem with interval caching is when the clients request only short streams.

Even if the access frequency is high on a media item, nothing is cached because

the first request is finished before the next one arrives. To solve this, Generalized

Interval Caching was proposed. Generalized Interval Caching behaves in the same

manner as Interval Caching for long streams. For short streams, it keeps track of a

finished stream for some time after its termination. Then, it defines the interval for

the short stream as the length between the new stream and the position of the old

stream if it had been a longer video object.

3.2.2 The BASIC Cache Replacement Algorithm

The BASIC cache replacement algorithm [7], is also a stream-dependent algorithm.

Each round all blocks that are not being accessed are sorted in increasing order of

their futures. Each block has a future value, which is defined to be the time when

the block would be accessed next, if each client maintained its state at the begin-

ning of the service cycle. For each block, one needs to calculate which client would

access which block next, and this is done with the help of the clients. Each client

needs to provide information about which block it needs next. When a block needs

to be replaced, BASIC selects the block that would not be accessed for the longest

period of time by any of the progressing clients, if each client consumed data at

the specified rate from that moment on. If we have several blocks that would never

be accessed by any of the current clients, BASIC selects the block with the highest

offset ratio. The offset ratio is calculated by b ∗ i/r, where b is the block size, i is

the index, and r is the video rate.

Like L/MRP, which also looks at information concerning the presentation, BASIC

generates a lot of overhead. In [7], the authors have measured BASIC to have 37

ms overhead each round compared to LRU, which uses 1-2 ms. However, BASIC

reduces cache misses with approximately 30 percent compared to LRU. BASIC has

the advantage of knowing exactly which blocks are accessed next. BASIC further

emphasizes the importance of knowing the access pattern when choosing which

blocks to cache.

32 Existing Caching Algorithms

3.3 Summary

This chapter examines multiple caching algorithms. We start by presenting block-

level caching algorithms, that consider individual blocks. Then we present two

stream-dependant caching algorithms, which consider the entire stream when mak-

ing cache replacement decisions. Through results from Q-L/MRP, we see that to

consider the behavior of the stream is beneficial towards cache hits. The BASIC

algorithm show us the benefits of knowing the access pattern when cache replace-

ment decisions are to be made. We have this in mind when we design our caching

algorithm in Chapter 5.

However, Block-level caching algorithms like LRU and LFU do not take the access

patterns into concern. In the next chapter, we implement these in order to see how

this effects the caching efficiency.

Chapter 4

Performance Analysis and

Evaluation of Existing Caching

Algorithms

In this section, we describe our results of the performance of the Random Eviction,

LFU and LRU algorithms. We are implementing the Random Eviction algorithm

because it gives us a performance basis for comparing the results from simulations

with LFU and LRU. There is no point in implementing and using more complic-

ated and resource intensive algorithms, if they give a poorer efficiency. The LFU

algorithm is implemented because we want to emphasize the difference of looking

at a media object as a whole, and dividing it into smaller blocks. Finally, we chose

to evaluate the LRU algorithm because it is well suited for multimedia stream-

ing (shown in Chapter 3. For both LRU and LFU we want to evaluate the effect

of having a P2P access pattern instead of a Client-Server access pattern. We start

by describing implementation decisions. Then, we define the evaluation method,

metrics, factors and workload. Finally, we analyze the results from the different

simulations.

4.1 Simulation Description

In order to perform our evaluation, we start by identifying implementation de-

cisions that affect the simulations. Then, we argue why we chose simulations for

our evaluation method. Next, we introduce the metrics we use for evaluation, and

the factors we use. Finally, we present the different workloads we use as traces in

our trace driver simulations.

34 Performance Analysis and Evaluation of Existing Caching Algorithms

4.1.1 Implementation

When implementing the algorithms, we tried to make them as basic as possible.

The implementations follow the fundamental ideas without any of the improve-

ments proposed to them. The simulations make no use of static storage like a

DBMS. We keep all gathered data in main memory at all times, which demands

a high resource consumption when running these simulations. Most of the data is

kept in hash tables, for a one-to-one lookup cost. However, because we keep all

the data in main memory while we run our simulations, we limit the size of the

workloads in terms of active nodes and files. The entire simulation environment

is written in Java. More details about the implementations are described in Ap-

pendix C.

4.1.2 Evaluation Method

In order to evaluate the different algorithms, we use trace driven simulations, which

are often used to tune resource management algorithms [19]. A trace is a time-

ordered record of events on a real system [19], and these traces should be independ-

ent of the algorithms we are studying. Several advantages pointed out by Jain [19],

which led to the decision of using this evaluation method, are listed below.

• System not available: First and maybe most important, is the fact that SPP

is still not fully implemented (It is still under development).

• Credibility: Because the traces are generated from a P2P architecture, the

results are more plausible than if we just have a random generated distribu-

tion.

• Detailed trade-offs: Due to a high detail level in the workload (trace), it is

easy to see effects of changing factors.

• Less randomness: When running trace driven simulations, we get no ran-

domness as long as we do not have other random inputs to our model. This

is time conserving because we do not have to repeat a certain test several

times to get the desired confidence in the results. Ideally we only have to run

the test once, however to rule out abnormalities created by hardware or other

outside factors, we chose to run each test at least three times.

• Fair comparison: Another advantage of using trace driven simulations is

that we get a fair comparison of the different caching algorithms. All tests

of the different algorithms use the same workload when we compare the

effectiveness.

4.1 Simulation Description 35

• Similarity to the actual implementation: Last we mention that simulation

is very similar to the actual system (if not, the results are not valid) because

the simulation environment is created as simular to the actual system as pos-

sible, thus when implementing, we get a fairly good feeling about how com-

plex the different algorithms actually are, and how difficult it is to implement

them on a real system.

4.1.3 Metrics

Metrics are identified by the services offered by the system, and are a set criteria to

measure the performance [19]. In our simulations we are using only two metrics:

• Block Number Closeness: For the access pattern analysis we are looking

at something we chose to call Block Number Closeness, referred to as BNC

from here on. If we have two requests on the same file, and the block number

for the two requests are close, we have a high BNC. For example, if we have

two request patterns on one file. In Pattern A, we have requests for Block 1,

3, 5, 7, and 9, while in Pattern B there is requests for Block 1, 5, 9, 13 and

17. Pattern A then has a higher BNC than Pattern B.

• Cache Hit Ratio: For the analysis of the effectiveness of the different cach-

ing algorithms, we are using a metric we call Cache Hit Ratio (CHR). When

we have request for a block, we either have a cache hit or a cache miss. The

more percent of the total requests the cache hits constitute, the higher CHR

we have.

4.1.4 Factors

We have only one factor in these simulations, the cache size. In a P2P network

architecture we have a highly heterogeneous environment consisting of clients with

different hardware. So when we run our simulations with the different workloads,

we have two different node setups for each workload. When talking about different

setups, we only differentiate by the amount of installed main memory because this

is the only relevant hardware for our simulations.

• User PC - This setup will have a main memory size of 512 MB.

• High End - This setup will have a main memory size of 1024 MB.

We recognize the fact that we can not utilize 100 % of the main memory for cach-

ing. The caching has to coexist with a media player for playback, and other running

applications as well. We ran some experiments with a multimedia streaming applic-

ation. We used Windows Media Player [5] and a PC with Windows XP and 1 GB

36 Performance Analysis and Evaluation of Existing Caching Algorithms

of main memory. We streamed multiple multimedia files from [1], and measured

the main memory usage with Windows Task Manager. Our results showed a main

memory utilization of approximately 5 %. From this number, we think it is viable

to use another 10 % of the total main memory for caching. By keeping the main

memory usage of the caching to this percentage, a user can still run multiple ap-

plications while participating in P2P multimedia streaming. This means we will

run simulations with cache sizes of 102 and 204 blocks, where each block is of the

size 512 KB. This is approximately 10 % of the User PC and High End setup. We

measure cache sizes in blocks, and not in MB throughout the rest of this master

thesis. The cache sizes vary between 102 and 204 blocks, which respectively equal

50 and 100 MB.

4.1.5 Workloads

We have tested the implementation of the different algorithms with two different

traces, called Workload 1 and Workload 2 hence forth. Both workloads are gen-

erated by SPP, however with Workload 1, the network topology and the access

patterns are created by PlanetLab [10] and MediSyn [35]. While for Workload 2,

this is done with MediSyn and Inet [36]. MediSyn generates a generalized Zipf

distribution of requests on a video server, while Inet creates a node topology. Plan-

etLab is a global overlay network, which serves as the node topology for Workload

1. The video server has a selection of 1000 different media files, which ensures het-

erogeneity. Most nodes stream the video start to end, however some perform some

degree of interactivity, like pausing playback, jumping forward or backwards in

the file, or stopping the playback before watching the entire stream [21]. The peer

selection is also different. In Workload 1, SPP is deployed on PlanetLab, and the

peer selection is realistic. However, for Workload 2 the peer selection is random.

Workload 1 has an access pattern where all the clients are asking for one file at ap-

proximately the same time. This scenario is useful in order to evaluate performance

when we have highly anticipated and popular media content. Such content creates

large peaks, and we may have many simultaneous requests for the same content.

In this scenario we have 35 different clients, and one file consisting of 515 blocks.

Below, in Figure 4.1 we show a portion of the trace file for Workload 1.

Each line corresponds to one entry, and each item is separated with a white space.

The first item is a timestamp of the form HH:MM:SS, hours - minutes - seconds.

The next item is an IP address uniquely identifying the client performing the re-

quest. These two items are equal for all entries. After the IP address, we have two

options:

1. Get file.mpg block N from IPADDRESS

4.1 Simulation Description 37

Figure 4.1 A section of the trace file for Workload 1.

2. block N complete, storing to disk

The first line is a request for a block identified by the GET keyword. After the GET

keyword the requested file is listed, in our case file.mpg. Next, ’block N’ identifies

which block is requested, and finally the ’from IPADDRESS’ identifies from which

client we are requesting the block. Line two is recorded when a block has finished

downloading a block. It starts with ’block N complete’, and identifies which block

that is complete, while ’storing to disk’ is a key phrase stating that the client is

storing the block. In this scenario, only the server has the entire file at startup.

Workload 2 imposes a completely different scenario. Here, we have multiple files

and 475 nodes. While Workload 1 gives us a scenario with one file and many con-

current requests for the same file, this scenario gives us an impression of the users

access pattern as a whole. Meaning, we get the access pattern we get in a VoD en-

vironment. In Figure 4.2, we show a section of the trace file for Workload 2.

In this trace file, one line is also one entry, and each item is separated with a white

space. The first item is a time in seconds because the start of the experiment. The

first entry in the example is almost similar to the GET entries described previously.

The difference is the timestamp and instead of IP addresses we have DNS names.

The second entry is also almost equal to the store entries described previously,

except for IP addresses exchanged with DNS names, and in addition, we specify

which file the downloaded block belongs to. We also have some slightly different

entries. In Figure 4.3, we have a scenario where none of the nodes has the block so

the request is transparently routed through the SCC to the server.

The two entries in Figure 4.3 are the result when a block is retrieved through a SCC

node. The SCC node isp11902.domain starts receiving the block, and the data are

38 Performance Analysis and Evaluation of Existing Caching Algorithms

Figure 4.2 A section of the log file for Workload 2.

Figure 4.3 Showing how the client gets a block through a SCC.

being transmitted through the SCC node and to the client host26.isp11902.domain.

All the files are initially stored at the server 10.0.0.1.

Even though the trace file includes loggings from SCCs and the server, we emphas-

ize on the performance of the Local Host Caches (LHCs). We chose this because

our goal is to develop an algorithm for P2P architectures. This implies that we are

not measuring performance on the Site Content Caches (SCCs), or the Server.

4.2 Simulations

This section is structured as follows: First, we start with identifying the access pat-

tern from the two workloads. Next, we show the results from simulations with the

Random Eviction algorithm, the LFU algorithm and finally the LRU algorithm. All

the simulations are run three times to rule out abnormalities. This is enough to get

a confidence in the results, because we have no random elements.

4.2 Simulations 39

4.2.1 Access Pattern

In order to better understand the analysis of simulations with Workload 1 and

Workload 2, we illustrate in Figure 4.4 and Figure 4.5, the access pattern of the

clients participating. These patterns are retrieved from only one single client, how-

ever these patterns are representative for all clients.

Figure 4.4 Showing an access pattern on one client from Workload 1.

From the pattern shown in Figure 4.4, we can see that we have a fairly small range

of blocks that are requested by other clients at a given time. We witness in this

graph, a maximum difference between requested block numbers of approximately

40. This is because with Workload 1, all clients are approximately at the same point

in the playback of the video stream. For example, when Client A requests Block

200, Client B requests Block 220. This difference will always be approximately

the same as long as no users stops or pauses the video playback. From the graph

we are able to deduce that the client currently serves three different peers. After

approximately 1400 requests, we have three different lines, representing sequential

requests from three different peers.

The pattern in Figure 4.5 is very different from the one in Figure 4.4. According

to the description of Workload 2, we no longer have only one file and the nodes

are not becoming active at the same instant in time. This creates a different access

pattern of the nodes. Figure 4.5 shows the 5000 first accesses to a single node, and

as we see, the node is serving six different files to its connected peers. It shows a

very low temporal redundancy. For most of the files we are able to determine that

40 Performance Analysis and Evaluation of Existing Caching Algorithms

Figure 4.5 Showing an access pattern on one client from Workload 2.

the client is only serving one peer per file. However, for File 1, the client is serving

blocks with a wide range of block numbers, which results in a very random beha-

vior.

We also see signs of interactivity in the graph. For example, after 900 seconds the

requests suddenly stop, which indicate that either the requesting peer stopped the

playback, or decided to chose another node to download from.

In Chapter 2, we argued that the request pattern is different in a Client-Server archi-

tecture compared to a P2P architecture. If the graph had shown the access pattern

on a server in a Client-Server architecture, the access patterns on the different files

would be more sequential. Meaning, the requests would be for Block N, N+1, N+2

and so forth for each file. In this graph, we see that for most of the files, the access

pattern is stippled, indicating non-sequential access. However, we argue that peer

requests on a client are predictable. This is because we know from the graph that

after a request for one block, we never get a request for a block with a lower block

number.

4.2.2 Analysis of The Random Eviction Algorithm

In this section, we analyze the Random Eviction algorithm. We start by analyzing

the results from simulations with Workload 1, followed by an explaination of the

4.2 Simulations 41

results with Workload 2.

Figure 4.6 Workload 1, cache size=102, Random Eviction.

In Figure 4.6, we see the cache hits and misses for all nodes. At startup, we have

slightly more cache hits, however after some time the two curves follow each other

pretty accurately. With this setup, we have only space for approximately one fifth

of the file in the cache. The first LHC requesting blocks from another LHC, is al-

ways generating cache misses. For example, if LHC B started to request blocks

from LHC A, none of the blocks LHC B asks for will be in LHC As the cache.

However, if LHC C sends a request right after LHC B for the same blocks as LHC

B to LHC A, they will still reside in LHC As cache. In fact, if LHC A had enough

space to cache the entire file, LHC C would get served exclusively from the cache.

In this scenario, we would get 50 % CHR. However, in our setup the nodes have

not enough space for an entire file, but we are still getting close to 50 % CHR. We

see from the access pattern for Workload 1, that a node has only a few requesting

peers, and they are requesting most of the same blocks. Because the nodes in the

scenario started the playback at the same time, the block requests have a high BNC.

Due to this high BNC, a requesting peer is served by its preceding peer. Meaning,

one peer is requesting the same blocks, only a little earlier, and it is enough space

in the cache to store the number of blocks between the requests.

However, the Random Eviction algorithm are evicting a random block from the

cache whenever there is need for a replacement. This means that there is a chance

that a relevant block is replaced. This chance is expressed in Formula 4.1. The

Block Number Interval, is the interval between the highest and lowest requested

42 Performance Analysis and Evaluation of Existing Caching Algorithms

block number. For example, a node has three requesting peers, i.e., A, B and C.

The node has a cache size of 10 blocks, and Block 1 to 10 is already cached. A

then requests Block 11, while B requests Block 7, and C requests Block 6. Due to

not enough space for Block 11 in the cache, the Random Eviction algorithm evicts

one of the ten blocks at random. At this point, replacing Block 6, 7, 8 or 10, results

in one cache miss. From Formula 4.1 we get a 40 % chance of evicting one of these.

Based on these arguments, we see that the nodes in this scenario, serve few re-

questing peers. This is also shown in Figure 4.4. With more requesting peers, and

if they request the same blocks, we get a higher CHR. However, because of the

P2P access pattern, it is not implicit that preceeding requests are serving success-

ive requests. The preceeding request could be for Block 2, 4, 6 and 8, while the

succeeding request is for Block 1, 3, 5 and 7. For this scenario the requests are for

mostly the same blocks, illustrated by the small number of requesting peers shown

in Figure 4.4, . We also get a very small probability to replace a relevant block,

because the block number interval is small compared to the cache size.

Block Number Interval

Cache Size
= Chance of evicting a relevant block (4.1)

Figure 4.7 Workload 1, cache size=204, Random Eviction.

In Figure 4.7, we have a slight increase in cache size and we have enough space for

204 blocks instead of 102 blocks. Comparing the graphs, we see a slight increase

in the CHR as we increase the cache size. As we increase the cache size, we also

4.2 Simulations 43

increase the chance of keeping the relevant blocks in the cache.

Next, we evaluate the analysis from simulations with Workload 2 using the Ran-

dom eviction algorithm. From Figure 4.8 we clearly see that the CHR is very low.

There are some cache hits among the first couple of thousand requests, however

the curve is falling steadily towards zero. Because we chose to operate with fairly

small but realistic cache sizes in our specification of the simulations, we get this ef-

fect with these kinds of access patterns. We get an effect where none of the blocks

that are loaded into the cache are able to serve later requests. In our implementation

of the Random Eviction algorithm we always insert a block that is requested into

the cache when we have a cache miss. From Figure 4.5, we see tendencies towards

that the peers are requesting different files. Actually, the clients are serving one file

to one peer, in most of the cases. The impact of this is that blocks loaded into the

cache are of no use for later requests for the same file, because in the meantime,

the cache is filled with irrelevant blocks.

Figure 4.8 Workload 2, cache size=102, Random Eviction.

We see a clear connection between Figure 4.8 and Figure 4.5. Figure 4.8 shows us

a small increase in CHR for the first 6000 requests, and Figure 4.5 is showing more

peers requesting the same file in the same period.

The Random Eviction algorithm is indifferent to the access pattern. We get a high

CHR for Workload 1 because the requesting peers are requesting almost the same

blocks. Because of this, one peer can serve another peer. For Workload 2, we see

44 Performance Analysis and Evaluation of Existing Caching Algorithms

what happens when the peers are requesting different blocks. We get a poor CHR.

However, we argue that the Random Eviction algorithm will get a higher CHR, the

more peers are requesting the same file.

4.2.3 Analysis of the LFU algorithm

In this section, we analyze the results of our simulations using the LFU algorithm.

We see from Figure 4.9 and Figure 4.10 that LFU does not improve the CHR run

with respect to the Random eviction algorithm.

In multimedia streaming, we request a stream of small blocks, and this is very

different from requesting a file as a whole. The access patterns for the files are

the same, however the access pattern on the blocks constituting the file, is very

different. The problem is the nature of P2P streaming. A peer requesting a file is

interested in a long sequence of blocks, and each block is equally important for the

peer, however the peer will not download all blocks from one provider. The peer

will request blocks from a provider with a certain pattern, for example it requests

Block 2, 4, 6, 8 and so forth. Two other peers may request Block 3, 5, 7 and 9. This

makes these blocks more relevant for caching than the others.

Figure 4.9 Workload 1, cache size=102, LFU.

If we look at Figure 4.9, the CHR are similar to the Random Eviction Algorithm

from 0 to 400 seconds, then after 400 seconds, the CHR drops to a minimum. As

4.2 Simulations 45

we have argumented earlier in Chapter 3, the LFU algorithm is based on the as-

sumption that the most referenced objects at a current time also will be the most

referenced objects in the future. This assumption does make sense if we look at a

multimedia file from start to end. However, in this scenario we apply this assump-

tion to each block, which basically makes parts of the multimedia file more relevant

than others. In the case where a user downloads a multimedia stream from start to

end, the LFU algorithm make the first N blocks most relevant (N is the cache size).

These blocks remain in the cache, while the rest of the blocks will never be able

to get a high enough reference value to replace them. When a new peer sends a

request for the same multimedia file, it is served the N first blocks from the cache,

while the remaining requests result in cache misses.

Figure 4.10 Workload 1, cache size=204, LFU.

At startup, when only a few of the nodes have entire files, these nodes get a high

number of requests. These requested blocks accumulate a large amount of hits,

making it impossible for future blocks to get a high enough reference counter to

evict one of these. For example, if we have a cache size of 100 blocks, and a peer is

requesting 300 blocks from the client. The 100 first blocks will get cached, while

none of the 200 remaining blocks will enter the cache. When we increase the cache

size as shown in Figure 4.10, the overall CHR is also increased. The increase is not

large enough however, to make the algorithm efficient.

Next, we present the analysis from simulations with Workload 2. The difference

from Workload 1, is that we have multiple files, and the nodes are now starting

playback at different times. In Figure 4.11, we see a very low CHR. The argument

46 Performance Analysis and Evaluation of Existing Caching Algorithms

Figure 4.11 Workload 2, cache size=102, LFU.

that applied to Workload 1 also applies to Workload 2. LFU simply does not re-

place irrelevant blocks.

The LFU algorithm is designed for requests of multimedia files from start to end,

and not multimedia files partitioned into smaller blocks. If a node serves one file

only to each requesting peer, and blocks are swapped if they have the same relev-

ance values, then the performance gets equal to the LRU algorithm. For example,

if we have a node A and a peer P. P requests a multimedia file from A. The first

N blocks are inserted into As cache. Then, when the request for (N + 1)nth block

arrives at A, the first block in the cache are evicted. This block is also the Least

Recently Used block.

LFU is not well suited for multimedia streaming. It does not handle the partitioning

of multimedia files which is done in P2P networks. We see clearly the implications

of the access pattern created by doing this. The results would be the same if the

requests would be either sequential, like in a Client-Server pattern, or devided, like

in a P2P pattern.

4.2.4 Analysis of the LRU algorithm

In this section, we analyze the LRU algorithm. Both Figure 4.12 and Figure 4.13

shows a CHR approximately close to the results from the Random Eviction al-

4.2 Simulations 47

gorithm.

For LFU to be efficient with respect to P2P multimedia streaming, there has to be

a high BNC. For example, we have a Node A with a cache size of 102 blocks, and

two connected peers, P1 and P2. P1 and P2 are both requesting the same file. After

P1 has requested Block 1 to 100, P2 sends a request for Block 1. This block is

still in the cache, resulting in a cache hit. If we were to have four requesting peers,

the BNC has to be higher. If the BNC is the same with four requesting peers, the

second peer are served by the requests from the first peer, while the two last peers

get cache misses.

Figure 4.12 Workload 1, cache size=102, LRU.

In Figure 4.4, we see a node with only three connected peers. This graph is repres-

entative for all nodes in the SPP architecture with Workload 1. Because we have

a list consisting of approximately three requesting peers for all nodes, we do not

get as large a benefit from the LRU algorithm as we get with larger peer lists and

the access pattern we have with Workload 1. The peer which is ahead of the other

peers in the stream only gets to serve one or two other peers. In a scenario where a

node has two connected peers, and the BNC is high, the first peer1 gets only cache

misses, while the second peer only gets cache hits benefiting from the fact that the

first peer fills the cache with relevant blocks. This gives us a 50 % CHR, which is

the case in Figure 4.12.

1the peer which is furthest in the multimedia stream

48 Performance Analysis and Evaluation of Existing Caching Algorithms

Figure 4.13 Workload 1, cache size=204, LRU.

When we are increasing the cache size to 204 blocks, we are actually increasing

the size with 100 %. Comparing Figure 4.13 and Figure 4.12, we do not see any

difference. As we previously have stated, the clients have very few peers in their

peer lists, and from the access pattern of Workload 1, we see that we have a high

BNC percentage. We already have a large enough cache size in the simulation to

cache all the relevant blocks with a cache size of 102 blocks, and increasing it has

no effect. The LRU algorithm is actually equal to the Random Eviction algorithm,

except for the probability of replacing a relevant block as shown in Formula 4.1.

Next, we provide the analysis from simulations with Workload 2. Figure 4.14

shows us a very low CHR for the first 6000 requests, then it drops towards zero.

This is also similar to the results from the Random Eviction algorithm. The LRU

algorithm performs better the more requesting peers a node has, and if the requests

have a high BNC. From the analysis of the access pattern of Workload 2, we see

that a client in most cases serves one file to one peer. This means that blocks which

are cached will never serve any subsequent requests.

The LRU algorithm is very effective when a client has multiple peers wanting the

same file. We are able to extend this algorithm to get almost 100 % CHR. This

requires that all requests are for the same file, and that once one peer has reques-

ted a block, all subsequent requests are for blocks with the same or a lower block

number. All we have to do is to prefetch a window of N blocks each time we have

a request for a block number higher than any in the window, where N is the dif-

4.3 Summary 49

Figure 4.14 Workload 2, cache size=102, LRU.

ference between the block number requested from the peer which is furthest in the

stream, and the block number requested from the peer which is backmost in the

stream.

We argue that the LRU algorithm is suited for streaming, as long as we have a high

BNC for each file, and many peers request the same file. The LRU algorithm also

suffers because of the P2P access pattern. If the access pattern had been sequential,

like in a Client-Server architecture, the CHR for a single file on a node could be

expressed as shown in Formula 4.2. However, because of the P2P access pattern,

there is no guarantee that a preceeding peer would serve a successive peer.

Number of requesting peers − 1

Number of requesting peers
(4.2)

4.3 Summary

In this chapter, we examine three different caching algorithms. First we look at the

access pattern on the nodes participating in the simulation. Then we examine the

three algorithms more thoroughly.

From analysis of the three implemented algorithms, we are able to identify three

characteristics of P2P multimedia streaming which the algorithms do not handle:

50 Performance Analysis and Evaluation of Existing Caching Algorithms

• P2P access pattern.

• Object segmentation.

• Low temporal redundancy.

We show that the P2P access pattern causes problems for the implemented al-

gorithms. Although, Random Eviction and the LRU algorithm do work with Work-

load 1. However, because of the P2P access pattern, the CHR is not optimal. Fur-

ther, all three algorithms rely on a high degree of temporal redundancy. We see

that with Workload 2, where the temporal redundancy is very low, the algorithms

perform poorly. The LFU algorithm does not work with multimedia streaming be-

cause of the object segmentation. However, object segmentation is also performed

in Client-Server architectures [18].

None of these algorithms are really taking advantage of the characteristics that

multimedia streaming are offering. Characteristics like sequential access make it

possible to predict which blocks are going to be requested in the future. In the next

chapter, we will design a new caching algorithm which handle the P2P access pat-

tern, object segmentation and sequential access.

Chapter 5

Design of a P2P Multimedia

Streaming Caching Algorithm.

Chapter 4 shows that standard cache replacement algorithms are not well suited

for use in P2P multimedia streaming. Although some of the algorithms are simple

to implement and may be improved with only minor adjustments, we will in this

chapter design an algorithm that greatly improves the CHR while not being overly

expensive. The algorithm is designed for a SPP environment, however we design it

to be as general as possible for use with P2P streaming. We think that no heuristics

can be made when dealing with a highly heterogeneous and random environment

such as a P2P architecture, so we focus on using probabilities. We propose an al-

gorithm called Relevance Based Caching (RBC). This chapter starts by presenting

an illustration of the algorithm, and gives a short example. Then we show the al-

gorithm in more detail, and provide a cost prediction. Finally, we summarize the

chapter.

5.1 Design Objectives

From observations made in Chapter 2 and 4, we identified three difficulties asso-

ciated with P2P multimedia streaming, i.e., low temporal redundancy, object seg-

mentation and P2P access patterns. The main objectives of the RBC algorithm are

to solve these.

Low temporal redundancy implies that sessions where only one peer is requesting

a file exists. Hence, we can not solely rely on situations where previous requests

are serving1 successive requests. For example, if a peer is requesting a sequence

1A peer is serving another peer if the blocks it requests are cached, and the other peer is requesting

the same sequence of blocks.

52 Design of a P2P Multimedia Streaming Caching Algorithm.

of blocks and no other peers have requested the same sequence earlier, none of

the requested blocks are cached. We know that multimedia streaming is sequen-

tial, and we therefore prefetch a window of succeeding blocks at each request. By

doing this, we allow one peer to serve itself and we avoid problems related to low

temporal redundancy.

The main memory size set aside for caching on the nodes is often limited com-

pared to the size of the multimedia files being streamed. This entails that there is

only enough space for a percentage of the blocks constituting the file. We therefore

give each prefetched block a relevance value which consists of the popularity of

the block, the P2P access pattern, and the popularity of the file as a whole. These

relevance values constitute a total relevance value, which decides which blocks in

the window are replacing blocks in the cache. RBC is then accounting for object

segmentation.

We have shown in Chapter 2 and Chapter 4 that the access pattern on multimedia

files are not completely sequential in P2P architectures, which it is in Client-Server

architectures. A peer may request block N, N + 2, N + 4, instead of block N,

N + 1, N + 2 etc. Consequently, there is no point in prefetching every block in

the window because they are not equally relevant. In considering the P2P access

pattern, the RBC algorithm is able to use the cache as efficient as possible, as it

caches only the most relevant blocks.

5.2 General Design

In this section, we give the description of the RBC algorithm. It covers the basic

ideas, while the next chapter gives a more detailed presentation.

Each time a request arrives, we prefetch a window with W blocks where W is the

window size. At the first request, W is set to a default value. Each time we have

a request for a block that is not in the window, we increase the value W by one.

For example, assuming a worst case scenario, where a Client A has five peers in its

peer list, and all offer the same download speeds. When Client A starts watching

the stream, it requests Block 1 to 5 from respectively Peer 1 to 5. Peer 1 then has

to serve every 5th block from the media stream, creating the largest window size

possible for the client.

Each block in the window gets a relevance value R indicating the block popular-

ity. When we have excessive space in the cache, all the blocks in the window are

prefetched and the relevance value R is increased with one for each block. In Fig-

5.2 General Design 53

Figure 5.1 Relevance values connected to blocks in the cache.

Block 1

Block 2

Block 3

Block 4

Block 5
1 1 2 2 2

Main Memory

ure 5.1, we see a section of the cache and a section of the data structure keeping

the relevance values for the different blocks. In this example, we have an initial

value W of five. The first request is for Block 0, and Blocks 1 to 5 is cached and

given a relevance value R of one. Subsequently, we get a new request from another

node which wants block two, and we prefetch the window and update their corres-

ponding relevance values. Blocks 6 and 7 are prefetched because they are not in

the cache, and gets a relevance value R of one since they are only referenced once.

The relevance value R of Blocks 3, 4 and 5 is now increased by one since they now

are referenced twice. With twice we mean from two different sessions. We chose

to differentiate by sessions and not by nodes in order to leave the option to watch

more than one video stream open.

If we do not have enough space in the cache for the entire window, we will com-

pare the relevance value R of the blocks in the window with the relevance value R
of the blocks in the cache. For each block in the window, we compare the relevance

value R with the lowest R of all the blocks in the cache. If a block in the window

has a larger relevance value R, we replace the least relevant block in the cache with

that block. For this to work, we need to keep the state of the blocks that are being

swapped to disk. If we do not keep state, we will get an effect where we keep ir-

relevant blocks in the cache. For example, if the blocks in the cache are referenced

twice giving them a relevance value R of two, then we never would replace any of

these blocks, because the blocks getting prefetched never get a relevance value R
larger than one. This is not entirely true since we have a timeout value associated

with each block. However, it may cause an effect where the cache is filled with

blocks, and no new blocks will get prefetched until the old blocks in the cache start

to time out.

The relevance value R will be calculated as stated above, however to further op-

timize for P2P streaming, we expand the notion of the relevance value. The total

54 Design of a P2P Multimedia Streaming Caching Algorithm.

relevance value is calculated as shown in Formula 5.1. It shows the relevance value

Rr which is discussed above, plus a global relevance value Rg, and a relevance

value Ra.

Rtotal = (Rr + Rg + Ra) (5.1)

Because streaming media is time dependent, we also propose to add a time aspect

T to the relevance value. We can assume that after a given time, a block is not valid

for presentation any more, or the user has paused the presentation. This results in

the final relevance Formula 5.2.

Rtotal = (Rr + Rg + Ra) ∗ T (5.2)

Rg, is a value based upon popularity of the media object as a whole, and not the

individual blocks. The popularity of media objects in Video on Demand (VoD)

servers is Zipf distributed [16], and we make use of this formula to create a preced-

ence for blocks of popular media objects over blocks which are less popular. We

show the Zipf formula below:

f (k; s, N) =
1/ks

Σ
N
n=1

1/ns
(5.3)

Figure 5.2 A sorted list with the relevance values Rg

N is the number of elements, k is their rank, and s is the exponent characterizing

the distribution. We chose to use one as the exponent to characterize a standard

Zipf distribution. Rg is a value defining a relevance value for the media object as

a whole. We chose to always store the media objects in a list sorted by the Rg

value. This list will be small, because a client is able to serve a limited amount of

media objects while having a decent playback quality. The rank will be calculated

in a LFU fashion with the object with the most hits getting the highest rank. The

ranks will be from one to N where N is the number of media objects and one is the

highest rank. In order to differentiate between media objects with an equal number

5.2 General Design 55

of hits, we sort by time. This means that the object which is most recently accessed

has a higher rank than other objects with an equal number of hits. In Figure 5.2, we

see a list sorted by rank and containing the Zipf value or the Rg as we will use it.

Our algorithm updates the Zipf values each time there is a change in the order of

the sorted list.

Ra is a relevance value based upon the access pattern of the requesting peers. In

Figure 5.3, we see a node with five different peers in its peer list. The numbers

indicate the amount of time in seconds it takes to download one block from a peer.

Figure 5.3 Five different peers with different connection speeds.

A

B

C

D

E

Node

4

4

3

2

1

When downloading a media object we would ask Peer 1 for Block 1, Peer 2 for

Block 2 and so forth. The nodes request patterns would look like the ones in Fig-

ure 5.4. We recognize the fact that these connection speeds are highly unstable,

however we are able to use this information to create a higher precedence with

some blocks in the prefetched window. From the request pattern in Figure 5.4 we

see that Peer D would never serve two consecutive blocks. In fact, in this scenario

with constant download rates, Peer D would, after having served one block, always

serve the third, fourth, fifth or sixth block after the previously served one.

Our proposal is that at startup, when the first block is requested from the client, we

prefetch a window where all blocks are given a relevance value Ra which is equal

for all blocks. The aggregated value Ra for all the blocks in the prefetched window

will always be one. When the first request arrives at the node, we store the win-

dow. Then we increase the relevance value Ra for the index of the next block that

56 Design of a P2P Multimedia Streaming Caching Algorithm.

Figure 5.4 Request pattern from five peers.

gets requested. Additionaly to increasing that value, we equally decrease all other

relevance values for the rest of the indexes in the window. The effect of this is that

we get a probability value for which block in the window would be accessed next.

Finally we have a value T, which is a timeout value. After a long period T between

requests from a peer, there is a high probability that a node requesting blocks has

replaced a peer for some other peer with a higher upload speed. By defining a

timeout value between zero and one, where one is the value for a live stream and

close to zero is a value for dead streams, it is possible to give no longer relevant

blocks lower relevance values.

EXAMPLE: We present an example describing the steps of the algorithm. The

example focuses on one media object. In Figure 5.5, we have three different nodes;

A, B and C. A has currently requested Block 2, while B and C has recently reques-

ted Block 5.

When a request for a block arrives, we immediately try to fetch W blocks into the

cache, where W is the window size. The request from Node A arrives first so the

relevance values for these blocks are calculated first. All the blocks get a relevance

value Rr of one, since they are referenced one time each. Then the request from

Node B is calculated. Blocks 6 and 7 get a relevance value Rr of two, while Blocks

8, 9 and 10 get a relevance value Rr of one. Finally, the request from Node C is

calculated. Blocks 6 and 7 get a relevance value Rr of three, while blocks 8, 9

and 10 get a Rr of two. In addition, the relevance values Rg and Ra, are added

to Rr for each block. The difference between relevance values Rg and Ra, is that

the relevance value Ra accounts for each session, while Rg accounts for the entire

media object. A block then gets the relevance value shown in Formula 5.4.

Rtotal = (Rr + Rg + Ra) ∗ T (5.4)

5.3 Cost Prediction 57

Figure 5.5 Cache replacement in RBC.

5.3 Cost Prediction

In this section, we describe the RBC algorithm in more detail, and give a thorough

cost prediction. In order to make this algorithm a proper replacement for already

existing algorithms, it has to be usable on a regular user PC. We analyze each step

in the algorithm, and calculate the cost in terms of O(N). Finally, we compare the

cost from RBC with the cost from LFU and LRU. We calculate the costs of worst

case scenarios, as we also did in Chapter 3.

So how about the costs related to CPU resources? Are there too many steps to be

made for the processor to handle in a timely fashion? We must remember that the

algorithm does not have exclusive access to the CPU. Next, we analyze each step

in the algorithm shown in Figure 5.6 and Figure 5.7, and assign an O(N) cost.

We start with Step 3, which occurs when we have a new session. A new session in

this context is whenever a client is asking for a file it has not previously asked for.

A client can already have an ongoing session, and if it is asking for another file,

this is a different session. So we have to create a new window structure which is a

list of numbers containing the relevance value Ra and insert it into the SessionList.
This is two steps, with the cost of O(2).

Next is Step 4 and 5. If the new session is for a file that no other peers are access-

ing, we have to create a new entry in the FileList. We also have to sort the FileList
in order to calculate the Rg (Zipf) value. The cost of inserting a new item into the

right index into an already sorted list is at worst case O(N), where N is the num-

58 Design of a P2P Multimedia Streaming Caching Algorithm.

Figure 5.6 Detailed description of the RBC algorithm.

1New request

2If new session

3Create window structure

4If request for not previously asked for file

5Insert file sorted into FileList
6Else if the file exists in FileList
7Increment the reference counter for the file

8Sort the list

9Prefetch window of size W

10For each blocka to be fetched

11Calculate relevance Rtotal

12If free space in the cache

13Insert into Cache
14Else

15Find the blockb in the Cache with lowest Rtotal

16If Rtotal of blockb is smaller than Rtotal of blocka

17Swap blocks

18Else

19Do nothing

Figure 5.7 Steps to calculate Rtotal.

20Increase Ra for the block in the window structure

21Add Rr, Ra and Rg

22Increment Rr

5.3 Cost Prediction 59

ber of items in the list. The worst case scenario occurs whenever all the files in

the FileList are being accessed by different clients. This gives the cost O(N + 2),

where 2 is the cost of creating an entry and setting the reference value to one.

When the file already exists (Step 6, 7 and 8), we have to increment the refer-

ence counter for the correct entry, which is one step and has the cost of O(1). In

addition, we have to place the updated entry at the right index to keep the list sor-

ted. This also has a worst case cost of O(N) in the case where the updated entry

where referenced one time less than all the other entries, making the algorithm it-

erate through each entry before finding the correct index. This results in O(N + 1).

Now, we move on to the part of the algorithm that always happens when we have

a request. In Step 9, we create a list of the blocks to be fetched, this has a cost of

O(1). Step 10 has the cost of O(W), where W is the size of the window. Step 11

is a bit more complicated and is compound of Step 20, 21 and 22. Step 20 has the

cost of O(W), since each time we increase the Ra value for one block, we have to

decrease Ra for all the other blocks in the window. Step 21 and 22 has the cost of

O(1). This sums up to a cost of O(2W + 2) for calculating Rtotal for all the blocks.

Step 12 and 13 will have the cost of O(2), since there is one step to check for free

space in the cache and one for inserting the block into the MainMemoryList.

The six final steps (14 to 19) cover the case where the cache is full, and we need

to do a swap. Step 15 where we find the block with the lowest total relevance value

has the cost of O(N), where N is the total number cached blocks. Step 16 decides

whether we should do a swap or not and cost O(1), while the swap also costs

O(2). This constitutes a total cost of O(N + 2).

When adding the costs we only calculate the worst case costs. This means that

when we have an If/Else we chose the cost that is highest. This results in the final

cost as shown in Formula 5.5:

O(2) + O(N f + 2) + O(2W + 2) + O(Nm + 2)

=

O(Nm + N f + 2W + 8) (5.5)

Nm is the number of entries in the MainMemoryList while N f is the number of

entries in the FileList. Below, in Table 5.1, we see a cost comparison of the four

implemented algorithms. We see that RBC, is more complex and resource consum-

ing than the others. However, we argue that with the CPU resources we have today,

60 Design of a P2P Multimedia Streaming Caching Algorithm.

the cost for RBC is acceptable.

Algorithms O(N)

RANDOM O(2)

LFU O(2 * N + 1)

LRU O(2N - 1)

RBC O(Nm + N f + 2W + 8)

Table 5.1: Cost Analysis of RANDOM, LFU, LRU and RBC.

5.4 Summary

In this section, we propose an algorithm called Relevance Based Caching (RBC).

It uses prefetching to benefit from the sequential access imposed from multimedia

streaming, and identifies the P2P access pattern to cope with the partitioning of

the request sequence. At each request, it prefetches a window of N blocks. When

prefetching this window, RBC gives each block a relevance value composed of the

block popularity, the access pattern and the file popularity. When it has to replace

a block in the cache, is replaces the block with the lowest total relevance value.

This ensures that we always cache the blocks that have the highest probability of

being requested. We also look at the CPU resource cost, and we show that the RBC

algorithm is feasible with regards to CPU resource consumption.

In the next chapter, we will implement and evaluate the RBC algorithm. We com-

pare it to the previously evaluated algorithms in order to see how RBC handles P2P

access patterns, low temporal redundancy and object segmentation.

Chapter 6

Performance Analysis and

Evaluation of the RBC

Algorithm.

In this section, we present the performance evaluation of the results obtained from

the simulations using the RBC algorithm. We start by illustrating implementation

decisions. Then, we proceed with defining a goal for the performance, metrics,

factors and the workloads. Subsequently, we explain the simulations, and finally

give a summary.

6.1 Simulation Description

In Chapter 4, we argumented why we chose to use simulations for our performance

analysis. We use simulations also for this evaluation for the same reasons as listed

in Chapter 4.

6.1.1 Implementation

Like with the implementation of existing algorithms, we also here keep all data in

main memory while running the simulations. This limits the workload size some-

what. We have followed the description of the RBC algorithm from Chapter 5,

with two exceptions. We have not implemented the timeout value T, and the Win-

dow Size is static throughout the simulation run time. These choices were made

due to time constraints.

62 Performance Analysis and Evaluation of the RBC Algorithm.

6.1.2 Metrics

We use the same metrics for this evaluation as for the evaluation of the existing

algorithms:

• BNC: For the access pattern analysis we look at something we chose to call

Block Number Closeness, referred to as BNC from here on. If we have two

requests on the same file, and the block number for the two requests are

close, we have a high BNC. For example, we have two request patterns on

one file. In Pattern A, we have requests for blocks 1, 3, 5, 7, and 9, while in

Pattern B there is requests for blocks 1, 5, 9, 13 and 17. Pattern A then has a

higher BNC than Pattern B.

• CHR: For the analysis of the effectiveness of the different caching algorithms,

we use the Cache Hit Ratio metric. When we have a request for a block, we

either have a cache hit or a cache miss. The larger the percentage of the total

requests the cache hits constitute, the higher CHR we have.

6.1.3 Factors

Before we start explaining the evaluation, we give an overview of the parameters

that affect the performance. Parameters are divided into two categories: those that

will be varied during the evaluation and those that will not. The parameters to be

varied are called factors and their values are called levels [19]. We vary all our para-

meters except Relevance G, to measure which parameter has the most effect with

regards to CHR. The Relevance G value reflects the popularity of the multimedia

file as a whole, not individual blocks. The factor is based on the Zipf formula, and

is therefore restricted to give a maximum value of one. The factors we will use are

the following:

• Cache Size: The Cache Size factor is the same as the one we used in the

simulation of the existing algorithms. It defines the Cache Size in amount of

blocks. One block is in all our simulations defined as 512 KB. In this eval-

uation we vary the Cache Size between 102 and 204 blocks, which equals

approimately 50 and 100 MB respectively.

• Relevance R: From Chapter 5, we recall the description of Relevance R. It

holds a value indicating in how many windows the block is referenced in.

The default value of this factor is one. We are increasing the value to two

in some simulations. When we use default settings and a block has the Rel-

evance R value of two, another block with a Relevance R value of one are

still able to evict the first block with the combination of Relevance A and

G. When increasing the Relevance R value, we actually dwindle the effect

6.1 Simulation Description 63

of Relevance A and G to only differentiate between blocks with equal Rel-

evance R. For example, we have a block that is referenced in four windows.

We recall Formula 5.1 from Section 5:

Rtotal = (Rr + Rg + Ra)

Rr, Rg and Ra are Relevance R, G and A respectively. With a default setup,

the highest Relevance G value we are going to get is one. This, we get from

the Zipf formula:

f (k; s, N) =
1/ks

Σ
N
n=1

1/ns

To get a Relevance G value of one, we have only one file in the file list. The

highest possible value for Relevance A is also one with the default setup.

The sum of Rg and Ra then never exceeds two. A block that is referenced

four times will get a total relevance value of Rg ∗ 4 + Ra + Rg, which equals

2 ∗ 4 + 1 + 1 = 10. A block which is referenced five times, will always get

a total relevance value higher than ten, thus it will always be cached if the

choice was between this block and the former.

• Relevance A: Relevance A is the relevance value describing the access pat-

tern. We run our simulations with Relevance A values of 1 and 20. When

we say a Relevance A value of one, each block in a Window gets the Relev-

ance A value of 1 devided by Window Size at startup. The reason for running

simulations with the value one is related to the explanation of Relevance R.

We do not want this relevance value to be too important. However, we are

running simulations where the Relevance A value is 20 and a Window Size

of 20, where each block gets the Relevance A value of one initially. This is

to measure the importance of the Relevance A value.

• Relevance A Increase: This factor defines at which rate the Relevance A

value increases. We run our simulations with Relevance A Increase values of

0,05 and 0,10. With these two values we hope to measure whether a quick

increase or a slow increase is the most effective with regards to CHR.

• Window Size: The Window Size defines how many successive blocks we try

to retrieve once we have a request. We run our simulations with Window

Sizes of 10, 20 and 40 blocks. We start with 20, then try to increase the

number to 40, and finally decrease to 10. This will give us an indication of

which Window Sizes are the most effective with regards to CHR.

6.1.4 Workloads

We use both Workload 1 and Workload 2 which are described in Chapter 4. This is

a choice made to make the analysis as fair as possible. In addition, we use a third

workload, Workload 3. This workload has a maximum number of active nodes of

64 Performance Analysis and Evaluation of the RBC Algorithm.

40, and operates over approximately 7 days. It has a total of 1143 nodes. We use

this workload to verify observations made from Workload 1 and 2. Workload 3 is

generated in the same fashion as Workload 2.

6.1.5 Performance Goal

The main goal is to show that this algorithm is suited for P2P multimedia stream-

ing. We want to show that RBC handles the P2P access pattern, object segmenta-

tion and low temporal redundancy. Workload 1 is easy to predict because all nodes

are requesting the same file, and start playback at the same time. The prefetching

done by RBC should handle this scenario very well, and we expect high CHR val-

ues. For Workload 2 and 3, which have a much more random access pattern and

thus is harder to predict, we think all results better than the existing algorithms are

acceptable.

6.2 Simulations

In this section, we present the results from our simulations. First, we are defining a

default setup. This default setup is not optimized. The values are set before we start

the simulations and have any results. However, they reflect our assumptions about

which values are giving the best performance with regards to CHR. In the default

setup we have set the factors to:

• Cache Size: The Cache Size factor is set to 102 blocks. In Chapter 4 we

define that each block is of the size 512 KB, and 102 blocks equals approx-

imately 50 MB.

• Relevance R: Relevance R is set to one in the default setup. This means we

increase the Relevance R value of a block by one, each time it is referenced

in a Window. We chose this value because Relevance R is the main part of

RBC, and is designed to function independently of Relevance A and G. If

we only were to have Relevance R, and not Relevance A or G, it would be

natural to use one as the default value.

• Relevance A: Relevance A is designed to differentiate between two blocks

with an equal Relevance R value. The Relevance A value for a block is de-

pendent on the Window size, because it is divided with this value. For ex-

ample, if we have a Window Size of 20, each block gets the Relevance A

value of 1 / 20, which equals 0,05. This is the startup value for each block.

We chose to set the Relevance A value to one to prevent the situation shown

in Formula 6.1.

6.2 Simulations 65

Rr + 1 < Rr + Ra (6.1)

We are aware that Relevance A has a theoretical chance of becoming one for

a block, thus making the left and right side of the equation equal.

• Relevance A Increase: We chose to set the Relevance A Increase factor to

0,05. This number is low enough to make a medium paced increase in the

Relevance A values.

• Window Size: The Window Size is set to 20 in the default setup. This makes

up approximately 20 % of the default Cache Size. From the access patterns

we analyzed in Section 4, we saw a tendency towards nodes getting requests

from few peers. With the Window Size set to 20, and a Cache Size of 102,

there is enough space to effectively retrieve the relevant blocks in a Window.

6.2.1 Results from Default Setup

In this section, we analyze the results from our simulations with the default setup

which was described earlier. We start by introducing the results from Workload 1,

then we are showing the results from Workload 2.

Figure 6.1 shows us a graph with time in seconds along the X-axis, and the cache

hits/miss/total along the Y-axis. We have verified the workload by comparing the

curve for the total hits with the curves from the previous results from simulations

with the existing algorithms.

The graph shows us a very good CHR. We have close to 100 % CHR, and this

shows us how well suited the RBC algorithm is for this kind of workload. The

peers always request the same file, and they are requesting blocks which have block

numbers close to each other. For example, two peers are requesting the same file.

The first peer requests Block 1, and Block 1 to N, where N is the Window Size, gets

swapped into the cache. Then the peer requests Block 10, and Block 10 to 10+N

are retrieved. The next peer then requests Block 1, and because all 1 to N blocks are

already in the cache, we do not need to prefetch any of these. The request will be a

cache hit, because the first peer has previously requested the block in question. In

fact, we will always have cache hits for requests as long as the cache size devided

by the number of requesting peers equals a sum greater than the Window Size, as

shown in Formula 6.2.

CacheSize/RequestingPeers > WindowSize (6.2)

For example, with our default setup with a Cache Size of 102 blocks, we can have

five peers requesting blocks without getting cache misses (102 / 5 > 20). We have

66 Performance Analysis and Evaluation of the RBC Algorithm.

Figure 6.1 Workload 1, default setup, RBC.

previously analyzed Workload 1 in Chapter 4, and we argumented that most nodes

had aproximately three requesting peers. Albeit, we still get cache misses. The

cache misses come from nodes with more than five requesting peers, and where

the peers requests blocks with block numbers far apart. We are also getting cache

misses if the peers request block numbers with an interval larger than the Window

Size as shown in Formula 6.3. For example, a peer requests Block 1, and Block 1 to

N is prefetched. Then if next the peer requests Block N+1, it results in a cache miss.

BlockNumberInterval > WindowSize (6.3)

Next, we analyze the results we got from simulations with Workload 2. The graph

from Figure 6.2 shows us a very good CHR the first 6000 seconds, then the CHR

drops, for then to stabilize at approximately 1000 seconds. We have already in

this section established two formulas describing when we can have a cache miss.

We show that after 6000 seconds, the nodes have more than five requesting peers,

resulting in a situation where the cache no longer can hold all the blocks in the

windows to be prefetched, as shown in Formula 6.4.

CacheSize/RequestingPeers < WindowSize (6.4)

An effect of having a larger peer list, is that the block number interval also gets

larger. For example, if a node streams multimedia data from five different peers

6.2 Simulations 67

Figure 6.2 Workload 2, default setup, RBC.

with the same download rate, it would request blocks with a block number interval

of five. If the node downloads from more than 20 peers, the interval is larger than

the Window Size which is set to 20, and this results in a lower CHR.

The results in this section are an indication that the RBC algorithm does perform

well with P2P multimedia streaming. Even with the low temporal redundancy in

Workload 2, it performs far greater than the previously examined algorithms. From

the analysis we establish two formulas defining when we can have a cache miss

shown in Formula 6.3 and Formula 6.4. We see that for Workload 1, we get close

to 0 % CHR, while for Workload 2 we get a varied CHR which stabilizes at ap-

proximately 35 %. The assumption made that the nodes have small peer lists in

Workload 2 is wrong. From the CHR we see in Figure 6.2, we see that the nodes

have a higher number of requesting peers than assumed.

6.2.2 Experiments with Cache Sizes

In this section, we set the Cache Size factor to 204 blocks. The rest of the factors

still have the default values introduced earlier. We also here start with explaining

the results from Workload 1, and then presenting the results from Workload 2.

In Figure 6.3 we see the results from simulations with Workload 1. The results are

very similar to the results we got with the default setup as shown in Figure 6.1. The

68 Performance Analysis and Evaluation of the RBC Algorithm.

Figure 6.3 Workload 1, Cache Size=204, RBC.

difference is that this time we got an even higher CHR. With the defaut setup, we

have approximately 10 cache misses every second, while in when we increase the

Cache Size factor to 204 blocks, we get almost zero. We remember Formula 6.4

describing when we can have cache misses. In this simulation we increase the

Cache Size to 204, increasing the amount of requesting peers a node can handle

to (204/X < 20|X = 10) approximately 10 peers. It seems that increasing the

number of peers the nodes can have almost eliminates the cache misses, resulting

in 100 % CHR. This substantiates the Formula 6.4.

Next, we present the results from simulations with Workload 2. In Figure 6.4 we

show the results from simulations were we increase the Cache Size to 204 blocks,

and we get similar results as with the default setup shoen in Figure 6.2. The differ-

ence is that the CHR decreases faster per second with the default setup, compared

to the results where we increase the Cache Size factor. We get this effect, because

like with Workload 1, the nodes can have more peers in their peer lists before we

get cache misses. We also see that the CHR stabilizes after approximately 10000

seconds. This indicates that the nodes peer lists increase in number until 10000

seconds have passed in Workload 2, and the number stabilizes at a number greater

than 10. We can at this point argue that the higher the result of CacheSize divided

on the number of RequestingPeers is in relation to the WindowSize, the lower

CHR we get. We see this tendency as we increase the Cache size.

In this section, we set the Cache Size factor to 204 blocks. We see that with increas-

6.2 Simulations 69

Figure 6.4 Workload 2, Cache Size=204, RBC.

ing the Cache Size factor to 204 blocks, we get an effect where we achieve a higher

CHR. For Workload 1 we actually nearly eliminate the cache misses, resulting in

almost 100 % CHR. We further allege that the higher the sum of the CacheSize
divided on the number of RequestingPeers, is in relation to the WindowSize, the

lower CHR we get.

6.2.3 Experiments with Relevance R

In this section, we introduce results from simulations where we vary the Relevance

R value. We start by explaining the results from Workload 1, then showing the

results from Workload 2. As we have argued earlier, this makes Relevance A and

Relevance G less influential.

Figure 6.5 shows us a lower overall CHR than we had with our default setup in

Figure 6.2. After 1000 seconds we have a decrease in the CHR in both graphs,

however we have a larger decrease in Figure 6.5. With a higher Relevance R value,

we get more dependent on caching the entire Window to be sure we cache the rel-

evant blocks. Because Relevance A and G are less influential, we are no longer

able to differentiate between individual blocks with as high precision as before.

For example, in Figure 6.1 we get a very high CHR even though we know that

several nodes has more than five peers in their peer lists. Relevance A and G does

not serve any purpose before CacheSize/RequestingPeers > WindowSize. After

70 Performance Analysis and Evaluation of the RBC Algorithm.

Figure 6.5 Workload 1, Relevance R=2, RBC.

1000 seconds the peer lists start to grow larger than five peers, and we are no longer

able to chose individual blocks inside a window with as good precision as we do

with lower Relevance R values. At this point we can conclude that the Relevance R

value has to be balanced with the Relevance A and G values to get a greater CHR

even when CacheSize/RequestingPeers > WindowSize.

Next, we present the results from simulations with Workload 2. When comparing

this result with the results with the default setup, we see that the CHR drops to 50

%1 after 9000 seconds (seen in Figure 6.6) with an increase Relevance R value,

and after 13000 seconds with the default setup as shown in Figure 6.2. We also

see that the CHR stabilizes at a lower CHR percentage with a higher Relevance R

value, than with the default setup.

These results agree with the previous reasoning for why a higher Relevance R value

gives us a lower CHR. After 1000 seconds, the nodes start to get peer lists larger

than five. However, this time the Relevance A and G values are not helping the

nodes to chose which blocks in a window are the most important, resulting in cach-

ing of less relevant blocks. We are also able to conclude that the lower CacheSize
divided by the number of RequestingPeers are in relation to the WindowSize, the

less relevant Relevance A and G becomes.

In this section, we increase the Relevance R value from one to two. We see that

1This is indicated by the point where the cache hit curve and the cache miss curve meet.

6.2 Simulations 71

Figure 6.6 Workload 2, Relevance R=2, RBC.

this gives us a lower CHR due to the diminishing effect this has on the impact of

Relevance A and G. We also conclude that Relevance A and G are less influential

the lower CacheSize divided by the number of RequestingPeers are in relation to

the WindowSize.

6.2.4 Experiments with Relevance A

In this section, we evaluate results from simulations where we have changed the

behavior of Relevance A. We chose not to introduce results from Workload 1 in this

section, as we have seen earlier that Workload 2 reflects the results from Workload

1. We start by showing results from increasing the initial value of Relevance A, and

then we to present results from changing the rate at which Relevance A increases.

We can see in Figure 6.7 that until 13000 seconds into the simulation, the graph

is equal to the graph from the default setup. Then, from 13000 seconds and forth,

the CHR is a few percent higher than with the default setup. In other words, the

increase in the initial Relevance A value does not have an effect until after 13000

seconds.

The effect of increasing the initial value for Relevance A, is that it is more influ-

ential with respect to which block is cached. We can see from the graph in Figure

6.7 that the results do not stabilize until 10000 seconds have passed. The access

72 Performance Analysis and Evaluation of the RBC Algorithm.

Figure 6.7 Workload 2, Maximum Relevance A=20, RBC.

pattern is changing in the period from 1 to 10000 seconds, when the nodes peer

lists are being populated. This makes the access pattern less useful because we are

not able to make out a clear pattern in this phase. After 13000 seconds we see that

Relevance A starts to make a difference. This is due to the peer lists being more

stable. The late influence of the Relevance A value, is an indication on that the

access pattern is identified too slow. From these arguments, we can say that if the

nodes peer lists are changing often, we are not able to identify an access pattern

quickly enough with the current Relevance A Increase factor, for the Relevance A

value to influence the CHR.

Next, we increase the rate at which the Relevance A increase to 0,10. This creates

an effect where the access pattern is identified more quickly, and this remedies the

CHR somewhat during the unstable start up phase. Figure 6.8 shows us a higher

CHR than what we get from increasing the initial Relevance A value. We actually

do not reach a 50 % CHR until after approximately 19000 seconds, and we end at

approximately 50 % CHR.

In this simulation we have doubled the rate at which the Relevance A values in-

crease, and we can see from the graph that this has an effect where the access

pattern is identified quickly enough to make a difference during unstable periods.

By unstable periods, we mean when the peer lists are often changing. This con-

cludes that the more quickly we increase the Relevance A values, the more use we

can make of the access pattern as this is identified faster.

6.2 Simulations 73

Figure 6.8 Workload 2, Relevance A Increase=0,10, RBC.

In this section, we experiment with increasing the maximum Relevance A value,

and increasing the rate at which it is increased. We conclude that increasing the

maximum Relevance A value does not make a difference on the performance be-

fore we have identified an access pattern. However, we are able to identify this

access pattern earlier if we increase the rate at which Relevance A increases.

6.2.5 Experiments with Window Sizes

In this section, we show the results from simulations where we vary the Window

Sizes. We chose also here to not present results from simulations with Workload 1.

We start by increasing the Window Size to 40, for subsequently to decrease it to

10. By doing this we will illustrate Formula 6.2. With a larger Window Size, we

see from the formula that we can have less requesting peers before getting cache

misses.

The effect of this is easy to locate in Figure 6.9. The CHR drops to 50 % after

approximately 7000 seconds, and it stays lower compared to results from earlier

simulations. However, we see that the CHR after 20000 seconds is not much lower

than with the default setup. With a Window Size of 40 blocks, and the other factors

still at default values, the nodes can only have (102/X > 40; X = 2) two peers

in their peer lists before we start to get cache misses. For example, a node has

74 Performance Analysis and Evaluation of the RBC Algorithm.

Figure 6.9 Workload 2, Window Size=40, RBC.

four peers requesting blocks. The first peer requests Block 1, and Blocks 1 to 40 is

cached. The next peer requests Block 40, and Blocks 40 to 80 is cached. Then when

the next peer requests Block 80, we only have enough space for 22 blocks, and we

have to begin swapping blocks to and from the cache. This results in a probability

of swapping out relevant blocks, and can lead to cache misses.

Next, we evaluate the results from simulations where we set the Window Size to

10 blocks. Comparing results from simulation with a Window Size of 40 (shown

in Figure 6.9), and results from simulations with a Window Size of 10 (shown in

Figure 6.10), we see a large increase in the CHR when we decrease the Window

Size. The CHR actually never drops below 50 %, and this is the best result we have

gotten so far with only changing one factor. When comparing these results with the

results we got with the default setup shown in Figure 6.2, we also see a tendency

towards the cache miss curve stabilizes at an earlier stage with a smaller Window

Size, than it did with the default setup. The CHR also ends up at approximately 60

%, which is an improvement of 25 % (the default setup ended up at 35 %). When

we decrease the Window Size, we also increase the number of peers that can send

requests to a node before we have cache misses. However, at the same time we

increase the chance of BlockNumberInterval > WindowSize. However the Win-

dow Size of 10 seems to be larger than the block number intervals for this workload.

In this section, we increase and decrease the Window Size. The results further

strengthen Formula 6.4. Formula 6.3 is still not proven and we do not have any

6.2 Simulations 75

Figure 6.10 Workload 2, Window Size=10, RBC.

means of varying the Block Number Interval to test the feasibility of the formula.

6.2.6 Experiments with Combinations of Relevance Values

In this section, we explain the results from simulations where we test which rel-

evance value is the most important. We chose to use Relevance R in all the sim-

ulations, because this is the basis of our algorithm. First, we present results from

simulations with Relevance R only. Then we show results from the combinations;

Relevance R and Relevance G and Relevance R and Relevance A.

Figure 6.11 shows the results where we only use the Relevance R value. We see that

the CHR reach 50 % after approximately 3000 seconds, which is 10000 seconds

earlier than with the default setup. In addition, we end up at approximately 16 %

CHR, which is 19 % lower than with the default setup. We also see a tendency

towards that the CHR stabilizes as early as after 3000 seconds. When we remove

Relevance G and Relevance A, we look at every block in a Window as equally rel-

evant. If the Formula 6.4 is correct, we can say with certainty that a client gets

requests from more than five different peers already after 1000 seconds. This is

shown where we start to get cache misses. We got a good CHR percentage after

this point in the previous simulations because we could then separate the most rel-

evant blocks in a Window from the rest with the use of Relevance A and G. This

shows that without Relevance G and Relevance A, we are more dependent on ful-

76 Performance Analysis and Evaluation of the RBC Algorithm.

Figure 6.11 Workload 2, Relevance R only, RBC.

filling Formula 6.4.

Next, we introduce the results from simulations where we only use Relevance R

and G. Relevance G is, as we recall, a relevance value based on how popular a

file is as a whole. Figure 6.12 showing the results with only Relevance R and G,

is almost identical to Figure 6.11 showing the results with only Relevance R. An

observant reader will see small differences, however they are too small to be sig-

nificant. This is an indication that the Relevance G value does not have a major

influence on the CHR. An explanation for this can be found in the access patterns

in Workload 2. As we recall from the analyzis of the access patterns, we saw that

the requesting peers on a node more often than not were requesting different files.

The Zipf distribution gives us a value distribution where the majority of the files

are given almost equal Relevance G values, and only the most popular files get a

higher value. Because all the files are of equal relevance in this case, differentiating

between the files does not have a desired effect. They are of equal relevance be-

cause Workload 2 is too short to properly incorporate a Zipf distribution. In other

words, because the popularity of the files in Workload 2 is not Zipf distributed, the

Relevance G value has no effect.

Finally, we show the results from simulations with Relevance R and A. Relevance

A is a relevance value based on the access pattern the requesting peers have on a

node. Figure 6.13 illustrate the results, and we see a graph similar to the graph we

got from the default setup. From the results of simulations with only Relevance R

6.2 Simulations 77

Figure 6.12 Workload 2, Relevance R and G, RBC.

and G, this is as expected. Relevance G had no effect on the CHR, so to get the

results we got with the default setup, Relevance A had to make the difference. We

clearly see the importance of the access pattern in this simulation. With Relevance

A, we are able to differentiate between the blocks in a Window in order to make the

most relevant blocks more likely to be cached. And this is very important when we

do not have enough space to cache the entire Window of every request.

In this section, we are trying different combinations of relevance values. We see

that because the media file popularity is not Zipf distributed, Relevance G has min-

imal effect. However, Relevance A has a large impact on the CHR. This is due to the

fact that we do not have enough space to cache the entire Window for each request,

and Relevance A is able to distinguish the most relevant blocks in the Window.

6.2.7 Verification of Results using Workload 3

In this section, we infer a new workload calledWorkload 3. We will first show res-

ults from a simulation with the default setup, then we will decrease the Window

Size and increase the Relevance A Increase value. By doing this we will verify the

assumptions we have made earlier in this chapter about Formula 6.4.

Comparing results from simulations with the default setup as shown in Figure 6.14,

and the results from simulations were we have decreased the Window Size and in-

78 Performance Analysis and Evaluation of the RBC Algorithm.

Figure 6.13 Workload 2, Relevance R and A, RBC.

Figure 6.14 Workload 3, default setup, RBC

creased the Relevance A Increase value as shown in Figure 6.15, we see a great

improvement of CHR in the latter. All we had to to was to decrease the Window

Size, and increase the Relavance A Increase value. By doing this, we increase the

number of requesting peers a node can serve before is start to get cache misses.

6.3 Summary 79

We are getting a lower CHR with this workload than with Workload 2. However,

the important thing to notice is that by tuning important factors like Window Size

and Relevance A Increase, we are able to improve the performance. Therefore, by

analyzing the behavior of the nodes in a specific P2P environment, we are able to

tune this algorithm to give better performance for that specific purpose.

Figure 6.15 Workload 3, Window Size=10, Relevance A Increase=0.10, RBC.

6.3 Summary

In this Chapter, we show with by using the default setup, that the RBC algorithm

performs very well with all workloads. RBC successfully handles low temporal re-

dundancy, object segmentation and P2P access patterns. With Workload 1 we get

close to 100 % CHR, while we get 35 % for Workload 2 and 23 % for Workload 3.

Furthermore, we are able to establish two formulas describing when we have cache

misses, shown in Table 6.1.

Formula

1: CacheSize/RequestingPeers > WindowSize
2: BlockNumberInterval > WindowSize

Table 6.1: Formulas describing when we have cache misses with RBC.

80 Performance Analysis and Evaluation of the RBC Algorithm.

By experimenting with the different factors, we are showing that the Cache Size is

influential towards the CHR. However, the Cache Size has to be compliant to the

number of requesting peers in order to get the desired increase in CHR. If we have

20 requesting peers, and only slightly increase the Cache Size, this has a minimal

effect. Next, we show that the relevance values have to be balanced or else they

render each other useless. When we increase the Relevance R value we see that we

do not get a positive effect from Relevance A and G, like we do with the default

value.

We further show that the access patterns from the requesting peers are very relevant

when choosing which blocks to cache. As we increase the rate at which Relevance

A increases, thus clarifying the access pattern more quickly, we get an increase in

the overall CHR. We also see that by increasing the initial Relevance A value, we

get an increase in CHR. This shows us how important it is to handle the P2P access

pattern correctly. Finally, we further strengthen the formulas shown in Table 6.1

by varying the Window Size. From the experiments with different factors, we claim

that the ratio shown in Formula 6.5 is closely related to the CHR. The smaller the

ratio is, the lower CHR we get.

CacheSize/RequestingPeers : WindowSize (6.5)

Chapter 7

Conclusions

In this thesis, we have designed, implemented and evaluated a new caching al-

gorithm called Relevance Based Caching (RBC). It is designed for P2P multime-

dia streaming and is based on existing knowledge as well as new ideas. We start

this chapter by summarizing our contributions in Section 7.1. Subsequently, we list

what could have been done differently in Section 7.2. Finally, we present ideas for

future work in Section 7.3.

7.1 Contributions

In this section, we summarize our contributions. The first subsection summarizes

the contributions from the design and implementation. In the following subsection,

we summarize the contributions from the evaluation of the RBC algorithm.

7.1.1 Design and Implementation

We chosed to implement the simulation environment in Java, which is very flexible

and easy to work with. There exists a great amount of documentation, and the act-

ive user community is large. The language proved to be more than able to express

the complexity of the different algorithms. However, Java has some performance

issues compared to languages such as C. Nonetheless, with the relatively small size

of our simulations, this posed no problems. Another drawback with Java is that we

have no control of the garbage collection, which we would have preferred.

We chose not to use a DBMS for holding data, mainly due to time constraints.

There is a limited amount of data a PC can hold in main memory at a time, which

82 Conclusions

we experienced. This limited the size of the workloads somewhat, in terms of act-

ive nodes.

7.1.2 Evaluation

By implementing and evaluating several simulations, we have shown the limita-

tions of existing caching algorithms when used together with multimedia stream-

ing and P2P access patterns. Yet, LRU can be used for multimedia streaming as

long as we have a high BNC for each file, and many peers requesting the same file.

We successfully designed and implemented a new caching algorithm for P2P mul-

timedia streaming, called RBC. We have shown through multiple simulations, that

with this algorithm we significantly increase the CHR compared to existing al-

gorithms. RBC handles the P2P access pattern, object segmentation, and low tem-

poral redundancy.

Furthermore, we have shown how important the access pattern of requesting nodes

are in a P2P multimedia streaming environment. We showed that the faster the

access patterns are identified, the better CHR we get. Without the access pattern,

the RBC algorithm is dependent on caching the entire Window in order to get a high

CHR. This is because the algorithm would look at all the blocks in the Window as

equally important, and would not be able to distinguish the most relevant blocks.

If the algorithm has to cache the entire Window, it emphasize a higher demand on

the amount of available Cache Size.

(CacheSize/RequestingPeers) : WindowSize (7.1)

We have shown that the factors used in the simulations can be optimized to greatly

increase the CHR. None of the factors where tuned before we ran the simulations.

The three most influential factors are the ones illustrated in Formula 7.1, and is

closely related to the CHR. As long as we have a 1:1, we will not get cache misses,

and the CHR should be close to 100 %. In addition, if the ratio is higher than 1:1,

we have enough space to cache the entire Window, making Relevance A and G

unnecessary. On the other hand, if the ratio is below 1:1, these relevance values be-

come equally important. The ratio can be used to optimize an application when a

user knows network characteristics such as access patterns. We could also use this

ratio to increase the performance of clients. A client could disable Relevance A and

G until a certain ratio threshold is reached. This would be helpful because a client

often has to do other resource intensive operations like playback and data encoding.

7.2 Critical Assessment 83

7.2 Critical Assessment

The theoretical foundation of P2P caching algorithms, is still very fresh. There

are no accepted P2P caching algorithms today, thus we chose not to compare our

results with an algorithm designed for P2P traffic. However, we have chosen to ex-

amine existing and well established algorithms, to identify the shortcomings they

expose with P2P network traffic patterns. By doing this, we hope to contribute to

the knowledge platform that we see is developing in the P2P caching community.

We have chosen to use few factors in our simulations. This somewhat limits the

posibilities of the simulations. The number of factors is closely related to the fact

that the workloads are static and time consuming to generate. To have the possibil-

ity of varying a factor such as the number of requesting peers, even more informa-

tion about the efficiency of our algorithm could have been obtained. However, with

the selected factors, we are still able to test and evaluate the RBC algorithm thor-

oughly.

The workloads could have been larger and more complex. With a larger workload,

the confidence of the results is increased. To handle larger workloads than the ones

we use in our simulations, a DBMS has to be incorporated in the simulation envir-

onment. However, this would have complicated the implementation and consumed

precious time. A larger workload may also imply a more complicated analysis,

which may result in less concrete conclusions.

We use multiple relevance factors, i.e. Relevance R, Relevance A and Relevance

G. Algorithms like LFU and LRU are successful, not only because they work, but

also because they are simple. Few variables are often beneficial. However, we have

shown that with three variables, the algorithm is not too resource demanding, while

being very effective.

7.3 Future Work

P2P multimedia streaming is a fairly new field of research. In this section, we

present some directions research in this field may take, based on the research done

in this thesis.

Fewer Relevance Values In Section 7.2, we say that fewer variables are often

beneficial. Our results show that the relevance value from the access pattern is very

important. A future research field could be to use the main principals of RBC,

however only use the Relevance A value. We propose to still to use prefetching

84 Conclusions

of windows. However, instead of adding Relevance R values, the algorithm can

add values associated with only the access pattern as shown in Figure 7.1. The

figure shows three active sessions, where each index in the windows has gotten

a relevance value. This value is associated with the number of times an index is

accessed. An approach like this would be a natural extension and can apply much

to what is learned in this thesis.

Figure 7.1 Cache replacement proposal.

Zipf Distribution: The workloads are Zipf distributed, however Workload 1 and

2 are not long enough to express the distribution properly. So our Relevance G

value had minimal effect on the performance. In order to test this relevance value,

future evaluations of the algorithm could use a workload where the popularity of

the files are properly Zipf distributed. We still think this value can increase the

CHR, however future work can make use of a multiplier value to increase the im-

portance of the Relevance G value.

Real Data: All of our workloads are generated by applications. It would be inter-

esting to use traces gathered from live P2P multimedia streaming with real users.

CPU Utilization: The algorithm has not been tested on individual user PCs. It

would be interesting to see the performance when deployed in an environment

such as PlanetLab [10]. In such an environment we could have measured the CPU

resource consumption.

Bibliography

[1] Age of conan. http://community.ageofconan.com.

[2] Gmail. http://www.gmail.com.

[3] Hotmail. http://www.hotmail.com.

[4] Moving picture experts group. http://www.chiariglione.org/mpeg/.

[5] Windows media player. http://www.microsoft.com/windows/windowsmedia/player/10/.

[6] Youtube. http://www.youtube.com.

[7] Buffer replacement algorithms for multimedia storage systems. In ICMCS

’96: Proceedings of the 1996 International Conference on Multimedia Com-

puting and Systems (ICMCS ’96), page 0172, Washington, DC, USA, 1996.

IEEE Computer Society.

[8] S.-H. Gary Chan and S.-H. Ivan Yeung. Broadcasting video with the

knowledge of user delay preference. IEEE Transaction on Broadcasting,

49(2):150–161, 2003.

[9] Umesh Chejara, Heung-Keung Chai, and Hyunjoon Cho. Performance com-

parison of different cache-replacement policies for video distributio in CDN.

Springer Berlin / Heidelberg, 2004.

[10] Brent Chun, David Culler, Timothy Roscoe, Andy Bavier, Larry Peterson,

Mike Wawrzoniak, and Mic Bowman. Planetlab: an overlay testbed for

broad-coverage services. SIGCOMM Comput. Commun. Rev., 33(3):3–12,

2003.

[11] Bram Cohen. Incentives build robustness in bittorrent. Workshop on Eco-

nomics of Peer-to-Peer Systems, 2003.

[12] George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Systems -

Concepts and Design. Addison-Wesley, 2005.

86 BIBLIOGRAPHY

[13] Asit Dan and Don Towsley. An approximate analysis of the lru and fifo buffer

replacement schemes. Joint International Conference on Measurement and

Modeling of Computer Systems, pages 143–152, 1990.

[14] Jayanata K. Dey-Sircar, James D. Salehi, James F. Kurose, and Don Tow-

sley. Providing vcr capabilities in large-scale video servers. International

Multimedia Conference, 1994.

[15] André Dufour and Ljiljana Trajkovic. Improving gnutella network perform-

ance using synthetic coordinates. In QShine ’06: Proceedings of the 3rd in-

ternational conference on Quality of service in heterogeneous wired/wireless

networks, page 31, New York, NY, USA, 2006. ACM Press.

[16] Carsten Griwodz, Michael Bar, and Lars C. Wolf. Long-term movie popular-

ity models in video-on-demand systems: Or the life of an on-demand movie.

Technical report, 1997.

[17] Pål Halvorsen. Bufferhåndtering i multimedia datahåndteringssystemer.

Elektronikk, årg. 32, (nr. 9):64–67, 1998.

[18] Markus Hofmann and Leland R. Beaumont. Content Networking - Architec-

ture, Protocols and Practice. Morgan Kaufmann Publishers, 2005.

[19] Rai Jain. The art of computer systems performance analysis. John Wiley &

Sons, Inc., 1991.

[20] Xuxian Jiang, Yu Dong, Dongyan Xu, and B. Bhargava. Gnustream: a p2p

media streaming system prototype. In ICME ’03: Proceedings of the 2003

International Conference on Multimedia and Expo, pages 325–328, Wash-

ington, DC, USA, 2003. IEEE Computer Society.

[21] Taeseok Kim, Hyokyung Bahn, and Kern Koh. Considering user behavior

and multiple qos supports in multimedia streaming caching. J. VLSI Signal

Process. Syst., 46(2-3):113–122, 2007.

[22] Col MacCárthaigh. Joost Network Architecture. Joost N.V, April 2007.

[23] Frank Moser, Achim Kraiss, and Wolfgang Klas. L/mrp: A buffer manage-

ment strategy for interactive continuous data flows in a multimedia dbms.

In VLDB ’95: Proceedings of the 21th International Conference on Very

Large Data Bases, pages 275–286, San Francisco, CA, USA, 1995. Morgan

Kaufmann Publishers Inc.

[24] Andrew M. Odlyzko. Internet traffic growth: Sources and implications, 2003.

[25] Thomas Plageman, Vera Goebel, Andreas Mauthe, Laurent Mathy, Thierry

Turletti, and Guillaume Urvoy-Keller. From content distribution networks to

content networks - issues and challenges. Computer Communications, 29(5),

March 2006.

BIBLIOGRAPHY 87

[26] Stefan podlipnig and Laszlo Böszörmenyi. A survey of web cache replace-

ment strategies. ACM Computing Surveys(CSUR), Volume 35, Issue 4:374–

398, December, 2003.

[27] J. A. Pouwelse, P. Garbacki, D. H. J. Epema, and H. J. Sips. The Bittorrent

P2P file-sharing system: Measurements and analysis. In 4th Int’l Workshop

on Peer-to-Peer Systems (IPTPS), Feb 2005.

[28] Sylvia Ratnasamy, Andrey Ermolinskiy, and Scott Shenker. Revisiting ip

multicast. SIGCOMM Comput. Commun. Rev., 36(4):15–26, 2006.

[29] Matei Ripeanu. Peer-to-peer architecture case study: Gnutella network. First

International Conference on Peer-to-Peer Computing (P2P’01), 2001.

[30] Osama Saleh and Mohamed Hefeeda. Modeling and caching of peer-to-peet

traffic. Network Protocols. Proceedings of the 2006 14th IEEE, pages 249–

258, Nov 2006.

[31] Stefan Saroiu, Krishna P. Gummadi, and Steven D. Gribble. Measuring and

analyzing the characteristics of napster and gnutella hosts. Multimedia Sys-

tems, pages 170–184, February 19, 2004.

[32] Karl Andre Skevik. The spp architecture, a system for interactive vod stream-

ing. Faculty of Mathematics and Natural Sciences, Univesity of Oslo, 2007.

[33] Andrei Sukhov, Prasad Calyam, Warren Daly, and Alexander Iliin. Net-

work requirements for high-speed real-time multimedia data streams. III

IPv6 Global Summit(Internet. New Generation -IPv6), Moscow, pages 28–

33, November 2004.

[34] Andrew S. Tanenbaum. Modern Operating Systems. Alan Apt, 2001.

[35] Wenting Tang, Yun Fu, Ludmila Cherkasova, and Amin Vahdat. Medisyn: a

synthetic streaming media service workload generator. In NOSSDAV ’03:Pro-

ceeding of the 13th international workshop on Network and operating sys-

tems support for digital audio an video, pp. 12-21. ACM Press, 2003.

[36] Jared Winick and Sugih Jamin. Inet-3.0: Internet topology generator, 2002.

[37] Lin Wujuan, Law Sie Yong, and Yong Khai Leong. A client-assisted in-

terval caching strategy for video-on-demand systems. Comput. Commun.,

29(18):3780–3788, 2006.

Appendix A

List of Abbreviations

BNC Block Number Closeness

BNI Block Number Interval

BW Bandwidth

CDN Content Distribution Network

CHR Cache Hit Ratio

CN Content Network

CPU Central Processing Unit

DBMS Data Base Management System

FIFO First-In First-Out

FPS Frames Per Second

I/O Input/Output

JVM Java Virtual Machine

LFU Least Frequently Used

LHC Local Host Cache

L/MRP Least/Most Relevant for Presentation

LRU Least Recently Used

RBC Relevance Based Caching

RTCP Real Time Control Protocol

RTP Real-time Transport Protocol

RTSP Real Time Streaming Protocol

SCC Site Content Cache

SMIL Synchronized Multimedia Integration Language

P2P Peer-to-Peer

WWW World Wide Web

Appendix B

Running The Simulations

We ran all our simulations on a PC with Linux and Java 1.5 SDK. The simulation

factors are all contained in the Constants.java class, and have to be changed prior

to running the simulation. In order to run a simulation, the program takes four

arguments:

• WORKLOAD: This defines the path to the trace-file.

• ALGORITHM: This parameter definesg which algorithm to run. We have

four different options; 0, 1, 2 and 3. 0 for LFU, 1 for LRU, 2 for RANDOM

and 3 for RBC.

• LOG_RESOLUTION: This parameter sets the granularity of the graph.

• CACHE_SIZE: This decides how many blocks the cache can hold.

To run a simulation, type the following command in the program folder:

• java cachingmain/Main WORKLOAD AlGORITHM LOG_RESOLUTION

CACHE_SIZE

Every 100th second a string is printed on the form:’timestamp active_nodes’. The

’timestamp’ is the timestamp from an entry in the tracefile, identifying how far in

the simulations you have gone.

When the program finishes, the program creates a new file called ’out.dat’, as

output. This file contain four columns of numbers. The first column is the time-

interval, the second is the number of cache misses, the third is the number of cache

hits, and the last is the total number of requests. This file is created for use with

Gnuplot, which is a program for creating graphs. Gnuplot takes a list of commands

as input. An example of such a list is shown in Figure ??:

92 Running The Simulations

Figure B.1 An example of a Gnuplot script.

set terminal postscript color

set out "out.ps"

set data style linespoints

set title "Some title."

set xlabel "Time(s)"

set ylabel "Hits/Miss/Total(#)"

plot "out.dat" using 1:2 title ’Miss’, \

"out.dat" using 1:3 title ’Hit’, \

"out.dat" using 1:4 title ’Total’

In order to record the access pattern on a node, the RANDOM cache replacement

algorithm has to be used. Before starting the simulation, the NODE_TO_LOG

member in Constants.java has to be set to the node which should be logged. In

addtition, LOGG_START and LOGG_END has to be set to desired numbers. The

interval can not be too large or else the JVM will run out of heap space. The

NODE_TO_LOG has to be manualy chosen from the trace file. When the simu-

lation finishes, a log file named outAccess.datFILENAME, where FILENAME is

the name of each file that has been accessed, is created. All these files then has to

be combined with the use of a Gnuplot script, for then to use Gnuplot to create a

graph.

Appendix C

Source Code

In this appendix, we present a selection of the source code developed for this mas-

ter thesis. We chose to only present the code associated especially with the RBC

algorithm. If the reader would like to see how the other algorithms are implemen-

ted, all the source code is enclosed on the CD. We start by presenting the main RBC

class, for subsequently to present some of the most important functions incorpor-

ated in the Node class.

/*

* RBC.java

*

* Created on 15. mars 2007, 18:36

*

*/

package cachingmain;

import java.io.BufferedWriter;
import java.io.FileWriter;
import java.io.IOException;
import java.util.Hashtable;

import java.util.Vector;

/**

*

* @author Administrator

*/

public class RBC {

private Utilities.LoggStruct logg;

private Utilities util;
private int mainMemorySize;
private Hashtable<String, Node> nodes;
private BufferedWriter out;

private int value = 100;
private int increment = 100;

/**

* Creates a new instance of RBC

*

* @param intervals − The resolution of the log file.

* @param first − The first timestamp.

* @param last − The last timestamp.

* @param util − An utility object.

* @param cacheSize − The memory size in number of blocks.

*/

public RBC(int intervals, int first, int last, Utilities util, int cacheSize)
{

this.util = util;
this.nodes = new Hashtable<String, Node>(89, 0.80f);

94 Source Code

// Getting a logg object for the logging

logg = util.CreateLoggStruct(intervals, first, last);
this.mainMemorySize = cacheSize;
// Create the first node holding all the blocks.

Node server = new Node("10.0.0.1" , Constants.SERVER_CACHE_SIZE, logg);
nodes.put(server.GetNodeId(), server);

}

/**

* Parses a string accordingly to plans

* @param str − The string to parse.

* @param old − Defining of what type the string is.

*/

public void Parse(String str, boolean old)
{

boolean output = true;

String[] words = str.split(" ");
String client = words[1].substring(0,words[1].length()−1);

// Write output each 100 second.

int progress = Integer.parseInt(words[0]);
if(progress / value >= 1)

{
System.out.println(progress + " " + nodes.size());
value = value + increment;

}

// Discard storing messages since we allways assume they are present on disk.

if(words.length > 3)
{

if(words[6].equals("storing") || words[5].equals("storing"))

return;
}

// We do not care if the node connects.

if(words[2].equals("CONNECTION"))
return;

// If it disconnects, we remove the node to free space.

if(words[2].equals("LOSTCONNECTION"))

{
nodes.remove(client);
return;

}

// If the filter is set to 1, we only log the LHCs.

if(Constants.FILTER == 1)
{

String start = client.substring(0, 4);
if(!old && !start.equals("host"))

return;
}

// If the node is not created, we create it.

if((nodes.get(client)) == null)
{

Node node = new Node(client, mainMemorySize, this.logg);

nodes.put(client, node);
}

// Get the node which the block is requested from.

Node accessedNode = nodes.get(words[7]);

// If the accessed Node is not created, we create a new.

if(accessedNode == null)
{

accessedNode = new Node(words[7], mainMemorySize, this.logg);
nodes.put(words[7], accessedNode);

}

// Create a session if its not yet created.

accessedNode.CreateSession(client , words[3]);

// Handle the file and calculate Zipf values.

accessedNode.HandleFile(words[3], client);

// Prefetch window of size WINDOW_SIZE.

accessedNode.PrefetchWindow(Integer.parseInt(words[5]), client, words[3], progress);
}

public void WriteLog()
{

95

this.logg.WriteToFile("out.dat");
}

}

In the included code above, the important method is the Parse method. For each

log entry, this method is called. The method generates output in order to track the

progress, and apply different filters. It also handles the creation of nodes. However,

three important method calls made in this method are, accessedNode.CreateSession(..),

accessedNode.HandleFile(..) and accessedNode.PrefetchWindow(..). The CreateSes-

sion method creates a session, which keeps track of the Window and the access pat-

tern in that Window. Next, the HandleFile method is keeping a list of requested files

in a node, sorted by the number of induvidual requests. With individual requests,

we mean from different nodes. This list is used to calculate the Zipf values. Fi-

nally, the PrefecthWindow method tries to prefetch a Window. This method handles

the comparison of relevance values between blocks in the cache, and blocks to be

prefetched. All these methods are public methods in the Node class, which brings

us to the next inserted code.

/*

* Node.java

*

* Created on 15. mars 2007, 17:50

*

*/

package cachingmain;

import java.security.acl.Owner;
import java.util.Hashtable;
import java.util.LinkedList;
import java.util.Vector;

/**

*

* @author Administrator

*/

public class Node {

private String nodeId;
private int cacheSize;

private Hashtable<String, File> fileLookupList;
private Hashtable<String, Session> sessions;
private Utilities.LoggStruct logg;

public String GetNodeId() { return nodeId; }
public LinkedList<Block> Cache;
public Hashtable<String, Block> Disk;
public LinkedList<File> SortedFilelist;
public Utilities.LoggStruct LoggAggregate;

/**

* Constructor

*

* @param nodeId − String. Uniquely identifying the node.

* @param cacheLength − int. The size of the memory in number of blocks.

* @param logg − Utilities.LoggStruct. The logg for registering cache miss/hit/total.

*/

public Node(String nodeId, int cacheLength, Utilities.LoggStruct logg)

{
this.nodeId = nodeId;
Cache = new LinkedList<Block>();
cacheSize = cacheLength;
// Set the initial capacity to a prime number for increased performance.

Disk = new Hashtable<String, Block>(8209, 0.80f);
SortedFilelist = new LinkedList<File>();
fileLookupList = new Hashtable<String, File>();

sessions = new Hashtable<String, Session>();
LoggAggregate = logg;

}

96 Source Code

/**

* Creates a session.

* @param owner − String. The name of the node starting the session.

* @param fileName − String. The filename.

*/

public void CreateSession(String owner, String fileName)
{

if(sessions.get(owner) == null)
{

Session session = new Session(owner, fileName);
sessions.put(owner, session);

}
}

/**

* Method for keeping a sorted list of files.

* @param fileName − String. The name of the file.

* @param client − String. The name of the client requesting the file.

*/

public void HandleFile(String fileName, String client)
{

boolean fileListChanged = false;

// Get the file object.

File file = fileLookupList.get(fileName);

// If the file does not exist, create it, set the relevance value and register the client.

if(file == null)
{

file = new File(fileName);
file.SetRelevanceValue(file.GetRelevanceValue() + 1);
// insert the file into the lookup table.

fileLookupList.put(fileName, file);
file.RegisterClient(client);

}
else

{
// If the client is registered with this file previously, do nothing.

if(file.IsRegistered(client))
return;

// Update the relevance value

file.SetRelevanceValue(file.GetRelevanceValue() + 1);
// Remove the file from the sorted list before inserting it again.

int i = 0;
for (File elem : SortedFilelist)
{

if(elem.GetFileName().equals(file.fileName))
{

SortedFilelist.remove(i);
break;

}
i++;

}
}

// Add the file to the sorted list.

if(SortedFilelist.size() != 0)

{
int listSize = SortedFilelist.size();
boolean inserted = false;
for(int i = 0; i < listSize; i++)
{

if(SortedFilelist.get(i).GetRelevanceValue() <= file.GetRelevanceValue())
{

SortedFilelist.add(i, file);
inserted = true;

break;
}

}

if(inserted == false)
SortedFilelist.addLast(file);

}
else

SortedFilelist.add(file);
}

/**

* Method to get the associated Zipf value with a file.

* @param filename − String. The file.

* @return − double. The Zipf value.

*/

97

private double GetZipfValue(String filename)
{

double value = 0;

for(double i = 1.0; i <= SortedFilelist.size(); i++)
value = value + (1.0 / i);

// Find the rank

double rank = 1.0;
for(File file : SortedFilelist)
{

if(file.GetFileName().equals(filename))
break;

rank++;
}

value = (1 / rank) / value;
return value;

}

/**

* Prefetches a Window of blocks.

* @param blocknr − int. The block that is requested.

* @param client − String. The client requesting the block.

* @param filename − String. The file the client requests.

* @param timestamp − int. The timestamp of the request.

*/

public void PrefetchWindow(int blocknr, String client, String filename, int timestamp)
{

Block block;

// Get the session the request belongs to.

Session session = sessions.get(client);

session.RegisterBlockNumber(blocknr);
session.StartIndex = blocknr;
session.EndIndex = blocknr + Constants.WINDOW_SIZE −1;

// Check if the blocks are created, and if not create them and insert into secondary memory.

// Keys in Disk are on the form: filename:blocknr.

for(int i = blocknr; i < (blocknr + Constants.WINDOW_SIZE); i++)
{

block = Disk.get(String.format("%s:%s", filename, i));

if(block == null)
{

block = new Block(i, filename);
Disk.put(String.format("%s:%s", filename, i), block);

}
// Set the relevance R value.

block.SetRelevance_R(block.GetRelevance_R() + Constants.RELEVANCE_R);
// Add the blocks to the session window if they arent there.

if(session.GetBlock(block.GetBlockNr()) == null)
session.Window.add(block) ;

}

// Unreference previous blocks.

session.UnReference(blocknr);
block = Disk.get(String.format("%s:%s", filename, blocknr));

if(block.InMainMemory)

LoggAggregate.InsertIntoColumn(1, timestamp);
else

LoggAggregate.InsertIntoColumn(0, timestamp);

// Now we are certain all the blocks are in secondary memory.

// Next step is to Calculate R_total for each block to be fetched.

for(int y = 0; y < session.Window.size(); y++)
{

Block tmp = session.Window.get(y);

if(tmp.InMainMemory)
{

// if the block allready is in main memory, do nothing.

}
else

{
// If the memory is empty, just insert the block.

if(Cache.size() == 0)
{

Cache.add(tmp);
tmp.InMainMemory = true;
continue;

}

double TotalRelevanceNew = 0.0;

98 Source Code

// Which relevance values are we using?

if(Constants.RELEVANCE_R_ENABLED)
TotalRelevanceNew = TotalRelevanceNew + (double)tmp.GetRelevance_R();

if(Constants.RELEVANCE_A_ENABLED)
TotalRelevanceNew = TotalRelevanceNew + session.accessPattern[y];

if(Constants.RELEVANCE_G_ENABLED)
TotalRelevanceNew = TotalRelevanceNew + GetZipfValue(tmp.GetFileName());

// For each block in the memory, compare with tmp.

for(int i = 0; i < cacheSize; i++)
{

double TotalRelevanceOld = 0.0;

if(Constants.RELEVANCE_R_ENABLED)
TotalRelevanceOld = TotalRelevanceOld + (double)Cache.get(i).GetRelevance_R();

if(Constants.RELEVANCE_G_ENABLED)
TotalRelevanceOld = TotalRelevanceOld + GetZipfValue(Cache.get(i).GetFileName());

// If the memory is not full, insert it.

if(Cache.size() < cacheSize)

{
tmp.InMainMemory = true;

if(TotalRelevanceNew >= TotalRelevanceOld)
{

Cache.add(i, tmp);
break;

}
}

else

{
// If the tmps relevance is larger than any in the memory,

// replace.

if(TotalRelevanceNew >= TotalRelevanceOld)
{

tmp.InMainMemory = true;
tmp = InsertIntoArray(i, tmp);
tmp.InMainMemory = false;

break;
}

}
// If theres free space in the memory, insert last.

if(tmp.InMainMemory)
{

Cache.add(tmp);
break;

}
}

}
}

}

/**

* Method to add a block to the memory.

* @param index − int. The index where the block are inserted.

* @param block − Block. The block to be inserted.

* @return − Block. The block that is replaced.

*/

private Block InsertIntoArray(int index, Block block)
{

Block out = Cache.getLast();
Cache.removeLast();
Cache.add(index, block);

return out;
}

/**

* A class for holding session relevant data.

*/

private class Session
{

private String sessionOwner;
private String fileName;
private int firstInWindow;

public int StartIndex;
public int EndIndex;
public LinkedList<Block> Window;
public double[] accessPattern;

99

/**

* Constructor

* @param owner − String. The client that started the session.

* @param fileName − String. The file being accessed.

*/

public Session(String owner, String fileName)

{
this.sessionOwner = owner;
this.fileName = fileName;
this.Window = new LinkedList<Block>();
accessPattern = new double[Constants.WINDOW_SIZE];
double value = Constants.RELEVANCE_A / Constants.WINDOW_SIZE;
// Initialize the accessPattern array.

for(int i = 0; i < accessPattern.length; i++)
accessPattern[i] = value;

}

/**

* Method to handle relevance A values.

* @param blocknr − int. The blocknr being requested.

*/

public void RegisterBlockNumber(int blocknr)
{

int index = blocknr − StartIndex;
double value = Constants.RELAVANCE_A_INCREASE / (Constants.WINDOW_SIZE − 1);
for(int i = 0; i < accessPattern.length; i++)
{

if(i == index)
accessPattern[i] = accessPattern[i] + Constants.RELAVANCE_A_INCREASE;

else

accessPattern[i] = accessPattern[i] − value;
}

}

/**

* Method to get a block from the Window.

* @param blocknr − int. The blocknr of the block to get.

* @return − Block.

*/

public Block GetBlock(int blocknr)
{

for(Block bl:Window)
{

if(bl.GetBlockNr() == blocknr)
return bl;

}
return null;

}

/**

* Unreferenced blocks with a blocknr lower than the newhead.

* @param newhead − int. The blocknr of the requested block.

*/

public void UnReference(int newhead)
{

int it = 0;

// If the newhead is < than the first block in the list, we remove the WINDOW_SIZE first items.

if(Window.get(it).GetBlockNr() > newhead)
{

// Remove blocks from the window

for(int i = 0; i < Constants.WINDOW_SIZE; i++)
Window.removeFirst();

}

while(Window.get(it).GetBlockNr() < newhead)
{

Block tmp = Window.get(it);
tmp.SetRelevance_R(tmp.GetRelevance_R() − Constants.RELEVANCE_R);
it++;

}
// Remove blocks from the window

for(int i = 0; i < it; i++)
Window.removeFirst();

}

// Internal class

private class SessionBlock
{

private int blocknr;
private String fileName;

}
}

100 Source Code

// A class holding properties associated with files.

private class File
{

private String fileName;

private Hashtable connectedClients;

private double relevanceValue;
public double GetRelevanceValue() { return relevanceValue; }
public void SetRelevanceValue(double value) { relevanceValue = value; }
public int filelistIndex;
public void SetFilelistIndex(int value) { filelistIndex = value; }
public int GetFilelistIndex() { return filelistIndex; }
public String GetFileName() { return fileName; }

/**

* Constructor

* @param filename − String. The file name.

*/

public File(String filename)
{

this.fileName = filename;
this.relevanceValue = 0.0;
this.connectedClients = new Hashtable();

}

/**

* Method to check if a node is registered for this file.

* @param name − String. The name of the node.

* @return − boolean. True if the node is registered.

*/

public boolean IsRegistered(String name)
{

if(connectedClients.get(name) == null)
{

return false;
}
return true;

}

/**

* Method to register a node.

* @param name − String. The name of the node.

*/

public void RegisterClient(String name)
{

connectedClients.put(name, "temp");
}

}
}

In this code, the most important method is the PrefecthWindow method which start

on line 163. This is the core of the implementation of the algorithm. The method

start by retrieving the session for the requesting peer, and registering the access

pattern in line 168. Then it proceeds with creating the blocks if they do not exist,

and establish a Window. While establishing the Window, it also adds Relevance R

values to each block currently in the Window. Next, in line 191, the blocks that

previously was in the Window, are now unreferenced. Finally, we compare all the

blocks in the Window with the blocks in the cache. If the total relevance value of a

block in the Window is larger than the total relevance value of a block in the cache,

we evict the block with the lowest relevance value from the cache.

Appendix D

The CD

Enclosed to the master thesis is a cd containing the source code, a copy of the

master thesis, and the workloads used in the simulations. The workloads are com-

pressed with gzip. All the classes are contained in the package ’cachingmain’. Fol-

lowing is a short description of what the different classes contains:

• Block.java: The Block class is a class for holding data concerning a block.

• Constants.java: This class contains different constants defining the different

factors used in the simulations.

• LFU.java: LFU.java is an implementation of the Least Frequently Used

cache replacement algorithm.

• LRU.java: This class contains the code for the Least Recently Used cache

replacement algorithm.

• Main.java: The Main class is the entry point for the run time environment.

It handles the parameters.

• Node.java: Node represent a node in the simulation and contains most of the

methods associated with a node.

• Parser.java: After the parameters have been handled, the Parser class creates

a cache replacement algorithm object of the correct type, and starts to iterate

through the trace file.

• RANDOM.java: RANDOM.java is the implementation of the RANDOM

cache replacement algorithm.

• RBC.java: This is the implementation of the Relevance Based Caching al-

gorithm.

102 The CD

• Utilities.java: The Utilities.java class contains different methods used by all

the cache replacement algorithms.

All the code is thouroughly commented, and a reader is encouraged to look at the

files for a better understanding.

