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Abstract

This work aims to provide an accurate description and calculations of collision frequencies in conditions relevant
to the solar atmosphere. To do so, we focus on the detailed description of the collision frequency in the solar
atmosphere based on a classical formalism with Chapman–Cowling collision integrals, as described by Zhdanov.
These collision integrals allow linking the macroscopic transport fluxes of multifluid models to the kinetic scales
involved in the Boltzmann equations. In this context, the collision frequencies are computed accurately while being
consistent at the kinetic level. We calculate the collision frequencies based on this formalism and compare them
with approaches commonly used in the literature for conditions typical of the solar atmosphere. To calculate the
collision frequencies, we focus on the collision integral data provided by Bruno et al., which is based on a
multicomponent hydrogen–helium mixture used for conditions typical for the atmosphere of Jupiter. We perform a
comparison with the classical formalism of Vranjes & Krstic and Leake & Linton. We highlight the differences
obtained in the distribution of the cross sections as functions of the temperature. Then, we quantify the disparities
obtained in numerical simulations of a 2.5D solar atmosphere by calculating collision frequencies and ambipolar
diffusion. This strategy allows us to validate and assess the accuracy of these collision frequencies for conditions
typical of the solar atmosphere.

Unified Astronomy Thesaurus concepts: Solar chromosphere (1479); Collision processes (2065)

1. Introduction

The solar chromosphere is a complex environment that is
composed of many species where the ionization level, the
temperature, and the collisional regime may vary by several
orders of magnitude (see Vernazza et al. 1981). The chromo-
sphere has transitions from a highly to a weakly collisional
regime. In this region of the solar atmosphere, the species are
coupled due to collisions and chemical interactions. The
dynamics of each species depends on their respective
collisional rates with other species. These collisional rates are
altitude dependent because of the variation in densities and
temperatures of each species (see Vranjes & Krstic 2013) under
the assumption of semiempirical VAL-C models. However,
this dependence becomes much more complex when the solar
thermodynamics are taken into account, which could have
orders-of-magnitude variation of the collision frequencies
across the atmosphere (Martínez-Sykora et al. 2012). There-
fore, an accurate description of these collisional effects is
required to model the solar atmosphere accurately.

Several methods have been introduced in the literature to
derive the collisional terms at the kinetic level. In the classical
multifluid approaches considered for solar atmospheric condi-
tions (see Leake et al. 2012; Alvarez Laguna et al. 2016; Ni &
Lukin 2018; Popescu Braileanu et al. 2019; Ni et al. 2020;
Wójcik et al. 2020; Niedziela et al. 2021; Pelekhata et al.
2021), a simplification of the transport coefficients is usually
considered. Indeed, the cross sections do not depend on the
local thermodynamic condition of the plasma and are

sometimes assumed to be constant. Therefore, solid-sphere
elastic collisions are assumed. However, at the kinetic level, the
cross sections depend on the deflection angle and impact
parameter describing binary collisions (see Woods 1995;
Magin & Degrez 2004b; Zhdanov 2002). More specifically,
the cross sections depend on the interaction potentials of the
particles involved in a given collision. In this framework, the
most accurate way to obtain the expression of the collisional
terms is to derive them at the kinetic level, starting from the
Boltzmann equation.
A well-known method to derive the transport properties at

the kinetic level for multicomponent plasma is the Grads
method (see Grad 1949; Zhdanov 2002). In this approach,
irreducible tensorial Hermite polynomials are considered. The
accuracy of the transport properties depends on the number of
Hermite polynomials considered. In the literature, we are
typically considering three main approximations: the 13N,
21N, and 29N moment approximations (see Zhdanov 2002;
Struchtrup 2005). Alternatively, we have the spectral Galerkin
method that is based on the Laguerre–Sonine polynomial
approximation. This method has been described in detail by
Kruger & Mitchner (1967) and Daybelge et al. (1968) to
compute the transport properties for ionized gases in the
presence of a magnetic field. In Ferziger & Kaper (1973) and
Kolesnikov (2003), the computation has been extended to
multicomponent plasma. In both approaches, the transport
properties are dependent on collision integrals that link the
macroscopic transport fluxes to the kinetic level, and they
depend on the interaction potentials that govern the collisions
(see Magin & Degrez 2004a, 2004b). However, none of these
approaches have been considered to accurately calculate the
collisional rates for solar atmospheric conditions.

The Astrophysical Journal, 933:205 (21pp), 2022 July 10 https://doi.org/10.3847/1538-4357/ac6e62
© 2022. The Author(s). Published by the American Astronomical Society.

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

1

https://orcid.org/0000-0002-0333-5717
https://orcid.org/0000-0002-0333-5717
https://orcid.org/0000-0002-0333-5717
https://orcid.org/0000-0003-0975-6659
https://orcid.org/0000-0003-0975-6659
https://orcid.org/0000-0003-0975-6659
https://orcid.org/0000-0002-8370-952X
https://orcid.org/0000-0002-8370-952X
https://orcid.org/0000-0002-8370-952X
http://astrothesaurus.org/uat/1479
http://astrothesaurus.org/uat/2065
https://doi.org/10.3847/1538-4357/ac6e62
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ac6e62&domain=pdf&date_stamp=2022-07-14
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ac6e62&domain=pdf&date_stamp=2022-07-14
http://creativecommons.org/licenses/by/4.0/


More recently, Vranjes & Krstic (2013) have provided a
reliable quantitative set of data for collision frequencies,
magnetization, viscosity, and thermal conductivity for the
most important species in the solar atmosphere. The idea was
to provide relevant data for any modeling of the solar
atmosphere. However, in Vranjes & Krstic (2013), even
though the data considered are known and haven been
accepted as accurate by the scientific community, their
interpretation to describe or calculate the collision frequencies
in the solar atmosphere is not consistent with Grad’s method.
Following the approaches of Ferziger & Kaper (1973), Kruger
& Mitchner (1967), Kolesnikov (2003), and Zhdanov (2002),
the collision frequencies depend only on the collision
integrals, which are functions of the local thermodynamic
conditions of the multicomponent plasma. In particular,
to compute the collision integrals, an integration of the
momentum transfer cross section over the energy is required.
In Wargnier & et al. (2020), transport properties have been
calculated in the context of a general hydrogen–helium
mixture for solar atmospheric conditions. However, this
approach is valid only for the multicomponent model
developed by Graille et al. (2009). These calculations have
not been performed yet in the context of multifluid
magnetohydrodynamics (MHD) models (see Khomenko
et al. 2014a, 2014b; Alvarez Laguna et al. 2016; González-
Morales et al. 2018; Ni & Lukin 2018; Martinez-Sykora et al.
2019; Popescu Braileanu et al. 2019; Ni et al. 2020; Wójcik
et al. 2020; Niedziela et al. 2021; Pelekhata et al. 2021) or
single-fluid MHD models with an ambipolar diffusion
coefficient that requires the calculation of collisional frequen-
cies between ions and neutrals (see Nóbrega-Siverio et al.
2020).

This work aims to provide a reliable, accurate, and up-to-date
set of data for modelers to calculate the collision frequencies in the
context of solar physics. Based on the formalism of Zhdanov
(2002), which follows the Grad method, we apply the definition of
the collision frequencies involved in the 13N moment model. In
this formalism, the collision frequencies depend on collision
integrals to be consistent at the kinetic level (see Kruger &
Mitchner 1967). We consider a hydrogen–helium-ionized metals
mixture to be representative of solar atmospheric conditions. The
data associated with collision integrals have been taken from a
library named Mutation++ (see Magin & Degrez 2004b;
Scoggins et al. 2016), originally taken from Bruno et al. (2010).
Based on a review of the literature, Bruno et al. (2010) have
provided collision integrals as a function of the temperature for a
general hydrogen–helium mixture under Jovian atmosphere
conditions. Concerning interactions involving ionized metals, we
consider the approach of Oppenheim et al. (2020), who consider
these collisions as classical Maxwell molecular collisions. We
compute the cross sections and collision frequencies for all the
interactions involved in the mixture in a 2.5D simulation of the
solar atmosphere from the photosphere to the corona performed
with Bifrost (Gudiksen et al. 2011; Martínez-Sykora et al. 2018;
Martinez-Sykora et al. 2019). This model has been built from a
resistive single-fluid MHD model with ambipolar diffusion (See
Section 4.2). We compare collision frequencies calculated with
the formalism based on collision integrals with the formalism of
Vranjes & Krstic (2013) and Leake et al. (2012) and assess the
differences between the two approaches for solar atmospheric
conditions. We also focus on the ambipolar diffusion coefficient
in the context of a single-fluid approach to take into account ion–

neutral interactions (see Martinez-Sykora et al. 2019; Nóbrega-
Siverio et al. 2020). Two different approaches to calculate the
ambipolar diffusion coefficients are considered: a classical
approach based on the data from Vranjes & Krstic (2013), and
an approach based on collision integrals from Zhdanov (2002).
The whole strategy of this work highlights the possible impact of
the collision integral formalism on understanding the dynamics of
the solar atmosphere.
The structure of the paper is as follows. In Section 2 we

present the mixture considered and some notation. In Section 3
we provide a brief overview the derivation of the 13N moment
model using the Grad method as introduced by Zhdanov
(2002), the definition of the momentum and energy exchange
terms, as well as the collision frequencies based on a formalism
involving collision integrals. In Section 4 we compare the
formalism introduced in the 13N moment model (see
Zhdanov 2002) based on the data provided by Bruno et al.
(2010) with Vranjes & Krstic (2013) and Leake & Linton
(2013) by focusing on the cross sections. We highlight and
quantify the differences obtained between the three approaches
for each interaction involved in the mixture considered.
Additionally, we also compare the three approaches in a
2.5D simulations of the solar atmosphere (from the photo-
sphere to the corona) with Bifrost by calculating both the cross
sections and collision frequencies. In Section 5 we investigate
the impact of each approach on the ambipolar diffusion term
considered in the generalized Ohm law, which takes into
account ion–neutral interactions.

2. Mixture and Notation

We focus on a hydrogen–helium-ionized metal mixture (for
which we include the most abundant species in the solar
atmosphere), defined by

M

e

{
}

( )= + + ++ +

+ + + +

H, H , He, He , He , Ne ,

Fe , Mg , Ni , O , ,
1

where e denotes the electrons. For the sake of simplicity, no
excited levels are considered in this work. However, we point
out that the strategy and theory described in this study can be
generalized to any multicomponent plasma mixtures when the
collision integrals or interaction potentials for each interaction
are provided. Therefore, it is possible to extend this strategy to
any mixture or consider different species for conditions
different from those in the solar atmosphere.
For clarity and consistency, we use the same nomenclature

as was used by Martinez-Sykora et al. (2019), Ballester et al.
(2018), and Khomenko et al. (2014a) with minor adjustments.
The ionization states are referred to as I, i.e., I = 0 denotes
neutrals and I  1 denotes ions. The identity of the chemical
species is indicated by a. Consequently, each set of particles in
a given microstate is described with aI. For electrons, the
notation aI is reduced to just e. For simplicity, aå is the sum
over all the species a, and I aå , is the sum over all ionization
levels, including neutrals, for a given species a. For clarity, we
define aI a I aå = å å , .

3. Definition of the Collision Frequency

First, we introduce the description of the momentum
and energy exchange terms due to collisions, consistent with

2
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the 13N moment model derived from Grad’s method
(see Grad 1949; Zhdanov 2002). This approach is valid for
any multicomponent plasma mixture in thermal nonequilibrium.
Then, we provide the definition of the corresponding collision
frequency based on a formalism with collision integrals.

3.1. Derivation of the Momentum and Energy Exchange Terms

In order to obtain the 13N moment model, each distribution
function associated with one type of particle is expanded in
series of tensorial Hermite polynomials in order to approximate
the solution of the Boltzmann equations. Each distribution
function denoted by aI MaI Îf , is assumed to be a
perturbation of a local Maxwellian distribution function at its
respective temperature aIT . The local Maxwellian is naturally
chosen as the zero approximation of the distribution function.
Then, by first using the expressions of the first few Hermite
polynomials, which lead to expansion coefficients that are
related to macroscopic quantities of clear physical meaning,
and second, by expanding the distribution function, we finally
obtain a closed system of equations, called the 13N moment
model. The system of equations includes equations for the
densities, momentum, and internal energies for each particle
aI MÎ , as well as equations for the transport quantities, such
as viscous stress tensors, reduced heat fluxes, and diffusion
velocities. Note that on the right-hand side of the transport
equations, we obtain the moments with respect to the collision
integrals. These terms are the momentum and energy transfer
terms due to collisions and allow defining the collision
frequency through the formalism with Chapman–Cowling
collision integrals.

In the context of the 13N moment formulation (see Chapter
4, Equation (4).2.16 from Zhdanov 2002), each momentum
equation associated with a particle aI MÎ , the momentum
exchange term between particles with a given microstate
aI MÎ and particles with another microstate a I M¢ ¢ Î with
aI a I¹ ¢ ¢, is defined as

aI
aI a I

aI aI aI a I a I aI( ) ( )n= -¢ ¢
¢ ¢ ¢ ¢R u um n , 2,

,
col

where aIu and a I¢ ¢u are the velocity of species aI and a I¢ ¢,
respectively, aI a In ¢ ¢,

col is the collision frequency between
particles aI and a I¢ ¢, and aIn and aIm are the density number
and the mass of particle aI. Additionally, ignoring terms that
involve the heat fluxes, each equation of internal energy
associated with a particle aI MÎ , we have the energy
exchange term defined as

aI
aI a I

aIa I aI a I aI a I aI

aIa I aI a I aI
aI

aI a I
( )

∣ ∣

( ) ( )

n

n

= -

+ -

¢ ¢
¢ ¢ ¢ ¢ ¢ ¢

¢ ¢ + ¢ ¢
¢ ¢

u uQ m n

n k T T , 3m

m m

, col
,

2

col 3
B

where the reduced mass is defined as aI a I aI a I=¢ ¢ ¢ ¢m m m,

aI a I( )+ ¢ ¢m m , kB is the Boltzmann constant, and a I¢ ¢T and aIT
are the temperatures of species a I¢ ¢ and aI, respectively. In
Equation (3), the first component corresponds to the heating
produced by the velocity drift between species aI and a I¢ ¢ due
to collisions. The second component corresponds to a term
associated with the relaxation of the temperature aIT toward

a I¢ ¢T at a collisional rate aIa In ¢ ¢
col . Both components have a

characteristic timescale equal to the collision timescale between
aI and a I¢ ¢. Note that the presented terms are valid only in the

framework of the 13N moment formulation. Different source
terms in energy or momentum equations can be found in the
literature (see Wargnier & et al. 2020).

3.2. Description of the Collision Frequency

The collision frequency involved in Equations (2) and (3) is
defined as

aI a I
aI a I

aI
a I aI a I aI a I∣ ∣ ( )n = W¢ ¢

¢ ¢
¢ ¢ ¢ ¢ ¢ ¢u

m

m
n

4

3
4,

col ,
,

th
,

1,1

where aI a I∣ ∣¢ ¢u ,
th is the mean thermal speed between particles aI

and a I¢ ¢, and aI a IW ¢ ¢,
1,1 is the generalized well-known Chapman–

Cowling collision integral (see Chapman & Cowling 1970). In
this study, we focus only on the first terms of the expansion
corresponding to the 13N moment approach. However, it is
important to note that, if a higher-order approximation of the
distribution function is considered, the expression presented in
Equation (4) would involve additional collision integrals of
higher orders. Further details are given in Magin & Degrez
(2004a, 2004b), Graille et al. (2009), and Wargnier & et al.
(2020).
The mean thermal speed between particles aI and a I¢ ¢ is

defined as

aI a I
aI a I

∣ ∣ ( )
pm

=¢ ¢
¢ ¢

u
8

, 5,
th

,

where

aI a I MaI a I
aI a I

aI a I
aI

aI

aI

( )m
m m

m m
m=

+
= ¢ ¢ Î¢ ¢

¢ ¢

¢ ¢

m

k T
, , , . 6

B
,

2

The generalized Chapman–Cowling collision integral (see
Chapman & Cowling 1970) is defined as

aI a I aI a I

( )
( )![ ( ) ]

( ) ( )( ) ( ) mW =
+

+ + - -¢ ¢ ¢ ¢l

s l

4 1

1 2 1 1
, 7l s

l
l

,
,

,

where superscripts l and s are related to the Laguerre–Sonine
polynomials of the spectral method, and

g g Q gaI a I aI a I( ) ( ) ( )( ) ( )òm = -¢ ¢

¥
+

¢ ¢ dexp . 8l s l
,

0

2 2 3
,

Note that, excluding charged interactions, collision integrals
defined in Equation (7) depend solely on temperature. In
Equation (8), QaI a I

( )
¢ ¢

l
, is the transport cross section, and the

reduced collision velocity g is defined as

g
aI a I ( )

m
= ¢ ¢ g

2
, 9,

with g the relative velocity between particle aI and a I¢ ¢.
Following the definition of Bruno et al. (2010), Magin &
Degrez (2004b), Ferziger & Kaper (1973), and Woods (1995),
the transport cross section is defined as

QaI a I [ ( )]

[ ( )] ( ) ( )

( ) ò
ò

p c

p c s c c

= -

= -
p

¢ ¢

¥
b db

d

2 1 cos

2 1 cos sin , 10

l l

l

,
0

0

where aI a I= ¢ ¢b b , is the impact parameter, aI a I( )s s c= ¢ ¢g, ,
is the elastic collision differential cross section, and
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aI a Ic c= ¢ ¢, is the deflection angle between particles aI and
a I¢ ¢. Note that if l= 1 in Equation (10), we obtain the so-called
momentum transport cross section. If l= 2, we obtain the so-
called viscous transport cross section. In classical mechanics,
the deflection angle χ is related to a given interaction potential
f as follows:

aI a I( )
( )òc p

f
= -

- -

¥

¢ ¢

b
dr r

b r r E
2

1
, 11

r

2

2 2
,m

where r is the distance between the two colliding particles aI
and a I¢ ¢, rm is the distance of the closest approach, and
aI a I aIa I ∣ ∣=¢ ¢ ¢ ¢ gE m 2,

2 is the kinetic energy associated with the
relative velocity g. aI a If f= ¢ ¢, is the phenomenological
potential that simulates the average interaction between the
two colliding particles aI and a I¢ ¢, allowing the direct
evaluation of collision integrals for unknown collisional
systems.

3.3. Calculation of Collision Integrals

Most of the phenomenological interaction potentials used to
describe the interactions involved in the mixture M are those
described by Bruno et al. (2010). The interaction potentials
have been fitted with several analytical forms such as the
Hulburt–Hirschfelder potential (see Rainwater et al. 1982),
the modified Morse potential (see Kuntz & Roach 1972), the
modified repulsive potential (see Aubreton et al. 2003), the
inverse power potential (see Kihara et al. 1960), or other
phenomenological potentials described by Pirani et al.
(2004, 2006). Note that concerning interactions that involve
ionized metals, the interaction potential function follows a
polarization model, as described by Bruno et al. (2010) and
Oppenheim et al. (2020). Further details are given in
Appendix B. For charged-particle interactions, we refer to
Appendix A.

In summary, in order to calculate the collision frequency
defined in Equation (4), it is necessary to first compute the
collision integral Ω(1,1) defined in Equation (8). This collision
integral is computed from the integration over the reduced
collision velocity g of the momentum transport cross section
Q( )1 defined in Equation (10). Then, the momentum transport
cross section is the result of the integration of the elastic
differential cross section σ with respect to the impact parameter
b or deflection angle χ defined in Equation (11). Finally, the
deflection angle can be determined by the integration of a given
interaction potential that mimics the interaction between two
particles, as presented in Equation (11).

In the literature, data from experimental measurements are
provided to calculate the collision integrals. Generally, these
data are based on

1. the measured transport cross section QaI a I
( )

¢ ¢
l

, as a function
of the relative kinetic energy aI a I¢ ¢E , (called the
momentum (l = 1), viscous (l = 2), or elastic scattering
cross sections),

2. or on the measured elastic collision differential cross
section σ as a function of the deflection angle χ,

3. or on a measured interaction potential fitted with a
phenomenological potential f to analytically compute the
deflection angle χ, which allows calculating the transport
cross section QaI a I

( )
¢ ¢

l
, .

In the case of the mixture M, the preferred method to
calculate collision integrals is the numerical integration of
accurate ab initio phenomenological interaction potentials as
performed by Bruno et al. (2010).

4. Comparison with Classical Approaches in Solar Physics

In Bruno et al. (2010), a complex mixture composed of
e{ }+ ++ + - +He, He , He , H, H , H , H2, H2 , has been considered

to compute some collision integrals for Jovian atmospheric
conditions for a range of temperatures from 50 to 50,000 K. We
point out that the collision integral data considered for the
Jovian atmosphere can be applied to any other environments
(such as the solar atmosphere) for any range of densities and
temperatures as long as the continuum description of the
multicomponent plasma is valid. In this work, we assume that
the continuum description is valid from the photosphere to the
corona. However, this assumption can be reconsidered at larger
scales.
In this study, we focus on the mixture M, which includes

some of the species considered by Bruno et al. (2010). The
following subsections review interaction potential functions for
each type of interaction involved in M and exhibit the data
sources required to calculate the collision integrals. For the
sake of clarity, in the following sections, the approach based on
the 13N moment approach with a formalism of collision
integrals based on the data provided by Bruno et al. (2010) is
denoted as approach [1] (hereafter [A1]). The collision
frequency defined in Equation (4) is denoted by aI a I

[ ]n ¢ ¢,
col, 1 . In

addition, we compare this approach with the approach from
Vranjes & Krstic (2013) and Vranjes et al. (2008), denoted as
approach [2] (hereafter [A2]), which have been extensively
used (e.g., Khomenko et al. 2018; Martínez-Sykora et al.
2019), and Leake & Linton (2013), denoted as approach [3]
(hereafter [A3]).
In both [A2] and [A3], the collision frequency between

particles with a given microstate aI MÎ and particles with
another microstate a I M¢ ¢ Î , where aI a I¹ ¢ ¢ can be
described by

aI a I
aI a I

a I
a I aI a I aI a I aI a I∣ ∣ ( ) ( )[ ]n =¢ ¢

¢ ¢

¢ ¢
¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢u

m

m
n C T , 12,

col, 2,3 ,
,

th
, ,

where the mixed temperature is defined as aI a I =¢ ¢T ,

aI aI a I a I aI a I( ) ( )+ +¢ ¢ ¢ ¢ ¢ ¢m T m T m m and aI a I¢ ¢C , is the so-
called cross section between particles aI and a I¢ ¢. In the
following, for some of the interactions, we compare the cross
sections aI a I¢ ¢C , (for both [A2] and [A3]) with its equivalent in
the formula presented in Equation (4) ([A1]), i.e., with
the coefficient aI a IW ¢ ¢4 3 ,

1,1 as a function of the temperature. For
the sake of simplicity, we assume that the mean relative speed, the
number densities of each species, and temperature are identical for
all the approaches considered. Thus, only the cross sections as a
function of the temperature differ between [A1], [A2], and [A3].
Note that to compute the number density of each species, we have
assumed photospheric abundances, and the ionization fraction has
been calculated assuming Saha-Boltzmann.
Note that in [A1], for temperatures above 5× 104 K, the

collision integrals have been extrapolated up to 4× 105 K
using the fitting expressions provided by Bruno et al. (2010).
We point out that this extrapolation at higher temperature is the
most convenient current approach as most of the data for the
cross sections have been validated only at lower temperatures.
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For temperatures above 4× 105 K, the collision integrals are
assumed to be constant. This assumption has been considered
in order to avoid discontinuities in the collision frequencies. In
[A2], data for the cross sections (in particular, Krstic &
Schultz 1998, 1999) are provided for a maximum energy equal
to 100 eV, which corresponds to approximately 106 K. Above
these temperatures, the cross sections are assumed to be
constant. Note that the values of the collision integrals or cross
sections at these high temperatures are not really important as it
coincides with a collisionless plasma where the density is very
low. In this context, the continuum description of the plasma is
not valid, and collision frequencies are negligible.

Note that from a theoretical point of view, the difference
between approaches [A1] and [A3] is essentially due to the fact
that in [A3], a constant cross section that does not depend on
temperature has been considered. This approximation has been
used by Leake & Linton (2013; and also by other previous
studies, e.g., Martínez-Sykora et al. 2012; Khomenko &
Collados 2012) for the purpose of modeling a magnetic
reconnection event in lower chromosphere conditions, i.e., for
conditions where the average temperature does not vary by
several orders of magnitude, as is the case in the solar
atmosphere. Even though identical or similar transport cross
section data have been considered (e.g., Krstic &
Schultz 1999, 1998), the main difference between approaches
[A1] and [A2] is that the cross section C involved in
Equation (12) has been defined as being either the momentum
transport cross section Q1 or the sum of the elastic scattering
and charge-exchange cross sections for ion–neutral interac-
tions. Therefore, in [A2], the approach is not consistent with
the 13N moment model because the collision integrals are not
calculated at all, and the momentum transport cross section has
not been integrated as it is required in the formalism of [A1]
presented in Equation (7). This difference in approach leads to
significant differences in the calculated collision frequencies, as
we show below.

4.1. List of Interactions

In the mixtureM, several types of interactions are involved.
Data to calculate the cross sections and collision integrals are
shown in Tables 1 and 2. In summary, we have

1. Electron–neutral interactions, such as e–H and e–He
interactions,

2. Neutral–neutral interactions, such as H–H, H–He, or He–
He interactions,

3. Ion–neutral interactions, which can be subdivided into
(a) Interactions involving resonant charge transfer, such

as He–He+, H–H+, and He–He++.

(b) Interactions involving metals such as α-Fe+, α-Mg+,
α-O+, and α-Ne+ for α ä {H, He}. Note that these
interactions can be seen as classical Maxwell
molecular collisions, as presented by Oppenheim
et al. (2020).

(c) Other ion–neutral interactions, such as He–H+,
H–He+, and H–He++.

4. Charged or Coulomb interactions, which involve all the
possible combinations of interactions between ionized
species such as He+, He++, e, H+, Fe+, Mg+, O+, and
Ne+. These interactions have been widely studied in the
literature (see Spitzer 1963; Capitelli et al. 2000), thus,
they are not the main focus of this work. Further details
are given in Appendix A.

No data for the cross sections associated with the He–H, He–
He, He–He+, H–He+, H–He++, and He–He++ interactions
have been provided by Vranjes & Krstic (2013). Therefore, no
comparison between [A1] and [A2] are performed for these
interactions. However, we present the temperature dependence
of these cross sections.

4.2. Model of the Solar Atmosphere

For a better understanding of the differences of the various
approaches, we compare them using the 2.5D radiative MHD
numerical simulation (so-called GOL) described in detail in
Martínez-Sykora et al. (2017a, 2017b). The simulation has
been calculated with the 3D radiative MHD Bifrost code
(Gudiksen et al. 2011) with scattering (Hayek et al. 2010;
Carlsson & Leenaarts 2012). This model includes type I and II
spicules. It provides a better understanding of the parameter
range of the collisional rates for the various approaches [A1],
[A2], and [A3] for the solar atmosphere than 1D semiempirical
models.
The simulated solar atmosphere spans 90Mm horizontally

and from 3Mm below to 40Mm above the surface. The
magnetic field configuration includes two plage regions of
opposite polarities where the average magnitude is ∼190 G.
Loops that are up to 50Mm long connect the two opposite
polarities. The boundary conditions are periodic in the
horizontal direction and open in the vertical direction. The
current work focuses on a restricted domain from 12.5Mm to
18Mm in the horizontal direction and from 0 to 10Mm in the
vertical direction, containing relevant chromospheric features
of the simulation, e.g., spicules, magneto-acoustic shocks, and
cold bubbles. This region encompasses the photosphere,
chromosphere, transition region, and corona. The horizontal
resolution is uniform with a 14 km grid spacing, while the
vertical resolution is nonuniform, with the highest resolution in

Table 1
Electron–Neutral and Neutral–Neutral Interaction Data for Cross Sections for Approaches [1] and [2].

Type Pairs Approach [1]: Collision Integral Ω1,1 Approach [2]: C

Electron–
neutral

e–H Integration of the differential cross sections from Bray et al. (1991), Gupta
& Mathur (1980), Gorse & Capitelli (2001), and Alves et al. (2013).

The data of cross sections are calculated as some mean
values from Bederson & Kieffer (1971).

e–He Identical approach as in the e–H interaction. Identical approach as in the e–H interaction.
Neutral–neutral H–H Collision integral data from Stallcop et al. (1996, 1998). Momentum transfer cross sections from Krstic &

Schultz (1998, 1999).

He–He Integration of the interaction potential from Hurly & Mehl (2007). N/A
H–He Integration of a Hulburt–Hirschfelder potential to fit the experimental

interaction potentials provided by Olson & Liu (1980), Li & Lin (2009).
N/A
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the photosphere, chromosphere, and transition region (12 km
grid spacing). Further details about the setup can be found in
Martínez-Sykora et al. (2017a).

4.3. Electron–Neutral Interactions

In [A2], in order to compute the collision frequency provided
in Equation (12), the cross section C has been considered as
being equal to the momentum transfer cross section Q( )=l 1

provided by Bederson & Kieffer (1971), i.e., Qe e=- -C H H
1 and

Qe e=- -C He He
1 . In [A3], a constant cross section e =-C H

e =-
-C cm10He

15 2 has been used for both interactions.
In Figure 1 we compare the cross sections in cm2 as a

function of the temperature in kelvin based on [A1], [A2], and
[A3]. We compare the cross sections associated with the e–He
(top), and e–H (bottom) interactions. From 103 K to 104 K, the
cross section associated with the e–He interaction is higher in
[A1] than in [A2]. For a higher temperature, in [A1] the cross
section is decreasing drastically, whereas in [A2] it is
approximately constant at 6× 10−16 cm2. In the bottom row of
Figure 1, for temperatures below 5× 103 K, the cross sections
associated with the e–H interaction are higher in [A1] than in
[A2]. For temperatures higher than 5× 103, the cross section is
higher in [A2] than in [A1].

In Figure 2 we compare the distribution of the cross sections
based on approaches [A1] and [A2] in the 2.5D simulation of
the solar atmosphere described in Section 4.2. Several regions
of the simulated solar atmosphere can be identified and
characterized based on the different altitude, range of total
mass density, and temperature:

1. from z= 0 Mm to z= 0.8 Mm, we can identify the
photosphere where the temperature ranges around several
thousand kelvin and the total mass density decreases from
10−8 to 10−10g cm−3, denoted by region [A],

2. from z= 0.8 Mm to approximately z= 2 Mm, we have
the lower-mid chromosphere where the temperature
increases from several thousand kelvin to 104 K and the
total mass density decreases from 10−10 to 10−12g cm−3,
denoted as region [B],

3. from x= 14 to x= 16Mm and from z= 2 to z= 5Mm,
we have a spicule that encompasses the upper chromo-
sphere and transition region, where the temperature
increases from 104 K to more than 105 K and the total
mass density decreases from 10−12 to 10−14 g cm−3,
denoted as region [C],

4. for any z> 5 Mm, we have the upper transition region
and solar corona, where the temperature increases from
105 to 106 K and the total mass density decreases from
10−14 g cm−3 to lower than 10−15 g cm−3, denoted as
region [D],

Note the presence of type II spicules, which permeate from the
chomosphere z> 2 Mm into the transition region and corona.
The cross section associated with the e–He (panels (A)–(E))

interaction based on [A1] is higher than in [A2] at T< 104 K,
but is negligible at higher temperatures. From region [A] to
region [B], the cross sections are approximately constant for
[A1] and [A2] because the temperature ranges from 103 K to
104 K. In region [C], at the border of the spicule, the cross
sections decrease drastically for [A1] and [A2] due to the large
increase of the temperature in the transition region. In the
bottom row of Figures 2(F)–(J), for both approaches, the cross
sections associated with the e–H interaction decrease from
region [A] to region [D] as they are decreasing functions of the
temperature according to Figure 1. From region [A] to region
[B], the cross sections are higher in [A1] than in [A2] because
T< 104 K. However, from region [C] to region [D], the cross
sections are higher in [A2] than in [A1] as the temperature is
higher than 104 K.

Table 2
Ion–Neutral Interaction Data for Cross Sections for Approaches [1] and [2]

Type Pairs Approach [1]: Collision Integral Ω1,1 Approach [2]: C

Resonant charge
transfer

He–He+ Integration of a Hulburt–Hirschfelder potential combined with a
modified repulsive potential to fit the potential of Aubreton
et al. (2003). The charge-exchange collision integrals asso-
ciated with this interaction have been fitted from the data
provided by Rundel et al. (1979).

N/A

H–H+ Integration of the momentum and charge-exchange transfer cross
sections from Krstic & Schultz (1999, 1998).

Sum of the elastic scattering and charge-
exchange transfer cross section from Krstic
& Schultz (1999, 1998).

He–He++ The elastic contribution is based on the integration of an inter-
action potential based on a polarization model. The charge-
exchange contribution has been fitted from Janev et al. (1987).

N/A

Maxwell molecular
collisions

α-ionized metals,
α ä {H, He}

Integration of an interaction potential that follows a polarization
model where the polarizability coefficients of all species have
been taken from Schwerdtfeger & Nagle (2019).

Formula based on the ratio of mass between
neutrals and metals based on Vranjes et al.
(2008).

Others He–H+ Integration from the data provided by Krstic & Schultz
(1999, 1998) in the frame of a quantum approach in the range
of [0.1, 100] eV. For lower energy ranges (E < 0.1 eV), a
polarization model has been considered.

Momentum transfer cross sections from Krstic
& Schultz (1999, 1998).

H–He+ Integration of a Hulburt–Hirschfelder potential to fit the ab initio
potential of Aubreton et al. (2003).

N/A

H–He++ Integration of an interaction potential based on a polarization
model.

N/A
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Concerning the e–He interaction (Figure 2(D)), the ratio of
the cross sections between the two approaches is around 0.75
from regions [A] to [C]. These results are consistent with
Figure 1, where for temperatures below 104 K, the ratio of the
two approaches corresponds to approximately 0.8/0.6≈ 0.75.
In region [D], the ratio increases drastically as the cross section
is negligible for [A1] and not for [A2], as presented in Figure 1.
Concerning the e–H interaction (Figure 2(I)), the ratio oscillates
between 0.8 and 1 from the convection zone to the bottom of
the chromosphere, whereas from the bottom of the chromo-
sphere to the transition region, the ratio ranges from 1.0 to 1.2.
This distribution can easily be explained with the 1D
distributions presented at the bottom of Figure 1. Below
5× 103 K, [A1] is slightly higher than [A2], leading to a ratio
slightly lower than 1 at these temperatures, corresponding to
regions [A] and [B]. For a higher temperature, corresponding to
the region [C], [A1] is slightly lower than [A2], leading to a
ratio higher than 1.

Figures 3(A) and (B) show similar distributions between
[A1] and [A2]. From region [A] to [B], the collision
frequency decreases from 107 s−1 to 103.5 s−1. In region
[C], the collision frequency decreases from 103.5 to 1 s−1.
Finally, in region [D], the collision frequency is negligible
because the density of helium is negligible (panel (A)). Note
that the ratios of the collision frequencies presented in
Figures 3(D) and (I) are identical to the ratios of cross sections
presented in Figures 2(D) and (I) as we assume that the
temperature and number densities of all species are identical
between approaches [A1] and [A2]. The only difference is in
region [D], where the ratio is null in Figure 3, but is constant
in Figure 2. This is due to the fact that the number densities of
neutral helium and hydrogen are null in this region, leading to
a singularity in the ratio of the collision frequencies. To
remove this singularity, a null ratio has been assumed in this
region.
As for the distribution of the neutral helium (Figure 3(A)),

the number density of neutral hydrogen (panel (F)) decreases
from region [A] to region [D], leading to a decrease of the
collision frequency between electrons and neutral hydrogen.
For further details about the magnitude of the collisional
frequencies between electrons and neutral hydrogen and the
ratio of the two approaches, we refer to Figures 3(F)–(I).

4.4. Neutral–Neutral Interactions

In this subsection, we focus on the H–H, H–He, and He–He
interactions. Note that in [A3], a constant cross section
C= 7.73× 10−15 cm2 has been used for all neutral–neutral
interactions.
In the top panel of Figure 4, we focus on the H–H

interaction. In the bottom panel, we show the cross sections
associated with the He–H and He–He interaction based on
[A1]. In the top panel of Figure 4, the cross section associated
with the H–H interaction is a decreasing function of the
temperature in both approaches [A1] and [A2]. However, in
[A2], the cross section is much larger than in [A1] by at least
one order of magnitude. At high temperatures T> 105 K, the
cross section is negligible in [A1]. Note that in [A2] small
oscillations in the cross section have been obtained at lower
temperature, associated with resonant quantum effects
(Vranjes & Krstic 2013). These effects are not obtained in
[A1] because of the integration of the momentum transport
cross section with respect to the energy, which smoothes the
distribution.
In Figure 5 we show that the cross section in [A2] is larger

than in [A1] by at least one order of magnitude within the
chromosphere. In apporaches [A1] and [A2], we obtain a
large decrease in the cross sections in the transition region.
Similarly as in Figure 2, in region [D], the cross section is
negligible in [A1], but it reaches a minimum of 10−14 cm2 for
[A2]. In summary, the ratio associated with the H–H cross
section ranges between 10 and 15 from regions [A] to [C].
Similarly as in the previous section, the distribution of the
ratio in panel (C) from Figure 5 can be explained from
Figure 4. Indeed, at the top of Figure 4, for all the considered
range of temperature, the difference between the two cross
sections is about one order of magnitude. Therefore, for all the
regions considered, the ratio between approaches [A1] and
[A2] ranges from 10 to 20.
In Figure 6 we focus on the distribution of the logarithm of

the collision frequencies associated with H–H interaction. As

Figure 1. Variation in the cross section (in cm2) as a function of the temperature
(in kelvin). The full red and black lines correspond to the cross section of [A3]
(i.e., aIe aI ( ) { }ÎC T , H, He, from Equation (12)) and [A1] based on the
formalism introduced in Equation (4) (i.e., aIe aI( ) { }W ÎT4 3 , H, He,

1,1 ),
respectively, the blue line with crosses corresponds to the cross section used
in [A2] (i.e., e aI ( ) = -C T 10,

15 cm2, aI { }Î H, He from Equation (12)). From
top to bottom: e–He and e–H interaction.
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the collision frequency between two neutral hydrogen atoms
depends only on the number density of neutral hydrogen and
temperature, similar results as those shown presented in
Figure 3 can also be seen in Figure 6. From regions [A] to
[B], in [A2] (panel (B)), the collision frequency decreases more
slowly than in [A1] (panel (C)). In region [C], the collision
frequency is lower in [A1] than in [A2]. For the same reason as
explained in the previous section, the ratio presented in
Figure 6(D) is identical to the ratio presented in Figure 5(C),
i.e., it ranges from 10 to 20.

4.5. Ion–Neutral Interactions

4.5.1. Interactions Involving Resonant Charge Transfer

In Bruno et al. (2010), the collision integrals associated with
interactions that consider resonant charge transfer are com-
posed of two terms associated with elastic and charge-exchange
contributions. Generally, the collision integrals are approxi-
mated by the following formula:

( ) ( ) ( )( ) ( ) ( )W = W + W - , 13l s l s l s,
elastic

, 2
ch ex

, 2

Figure 2. Distribution of the collisional cross section in a 2.5D simulation of Bifrost (see Section 4.2, and Martinez-Sykora et al. 2019; Martínez-Sykora et al. 2018)
representing the solar atmosphere. Top and bottom: e–H and e–He interactions. From left to right: distribution of the logarithm of the total mass density (top) in g cm−3

and temperature (bottom) in kelvin, distribution of the cross section eC ,H and eC ,He from [A2] in cm2, distribution of eW4 3 ,H
1,1 and eW4 3 ,He

1,1 in cm2 [A1], ratio
e e( ) { }aW Îa aC 4 3 , H, He, ,

1,1 and a 1D distribution of the cross sections C and 4/3 Ω1,1 at x = 15.2 Mm. The full black line and the blue line with crosses
correspond to the cross section calculated with approaches [A1] and [A2], respectively.
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where the charge-exchange collision integral ( )W -
l s

ch ex
, has been

computed by following the approach of Devoto (1968). This
approach has been fitted by Bruno et al. (2010) with a function
that depends on the temperature. For approaches [A1] and
[A2], we refer to Table 2 for further details about the
calculation of Ω1,1 and C. In [A3], a formula of the cross
section as function of the thermal speeds of ions and neutrals
has been considered.

At the top of Figure 7, we compare the distribution of
the cross sections associated with the H–H+ interaction for the
three approaches. At the bottom of Figure 7, we show the

distribution of the cross section associated with the He–He+

and He–He++ interaction. The cross sections associated with
the H–H+ interaction are decreasing with temperature (top
panel of Figure 7). For all the considered range of temperatures,
the cross sections in [A1] are lower than in [A2]. The
oscillations of the cross section at lower temperature in [A2] are
associated with quantum effects in Vranjes & Krstic (2013), as
presented in Figure 4 for the H–H interaction.
Figure 8 has the same format as Figure 5, but for the H–H+

interaction. In summary, the cross sections in [A2] (panel (A))
are higher than in [A1] (panel (B)) for all the regions

Figure 3. Distribution of the collision frequencies in the 2.5D numerical simulation for the e–H and e–He interactions. Top and bottom: e-He and e–H interactions.
From left to right: distribution of the logarithm of the helium number density (top) and hydrogen number density (bottom) in cm−3, distribution of the logarithm of the
collision frequency e { }[ ]n a Îa , H, He,

col, 2 in s−1 [A2], distribution of the logarithm of e { }[ ]n a Îa , H, He,
col 1 in s−1 in [A1], ratio e e { }[ ] [ ]n n a Îa a , H, He,

col, 2
,

col, 1 , and a
1D distribution of the collision frequencies at x = 15.2 Mm. The full black line corresponds to the collision frequency calculated in [A1]. The blue line with crosses
corresponds to the collision frequency calculated in [A2].
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considered, as expected from the cross-section differences
shown in the top panel of Figure 7. The ratio of the two
approaches ranges from 1.2 to 1.5 (panel (C)). In region [D],
the ratio reaches approximately 1.2. The strong variability of
the cross sections in regions [A] and [B] is due to the quantum
effects at lower temperatures, as shown in Figure 7. Similarly
as in the previous sections, the distribution of the ratio obtained
in Figure 8(C) can easily be explained by the top panel of
Figure 7. For the considered range of temperature, [A1] is
slightly smaller than [A2] and the difference between the two
curves is slightly decreasing with temperature. Therefore, the
ratio of the two approaches is slightly decreasing from 1.2 to
1.5 from region [A] to region [D], as shown in Figure 8(C).

Figure 9 has the same format as Figure 6, but for the H–H+

interaction. Additionally, we also compute the distribution of
the number density of H+ (Figure 9(A)). At the bottom of
region [A], in both approaches (panels (B) and (C)), the
collision frequency is small and ranges approximately from

10−3 s−1 to 10−2 s−1. For the upper layers, i.e., from regions
[B] to [D], the collision frequencies range from 101 to
104.5 s−1. For the same reason as explained in the previous
section, the ratio presented in Figure 9(D) is identical to the
ratio presented in Figure 8(C). Therefore, the ratio of collision
frequencies between the two approaches is ranging from 1.2 to
1.5 in the entire solar atmosphere.
Similarly as previous sections, large differences have been

obtained between approaches [A1] and [A2], whereas identical
data associated with the transport cross sections have been
considered (see Krstic & Schultz 1999, 1998). These disparities
can be explained by the inconsistency of [A2] with the
formalism of collision integrals.

4.5.2. Interactions Involving Ionized Metals and Neutral Species

In this section, we focus on the interactions involving
ionized metals and neutral hydrogen, known as elastic
molecular Maxwell interactions, such as the α–Fe+, α–Mg+,
α–O+, α–Ne+, and α–Ni+, αä {H, He} interactions. Similarly
as in the previous sections, for approaches [A1] and [A2], we
refer to Table 2 for further details about the calculation of Ω1,1

and C. Note that the collision frequencies associated with these
particular interactions are independent of the temperature, but
depend on the number densities of the ionized metals.
Similarly as in the previous sections, we have calculated the

distributions of the logarithm of the collision frequencies in s−1

for approaches [A1] and [A2] for all the interactions between
ionized metals and neutral hydrogen or helium in the same
2.5D simulation. In this section, we show our calculations only
for ionized metals and neutral hydrogen interactions in
approaches [A1] and [A2], presented in the top and middle
row of Figure 10. Indeed, all the other approaches can easily be
determined from the ionized metals and neutral hydrogen
interactions by a scale factor, thus, it is not necessary to show
their distributions here.
In regions [A] and [B], in the bottom row of Figure 10, the

density of ionized metals differs by several orders of
magnitude. In summary, from the photosphere to the bottom
of the chromosphere, the most dominant metal species are Fe+

and Mg+. As a matter of fact, when the ionization is in
statistical equilibrium, in extended areas of regions [A] and [B],
the dominant ion is Fe and Mg; compare to the number of
protons (Figure 9(A)). In these regions, the collision frequen-
cies associated with both the H–Fe+ and H–Mg+ interactions
in [A1] are more than one order of magnitude lower than in
[A2]. Note that these regions of the solar atmosphere are poorly
populated by Ne+, O+, and Ni+.
In region [C], in the spicule, the most dominant ionized

metal species are Ne+ and O+. However, there is still a non-
negligible population in Fe+ and Mg+. Therefore, in this
region, the most dominant collision frequencies are those
associated with the interactions H–Ne+ and H–O+. However,
these collision frequencies are much lower than those
associated with Fe+ and Mg+ in region [A] and region [B]
by 2 to 4 orders of magnitude. In region [D], all the collision
frequencies associated with these interactions can be consid-
ered negligible. Note that for all the interactions considered for
all the regions considered, the ratio obtained between [A2] and
[A1] ranges from 200 to 600, as shown in Figure 11.
Additionally, in [A1], the collision frequencies associated

with neutral helium and ionized metals are found to be identical
to those associated with neutral hydrogen and ionized metals

Figure 4. Variation in the cross section (in cm2) associated with neutral–neutral
interactions as a function of the temperature (in kelvin). Top: cross section
associated with the H–H interaction based on the three formalisms presented
in this section. The full red and black lines correspond to the cross section
(in cm2) of [A3] and [A1], respectively, and the blue line with crosses
corresponds to the cross section in [A2]. Bottom: cross sections associated with
the He–He and He–H interactions based on [A1].
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by a factor of a apol
He

pol
H , which depends on the polarizability

coefficients of helium and hydrogen (see Section B for further
details).

In summary, our calculations have shown that the collision
frequencies associated with ionized metals and neutral hydro-
gen interactions are not negligible from regions [A] to [B] in
approaches [A1] and [A2]. Note that [A1] and [A2] differ
enormously from region [A] to [B]. The large disparities

obtained between the two approaches are due to the different
definitions of the cross section. Indeed, in [A2], a simplified
definition of the cross section from Vranjes et al. (2008) is
used, where a formula based on a ratio of mass between
neutrals and metals has been considered, as presented in
Table 2. However, in [A1], the collision integral has been
calculated from the integration of an interaction potential that
follows a polarization model. Outside of these regions, our

Figure 5. Distribution of the collision cross section in the 2.5D numerical simulation representing the solar atmosphere (Section 4.2). From left to right: distribution of
the cross section CH,H from [A2] in cm2, distribution of W4 3 H,H

1,1 in cm2 from [A1], the ratio ( )WC 4 3H,H H,H
1,1 , and a 1D distribution of the cross sections CH,H and

W4 3 H,H
1,1 at x = 15.2 Mm. The full black line corresponds to the cross section based on the formalism introduced in [A1]. The blue line with crosses corresponds to

the cross section introduced in [A2].

Figure 6. Distribution of the collision frequencies in the 2.5D simulation representing the solar atmosphere for the H–H interaction (Section 4.2). From left to right:
distribution of the logarithm of the density of neutral hydrogen H in cm−3, distribution of the logarithm of the collision frequency [ ]nH,H

col, 2 in s−1 from [A2], distribution
of the logarithm of [ ]nH,H

col, 1 in s−1 from [A1], the ratio νcol,[A2]/νcol,[A1], and a 1D distribution of the collision frequencies at x = 15.2 Mm. The full black line
corresponds to the collision frequency based on the formalism introduced in [A1]. The blue line with crosses corresponds to the collision frequency used in [A2].
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results have shown that these interactions have negligible
effects compared with ion–neutral interactions with
resonant charge transfer, neutral–neutral, and electron–neutral
interactions.

4.5.3. Interactions without Resonant Charge Transfer

In this subsection, we focus on the H–He+, He–H+, and
H–He++ interactions. In [A3], a constant cross section
C= 1.16× 10−14 cm2 has been used for all ion–neutral
interactions that do not involve resonant charge transfer. In
[A2], only data for the He–H+ are provided. Note that the same
references for the momentum transport cross sections have
been considered in approaches [A1] and [A2].

At the top of Figure 12, similarly as for the ion–neutral and
neutral–neutral interactions, the cross sections that follow [A2]
are higher than in [A1] by slightly less than one order of
magnitude. For temperatures higher than 104 K, the cross
section appears to be negligible in [A1] but is constant in [A2]
and equal to approximately 2.5× 10−15 cm2. The oscillations
obtained at lower temperatures are associated with quantum
effects, similarly as in Figure 7. At the bottom of Figure 12, the
cross section associated with the H–He+ interaction is smaller

than for H–He++. For temperatures higher than 2× 104 K, the
cross section associated with H–He+ interaction is considered
negligible.
Figure 13 has the same format as Figure 8, but for the

He–H+ interaction. In summary, from region [A] to region [C],
in Figure 13(C), the ratio of the two approaches ranges from
7.5 to 12.5. In region [D], the two approaches differ largely as
in [A1] the cross section is assumed to be negligible, whereas
in [A2] it is constant. Similarly as in the previous sections, the
distribution of the ratio of [A1] and [A2] obtained in panel (C)
from Figure 13 is due to the differences obtained on the cross-
section dependence on temperature, as presented in Figure 12.
Similarly as in the previous sections, Figure 14 has the same

format as Figure 8 for the He–H+ interaction. The 2D
distributions of the collision frequencies are similar to those
presented for the H–H, e–H, and e–He interactions in Figures 6
and 3. In particular, in [A2], the distribution of the cross
sections for the H+

–He interaction is almost identical to the
distribution associated with the e–He interaction presented in
Figure 3 because both of these distributions depend on the
number density of neutral helium. In region [D], the collision
frequency is negligible because helium is mostly ionized.
Finally, the two approaches differ by approximately one order
of magnitude (ratio between 7.5 and 12.5).

5. Quasi-neutral Fluid Limit and Ambipolar Diffusion

As shown in the previous sections, large differences have
between obtained between approaches [A1] and [A2] or [A3]
for most of the interactions considered inM. These differences
are likely to have an impact on the macroscopic effects of
various mechanisms in the solar atmosphere. This can be
illustrated with the ambipolar diffusion, for example.

5.1. Brief Description of Ambipolar Diffusion

Most studies of the solar atmosphere describe the interaction
between the magnetic field and plasma using a single-fluid
MHD approximation. This is sometimes sufficient, but single-
fluid MHD timescales may become comparable to collision
frequencies in the solar atmosphere. The upper chromosphere,
transition region, and corona are nearly collisionless. Conse-
quently, slippage between, for instance, ions and neutral
particles, or interactions between separate species (see Bai &
Stone 2011; Leake et al. 2014; Martínez-Sykora et al. 2015;
Ballester et al. 2018; Martinez-Sykora et al. 2019) may play
important roles in the dynamics and energetics of the
atmosphere. Several studies have tried to approximate ion–
neutral interaction effects in single-fluid MHD models by using
the generalized Ohm law, which includes the ambipolar
diffusion (see Cowling 1962; Braginskii 1965; Leake &
Arber 2006; Khomenko & Collados 2012, Ballester et al.
2018).
Single-fluid MHD numerical models that include ambipolar

diffusion assume either single species (hydrogen) or several
species (hydrogen, helium, or metals). This approach is
generally used to simulate the solar atmosphere and accounts
for ion and neutral interactions while retaining in a single-fluid
approach description. In this approach, first the quasi-neutrality
assumption is considered, and then all ionized species move at
the same speed, and similarly for the neutrals. The resulting

Figure 7. Same layout as Figure 4 for H–H+ (top), and He–He+, and He–He++

(bottom).
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magnetic induction equation is as follows:
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, 140 amb

where B is the magnetic field, u0 is the hydrodynamic velocity,
J is the total density current, en is the number density of the
electrons, eq is the charge of the electrons, and ηamb is the
ambipolar diffusion coefficient. The second term in the right-
hand side is the ambipolar diffusion, and the last term is the
Hall term. The ambipolar diffusion coefficient depends on the

ion–neutral collision frequency and ionization fraction as
follows:

( ) ∣ ∣
( )h

r r
r n

=
B

; 15n

n ni
amb

2 2

where ρ is the total mass density, and ρn is the total neutral
mass density, and νni is the neutral–ion collision frequency.
This expression was derived from a single species, e.g.,
hydrogen. In an environment with several species, typically,
one assumes that all ions and all neutrals move together (e.g.,

Figure 9. Same layout as Figure 6 for H–H+ interactions. Panel (A) shows the number density of H+.

Figure 8. Same layout as Figure 5 for H–H+ interactions.
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Figure 10. In the top and middle row: distribution of the collision frequencies associated with ionized metals and neutral hydrogen interactions for approaches [A1]
and [A2], such as H–Fe+, H–Ne+, H–O+, H–Ni+, and H–Mg+, in the 2.5D simulation representing the solar atmosphere (Section 4.2). From left to right: distribution
of the logarithm of the collision frequency νcol in s−1 associated with the H–Fe+, H–Ne+, H–O+, H–Ni+, and H–Mg+ interactions. In the bottom row, from left to
right: distribution of the logarithm of the density in cm−3 of Fe+, Ne+, O+, Ni+, and Mg+.
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Martínez-Sykora et al. 2012). In this case, the ion–neutral
collision frequency is defined as

a a I
Ia

a I

a I a
a a I ( )ån r n=

¢ +
¢

¢
¢ m

m m0,
, 1. 16ni 0

0
0

col

To compute the ambipolar diffusion shown in the left panel
of Figure 15, the collision frequency νni has been calculated
following Equation (16), where each Ia a In ¢ , 10

col is defined
from [A1]. For convenience, we rename the ambipolar
diffusion coefficient [ ]hamb

1 . Additionally, in the middle panel of
Figure 15, we have also compared with another definition of
the ambipolar diffusion, called [ ]hamb

2 , where each collision
frequency involved in Equation (16) is replaced by the collision
frequency calculated with [A2] as νcol,[A2].
The ambipolar diffusion term increases with temperature

within Tä [103, 105] K and decreases with the total density
within ρ ä [10−13, 10−5] kg m−3. The ratio shows strong
differences in the right panel of Figure 15, where the ratio is
ranging from 10−3 to 10−1. The high ratio at lower
temperature, which corresponds to the bottom horizontal
purple stripe, i.e., below T= 4000 and T= 7000 K, is due to
the difference in the approach used for the interactions between
ionized metals and neutral species between approaches [A1]
and [A2] as the collision frequencies associated with these
interactions are dominating at these thermodynamic conditions
(see Section 4.5.2 for further details). The strong differences
obtained in Figure 15 are expected as the various collision
frequencies have shown large differences in these conditions,
according to the results presented in the previous sections.
However, it is difficult to determine which of the many
collision frequencies dominates the differences obtained
between approaches [A1] and [A2].
In summary, in these conditions, which encompass photo-

spheric and chromospheric conditions, the ambipolar diffusion
[ ]hamb
1 is much higher than [ ]hamb

2 by 1 to 2.5 orders of magnitude.
In this context, the decoupling between neutrals and ionized
species is weaker for [A1] than for [A2]. In terms of energetics,
the approach involved in [A1] most likely will lead to a higher

Figure 11. Distribution of the ratio of the collision frequencies between [A2] and [A1] associated with H and ionized metals interactions in the 2.5D radiative MHD
simulation (Section 4.2). From left to right: ratio νcol,[A2]/νcol,[A1], associated with H–Fe+, H–Ne+, H–O+, H–Ni+, and H–Mg+ interactions.

Figure 12. Same layout as Figure 4 for He–H+ (top), and H–He+, H–He++,
and He–He++ (bottom).
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energy release in these regions of the solar atmosphere due to
the larger decoupling between ions and neutrals. In particular,
in upper chromospheric conditions or spicules, our calculations
have shown that the ambipolar diffusion for [A1] is higher than
for [A2] by slightly more than one order of magnitude. These
results suggest that previous calculations of the macroscopic
impact of ambipolar diffusion should be revisited and are likely
larger than previous work suggests.

5.2. Results Based on Different Mixtures

In order to identify the impact of the different species
involved in M on the ambipolar diffusion coefficient, three

mixtures have been considered to recalculate the ambipolar
diffusion coefficient. These mixtures are

1. a hydrogen mixture composed ofM e{ }= +H , H,H
2. a helium–hydrogen mixture composed of M =-He H

M { }È + ++He, He , HeH
3. the mixture involving all species, including ionized

metals, M M { }È= -
+ + + + +Ne , Fe , Mg , Ni , OHe H .

In the first column of Figures 16(A), (E), and (I) which
represents our calculations based on the mixture with hydrogen
MH, in regions [A] and [B], the distribution of the ambipolar
diffusion covers a wide range of values from 107 cm2 s−1 to
more than 1017 cm2 s−1. This is because of the distribution of

Figure 14. Same layout as Figure 6 for He–H+ interactions. Panel (A) shows the number density of He.

Figure 13. Same layout as Figure 5 for He–H+ interactions.
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the collision frequency between ionized and neutral hydrogen
presented in Figure 9. Indeed, the ambipolar diffusion is
inversely proportional to the sum of all the possible combina-
tions of collisional frequencies between ionized and neutral
species. In the case ofMH, only H+ and H are involved in this
definition. In region [C], in [A1], the ambipolar diffusion is
decreasing from 1011 cm2 s−1 to approximately 107 cm2 s−1. In
[A2], which corresponds to panel (E), the distribution of the
ambipolar diffusion is similar to [A1] in all the regions of the
solar atmosphere, with a ratio ranging between 0.5 and 0.3, as
shown in Figure 16(I). In this framework, the ambipolar
diffusion in [A2] is lower than in [A1]. This is confirmed in our
1D distribution plot at x = 15.2 Mm with the black line with
crosses presented in Figure 16(L). Note that in all approaches,
in region [D], the ambipolar diffusion is assumed to be
negligible because the plasma is mostly fully ionized.

The situation is quite different for a mixture with helium, as
shown in Figures 16((B), (F), and (J)), Indeed, in approaches
[A1] and [A2], our calculations show that adding helium
species to the mixture causes more spatial variations of the
ambipolar diffusion mainly in the upper layers of the solar
atmosphere, corresponding to the upper layer of regions [B]
and [C]. In particular, the ambipolar diffusion is increasing by
several orders of magnitude compared to the hydrogen mixture
MH. This change can be attributed to the increase in the density
of neutral species due to the presence of neutral helium in
region [C], which is not considered in the case based onMH.
Indeed, as we saw in Figures 3(A) and (F), there is much more
neutral helium than hydrogen in region [C]. In this context, as
the ambipolar diffusion is proportional to the total density of
neutrals, it is increasing in region [C] in the case based on
M -He H compared to MH. These results are consistent with
those obtained by Nóbrega-Siverio et al. (2020). In
Figure 16(J), our calculations show that in region [C], the
ambipolar diffusion is significantly lower for [A2] than [A1]
(i.e., the ratio is decreasing down to 10−1.5). Note that this may
help to heat the spicules to greater temperatures (De Pontieu
et al. 2017a; Chintzoglou et al. 2021), but this will need to be
verified with new numerical simulations. These differences in
the distribution of the ambipolar diffusion in region [C] are
attributed to the collision frequency between neutral helium
and protons presented in Figure 14 considered in the approach
with M -He H. Indeed, in region [C] from Figure 14, one can

notice that the calculated collision frequency is much lower in
[A1] than in [A2], thus, the ambipolar diffusion in [A1] is
higher by approximately one order of magnitude than in [A2].
In regions [A] and [B], the ratio ranges between 10−0.3≈ 0.5

and 10−0.5≈ 0.32 (panel (J)) as in the case based onMH (panel
(I)). In addition, in these regions, no differences in the spatial
distribution of the ambipolar diffusion between MH and
M -He H mixtures have been obtained (panels (A)–(B) and
panels (E)–(F)). This is mostly due to the fact that these regions
are mostly populated by hydrogen species in both approaches.
Finally, if we focus on [A1] and [A2] in the third column of

Figure 16 (corresponding to panels (C), (G), and (K)), ionized
metals are mostly changing the distribution of the ambipolar
diffusion in the bottom layer of the solar atmosphere,
corresponding to region [A] and region [B]. Indeed, when
ionized metals are considered in the mixture, the ambipolar
diffusion drops by several orders of magnitude compared to
M -He H and MH. In [A1], corresponding to Figure 16(C), it
ranges from 106 to 108 cm2 s−1, which is approximately 2
orders of magnitude higher than in [A2]. This variation
obtained in both approaches can be explained by the large
population of Mg+ and Fe+ in region [A], as shown in
Figures 10(K) and (O). The collision frequencies associated
with H–Fe+ and H–Mg+ interactions are much higher than all
the collision frequencies associated with the other ion–neutral
interactions (in particular, H–H+) in the bottom of region [A].
Consequently, the ion–neutral collision frequency presented in
Equation (16) is much higher in these regions, leading to a
large decrease of the ambipolar diffusion coefficient (panel (C))
compared to MH (panel (A)) and M -He H (panel (B)). Similar
results have been obtained in [A2], as shown in panels (E), (F),
and (G).
In summary, these calculations allow us to clearly identify

the impact of the different species on the spatial distribution
and variation of the ambipolar diffusion coefficient in the solar
atmosphere. Our results for single-fluid MHD approaches that
include ambipolar diffusion show that calculations based on
[A1] could lead to a higher energy release than [A2] in the
upper layers of the solar chromosphere and low transition
region. It would be still necessary to run a simulation on a solar
timescale in order to clearly characterize the difference in the
energy release by the two different approaches [A1] and [A2].
However, the results presented here are the first step toward

Figure 15. Left and middle: distribution of the logarithm of the ambipolar diffusion term [ ]hamb
2 and [ ]hamb

1 in m2 s−1 as a function of the logarithm of the total density ρ in
kg m−3 and temperature in kelvin. Right: distribution of the logarithm of the ratio [ ] [ ]h hamb

2
amb
1 as function of the logarithm of the total density ρ in kg m−3 and

temperature in kelvin.
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Figure 16. Distribution of the ambipolar diffusion in the 2.5D simulation (Section Section 4.2). From top to bottom: distribution of the logarithm of the ambipolar
diffusion [ ]hamb

1 and [ ]hamb
2 in cm2 s−1, and the ratio [ ] [ ]h hamb

2
amb
1 . From left to right: distribution of the logarithm of the ambipolar diffusion with hydrogen mixtureMH

denoted by [H], helium–hydrogen mixtureM -He H denoted by [He–H], a mixture with all species consideredM in this work denoted by [all], and a 1D distribution of
each ambipolar diffusion coefficient for each of these quantities at x = 15.2 Mm.
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having a better description of the collision frequencies in solar
physics MHD numerical models.

6. Conclusion

In this study, we have focused on a hydrogen–helium-
ionized metals mixture. This mixture is chosen as being
representative of the main composition of the solar atmosphere.
However, we point out that the entire strategy of this work can
be easily extended to any multicomponent plasma mixture as
long as the required data for calculating the collision
frequencies are provided.

By focusing on a classical 13N moment model derived by
Zhdanov (2002), we have reviewed the definition of the
collision frequency and the momentum and energy exchange
terms in the context of a multifluid MHD model. This collision
frequency is at the kinetic level derived from the Boltzmann
equations and depends on so-called Chapman–Cowling
collision integrals. These integrals are calculated from the
integration of the transport cross section over the reduced
collision velocity between the two colliding particles. The
transport cross sections are determined from the integration of
the impact parameter or deflection angle, which depend on a
phenomenological potential that simulates the interaction
between these two particles at the microscopic scale level.

In order to assess the collision frequencies for solar
atmospheric conditions, we have focused on the calculation
of the collision integrals based on the database provided by
Bruno et al. (2010), denoted by [A1], which has been
implemented in a C++ library called Mutation++ . This
database has been derived for the thermodynamic conditions
associated with the Jovian atmosphere for temperatures ranging
from 50 to 50,000K. In this work, we have extended this
database to thermodynamic conditions representative of the
solar atmosphere. The collision integrals have been extra-
polated up to 4× 105 K using the fitting expressions provided
by Bruno et al. (2010). We point out that collision integral data
considered for the Jovian atmosphere can be applied to any
other environments, such as the solar atmosphere, for any range
of densities and temperatures as long as the continuum
description of the multicomponent plasma is valid. In this
work, the continuum description is assumed to be valid from
the photosphere to the corona. In order to make the database
available, we have reviewed it and presented the methods used
by Bruno et al. (2010) to calculate these collision integrals.

For all the possible interactions involved in M, we have
presented the spatial variation in a 2.5 D simulation of the solar
atmosphere from Bifrost . In addition, we have calculated the
collision frequencies and compared them with the approach
described by Vranjes & Krstic (2013), Vranjes et al. (2008),
and Leake et al. (2012). These comparisons have been
performed in four different regions representative of different
layers of the solar atmosphere, ranging from the photosphere to
the upper layer of the transition region. In summary, for
electron–neutral interactions, the collision frequencies are
similar between [A1] and [A2], leading to a ratio of the two
approaches (defined by νcol,[A2]/νcol,[A1]) that ranges from 0.9
to 1.5 in all layers of the solar atmosphere. With respect to
neutral–neutral interactions, in particular the H–H interaction,
the ratio is high and ranges from 12 to 25. However, this
interaction is not relevant for the modeling of the solar
atmosphere as this interaction is not generally taken into
account in a fluid MHD system of equations. Regarding ion–

neutral interactions, comparisons based on three groups have
been performed. For interactions involving resonant charge
transfer, in particular, the H–H+, the ratio ranges from 1.5 to 2.
For interactions between ionized metals and neutrals, the

ratio is much higher and ranges from 200 to 600. Thus, the
approximation based on the ratio of mass defined by Vranjes &
Krstic (2013) should be reconsidered. In addition, for the
He–H+ interactions, the ratio ranges from 10 to 15 in all layers
of the solar atmosphere. These large differences are due to the
different formalism used by Vranjes & Krstic (2013) to
calculate the collision frequency. Indeed, in Vranjes & Krstic
(2013), the classical formalism based on collision integrals has
not been considered. Unlike in the definition of Zhdanov
(2002), the momentum transport cross section is not integrated
over the reduced collision velocity.
In order to quantify the impact of this formalism on the

decoupling between ionized species and neutrals in the solar
atmosphere, we have briefly introduced the ambipolar diffusion
coefficient in the context of a single-fluid MHD model. The
ambipolar diffusion has been shown to be important in the
dynamics and energetics in the chromosphere (Martínez-
Sykora et al. 2012, 2018; De Pontieu et al. 2017b; Martínez-
Sykora et al. 2017a; Khomenko et al. 2014a, 2014b). The
results from Martínez-Sykora et al. (2012) show that the
ambipolar diffusion plays a major role in the formation and
thermal evolution of the spicules as well as in the thermo-
dynamics in the chromosphere, e.g., cold expanding bubbles.
In addition, the ambipolar diffusion appears to have an impact
on the amount of magnetic flux that can penetrate into the
chromosphere from below (Martínez-Sykora et al. 2017a;
Leake et al. 2014). The ambipolar diffusion coefficient depends
on collision frequencies between ionized species and neutrals.
For this case of ambipolar diffusion, we have also performed a
detailed comparison of the differences between both
approaches to calculating the collision frequencies. [A1]
includes a formalism with collision integrals, while [A2]
represents the formalism that has been used in the past few
years in various studies. For the range of densities and
temperatures representative of the solar atmosphere, our results
have shown large differences, i.e., a ratio of the two ambipolar
diffusion ( [ ] [ ]h hamb

2
amb
1 ) coefficient ranging from 10−2.5 to 10−1,

between the two formalism. These differences are shown in the
right panel of Figure 15. In general, the ambipolar diffusion
coefficient calculated from our novel approach that includes
collision integrals appears to be much larger than in the
approach of Vranjes & Krstic (2013).
Finally, in order to assess the impact of the different ionized

and neutral species interactions ofM in the solar atmosphere,
we have calculated the ambipolar diffusion coefficient for three
different mixtures based on the approach of Vranjes & Krstic
(2013) and Bruno et al. (2010): a hydrogen mixture MH, a
helium–hydrogen mixtureM -He H, andM. To summarize, the
interactions associated with H–H+ and neutrals-ionized metals
(in particular, Mg+ and Fe+) dominate the bottom layer of the
solar atmosphere corresponding to the photosphere and bottom
of the chromosphere. When helium species are considered, the
ambipolar diffusion coefficient increases in upper layers,
corresponding to the chromosphere and transition region.
Ion–neutral interactions involving helium species appear to be
the dominant interactions in these regions of the solar
atmosphere. This is due to the presence of neutral helium
species in the upper layer of the atmosphere. Generally, the
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ratio of the ambipolar diffusion coefficients between the two
approaches ranges between 10−2.5 and 10−1 (see Nóbrega-
Siverio et al. 2020). Therefore, a significantly higher energy
release due to the decoupling between ionized species and
neutrals is expected. Similarly, the larger decoupling between
ions and neutrals in the upper chromosphere may affect several
other recent results regarding flux emergence.

To further quantify how our novel approach to calculating
the collision impacts the thermodynamics of the solar amto-
sphere on macroscopic scales, it would be necessary to perform
a numerical simulation with the two different formalisms of
ambipolar diffusion coefficients and compare the results. This
work is a first step for solar physics modelers toward having a
complete and accurate description of the collisions in MHD
numerical simulations.
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Appendix A
Definition of the Interaction Potential for Coulomb

Interactions

As described by Capitelli et al. (2000) and Capitelli (1977),
interaction potentials associated with Coulomb or charged
interactions are represented by a Coulomb potential that takes
into account the Debye length (commonly called the Debye–
Hückel potential) as follows:
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where aIz and a I¢ ¢z are the elementary charges of the colliding
particles, λD is the Debye length, and ò0 is the vacuum
permeability. The Debye length represents a characteristic
length over which the electroneutrality assumption for charged
particles is considered. When the plasma is out of thermal
equilibrium, the Debye length takes into account both electron
and ion temperatures as follows:

e

e e M
e

( )l =
+ å Î

¹

 k q

n T n T
. 18

j
j

j j
D
2 0 B

2

In Bruno et al. (2010), ions are included in the shielding. For
neutral plasma at equilibrium temperature, the Debye length

simplifies to

e

e e

( )l =
 k q

n T
. 19D

2 0 B
2

Following Capitelli et al. (2000), collision integrals for
Coulomb interactions are generally known either in tabular
form or are approximated with closed forms of the type
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where Λ= 2λD/b0 is the ratio of the Debye length and the
average closest-impact parameter b0. Additionally, we have
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Lln is the Coulomb logarithm, which is the dominant term of
Equation (20).

Appendix B
Definition of the Interaction Potential Based on a

Polarization Model

The interaction potential function associated with a polariza-
tion model reads
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where αpol is the polarizability of the neutral collider, z is the
elementary charge of the ion collider, and

e a p= d z q 82 2
pol 0.

In this framework, the collision integrals assume a closed form
as follows:
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where Γ is the Gamma function and A l is a coefficient
correlated to the transport cross section. The latter has been
computed by Smith (1967) for l = 1,2 and 3 (A1(4)= 0.5523,
A2(4)= 0.3846, and A2(4)= 0.6377). These coefficients lead to
simplified relations of the collision integrals. In particular, we
have

aI a I ( ) ( )( ) a
W =¢ ¢ T z

T
424.443 , 24,

1,1 pol

where the polarizability value of H is αpol= 0.6668 Å3 and He
is αpol= 0.205 Å3. Other polarizability coefficients for the
hydrogen–helium mixture can be found in Bruno et al. (2010).
The polarizability coefficients associated with any species can
be found in Schwerdtfeger & Nagle (2019). Note that if we
consider the definition of the collision integrals in
Equation (24), the resulting collision frequency defined in
Equation (4) does not depend on the temperature.
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