
Jonas Sæther Markussen

SmartIO: Device sharing and
memory disaggregation in PCIe
clusters using non-transparent
bridging

Dissertation submitted for the degree of Philosophiae Doctor

Department of Informatics
Faculty of Mathematics and Natural Sciences

Dolphin Interconnect Solutions

Simula Research Laboratory

2022

© Jonas Sæther Markussen, 2022

Series of dissertations submitted to the
Faculty of Mathematics and Natural Sciences, University of Oslo
No. 2561

ISSN 1501-7710

All rights reserved. No part of this publication may be
reproduced or transmitted, in any form or by any means, without permission.

Print production: Graphics Center, University of Oslo.

Abstract
Distributed and parallel computing applications are becoming increasingly
compute-heavy and data-driven, accelerating the need for disaggregation solutions
that enable sharing of I/O resources between networked machines. For example,
in a heterogeneous computing cluster, different machines may have different
devices available to them, but distributing I/O resources in a way that maximizes
both resource utilization and overall cluster performance is a challenge. To
facilitate device sharing and memory disaggregation among machines connected
using PCIe non-transparent bridges, we present SmartIO. SmartIO makes all
machines in the cluster, including their internal devices and memory, part of
a common PCIe domain. By leveraging the memory mapping capabilities of
non-transparent bridges, remote resources may be used directly, as if these
resources were local to the machines using them. Whether devices are local or
remote is made transparent by SmartIO. NVMes, GPUs, FPGAs, NICs, and any
other PCIe device can be dynamically shared with and distributed to remote
machines, and it is even possible to disaggregate devices and memory, in order
to share component parts with multiple machines at the same time. Software is
entirely removed from the performance-critical path, allowing remote resources
to be used with native PCIe performance. To demonstrate that SmartIO is an
efficient solution, we have performed a comprehensive evaluation consisting of a
wide range of performance experiments, including both synthetic benchmarks
and realistic, large-scale workloads. Our experimental results show that remote
resources can be used without any performance overhead compared to using
local resources, in terms of throughput and latency. Thus, compared to existing
disaggregation solutions, SmartIO provides more efficient, low-cost resource
sharing, increasing the overall system performance and resource utilization.

i

Acknowledgements
My sincere gratitude goes to my friend and colleague, Lars Bjørlykke Kristiansen.
This dissertation would simply not have been possible without your support
and help. Thank you for sharing my frustration over confusing lab results, the
many hours spent teaching me about technical details, as well as your countless
insights, technical understanding, and visionary ideas for things to try out and
experiments to do. I’m looking forward to working with you for many years to
come.

I’d also like to thank to my doctoral advisors, Håkon Kvale Stensland, Carsten
Griwodz, and Pål Halvorsen. Not only have you been extremely patient with me,
more than anyone can reasonably expect from any advisor, but your invaluable
feedback and input has truly elevated the quality of my work. Your innovative
approach to computer science and dedication to high quality research inspires
me, and I hope we may collaborate on future research projects. I also want to
thank all of my colleagues at Dolphin, especially my bosses Hugo Kohmann
and Roy Nordstrøm, who have allowed me time and resources to perform this
work—even when it didn’t align perfectly with tasks that were more urgent for
the company.

Thanks to my family and many supportive friends, particularly Katrine,
Anders, Christian, Martin, Axel, Morten, Thomas, Karoline, Nora, Jonatan,
and Kristian. Thank you for continuing to believe in me, even when I doubted
myself. It is because of your continued support I didn’t give up a long time ago.

I’d also like to thank my friends and former colleagues at Simula: Michael,
Bendik, Halvor, Konstantin, Kristoffer R., and Preben. You made the working
environment of Simula educational and also very fun for me. I have many
fun memories from conference trips abroad, general office humor, and playing
pool and joking around. Finally, I would like to thank the Simula Premium
Coffee Club (aka. “The Secret Society of Aromatic Snobbery”) for providing the
excellent coffee consumed at many late hours as deadlines were approaching, thus
saving me from the awful, black substance produced by the (so-called) “coffee”
machine.

Jonas Sæther Markussen
Oslo, May 2022

iii

List of papers

Paper I

Lars Bjørlykke Kristiansen, Jonas Markussen, Håkon Kvale Stensland, Michael
Riegler, Hugo Kohmann, Friedrich Seifert, Roy Nordstrøm, Carsten Griwodz,
and Pål Halvorsen. “Device Lending in PCI Express Networks.” In: Proceedings
of the 26th ACM International Workshop on Network and Operating Systems
Support for Digital Audio and Video. NOSSDAV’16. May 2016, 10:1–10:6. doi:
10.1145/2910642.2910650

Paper II

Konstantin Pogorelov, Michael Riegler, Jonas Markussen, Håkon Kvale Stensland,
Pål Halvorsen, Carsten Griwodz, Sigrun Losada Eskeland, and Thomas de Lange.
“Efficient Processing of Videos in a Multi Auditory Environment Using Device
Lending of GPUs.” In: Proceedings of the 7th ACM International Conference on
Multimedia Systems. MMSys’16. May 2016, pp. 381–386. doi: 10.1145/2910017.
2910636

Paper III

Jonas Markussen, Lars Bjørlykke Kristiansen, Håkon Kvale Stensland, Friedrich
Seifert, Carsten Griwodz, and Pål Halvorsen. “Flexible Device Sharing in PCIe
Clusters Using Device Lending.” In: Proceedings of the 47th ACM International
Conference on Parallel Processing Companion. ICPP’18 Comp. August 2018,
48:1–48:10. doi: 10.1145/3229710.3229759

Paper IV

Jonas Markussen, Lars Bjørlykke Kristiansen, Rune Johan Borgli, Håkon
Kvale Stensland, Friedrich Seifert, Michael Riegler, Carsten Griwodz, and Pål
Halvorsen. “Flexible Device Compositions and Dynamic Resource Sharing in
PCIe Interconnected Clusters using Device Lending.” In: Cluster Computing
vol. 23, no. 2 (June 2020), pp. 1211–1234. issn: 1573-7543. doi: 10.1007/s10586-
019-02988-0

v

https://doi.org/10.1145/2910642.2910650
https://doi.org/10.1145/2910017.2910636
https://doi.org/10.1145/2910017.2910636
https://doi.org/10.1145/3229710.3229759
https://doi.org/10.1007/s10586-019-02988-0
https://doi.org/10.1007/s10586-019-02988-0

List of papers

Paper V

Jonas Markussen, Lars Bjørlykke Kristiansen, Pål Halvorsen, Halvor Kielland-
Gyrud, Håkon Kvale Stensland, and Carsten Griwodz. “SmartIO: Zero-overhead
Device Sharing through PCIe Networking.” In: ACM Transactions on Computer
Systems vol. 23, no. 1–2 (July 2021), 2:1–2:78. issn: 1573-7543. doi: 10.1145/
3462545

vi

https://doi.org/10.1145/3462545
https://doi.org/10.1145/3462545

Contents

Abstract i

Acknowledgements iii

List of papers v

Contents vii

List of figures xiii

List of abbreviations xv

1 Introduction 1
1.1 Background and motivation 2
1.2 Problem statement . 7
1.3 Scope and limitations . 10
1.4 Research methodology . 11
1.5 Contributions . 14
1.6 Outline . 16

2 SmartIO 19
2.1 Underlying idea . 19
2.2 Main challenges . 21
2.3 Implementation . 23

2.3.1 Low-level NTB driver 24
2.3.2 SmartIO driver 24
2.3.3 Device Lending 26
2.3.4 MDEV . 28
2.3.5 API extension . 30
2.3.6 Proof-of-concept NVMe driver 31

2.4 Performance measurements 37
2.4.1 Device Lending: latency comparison 39
2.4.2 Device Lending: throughput comparison 41
2.4.3 Proof-of-concept NVMe driver experiment 44

2.5 Related work . 48
2.5.1 Solutions not using NTBs 48
2.5.2 Solutions using NTBs 51

3 Conclusion 53
3.1 Summary . 53

vii

Contents

3.2 Revisiting the problem statement 54
3.3 Future work . 59

Glossary 63

Bibliography 69

Published Papers 78

I Device Lending in PCI Express Networks 79
1 Introduction . 81
2 PCI Express . 82

2.1 Memory-mapped IO 82
3 Virtualization support in PCIe 83

3.1 IO memory management unit 83
3.2 Single-Root IO Virtualization 83
3.3 Performance penalty 83

4 Related work . 84
5 Implementation . 84
6 Evaluation and discussion 84

6.1 Reference evaluation 85
6.2 Device Lending evaluation 85

7 Conclusion and future work 86

II Efficient Processing of Videos in a Multi-auditory Environ-
ment using Device Lending of GPUs 89
1 Introduction . 91
2 Real-time computer aided diagnosis support 92

2.1 GPU implementation 92
2.2 Device Lending 92
2.3 Performance evaluation 93

3 Demonstration setup . 93
4 Conclusion and future work 94

III Flexible Device Sharing in PCIe Clusters using De-
vice Lending 97
1 Introduction . 99
2 PCIe overview . 100

2.1 Memory addressing and forwarding 100
2.2 Virtualization support and pass-through 100
2.3 Non-transparent bridging 101

3 Related work . 101
3.1 Distributed IO using RDMA 101
3.2 Virtualization approaches 101
3.3 Partitioning the fabric 101

viii

Contents

4 Device Lending . 102
5 Supporting virtual borrowers 103
6 Multi-device interoperability 104
7 Performance evaluation . 104

7.1 IOMMU performance penalty 104
7.2 Pass-through comparison 105
7.3 Device-to-device evaluation 105

8 Discussion and conclustion 107

IV Flexible Device Compositions and Dynamic Resource
Sharing in PCIe Interconnected Clusters using De-
vice Lending 111
1 Introduction . 113
2 PCIe overview . 114

2.1 Memory addressing and forwarding 115
2.2 Virtualization support and pass-through 115
2.3 Non-transparent bridging 116

3 Related work . 116
3.1 Distributed I/O using RDMA 116
3.2 Virtualization approaches 117
3.3 Partitioning the fabric 117

4 Device Lending . 117
5 Supporting virtual machine borrowers 118
6 Supporting multiple devices and peer-to-peer 120
7 Performance evaluation . 121

7.1 IOMMU performance penalty 121
7.2 Native peer-to-peer evaluation 123

7.2.1 Bare-metal bandwidth evaluation . . 123
7.2.2 Bare-metal latency evaluation 126

7.3 VM peer-to-peer evaluation 126
7.3.1 VM bandwidth evaluation 127
7.3.2 VM latency evaluation 128

7.4 Pass-through NVMe experiments 129
7.5 Image classificaiton workload 130

8 Discussion . 131
8.1 I/O address virtualization 131
8.2 VM migration . 132
8.3 Security considerations 132
8.4 Interrupt forwarding 132

9 Conclusion . 132

V SmartIO: Zero-overhead Device Sharing through PCIe
Networking 139
1 Introduction . 142
2 System overview . 145

2.1 Motivation and challenges 146

ix

Contents

2.2 Overall design . 147
3 PCIe-interconnected clusters 149

3.1 PCIe endpoints 149
3.2 Address-based routing 150
3.3 Non-transparent bridging 151

4 Device Lending . 153
4.1 Shadow device 153
4.2 Intercepting configuration cycles 154
4.3 DMA window . 154
4.4 Shortest path routing 155

5 VM pass-through using MDEV 156
5.1 Mediated devices 157
5.2 Mapping VM memory for device 158
5.3 Peer-to-peer between devices 160
5.4 Relaying interrupts 160
5.5 VM migration . 161

6 Distrubted NVMe driver 161
6.1 Device driver API 162
6.2 Driver implementation 163
6.3 Multipath failover 165
6.4 GPU support . 166
6.5 Multicast . 169

7 Performance evaluation . 169
7.1 Device Lending 171

7.1.1 Latency tests 171
7.1.2 Throughput tests 173
7.1.3 Longer PCIe paths 175
7.1.4 Peer-to-peer: local vs. remote 177
7.1.5 Peer-to-peer: multiple lenders 179
7.1.6 Sharing SR-IOV devices 181

7.2 Scaling heavy workloads 185
7.3 VM pass-through with MDEV 186

7.3.1 IOMMU performance penalty 187
7.3.2 Pass-through comparison 188

7.4 Distributed NVMe driver evaluation 190
7.4.1 Optimizing data access patterns . . . 192
7.4.2 Sharing a single-function NVMe device 194
7.4.3 NVMe-oF RDMA comparison 196

8 Discussion . 200
8.1 Security . 200
8.2 Supported OSes 201
8.3 Supported CPU architectures 202
8.4 Supported devices 202
8.5 Alternative NTB implementations 203
8.6 Scalability . 203
8.7 Disaggregated and composable infrastructure . . 205

x

Contents

9 Related work . 206
9.1 PCIe fabric partitioning 206
9.2 NTB-based solutions 207
9.3 Distributed I/O using RDMA 208
9.4 NVMe queue distribution 210
9.5 Memory disaggregation 210

10 Conclusion . 212

xi

List of figures

1.1 Pooling internal devices increases flexibility and improves resource
utilization and cluster performance 1

1.2 PCIe switch chips with partitioning support can be used to connect
multiple CPUs and freestanding devices to a common PCIe fabric. 4

1.3 Example of a heterogeneous PCIe-networked cluster with NTB
adapter cards and external cables 5

1.4 Remote hardware can be accessed directly without any software
in the critical path by using NTBs 6

2.1 Devices are mapped to the same address space as the CPU and
system memory . 19

2.2 Two computer systems connected using NTBs, and the NTBs
translate between the two different address domains 20

2.3 Three different sharing methods are made possible by our
framework. The SmartIO driver abstracts away the physical
location of a remote resource . 24

2.4 The memory regions of a remote device is mapped for the CPU
on the borrower, so that it can read and write to device registers.
Local resources are mapped for the device, so that it may use
DMA and trigger interrupts. Device Lending inserts a shadow
device into the local device tree using these mappings, making
remote device access transparent to both CPU and device. . . . 26

2.5 The borrower’s IOMMU is used to create a single continuous
memory range that may be mapped through the lender’s NTB
in advance. Adding and removing memory pages from the
local IOMMU domain is inexpensive compared to actively
communicating with the remote lender machine 27

2.6 The IOMMUs on both sides of the NTB must be used in order
to pass through a remote device to a local VM. The borrower’s
IOMMU is used to provide continuous memory ranges for scattered
VM memory, while the lenders’s IOMMU is used to mirror the
guest-physical layout for the device 29

2.7 NVMes support parallel and asynchronous operation by using
independent queues. Queues are hosted in memory, and an NVMe
uses DMA to fetch commands 32

2.8 Several machines can operate the same NVMe simultaneously by
distributing queues . 33

xiii

List of figures

2.9 Our proof-of-concept NVMe driver is able to map GPU memory
for an NVMe using the SmartIO API extension, making it possible
to load and store data directly from GPU memory 34

2.10 By using access pattern hinting, it is possible to consider memory
locality without requiring the driver implementation to be aware
of the underlying PCIe topology 35

2.11 Our NVMe driver can run on a GPU independently of the CPU 36
2.12 Hardware configuration for the two scenarios in our latency

comparison experiment. By using an expansion chassis, the NVMe
is the same number of “hops” away from the CPU using the device
for both scenarios . 40

2.13 Histogram of the latency distributions for reads from storage
for both the Local Baseline and Device Lending scenarios. The
distributions overlap, demonstrating that our implementation does
not add any overhead in the critical I/O path 41

2.14 Hardware configuration for the two scenarios in our DMA
throughput comparison experiment. The expansion chassis adds
the same number of “hops” between the CPU and the GPU in
both scenarios . 42

2.15 The median DMA write throughput of different transfer sizes for
the Local Baseline and Device Lending scenarios. The measured
performance is the same for both scenarios, demonstrating that
our implementation does not add any overhead 43

2.16 The design of our proof-of-concept NVMe driver experiment . . 45
2.17 Distribution of recorded command completion latencies as a

histogram (left) and as a boxplot (right). The closer the SQ
is to the NVMe, the lower the latency is. 47

xiv

List of abbreviations

API application programming interface 9, 10, 15, 30, 35, 51, 55

ATS Address Translation Services 60

BAR Base Address Register 19–22, 25–28, 30, 32, 34, 35, 51, 52, 58,
Glossary: Base Address Register (BAR)

BIOS Basic Input/Output System 8

CPU central processing unit 3–5, 8, 14, 15, 19–22, 26, 32, 36, 39, 40, 42, 45,
48–50, 57, 58, 60

CQ completion queue 32, 36, 44, 46

CXL Compute Express Link 61

DMA direct memory access 4, 5, 8, 9, 16, 19–22, 25–30, 32, 37, 39, 41–44, 49,
53, 56, 57, 60,
Glossary: direct memory access (DMA)

FIO Flexible I/O tester 39

FPGA field-programmable gate array 1, 14, 53

GPU graphics processing unit 1–3, 9, 11, 13–16, 21, 23, 31, 33–38, 41–47, 49,
50, 53, 59

I/O input/output 1–3, 6–9, 12–16, 22, 23, 25, 26, 28–30, 32, 36, 38, 41, 44–50,
53, 54, 57, 59, 60,
Glossary: input/output (I/O)

IOMMU I/O Memory Management Unit 2, 16, 22, 27–30, 37, 39, 43, 46, 54, 56,
57, 60,
Glossary: I/O Memory Management Unit (IOMMU)

KVM Linux kernel-based virtual machine hypervisor 11, 14, 28, 30, 54, 55,
Glossary: hypervisor

MDEV Mediated Device Driver 14–17, 24, 25, 28–31, 37, 38, 44, 49–52, 54–58,
60,
Glossary: Mediated Device Driver (MDEV)

xv

List of abbreviations

MMIO memory-mapped I/O 20, 25, 30,
Glossary: memory-mapped I/O (MMIO)

MR-IOV Multi-Root I/O Virtualization 48, 50, 58

MSI message-signaled interrupts 20, 21, 27,
Glossary: message-signaled interrupts (MSI)

NIC network interface card 2, 9, 11, 14, 23, 37, 49, 53, 59

NTB non-transparent bridge 4–7, 9–12, 20–30, 38–40, 43, 46, 51–56, 58, 59,
Glossary: non-transparent bridge (NTB)

NVMe non-volatile memory express storage device 3, 9, 11, 13–16, 31–41, 44–49,
53, 54, 58, 59, 61

NVMe-oF NVMe over Fabrics 3, 38, 49

OS operating system 2, 3, 7, 8, 10–12, 26–28, 55, 56

PASID Process Address Space ID 60

PCIe Peripheral Component Interconnect Express 2–11, 13–17, 19–21, 23–25,
27, 28, 31, 33, 35, 37–41, 43, 47–61

RAM random access memory 19–22, 26, 29, 30, 34, 36, 37, 41, 43, 44, 47, 51,
56–58

RDMA remote direct memory access 2, 3, 6, 8, 15, 16, 37, 38, 48–50, 56,
Glossary: remote direct memory access (RDMA)

SISCI Software Infrastructure for Shared-Memory Cluster Interconnects 10, 15,
24, 30–32, 47, 49–51, 55, 56

SQ submission queue 32, 36, 44–46

SR-IOV Single-Root I/O Virtualization 3, 9, 15, 23, 31, 37, 48–51, 58,
Glossary: Single-Root I/O Virtualization (SR-IOV)

SSD solid-state flash memory storage device 41

VF virtual device function 9, 23, 31, 48, 49, 51,
Glossary: Single-Root I/O Virtualization (SR-IOV)

VFIO Virtual Function I/O
see also pass-through

VM virtual machine 2, 6–8, 10, 11, 13, 14, 17, 22, 23, 28–30, 37, 50–52, 54–57,
60

xvi

Chapter 1

Introduction

Cluster computing applications often have high requirements to I/O performance.
For example, many computing clusters rely on compute accelerators, such as
graphics processing units (GPUs) and field-programmable gate arrays (FPGAs),
to increase the processing speed. In recent years, we have also seen a convergence
of the high-performance computing, big data, and machine learning research fields.
This development has led to new demands to I/O performance where fast access
to high-volume storage devices is becoming a requirement for high-performance
computing, while low latency networking and making use of compute accelerators
have become cloud computing issues [8, 52, 55]. If I/O resources (devices) are
scarcely distributed in the cluster, cluster machines with I/O resources may
become bottlenecks, for example when a workload requires heavy computation
on GPUs or fast access to storage. Contrarily, over-provisioning machines
with resources may lead to devices becoming underutilized if a workload’s I/O
demands are more sporadic. Distributed processing workloads may even require
a heterogeneous cluster design, with widely different compositions of devices
and memory resources for individual machines in the cluster. Being able to
share and partition devices between cluster machines at run-time leads to more
efficient utilization, as individual machines may dynamically scale up or down
I/O resources based on current workload requirements (Figure 1.1).

Figure 1.1: If machines could pool their internal devices, it would be possible to
avoid queuing work on dedicated machines with particular device configurations.
Instead, each machine could dynamically compose the I/O infrastructure needed
to meet a workload’s I/O requirements, by borrowing devices from other machines
and releasing them when they are no longer needed.

1

1. Introduction

In order to meet the latency and throughput requirements of data-driven
and compute-heavy workloads, there is a need for flexible, yet efficient, sharing
of I/O resources in computing clusters. This dissertation contributes to this
goal by presenting a solution that enables distributing devices and sharing
memory resources between machines interconnected with Peripheral Component
Interconnect Express (PCIe) [42]. By leveraging memory mapping functionality
supported by the PCIe networking hardware, we make it possible to use resources
residing in remote machines as if they were installed in the same machine.
Whether resources are local or remote is made transparent to application software,
operating system (OS), and even device drivers, and remote resources can be
used in a manner that is indistinguishable from using resources attached to the
local PCIe bus. Existing device drivers and application software may use remote
resources without requiring any adaptations. Not only does this make it easier
to increase the overall resource utilization in the cluster, but it also becomes
easier to design and implement distributed applications as software no longer
needs to be written with accessing remote resources in mind, but can instead be
implemented as if all resources are local. Using our solution, I/O resources are
no longer locked to individual machines, and can instead be shared freely with
other machines in the cluster.

1.1 Background and motivation

In cloud computing environments, dynamically scaling resources is often
accomplished through virtualization. Virtual machine (VM) hypervisors
may dynamically add virtual I/O devices to VM instances on demand. It
is even possible to temporarily suspend computation to migrate VMs to
host machines with more hardware resources available, should the requirements
of a VM guest exceed the available local resources. However, when the raw,
bare-metal I/O performance is required, for example in the case of GPU-intensive
machine learning workloads, resource virtualization may not be a viable solution.
In this regard, it is possible to “pass through” physical I/O devices to a VM guest
using an I/O Memory Management Unit (IOMMU). The IOMMU facilitates
direct access to hardware from the guest without compromising the virtualized
environment [1, 36]. As such, pass-through allows physical hardware to be used
by a VM guest with minimal software overhead. However, as physical devices are
tightly coupled with the host they are installed in, this pass-through technique
suffers from a lack of flexibility. Distributing VMs across hosts in the network in
a way that maximizes resource utilization and adapts dynamically to varying I/O
requirements, without sacrificing the bare-metal performance that pass-through
provides, remains a challenge.

Another challenge is the networking technology itself. Despite having been a
research topic for decades, moving data to remote computing units over a network
remains a costly operation that introduces large performance overheads compared
to using local resources. As such, many network interface cards (NICs) support
zero-copy of application memory from one system to another through remote

2

Background and motivation

direct memory access (RDMA) [21]. RDMA is not only used in many distributed
shared-memory cluster applications, but is also frequently used for implementing
I/O resource disaggregation in software. For example, non-volatile memory
express storage devices (NVMes) may be disaggregated and shared with remote
systems with very low latency. This is the case for NVMe over Fabrics (NVMe-
oF), where RDMA is used to provide direct access and avoid going through
the block-layer of the OS on the server [19]. Similarly, the result of a GPU
computation may be copied out of GPU memory and onto the network directly
using RDMA, without being copied to system memory first and going through
the network stack [63]. However, while RDMA allows data to be transferred
efficiently over the network, translation between the network protocol and the
local I/O bus is unavoidable. Compared to accessing a local device, this protocol
translation incurs latency overheads that are not insignificant. Moreover, as
RDMA requires the use of specific programming models like message-passing [23],
disaggregation solutions based on RDMA are usually implemented either as
application-specific middleware, or as part of the application itself. The sharing
capabilities of RDMA solutions are, therefore, often limited to a single type of
device. Sharing several types of devices, for example both GPUs and NVMes,
usually requires multiple disaggregation implementations, and integrating them
with each other may be a challenge.

Extending the PCIe bus out of a single computer system and using it as a
high-speed interconnection technology is a compelling alternative to distributed
I/O over a traditional network [16, 44, 45]. As PCIe is the standard for connecting
I/O devices to a local computer system, using only native PCIe would have clear
performance advantage, since conversion between network protocol and I/O bus
would not be necessary. However, since PCIe was originally designed to connect
devices to the local central processing unit (CPU) on a motherboard, individual
computer systems operate with different PCIe address domains. Because of
this, some PCIe switch chip hardware have virtualization support for dynamic
partitioning [7, 35, 64]. Multiple CPUs can be connected to the same PCIe
fabric by mapping partitions to the individual address domains of each CPU.
Additionally, devices can be attached directly to the partitionable switch chip,
rather than being owned by individual machines. This allows switch-attached
devices to be logically assigned to different machines, as illustrated in Figure 1.2.

Nonetheless, because partitioning isolates CPUs in separate address domains,
this approach does not make it possible for machines to share their internal
resources. Memory, or other devices that are attached to the local PCIe bus and
not the partitionable switch (chip), cannot be shared. Thus, partitioning lacks the
shared-memory capabilities needed to support host-to-host communication over
native PCIe, and other networking technologies, such as Ethernet or InfiniBand,
must be used instead. Consequently, disaggregating devices and sharing them
with multiple machines at the same time require either alternative methods, like
RDMA, or additional virtualization support in the device itself, i.e., Single-Root
I/O Virtualization (SR-IOV). While approaches using PCIe fabric partitioning
can be said to enable a composable I/O infrastructure [7], they stop short of
providing networking capabilities over PCIe.

3

1. Introduction

(a) Partitioning allows CPUs and devices with different address domains to be isolated.

(b) Machines have separate (logical) PCIe device trees.

Figure 1.2: PCIe switch chips with partitioning support can be used to connect
multiple CPUs and freestanding devices to a common PCIe fabric. However, as
systems are isolated, shared memory communication over PCIe is not possible.

Due to its intrinsic memory addressing abilities and low latency overhead, it
is desirable to use PCIe as the enabling networking technology for distributed,
shared-memory communication [34, 48]. This requires translating memory
transactions from one machine’s address domain to another. By far, the most
common way of translating addresses between different PCIe address domains is
by using a special type of device called a non-transparent bridge (NTB) [5, 45,
61]. By using NTBs to implement plug-in host adapter cards and cluster switches,
it becomes possible to connect independent computer systems as depicted in
Figure 1.3. The memory address translation capabilities of NTBs make it possible
for a machine to map (parts of) the address space of remote systems. Since all
memory address translations are done in the NTB hardware, memory-to-memory
transfers are supported with very low latency.

More interestingly, however, is the fact that in such NTB-based networks,
all CPUs and internal PCIe devices are attached to the same, shared PCIe
fabric. Remote resources, such as the internal memory and devices of other
machines, could be mapped into a local system and accessed through the NTB
with very little performance overhead. Similarly, a device capable of direct

4

Background and motivation

Figure 1.3: Example of a heterogeneous PCIe cluster with external PCIe links
using adapter cards capable of NTB. The CPUs as well as internal devices of all
cluster machines (nodes) are all attached to the same PCIe network fabric.

memory access (DMA) could also use the NTB to access remote resources.
This approach eliminates the need to use memory on the remote system as an
intermediate step when transferring data, and any software in the data transfer
path can be avoided entirely, as shown in Figure 1.4. Rather than relying on
dedicated servers or requiring that devices are attached to special switches, we
could create distributed, peer-to-peer sharing system using NTBs; all machines
in the cluster can share all of their resources, including internal PCIe devices
and system memory. Moreover, as centralized servers can be avoided, the risks
of individual machines becoming performance bottlenecks or single points of
failure are reduced.

However, using an NTB to map remote resources requires awareness of the
address space on the remote system. For example, a device driver must use
addresses that correspond to the remote device’s address space when initiating
DMA transfers. Extensive modifications to device driver software would be
required in order to manage multiple address space layouts. This is infeasible
due to the vast amount of devices and device driver implementations that exist.
Although we could use virtualization to hide the fact that devices are on the

5

1. Introduction

(a) Accessing remote resources over traditional network using RDMA.

(b) Accessing remote resources over native PCIe using NTB.

Figure 1.4: Many distributed I/O solutions have performance overheads because
they rely on middleware or other forms of software facilitation on the remote
system. By setting up memory mappings through the NTB, remote hardware
resources can be accessed directly without any software in the critical path.

other side of an NTB [60], by relying on VMs we would forgo the possibility
of using bare-metal machines for processing. Hence, a realistic solution based
on NTBs requires a mechanism for abstracting away the physical location of a
resource, as well as the address space of the machine it is installed in, without
requiring virtualization (although sharing to VMs should also be supported).

Nevertheless, this kind of abstraction gives rise to yet another challenge.
A device driver that is unaware that a device is remote may assume that the
entire local address space can be reached by the device. NTB maps must be in
place before the driver interacts with the device, but predicting in advance which
memory addresses a device driver may use is generally not possible. Deferring
the action of mapping through the NTB until a time when addresses may be
known is not realistic, as this would require synchronizing with the remote
system and introduce communication overhead in the performance-critical path.
A way to prepare the necessary memory-maps through the NTB, without adding
communication latency, is needed.

6

Problem statement

1.2 Problem statement

Utilizing PCIe NTBs to share resources among machines in a PCIe-networked
cluster requires a solution for abstracting away the physical location of a resource,
including the address space of the computer system it is installed in. More
specifically, as it is desirable to avoid modifications to existing device drivers
and application software, such a solution must also be able to present resources
to the system as if they were locally installed. Additionally, the solution must
also allow remote resources to be used with the same performance expected for
native PCIe, i.e., with the same performance as if they were attached to the
local PCIe bus. Hence, the goal of this dissertation is to develop a framework
for sharing and distributing I/O resources (devices and memory) in a way that
makes it indistinguishable if a resource is remote or local. The challenges of this
goal are addressed under the following research question:

Can NTBs be leveraged to allow the internal memory and devices of
individual computers in a PCIe-networked cluster to be shared with
and used by remote machines in the cluster, as if these resources were
local to the remote machines?

In particular, this research question can be broken down into the following six
objectives:

Objective 1: Ubiquitous sharing in the cluster should be supported, allowing
any machine to contribute any of its internal PCIe devices, and allowing
any machine to be able to use shared devices, even contributing and using
devices at the same time.

The main motivation for our goal of building a system for I/O resource sharing
is to make it easier to scale out and use more resources than there are available
in a single computer. If any standard PCIe device inside any machine could be
shared with other machines, the I/O resource utilization in the cluster could be
greatly increased. Additionally, by avoiding dedicated servers and allowing all
computers in the cluster to participate in the sharing, contributing their own
resources and using resources shared by others, we would effectively enable a
distributed, peer-to-peer sharing model. This objective sets our goal apart from
existing PCIe-based solutions, as these require a central server or devices that
are directly attached to a PCIe switch.

Objective 2: The fact that resources may be remote should be functionally
transparent, allowing systems to use remote resources in the same way as
if they were local, without requiring any modifications to device hardware,
device drivers, host OS, or application software.

If the solution could make remote devices behave as if they were locally installed,
presenting resources to the system on a level “underneath” the OS, it would
become possible to distribute devices to physical hosts as well, and not only VMs.

7

1. Introduction

In other words, remote resources should appear as if they were part of the local
PCIe device tree, and application software could make use of remote devices
using native interfaces in the same way it would use local devices. Furthermore,
by avoiding application- or device-specific middleware, and instead memory-
mapping remote system and device memory directly, existing device drivers and
even the host OS itself would be able to interact with remote resources natively.
Avoiding any special adaptions to software would make scaling out significantly
easier than what is currently possible with existing middleware-based solutions
for distributed I/O, particularly those based on RDMA.

Objective 3: The fact that resources may be remote should be transparent with
regard to performance, remote resources should be used with native PCIe
performance, and as close to local access as possible.

Moving data to remote units over the network introduces large performance
overhead compared to accessing local resources. In order to further blur the
hard separation between “remote” and “local”, remote resources should not only
behave functionally as if they were locally installed in the system using them,
but also have comparable performance. To achieve this, any communication
overhead and intermediate data copying in the critical path must be completely
avoided, a requirement that rules out (most) traditional methods of sharing
resources over a network. Remote resources should be accessed directly over
native PCIe, which would improve the overall I/O performance in the cluster.

Objective 4: Shared resources should be distributed dynamically, and direct
access to device memory and system memory should be configured at
run-time, also between multiple devices residing in different hosts.

As stated in Objective 2, the solution should work for physical hosts, and not
only VMs. Therefore, it must be possible to assign and reassign resources while
all machines in the cluster are running, without requiring rebooting hosts or
changing settings in the BIOS. For devices, this introduces the requirement
that the OS supports hot-adding devices to the system (which most modern OS
implementations do). Not only would this would allow systems to dynamically
scale up or down their I/O resources based on immediate workload requirements,
but devices could be more efficiently partitioned between machines in the cluster,
increasing the overall resource utilization. Furthermore, the solution should
also be able to automatically discover resource location, without requiring that
the user knows anything about the underlying PCIe network topology, and
dynamically set up memory mappings between devices, CPUs, and memory
resources. An example would be enabling PCIe peer-to-peer between two or
more DMA-capable devices that are physically installed in different machines.

Objective 5: Disaggregation of system memory, device memory, and device
functionality should be supported, and the solution should be able to

8

Problem statement

distribute component parts to different hosts, as well as provide software
facilities for resources that do not support disaggregation in hardware.

Because most device drivers are written in a way that assumes exclusive control
over a device, some devices implement virtualization support in hardware, i.e.,
SR-IOV, that makes them appear to a system as having multiple virtual device
functions (VFs). The solution should be able to disaggregate such SR-IOV-
capable devices, and distribute their VFs to different machines, allowing multiple
computers to use the same device simultaneously. However, since not all devices
implement SR-IOV, the solution should also provide a device driver application
programming interface (API) that will make it possible to disaggregate memory
and device resources in software. In addition to the native sharing capabilities
described in Objectives 1–4, this API would provide facilities for memory-mapping
device registers as well as mapping shared memory segment for a DMA-capable
device. Effectively, this would bring shared-memory concepts to device driver
implementations, allowing device operation and device resources to become part
of the same global address space as distributed cluster applications. This would
allow multiple machines to simultaneously share the same, non-SR-IOV device,
as well as making it possible to combine traditional I/O with PCIe cluster
capabilities such as zero-copy data transfer and multicasting. Moreover, the API
should be designed so that a driver implementation does not need to consider the
system-local address space of the computer system where a device is installed,
thus alleviating the complexity of programming device drivers for remote devices
using NTBs.

Objective 6: To prove real-world deployment capabilities, the solution should
be tested on realistic and relevant workloads and benchmarks.

In order to confirm that I/O resources can be distributed to, and shared
with, remote machines, a comprehensive performance evaluation covering all
components of the implementation is needed. As the solution should provide
native PCIe performance (Objective 3), all parts should be thoroughly tested with
latency and throughput in mind, in order to reveal any potential performance
bottlenecks. Standardized test suites should be used as far as possible, to prove
that application software really can be unmodified (Objective 2). Moreover, to
demonstrate the completeness of the solution, the evaluation should also include
workloads relying on different PCIe network topologies and include several types
of devices, such as NVMes, GPUs, and NICs. Finally, a prototype device driver
using the device driver API (Objective 5) should be developed and evaluated.
This driver should demonstrate that it is possible to implement a distributed
device driver, disaggregating a non-SR-IOV device in software, and sharing it
with multiple machines. The driver should also demonstrate how it can rely on
memory disaggregation and shared memory capabilities to implement data path
optimizations.

9

1. Introduction

1.3 Scope and limitations

The research presented in this dissertation contributed to a collaborative project
between academia and industry, with Dolphin Interconnect Solutions (Dolphin)
as the industry partner.1 The goal of this project was to develop a new framework
for sharing devices and memory resources among computer systems connected
with PCIe. The scope of this dissertation is the implementation and performance
evaluation of the fundamental mechanisms that make this framework possible:
the discovery, addressing, access, and use of remote PCIe-attached
resources. We aim to support this for three different levels of sharing:

1. Dynamically distributing devices to remote machines.

2. Dynamically distributing (physical) devices to VMs running on remote
machines.

3. Enabling disaggregation of devices and memory resources in software,
allowing them to be shared simultaneously by software processes running
on several machines.

Exploring resource sharing possibilities using alternative networking tech-
nologies, such as InfiniBand, is outside the scope of our dissertation. The desired
objectives for the sharing framework, as stated in Section 1.2, necessitate the
use of PCIe NTBs. Dolphin’s NTB adapter cards and cluster switches make it
possible to build heterogeneous computing clusters in various network topologies.
Figure 1.3 is an example of such a cluster. Memory mappings between machines
are configured using Dolphin’s existing NTB driver, and application software may
use the Software Infrastructure for Shared-Memory Cluster Interconnects (SISCI)
programming API to interact with this NTB driver in order to dynamically
set up and tear down these memory mappings and implement shared-memory
communication. In order to fit our work into this existing cluster network-
ing foundation, we rely on Dolphin’s NTB hardware and have implemented
our sharing framework as part of their driver stack. This makes it possible
to extend existing functionality, rather than developing an entirely new NTB
driver from scratch. To enable software disaggregation, for example, we can add
device-oriented semantics and device driver support functions to the already
existing SISCI API. Even so, it should be pointed out that while our specific
implementation is building on Dolphin NTBs, the ideas and concepts of our
work are general, and can in fact be implemented for any NTB hardware that
has similar capabilities.

Using our framework, both host machines and VMs should be able to use
shared devices. In order to accomplish this, resources must to be presented to
the system at the OS-level so that interactions with a device can be intercepted.
This intercepting mechanism involves manipulation of device driver interfaces

1Funded by the Research Council of Norway under the “Unified PCI Express for Distributed
Component Virtualization” project (RCN/NFR #235530), with additional contributions from
the “LADIO: Live Action Data Input/Output” project (EU H2020 #731970).

10

Research methodology

and requires a detailed understanding of OS internals. For this reason, our
framework is implemented for Linux, as its source code is available as open
source and may be studied. For the same reason, we have also extended the
Linux kernel-based virtual machine hypervisor (KVM hypervisor) in order to
support sharing devices with VM guests. Regardless, we do not limit our work
to a specific Linux distribution, as it is possible to support several different
versions of the Linux kernel. It should also be noted that for VMs, there are no
limitations for which OS may run in the guest.

As per our objectives, sharing of any PCIe device should be supported, from
PCIe 1.0 devices up to PCIe 4.0 devices. Our evaluation includes a wide range
of common (and commodity) devices, like NVMes, Ethernet NICs, and GPUs.
However, the framework should also not require any modifications to existing
device driver implementations or device hardware. While NTB clusters can be
anywhere from 2 up to 60 machines, in many different network topologies, a
limitation of the evaluation of our implementation is that it for the most part
includes scenarios with cluster networks of only a few machines, since devices
can only be used by one machine at the time. Nevertheless, more advanced
network topologies and larger clusters (of up to 60 machines) are used in a
few experiments, as our framework supports disaggregating devices in software,
allowing devices to be used simultaneously by many machines.

Finally, it should be mentioned that several related research topics emerge
from enabling the envisioned sharing framework this dissertation aims for.
Examples include finding algorithms for scheduling workloads on different
machines in the cluster in order to optimize resource utilization, or choosing the
appropriate trade-off between fairness and workload performance requirements
when provisioning resources to machines. The security implications of allowing
remote machines to use and control internal system resources is also something
that becomes relevant in the context of this sharing framework. A “finished
product” should attempt to address most of these topics, and ideally include tools
and services for managing resources and orchestrating workloads on the cluster
level. However, we consider this to be outside the scope of this dissertation, and
we only focus on the fundamental mechanisms that enable the low-level sharing
functionality.

1.4 Research methodology

Choosing an appropriate research methodology for problems in computer science
is challenging. Many methodologies come with their own set of considerations
and potential pitfalls [33]. Finding a methodology is not made easier by the
fact that computer scientists themselves do not seem to agree on the age-old
philosophical question of whether computer science should be considered applied
mathematics, engineering, or a science [10].

According to Eden [13], computer science as a discipline can broadly be
divided into three different research paradigms:

• The rationalist paradigm, which defines computer science as a branch of

11

1. Introduction

mathematics. The paradigm seeks certain, a priori knowledge of systems
or processes through means of deductive reasoning.

• The technocratic paradigm, which defines computer science as an
engineering discipline. The paradigm seeks probable, a posteriori knowledge
about systems or processes through implementation (or prototyping) and
empirical validation in the form of testing.

• The scientific paradigm, which defines computer science as a natural
(empirical) science. The paradigm seeks both a priori and a posteriori
knowledge about systems or processes by combining formal deduction and
scientific experimentation.

Note that the technocratic concept of a “test” differs from scientific experiments,
in that the purpose of the former is to establish to which extent a set of
requirements are met, whereas the latter is designed to corroborate or refute a
hypothesis. If a test fails (to meet a requirement), the implementation must be
revised. If an scientific experiment “fails”, it is the theory (or understanding)
that must be revised instead.

An almost identical classification of paradigms is given by the ACM Task
Force on the Core of Computer Science [9].2 They additionally note that the three
paradigms are intrinsically intertwined, as computer science is both deeply rooted
in mathematics and has its own theory, experimental method, and engineering—
in contrast to most physical sciences, where the engineering disciplines that
apply their findings are considered separate disciplines. The three paradigms
are therefore equally fundamental to computer science.

The subject matter of this dissertation touches on several sub-areas of
computer science, including computer and hardware architecture, distributed
computing, OS fundamentals, and communication networks. While all three
paradigms can be applied to these sub-areas [9], it is the technocratic paradigm
which lends itself best to answering the overall problem statement of this
dissertation (Section 1.2). Neither the rationalist nor the scientific paradigm
are particularly well-suited. It is unrealistic to make a model through a priori
knowledge alone, due to the complexity of the many different hardware and
software components of real-world computer systems. Similarly, the process of
gathering data with the goal of understanding the behavior of an indeterministic
system, in order to create a statistical model and make predictions about it,
seems equally unfit in this context.

As many disaggregation solutions already exist, the motivation for this
dissertation is not simply to make it easier for machines to share resources
efficiently, but to do so by using a new approach altogether: we attempt to unify
traditional device I/O with distributed, shared-memory computing by utilizing
the inherent memory mapping capabilities of NTBs. It is desirable to realize
this approach by building a working prototype, in order to explore potential
opportunities and weaknesses along the way. As such, we have followed the

2ACM use the names “theory”, “design”, and “abstraction” for these paradigms instead.

12

Research methodology

technocratic paradigm by iteratively designing, implementing, and testing our
solution according to the objectives given in Section 1.2:

• One of the mechanisms developed makes remote resources appear and
behave exactly as if they were part of the local PCIe tree. In order to
not require any special adaptions of existing hardware, device drivers,
or application software, this mechanism is completely transparent. This
mechanism must is thoroughly tested using a wide range of functionality
tests, for many different types of devices and device driver implementations.
As we make a point of using unmodified hardware and software, commodity
devices and widely available software, such as standard benchmarking tools
and well-known applications, is used in the validation of our solution. We
also include tests using a variety of different cluster network topologies and
machine configurations, including VMs, to provide a complete functionality
evaluation.

• A wide range of latency and throughput benchmarks is used to measure
the performance of the critical I/O data path. Since the solution allows
machines to use the internal devices and memory in other (remote)
machines as if these resources were locally installed, it is possible to rely
on comparison testing. Tests looking at individual I/O operations, such as
reading/writing to an NVMe or copying memory out of GPU memory, can
first be performed using local resources (without our solution) to establish
a performance baseline. Then, the tests can repeated for remote resources
using our solution, allowing us to compare the results and subsequently
identify which component of the solution that needs to be improved.

• Our implementation process should also identify and explore new
possibilities that are enabled by the solution. The strength of our shared-
memory approach is best highlighted by demonstrating capabilities that
other resource sharing solutions lack. For instance, as CUDA unified
memory [47] and GPUDirect [37, 46] can be supported by our solution,
even for GPUs that reside in different machines, we have performed
experiments with direct memory-to-memory transfers across the cluster
network. Other possibilities, such as exploiting memory disaggregation to
implement memory locality optimizations or using PCIe multicasting to
replicate data across several machines in a single operation, is also explored.
We investigate not only how different cluster network topologies affect the
data path, but also prove the flexibility of our solution and demonstrate
several of the sharing scenarios that are made possible.

• Realistic and I/O-intensive computing tasks, e.g., machine learning and
image processing workloads, are used to put the solution under heavy
load. By running real-world applications using several I/O resources,
any accumulated effects of any performance overhead caused by the
implementation that are not visible on their own should be revealed.
Moreover, this kind of stress testing also proves that the solution is stable

13

1. Introduction

and gives reliable performance for repeated runs, and that it does not
have any unintentional side-effects that affect systems over time. Finally,
showing that the solution works for a realistic workload has the additional
purpose of proving that scaling real-world applications is possible.

For the sake of convenience, functionality testing and the overall validation
process is implicit in the performance experiments presented in this dissertation.
However, it should be mentioned that while the presented experiments primarily
use Intel Xeon as the CPU architecture, and NVMes, Ethernet NICs, and Nvidia
GPUs were used for shared resources, additional CPU architectures and devices
were also used during the development and validation phases. This includes
CPU architectures like AMD and ARM, and other devices like FPGAs, AMD
GPUs, sound cards, and PCIe-attached cameras.

1.5 Contributions

This dissertation contributes to the topic of resource sharing and distributed
I/O facilitation in cluster computing systems, and has been presented in five
peer-reviewed venues: two conference workshop publications, one short-length
demonstration paper, and two journal articles. These publications are included
as Papers I to V and contain the bulk of the implementation details, particularly
Paper V, which presents the entire solution as a whole.

We have developed a framework called SmartIO for sharing resources and
distributing devices in a heterogeneous, PCIe-networked cluster. In particular,
the main contributions of this dissertation are listed as follows:

• Implementation of the Device Lending method for distributing PCIe
devices to remote systems (see Paper I): using Device Lending, any
standard PCIe device, such as NVMes, GPUs, NICs, and FPGAs, may be
assigned to a remote system. The device appears to the remote system
as if it has been dynamically hot-added to the system, allowing existing
device drivers to use the device without requiring any modifications to
software.

• Implementation of a new method for distributing devices to VMs
running on any host machine in the cluster (see Papers III and IV): we
have developed an extension to the KVM hypervisor based on the Mediated
Device Driver (MDEV) interface, enabling direct access to remote physical
hardware devices for VM guests and setting up memory mappings for the
devices. This MDEV implementation includes a method for dynamically
discovering guest-physical memory layout. Using this MDEV extension,
local and remote devices can be “passed through” to VMs and used with
bare-metal performance.

• Improvement of the Device Lending and MDEV methods by implementing
support for multiple devices and supporting devices in different
physical machines (see Papers III and IV): a method for resolving device

14

Contributions

memory addresses and setting up memory mappings, in a way that is
transparent to both the devices and the device drivers, is implemented. This
enables direct data transfers between multiple devices without violating
the principle of making devices appear local to the system(s) using them.

• Extension of the SISCI shared-memory API with new, device-oriented
programming semantics and support functions for writing device
drivers as shared-memory applications (see Paper V): this API ex-
tension makes it possible to disaggregate devices and device memory in
software, similarly to RDMA disaggregation solutions. Unlike RDMA
solutions, however, remote resources can be memory-mapped directly into
the virtual address space of a software process. Through our API extension,
device driver implementations may take full advantage of PCIe shared
memory capabilities, such as remote memory access and multicasting, with-
out requiring awareness of the underlying PCIe topology and the different
address domains of remote systems. This makes it easier to optimize data
flow through the PCIe network, as software no longer needs to be written
with accessing remote resources in mind, but can be implemented as if
resources are local.

• Development of a new distributed NVMe device driver3 using our
device-oriented API extension (see Paper V): although the Device Lending
and MDEV methods make it possible to use existing device drivers, most
device drivers are written in a way that assumes exclusive control over the
device. Therefore, a distributed device (function) may only be used by a
single user at the time. To demonstrate software-enabled disaggregation,
we have implemented an NVMe driver as a user space SISCI application. As
a proof of concept, we show that a single NVMe device can be shared and
operated by multiple cluster machines simultaneously, without requiring
SR-IOV. This driver also demonstrates how multiple sharing aspects of
SmartIO may be combined, by disaggregating remote GPU memory and
enabling memory access optimizations, supporting writing to and reading
from storage directly to GPU memory. The NVMe driver may even run as
a CUDA application on a remote GPU, allowing GPU threads to read and
write to storage without involving the CPU.

• A comprehensive performance evaluation covering all parts of
SmartIO and the implementation of performance optimizations (see
Papers II, IV and V): with the goal of not incurring any performance
overhead beyond that of native PCIe, the performance of using remote
resources with SmartIO is comparable to that of local access (in terms of
latency and throughput). To prove that SmartIO is a viable and efficient
solution for I/O resource sharing also for realistic scenarios, two different

3The prototype NVMe device driver is open source and can be found at
https://github.com/enfiskutensykkel/ssd-gpu-dma . It has also been adapted and used in
other research projects: https://github.com/ZaidQureshi/gpudirect-nvme [43].

15

https://github.com/enfiskutensykkel/ssd-gpu-dma
https://github.com/ZaidQureshi/gpudirect-nvme

1. Introduction

image classification workloads relying on multiple GPUs and NVMe storage
have also been tested.

Finally, it should be noted that the research of this dissertation has had impact on
real systems, as several components of SmartIO have already been incorporated
into the product line of Dolphin Interconnect Solutions, and others are currently
being adapted for real-world deployment.4

1.6 Outline

This dissertation describes the design, implementation, and evaluation of the
SmartIO framework for efficient sharing of resources between PCIe-networked
computers. The complete framework is described in detail in Paper V, with
the individual components and parts explained in Papers I, III and IV. These
papers also show the evolution towards the finished solution, including the
gradual performance improvements of the different iterations. The rest of this
dissertation is organized as follows:

Chapter 2 gives a summary of SmartIO. We describe the initial idea and
challenges for SmartIO, and provide an overview of the implementation.
We also present an overview of related work focused on I/O resource sharing
in cluster networks.

Chapter 3 summarizes our work and presents ideas for future work.

Paper I describes the initial implementation of the Device Lending component of
SmartIO. We evaluate how performance is improved by using Device Lend-
ing to enable DMA transfers directly between a GPU and remote memory,
compared to using RDMA to achieve the same.

Paper II is a demonstration of how the Device Lending component can be used
for a realistic video stream processing workload implemented for GPUs.
We demonstrate how real-time processing requirements can be met by
using Device Lending to scale up the number of available GPUs.

Paper III presents the MDEV component of SmartIO and how we improved the
initial Device Lending implementation with support for multiple devices
residing in different machines. We evaluate how performance is improved
by enabling peer-to-peer DMA transfers directly between devices instead
of needing to bounce data transfers via system memory, and also identify
performance issues with relying on the IOMMU.

Paper IV is an extension of Paper III and provides an extended evaluation
of both MDEV and Device Lending. We show how different cluster
network topologies affect DMA performance, for both host machines and
VM guests. Additionally, we also describe how we improved the original

4https://www.dolphinics.com/solutions/pcie_smart_io.html

16

https://www.dolphinics.com/solutions/pcie_smart_io.html

Outline

MDEV component with a mechanism for detecting guest-physical memory
layout.

Paper V presents the entire SmartIO solution as a whole, with the final iteration
of the Device Lending and MDEV components. We also introduce
the SISCI API extension that makes it possible to disaggregate devices
and memory resources in software, and a proof-of-concept device driver
implementation that uses this extension. A thorough and complete
performance evaluation of all parts and components of SmartIO is provided,
in order to prove that the final implementation does not cause any
performance overhead compared to native PCIe.

17

Chapter 2

SmartIO
SmartIO is a solution for allowing the local resources of a machine, i.e., memory
and devices, to be shared with and used by remote machines, over standard
PCIe. Our solution works for all standard PCIe devices and their Linux device
drivers, no special adaptation is needed in either hardware or software to make
this sharing possible. SmartIO is fully distributed and avoids dedicated servers.
All machines in the cluster network may contribute their own local resources and
access remote resources. Furthermore, as remote devices and memory resources
are accessed over native PCIe, they can be shared and used by remote machines
with very low latency and extremely low computing overhead. Whether devices
are actually local or remote becomes irrelevant to the user, as SmartIO eliminates
this distinction, with regard to both functionality and performance.

2.1 Underlying idea

The defining feature of PCIe [42] is that devices are mapped into the same address
space as the CPU and random access memory (RAM), as seen in Figure 2.1.
This allows a CPU to read from and write to device memory in the same manner

Figure 2.1: Device memory regions (BARs) are mapped to the same address
space as CPU and system memory, allowing the CPU to read from and write to
device memory the same way it would access RAM. Devices can similarly use
DMA to read from and write to RAM.

19

2. SmartIO

Figure 2.2: Two computer systems connected together using NTBs and external
cables. Host 1 has mapped segments of Host 2’s memory through its local NTB,
providing Host 1 with “windows” into the remote system’s address space. The
NTBs translate addresses between the two independent address spaces.

it would access RAM, also known as memory-mapped I/O (MMIO). Likewise,
devices capable of DMA may read from and write to RAM directly. PCIe
also uses message-signaled interrupts (MSI), allowing devices to raise interrupts
by writing to an address reserved by the CPU instead of requiring dedicated
interrupt lines.

This address space mapping occurs when a system enumerates the PCIe bus
and accesses the configuration space of each device. A configuration space
contains a description of the capabilities of a device, such as its memory
regions. The system will reserve a memory address range for each of these
device memory regions, and by writing the start address of these regions to
the device’s Base Address Registers (BARs), a device is made aware of the
address space mapping. Therefore, the term “BAR” is used interchangeably
for a region of device memory. Addresses reserved by the system for interrupts
are also written to the device’s configuration space. For more details on PCIe,
particularly how memory transactions are routed, please refer to Section 3 of
Paper V (on page 149) and Section 2 of Paper IV (on page 114).

As depicted in Figure 2.2, it is possible to connect computer systems with
different address spaces together over PCIe by using NTBs. NTBs can be
embedded as a CPU feature [50, 66], but are more commonly implemented in
PCIe switch chips [5, 6]. By using such NTB-capable switch chips to implement
peripheral devices, independent computer systems can connect with plug-in
host adapter cards and external cables. To the system, the NTB appears as

20

Main challenges

a normal PCIe device1 with one or more BARs that are reserved and mapped
during the enumeration process. However, rather than being backed by device
registers or device memory, the NTB instead forwards reads and writes to its
BARs from one side of the NTB to the other, translating memory addresses
in the process. The NTB uses a look-up table for address translation, which
can be configured dynamically during run-time. By using different base offsets
in this look-up table, it is possible to configure several memory-mappings (or
“windows”) into the address space of a remote system. Figure 2.2 illustrates how
arbitrary memory addresses on the remote system can be mapped, allowing the
local CPU to access remote memory as if it was local device memory. Although
address translation between the different address spaces is very fast since the
look-up table is implemented in NTB hardware, the number of NTB windows is
limited by the maximum number of table entries. More details on how NTBs
work can be found in Section 3.3 of Paper V (on page 151).

Since device memory on a remote system is part of the same address space
as system memory, we can use an NTB to map memory of a remote device. We
show this in Figure 2.2, where Segment 3 is allocated in GPU memory rather
than system RAM, but still mapped for the CPU of Host 1’s similarly to the
other segments. By mapping all BARs of a remote device for a local CPU, it
would be possible to perform memory operations on the remote device, such as
reading from or writing to device registers. Moreover, device DMA is not limited
to reading and writing to system RAM, but can also be used to access memory
on other devices in the same address space. This is known as “peer-to-peer” in
PCIe, and provides us with an opportunity as it becomes possible for a device
to read and write directly across an NTB. We can use this to map memory
resources for a device, be it RAM or memory of other devices. Furthermore,
because PCIe uses MSI, it is even possible to map interrupt addresses through
an NTB, as they too are mappable.

2.2 Main challenges

Although NTBs provide the fundamental memory mapping capabilities that
can facilitate the use of remote devices, the challenge is to avoid requiring
that device drivers must be aware of remote-side address spaces. As touched
upon in Section 1.1, this is desirable in order to use existing device driver
implementations. For a device driver running on a local machine to be able to
use a remote device, we must make sure that the driver uses addresses that is
mapped through both the local and remote NTBs. For instance, when the device
driver attempts to access device BARs, we must make sure that the driver uses
memory addresses that are mapped through the CPU-side NTB without the
driver or device being aware of this. Conversely, when the device driver attempts
to initiate DMA transfers or configures an interrupt vector address, we must

1The PCIe terminology for individual device functions is “endpoints”. We use the terms
“device” and “function” as synonyms for a PCIe endpoint throughout this dissertation.

21

2. SmartIO

find a way to transparently inject memory addresses that are mapped through
the remote, or device-side, NTB.

One possibility is to use virtualization to mitigate the complexity of managing
different address spaces. The fact that devices are on the other side of an NTB
could be hidden for device drivers by distributing devices to VM guests instead
of physical host machines, for example with pass-through. However, while pass-
through allows devices to be used by VM guests directly, requiring that compute
tasks run in VMs will limit the generality of a solution. Virtualization is not
necessarily appropriate in all circumstances, as CPU cycles are spent on hosting
the virtualized environment, thus adding additional system load. Instead, a more
general mechanism is needed for abstracting away the complexity of dealing with
a remote-side address space. This mechanism must support abstracting remote
address spaces for VMs and bare-metal machines alike.

DMA is particularly challenging in this context. A device driver running on
the host machine may assume that any local memory address can be reached
by the device, but as explained in Section 2.1, the NTB only provide windows
into a remote address space. It is generally not possible to predict in advance
which memory addresses a device driver may use, yet memory must be mapped
through the NTB before the driver, unaware that the device is remote, initiates
DMA transfers. Deferring the action of mapping memory through the NTB until
a device driver initiates DMA, or some other time when the specific addresses
of DMA buffers and VM memory can be known, is not viable; synchronizing
with the remote system at this time will introduce communication overhead in
the performance-critical path. The naive solution is to map the entire system
memory for the device, but this workaround requires the NTB BARs to be at
least as large as the size of RAM. This does not scale very well, as it would
effectively limit the number of machines the cluster can support. Each new
machine using a device would increase the device-side NTB memory requirements
by its entire RAM size. Moreover, as the number of maps supported by an NTB
is also limited (by the size of its look-up table), it is crucial to conserve memory
maps wherever possible. We must find a way to prepare memory-maps through
the NTB in advance of use, in order to avoid adding communication latency in
the critical path, and without requiring that the entire memory is mapped for
the device.

The challenge of DMA transfers is compounded for VM pass-through. Pass-
through is possible by using the IOMMU to create a virtual I/O address space
for a device that corresponds to the virtual address space of the VM [29, 30,
36], also known as the “guest-physical address space”. For pass-through of a
local device, this makes it possible for the device driver running in the VM guest
to use any (virtualized) memory address when initiating DMA transfers. In
our case, however, the driver must use addresses that are mapped through the
NTB in order for a remote device to reach local host-physical memory. In order
to support pass-through, we must devise a method for mapping the physical
memory backing the VM emulator through the NTB, using device-side I/O
addresses that mirrors the guest-physical address space.

The published papers provide further details on the challenges facing our

22

Implementation

solution as part of the description of the implementation of the different
components of SmartIO. Particularly Sections 4 to 6 of Paper V (on pages 153,
156 and 161) provide a more in-depth explanation of what the main challenges
are, and they also explain how SmartIO tackle them. A discussion of additional
considerations is given in Section 8 of Paper V (on page 200).

2.3 Implementation

In our framework, computer systems act as “borrowers” and “lenders”. A lender
is a computer system that registers one or more of its internal PCIe devices
with SmartIO, allowing these devices to be distributed to and used by remote
machines. A borrower is a system that is currently using such a device. While a
device only has one lender, namely the computer system where it is physically
installed, there can be several borrowers using it simultaneously. SmartIO also
makes it possible for a system to act as both lender and borrower at the same
time, lending out its own local devices and simultaneously borrowing remote
devices from other machines.

Basing our framework on standard PCIe is a deliberate design choice. Not only
does this allow commodity devices to be operated remotely by standard device
drivers over native PCIe, but this design also means that the implementation
complexity of SmartIO lies entirely in software. In fact, SmartIO can be
implemented for existing computer systems that are connected using NTBs
in any network topology, regardless of whether the NTBs are switch chips
soldered onto a motherboard or implemented as plug-in adapter cards.

Unlike other solutions for distributed I/O, SmartIO combines traditional I/O
with distributed shared-memory functionality in a seamless manner. Sharing is
supported at multiple levels: devices may be distributed to physical host machines
and to VMs alike. Individual device functions of multi-function devices may
be distributed to different machines in the network, or to the same machine
should it require multiple resources. SmartIO also provides software facilities
for disaggregating devices and memory resources, allowing device drivers to
be implemented as part of distributed cluster applications or other user space
applications. This makes it possible for several machines to simultaneously share
a single device (function). It is even possible to combine the sharing methods of
SmartIO. For example, we can disaggregate the device memory of a remote GPU
using the API extension while it is being borrowed through Device Lending, or
we can share VFs of an SR-IOV NIC with both physical host machines and VMs.

In this section we address the challenges of Section 2.2, and give a bottom-up
summary of the implementation of SmartIO. Figure 2.3 illustrates the different
components of our framework, and how they fit together. The implementation
is described in full in the published papers, with Paper V providing a detailed
description of the entire solution as a whole.

23

2. SmartIO

Figure 2.3: The software architecture of SmartIO. Three different sharing
methods are made possible by our framework: (1) Device Lending, (2) MDEV,
and (3) using the SISCI API extension. The SmartIO driver, shown as layer (B),
abstracts away the physical location of remote resources, for both the shared
device and software using the device.

2.3.1 Low-level NTB driver

SmartIO is implemented on top of the NTB interconnection solution from
Dolphin. The low-level NTB driver, illustrated as layer (A) in Figure 2.3,
provides the fundamental PCIe networking infrastructure and memory mapping
functionality which SmartIO builds on. Individual systems may contribute
parts, or segments, of their local memory to a distributed, shared memory space.
Memory segments in remote machines may be mapped into the local address
space of a system by using the NTB, as explained in Section 2.1. Moreover, user
space applications may use the SISCI API to interact with the NTB driver to
manage memory segments and implement shared-memory communication.

2.3.2 SmartIO driver

The SmartIO driver, shown as layer (B) in Figure 2.3, runs on all machines in the
cluster. It acts as an abstraction layer, providing a logical decoupling of devices
and which physical machines they are installed in (lenders). Neither devices
nor software need to consider where resources physically reside, since SmartIO
resolves this on behalf of both devices and machines using them (borrowers).

24

Implementation

By providing this abstraction, the SmartIO driver is the first step towards the
sharing methods presented in Sections 2.3.3 to 2.3.5, namely Device Lending,
MDEV, and the SISCI API extension.

Devices registered with SmartIO are assigned a unique identifier which allows
machines to refer to a device without needing to specify the lender machine.
Internally, the SmartIO driver keeps track of devices and lenders, and uses this
device identifier to look up devices and machines, and which NTBs to use. The
SmartIO driver is also responsible for making device BARs available as shared
memory segments, making it possible for borrower machines to memory map
remote device memory into their local address space (MMIO).

Most important is the SmartIO driver’s responsibility of mapping mem-
ory segments on behalf of a device and returning the I/O addresses to these
maps, as seen by the device. The SmartIO driver works out the physical
locations of devices and memory segments, i.e., which machines they reside in
and which NTBs a device must use in order to reach a segment. Note that a
segment can reside in memory of the machine using the device (the borrower), in
memory of the machine where the device is installed (the lender), or a different
cluster machine altogether. A segment can even be allocated in device memory
of another device, as the SmartIO driver can assist in mapping device BARs
and enabling peer-to-peer between devices. Borrowers are not required to know
anything about the device-side I/O addresses returned by our SmartIO driver,
other than the fact that they resolve to the same address space as the device.
This allows both a borrower and the device to remain agnostic about the under-
lying, physical PCIe topology, as they can rely on the SmartIO driver to resolve
paths in the cluster network and map resources through the appropriate NTBs.

The SmartIO driver solves the challenge of managing multiple address
spaces, as described in Section 2.2. For example, a borrower can request a
memory segment in a different machine is mapped so that the device may use
DMA to it. Our SmartIO driver will look up which machine the memory segment
is in, look up the lender machine and which (device-side) NTB it must use,
configure the NTB, map the memory segment for the device, and return the
device-side I/O address of this map back to the borrower. The borrower can
then use this I/O address when interacting with the device in order to initiate
the DMA transfer, and the device is able to reach the memory segment through
the lender’s NTB. Borrowers do not need to be aware of the internal I/O address
space layout of a lender. As it happens, borrowers do not even need to know
which physical machine the lender is.

With the abstraction the SmartIO driver provides, our framework is able to
facilitate the sharing and use of remote resources (both memory and devices)
as described in Sections 2.3.3 to 2.3.5. More details on how SmartIO resolves
the paths between devices and other memory resources that must be mapped
(for devices) are given in the papers, particularly in Paper V (on page 140).
However, please note that the SmartIO driver is not mentioned explicitly by
name in the papers, as it is the unifying base for the sharing methods. Instead,
the description of its functionality is interleaved with the implementation details
of these methods.

25

2. SmartIO

Figure 2.4: The memory regions of a remote device is mapped for the CPU on
the borrower, so that it can read and write to device registers. Local resources
are mapped for the device, so that it may use DMA and trigger interrupts.
Device Lending inserts a shadow device into the local device tree using these
mappings, making remote device access transparent to both CPU and device.

2.3.3 Device Lending

Device Lending, illustrated as arrow (1) in Figure 2.3, makes it possible to share
and distribute devices to remote host machines. The devices become part of the
system they are shared with, allowing application software, device drivers, and
even the OS to use them as if they were locally installed. While Device Lending
only allows individual device functions to be distributed to a single machine
at the time, it is nevertheless highly suitable in the case where a device has a
complex or proprietary device driver as no modifications to existing software is
required.

As mentioned in Section 2.1, it is possible to map the device memory regions,
or BARs, of a remote device through an NTB. Using the NTB, a local CPU
can perform memory operations on a remote device, such as reading from
and writing to device registers. Conversely, local resources, such as RAM and
interrupt addresses, can in turn be mapped for the remote device itself. This
allows the remote device to use DMA through the NTB and trigger interrupt
routines on the local CPU. The SmartIO driver, as explained in Section 2.3.2,
eliminates the complexity of managing multiple address spaces: a user may rely
on the SmartIO driver to map resources through the appropriate NTBs and
provide I/O addresses corresponding to a device’s address space. However, as
pointed out in Section 2.2, we still need to make sure that device drivers use
this functionality without requiring that they be re-written. More precisely, we
need a mechanism for transparently injecting resolved I/O addresses, without

26

Implementation

Figure 2.5: The borrower’s IOMMU is used to create a single continuous memory
range that may be mapped through the lender’s NTB in advance. Adding and
removing memory pages from the local IOMMU domain is inexpensive compared
to actively communicating with the remote lender machine.

the devices or their drivers being aware of this.
Device Lending solves this by inserting a “shadow device” into the local PCIe

device tree on the borrower, as depicted in Figure 2.4. The shadow device makes
it appear as if the remote device has been hot-added to the local system, and
provides us with a mechanism for intercepting interactions with the device by
the OS and any device drivers. We make sure that a device driver attempting
to memory map the device’s BARs use addresses that map through the NTB,
without the driver being aware that the device is actually remote. Similarly,
when the device driver configures interrupts, we are able to intercept this and
inject an address that map through the lender’s NTB, again without the driver
being aware.

The shadow device also provides us with the means to detect when a device
driver is allocating DMA buffers and making memory available for DMA transfers.
Unlike device BARs and MSI addresses, memory addresses for DMA buffers
are not known in advance, as mentioned in Section 2.2. Mapping BARs and
interrupts is a one-time operation. The pages used for DMA memory buffers,
however, may be scattered in physical memory. A driver may even initiate several
transfers to different parts of memory altogether. Mapping individual memory
pages through the lender’s NTB would not only exhaust the number of available
entries in its look-up table, but communicating with the lender machine in order
to map these pages dynamically would introduce communication latency in the
critical performance path.

To solve this, Device Lending relies on the IOMMU on the borrower, as

27

2. SmartIO

depicted in Figure 2.5. We can prepare a continuous memory address range
in advance using the borrower’s IOMMU. This range can be mapped through
the lender’s NTB with a single map, or “DMA window”, even before any
device drivers are using the device. When a device driver, at a later point,
allocates DMA buffers, we can simply add these addresses to the IOMMU
range. This way, we can avoid making any assumptions about the memory used
by a device driver. Additionally, since this is an entirely local operation (on
the borrower), communication with the remote lender machine is avoided. All
address translations between the different address domains are done in NTB and
IOMMU hardware, ensuring that this solution is able to achieve native PCIe
performance in the data path.

A more technical description of the implementation of Device Lending can
be found in Section 4 of Paper V (on page 153), including details about the
shadow device and configuration cycles. Section 4.4 of Paper V (on page 155)
and Section 6 of Paper IV (on page 120) explain how Device Lending is able
to support peer-to-peer DMA between multiple borrowed devices, even when
they reside in different lender machines. In addition, Sections 4.3 and 8.4 of
Paper V (on pages 154 and 202) explain how we can use the lender’s IOMMU
to remap DMA windows from high to low memory addresses for devices with
addressing limitations.

2.3.4 MDEV

Our MDEV implementation, shown as arrow (2) in Figure 2.3, enables the
Linux KVM hypervisor to pass through borrowed devices to VMs. This pass-
through allows software running in a VM guest to use the physical device directly,
without compromising the memory isolation provided by the virtualization.
Whereas Device Lending is only supported for machines running Linux, MDEV
makes it possible to share devices with any guest OS (running in the VM).
Using MDEV, devices are no longer tightly coupled with the host machines
they are installed in, allowing VMs to be distributed across different hosts in
the cluster while benefiting from the bare-metal performance of direct access to
physical hardware. VMs can be migrated to any host in the cluster, as devices
are assigned to VMs using device identifiers and dynamically borrowed and
returned on boot and shutdown.

Our MDEV sharing method is implemented using the mediated device driver
paravirtualization interface [22]. Comparable to the shadow device used by
Device Lending (Section 2.3.3), this interface makes it possible to trap (handle)
certain operations, such as configuration cycles and device resets, and to set
the memory addresses of the device’s BARs. However, unlike Device Lending,
we do not have any means of controlling which I/O addresses a device driver
should use when initiating DMA transfers. In Device Lending, we create a single,
continuous IOMMU range ahead of time, and map it through the lender’s NTB.
We are able to detect when a device driver is preparing DMA buffers through
the shadow device, and can inject the prepared device-side I/O address of our
DMA window. In contrast, a device driver running in the VM guest is completely

28

Implementation

Figure 2.6: The IOMMUs on both sides of the NTB must be used in order to
pass through a remote device to a local VM. The borrower’s IOMMU is used to
provide continuous memory ranges for scattered VM memory, while the lender’s
IOMMU is used to mirror the guest-physical layout for the device.

isolated, leaving us without any equivalent mechanism to inject I/O addresses we
can control. The only possible option is to make sure that the device is mapped
to the same virtual address space as the VM, as pointed out in Section 2.2.

In order for a device to DMA to VM memory, the host-physical memory pages
backing the emulated memory needs to be locked in physical RAM. In practice,
all memory allocated for a VM guest must be mapped for the device, as a device
driver or application running in the guest may try to use any guest-physical
address when interacting with the device. However, as this is handled by the
hypervisor for normal pass-through of a local device, the mediated device driver
interface does not provide any notification of when this memory is allocated by
a VM emulator. As such, we have no reliable method of detecting host-physical
memory that needs to be mapped. To further complicate matters, we cannot rely
on modifying existing emulator software to solve this issue, as per our objectives
stated in Section 1.2. Nevertheless, it is possible to rely on an assumption: before
a device can use DMA, it must be enabled in its configuration space.2 Since the
mediated device driver interface makes it possible to trap configuration cycles,
our MDEV implementation waits for DMA to be enabled. By then, the emulator
has allocated all of the host memory it needs for the VM, and we are able to use
the hypervisor to lock the host-physical pages of the VM in physical RAM and
resolve their physical addresses.

With the host-physical memory backing the VM resolved, we can now
map it for the device. However, when passing through a local device, the

2Enabling the “Bus Master” bit in the command register enables DMA for a device.

29

2. SmartIO

hypervisor places the device in a IOMMU domain with I/O virtual addresses
that correspond to the VM’s address layout. In our case, the device resides in a
different machine, i.e., the lender. Additionally, the host-physical memory pages
used by the emulator may be scattered throughout physical RAM. Our MDEV
implementation solves this by using both the IOMMU on the borrower and on
the lender, as shown in Figure 2.6. The borrower’s IOMMU is used to provide
continuous address ranges that can be mapped through the lender’s NTB, or
DMA windows. The IOMMU on the lender is used to map the device to a virtual
I/O address space that mirrors the VM guest’s, allowing a device driver running
in the VM guest to initiate DMA transfers using guest-physical addresses.

Section 5 of Paper V (on page 156) provides more information about the
MDEV implementation, including a more detailed description of the mediated
device driver interface and the functionality it provides. In the same section,
we also explain a workaround for interrupts, by relaying them from the lender
to the borrower. A method of probing the KVM hypervisor using well-defined
starting addresses for high and low memory is outlined, in order to pinpoint
the guest-physical memory layout and conserving NTB maps. Finally, we also
discuss some security implications of our pass-through approach in Section 8.1
of Paper V (on page 200).

2.3.5 API extension

As mentioned in Section 2.3.1, a user space application may memory-map
shared memory segments into its own local address space using the SISCI API.
Application processes running on different machines may read and write to remote
memory, as if it was reading or writing to local RAM. Our API extension, depicted
as arrow (3) in Figure 2.3, adds device-oriented programming semantics and
device driver support functionality to this shared-memory API. This extension
makes the core SmartIO capabilities, as described in Section 2.3.2, available
through the same shared-memory API used to write cluster applications.

The BARs of a device is exported as shared memory segments that may be
mapped by the application, providing access to device registers and other device
memory (MMIO). Several application processes running on different machines
may even access such memory mapped BARs at the same time. Similarly,
memory segments can be mapped for a device (as DMA windows), allowing
devices to use native DMA to access shared memory segment directly. These
segments can reside in local RAM of the lender, the borrower, or a different
cluster machine entirely. Segments can even be allocated in device memory
of other devices. SmartIO dynamically resolves the location of segments and
devices in the cluster network, and can set up and tear down the necessary NTB
maps for the respective machines. The API extension also provides functionality
for allocating segments associated with a device, and using access pattern hints
in order for SmartIO to determine which machine it should allocate memory in.

By allowing device drivers to be implemented as part of the application
software, we make it possible for devices and device operation to become
part of the same shared global address space as distributed shared-memory

30

Implementation

applications. Thus, device drivers can be implemented in a way that fully utilize
the capabilities of PCIe networks. For instance, applications may stream data to
several destinations in a single operation, replicating data across several machines
by relying on multicasting support in the PCIe hardware.3 A programmer can
exploit memory locality to optimize data flow through the network without
needing to be aware of the actual network topology, by specifying memory access
pattern hints and allowing SmartIO to decide where segments should be allocated.
It is even possible to combine the API extension with the other sharing methods
of SmartIO, allowing disaggregation of borrowed resources. An example of this
is would be a machine using Device Lending to borrow a remote GPU capable
of GPUDirect [37, 46], allowing the device to be operated by the native driver,
and then using the API extension to export GPU memory as a shared memory
segment. Application processes on other machines can then memory map this
(remote) device memory segment, allowing them to read and write directly to it
as if it was local memory.

Since the API extension is built on the underlying SmartIO driver, software
can be written in a way that does not need to consider whether resources are local
or remote. However, using the API extension requires the implementation of new
device driver software. Implementing a driver from scratch may not be a viable
option in many cases, as it typically entails a considerable engineering effort. After
all, the strength of Device Lending and the MDEV implementation is precisely
that they do not require any modifications to existing device driver software.
Even so, being able to integrate device drivers into the cluster application itself
may potentially be very useful for some application domains. The possibilities
created by the API extension are perhaps best exemplified by our proof-of-concept
NVMe driver, described in Section 2.3.6. This driver shows how a non-SR-IOV
NVMe can be disaggregated in software and shared by several machines, as well as
how we can use the API extension for disaggregating memory resources. A more
specific description of the functionality added to SISCI by our API extension
can be found in Section 6.1 of Paper V (on page 162).

2.3.6 Proof-of-concept NVMe driver

Most device drivers are written in a way that assumes exclusive control over
the device. In most cases, a device can only be distributed to a single
borrower machine at the time, preventing others from using it while it is used.
Some devices implement SR-IOV [41], making a single physical device to appear as
multiple (virtual) device functions, or VFs. Using Device Lending or our MDEV
implementation, it is possible to distribute such VFs to borrowers. However, due
to the complexity of supporting virtualization in hardware, SR-IOV is not widely
available, especially not for commodity devices. By facilitating disaggregation in
software instead, our SISCI API extension (Section 2.3.5) makes it possible for
several application processes running on different machines to share the same
device (function). As a demonstration of this software-enabled disaggregation,

3PCIe multicasting is defined in the PCIe specification [42]

31

2. SmartIO

Figure 2.7: NVMes support parallel and asynchronous operation by using
independent queues for submitting I/O commands and receiving completions.
Queues are hosted in memory, and an NVMe uses DMA to fetch commands and
post completions.

we have implemented an NVMe driver as a user space SISCI application. NVMes
are highly parallel by design, and the interaction between driver software and
NVMe hardware is standardized [14], making it possible to implement a general
device driver for them.

Figure 2.7 shows how NVMes support asynchronous operation by using a
system of paired command submission queues (SQs) and completion queues
(CQs). Both types of queues are data structures that are allocated in memory
by discretion of the driver, and may be placed in any memory location. The
driver submits I/O commands, such as reading or writing N blocks from storage,
to an SQ. The NVMe will use DMA to fetch commands from the SQ, and once
a command is carried out, the NVMe posts the command completion status
to the associated CQ (also using DMA) containing the status of the command.
“Doorbell registers” on the NVMe device are used to signal when new commands
should be fetched, and each queue has its own doorbell register. Furthermore, as
multiple of these queue pairs can be created, NVMes avoid any contention in the
command submission and completion paths. An example of this is a multi-core
CPU that assigns an SQ and an associated CQ per CPU core, allowing each
core to operate the NVMe independent of others.

As shown in Figure 2.8, our own driver implementation works by taking
this one step further, allowing CPUs in different machines to operate an
NVMe simultaneously using their own queue pairs. Each machine allocates
a memory segment where it sets up the queues’ data structures, and uses the
API extension to map these segments for the device as DMA windows. This
allows the NVMe to read SQ memory and write to CQ memory the same way
it would access local memory, using native DMA. Likewise, as device BARs
are automatically exported by SmartIO as segments, all machines can memory
map doorbell registers for their respective queues. Since queues are completely
parallel, all the machines can submit I/O commands and receive completions
entirely independent of each other, once the queues are configured. Note that all

32

Implementation

Figure 2.8: Several machines can share and operate the same NVMe simultane-
ously by distributing queues. Using the SISCI API extension, memory segments
with the queues’ data structures can be mapped for the device, and doorbell reg-
isters can be memory mapped for application processes.

machines are able to operate the NVMe at the same time, including the lender.
The software is the same regardless of which machine it runs on, as SmartIO
keeps track of where the segments and the device reside.

As mentioned in Section 2.3.5, while using API extension requires developing
a new device driver, such as our proof-of-concept NVMe driver, the benefit is
that device operation can become part of the cluster application itself. Because
SmartIO abstracts away the location of devices and memory segments, the
complexity of developing such distributed drivers is somewhat alleviated as
software can be written in a way that does not need to consider whether
resources are local or remote. Any memory resource can be mapped for the
device, regardless of its location in the cluster. An implementation can exploit
this in order to optimize the movement of data through the network—without
needing to consider the actual PCIe topology. It is even possible to combine the
use of the API extension with the other sharing methods of SmartIO. Our NVMe
driver demonstrates some of the possibilities created by the API extension:

Remote GPU access (Figure 2.9): Many GPU-accelerated applications, such
as big data and machine learning tasks, require access to data on a
storage device. Traditionally, loading data from a storage device and

33

2. SmartIO

(a) Storing from and loading into the memory of a GPU residing in the borrower.

(b) Storing from and loading into the memory of a borrowed (remote) GPU.

Figure 2.9: By relying on GPUDirect to expose GPU memory through the
GPU’s BARs, our proof-of-concept NVMe driver is able to map GPU memory
for an NVMe using the SmartIO API extension. This makes it possible to load
and store GPU data directly, without unnecessarily copying it via RAM.

34

Implementation

Figure 2.10: Our NVMe driver implementation relies on SmartIO to decide
where segments containing queues should be allocated. By using access pattern
hinting, it is possible to consider memory locality without requiring the driver
implementation to be aware of the underlying PCIe topology.

into GPU memory involves first reading data to system memory, and
then copy it onto the GPU. Likewise, storing the result of a GPU
computation involves copying it out of the GPU to system memory, and
then writing it to storage. Since datasets used in typical big data and
machine learning tasks can be as large as hundreds of terrabytes, GPU
applications become bounded by transfers between storage and GPU.
To overcome this, some GPUs support peer-to-peer DMA, making it
possible to load data directly into GPU memory and avoid unnecessary
copies via system memory [4, 54]. For Nvidia GPUs, this functionality is
supported through the GPUDirect API [37], which makes on-board GPU
memory accessible through the GPU’s BARs. As explained in Section 2.3.2,
SmartIO automatically exports device BARs as memory segments, which
can be mapped for a device using the API extension. Our proof-of-concept
NVMe driver use this to enable an NVMe to read and write directly to the
memory of both local GPUs and borrowed GPUs (using Device Lending),
as seen in Figures 2.9a and 2.9b respectively. Note that the GPU is
operated by the native GPU driver in both scenarios, but we still use the
API extension to disaggregate its device memory.

Memory locality optimizations (Figure 2.10): In PCIe, the latency of trans-
actions are affected by the number of switch chips they need to traverse.
Particularly memory reads are affected; the longer the path between a
device and the memory it reads from, the higher the latency becomes, as
PCIe transactions have to travel further. As described in Section 2.3.5,
a programmer can rely on the API extension to decide where segments

35

2. SmartIO

Figure 2.11: Our NVMe driver can also run on a GPU. GPU threads can submit
I/O commands and wait for completions independent of the CPU.

should be allocated, based on memory access pattern hinting. In the case
of our NVMe driver, we can use this functionality when creating segments
for queue memory, as illustrated in Figure 2.10. By specifying that the
segment containing CQs will be written to by the NVMe, and read by the
borrower’s CPU, SmartIO will decide to allocate the segment in memory
closer to the CPU, i.e., in the borrower’s local RAM. Similarly, a segment
with an SQ can be allocated in the lender’s RAM by specifying that the
NVMe will read from it and the CPU will only write to it, shown as SQ1
in Figure 2.10. It is even possible to use memory of another device for
SQs. By mapping GPU memory for the device, as explained above, it is
possible to allocate the SQ on a borrowed GPU that is close to the NVMe,
depicted as SQ2 in Figure 2.10.

Initiating I/O directly from the GPU (Figure 2.11): Similarly to how GPU
memory can be mapped for an NVMe using SmartIO, it is also possible
to map doorbell registers for the GPU. The logic for submitting I/O
commands to an SQ and polling an CQ for completions is also supported
for CUDA applications in our NVMe driver implementation. As such, our
NVMe driver may run on a GPU, allowing GPU threads to read from
and write to storage directly without any involvement of the CPU. The
performance of CUDA applications that work with large data sets, such as
machine learning workloads, can be increased, as loading and storing data
at various points in the computation no longer requires synchronization
with software running on the CPU.

A more technical description of the implementation of the proof-of-concept
NVMe driver can be found in Section 6 of Paper V (on page 161). Here, we
describe how the driver is split into a manager and a client component, with
the manager being responsible for resetting the device and assigning queues

36

Performance measurements

to clients. We also explain how our implementation can support multi-path
fail-over, and how PCIe multicasting can be used to replicate data loaded from
storage across machines in a single operation. More details on how it is possible
to run the NVMe driver as part of a CUDA application can also be found here.

2.4 Performance measurements

Our SmartIO framework makes it possible for machines to use remote PCIe
devices in a manner that is indistinguishable from using local resources, both
functionally and performance wise. Since remote devices can be used without
requiring any modifications to either application software or device drivers,
it is possible to use standard benchmarking tools and existing application to
evaluate SmartIO. An evaluation of SmartIO in the form of a comprehensive
collection of performance tests can be found in the published papers, ranging
from microbenchmarks aimed at evaluating specific components to large-scale,
realistic workloads:

• In Section 6 of Paper I (on page 84), the initial Device Lending
implementation is evaluated using an Nvidia GPU, comparing the
performance of DMA transfers of a borrowed (remote) GPU to a local
GPU. We also compare the performance of native DMA to a PCIe-based
RDMA implementation, to demonstrate the performance benefit of native
DMA transfers to remote memory.

• The improved Device Lending implementation with support for peer-to-
peer between devices is evaluated in Section 7.3 of Paper III (on page 105),
where we perform peer-to-peer experiments with GPUs in several network
topologies and test scenarios, demonstrating the performance benefit of
peer-to-peer DMA compared to bouncing data via RAM. These tests are
extended in Section 7.2 of Paper IV (on page 123) with additional network
topologies and test scenarios. We also show the performance a SR-IOV-
capable NIC being shared with multiple machines at the same time in
Section 7.1.6 of Paper V (on page 181).

• Our MDEV implementation is evaluated in Section 7.2 of Pa-
per III (on page 105), where the performance of a VM using a passed-
through is measured. The impact of IOMMUs on DMA transfers is
demonstrated in Section 7.3.1 of Paper V (on page 187). In Section 7.3.2
of Paper V (on page 188), we extend our MDEV evaluation and compare
the performance of our MDEV implementation to “regular” pass-through
(of a local device) as well as bare-metal Device Lending. We prove that
although the use of an IOMMU comes with an unavoidable performance
penalty, our MDEV implementation does not add any performance over-
head compared to bare-metal performance (with the IOMMU enabled).
Additional peer-to-peer experiments using MDEV are also presented in
Section 7.3 of Paper IV (on page 126).

37

2. SmartIO

• To prove that Device Lending and MDEV can be used for real-world
applications, we evaluate the run-time performance of a machine learning
workload using borrowed GPUs and a borrowed NVMe in Section 7.2
of Paper V (on page 185) and Section 7.5 of Paper IV (on page 130).
To further demonstrate SmartIO being used for realistic applications, we
present a GPU-based video processing workload in Paper II (on page 89),
and use Device Lending to scale up the number of available GPUs for the
workload, in order to meet a real-time deadline.

• Several experiments using our our proof-of-concept NVMe driver are
presented in Section 7.4 of Paper V (on page 190), demonstrating
capabilities made possible through the SISCI API extension. We show
how 30 cluster nodes can share a single-function NVMe simultaneously,
how data stored on the NVMe can be multicasted and replicated across
60 nodes in a single operation, as well as interoperability with both local
and remote GPUs. A comparison of our proof-of-concept NVMe driver
and a state of the art NVMe-oF solution is presented in Section 7.4.3
of Paper V (on page 196), showing that our NVMe driver outperforms
RDMA.

• A complete performance evaluation of SmartIO in its entirety is presented
in Section 7 of Paper V (on page 169). Here, all parts of the implementation
is evaluated from multiple angles, including exhaustive tests of the three
sharing methods. Through exhaustive comparison testing, we prove that
our SmartIO sharing methods do not add any performance overhead
compared to using local resources. In addition, we show that our SmartIO
framework is not limited to a specific Linux version or any specific device,
but works for a wide variety of different software versions and devices, by
including tests for different Linux distributions, using several benchmarking
tools and different kinds of workloads (both synthetic and realistic), and
by using different types of PCIe devices.

In this section, we present shortened versions of three selected performance
tests from Paper V. The first two tests, presented in Sections 2.4.1 and 2.4.2
respectively, are comparison tests. They prove that our SmartIO framework is
able to facilitate the use of remote PCIe devices with the same performance
as if these devices were locally installed, by comparing the performance of an
I/O-heavy workload running on a local system using a local device, to the
same workload running on a remote machine using the same device borrowed
through Device Lending. The third test, presented in Section 2.4.3, demonstrates
memory optimization capabilities of our proof-of-concept NVMe driver. This
is an exploratory test, highlighting device driver functionality enabled by the
SISCI API extension.

All three tests use two Intel Xeon machines, and PXH830 NTB adapter
cards from Dolphin [11]. Additional PCIe network topologies and hardware
configurations are evaluated in the published papers, including tests with larger
clusters. In order to create a PCIe topology that is similar for local and

38

Performance measurements

remote test runs, we have used a BP-457-ATX PCIe expansion chassis from
One Stop Systems. By using an expansion chassis, there are the same number of
PCIe switch chips (or “hops”) in the path between the CPU and the device in
both the local and remote scenarios.4 Moreover, the switch chips are the same
Broadcom PEX8733 [6] chips used in the implementation of the Dolphin NTB
adapter cards. Standard and unmodified benchmarking software are used for all
three tests.

2.4.1 Device Lending: latency comparison

Using the Device Lending sharing method, machines may use remote resources
in the same way they would use local resources. Consequently, it is possible to
run a workload locally first, establishing a “baseline” for expected performance
measurements. The same workload can then be repeated on a remote system
using borrowed devices, allowing us to compare performance measurements to
this “local baseline”. With all conditions being the same, from the software
to the devices being used, any difference in the measured performance for the
local run and remote run will reveal whether or not Device Lending adds any
performance overhead compared to local access.

Figure 2.12 shows the hardware configurations for the two test scenarios:

Local Baseline (shown in Figure 2.12a): An external expansion chassis with
the NVMe installed, connected to a local machine. The expansion
chassis is connected upstream using One Stop System’s HIB68-x16 target
adapter cards and external PCIe cables. These adapters use the same
Broadcom PEX8733 PCIe switch chip used in the Dolphin PXH830 NTB
adapters. The IOMMU is disabled, in order to make the configuration
comparable to the Device Lending scenario described below.

Device Lending (shown in Figure 2.12b): Two machines connected together in
a back-to-back topology, using Dolphin PXH830 adapter cards and external
PCIe cables. The remote NVMe is borrowed using Device Lending. The
IOMMU is disabled on both the lender and borrower. The same expansion
chassis configuration as in the local baseline scenario is used, and since the
lender’s IOMMU is disabled, PCIe transactions are routed peer-to-peer as
illustrated in the figure.

We used the Flexible I/O tester (FIO) [3] to create a synthetic storage workload
and measure the latency of reading from disk. FIO is a widely used user space
application for benchmarking the performance of storage devices, such as NVMes.
In both scenarios, the machines run CentOS 7 with a 3.10 kernel, and version 3.7
of FIO (as available from the CentOS 7 software repositories). Additionally, the
standard in-kernel NVMe driver is used in both scenarios.

We configured FIO to perform 655360 reads, where each read is a page-sized
block (4 kB) at a random offset on disk, also known as a “random read” pattern.

4We show how longer PCIe paths affects DMA performance in Section 7.2 of Pa-
per IV (on page 123) and Sections 7.1.3 and 7.1.5 of Paper V (on pages 175 and 179).

39

2. SmartIO

(a) Local Baseline: an NVMe in an expansion chassis attached to the local PCIe bus.

(b) Device Lending: a borrowed NVMe, appearing local to the remote system.

Figure 2.12: Hardware configuration for the two scenarios in our latency
comparison experiment. By using an expansion chassis, the NVMe is the
same number of “hops” away from the CPU using the device for both the
Local Baseline and Device Lending scenarios. The only difference is whether the
switch chips are configured in transparent mode or NTB mode. The data path
is illustrated for both scenarios.

40

Performance measurements

15 16 17 18 19 20
Latency distribution (µs)

0

5000

10000

15000

20000

25000

30000

35000

Nu
m

be
r o

f I
/O

 o
pe

ra
tio

ns

Local Baseline
Device Lending

Figure 2.13: Histogram of the latency distributions for reads from storage for
both the Local Baseline and Device Lending scenarios. The distribution for
both scenarios overlap, demonstrating that our implementation does not add
any overhead in the critical I/O path.

Additionally, as the purpose of the test is not to benchmark the NVMe itself,
but rather any potential overhead of our Device Lending sharing method, the
disk used in our experiment is a prototype RAM disk with an NVMe controller
from Microsemi. We used a RAM disk to avoid any effects caused by prefetching
and caching that modern solid-state flash memory storage devices (SSDs) are
capable of.

Figure 2.13 shows the latency distribution of read operations for both a local
NVMe (Local Baseline) and when accessing it remotely using Device Lending.
Each data point is the latency for a full 4 kB read operation. We see that the
two distributions overlap, proving that there is no difference in performance for
local and remote. A more in-depth explanation of this experiment can be found
in Section 7.1.1 of Paper V (on page 171).

2.4.2 Device Lending: throughput comparison

Another performance metric is throughput, particularly the throughput for
transferring data between a device and RAM. By performing large DMA transfers,
the PCIe links are saturated with transactions and we also stress system memory.
This would reveal any overhead caused by our Device Lending implementation
that is only visible under high load.

Figure 2.14 illustrates the hardware configuration used in our throughput
test scenarios:

Local Baseline (shown in Figure 2.14a): A local machine using a local Nvidia
Quadro P4000 GPU (installed in an expansion chassis). As with the latency

41

2. SmartIO

(a) Local Baseline: using a local GPU in an expansion chassis.

(b) Device Lending: using a borrowed GPU.

Figure 2.14: Hardware configuration for the two scenarios in our DMA throughput
comparison experiment. The expansion chassis adds the same number of “hops”
between the CPU and the GPU in both scenarios.

42

Performance measurements

4k 8k 16
k

32
k

64
k

12
8k

25
6k

51
2k 1M 2M 4M 8M 16
M

32
M

64
M

12
8M

Transfer size (B)

0

2

4

6

8

10

12

DM
A

th
ro

ug
hp

ut
 (G

B/
s)

Local Baseline
Device Lending

Figure 2.15: The median DMA write throughput of different transfer sizes for
the Local Baseline and Device Lending scenarios. The measured performance is
the same for both scenarios, demonstrating that our implementation does not
add any overhead.

test, we use an expansion chassis to make the PCIe path similar to the
Device Lending scenario described below. The IOMMU is enabled.

Device Lending (shown in Figure 2.14b): Two machines connected back-to-
back using Dolphin PXH830 NTB adapter cards. One machine is borrowing
the Quadro P4000 GPU. The IOMMU on the lender is disabled, in order
to allow peer-to-peer DMA transfers as depicted in the figure, while the
borrower’s IOMMU is enabled.

Both machines are running Ubuntu 18.04.02 with the 4.15 version of the kernel,
and we used CUDA 10.1 (with the 418.39 version of the Nvidia driver). In order
to create a workload for the GPU, we used the bandwidthTest program included
in the CUDA Toolkit sample programs [38]. This CUDA program uses the
GPU’s on-board DMA engine to copy data from the GPU to system memory.
For both scenarios, we configured bandwidthTest to initiate 1000 DMA writes
to RAM, and repeated this for sizes from 4 kB up to 128 MB in order to reveal
any trends that emerge when the transfer size increases.

Figure 2.15 depicts the results of our test. The transfer sizes are plotted
along the X-axis, and for each transfer size we plotted the median of the 1000
transfers. The achieved throughput for DMA writes to system memory is almost
identical for the Local Baseline and Device Lending scenarios, demonstrating
that our Device Lending implementation does not introduce any overhead in
the performance-critical path. This experiment is described in further detail in
Section 7.1.2 of Paper V (on page 173).

43

2. SmartIO

2.4.3 Proof-of-concept NVMe driver experiment

Both the Device Lending and MDEV sharing methods make it possible for
remote devices anywhere in the cluster network to be operated by native device
drivers. Since most device drivers are written in a way that assumes exclusive
control of a device, devices shared with these methods may only be used by a
single borrower at the time. For distributed cluster applications, this poses a
challenge. For example, if a workload needs to access data on a storage device or
to perform computations on a GPU, the application process must interact with
the device driver. If the driver is running on a different machine, the application
must synchronize with this machine in some way. To further complicate matters,
DMA buffers are allocated at the discretion of a device driver, and how these
buffers are used is outside our control. Potentially, a device driver may copy
data from application memory to internal DMA buffers before it initiates DMA
transfers. This can result in poor performance, particularly in the case where the
data resides in a memory segment and may be copied between different memory
buffers in different machines.

It is possible to remedy this problem by using our extension to the SISCI API
to develop a device driver as part of the distributed application itself. Although
developing a new device driver may not necessarily be a viable approach in all
circumstances, enabling devices to use native DMA to (remote) memory segments
may provide performance benefits for cluster applications. To demonstrate this,
we have designed the following experiment for our proof-of-concept NVMe driver
(as illustrated in Figure 2.16):

• We developed a user space CUDA application, integrating our proof-
of-concept NVMe driver as part of this application. The application
process is running on the borrower machine, using both the local
Nvidia P600 GPU and the remote Nvidia P4000 GPU, as well as a remote
Intel Optane P4800X DC NVMe. The remote GPU is borrowed using
Device Lending, and both GPUs are managed by the native CUDA drivers
(CUDA version 10.2). The NVMe is operated by our application process.

• The purpose of the experiment is to measure how moving the SQ closer to
the NVMe affects the latency of I/O operations (as depicted in Figure 2.16b).
As such, we allocate a single CQ in local segment in the borrower’s RAM.
Depending on the scenario, a corresponding SQ is also allocated in one of
the following memory locations:

Borrower RAM: the SQ is allocated in local memory segment on the same
machine where our application process is running.

Lender RAM: the SQ is allocated in lender’s RAM, by allowing SmartIO
to choose based on access pattern hinting.

Borrowed GPU: the SQ is allocated in memory on the borrowed GPU.

For more context on why DMA reads are affected by longer distances,
please refer to Section 7.1.3 of Paper V (on page 175).

44

Performance measurements

(a) Our proof-of-concept NVMe driver is implemented as part of the application process,
running on the borrower’s CPU and operating the remote NVMe. The remote GPU is
borrowed using Device Lending, and both GPUs are operated using the native CUDA
driver (also running on the borrower). Data is loaded from storage directly into buffers
in GPU memory.

(b) We measure the latency effect of moving the SQ closer to the NVMe. This reduces
the distance the NVMe needs to read across in order to fetch I/O commands.

Figure 2.16: The design of our proof-of-concept NVMe driver experiment.

45

2. SmartIO

• As illustrated in Figure 2.16a, the application process allocates a memory
buffer on both GPUs, which are exported as shared memory segments by
our SISCI API extension and mapped for the NVMe. Using the SQ, the
application loads data from storage on the NVMe directly into the memory
buffers on the GPUs by issuing read commands. Since the purpose is
to measure the latency of individual I/O operations, data is loaded into
GPU memory using a random read access pattern and a block size of
4 kB. First, we read data into memory of the borrowed GPU. Then this
process is repeated for the local GPU. For each GPU, we performed 327,680
reads (655,360 in total on both). Note that since we are performing read
operations, i.e., loading data from storage, the data destination does not
affect latency. However, both GPUs are included as destinations in our
experiment, for the purpose of showcasing the capabilities of SmartIO.5

• The command completion latency for each read operation is measured, and
the SQ is configured to have a queue depth of just a single entry, in order
to avoid aggregated measurements. We define the command completion
latency as the time elapsed from writing a command to SQ memory
(followed by a write to the SQ doorbell register) until the corresponding
completion entry shows up in CQ memory. Note that the timer is started
before writing the command to (remote) memory, so the recorded latency
value also reflects the delay of writing to a remote memory location.

Both the lender and the borrower are running Ubuntu 18.04.4 with the 4.15
version of the Linux kernel. The IOMMU is enabled on the borrower, while it is
disabled on the lender.

Figure 2.17 depicts the distributions of recorded latency values for I/O read
operations, for all three scenarios. The same datasets are show as a histogram
and as a boxplot. Note that we have adjusted the Y-axis, so suspected outlier
measurements are not shown. The median for all three scenarios are marked
with horizontal lines. Our results demonstrate that moving SQ memory closer
to the NVMe reduces the latency, as the distance the NVMe has read across
shrinks (see Figure 2.16b for reference):

Borrower RAM: The NVMe has to read across the internal switch chip in the
expansion chassis, the lender’s NTB adapter, the cluster switch, and the
borrower’s NTB adapter (4 “hops”). The measurements for this scenario
has the highest command completion latency values.

Lender RAM: The NVMe reads across the internal switch chip, and both the
downstream and upstream transparent switches, in order to fetch commands
(3 “hops”). It is interesting to note that even though the borrower has to
write the longest distance in order to submit I/O commands (6 “hops”),
this scenario still has a performance benefit because the distance for the
NVMe is reduced.

5A similar experiment is also presented in Section 7.4.1 of Paper V (on page 192), where
only the local GPU is used as a data destination.

46

Performance measurements

0 5000 10000 15000
Number of I/O operations

8.0

8.2

8.4

8.6

8.8

9.0

La
te

nc
y

di
st

rib
ut

io
n

(µ
s)

Histogram
Borrower RAM
Lender RAM
Borrowed GPU

Borrowed
GPU

Lender
RAM

Borrower
RAM

8.0

8.2

8.4

8.6

8.8

9.0

La
te

nc
y

di
st

rib
ut

io
n

(µ
s)

Boxplot (outliers removed)

Figure 2.17: Distribution of recorded command completion latencies as a
histogram (left) and as a boxplot (right). The closer the SQ is to the NVMe,
the lower the latency is.

Borrowed GPU: By using the GPU installed alongside the NVMe in the same
expansion chassis, the NVMe only has to read through the internal switch
chip in order to fetch commands (1 “hop”). Although GPU memory has
different latency characteristics than RAM, our measurements show that
this scenario has the lowest command completion latency values.

This experiment shows that there may be performance advantage of building
device driver functionality into the application, compared to using Device Lending
and native device drivers. While there is an associated development cost of
implementing new device drivers using the SmartIO API extension, it becomes
possible to control memory locations using access pattern hinting and optimize
data flow through the cluster network, for example by streaming data directly
into GPU memory as shown in this experiment. Additional functionality also
becomes available through the use of the SISCI API, such as relying on PCIe
multicasting to replicate data across several cluster machines in a single operation.
Replicating NVMe data across 60 machines using multicasting is demonstrated
in Section 7.4.2 of Paper V (on page 194).

Our NVMe driver experiment also shows that the different sharing methods
of SmartIO can be combined. The Nvidia P4000 GPU is borrowed using
Device Lending (and operated by the native CUDA driver), but using our
API extension its memory is disaggregated, allowing the NVMe to access buffers
allocated in GPU memory directly. We argue that this demonstrate the strength
of our SmartIO framework, as we are able to combine the traditional I/O model
with distributed, shared-memory functionality.

47

2. SmartIO

2.5 Related work

Sharing resources efficiently among networked machines is a wide-ranging topic
that span several research areas. In fact, each individual component of our
solution could potentially be discussed at great length on their own, in order
to place them in proper context. However, at its core, SmartIO is a framework
for machines in a PCIe network to share their internal devices and memory
resources. In this section, we attempt to give a condensed overview of related
work we consider the most relevant. A more detailed presentation of related
work can be found in Section 9 of Paper V (on page 206). Background for the
ideas behind our proof-of-concept NVMe driver is summarized in Section 9.4 of
Paper V (on page 210).

2.5.1 Solutions not using NTBs

State of the art within disaggregation and resource sharing can broadly be
divided into three categories:

• So-called “rack-scale disaggregation” by logical partitioning, where
modular blade servers are connected to a backplane or a shared I/O bus
fabric within a data center rack. Devices are installed in dedicated resource
servers, and can be dynamically assigned to compute hosts as needed.
These solutions can be realized using interconnection technologies that
are specialized for this purpose [24, 25, 49, 51], but PCIe (with additional
virtualization support) is the most used alternative for commercial
solutions [7, 17, 31, 44]. We also include Multi-Root I/O Virtualization
(MR-IOV) [39] in this category, even though we are unaware of any available
implementations of it.
PCIe-based solutions use switch chips with virtualization support that
makes it possible to isolate devices and CPUs by creating logical device trees
for each host [7, 35, 64, 65], as illustrated in Figure 1.2. Some solutions even
support assigning individual VFs of an SR-IOV-capable device to different
hosts [7]. However, as we addressed in Section 1.1, it is only possible to
distribute resources that are directly attached to these partitionable switch
chips. Sharing the internal resources of a machine, such as its memory
and local devices, is not possible. Consequently, solutions based on switch
partitioning cannot support memory-to-memory communication between
hosts, nor are they able to support any memory disaggregation. Instead,
additional disaggregation solutions like RDMA are needed.

• Memory disaggregation through remote memory access. The goal of
most memory disaggregation solutions is not necessarily to make more
resources available or improve resource utilization in the cluster, but
rather to facilitate shared-memory communication for distributed cluster
applications. Remote memory access is most commonly implemented on
top of RDMA, and made available to the application through typical

48

Related work

parallel programming models, such as message-passing [23] and remote
procedure calls [32], or through more explicit abstractions [2]. Approaches
for accessing remote memory in a more transparent fashion also exist,
usually achieved by modifying the system page fault handler to initiate
RDMA transfers so remote memory pages can be “faulted in” [18, 26, 27].
Especially message-passing protocols implemented on top of RDMA over
InfiniBand appear to be widely used for distributed computing. Many of
these message-passing solutions also support GPUDirect, effectively making
it possible to disaggregate GPU memory [46, 62, 63]. Although RDMA
enables efficient data transfer over a network through one-sided initiation
and direct access to application memory, it nevertheless introduces a layer
of indirection; compared to a CPU (or device) reading and writing to
a memory-mapped location directly, latency is significantly increased by
needing to initiate (and wait for) RDMA transfers.

• Device disaggregation by distributed I/O over a network using RDMA.
Examples include rCUDA for sharing GPUs in an InfiniBand cluster [12],
and NVMe-oF using RDMA [15, 19]. Solutions for sharing GPUs [20]
and Ethernet NICs [61] over a PCIe fabric have also been proposed, by
using PCIe switch chips capable of DMA to transfer data from memory to
memory in the different machines.
As mentioned in Section 1.1, RDMA-based approaches must communicate
with a device driver running on the device-side system, in order to interact
with the remote device. As this is typically solved by implementing a
middleware service that uses an existing driver or by implementing a
distributed driver, these solutions are generally specific to the (type of)
device they disaggregate. Moreover, as illustrated in Figure 1.4, this
additional software component on the remote system inevitably leads
to a performance overhead, compared to a local device driver directly
interacting with a device.

With its three sharing methods, our own SmartIO framework intersects
all three of these disaggregation categories. Similarly to PCIe-based rack-
scale solutions, we are able to distribute devices using the Device Lending
and MDEV sharing methods (Sections 2.3.3 and 2.3.4), including individual VFs
of devices capable of SR-IOV. We also have an inherent relationship with memory
disaggregation solutions, through the shared-memory functionality provided by
the SISCI API and our SmartIO extension of it (Section 2.3.5). It is even
possible to disaggregate devices similar to RDMA-based device disaggregation,
as demonstrated by our proof-of-concept NVMe driver (Section 2.3.6). However,
by being implemented on top of PCIe cluster networking, SmartIO is able to
offer significant improvements over the other three types of disaggregation:

• Unlike PCIe-based rack-scale disaggregation, where only resources attached
directly to partitionable switch chips can be shared, SmartIO instead makes
it possible for all machines to lend out their internal devices and borrow
resources from remote machines.

49

2. SmartIO

• In contrast to RDMA-based solutions for memory disaggregation, remote
memory segments can be mapped into a local software application’s virtual
address space directly using the SISCI API. Using our extension to the
SISCI API, we greatly extend this functionality by making it possible to
map shared memory segments for devices as well. The need to use RDMA
for shared-memory communication is removed entirely, as both CPUs and
devices may instead read and write to remote memory directly. Moreover,
it becomes possible to integrate I/O and device operation into the cluster
application itself.

• Contrary to device disaggregation using RDMA, SmartIO removes the
need to interact with a remote device driver on the device-side system.
Instead, as SmartIO enables access to remote resources over native PCIe
for both driver and device, devices can be operated directly by a device
driver running locally on the borrower. As no software is needed in the
performance-critical data path, SmartIO has the performance advantage
of native PCIe.

• Using either the Device Lending or MDEV sharing methods, devices appear
locally installed. This makes SmartIO a more general solution compared
to RDMA-based disaggregation, in the sense that any PCIe device may be
shared and operated by existing device drivers. However, in addition to
distributing devices to both physical machines and VMs, we also facilitate
what we call “MR-IOV in software” through the SISCI API extension.
This allows non-SR-IOV devices to be shared with several hosts at the
same time, something that is not possible with current solutions based on
partitionable PCIe switch chips and requires RDMA. SmartIO is “the best
of both worlds”, by combining the flexibility of shared-memory functionality
with the ability to use remote devices as if they were locally installed.

• Disaggregation of device memory is made simpler by SmartIO. Because
SmartIO abstracts away the physical PCIe topology, the device memory
of both local and borrowed devices is trivially memory mapped by an
application and for other devices using our SISCI API extension. For
example, applications that rely on GPUDirect can memory map (remote)
GPU memory directly, instead of needing to use abstractions such as
message-passing. Moreover, since it is also possible to borrow remote
GPUs using Device Lending, SmartIO supports CUDA’s native unified
memory model [47] as well, allowing remote GPUs to read and write to
each other’s memory as if they were installed in the same machine. This
makes application development significantly easier, as software can be
written as if all resources are local. We are not aware of any RDMA-based
GPU disaggregation solutions that are able to support this.

In short, our SmartIO framework provides several advantages over existing
disaggregation solutions. Disaggregation solutions based on RDMA introduce
additional software complexity and indirections that lead to a disparity in

50

Related work

performance, compared to using resources over native PCIe. PCIe-based
disaggregation solutions do not have such performance issues, but are limited to
sharing devices installed in dedicated servers, as they lack the shared-memory
capabilities necessary for sharing the inner resources of individual machines.
We present a more technically detailed comparison between specific solutions
and our own SmartIO implementation in the published papers, particularly in
Section 9 of Paper V (on page 206).

2.5.2 Solutions using NTBs

Solutions that enable disaggregation using NTBs are particularly interesting to us,
due to the similarities with our own work. By using the same Broadcom 8733 [6]
PCIe switch chips used in the Dolphin PXH830 adapter cards used in our own
evaluation (Section 2.4), Shim et al. [48] and Lim et al. [28] have implemented
NTB host adapter cards and connected three machines in a cluster. They have
extended the OpenSHMEM API with support for their NTB implementation.
However, their focus seem to be enabling partitioned global address space-style
shared memory functionality for high-performance computing applications, and
distributing and sharing devices appears not to have been considered as part
of their solution. It should also be noted that the underlying memory-mapping
functionality provided by their solution is very similar to functionality already
existing in the SISCI API.

The Ladon system [60] facilitates access to the same SR-IOV device from
multiple VM guests. Several machines and a SR-IOV device is connected
to a top-of-rack PCIe switch with NTB-capable ports. The device and a
dedicated “management host” is connected to the switch in transparent mode,
so that the management host may enumerate the PCIe bus and configures the
device. Multiple “compute hosts” are connected to the same switch through
non-transparent switch ports, i.e., NTBs. The management host maps the entire
memory of each compute host for the device, and assists the hypervisor on each
compute hosts in mapping device BARs, in order to pass-through individual
VFs to VMs running on the compute hosts. It is also possible to map interrupts
directly into the VM guests [57, 59].

The Ladon system is very similar to our own MDEV implementation. For
example, the management host is comparable to our lender, and the compute
hosts would be the equivalent to host machines that run VM borrowers in
SmartIO. However, Ladon and our own SmartIO framework differ in some areas:

• Only VM pass-through appears to be have been considered for the Ladon
system. SmartIO, on the other hand, supports sharing with both physical
host machines and VM guests, through the Device Lending and MDEV
sharing methods respectively. Because the management host maps the
entire RAM of each compute host, it could in theory be possible to extend
Ladon with support for physical machines. However, such an extension
would likely require that device drivers are adapted to interact with the
management host to set up mappings. In contrast, our own Device Lending

51

2. SmartIO

sharing method makes it possible for bare-metal hosts to use devices without
requiring modifications to existing device driver software.

• Perhaps the main difference between Ladon and SmartIO is that while
a single host, i.e., the management host, owns the device in Ladon, our
SmartIO system is truly distributed by supporting multiple machines acting
as lenders. Machines may even act as both lender and borrower at the same
time. Moreover, in Ladon, the management host becomes a single point
of failure. Ladon has since been extended with fail-over support, allowing
a back-up management host to replicate the PCIe fabric enumeration of
the first host, and seamlessly take ownership of the device in case the first
management host fails [58]. However, we argue that this still does not
make Ladon distributed in the same sense as SmartIO. For example, it is
not possible for a compute host to use devices from different management
hosts. In contrast, SmartIO supports scaling out and using devices from
several machines across an entire cluster.

• The Ladon implementation relies on mapping the entire memory of all
compute hosts for the device. Because of this, the number of compute
hosts that can be supported in the Ladon setup will be limited to a handful
of hosts due to the combined BAR size requirements of the NTBs. This
differs from our own MDEV implementation, where only the VM memory
is mapped for the device. Additionally, should the NTB’s BAR size become
a limitation, it is possible to add more lender machines and borrow devices
from multiple lenders.

Compared to other solutions implemented using NTBs, SmartIO is a more
comprehensive framework for sharing devices and memory resources. Our
solution makes it possible to share devices to remote machines (both bare-metal
host machines and VMs), as well as and disaggregating memory resources. Using
SmartIO, it is even possible to combine sharing capabilities with shared-memory
functionality, allowing devices to become part of the same global address space
as distributed, shared-memory applications.

52

Chapter 3

Conclusion

As distributed and parallel computing applications are becoming increasingly
compute-intensive and data-driven, I/O performance demands are ever growing.
Computing accelerators (such as FPGAs and GPUs), high-throughput NICs,
and fast storage devices like NVMes, are now commonplace in most modern
computer systems. Nevertheless, distributing such I/O resources in a way
that maximizes both performance and resource utilization is a challenge for
heterogeneous computing clusters. To avoid that individual machines becoming
performance bottlenecks, resources must be shared efficiently between machines
in the cluster.

In this dissertation, we have addressed this challenge and presented our
SmartIO framework for sharing I/O resources between machines connected over
PCIe. Our SmartIO framework effectively makes all machines, including their
internal devices and memory, part of a common PCIe domain. Resources
in remote machines can be used as if they were installed locally, without
any performance degradation compared to local access, and without requiring
adaptions to device drivers or application software. The hard separation between
local and remote is blurred out, as machines can freely share their internal
devices and memory resources with other machines in the cluster.

3.1 Summary

Connecting two or more computer systems over PCIe is possible by using PCIe
NTBs. NTBs have memory address translation capabilities that makes it possible
for a machine to map segments of remote memory directly into local address
space. However, leveraging NTBs to share the internal devices and memory of
a machine with other, remote machines is a challenge, as the use of a remote
resource requires software to be aware of the fact that the resource is on the other
side of an NTB. For example, a device driver operating a remote device must use
addresses that correspond to the remote device’s address space when initiating
DMA transfers or configuring interrupts. This additional complexity makes it
infeasible to rely on NTBs alone to implement a resource sharing solution, as it
would require extensive modifications to existing software.

To solve this, we have developed our SmartIO framework for sharing devices
and memory resources between machines connected with NTBs. Our solution
consists of “lenders”, machines lending out one or more of its internal devices,
and “borrowers”, machines using such a device. Machines can act as lender and
borrower at the same time, making SmartIO fully distributed. Any type of PCIe
device may be shared, as SmartIO is built on standard PCIe. SmartIO keeps
track of which machines devices and memory segments reside in, and is able to

53

3. Conclusion

map resources on behalf of devices and resolve memory addresses as they are
seen by devices. As such, SmartIO provides a logical decoupling of devices and
which lender machines they are installed in, solving the challenge of managing
multiple address spaces and making remote resources appear and behave as if
they are local.

SmartIO supports three different methods of device sharing:

• Our Device Lending sharing method makes it possible to dynamically
assign a PCIe device to a remote borrower machine. The fact that the
device is remote is made transparent to the system, allowing the device
to be used by native device drivers and application software as if it was
locally installed.

• Our MDEV extension to the KVM hypervisor makes it possible to
distribute devices to VMs running on remote machines, by facilitating
pass-through of a device to the VM guest. Application software and device
drivers running inside the VM guest can directly interact the physical
device, without compromising the isolation of the virtualized environment.

• Our SISCI API extension makes it possible to disaggregate devices
and memory resources in software. Using this API extension, we have
also implemented a proof-of-concept NVMe driver that demonstrates
sharing NVMes with multiple machines at the same time.

We have performed an extensive performance evaluation, consisting of a
comprehensive collection of synthetic performance benchmarking and realistic
workloads. We have made a point out of using standard benchmarking software
and device drivers, as well as a wide variety of PCIe devices, in order to
demonstrate the completeness of our SmartIO framework. Particularly, we have
performed comparison tests where we compare the performance of a workload
using remote resources to the same workload running only on a local system. The
results prove that, when conditions are similar, the SmartIO sharing methods
do not add any performance overhead compared to using local resources.
Furthermore, we have also explored how different network topologies affect the
performance, and have identified situations where the IOMMU can become
a potential performance bottleneck. Finally, our exhaustive performance test
suite also includes tests using our proof-of-concept NVMe driver that highlights
possibilities that are enabled by our shared-memory approach to device sharing.

3.2 Revisiting the problem statement

The main goal of this dissertation was to use NTBs to develop a solution that
allows the internal I/O resources of machines to be shared with, and used by,
remote machines in a cluster, as if these resources were local to the remote
machines using them. In Section 1.2, we broke down the challenges of this goal
into six objectives:

54

Revisiting the problem statement

Objective 1: Ubiquitous sharing in the cluster should be supported, allowing
any machine to contribute any of its internal PCIe devices, and allowing
any machine to be able to use shared devices, even contributing and using
devices at the same time.

SmartIO is fully distributed, allowing any machine in the cluster to act as a
“lender” or a “borrower”, or even acting as both at the same time. Any PCIe
device may be registered with SmartIO and shared, as demonstrated by our
comprehensive performance evaluation in Paper V. As such, we enable a peer-
to-peer sharing model, where all machines in the cluster can participate in the
sharing through contributing their own resources and using resources shared by
others.

We implemented three different sharing methods for our solution:

• The Device Lending sharing method, explained in Section 2.3.3, makes
it possible to distribute devices to remote machines. The initial
Device Lending method is presented in Paper I. Subsequent improvements
are presented in Papers III to V.

• The MDEV extension to the KVM hypervisor makes it possible to distribute
devices to VMs running on remote machines, as detailed in Section 2.3.4.
The initial MDEV method is presented in Paper III, and improved versions
are presented in Papers IV and V.

• The API extension brings device-oriented programming semantics and
device driver support functions to the SISCI API. Using the API extension,
user space device drivers can be implemented using the same API used to
implement shared-memory communication using NTBs, as explained in
Section 2.3.5. The API extension is presented in Paper V.

These sharing capabilities set SmartIO apart from existing PCIe-based disaggre-
gation solutions (including Ladon [60]), as these solutions are only able to share
devices in dedicated servers. Thus, our sharing methods solves Objective 1.

Objective 2: The fact that resources may be remote should be functionally
transparent, allowing systems to use remote resources in the same way as
if they were local, without requiring any modifications to device hardware,
device drivers, host OS, or application software.

Our three sharing methods address this objective in the following ways:

• Device Lending inserts a remote device into the local device tree of the
host OS by using a “shadow device”. This allows device drivers, application
software, and even the (host) OS itself to use the remote device through
native OS interfaces, in the same way they would use a local device. No
adaptations to existing software is required. This is further explained
Device Lending in Papers I and III to V.

55

3. Conclusion

• MDEV enables pass-through of a remote device to a VM. Software running
in the guest, including device drivers and the guest OS, may interact with
the physical device directly, as if the device was locally installed. No
modifications to VM emulator software or host OS is necessary. MDEV is
described in further detail in Papers III to V.

• Using the SISCI API, remote memory segments are mapped directly into
the virtual address space of a local application. Our extension to the
SISCI API makes it possible to map such segments for devices as well.
This enables native DMA to remote memory resources, as if both the
device and the memory being accessed were both installed in the same,
local machine. Moreover, using the API extension, the physical location
of both devices and memory segments are abstracted away. User space
device drivers implemented using our extension can be written as if all
resources are local, similarly to how a local user space device driver (for a
local device) would be implemented. The API extension is described in
Paper V.

Whether resources are remote or local is made transparent by SmartIO, as remote
devices and memory resources both appear and behave as if they are locally
installed. In this regard, SmartIO differs from existing disaggregation solutions
based on RDMA. Contrary to these solutions, we do not require interacting with
a device driver running on the remote system, thus avoiding any middleware
services or specialized adaptations to existing software. Scaling out becomes
significantly easier, as SmartIO allows remote resources to be used natively
instead. Thus, this aspect of SmartIO solves Objective 2.

Objective 3: The fact that resources may be remote should be transparent with
regard to performance, remote resources should be used with native PCIe
performance, and as close to local access as possible.

One of the main challenges for our Device Lending and MDEV sharing
methods was that local RAM must be mapped ahead of time in order to avoid
communication overhead in the performance-critical path, yet memory used by
a device driver can not be known in advance. To overcome this, our SmartIO
implementation supports using the borrower’s IOMMU to create continuous
memory ranges that can be mapped as “DMA windows” through the lender’s
NTBs before use. Memory pages can then be dynamically added and removed
from these IOMMU ranges locally on the borrower, and communication with a
remote system in the critical path is avoided.

Once mapped, remote resources are accessed with native PCIe performance,
as all address translations are done in NTB (and IOMMU) hardware. In fact,
our evaluation in Paper V prove that, when conditions are similar, SmartIO
allows remote resources to be used without any performance overhead compared
to using local resources. Nevertheless, using remote resources may lead to a
longer distance between resources. As such, there are some caveats that must be
considered:

56

Revisiting the problem statement

• Longer PCIe paths affect DMA performance, particularly DMA reads, as
we uncovered in Papers III to V. This remains an unsolved challenge for
Device Lending or MDEV, as we have no control over the memory allocated
by a device driver in these instances. Therefore, we recommend considering
the length of PCIe paths when designing the cluster. The issue of longer
PCIe paths affects drivers implemented using our SISCI API extension to
a lesser extent; by using memory access pattern hinting when allocating
DMA buffers, SmartIO will attempt to minimize the distance a device or
a CPU needs to read across. The performance experiment presented in
Section 2.4.3 demonstrates this.

• Our performance experiments in Papers III to V also revealed that an
IOMMU in the data path can negatively affect DMA performance, as
the IOMMU may split large PCIe transactions into several, smaller-sized
transactions. This is especially an issue for our MDEV sharing method,
as SmartIO uses the lender’s IOMMU in order to map the device to the
same guest-physical address space as the VM the device is passed-through
to. For Device Lending, the use of an IOMMU on the lender is optional.
However, the use of an IOMMU on the borrower is necessary (except in a
few scenarios where it is possible to map the entire RAM of the borrower).
Consequently, this may introduce limitations on scenarios where machines
act as both lenders and borrowers, where maximizing DMA performance
is a requirement. In the case where device drivers are implemented using
the API extension, an IOMMU is entirely optional on both the lender and
the borrower.

By making it possible for remote resources to be accessed over native PCIe,
Objective 3 is solved. Improving performance issues involving IOMMUs is a
candidate for future work.

Objective 4: Shared resources should be distributed dynamically, and direct
access to device memory and system memory should be configured at
run-time, also between multiple devices residing in different hosts.

Using SmartIO, resources may be shared without requiring machines to be
rebooted. Devices registered with SmartIO can be borrowed by any machine,
at any time, using any of the three sharing methods. For example, a machine
may borrow a device using Device Lending and at the same time run a VM
that is borrowing another device using MDEV. The different sharing methods
can also be combined, as demonstrated by the proof-of-concept NVMe driver
experiment presented in Section 2.4.3. When the device is no longer needed, it
can be returned so it may be used by another borrower. Through borrowing
and returning devices, systems may dynamically scale I/O resources up or down
based on current workload demands.

Devices are logically decoupled from the machines they are physically installed
in, allowing software to be moved to any machine in the cluster. SmartIO keeps

57

3. Conclusion

track of both memory segments and devices, and is able to locate resources in
the cluster, without requiring that the user knows anything about the underlying
PCIe topology. The shortest path between devices, CPUs, and memory segments
is determined automatically, and SmartIO configures NTBs along that path
in order to map remote memory resources for CPUs and devices. Moreover,
SmartIO also supports borrowing devices from multiple lenders and enabling
peer-to-peer DMA transfers between them, as we explain in Papers III to V. Peer-
to-peer can be enabled when borrowing devices using Device Lending or MDEV,
which is demonstrated in the various peer-to-peer experiments presented in these
papers. Peer-to-peer is also supported when using the API extension, which we
demonstrate in the proof-of-concept NVMe driver experiment (Section 2.4.3).
Our various performance experiments demonstrate that SmartIO is a dynamic
and flexible sharing framework, thus solving Objective 4.

Objective 5: Disaggregation of system memory, device memory, and device
functionality should be supported, and the solution should be able to
distribute component parts to different hosts, as well as provide software
facilities for resources that do not support disaggregation in hardware.

SmartIO is able to disaggregate multi-function devices, such as devices capable
of SR-IOV, and distribute individual device functions to different borrowers. An
experiment demonstrating this is presented in Paper V. Devices that do not
support SR-IOV may be disaggregated in software instead, using our extension
to the SISCI API. Using the API extension, a device be borrowed by several
machines simultaneously. Our proof-of-concept NVMe driver presented in
Paper V demonstrate this, where several borrowers share the same (non-SR-IOV)
NVMe. In other words, the API extension enables “MR-IOV in software”.

The API extension makes it possible to implement device drivers as part of
distributed, shared-memory cluster applications. Any memory segment anywhere
in the cluster can be mapped for devices, so they may access them directly,
including segments in local RAM on the borrower, segments in RAM on the
lender, and even segments in memory of a different cluster machine altogether.
Device BARs are also automatically exported by SmartIO as shared memory
segments, allowing device memory to be mapped for the application process or
even for other devices (thus enabling peer-to-peer). As such, SmartIO supports
disaggregating device memory. It is even possible to map multicasting segments
for a device, allowing a device to stream data to multiple destinations in a single
operation. Moreover, SmartIO makes it possible to associate memory segments
with a device (rather than a machine in the cluster), allowing the location of
memory segments to be abstracted away in a similar fashion to devices. This
allows software to be written as if all resources are local, and can run on any
machine in the cluster. SmartIO is able to optimize memory locations without
requiring that the user is aware of the underlying PCIe network topology. The
proof-of-concept NVMe driver experiment presented in Section 2.4.3 demonstrates
all of these capabilities, proving that Objective 5 is solved.

58

Future work

Objective 6: To prove real-world deployment capabilities, the solution should
be tested on realistic and relevant workloads and benchmarks.

To prove that SmartIO is an efficient solution for real-world applications, we
have performed a comprehensive performance evaluation consisting of both
synthetic microbencmarks and realistic, large-scale workloads. All parts of our
SmartIO implementation have been evaluated, and we have included several
sharing scenarios and network topologies have been evaluated, as well as a
wide range of standard and commodity PCIe devices like GPUs, NICs, and
NVMes. As SmartIO makes it possible to use remote devices as if they were
local, we have used standard and unmodified benchmarking tools and device
drivers. Through comparison testing, we prove that SmartIO does not add any
performance overhead compared to using local resources, in terms of latency and
throughput. We have also explored the performance effects of moving resources
further away, and present a thourough analysis of this. Finally, a proof-of-concept
NVMe driver was developed in order to evaluate our API extension and the
disaggregation possibilities enabled by SmartIO. All of the published papers
contributed towards solving this objective (Papers I to V).

By solving all of our six research objectives, we have answered the central
research question of this dissertation:

Can NTBs be leveraged to allow the internal memory and devices of
individual computers in a PCIe-networked cluster to be shared with
and used by remote machines in the cluster, as if these resources were
local to the remote machines?

We have not just implemented yet another disaggregation solution, but developed
a new and more flexible solution by taking a novel approach: utilizing the
memory mapping capabilities of NTBs to unify traditional device I/O with
distributed, shared-memory computing. Our implementation makes it possible
for machines to share their inner devices and memory with other machines in a
PCIe cluster. Remote resources can be used over standard PCIe, making our
SmartIO framework a zero-overhead solution for scaling out and transparently
using more hardware resources than there are available in a single machine. By
lending out their own local resources and borrowing remote resources, machines
take part in a dynamic and composable I/O infrastructure. Thus, we have shown
that we can leverage NTBs to develop a solution where resources can be freely
shared in a PCIe-networked cluster.

3.3 Future work

Several ideas for improvements emerged during the development of our SmartIO
framework. Here, we highlight some areas that warrant further investigations
and outline some possible directions for both ongoing and future work:

• The security implications of allowing remote machines to use and control
internal system resources is something that should be addressed. By lending

59

3. Conclusion

away local devices, the lender effectively yields control over it to software
running on a remote system. A flawed device driver may cause a device
to read from and write to rogue memory addresses, potentially crashing
the system. A malicious driver may even intentionally overwrite memory,
or misuse DMA in order to snoop data from memory on the lender. This
is particularly a concern in the context of our SISCI API extension, as
this exposes device functionality to user space software. Using an IOMMU
on the lender offers some protection against undesired memory accesses,
as devices are isolated in their own virtual address space. However, as
IOMMU domains only isolate per device, it could still be possible for
a malicious program to interfere while others are using a device, and
something like Process Address Space ID (PASID) may be required. The
security challenges of one-sided initiated I/O is an understudied topic
in general [56], so any work in this area would likely be a significant
contribution.

• Our performance experiments presented in Papers III to V show that a
combination of using the lender-side IOMMU and long PCIe paths may
severely impair DMA performance. While the use of an IOMMU on the
lender is optional for Device Lending, it is a requirement when using our
MDEV sharing method. Additionally, since using an IOMMU on the
borrower is required by Device Lending in most scenarios, the IOMMU
will be present in machines that are both lenders and borrowers. Reducing
or eliminating IOMMU performance penalty is a strong candidate for
future improvements. Alternative CPU/IOMMU architectures should be
investigated, to determine if they behave similarly to the Intel Xeon CPUs
used in our experiments. Implementing support for Address Translation
Services (ATS) [40] should also be considered, as ATS allows devices
(and PCIe switch chips) to cache I/O addresses resolved by an IOMMU.
However, it should be mentioned that since ATS requires support in both
devices and IOMMUs, it appears to not be widely adopted, especially for
commodity hardware.

• Our MDEV implementation currently supports so-called “cold migration”.
VMs can shut down, migrate, and restart on a different host, while keeping
the same passed-through devices. If the VM emulator supports it, it could
also be possible to support hot-adding and hot-removing devices to a
running VM, making live migration theoretically possible by first removing
all devices, migrating, and then re-attaching them afterwards. However,
this would temporarily disrupt device I/O and force guest drivers to reset
all devices. Supporting real “hot migration”, remapping devices while they
are in use, with minimal disruption, is something we wish to implement
in future work. Not only would such a solution require keeping memory
consistent during the migration warm-up, but a solution would also need
to consider DMA transactions in-flight during the migration. A mechanism
for re-routing transactions, without violating the strict ordering required

60

Future work

by PCIe, should be implemented, and would most likely require hardware
support that does not exist today.

• While our proof-of-concept NVMe driver demonstrates that it is possible
for multiple machines to share the same NVMe simultaneously, it is not
very practicable by itself; as our implementation only provides block-
level access to user space cluster applications, implementing a file system
or coordinating access is currently the responsibility of the application.
Therefore, we are currently working on implementing our proof-of-concept
prototype as a kernel space driver, making the disaggregated NVMe
available to the system for general use. This way, the disaggregated
NVMe can be used as a system disk, making it possible to format it with
existing Linux file systems. Moreover, since the NVMe can be shared
with multiple machines, it would also be possible to use a shared-disk
file system, such as GFS2. This new kernel space implementation could
co-exist with the existing user space implementation, as queues can be
assigned to application processes and kernel modules alike.

Finally, future interconnection technologies that are built on PCIe could provide
new opportunities, and should be explored once they become widely available.
Particularly Compute Express Link (CXL) 2.0 [53] is interesting in the context of
memory disaggregation, as it provides new cache-coherent protocols for accessing
system and device memory.

Our critical review of the goals and objectives showed that such sharing
of resources across cluster machines is possible. However, there also are
unsolved questions, and we have presented some additional potential directions.
Nevertheless, we believe that our research results are a step in the right direction
and should be a sound foundation for further research activities.

61

Glossary

API extension

One of the sharing methods of SmartIO, extending the SISCI API with
device-oriented functionality for writing device drivers as part of shared-
memory cluster applications. 15, 17, 23–25, 30–35, 38, 44, 46, 47, 50,
54–60

Base Address Register (BAR)

Registers in a device’s configuration space containing the start addresses
of the memory regions of a device. The term is often used synonymously
for the device memory region the BAR register describes. 19–22, 25–28,
30, 32, 34, 35, 51, 52, 58,
see also configuration space

borrower

A computer system using a remote device with SmartIO. 23–25, 27–31, 34,
36, 39, 43, 44, 46, 50–58, 60,
see also lender

configuration space

A set of standard registers that is used to configure a PCIe device, such as
reserving BARs and interrupt addresses. 20, 28, 29

CUDA

The parallel computing platform and API of Nvidia GPUs for general
purpose processing. 13, 15, 36, 37, 43–45, 47, 50

PCIe device function

PCIe devices may have one or more functions, each appearing to the system
as individual devices with their own set of resources. Also known as a
PCIe endpoint. 15, 21, 23, 26, 31, 58,
see also Single-Root I/O Virtualization (SR-IOV)

Device Lending

One of the sharing methods of SmartIO, allowing devices to be distributed
to and shared with remote machines. 14–17, 23–28, 31, 35, 37–41, 43–45,
47, 49–51, 54–58, 60

63

Glossary

direct memory access (DMA)

Devices capable of direct memory access can access system memory and
even BARs of other devices (peer-to-peer). 5, 8, 9, 16, 19–22, 25–30, 32,
35, 37, 39, 41–44, 49, 53, 56–58, 60

disaggregation

Dividing up a resource, such as memory or a device, into smaller
components, and making them available to remote units. 3, 8–13, 15,
17, 23, 31, 47–52, 54–56, 58, 59, 61

DMA window

A segment mapped for a device through the lender’s NTB, so that it may
DMA to it. 28, 30, 32, 56,
see also shared memory segment

GPUDirect

A feature of Nvidia GPUs that supports peer-to-peer DMA to GPU memory.
13, 31, 34, 35, 49, 50,
see also peer-to-peer DMA

hot-add

A PCIe feature where a device is added to the device tree of a running
system, and after the bus enumeration process. 8, 14, 27, 60

hypervisor

Kernel space software on a host machine, assisting and facilitating a virtual
machine emulator (such as Qemu) with IOMMU mappings. 2, 11, 14,
28–30, 51, 54, 55,
see also I/O Memory Management Unit (IOMMU)

I/O Memory Management Unit (IOMMU)

A unit embedded on the CPU that creates separate virtual address spaces
for devices and prevents DMA transactions outside these virtual address
spaces. 2, 16, 22, 27–30, 37, 39, 43, 46, 54, 56, 57, 60

input/output (I/O)

Any interaction with a hardware device 1–3, 6–9, 12–16, 22, 23, 25, 26,
28–30, 32, 36, 38, 41, 44–50, 53, 54, 57, 59, 60

kernel space

Virtual memory and execution privileges suitable for OS kernel and device
drivers. 61

64

Glossary

lender

A computer system that has registered one or more of its internal devices
with SmartIO and allowing it to be used by other machines. 23–25, 27–30,
33, 36, 39, 43, 44, 46, 51–58, 60,
see also borrower

Mediated Device Driver (MDEV)

One of the sharing methods of SmartIO, allowing devices to be distributed
and shared with remote VMs. 14–17, 24, 25, 28–31, 37, 38, 44, 49–52,
54–58, 60,
see also pass-through

memory-mapped I/O (MMIO)

In PCIe, device memory, such as registers, are mapped to the same address
space as RAM, allowing the CPU to read and write to this memory the
same way it would access system memory. 20, 25, 30

message-passing

A standardized method of communication commonly used in parallel
computing, including semantics for sending and receiving messages. 3, 49,
50

message-signaled interrupts (MSI)

Interrupts in PCIe are implemented as writes to a special memory address
that is interpreted by the CPU to invoke the correct interrupt vector
routine. 20, 21, 27

middleware

A software service that provides facilitation beyond functionality available
from the OS, often implemented using RDMA. 3, 6, 8, 49, 56

multicasting

A feature supported by some PCIe switch chips that allow data coming in
on one switch port to be replicated on multiple switch ports. 9, 13, 15, 31,
37, 38, 47, 58

non-transparent bridge (NTB)

A special PCIe device that translates memory transactions between separate
address spaces. 4–7, 9–12, 20–30, 38–40, 43, 46, 51–56, 58, 59

paravirtualization

A paravirtualized device relies on facilitation by the hypervisor in order to
use host resources. 28,
see also hypervisor

65

Glossary

partitioned global address space
A standardized parallel programming model for distributed, shared-memory.
51

pass-through
Allowing a physical hardware device to be accessed directly by a VM guest
by using a system’s IOMMU to map memory for the device. 2, 14, 22,
28–30, 37, 51, 54, 56, 57, 60,
see also hypervisor

peer-to-peer DMA
A PCIe feature allowing two devices to directly transfer data between each
other without going through system RAM. 8, 16, 21, 25, 28, 35, 37, 43, 58,
see also direct memory access (DMA)

remote direct memory access (RDMA)
Using the network adapter to copy memory directly onto the network,
without going through the OS network stack, often used to implement
middleware services. 3, 6, 8, 15, 16, 37, 38, 48–50, 56,
see also direct memory access (DMA)

remote procedure calls
A standardized method for passing messages and invoking software
procedures on a remote system. 49

shadow device
The mechanism used by to intercept certain device interactions from a
device driver. 26–28, 55,
see also Device Lending

shared memory segment
A contiguous range of memory that may be mapped through an NTB.
Segments can be allocated in RAM or in device memory (BAR). 9, 20, 21,
24, 25, 30–33, 35, 36, 44, 46, 50, 53, 56, 58

Single-Root I/O Virtualization (SR-IOV)
Allows a single device to virtualize multiple device functions in hardware,
each virtual function appearing to the system as a real device (function)
with its own set of resources. 3, 9, 15, 23, 31, 37, 48–51, 58,
see also PCIe device function

trap
A hardware-assisted virtualization mechanism that makes it possible to
invoke an interrupt routine with higher privileges. Also commonly known
as a “fault” or “exception”. 28, 29, 49

66

Glossary

user space

Virtual memory and execution privileges suitable for application software,
in contrast to kernel space. Device drivers implemented in user space
by-pass the kernel for improved performance, but sacrifices functionality
that requires kernel space privileges. 15, 23, 24, 30, 32, 39, 44, 55, 56, 60,
61

virtual machine guest

A computer system emulated in software. 2, 11, 14, 16, 17, 22, 28–30, 51,
54, 56, 57

virtual machine host

The physical machine running one or more VMs. 2, 10, 16, 22, 23, 26,
28–30, 51, 52, 55, 56, 60,
see also hypervisor

virtual machine emulator

The program that emulates a computer system, i.e., the VM. 22, 29, 30,
56, 60,
see also virtual machine guest

67

Bibliography

[1] Darren Abramson, Jeff Jackson, Sridhar Muthrasanallur, Gil Neiger, Greg
Regnier, Rajes Sankaran, Ioannis Schoinas, Rich Uhlig, Balaji Vembu,
and John Weigert. “Intel Virtualization Technology for Directed I/O.” In:
Intel Technology Journal vol. 10, no. 03 (August 2006), pp. 179–192. doi:
10.1535/itj.1003.02 (cited on page 2).

[2] Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier Deguillard, Jayneel
Gandhi, Stanko Novaković, Arun Ramanathan, Pratap Subrahmanyam,
Lalith Suresh, Kiran Tati, Rajesh Venkatasubramanian, and Michael
Wei. “Remote Regions: A Simple Abstraction for Remote Memory.” In:
Proceedings of the 24th USENIX Annual Technical Conference. ATC’18.
July 2018, pp. 775–787. isbn: 978-1-939133-01-4. url: https://www.usenix.
org/system/files/conference/atc18/atc18-aguilera.pdf (cited on page 49).

[3] Jens Axboe. Flexible I/O Tester. url: https://github.com/axboe/fio
[Accessed: 04/19/2022] (cited on page 39).

[4] Shai Bergman, Tanya Brokhman, Tzachi Cohen, and Mark Silberstein.
“SPIN: Seamless Operating System Integration of Peer-to-Peer DMA
Between SSDs and GPUs.” In: ACM Transactions on Computer Systems
vol. 36, no. 2 (July 2019), 5:1–5:26. issn: 0734-2071. doi: 10.1145/3309987
(cited on page 35).

[5] Broadcom.Multi-Host System and Intelligent I/O Design with PCI Express.
White paper. 2005. url: https : / / docs . broadcom . com / docs - and -
downloads/pdf/technical/expresslane/NTB_Brief_April-05.pdf [Accessed:
05/09/2022] (cited on pages 4, 20).

[6] Broadcom. PEX8733, PCI Express Gen 3 Switch, 32 Lanes, 18 Ports.
August 2011. url: https://docs.broadcom.com/docs/12351852 [Accessed:
02/16/2022] (cited on pages 20, 39, 51).

[7] I-Hsin Chung, Bulent Abali, and Paul Crumley. “Towards a Composable
Computer System.” In: Proceedings of the 1st ACM SIGHPC International
Conference on High Performance Computing in Asia-Pacific Region. HPC
Asia’18. January 2018, pp. 137–147. doi: 10.1145/3149457.3149466 (cited
on pages 3, 48).

[8] Adam Coates, Brody Huval, Tao Wang, David J. Wu, Andrew Y. Ng,
and Bryan Catanzaro. “Deep Learning with COTS HPC Systems.” In:
Proceedings of the 30th International Conference on Machine Learning.
ICML’13. June 2013, pp. 1337–1345. url: http://proceedings.mlr.press/
v28/coates13.pdf (cited on page 1).

69

https://doi.org/10.1535/itj.1003.02
https://www.usenix.org/system/files/conference/atc18/atc18-aguilera.pdf
https://www.usenix.org/system/files/conference/atc18/atc18-aguilera.pdf
https://github.com/axboe/fio
https://doi.org/10.1145/3309987
https://docs.broadcom.com/docs-and-downloads/pdf/technical/expresslane/NTB_Brief_April-05.pdf
https://docs.broadcom.com/docs-and-downloads/pdf/technical/expresslane/NTB_Brief_April-05.pdf
https://docs.broadcom.com/docs/12351852
https://doi.org/10.1145/3149457.3149466
http://proceedings.mlr.press/v28/coates13.pdf
http://proceedings.mlr.press/v28/coates13.pdf

Bibliography

[9] Douglas E. Comer, David Gries, Michael C. Mulder, Allen Tucker,
A. Joe Turner, and Paul R. Young. “Computing as a Discipline.” In:
Communications of the ACM vol. 32, no. 1 (January 1989). Ed. by Peter J.
Denning, pp. 9–23. issn: 0001-0782. doi: 10.1145/63238.63239 (cited on
page 12).

[10] Peter J. Denning. “Is Computer Science Science.” In: Communications
of the ACM vol. 48, no. 4 (April 2005), pp. 27–31. issn: 0001-0782. doi:
10.1145/1053291.1053309 (cited on page 11).

[11] Dolphin Interconnect Solutions. PXH830 PCI Express Gen3 x16 NTB
Host Adapter. url: https://www.dolphinics.com/products/PXH830.html
[Accessed: 04/16/2022] (cited on page 38).

[12] José Duato, Antonio J. Pena, Frederico Silla, Rafael Mayo, and Enrique S.
Quintana-Ortí. “rCUDA: Reducing the Number of GPU-based Acceler-
ators in High Performance Clusters.” In: Proceedings of the 8th IEEE
International Conference on High Performance Computing & Simulation.
HPCS’10. June 2010, pp. 224–231. doi: 10.1109/HPCS.2010.5547126
(cited on page 49).

[13] Amnon H. Eden. “Three Paradigms of Computer Science.” In: Minds and
Machines vol. 17, no. 2 (July 2007), pp. 135–167. issn: 1572-8641. doi:
10.1007/s11023-007-9060-8 (cited on page 11).

[14] NVM Express. NVM Express Base Specification. Revision 1.3d. March
2019. url: https://nvmexpress.org/wp-content/uploads/NVM-Express-
1_3d-2019.03.20-Ratified.pdf [Accessed: 02/16/2022] (cited on page 32).

[15] NVM Express. NVM Express over Fabrics. Revision 1.1. October 2019.
url: https://nvmexpress.org/wp-content/uploads/NVMe-over-Fabrics-
1.1-2019.10.22-Ratified.pdf [Accessed: 02/16/2022] (cited on page 49).

[16] Trevor Fountain, Alexandra McCarthy, and Fangfang Peng. “PCI Express:
An Overview of PCI Express, Cabled PCI Express and PXI Express.” In:
Proceedings of the 10th International Conference on Accelerator & Large
Experimental Physics Control Systems. ICALEPCS’05. October 2005. url:
https://accelconf.web.cern.ch/ica05/proceedings/pdf/I3_001.pdf (cited
on page 3).

[17] GigaIO. GigaIO Rack-scale Composable Infrastructure. url: https://gigaio.
com/ [Accessed: 05/09/2022] (cited on page 48).

[18] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdury, and
Kang G. Shin. “Efficient Memory Disaggregation with INFINISWAP.”
In: Proceedings of the 14th USENIX Symposium on Networked Systems
Design and Implementation. NSDI’17. March 2017, pp. 649–667. isbn:
978-1-931971-37-9. url: https://www.usenix.org/system/files/conference/
nsdi17/nsdi17-gu.pdf (cited on page 49).

70

https://doi.org/10.1145/63238.63239
https://doi.org/10.1145/1053291.1053309
https://www.dolphinics.com/products/PXH830.html
https://doi.org/10.1109/HPCS.2010.5547126
https://doi.org/10.1007/s11023-007-9060-8
https://nvmexpress.org/wp-content/uploads/NVM-Express-1_3d-2019.03.20-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-1_3d-2019.03.20-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVMe-over-Fabrics-1.1-2019.10.22-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVMe-over-Fabrics-1.1-2019.10.22-Ratified.pdf
https://accelconf.web.cern.ch/ica05/proceedings/pdf/I3_001.pdf
https://gigaio.com/
https://gigaio.com/
https://www.usenix.org/system/files/conference/nsdi17/nsdi17-gu.pdf
https://www.usenix.org/system/files/conference/nsdi17/nsdi17-gu.pdf

Bibliography

[19] Zvika Guz, Harry Li, Anahita Shayesteh, and Vijay Balkrishnan. “Perfor-
mance Characterization of NVMe-over-Fabrics Storage Disaggregation.” In:
ACM Transactions on Storage vol. 14, no. 4 (December 2018), 31:1–31:18.
issn: 1553-3077. doi: 10.1145/3239563 (cited on pages 3, 49).

[20] Rui Hou, Tao Jiang, Liuhang Zhang, Pengfei Qi, Jianbo Dong, Haibin
Wang, Xiongli Gu, and Shujie Zhang. “Cost Effective Data Center Servers.”
In: Proceedings of the 19th IEEE International Symposium on High
Performance Computer Architecture. HPCA’13. 2013, pp. 179–187. doi:
10.1109/HPCA.2013.6522317 (cited on page 49).

[21] Jian Huang, Xiangyong Ouyang, Jithin Jose, Md. Wasi-Ur-Rahman, Hao
Wang, Miao Luo, Hari Subramoni, Chet Murthy, and Dhabaleswar K.
Panda. “High-Performance design of HBase with RDMA over InfiniBand.”
In: Proceedings of 26th IEEE/ACM International Parallel and Distributed
Processing Symposium. IPDPS’12. 2012, pp. 774–785. doi: 10.1109/IPDPS.
2012.74 (cited on page 3).

[22] Neo Jia and Kirti Wankhede. VFIO Mediated Devices. 2016. url: https:
//www.kernel.org/doc/Documentation/vfio-mediated-device.txt [Accessed:
01/21/2022] (cited on page 28).

[23] Weihang Jiang, Jiuxing Liu, Hyun-Wook Jin, Dhabaleswar K. Panda,
William Gropp, and Rajeev Thakur. “High performance MPI-2 one-
sided communication over InfiniBand.” In: Proceedings of the 4th IEEE
International Symposium on Cluster Computing and the Grid. CCGrid’04.
2004, pp. 531–538. doi: 10.1109/CCGrid.2004.1336648 (cited on pages 3,
49).

[24] Kostas Katrinis, Dimitris Syrivelis, Dionisis Pnevmatikatos, Georgios
Zervas, Dimitris Theodoropoulos, Iordanis Koutsopoulos, Kobi Hasharomi,
Daniel Raho, Christian Pinto, Felix Espina, Sergio López-Buedo, Q.
Chen, Mario Daniel Nemirovsky, Damian Roca, Hans Klos, and Tom
Berends. “Rack-Scale Disaggregated cloud data centers: The dReDBox
project vision.” In: Proceedings of the 19th IEEE Conference on Design,
Automation & Test in Europe. DATE’16. March 2016, pp. 690–695. doi:
10.3850/9783981537079_1014 (cited on page 48).

[25] Venkata Krishnan, Todd Comins, Rudy Stalzer, and David Wong. “A
Case Study in I/O Disaggregation using PCI Express Advanced Switching
Interconnect (ASI).” In: Proceedings of the 14th IEEE Symposium on
High-Performance Interconnects. HOTI’06. August 2006, pp. 15–24. doi:
10.1109/HOTI.2006.5 (cited on page 48).

[26] Shuang Liang, Ranjit Noronha, and Dhabaleswar K. Panda. “Swapping to
remote memory over Infiniband: An approach using a high performance
network block device.” In: Proceedings of the 7th IEEE International
Conference on Cluster Computing. Cluster’05. September 2005, pp. 1–10.
doi: 10.1109/CLUSTR.2005.347050 (cited on page 49).

71

https://doi.org/10.1145/3239563
https://doi.org/10.1109/HPCA.2013.6522317
https://doi.org/10.1109/IPDPS.2012.74
https://doi.org/10.1109/IPDPS.2012.74
https://www.kernel.org/doc/Documentation/vfio-mediated-device.txt
https://www.kernel.org/doc/Documentation/vfio-mediated-device.txt
https://doi.org/10.1109/CCGrid.2004.1336648
https://doi.org/10.3850/9783981537079_1014
https://doi.org/10.1109/HOTI.2006.5
https://doi.org/10.1109/CLUSTR.2005.347050

Bibliography

[27] Kevin Lim, Jichuan Chang, Trevor Mudge, Parthasarathy Ranganathan,
Steven K. Reinhardt, and Thomas F. Wenisch. “Disaggregated Memory
for Expansion and Sharing in Blade Servers.” In: Proceedings of the
36th Annual ACM SIGARCH International Symposium on Computer
Architecture. ISCA’09. June 2009, pp. 267–278. isbn: 978-1-605585-26-0.
doi: 10.1145/1555754.1555789 (cited on page 49).

[28] Seung-Ho Lim, Ki-Woong Park, and Kwang-Ho Cha. “Developing an
OpenSHMEM Model over a Switchless PCIe Non-Transparent Bridge
Interface.” In: Proceedings of the 33rd IEEE International Parallel and
Distributed Processing Symposium Workshops. IPDPS’19 Workshops. May
2019, pp. 593–602. doi: 10.1109/IPDPSW.2019.00104 (cited on page 51).

[29] Linux kernel development community. VFIO - "Virtual Function I/O".
2013. url: https://www.kernel.org/doc/Documentation/vfio.txt [Accessed:
01/23/2022] (cited on page 22).

[30] Linux kernel development community. Linux IOMMU Support. url: https:
//www.kernel .org/doc/Documentation/Intel- IOMMU.txt [Accessed:
01/21/2022] (cited on page 22).

[31] Liqid Corporation. Liqid Composable Infrastructure. url: https://www.
liqid.com/ [Accessed: 05/09/2022] (cited on page 48).

[32] Xiaoyi Lu, Nusrat S. Islam, Md. Wasi-Ur-Rahman, Jithin Jose, Hari
Subramoni, Hao Wang, and Dhabaleswar K. Panda. “High-Performance
Design of Hadoop RPC with RDMA over InfiniBand.” In: Proceedings of
the 42nd ACM International Conference on Parallel Processing. ICPP’13.
October 2013, pp. 641–650. doi: 10.1109/ICPP.2013.78 (cited on page 49).

[33] Josepth E. McGrath. “Dilemmatics: The Study of Research Choices and
Dilemmas.” In: American Behavioral Scientist vol. 25, no. 2 (October 1981),
pp. 179–210. issn: 0097-6407. doi: 10.1177/000276428102500205 (cited on
page 11).

[34] Vijay Meduri. A Case for PCI Express as a High-Performance Cluster
Interconnect. January 2011. url: https://www.hpcwire.com/2011/01/
24/a_ case_ for_ pci_ express_ as_ a_high - performance_ cluster_
interconnect/ [Accessed: 05/15/2022] (cited on page 4).

[35] Microsemi. Multi-Host Sharing of NVMe Drives and GPUs Using PCIe
Fabrics. Microsemi, October 2019. url: https://www.microsemi.com/
document-portal/doc_download/1244483-multi-host-sharing-of-nvme-
drives-and-gpus-using-pcie [Accessed: 05/09/2022] (cited on pages 3, 48).

[36] Ben-Yehuda Muli, Jon Mason, Orran Krieger, Jimi Xenidis, Leendert
Van Doorn, Asit Mallick, Jun Nakijima, and Elsie Wahlig. “Utilizing
IOMMUs for virtualization in Linux and Xen.” In: Proceedings of the
8th Ottawa Linux Symposium. OLS’06. July 2006, pp. 71–85. url: https:
//www.kernel.org/doc/ols/2006/ols2006v1-pages-71-86.pdf (cited on
pages 2, 22).

72

https://doi.org/10.1145/1555754.1555789
https://doi.org/10.1109/IPDPSW.2019.00104
https://www.kernel.org/doc/Documentation/vfio.txt
https://www.kernel.org/doc/Documentation/Intel-IOMMU.txt
https://www.kernel.org/doc/Documentation/Intel-IOMMU.txt
https://www.liqid.com/
https://www.liqid.com/
https://doi.org/10.1109/ICPP.2013.78
https://doi.org/10.1177/000276428102500205
https://www.hpcwire.com/2011/01/24/a_case_for_pci_express_as_a_high-performance_cluster_interconnect/
https://www.hpcwire.com/2011/01/24/a_case_for_pci_express_as_a_high-performance_cluster_interconnect/
https://www.hpcwire.com/2011/01/24/a_case_for_pci_express_as_a_high-performance_cluster_interconnect/
https://www.microsemi.com/document-portal/doc_download/1244483-multi-host-sharing-of-nvme-drives-and-gpus-using-pcie
https://www.microsemi.com/document-portal/doc_download/1244483-multi-host-sharing-of-nvme-drives-and-gpus-using-pcie
https://www.microsemi.com/document-portal/doc_download/1244483-multi-host-sharing-of-nvme-drives-and-gpus-using-pcie
https://www.kernel.org/doc/ols/2006/ols2006v1-pages-71-86.pdf
https://www.kernel.org/doc/ols/2006/ols2006v1-pages-71-86.pdf

Bibliography

[37] NVIDIA Corporation. GPUDirect RDMA Documentation. 2022. url:
https://docs.nvidia.com/cuda/gpudirect- rdma/index.html [Accessed:
01/26/2022] (cited on pages 13, 31, 35).

[38] NVIDIA Corporation. CUDA Toolkit Documentation v11.6.2. url: http:
//docs.nvidia.com/cuda/ [Accessed: 04/20/2022] (cited on page 43).

[39] Peripheral Component Interconnect Special Interest Group (PCI-SIG).
Multi-Root I/O Virtualisation and Sharing Specification. Revision 1.x. May
2008. url: https://pcisig.com/specifications [Accessed: 02/11/2022] (cited
on page 48).

[40] Peripheral Component Interconnect Special Interest Group (PCI-SIG).
Address Translation Services Revision 1.1. Revision 1.1. January 2009.
url: https://www.pcisig.com/specifications [Accessed: 05/10/2022] (cited
on page 60).

[41] Peripheral Component Interconnect Special Interest Group (PCI-SIG).
Single Root I/O Virtualisation and Sharing Specification. Revision 3.1.
January 2010. url: https : / / pcisig . com / specifications [Accessed:
01/25/2022] (cited on page 31).

[42] Peripheral Component Interconnect Special Interest Group (PCI-SIG).
PCI Express Base Specification 4.0. Version 1.0. October 2017. url: https:
//pcisig.com/specifications [Accessed: 12/17/2021] (cited on pages 2, 19,
31).

[43] Zaid Qureshi, Vikram Sharma Mailthody, Isaac Gelado, Seung Won
Min, Amna Masood, Jeongmin Park, Jinjun Xiong, Chris J. Newburn,
Dimitri Vainbrand, I-Hsin Chung, Michael Garland, William Dally, and
Wen-mei Hwu. BaM: A Case for Enabling Fine-grain High Throughput
GPU-Orchestrated Access to Storage. Version 2. March 23, 2022. doi:
10.48550/ARXIV.2203.04910. url: https://arxiv.org/abs/2203.04910
[Accessed: 03/24/2022] (cited on page 15).

[44] Murali Ravindran. “Extending Cabled PCI Express to Connect Devices
with Independent PCI Domains.” In: Proceedings of the 2nd Annual IEEE
International Systems Conference. SysCon’08. April 2008, pp. 1–7. doi:
10.1109/SYSTEMS.2008.4519048 (cited on pages 3, 48).

[45] Jack Regula. Using Non-Transparent Bridging in PCI Express Systems.
White paper. Broadcom, 2004. url: https://docs.broadcom.com/doc/
12353428 [Accessed: 05/09/2022] (cited on pages 3, 4).

[46] Davide Rosetti. Benchmarking GPUDirect RDMA on Modern Server
Platforms. NVIDIA Corporation. October 2014. url: https://developer.
nvidia . com/blog/benchmarking - gpudirect - rdma- on -modern - server -
platforms/ [Accessed: 01/26/2022] (cited on pages 13, 31, 49).

[47] Nikolay Sakharnykh. Beyond GPU Memory Limits with Unified Memory on
Pascal. December 2016. url: https://developer.nvidia.com/blog/beyond-
gpu-memory-limits-unified-memory-pascal/ [Accessed: 11/28/2021] (cited
on pages 13, 50).

73

https://docs.nvidia.com/cuda/gpudirect-rdma/index.html
http://docs.nvidia.com/cuda/
http://docs.nvidia.com/cuda/
https://pcisig.com/specifications
https://www.pcisig.com/specifications
https://pcisig.com/specifications
https://pcisig.com/specifications
https://pcisig.com/specifications
https://doi.org/10.48550/ARXIV.2203.04910
https://arxiv.org/abs/2203.04910
https://doi.org/10.1109/SYSTEMS.2008.4519048
https://docs.broadcom.com/doc/12353428
https://docs.broadcom.com/doc/12353428
https://developer.nvidia.com/blog/benchmarking-gpudirect-rdma-on-modern-server-platforms/
https://developer.nvidia.com/blog/benchmarking-gpudirect-rdma-on-modern-server-platforms/
https://developer.nvidia.com/blog/benchmarking-gpudirect-rdma-on-modern-server-platforms/
https://developer.nvidia.com/blog/beyond-gpu-memory-limits-unified-memory-pascal/
https://developer.nvidia.com/blog/beyond-gpu-memory-limits-unified-memory-pascal/

Bibliography

[48] Cheol Shim, Kwang-Ho Cha, and Min Choi. “Design and implementation
of initial OpenSHMEM on PCIe NTB based Cloud Computing.” In: Cluster
Computing vol. 22 (February 2018): Supplement issue 1, pp. 1815–1826.
doi: 10.1007/s10586-018-1707-0 (cited on pages 4, 51).

[49] Vishal Shrivastav, Asaf Valadarsky, Hitesh Ballani, Paolo Costa, Ki Suh
Lee, Han Wang, Rachit Agarwal, and Hakim Weatherspoon. “Shoal: A
Network Architecture for Disaggregated Racks.” In: Proceedings of the 16th
USENIX Symposium on Networked Systems Design and Implementation.
NSDI’19. February 2019. isbn: 978-1-931971-49-2. url: https://www.
usenix.org/system/files/nsdi19-shrivastav.pdf (cited on page 48).

[50] Mark J. Sullivan. Intel Xeon Processor C5500/C3500 Series Non-
Transparent Bridge. White paper. Intel Corporation, January 2010 (cited
on page 20).

[51] Jun Suzuki, Yoichi Hidaka, Hunichi Higuchi, Masaki Kan, and Takashi
Yoshikawa. “Disaggregation and Sharing of I/O Devices in Cloud Data
Centers.” In: IEEE Transactions on Computers vol. 65 (10 December 2016),
pp. 3013–3026. doi: 10.1109/TC.2015.2513759 (cited on page 48).

[52] Amir Taherkordi, Feroz Zahid, Yiannis Verginadis, and Geir Horn. “Future
Cloud System Designs: Challenges and Research Directions.” In: IEEE
Access vol. 6 (November 2018), pp. 74120–74150. issn: 2169-3536. doi:
10.1109/ACCESS.2018.2883149 (cited on page 1).

[53] The CXL Consortium. Compute Express Link: The Breakthrough CPU-to-
Device Interconnect. url: https://www.computeexpresslink.org/ [Accessed:
05/15/2022] (cited on page 61).

[54] Adam Thompson and Chris J. Newburn. GPUDirect Storage: A Direct Path
Between Storage and GPU Memory. NVIDIA Corporation. August 2019.
url: https://developer.nvidia.com/blog/gpudirect-storage/ [Accessed:
01/26/2022] (cited on page 35).

[55] Animesh Trivedi, Bernard Metzler, and Patrick Stuedi. “A Case for RDMA
in Clouds: Turning Supercomputer Networking into Commodity.” In:
Proceedings of the 2nd ACM SIGOPS Asia-Pacific Workshop on Systems.
APSys’11. July 2011, 17:1–17:5. doi: 10.1145/2103799.2103820 (cited on
page 1).

[56] Shin-Yeh Tsai and Yiying Zhang. “A Double-Edged Sword: Security
Threats and Opportunities in One-Sided Network Communication.” In:
Proceedings of the 11th USENIX Workshop on Hot Topics in Cloud
Computing. HotCloud’19. July 2019. url: https : / /www .usenix . org /
system/files/hotcloud19-paper-tsai.pdf (cited on page 60).

[57] Cheng-Chun Tu. “Memory-Based Rack Area Networking.” PhD thesis.
Stony Brook University, May 2014 (cited on page 51).

74

https://doi.org/10.1007/s10586-018-1707-0
https://www.usenix.org/system/files/nsdi19-shrivastav.pdf
https://www.usenix.org/system/files/nsdi19-shrivastav.pdf
https://doi.org/10.1109/TC.2015.2513759
https://doi.org/10.1109/ACCESS.2018.2883149
https://www.computeexpresslink.org/
https://developer.nvidia.com/blog/gpudirect-storage/
https://doi.org/10.1145/2103799.2103820
https://www.usenix.org/system/files/hotcloud19-paper-tsai.pdf
https://www.usenix.org/system/files/hotcloud19-paper-tsai.pdf

Bibliography

[58] Cheng-Chun Tu and Tzi-cker Chiueh. “Seamless Fail-over for PCIe Switched
Networks.” In: Proceedings of the 11th ACM International Systems and
Storage Conference. SYSTOR’18. June 2018, pp. 101–111. doi: 10.1145/
3211890.3211895 (cited on page 52).

[59] Cheng-Chun Tu, Michael Ferdman, Chao-tung Lee, and Tzi-cker Chiueh.
“A Comprehensive Implementation and Evaluation of Direct Interrupt
Delivery.” In: Proceedings of the 11th ACM SIGPLAN/SIGOPS Interna-
tional Conference on Virtual Execution Environments. VEE’15. March
2015, pp. 1–15. isbn: 978-1-4503-3450-1. doi: 10.1145/2731186.2731189
(cited on page 51).

[60] Cheng-Chun Tu, Chao-tang Lee, and Tzi-cker Chiueh. “Secure I/O Device
Sharing Among Virtual Machines on Multiple Hosts.” In: ACM SIGARCH
Computing Architecture News vol. 41, no. 3 (June 2013), pp. 108–119. doi:
10.1145/2508148.2485932 (cited on pages 6, 51, 55).

[61] Cheng-Chun Tu, Chao-tang Lee, and Tzi-cker Chiueh. “Marlin: A Memory-
based Rack Area Network.” In: Proceedings of the 10th ACM/IEEE
Symposium on Architectures for Networking and Communications Systems.
ANCS’14. October 2014, pp. 125–136. doi: 10.1145/2658260.2658262 (cited
on pages 4, 49).

[62] Akshay Venkatesh, Khaled Hamidouche, Sreeram Potluri, Davide Rosetti,
Ching-Hsiang Chu, and Dhabaleswar K. Panda. “MPI-GDS: High Per-
formance MPI Designs with GPUDirect-aSync for CPU-GPU Control
Flow Decoupling.” In: Proceedings of the 46th ACM International Con-
ference on Parallel Processing. ICPP’17. August 2017, pp. 151–160. doi:
10.1109/ICPP.2017.24 (cited on page 49).

[63] Akshay Venkatesh, Hari Subramoni, Khaled Hamidouche, and Dhabaleswar
K. Panda. “A high performance broadcast design with hardware multicast
and GPUDirect RDMA for streaming applications on Infiniband clusters.”
In: Proceedings of the 21st IEEE International Conference on High
Performance Computing. HiPC’14. December 2014, pp. 1–10. doi: 10.
1109/HiPC.2014.7116875 (cited on pages 3, 49).

[64] Subianto Windoro. Switch Partitioning in PCI Express Switches. Renesas,
December 2008. url: https://www.renesas.com/eu/en/document/apn/708-
switch-partitioning-pcie-switches [Accessed: 02/14/2022] (cited on pages 3,
48).

[65] Heymian Wong. “PCI Express Multi-Root Switch Reconfiguration During
System Operation.” MA thesis. Massachusetts Institute of Technology,
May 2011. doi: 1721.1/66819 (cited on page 48).

[66] Xiangliang Yu. NTB: Add support for AMD PCI-Express Non-Transparent
Bridge. January 2016. url: https://lwn.net/Articles/672752/ [Accessed:
10/01/2021] (cited on page 20).

75

https://doi.org/10.1145/3211890.3211895
https://doi.org/10.1145/3211890.3211895
https://doi.org/10.1145/2731186.2731189
https://doi.org/10.1145/2508148.2485932
https://doi.org/10.1145/2658260.2658262
https://doi.org/10.1109/ICPP.2017.24
https://doi.org/10.1109/HiPC.2014.7116875
https://doi.org/10.1109/HiPC.2014.7116875
https://www.renesas.com/eu/en/document/apn/708-switch-partitioning-pcie-switches
https://www.renesas.com/eu/en/document/apn/708-switch-partitioning-pcie-switches
https://doi.org/1721.1/66819
https://lwn.net/Articles/672752/

Published Papers

Paper I

Device Lending in PCI Express
Networks

I

Authors: Lars Bjørlykke Kristiansen, Jonas Markussen, Håkon Kvale Stens-
land, Michael Riegler, Hugo Kohmann, Friedrich Seifert, Roy Nordstrøm,
Carsten Griwodz, Pål Halvorsen.

Abstract: The challenge of scaling IO performance of multimedia systems to
demands of their users has attracted much research. A lot of effort has
gone into development of distributed systems that add little latency and
computing overhead. For machines in PCI Express (PCIe) clusters, we
propose Device Lending as a novel solution which works at a system level.
Device Lending achieves low latency and extremely low computing overhead
without requiring any application-specific distribution mechanisms. For
the application, the remote IO resource appears local. In fact, even the
drivers of the operating system remain unaware that hardware resources
are located in remote machines. By enabling machines in a PCIe cluster
to lend a wide variety of hardware, cluster machines can get temporary
access to a pool of IO resources. Network cards, FPGAs, SSDs, and even
GPUs can easily be shared among computers. Our proposed solution,
Device Lending, works transparently without requiring any modifications
to drivers, operating systems or software applications.

Candidate’s contributions: Based on Kristiansen’s initial implementation of
Device Lending, Markussen had several discussions with Kristiansen and
contributed to its development through testing and conducting performance
benchmarks. Additionally, Markussen was responsible for writing most
of the text and organizing the collaboration with all of the authors. He
designed and performed the performance evaluation of the Device Lending
method, and also implemented the GPU RDMA benchmark program used
in the performance evaluation.

Published in: Proceedings of the 26th International Workshop on Network and
Operating Systems Support for Digital Audio and Video. NOSSDAV’16.
ACM. May 2016, article 10, pp. 10:1–10:6.

DOI: 10.1145/2910642.2910650

Contributed to: Objectives 1, 2 and 6.

79

https://doi.org/10.1145/2910642.2910650

Device Lending in PCI Express Networks

Lars Bjørlykke Kristiansen1, Jonas Markussen2, Håkon Kvale Stensland2, Michael Riegler2,
Hugo Kohmann1, Friedrich Seifert1, Roy Nordstrøm1, Carsten Griwodz2, Pål Halvorsen2

1Dolphin Interconnect Solutions AS, Norway
2Simula Research Laboratory, Norway & University of Oslo, Norway

{larsk, hugo, sfr, royn}@dolphinics.no
{jonassm, haakonks, michael, griff, paalh}@simula.no

ABSTRACT
The challenge of scaling IO performance of multimedia sys-
tems to demands of their users has attracted much research.
A lot of effort has gone into development of distributed sys-
tems that add little latency and computing overhead. For
machines in PCI Express (PCIe) clusters, we propose Device
Lending as a novel solution which works at a system level.

Device Lending achieves low latency and extremely low
computing overhead without requiring any application-specific
distribution mechanisms. For applications, the remote IO
resource appears local. In fact, even the drivers of the op-
erating system remain unaware that hardware resources are
located in remote machines.

By enabling machines in a PCIe cluster to lend a wide va-
riety of hardware, cluster machines can get temporary access
to a pool of IO resources. Network cards, FPGAs, SSDs, and
even GPUs can easily be shared among computers. Our pro-
posed solution, Device Lending, works transparently with-
out requiring any modifications to drivers, operating systems
or software applications.

CCS Concepts
•Computer systems organization → Distributed ar-
chitectures; •Software and its engineering → Dis-
tributed systems organizing principles;

Keywords
Multimedia, GPU, PCIe, interconnect, device sharing

1. INTRODUCTION
Performing multimedia tasks in real time are challeng-

ing and frequently require distributed systems. Tetzlaff et
al. [28] early provided a classification for designing a dis-
tributed system. Actual implementations have often ad-
dressed requirements for low latency and high throughput
by specialized interconnect networks [8, 6, 10, 7]. The PCI
Express (PCIe) interconnect network [5, 19], which today

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

NOSSDAV’16, May 13 2016, Klagenfurt, Austria
© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4356-5/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2910642.2910650

is the dominant interconnection technology inside individ-
ual computers, can be connected to the internal networks of
remote computers by using PCIe non-transparent bridges
(NTB) [23]. The communication over such an intercon-
nect network may be performed just like in classical inter-
connected networks, for example by implementing a high-
performance TCP/IP stack for PCIe [11].

From the point of view of each computer, an NTB is just
another PCIe device that offers memory areas for mapping
into the remote computer’s physical address space. An un-
usual property of the NTB, is that this memory is not lo-
cated on it, but is rather a mapping of arbitrary memory
areas within the domain of other computers that are also
connected to the same NTB.

This raises the question whether all PCIe devices that are
connected to any of the computers attached to such an NTB,
can be considered part of one common resource pool. With
Device Lending, devices can by lent by one computer into
another without involving the CPU in data path forwarding.

All resources of any PCIe device are represented by mapped
addresses, including their control registers and interrupts, so
all of them can be mapped by an NTB. Obviously, such map-
ping cannot be trivial. Whereas data areas can be mapped
into a computer’s address space just like those of locally in-
stalled devices, a reverse mapping is required for interrupts.
Furthermore, devices can be lent dynamically by one com-
puter to another only if the operating systems can handle
that PCIe devices are added to and removed from their ad-
dress space, i.e., if they have hotplug support [14] for the
specific device.

Once these problems are solved, we can see that the power
of this approach goes far beyond the classic interconnection
challenges of a streaming server. Within a small cluster,
devices can be pooled together and time-shared by different

Root node

Root node

Root node

Root node
Device Pool

Network

Devices

Devices

Figure 1: PCIe devices on separate machines could be pooled
together and shared between multiple computers.

81

Root Compex

CPU Cores
Memory

NTB

Root Compex

CPU Cores
Memory

EndpointDownstream port Switch Upstream port

Figure 2: An example of a PCIe topology.

computers (Figure 1). Network cards can be assigned to a
computer while it needs high throughput. Instead of copying
data between SSD disks over traditional network, the disk
can be borrowed and accessed directly. For a large CUDA
programming task, a computer can lend additional cards and
use CUDA’s own peer-to-peer model instead of relying on
additional middleware like rCUDA [4]. Pogorelov et al.[21]
have shown how a multimedia workload can be offloaded to
a remote GPU using Device Lending.

In this paper, we present how we achieve this pooling of
PCIe devices using only native device drivers. We present
the state of our proof-of-concept implementation of Device
Lending for Ethernet network cards and SSD disks, and in
more detail, our prototype for GPU lending. We show that
the GPUs can be lent dynamically without any modifications
to drivers or user-space applications.

The paper is organized as follows: we present essential
capabilities of PCIe in Section 2. Section 3 addresses the
current state of PCIe virtualization support. In Section 4
we discuss related work. Section 5 goes into details of our
implementation of Device Lending, followed by performance
results for GPU lending in Section 6. Conclusion and further
opportunities are discussed in Section 7.

2. PCI EXPRESS
PCIe is an industry standard for architecture-independent

connection of hardware peripherals to computers. In PCIe
terminology, such a peripheral is a PCIe endpoint. While its
predecessor PCI relied on parallel buses that were shared be-
tween endpoints, PCIe uses point-to-point links (still called
buses) that consist of 1 to 32 lanes. These buses can be
connected to PCIe switches, which may be connected to
other switches, forming a tree structure where endpoints are
leaves, switches are inner nodes, and buses are edges. An
example of a PCIe topology is illustrated in Figure 2. The
connection of a bus to a switch is called a port, but (pri-
marily to illustrate how backwards compatibility with PCI
is achieved) it is also known as a bridge. Ports towards the
tree root are called upstream, the other downstream. The
network of buses, endpoints and switches is referred to as
fabric. For communication, PCIe specifies a layered proto-
col structure, whose upper layer is called transaction layer,
exchanging transaction layer packets (TLPs). Routing oc-
curs in a strictly hierarchical fashion, i.e., packets do not
need to pass through the root of the tree.

At the root of the PCIe tree is the root complex, which an
implementation can either interpret as an endpoint that is
connected to the root node of the fabric or as being the root
node. In this paper, we refer to the root complex as the root

node. Directly connected to the root complex is the CPU
core and memory controller. Each endpoint may act like a
group of distinct devices. Each of these is called a function
and is separately addressable by the triplet of its bus, device
and function IDs, referred to as its BDF.

Both endpoints and buses are detected by reading their
configuration space. At system boot, the system (BIOS or
OS) scans possible BDFs for vendor IDs in a process called
bus enumeration. If an endpoint or bus is present at a given
BDF, the system reads the associated configuration space.
This contains data structures in a standardized format [19],
allowing the device to define its requirements.

2.1 Memory-mapped IO
When a configuration space is found at a given BDF, the

system reads the its Base Address Registers (BARs) to de-
termine the function’s size requirements and number of ad-
dress spaces that must be mapped into the host’s linear ad-
dress space. This mapping allows the CPU to access device
registers of the endpoint through regular memory accesses.
This process is called Memory Mapped IO (MMIO) and al-
lows memory operations to be transparently translated into
TLPs by devices and the CPU.

The system writes the mapped addresses into the BARs,
which allows the endpoint to interact with the host machine.
If the device has an onboard Direct Memory Access (DMA)
engine, it can be instructed to read from and write to any
memory buffers directly, including main memory and other
endpoints. Without a DMA engine, the CPU must write to
MMIO registers to transfer data.

2.1.1 Posted and non-posted transactions
Some PCIe requests require end-to-end notification upon

completion. These requests are called non-posted transac-
tions, while requests that do not require notification are
posted transactions. A memory write request is an exam-
ple of a posted transaction. The requester sends the write
request along with the data and after it leaves the egress port
it is no longer the responsibility of the requester. Memory
read requests, on the other hand, requires explicit comple-
tion TLPs.

Non-posted requests are significantly affected by the length
of a PCIe path. The longer the path, the higher the request-
completion latency becomes. In addition, the number of
read requests in flight is limited by how many the requester
supports. The number of supported read requests in flight
has an impact on read performance.

2.1.2 Transparent bridges
A switch is associated with one contiguous address range

in the host address space and is aware of it. The address
range is called address window, and spans all address ranges
assigned to endpoints downstream of this switch. Each port
on the root complex is associated with its own contiguous
address range. This allows shortest-path routing in the tree
based on physical address. Switches and their ports perform
only routing in this scenario, and are transparent in that
sense. PCIe bridges can be regarded as transparent bridges.

2.1.3 Non-transparent bridges
It is desirable to extend PCIe out of the single computer

and use it for high-speed interconnection networks due to its
high bandwidth and low latency [22]. One way of doing this

82

GPU MMIO range

GPUNIC

NIC
MMIO range

Hot-plug bridge address window

Disk controller

Disk controller
MMIO range

Hot-plug slot

Physical address space

Figure 3: Physical address ranges are reserved by OS or
BIOS at boot time. Memory requirements of hot-plugged
devices must fit within the already existing address windows.

is by using NTBs [23]. Although not standardized, NTBs
are widely adopted and all NTB implementations have sim-
ilar capabilities. Several processor architectures, including
recent Intel Xeon CPUs, support NTB implementations [26].

Despite the name, NTBs do actually appear as PCIe end-
points in one or more PCIe fabrics at the same time. They
are mapped with large MMIO areas similar to other end-
points. However, unlike other endpoints and like transpar-
ent bridges, memory operations on these areas are forwarded
from one fabric into another. Since an NTB is mapped dif-
ferently in each host’s address space, it performs address
translation on the TLPs during forwarding. This address
translation is similar to a single-level page table. Effectively,
NTBs create a shared memory architecture across several
hosts [13].

However, an NTB address space is not necessarily lin-
ear. Its MMIO area is divided into equally sized segments,
and each segment can be mapped anywhere into the remote
host’s address space. This is done by replacing part of the
address with a per-segment offset into the remote host’s ad-
dress space. Not only does this allow a remote host to access
local RAM memory, it also enables a remote host to access
MMIO areas of local PCIe devices.

2.2 Message-signaled interrupts
Whereas physical interrupts lines were used in traditional

PCI, PCIe uses Message-Signalled Interrupts (MSI) [17, 19].
When an endpoint issues an MSI, this is actually a normal
memory write to a special address, which is then interpreted
by the chipset and used to generate an interrupt to the CPU.
For our work, this has the essential implication that the
address of an MSI can be mapped through an NTB.

2.3 Hot-plugging
The idea of lending devices without any OS changes what-

soever includes the goal that the devices must appear to and
disappear from the OS at run-time. Obviously, there are
device drivers that are not capable of coping with run-time
appearance or disappearance. We can address the challenges
that occur on a level “underneath” the OS.

PCIe specifies the ability of hot-plugging devices, mak-
ing them available to the system while it is running. This
ability was designed for replacing devices without rebooting
the machine [22, 14]. Consequently, most OS implemen-
tations reserve MMIO ranges at boot time and keep them
unchanged until reboot.

This is sufficient for hot-plugging in the sense of hot-
replace, but problematic for hot-add, as shown in Figure 3.

When a device is hot-plugged, it appears in a port of a
PCIe switch whose contiguous address range has already
been mapped. A worst-case reservation for an arbitrary end-
point for every hot-plug capable port of a switch is not usual
but may be feasible. However, a hot-add operation may
plug an entire subtree of devices into the port, with an ar-
bitrarily large requirement for MMIO range. If the required
address range is too large, a remapping of the host address
space must be undertaken. This is, however, non-trivial, and
few OSes support it currently. In our implementation, the
hot-add variant of hot-plugging becomes trivial, as devices
become accessible through the NTB. The already allocated
address space is large enough to contain all the MMIO areas.

3. VIRTUALIZATION SUPPORT IN PCIE
Traditionally, virtualization has been used to provide host

resources to guest OSes in virtual machines (VM). Since end-
points are already mapped into the host address space, and
the VM has a different memory layout than the host, they
can traditionally not access endpoints without specialized
drivers in the guest OS, which are aware of the mapping.
Due to the performance penalty of this (and the breach of
VM isolation that a common memory layout would bring),
dedicated virtualization units have been introduced.

3.1 IO Memory Management Unit
By organizing memory in pages and adding a software-

defined page-table, a Memory Management Unit (MMU)
can translate addresses accessed by the CPU before passing
them to chipset and memory controller. The MMU provides
every processes in the host OS as well as every guest OS in a
VM their own virtual, linear address space, while the physi-
cal memory can be fragmented or non-existent (e.g., swapped
out).

The IO Memory Management Unit (IOMMU) [9] is sim-
ilar to an MMU, but it provides virtualization of addresses
between chipset (including CPU cores and MMU) and PCIe
fabric. One of the most important features of the IOMMU is
the DMA remapper, which translates addresses of memory
operations from any IO device. In other words, it translates
IO virtual addresses to physical addresses.

Similarly to pages mapped by an MMU, an IOMMU can
group PCIe functions into domains, where each domain has
separate mappings and its own address space. Such a do-
main can be part of the address space of a VM, while other
PCIe functions remain isolated from the VM. This allows
the VM to interact directly with the device using native
device drivers in the guest OS, often referred to as PCIe
passthrough.

Importantly, there is nothing that prevents the IOMMU
from performing such a mapping for the host OS as well.
This is an opportunity for Device Lending.

3.2 Single-Root IO Virtualization
Unlike the MMU’s page maps, IOMMU mappings are not

process-specific. Since IOMMU supports only one mapping
per PCIe function, it can only assign an endpoint function to
a single VM at a time. Single-Root IO Virtualisation (SR-
IOV) [20] addresses this. SR-IOV-aware device can allow
single physical PCIe functions to act as multiple virtual PCIe
functions, allowing SR-IOV to map a single physical function
to several VMs.

83

3.3 Performance penalty
As with most abstractions, DMA remapping brings a per-

formance overhead. The translation tables are held in mem-
ory like the MMU’s. When a memory access passes through,
the IOMMU must perform a multi-level table look-up. Fur-
thermore, it is located in the root complex, and all TLPs
must be routed through the root to perform DMA remap-
ping. In addition, unpredictable access patterns using small-
sized pages can lead to thrashing of the IO translation look-
aside buffer. PCI-SIG has developed an extension of the
transaction layer protocol that allows caching of mapped
addresses on the PCIe devices [19], but this is not widely
available yet.

4. RELATED WORK
The idea of a unified bus for the inner components of a

computer with those of another is not new. It was imagined
for both ATM [24] and SCI [1]. These ideas never got im-
plemented, because none of these technologies were picked
up for the internal interconnection networks of computers.

PCIe is the dominant standard for the internal intercon-
nection network. It is also proving to be a relevant contender
for an external interconnection network. PCIe, however, was
designed to be used within a single computer system only.
In this section, we will discuss some solutions for sharing IO
devices between multiple hosts.

4.1 Alternative protocols
There are several interconnection technologies, which are

more widely adopted for creating high-speed interconnection
networks than PCIe. These include InfiniBand, as well as
10Gb Ethernet. They may achieve the same throughput on
interconnection links, but they are not integrated as closely
with the system fabric as PCIe, and require soft-processing
of protocol stacks. Their latency is therefore, inevitably,
higher than that of PCIe interconnects.

4.2 Multi-Root IO Virtualization
Multi-Root IO Virtualization (MR-IOV) [18] specifies how

several hosts can be connected to the same PCIe fabric. The
fabric is logically partitioned into separate virtual hierar-
chies, where each host sees its own hierarchy without know-
ing about MR-IOV. MR-IOV require multi-root aware PCIe
switches, and, in the same way as SR-IOVs require SR-IOV-
aware devices to provide functions to several VMs, devices
must be multi-root aware to provide functions to several vir-
tual hierarchies (and thus hosts) at the same time.

Despite being standardized in 2008 [18], we are not aware
of any MR-IOV-capable devices and very few switches. In-
stead, there are attempts to achieve MR-IOV-like function-
ality through a combination of SR-IOV with NTB-like hard-
ware [27].

4.3 Ladon and Marlin
Our Device Lending idea is apparently timely, because

very similar functionality was proposed in Cheng-Chun Tu
et al. in the form of the Ladon [29] and Marlin [30] systems.

Ladon uses all PCIe and virtualization features as pro-
posed in this paper, but it achieves less freedom than our
Device Lending. In Ladon, PCIe devices that are offered
for sharing are all managed by a dedicated computer, the
management host. The only task of the management host

is to manage sharing of the devices. The guest OSes that
include these devices into their PCIe fabric are, first, all
running in VMs, and second, they include the remote PCIe
devices in their fabric for the entire lifetime of the OS. With
our Device Lending, we can actually pool the resources of
a small cluster of NTB-connected devices by lending in ar-
bitrary direction. We can even exchange devices, and do
this under the control of a running OS, not a dedicated ma-
chine. By combining PCIe hot-plug support in the OS with
use of the NTB, we can insert remote PCIe devices while
the OS is running. Finally, for devices whose native device
drivers support hot-remove, we can stop borrowing without
rebooting.

Marlin [30] can share network IO capacity in a cluster by
forwarding Ethernet packets underneath the host’s TCP/IP
stack to another node, using an Ethernet-over-PCIe driver
for legacy software and a dedicated stack for zero-copy mode.
While this replicates Dolphin Interconnect Solutions’ (Dol-
phin) SuperSocket approach [12], which is a continuation
of SuperSockets for SCI [25], the technique appears generic
for all interconnection technologies. With Device Lending,
however, we borrow the network card from the remote host
and require neither driver nor encapsulation overhead.

5. IMPLEMENTATION
We have implemented Device Lending for an unmodified

Linux kernel, using an NTB and the IOMMU. The imple-
mentation is composed of two parts, the lending side and the
borrowing side. For our proof-of-concept implementation,
we rely on a NTB implementation from Dolphin, namely
the PXH810 host adapter [2].

The lending side kernel module binds itself as a driver for
the targeted PCIe devices. This provides us with exclusive
access to the device, allowing the kernel module to access the
device’s configuration space while preventing other drivers
on the host from interfering. The kernel module then notifies
the borrowing side of all available devices.

When the user requests an available device, the borrowing
side kernel module communicates with the lending side ker-
nel module in order to read the device’s configuration space.
The lending side sets the targeted device into a per-borrower
IOMMU domain, isolating the device from the rest of the
system and other devices. The borrowing side then sets up
the necessary MMIO mappings using the NTB and tells the
lending side to set up the reverse mappings for device to
RAM DMA as well as MSI mappings. Following this, the
borrowing side then injects the device into the Linux PCI
subsystem and signals a hot-add event. Linux will probe the
device, set it up and load the device driver.

The device driver is now able to communicate with the
device using MMIO access. Whenever the device driver
sets up new DMA mappings using the Linux DMA-API,
the borrowing side kernel module intercepts these calls and
dynamically sets up and tear down the necessary IOMMU
mappings. This allows the borrowing side device driver to
transfer data to the remote device with no additional soft-
ware overhead.

6. EVALUATION AND DISCUSSION
As the global address space feature of PCIe is unique, and

since, to the best of our knowledge, no MR-IOV implemen-
tations exist, our Device Lending concept has few relevant

84

4,513 4,568
4,807

2,811 2,939 3,046

0

1

2

3

4

5

6

1 MB 4 MB 10 MB 1 MB 4 MB 10 MB

Local RAM to Remote RAM (write) Local RAM from Remote RAM (read)

G
ig

ab
yt

es
 p

er
 s

ec
on

d

(a) RAM to RAM

2,393 2,348 2,396
2,987 2,913 3,021

4,414 4,464
4,859

1,905 1,853 1,88

0

1

2

3

4

5

6

1 MB 4 MB 10 MB 1 MB 4 MB 10 MB 1 MB 4 MB 10 MB 1 MB 4 MB 10 MB

Local GPU to Remote
RAM (write)

Local GPU from
Remote RAM (read)

Local RAM to Remote
GPU (write)

Local RAM from
Remote GPU (read)

G
ig

ab
yt

es
 p

er
 s

ec
on

d

(b) RAM to GPU

Figure 4: DMA transfer bandwidth across the NTB with different transfer sizes. The DMA engine on the NTB is used.

comparisons. Alternative solutions either require extensive
virtualization support or additional protocol stacks. In order
to evaluate our proof-of-concept implementation, we there-
fore evaluate the performance compared to what is possible
to achieve with specialized use of the NTB. To establish a
point of reference, we measured RAM to RAM bandwidth
as this shows the maximum possible transfer rate.

We configured two test machines, shown in Figure 5. Both
machines have a single Nvidia Tesla K40 directly connected
to the root complex each. The machines were connected
together using two x8 Gen3 Dolphin PXH810 adapter cards
and an external PCIe cable. In all our tests, Machine A was
used to initiate transfers.

6.1 Reference evaluation
For our RAM to RAM reference, we transferred data be-

tween the two machines over the NTB and measured the
bandwidth without Device Lending (Figure 4). Here, we
used Dolphin’s SISCI API for programming the DMA engine
on the NTB itself [3, 16]. All PCIe endpoints in our setup
are connected directly to the root complex, which is why
transferring between remote RAM and local RAM shows
the optimal performance over the NTB (Figure 4a). RAM
to remote RAM latency is approximately 573 ns.

Write requests peak at around 4.8 GB/s on our test con-
figuration, shown on the left-hand side in Figure 4a. As
mentioned in Section 2.1.1, memory read requests are af-
fected by the distance in the PCIe hierarchy because they
are non-posted transactions. However, there are is an addi-
tional factor that also limit the performance of read oper-
ations. PCIe defines a maximum read request size. This is
configured by the system to ensure that the bandwidth is
shared among all the devices in the hierarchy. For our test
system, the maximum read request size is 512 bytes, and
the TLP maximum payload size is 128 bytes. The DMA
engine on the NTB handles 64 read requests in flight. As
seen in Figure 4a, read requests peak at around 3 GB/s on

Root Compex
Intel Xeon E5-2620 v2

CPU Cores
Memory

NTB
Dolphin PXH810

Root Compex
Intel Xeon E5-2620 v2

GPU
Tesla K40

CPU Cores
Memory

NTB
Dolphin PXH810

GPU
Tesla K40

External PCIe cable

Machine A Machine B

x16 x16 x8x8

x8

Figure 5: The setup used for our evaluation

our configuration.
Since the GPU is even further away than RAM, as illus-

trated in Figure 5, we see a considerably lower bandwidth
for RAM to remote GPU and GPU to remote RAM trans-
fers. Figure 4b shows the results of using the DMA engine
on the NTB. The two scenarios on the left-hand side show
using a local GPU on Machine A and RAM on Machine B.
The two other scenarios on the right-hand side show the
opposite, using local RAM on Machine A and the remote
GPU on Machine B. It is important to note that when using
a local GPU, the DMA engine on the NTB first has to per-
form read requests to the GPU before it is able to push it
to the remote side using write requests. In other words, it is
a two-part operation. It is interesting to note that reading
from a local GPU and pushing it to remote RAM (Figure 4b,
second from left) is is similar to reading from remote RAM
(Figure 4a, on the right). This indicates that the latency
added by the NTB is around the same as having to route
TLPs through the root complex.

6.2 Device Lending evaluation
One of the novel properties of Device Lending is that it

can be achieved with no modifications to endpoint devices
or device drivers or even user-space software. We there-
fore wanted to use an already existing benchmarking tool.
A well-known tool in the CUDA developer community, is
the bandwidthTest [15] utility. This tool is included in the
CUDA Toolkit samples. In default mode of operation, this
program allocates page-locked buffers in RAM and measures
the bandwidth it achieves when copying to the GPU and vice
versa using the GPUs onboard DMA engine. We argue that
making one of the most complex proprietary GPU drivers
on the market work with our implementation serves as good
test for our proof-of-concept.

In our setup, Machine B was configured to lend its Tesla
K40 GPU to Machine A, making it available for the OS and
driver on the remote machine. Figure 6 shows the results
of running bandwidthTest on the remote Tesla K40 using
different transfer sizes. The left side shows the results of
making the onboard DMA engine write to remote RAM on
Machine B (around 4.9 GB/s), while on the right we see
the results of making the onboard DMA engine read data
from remote RAM (around 2 GB/s). These numbers are
comparable to the numbers seen in Figure 4b, as they show
a similar scenario. However, as they use different DMA en-
gines, they also have different locality to the data.

Using the onboard DMA engine to write to remote RAM
is close to the speeds for local RAM to remote RAM trans-

85

0,17
0,65

4,89 4,97 4,85

0,11
0,39

2,02 2,07 2,06

0

1

2

3

4

5

6

1 KB 4 KB 1 MB 4 MB 10 MB 1 KB 4 KB 1 MB 4 MB 10 MB

GPU memory to RAM (write) GPU memory from RAM (read)

G
ig

ab
yt

es
 p

er
 s

ec
on

d

Figure 6: bandwidthTest running on a borrowed GPU. The
DMA engine on the GPU is used to transfer.

fers (around 4.9 GB/s). Reading from remote RAM and
pulling it to GPU memory (around 2 GB/s) is a bit slower
than reading from remote RAM and writing it to local RAM
(around 3 GB/s). This is caused by the onboard DMA en-
gine on Machine A’s GPU being even further away from
the remote RAM on Machine B than the DMA engine on
Machine A’s NTB.

7. CONCLUSION AND FUTURE WORK
In this paper, we presented the Device Lending concept,

which allows a cluster of PCIe-connected computers to es-
tablish a pool of PCIe devices. These devices can subse-
quently be time-shared in a process of lending and borrow-
ing. Since these devices appear like hot-plugged local devices
to the borrowing OS, even the host OS can use them with
their native drivers. For all native device drivers that sup-
port hot-plugging, these borrowed devices can be returned
without rebooting. Having built the infrastructure for this,
we demonstrated its performance in this paper, and provide
hints for the best possible use of borrowed devices.

In further work, we will investigate concurrency challenges
when multiple devices are borrowed and situations where the
lender needs to take the device back forcefully. We are also
planning to implement a framework for managing Device
Lending. In addition, we are investigating the possibility
for lending separate functions of SR-IOV devices in order to
implement MR-IOV without needing specialised hardware.

Acknowledgments
This work has been performed mainly in the context of the BIA
project PCIe (#235530) funded by the Research Council of Nor-
way (RCN), with contributions from EONS (RCN #231687) and
POPART (EU H2020 #644874). The authors also acknowledge
Magma for providing Nvidia Tesla GPUs.

8. REFERENCES
[1] K. Alnæs, E. H. Kristiansen, D. B. Gustavson, and D. V.

James. Scalable coherent interface. In Proc. of CompEuro,
pages 446–453, 1990.

[2] Dolphin Interconnect Solutions. PXH810 Gen3 PCI
Express NTB Host Adapter.

[3] Dolphin Interconnect Solutions. SISCI API.

[4] J. Duato, A. Pena, F. Silla, R. Mayo, and
E. Quintana-Ort́ı. rCUDA: Reducing the number of
GPU-based accelerators in high performance clusters. In
Proc. of HPCS, pages 224–231, 2010.

[5] T. Fountain, A. McCarthy, and F. Peng. PCI express: An
overview of PCI express, cabled PCI express and PXI
express. In Proc. of ICALEPCS, 2005.

[6] S. Ghandeharizadeh, R. Zimmermann, W. Shi, R. Rejaie,
D. Ierardi, and T.-W. Li. Mitra: A scalable continuous
media server. Springer Multimedia Tools and Applications,
5(1):79–108, 1997.

[7] R. S. Grover, Q. Li, and H.-P. Dommel. Performance study
of data layout schemes for a SAN-based video server.
Parallel Computing, 34(12):747–756, 2008.

[8] J. P. Hayes, T. N. Mudge, Q. F. Stout, S. Colley, and
J. Palmer. Architecture of a hypercube supercomputer. In
Proc. of ICPP, pages 653–660, 1986.

[9] Intel Corporation. Intel Virtualization Technology for
Directed I/O, 2014.

[10] T. Jones, A. Koniges, and R. Yates. Performance of the
IBM general parallel file system. In Proc. of IPDPS, pages
673–681, 2000.

[11] V. Krishnan. Evaluation of an Integrated PCI Express IO
Expansion and Clustering Fabric. In Proc. of HOTI, pages
93–100, 2008.

[12] V. Krishnan, T. Comins, R. Stalzer, and D. Wong. A case
study in I/O disaggregation using PCI express advanced
switching interconnect (ASI). In Proc. of HOTI, pages
15–24, 2006.

[13] L. B. Kristiansen. PCIe Device Lending: Using
Non-Transparent Bridges to Share Devices. Master’s thesis,
University of Oslo, 2015.

[14] G. Kroah-Hartman. How the PCI hot plug driver filesystem
works. The Linux Journal, 97(2), May 2002.

[15] NVIDIA Corporation. CUDA Toolkit Documentation 7.5,
2015.

[16] NVIDIA Corporation. GPUDirect Technology Overview,
2015.

[17] PCI-SIG. PCI Local Bus Specification, 2002.

[18] PCI-SIG. Multi-root I/O Virtualization and Sharing
Specification, 2008.

[19] PCI-SIG. PCI Express 3.1 Base Specification, 2010.

[20] PCI-SIG. Single-root I/O Virtualization and Sharing
Specification, 2010.

[21] K. Pogorelov, M. Riegler, J. Markussen, M. Lux, H. K.
Stensland, T. Lange, C. Griwodz, P. Halvorsen,
D. Johansen, P. T Schmidt, and S. L. Eskeland. Efficient
processing of videos in a multi auditory environment using
Device Lending of GPUs. In In Proc. of MMSys. ACM,
2016.

[22] M. Ravindran. Extending Cabled PCI Express to Connect
Devices with Independent PCI Domains. In Proc. of IEEE
Systems Conference, pages 1–7, 2008.

[23] J. Regula. Using Non-transparent Bridging in PCI Express
Systems. PLX Technology, Inc, 2004.

[24] K. Saito, K. Anai, K. Igarashi, T. Nishikawa, R. Himeno,
and K. Yoguchi. ATM bus system. US 5,796,741 A, 1998.
US patent.

[25] F. Seifert and H. Kohmann. SCI SOCKET - a fast socket
implementation over SCI. 2006.

[26] M. J. Sullivan. Intel Xeon Processor C5500/C3500 Series
Non-Transparent Bridge. Technical report, 2010.

[27] J. Suzuki, Y. Hidaka, J. Higuchi, T. Baba, N. Kami, and
T. Yoshikawa. Multi-root Share of Single-Root I/O
Virtualization (SR-IOV) Compliant PCI Express Device. In
Proc. of HOTI, pages 25–31, 2010.

[28] W. Tetzlaff, M. Kienzle, and D. Sitaram. A methodology
for evaluating storage systems in distributed and
hierarchical video servers. In Compcon Spring, Digest of
Papers., pages 430–439, 1994.

[29] C.-C. Tu, C.-t. Lee, and T.-c. Chiueh. Secure I/O device
sharing among virtual machines on multiple hosts.
SIGARCH Comp. Arch. News, 41(3):108–119, 2013.

[30] C.-C. Tu, C.-t. Lee, and T.-c. Chiueh. Marlin: A
memory-based rack area network. In Proc. of ANCS, pages
125–136, 2014.

86

Paper II

Efficient Processing of Videos in a
Multi-auditory Environment using
Device Lending of GPUs

II
Authors: Konstantin Pogorelov, Michael Riegler, Jonas Markussen, Håkon

Kvale Stensland, Pål Halvorsen, Carsten Griwodz, Sigrun Losada Eskeland,
Thomas de Lange.

Abstract: In this paper, we present a demo that utilizes Device Lending via PCI
Express (PCIe) in the context of a multi-auditory environment. Device
Lending is a transparent, low-latency cross-machine PCIe device sharing
mechanism without any the need for implementing application-specific
distribution mechanisms. As workload, we use a computer-aided diagnosis
system that is used to automatically find polyps and mark them for
medical doctors during a colonoscopy. We choose this scenario because
one of the main requirements is to perform the analysis in real-time. The
demonstration consists of a setup of two computers that demonstrates how
Device Lending can be used to improve performance, as well as its effect of
providing the performance needed for real-time feedback. We also present
a performance evaluation that shows its real-time capabilities of it.

Candidate’s contributions: Markussen discussed and developed the idea for
the paper together with Pogorelov and Riegler, where Markussen was
responsible for the Device Lending setup and experiments. As a demon-
stration of a medical computational workload utilizing Device Lending,
Markussen performed the performance experiment together with Pogorelov.
Markussen also contributed with text in all sections, and wrote the section
on Device Lending.

Published in: Proceedings of the 7th International Conference on Multimedia
Systems. MMSys’16. ACM. May 2016, article 36, pp. 381–386.

DOI: 10.1145/2910017.2910636

Contributed to: Objective 6.

89

https://doi.org/10.1145/2910017.2910636

Efficient Processing of Videos in a Multi-Auditory
Environment Using Device Lending of GPUs

Konstantin Pogorelov1, Michael Riegler1, Jonas Markussen1, Håkon Kvale Stensland1

Pål Halvorsen1, Carsten Griwodz1, Sigrun Losada Eskeland3, Thomas de Lange23

1Simula Research Laboratory and University of Oslo
2Cancer Registry of Norwayy 3Vestre Viken Hospital Trust

konstantin@simula.no

ABSTRACT
In this paper, we present a demo that utilizes Device Lend-
ing via PCI Express (PCIe) in the context of a multi-auditory
environment. Device Lending is a transparent, low-latency
cross-machine PCIe device sharing mechanism without any
the need for implementing application-specific distribution
mechanisms. As workload, we use a computer-aided diag-
nosis system that is used to automatically find polyps and
mark them for medical doctors during a colonoscopy. We
choose this scenario because one of the main requirements
is to perform the analysis in real-time. The demonstration
consists of a setup of two computers that demonstrates how
Device Lending can be used to improve performance, as well
as its effect of providing the performance needed for real-
time feedback. We also present a performance evaluation
that shows its real-time capabilities of it.

CCS Concepts
•Information systems→ Information retrieval; Mul-
timedia and multimodal retrieval;

Keywords
Medical Multimedia; Information Systems; Classification

1. INTRODUCTION
Colonoscopy is a medical procedure, during which spe-

cialists in bowel diseases (gastroenterologists), investigate
and operate on the colon through minimally invasive surgery
by using flexible endoscopes. These examinations are usu-
ally done in a special examination room as depicted in fig-
ure 1(a). A standard hospital normally has several of these
rooms in their gastroenterology department. These rooms
contain screens for the doctors that show the video stream
from the camera, a bed for the patient, the endoscopic pro-
cessor, a desktop computer for reporting and some medical

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

MMSys’16 May 10-13, 2016, Klagenfurt, Austria

c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4297-1/16/05.

DOI: http://dx.doi.org/10.1145/2910017.2910636

(a) The examination room where
the endoscopies are performed. A
usuall hospital has several of these
rooms.

(b) Different endoscopes for dif-
ferent examinations and patients.
For example the very small one is
for children.

(c) The tip of the endoscope. It is
very flexible and can be moved by
the gastroentologist in every pos-
sible direction.

(d) The controll unit of the endo-
scope the gastroentologiest uses to
controll the endoscope in terms of
zoom, rotation, etc.

Figure 1: These images show an auditorium and en-
doscopic equipment in the Bæerum Hospital in Nor-
way where our system will be used.

treatment supplies. The endoscopes can vary in their at-
tributes like the thickness of the endoscope or its length,
but also in the resolution of the videos. Figure 1(b) shows a
collection of different endoscopes. Endoscopes are frequently
moved between examination rooms to fit the requirements
of a specific examination. From the tip of the endoscope
(figure 1(c)), a video is transmitted, and the gastroenterolo-
gist relies on the video stream to diagnose disease and apply
treatments. To control the endoscope, the control unit that
is part of every endoscope is used. As one can see in fig-
ure 1(d), this is a complex mechanism that requires a lot
of concentration from the doctor during the whole proce-
dure, lasting up to 2 hours depending on the findings. The
camera can be seen as the virtual the eye of the gatroentol-
ogists, and the video stream is all they perceive. Usually,
doctors get "third eye" support from their nurses to support
them during the examinations and increase the number of
findings.
Recently, computer-aided diagnostic systems are more and

more used in gastroenterology. The most recent and best

91

working system is Polyp-Alert [10]. This computer-aided
diagnostic system helps to determine the quality of the colo-
noscopy during the procedure. It reaches very high accuracy
and sensitivity, but it only reaches near real-time and not
full real-time feedback. This is not optimal for live exami-
nations where the medical expert controls the camera man-
ually and cannot rely on a system that introduces delays.
Even though real-time performance can be reached by using
multiple GPUs in one sufficiently powerful desktop machine,
placing such noisy and costly machines in the examination
rooms of a hospital is impractical. A more realistic sce-
nario is therefore to have or to use already installed smaller
machines in each room and to use Device Lending when-
ever more resources are needed. Here, Device Lending is a
concept where computers interconnected in a PCI Express
network can share devices using a transparent cross-machine
device sharing system without any special effors to use re-
mote resources locally. It is a low-latency, high-throughput
solution for distributed computing, utilizing common hard-
ware already present in all modern computers and requiring
little additional interconnection hardware.
In this paper, we will present a demo that utilizes Device

Lending of GPUs in combination with our own computer-
aided diagnosis system. With this demo, we address two
main challenges. First, we will show that real-time support
is possible using this technology. Second, we demonstrate
the possibility of having one mainframe that can lend the
devices to different computers based on the computational
demands. This can be an important advantage and even re-
quired for scenarios where no room for large machines exists.
Further, it can be important for setups where the require-
ments change fast and often on the fly (e.g., an examination
room in a hospital changes the used endoscopes several times
during the day; endoscopes with a very high resolution need
more processing power than those with lower resolution).

2. REAL-TIME COMPUTER AIDED DIAG-
NOSIS SUPPORT

Automatic detection of polyps in colonoscopies has been
in focus of research for a long time [9]. However, few com-
plete systems exist that are able to do real-time detection, or
that can support endoscopists by computer-aided diagnosis
for colonoscopies in real-time and at the same time main-
tain a high detection accuracy. The most recent and best
working approach is Polyp-Alert [10] that is able to give near
real-time feedback during colonoscopies. Visual features and
a rule based classifier are used to detect the edges of polyps,
and a performance of 97.7% correctly detected polyps is re-
ported. However, real-time support is limited as they reach
only 10 frames per second.
To target the real-time performance, we have proposed

EIR [8, 7, 6] medical experts supporting system for the task
of detecting diseases and anatomical landmarks in the gas-
trointestinal (GI) tract, which used in this demo as a use
case. It has several key attributes, i.e., EIR (i) is easy to
use, (ii) is easy to extend to different diseases, (iii) can do
real time handling of multimedia content, (iv) is able to be
used as a live system and (v) has high classification per-
formance with minimal false negative classification results.
Compared to Polyp-Alert, our detection accuracy is slightly
below. The classification performance of the polyp detection
in our EIR system lies around a precision of 0.903 and a re-

call of 0.919, but it is tested on a different dataset, meaning
that the numbers are not directly comparable.
Currently, the system consists of two parts, the detection

subsystem that detects irregularities in video frames and im-
ages and the localisation subsystem that localises the exact
position of the disease. The detection can not determine the
location of the found irregularity. The location determina-
tion is done by the localisation subsystem. The localisation
subsystem uses the output of the detection system as input.
After the automatic detection and analysis of the content,
the output has to be presented in a meaningful way to the
gastroentologists. Therefore, the system has a visualisation
subsystem that is reliable, robust and easy to understand
also under stressful situations that can occur during a live
examination. Moreover, it supports easy search and brows-
ing through a large amount of data after the examination. In
this demo, we do not focus on EIR but rather using Device
Lending and how it can improve performance. EIR itself is
just a relevant use case.

2.1 GPU Implementation
Parts of EIR had to be improved and changed to run on

multiple GPUs and allow the system to perform in real-
time. Therefore, the most compute-intensive parts have
been ported to CUDA, a computation support framework
for nVidia graphic cards. To achieve this, parts of the sys-
tem had to be built as a heterogeneous processing subsys-
tem. The GPU framework supports at the moment a num-
ber of features, namely Joint Composite Descriptor (JCD),
which includes Fuzzy Color and Texture Histogram (FCTH)
and Color and Edge Directivity Descriptor (CEDD), and
Tamura, but we are working on increasing the supported
features.
A main processing application interacts with a modular

image processing subsystem. Both of these are implemented
in Java. A multi-threading architecture is used by the image
processing unit to handle multiple processing and feature ex-
traction requests at the same time. A shared library that
is responsible for maintaining connection with and stream
data to the stand-alone CUDA-enabled processing server is
implemented in C++. To ensure high data transfer per-
formance and reduce excessive data copy operations, shared
memory has been used, while sending requests and receiving
status responses uses local UNIX sockets. A CUDA server
implemented in C++ runs in the background and performs
computations on GPU. The whole system can easily be ex-
tended with multiple CUDA servers running locally or on a
number of remote servers. This is also valid for the process-
ing server, which can be extended with new feature extrac-
tors and advanced image processing algorithms, and utilize
multi-core CPU and GPU resources concurrently.

2.2 Device Lending
Device Lending is a concept where computers intercon-

nected in a PCI Express [5] network can share devices. It
provides transparent, low-latency cross-machine PCIe de-
vice sharing without any need to implement application-
specific distribution mechanisms or modify native device
drivers. As the workload increases or decreases, the system
can allocate and de-allocate additional resources.
Today, PCIe is the most common interconnection network

inside a computer, and with PCIe non-transparent bridges
(NTB) [1], it can be turned into an interconnection network

92

Figure 2: Pooling of devices attached in the PCIe
network in the experimental setup.

for multiple machines. In PCIe, all devices connected to the
computer are considered part of one common resource pool
(figure 2). All devices resources in PCIe are represented
by addresses that can be mapped into a remote memory
space by an NTB. Device Lending is implemented [3] using
Dolphin Interconnect Solutions NTB software [1].
For the EIR system, Device Lending enables the com-

bination of multiple GPUs through CUDA’s own peer-to-
peer communication model, instead of either writing a dis-
tributed system, using rCUDA [2] or MPI [4].

2.3 Performance Evaluation
To evaluate the performance of our system and also to

show that Device Lending in our scenario works as intended,
we performed 4 different experiment sets. An overview of
the hardware used and the performed experiments can be
found in table 1. For all configurations, we used the same
CPU (Intel Core i7-4820K 3.7GHz) and RAM (16GB Quad
Channel DDR3). The test setup consists of 2 computers
(Machine A and B, see figure 2), where the host code of the
tests runs on one of them. The second one lends a GPU to it.
Experiment E1 uses one local GPU, E2 uses two local GPUs
and E3 uses three local GPUs. In E4, we borrowed one GPU
from the second computer in addition to three local GPUs.
With the current machine setup it is not possible to lend
more that one GPU because of software limitations in the
motherboard’s BIOS.
In the experiments, we performed polyp classification and

real-time feedback on the video for up to 16 parallel video
streams. All video streams are full HD (1920x1080) videos
from colonoscopies. We measured the performance from
capturing the video up to showing the output on the screen.
The complete evaluation is shown in figure 3.
Figure 3(a) shows the performance in terms of processing

time per frame for all streams simultaneous. The results

Device Type E1 E2 E3 E4
GPU1 Nvidia Tesla K40c * * * *
GPU2 Nvidia Quadro K2200 * * *
GPU3 Nvidia GeForce GTX 750 * *
GPU4 Nvidia Tesla K40c *

Table 1: This table shows the used hardware com-
binations of the different experiments. GPU 1 to 3
are local GPUs. GPU4 is lend via Device Lending.

reveal that for up to 7 parallel full HD streams, the 3 lo-
cal GPUs are fast enough. For more than 7 streams, GPU
lending is required. The graph shows that the more par-
allel streams are processed, the better is the performance
gain from the borrowed GPU. We assume that this is due
to the excessive overhead for transferring small amount of
data, which hinders Device Lending to reach its full poten-
tial. This becomes less important when we have more par-
allel streams, and that Device Lending can indeed improve
performance.
The plot in figure 3(b) shows the overall system perfor-

mance. The evaluation shows that Device Lending can in-
deed improve the system performance. The maximum over-
all frames per second we reach when using 4 GPUs at the
same time is 30 fps for 9 parallel full HD streams, which is
equivalent to 270 fps for a single video stream. Further, this
graph shows that the borrowed GPU does not increase the
performance for a smaller number of videos, but for 5 and
more videos the increase is higher. This is another indicator
that Device Lending can increase performance a lot for large
scale processing.
All in all, the experiments showed two important things:

(i) Device Lending does not make sense for small amounts
of data, but if the data to process is large it can give a large
performance boost, and (ii) Device Lending makes sense in
a multi-auditory scenario like we present with our demo.

3. DEMONSTRATION SETUP
The above experiments show the performance of EIR on

powerful machines and that Device Lending works efficiently,
i.e., high performance and low latencies at a very low over-
head. However, placing such a setup in the many exami-
nation rooms in a hospital is impractical for a number of
reasons like high costs and noisy machines. A more real-
istic scenario is therefore to have smaller machines in each
room and use Device Lending whenever more resources are
needed.

(a) Frame processing time for several full HD streams in parallel. (b) Overall system performance for multiple full HD steams in parallel.

Figure 3: System performance evaluation in terms of processing time per frame and maximum performance
using 4 different configurations described in table 1. Each video stream is a full HD video.

93

Figure 4: A compete overview of the demo setup.
The demo consists of 2 computers, 1 Dolphin in-
terconnect device, 1 screen, an artificial colon and
a flexible camera. The users can use the camera
in the flexible colon and will get real-time feedback
about possible findings. Furthermore, the demo can
be switched between Device Lending on and off to
demonstrate the effect of it more clear.

To demonstrate the usefulness of Device Lending, we there-
fore use the above scenario. In the demo, users can use
a flexible camera to perform a colonoscopy in an artificial
colon, and the system will support them in real-time with
analysis and feedback. The complete demo setup is depicted
in figure 4. During the demo, the camera can be used to ex-
amine the artificial colon and the output of the system will
be shown in real-time on the screen. The demo will show
the performance increase when a GPU can is borrowed from
another machine. Therefore, the demo application can be
switched between lending and not lending a GPU. An exam-
ple of the output for detected polyps can be seen in figure 5.
This setup is similar to our real world setup of the system for
live colonoscopy with videos as shown to the doctors. Thus,
the processing will be done on a very weak computer that
is not able to perform the complicated analysis in real-time.
Therefore, it is connected to another PC via a Dolphin in-
terconnect device and uses Device Lending to allocate the
required processing power. The demo will clearly show the
visible differences when Device Lending is used and when
not. We also would like to point out, that the presented
demonstration is based on the findings in [3] which describes
the Device Lending in more detail for further reading.

4. CONCLUSION AND FUTURE WORK
In this paper, we presented a demo for Device Lending for

computer-aided diagnosis that can assist medical doctors to
analyse colonoscopy videos in a multi-auditory scenario. We
proved that we can reach high performance in terms of pro-
cessing time for several full HD video streams in parallel
which make it possible to use the proposed system during
several and parallel live colonoscopies. We showed that run-
ning multiple classifiers in parallel by offloading the process-
ing to multiple machines connected through a PCI Express
network and using GPU lending works in our scenario. This
optimized version of the application will be able to dynam-
ically allocate, distribute and release compute resources on
demand from a pool of available GPUs. For future work,
we would like to improve the scheduling of tasks within our
lending network. This would include decisions for what and
how much to lend to which part of the system using different
input information like the required support level of doctors
and the endoscope used. We also think that this idea is ap-
plicable to other scenarios like for example in cinemas where
a less powerful PC in each saloon allocates GPUs based on
the quality of the movie to show, e.g., one room shows 4k,
one 3D and another one full HD.

Figure 5: This figure shows 2 examples of what the
doctor will see on the screen and what we will show
during the demo. In both pictures, the system de-
tected polyps and marked them with a cross. If
nothing is detected, the corners of the screen are
marked green for feedback.

5. ACKNOWLEDGMENT
This work has been performed in context of the FRINATEK

project EONS (#231687) and the BIA project PCIe (#235530)
funded by the Research Council of Norway (RCN). The au-
thors also acknowledge Lars Bjørlykke Kristiansen and Dol-
phin Interconnect Solutions for assistance with Device Lend-
ing and PCIe interconnect equipment. We also would like
to thank Mathias Lux from the University of Klagenfurt for
“lending“ us hardware at the conference venue.

6. REFERENCES
[1] Dolphin Interconnect Solution PXH810 NTB Adapter,

2015.
[2] J. Duato, A. Pena, F. Silla, R. Mayo, and

E. Quintana-Ortí. rCUDA: Reducing the number of
GPU-based accelerators in high performance clusters.
In Proc. of HPCS, pages 224–231, 2010.

[3] L. B. Kristiansen, J. Markussen, H. K. Stensland,
M. Riegler, H. Kohmann, F. Seifert, R. Nordstrøm,
C. Griwodz, and P. Halvorsen. Device lending in PCI
Express Networks. In Proc. of NOSSDAV, 2016.

[4] NVIDIA Corporation. Developing a Linux Kernel
Module using GPUDirect RDMA, 2015.

[5] PCI-SIG. PCI Express 3.1 Base Specification, 2010.
[6] K. Pogorelov, M. Riegler, P. Halvorsen, P. T. Schmidt,

C. Griwodz, D. Johansen, S. L. Eskeland, and
T. de Lange. GPU-accelerated real-time
gastrointestinal diseases detection. In Proc. of CBMS,
2016.

[7] M. Riegler, K. Pogorelov, P. Halvorsen, T. de Lange,
C. Griwodz, P. T. Schmidt, S. L. Eskeland, and
D. Johansen. EIR - efficient computer aided diagnosis
framework for gastrointestinal endoscopies. In Proc. of
CBMI, 2016.

[8] M. Riegler, K. Pogorelov, J. Markussen, M. Lux,
H. K. Stensland, T. de Lange, C. Griwodz,
P. Halvorsen, D. Johansen, P. T. Schmidt, and S. L.
Eskeland. Computer aided disease detection system
for gastrointestinal examinations. In Proc. of MMSys,
2016.

[9] Y. Wang, W. Tavanapong, J. Wong, J. Oh, and P. C.
de Groen. Near real-time retroflexion detection in
colonoscopy. IEEE BMHI, 17(1):143–152, 2013.

[10] Y. Wang, W. Tavanapong, J. Wong, J. H. Oh, and
P. C. de Groen. Polyp-alert: Near real-time feedback
during colonoscopy. CMPBM, 120(3):164–179, 2015.

94

Paper III

Flexible Device Sharing in PCIe
Clusters using Device Lending

III

Authors: Jonas Markussen, Lars Bjørlykke Kristiansen, Håkon Kvale Stens-
land, Friedrich Seifert, Carsten Griwodz, Pål Halvorsen.

Abstract: Processing workloads may have very high IO demands, exceeding
the capabilities provided by resource virtualization and requiring direct
access to the physical hardware. For computers that are interconnected
in PCI Express (PCIe) networks, we have previously proposed Device
Lending as a solution for assigning devices to remote hosts. In this paper,
we explain how we have extended our implementation with support for
the Linux Kernel-based Virtual Machine (KVM) hypervisor. Using our
extended Device Lending, it becomes possible to dynamically “pass through”
physical remote devices to VM guests while still retaining the flexibility
of virtualization, something that previously required extensive facilitation
in both hypervisor and device drivers in the form of paravirtualization.
We have also improved our original implementation with support for
interoperability between remote devices. We show that it is possible to
use multiple devices residing in different hosts, while still achieving the
same bandwidth and latency as native PCIe, and without requiring any
additional support in device drivers.

Candidate’s contributions: Markussen came up with the idea for, designed
and implemented the MDEV/KVM hypervisor extension to Device Lending.
Markussen also implemented the mechanism for facilitating peer-to-peer
between devices in different lenders, including the mechanism for resolving
I/O addresses. Markussen identified performance issues with the original
Device Lending implementation, and he contributed to investigating several
solutions for improving the data path performance. Markussen wrote most
of the text, and he designed and performed all the experiments, including
writing the necessary performance benchmarking programs.

Published in: Proceedings of the 47th International Conference on Parallel
Processing Companion. ICPP’18 Comp. ACM. August 2018, article 48,
pp. 48:1–48:10.

DOI: 10.1145/3229710.3229759

Contributed to: Objectives 1 to 4 and 6.

97

https://doi.org/10.1145/3229710.3229759

Flexible Device Sharing in PCIe Clusters using Device Lending
Jonas Markussen∗

Simula Research Laboratory
Oslo, Norway

jonassm@simula.no

Lars Bjørlykke Kristiansen
Dolphin Interconnect Solution AS

Oslo, Norway
larsk@dolphinics.no

Håkon Kvale Stensland∗

Simula Research Laboratory
Oslo, Norway

haakonks@simula.no

Friedrich Seifert
Dolphin Interconnect Solution AS

Oslo, Norway

Carsten Griwodz†

University of Oslo
Oslo, Norway

Pål Halvorsen∗

Simula Research Laboratory
Oslo, Norway

ABSTRACT
Processing workloads may have very high IO demands, exceeding
the capabilities provided by resource virtualization and requiring
direct access to the physical hardware. For computers that are in-
terconnected in PCI Express (PCIe) networks, we have previously
proposed Device Lending as a solution for assigning devices to
remote hosts. In this paper, we explain how we have extended our
implementation with support for the Linux Kernel-based Virtual
Machine (KVM) hypervisor. Using our extended Device Lending, it
becomes possible to dynamically “pass through” physical remote
devices to VM guests while still retaining the flexibility of virtual-
ization, something that previously required extensive facilitation in
both hypervisor and device drivers in the form of paravirtualization.

We have also improved our original implementation with sup-
port for interoperability between remote devices. We show that it
is possible to use multiple devices residing in different hosts, while
still achieving the same bandwidth and latency as native PCIe, and
without requiring any additional support in device drivers.

CCS CONCEPTS
• Computer systems organization → Distributed architec-
tures; Interconnection architectures; Cloud computing;

KEYWORDS
Resource sharing, resource allocation, networked resources, virtu-
alization, PCIe, data access, IOMMU, non-transparent bridging
ACM Reference Format:
Jonas Markussen, Lars Bjørlykke Kristiansen, Håkon Kvale Stensland, Friedrich
Seifert, Carsten Griwodz, and Pål Halvorsen. 2018. Flexible Device Sharing
in PCIe Clusters using Device Lending . In ICPP ’18 Comp: 47th International
Conference on Parallel Processing Companion, August 13–16, 2018, Eugene, OR,
USA. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3229710.
3229759
∗Also with University of Oslo.
†Also with Simula Research Laboratory.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPP ’18 Comp, August 13–16, 2018, Eugene, OR, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6523-9/18/08. . . $15.00
https://doi.org/10.1145/3229710.3229759

1 INTRODUCTION
Different processing workloads can have highly variable demands
to processing power and IO resources. Cloud providers, such as
Amazon AWS and Microsoft Azure, often base their pricing models
on offering different, or even custom, IO device configurations for
their VM images. However, as physical hardware resources may
be limited, it is desirable to be able to scale up and allocate more
resources and release them on demand. Dynamic scaling based on
current workload requirements leads to more efficient utilization
of the available physical resources.

Such scaling is made possible by VM hypervisors through re-
source virtualization, primarily software emulation and paravirtual-
ization. Software-emulated devices appear to the VM guest as an IO
device, but all functionality is handled in the VM implementation.
Paravirtualized devices also offer device functionality in software,
but the software-defined device resembles the physical device more
closely. As both methods of resource virtualization require facilita-
tion in the hypervisor, the availability of different types of resources
is limited by the underlying virtualization technology being used.
In addition, workloads that rely on multi-device interoperability
becomes a challenge, as setting up necessary memory mappings
for Remote Direct Memory Access (RDMA) and device-to-device
access is generally not possible without extensive facilitation in
both the hypervisor and VM guests themselves.

Many modern processors implement an IO Memory Manage-
ment Unit (IOMMU), allowing devices to be passed through to a VM
instance, without compromising the memory encapsulation pro-
vided by the virtualized environment. While pass-through allows
physical hardware to be used with minimal software overhead, this
technique does not have the flexibility of resource virtualization;
using pass-through, VM instances become tightly coupled with the
resources they use, and distributing VMs across multiple hosts in a
way that maximizes utilization becomes a challenge.

For machines that are interconnected in a PCIe cluster, where IO
devices and interconnection technology are attached to the same
PCIe fabric, we have proposed a different strategy to resource shar-
ing using Device Lending [15]. Device Lending exploits the memory
addressing capabilities inherent in PCIe networks in order to de-
couple devices from the hosts they physically reside in, allowing
them to be dynamically reassigned to different machines and used
as if they were locally installed.

In this paper, we describe our improved Device Lending concept
by extending it with support for the KVM hypervisor, allowing
physical remote devices to be passed through to a VM instance.

99

ICPP ’18 Comp, August 13–16, 2018, Eugene, OR, USA Jonas Markussen et al.

CPU Cores

PCIe Complex (Root)

including chipset
and memory controller Memory

(RAM)

GPU SSDEthernet
Card

Address Space
0x0000...

0xFFFF...

Eth. Card

Memory

GPU

SSD

Intr. Vectors

Figure 1: Device memory is mapped into the same address
space as the CPUs, allowing devices to access both system
memory and other devices.
We have also implemented support for direct device-to-device ac-
cess, enabling true multi-device interoperability. Finally, we also
investigate the impact of IO address virtualization on performance,
particularly in the case of device-to-device access. Our findings
show that we are able to borrow and use multiple remote devices,
achieving the same bandwidth as native PCIe and without adding
any additional latency beyond that of the interconnect. With virtu-
alization support, it is possible for Cloud providers to offer highly
customizable configurations of devices that are passed through to
VMs. Combined with support for efficient device-to-device data
transfers, it is possible to create highly flexible and dynamic config-
urations of local and remote IO devices in a PCIe cluster.

The remainder of this paper is organized as follows: we present
essential capabilities of PCIe in Section 2. In Section 3, we discuss
related work. In Section 4, we provide an outline of our original De-
vice Lending implementation. We describe how we have extended
Device Lending with virtualization support in Section 5. Section 6
describes how we have added support for borrowing from multi-
ple lenders, followed by a performance evaluation in Section 7. A
summary of our findings and conclusion is presented in Section 8.

2 PCIE OVERVIEW
PCIe is today the most widely adopted industry standard for con-
necting hardware peripherals (devices) to a computer system [10].
Device memory, such as register and onboard memory are mapped
into an address space shared with the CPUs and their memory
controllers (Figure 1). Memory operations, such as reads and writes,
are transparently routed onto the PCIe fabric. This enables a CPU
to access device memory, as well as allowing devices capable of
DMA to directly read and write to system memory.

PCIe uses point-to-point links, where a link consists of 1 up to
16 lanes. Each lane is a full-duplex serial connection. Data is striped
across multiple lanes and wider links yield higher bandwidths. The
current revision, PCIe Gen3 [21], specifies a theoretical maximum
data rate of 984.5 MB/s per lane.

Not unlike other networking technologies, PCIe also uses a lay-
ered protocol. The uppermost layer is called the transaction layer,
and one of its responsibilities is to forward memory reads and
writes as transaction layer packets (TLPs). It is also responsible
for packet ordering, meaning that memory operations in PCIe are
strictly ordered. Underneath the transaction layer lies the data link
layer and the physical layer, and their responsibilities include flow
control, error correction, and signal encoding.

As shown in Figure 2, the entire PCIe network is structured as
a tree, where devices form the leaf nodes. In PCIe terminology,

SwitchRoot port EndpointLink

NTB
Adapter

CPU Cores

PCIe Complex (Root)

including chipset
and memory controller

SSD

GPU

Memory

External Cable

CPU Cores

PCIe Complex (Root)

including chipset
and memory controller Memory

GPU
NTB

Adapter
Ethernet

Card

System A System B

Ethernet
Card

Figure 2: Example of a PCIe topology. Two independent net-
works are connected together using an NTB. The NTB trans-
lates IO addresses between the two different address spaces,
creating a shared address space between the networks.
a device is therefore referred to as an “endpoint”. Switches can
be used to create subtrees in the network. The “root ports” are at
the top of the tree, and act as the connection between the PCIe
network and the CPU cores (CPUs, chipset, and memory controller).
The entire PCIe network comprises the “fabric”. Note that in the
figure, two independent network roots are interconnected using a
Non-Transparent Bridge (NTB), which we will explain below.

2.1 Memory addressing and forwarding
The defining feature of PCIe is that devices are mapped into the
same address space as the CPU and system memory (Figure 1).
Because this mapping exists, a CPU is able to read from and write
to device memory regions, the same way it would read from system
memory. No specialized port IO is required. Likewise, if a device is
capable of DMA, it can read from and write to system memory, as
well as other devices on the fabric.

In order to map device memory regions to address ranges, the
system scans the PCIe tree and accesses the configuration space of
each device attached to the fabric. The configuration space describes
the capabilities of the device, such as describing the device’s mem-
ory regions. Switches in the topology are assigned the combined
address range of their downstream devices. This allows forwarding
of memory operations based on address ranges to occur in a strictly
hierarchical fashion in the tree, and TLPs are forwarded either up-
stream or downstream. An important property of this hierarchical
routing is that packets do not need to pass through the root, but
can be routed using the shortest path if the chipset allows it. This
is referred to as peer-to-peer in PCIe terminology. Using Figure 2,
System B’s lower switch will have the address range of both the
Ethernet card and the SSD, allowing TLPs to be routed directly
between them, device to device, without passing through the root.

Another significant feature of PCIe, is the use of message-signalled
interrupts (MSI) instead of physical interrupt lines. MSI-capable de-
vices post a memory write TLP to the root using a pre-determined
address. The write TLP is then interpreted by the CPU, which uses
the payload to raise an interrupt specified by the device.

2.2 Virtualization support and pass-through
Modern processor architectures implement IOMMUs, such as Intel
VT-d [3]. The IOMMU provides virtualization of addresses between
the PCIe fabric and the CPU (including memory controllers). One of

100

Flexible Device Sharing using Device Lending ICPP ’18 Comp, August 13–16, 2018, Eugene, OR, USA

the most important features of the IOMMU is the ability to translate
addresses of DMA operations from any IO device [1]. In other words,
it translates virtual IO addresses to physical addresses.

Similarly to pages mapped by an MMU for individual userspace
processes, an IOMMU can group PCIe devices into IOMMU domains.
As each domain has its own individual mappings, members of
an IOMMU domain consequently have their own private virtual
address space. Such a domain can be part of the virtualized address
space of a VM, while other PCIe devices and the rest of memory
remain isolated. This allows the VM to interact directly with the
device using native device drivers from within the guest, while the
host retains the memory isolation provided by the virtualization.
This is often referred to as “pass-through”.

As most device drivers make the assumption that they have
exclusive control over a device, sharing a device between several
VM instances requires either paravirtualization, such as Nvidia
vGPUs [17], or SR-IOV [22]. SR-IOV-capable devices allow a sin-
gle physical device to act as multiple virtual devices, allowing a
hypervisor to map the same device to several VMs.1

2.3 Non-Transparent Bridging
Because of its high bandwidth and low latency, it is desirable to
extend the PCIe fabric out of a single computer and use it for high-
speed interconnection networks [23]. This can be accomplished
using an NTB implementation [24]. Although not standardized,
NTBs are a widely adopted solution for interconnecting indepen-
dent PCIe network roots, and all NTB implementations have similar
capabilities. Some processor architectures, such as recent Intel Xeon
and AMD Zen, have a built-in NTB implementation [27].

Despite the name, an NTB actually appears as a PCIe endpoint.
This is illustrated in Figure 2, where the connected systems have
their own NTB adapter card. Just like regular endpoints, they ap-
pear to have one or more memory regions that can be read from or
written to by CPUs or other devices. Memory operations on these
regions are forwarded from one PCIe network to the other. As the
interconnected networks use different layouts for their address
space, the NTB performs a hardware address translation on the
TLPs during the forwarding. Consequently, NTBs create a shared
memory architecture between separate systems with very low ad-
ditional overhead in terms of latency.

As the address ranges associated with the NTB may be too small
to cover the entire address space of the different systems, some
NTBs support dividing their range into segments. A segment can
be mapped anywhere into the remote system’s address space. Due
to the complexity of translating addresses in hardware, the number
of possible mappings to remote systems is limited.

3 RELATED WORK
The idea of a unified network for the inner components of a com-
puter with those of another is not new. It was already imagined for
both ATM [26] and SCI [4]. These ideas never got implemented,
because none of these technologies were picked up for internal IO
interconnection networks.

1Note that Device Lending does not make any distinction between physical devices
and SR-IOV virtual devices.

PCIe is the dominant standard for internal IO bus, and is also
proving to be a relevant contender for external interconnection
networks. PCIe, however, was designed to be used within a sin-
gle computer system only. In this section, we will discuss some
solutions for sharing IO devices between multiple hosts.

3.1 Distributed IO using RDMA
There are several technologies which are more widely adopted for
creating high-speed interconnection networks than PCIe. These in-
clude InfiniBand, as well as 10Gb and 40Gb Ethernet [5, 16]. To make
use of their high throughput, they rely on RDMA [29]. Variants are
summarized by Huang et al. [12] and include native RDMA over
InfiniBand, Converged Enhanced Ethernet (RoCE), and Internet
Wide Area RDMA Protocol (iWARP). To alleviate the complexity
of programming for RDMA, middleware extensions like RDMA for
MPI-2 [14] and rCUDA [9] have been developed. Those middleware
extensions have also been extended with device-specific protocols
like GPUDirect for RDMA [25, 31] or NVMe over Fabrics.

While RDMA extensions may achieve very high throughput on
the interconnection links, they are not as closely integrated with
the IO bus fabric as PCIe, and require translation between proto-
col stacks. Another drawback is that it is currently only possible
for such protocols to work with devices and device drivers that
explicitly supports them. A proposed approach for overcoming the
protocol translation overhead would be to integrate network in-
terface functionality directly into SoCs [7], but the improvement
only takes effect when the SoCs are in communication with each
other. This idea is followed in the rack-scale architecture [6], which
generalizes a trend returning from switched cluster architectures
to hypercube architectures [11, 32]. These approaches all focus
on efficient data exchange for parallel processing, rather than on
resource sharing between logically separate compute units.

3.2 Virtualization approaches
Multi-Root IO Virtualization (MR-IOV) [19] specifies how several
hosts can be connected to the same PCIe fabric. The fabric is logi-
cally partitioned into separate virtual hierarchies, i.e., PCIe roots,
where each host sees its own hierarchy without knowing about
MR-IOV. MR-IOV requires multi-root aware PCIe switches, and,
in the same way as SR-IOV requires SR-IOV-aware devices to be
able to provide virtual devices to several VMs, devices must be
multi-root aware to provide virtual devices to several PCIe roots
(and thus hosts) at the same time.

Despite being standardized in 2008 [19], we are not aware of
any MR-IOV-capable devices. Instead, there are attempts to achieve
MR-IOV-like functionality through a combination of SR-IOV with
NTB-like hardware [28].2

Another virtualization approach is the Landon system [30]. Lan-
don uses all PCIe and virtualization features as proposed in this
paper, but it achieves less freedom than our Device Lending as
devices are physically installed in a dedicated management host
that is able distribute devices to different remote guest VMs. In
addition, devices are assigned for the lifetime of the guest OS, and
can not be easily reassigned on the fly.

2This is also possible with Device Lending, see footnote 1.

101

ICPP ’18 Comp, August 13–16, 2018, Eugene, OR, USA Jonas Markussen et al.

NTB
Adapter

CPU Cores

PCIe Complex (Root)

Remote
Device

Local
Memory

External Cable

CPU Cores

PCIe Complex (Root)

Memory

Remote
Device

NTB
Adapter

"Lender" (Remote) "Borrower" (Local)

Injected
Device

Borrower's
Address Space

Lenders's
Address Space

Memory

NTB Adapter

Local Memory

NTB Adapter

Remote
Device

Borrower's
Local Memory

Borrower's
Intr. Vectors

DMA Window

MSI Window

Device
Memory
Regions

DMA Buffers

MSI/Intr. VectorsIntr. Vectors

Figure 3: Using an NTB, it is possible to map the memory regions of a remote device so local CPUs are able to read and write
to device registers. The remote system can in turn reverse-map the local system’s memory and CPUs for the device, making
DMA and MSI possible. Device Lending injects a hot-added device into the Linux kernel device tree using these mappings.

3.3 Partitioning the fabric
Rack-scale computers are so-called converged infrastructure sys-
tems, where both IO devices and interconnects are attached to a
shared PCIe fabric. Rack-scale relies on dynamically partitioning
the shared fabric into different subfabrics (using fabric IDs), in or-
der to assign individual devices to different CPUs. Unlike MR-IOV,
rack-scale does not require support in devices, but it does require
dedicated hardware switches which support the fabric ID header
extension in order to configure routes between devices and CPUs.
Additionally, these systems are only modular to the extent of typical
blade server configurations, and scaling beyond a single system
requires facilitation using traditional distributed methods. Adding
new IO devices requires additional modules, often only available
from the same vendor.

There have been some efforts in achieving live-partitioning us-
ing PLX PCIe switches [33], but a performance evaluation of this
appears to be lacking.

4 DEVICE LENDING
As illustrated in Figure 3, it is possible to map the memory regions
of remote PCIe devices using an NTB. A local CPU can perform
memory operations on a remote device, such as reading from or
writing to registers. Conversely, it is also possible to map local
resources for the remote device, allowing it to write MSI interrupts
and access the local system’s memory across the NTB.

In order to make such mappings transparent to both devices and
their drivers, we have previously implemented Device Lending [15]
for an unmodified Linux kernel. Our implementation is composed
of two parts, namely a “lender”, allowing a remote unit to use its
device, and the “borrower” using the device. By emulating a hot-
plug event [23] while the system is running, we insert a virtual
device into the borrower’s local device tree, making it appear to
the system and device driver as if a device was hot-added in the
system. The device’s memory regions are mapped through the
NTB, allowing the local driver to read and write to device registers
without being aware that the device is actually remote.

The lender is responsible for setting up reverse mappings for
DMA and MSI. 3 As mentioned in Section 2.3, the address range of
the NTB is not necessarily large enough to cover the entire address

3Legacy interrupts are not supported in the current Device Lending implementation,
as they can not be remapped over the NTB.

Application

NVMeoF Host Driver

Interconnect

RDMA Facilitation

Transport Layer

NVMeoF Target DriverNVMe Driver

NVMe SSD

Interconnect

RDMA Facilitation

Transport Layer

PCIe PCIe or other IO bus

PCIe NTB

Local
"Borrower"

Remote
"Lender"

Device Lending

NVMeoF RDMA

Interconnect Link Interconnect Link

PCIe or other IO bus PCIe

Figure 4: Illustration of native NVMe using Device Lending
compared to NVMe over Fabrics using RDMA. Device Lend-
ing makes remote devices appear as if they are locally in-
stalled and there is no need for specialized support in de-
vices or drivers.

space of the borrowing system. Since it is generally not possible to
know in advance which memory addresses a device driver might
use for DMA transfers, we use an IOMMU on the borrower to set up
dynamic mappings to arbitrary addresses, allowing the lender to set
up a single DMA window. When the device driver calls the Linux
DMA API in order to create DMA buffers, the borrower intercepts
these calls. The borrower injects the IO address of the DMA window
prepared by the lender and sets up a local IOMMU mapping to the
DMA buffer. The driver then passes the injected address to the
device, completely unaware that the address is actually a far-side
address. This allows the device to reach across the NTB, transparent
to both driver and device. All address translations between the
different address domains are done in hardware (NTB and IOMMU),
meaning that we achieve native PCIe performance in the data path.

By allowing remote devices to appear to a system as if they are
locally installed, Device Lending is a method for decoupling devices
from the systems they physically reside in. As hosts can act as both
lender and borrower, we have created a highly flexible method of
assigning and reassigning devices to computers that currently need
them. We imagine this as hosts in the cluster contributing to a
pool of IO resources that can be cooperatively time-shared among
them. This has advantages over distributed IO using traditional
approaches; network interfaces can be assigned to a computer while
it needs high throughput, and released when it is no longer needed;

102

Flexible Device Sharing using Device Lending ICPP ’18 Comp, August 13–16, 2018, Eugene, OR, USA

access latency in NVMe over Fabrics using RDMA can be eliminated
by borrowing the NVMe disk instead and accessing it directly, as
shown in Figure 4; large-scale CUDA programming tasks can make
use of multiple GPUs that appear to be local instead of relying on
middleware such as rCUDA [9]. In contrast to RDMA solutions,
Device Lending works for all PCIe devices, and do not require any
additional support in drivers.

Our original implementation, however, did not account for device-
to-device access when borrowing multiple devices from different
lenders. As the borrowing system is not aware that the devices
reside in different systems, we need a mechanism to resolve IO ad-
dresses to other borrowed devices, in order to fully achieve device
interoperability. In addition, our original implementation lacked
support for borrowers that are VM guests. Adding virtualization
support would greatly increase the usability of Device Lending, as
we introduce the flexibility of decoupled remote devices and be able
to dynamically assign devices using pass-through.

5 SUPPORTING VIRTUAL BORROWERS
Many modern architectures now implement IOMMUs, allowing
DMA and interrupts to be remapped. This makes it possible for
a driver running in a VM guest to access a device directly with-
out breaking out of the memory isolation, as the driver is able to
communicate with the device using IO virtual addresses. In Linux,
such pass-through of devices is supported in the KVM hypervisor
using the Virtual Function IO API [2] (VFIO). This API provides a
set of functions for mapping memory for the device and control
functionality, such as resetting the device, that the hypervisor can
call in order to set up necessary mappings for a VM instance.

A theoretical solution for passing through remote devices, would
be for the physical host to borrow the remote device, injecting the
device into its local device tree, and then implement these functions.
Such a solution would not be feasible due to the following reasons:

(1) The device would be borrowed by the physical host for as
long as it runs, regardless of whether any VM instances
would currently be using it or not. This would lead to poor
utilization of device resources.

(2) All devices borrowed by the same physical host would be
placed in to the same IOMMU domain by Device Lending.
KVM requires pass-through devices to be placed in a separate
IOMMU domain in order to prevent memory accesses that
could potentially break out of the memory isolation provided
by virtualization.

(3) Pass-through requires the entire address space of the guest
VM to be mapped for the device. As there is no method of
establishing this mapping before the VM instance is running,
we need a mechanism for pinning memory pages used by
the instance in order to create a DMA window.

In the 4.10 version of the Linux kernel, an extension to the VFIO
API called Mediated Devices (mdev) [13] was included. This exten-
sion makes it possible to use VFIO for paravirtualized devices. It
introduces the concept of a physical parent device having virtual
child devices. This allows mdev to intercept certain operations,
such as when the VM instance tries to access the device’s config-
uration space, or when KVM is setting up interrupts. The idea is
that a single physical device can be used to emulate multiple virtual

devices. In our case, using the mdev extension provides us with
finer grained control over what the hypervisor and guest OS is
attempting to do with the device than with the “plain” VFIO API.

Our prototype creates an mdev child device when a device is
discovered. This allows a hypervisor to pass through the device
to a VM instance without it being borrowed (and locally injected).
When the guest OS boots up and attempts to reset the device, we
do the actual borrowing. When the guest OS releases the device,
either by shutting down or because the VM instance hot-removes
it, we return the device. Not only does this solve the issue with the
lifetime of a borrowed device mentioned in (1), but it also makes it
possible to hot-add a device to a live VM instance.

As we now have control over when a device is being used, and
which VM instance is using it, resolving (2) becomes a matter of
setting up appropriate IOMMU groups. The borrower places the
mdev child device in an IOMMU group that satisfies isolation re-
quirements by KVM. In addition, when the device is borrowed, we
establish an IOMMU domain on the lender-side as well, in order to
map the future DMA window as well as protecting against rogue
memory accesses.

While other implementations using mdev implement virtual
child devices, each with their own set of emulated resources, we are
passing through the physical device itself. This difference becomes
apparent when the guest driver initiates DMA transfers; virtual
device implementations emulate device registers, and are therefore
able to notify KVM to pin the appropriate memory pages before
initiating the physical DMA engine. In our case, the VM instance
maps the physical device registers and accesses the device directly,
which means that without making assumptions about the type of
device being used and implementing virtual registers for it, we are
not able to replicate this specific behavior. As mentioned in (3), we
are also not able to make KVM pin any memory pages until the
VM instance is actually loaded and the guest OS boots up, because
only then will the memory used by the VM actually be allocated.

However, in order for a device to do DMA, a dedicated register
in the device’s configuration space must be set. This register is
common for all PCIe devices. Relying on the assumption that this
register is disabled until the guest OS is booting up (and memory
for the instance has been allocated), our solution is to intercept
when a configuration cycle enables this register, and then notify
KVM to pin pages. With the pages now locked in memory, we are
able to properly set up a DMA window to memory used by the VM
instance using the lender-side IOMMU domain we prepared earlier.

Finally, VFIO and mdev use the eventfd API to trigger interrupts
in the VM instance. Our current prototype intercepts calls to the
configuration space that enables interrupts and sets up an interrupt
handler on the lender-side. Whenever the device triggers an inter-
rupt, the lender must notify the borrower, which in turn notifies the
hypervisor, using eventfd. This method is not ideal, as the latency
of triggering an interrupt is increased. A benefit, however, is that it
allows us to enable legacy interrupts for devices borrowed by a VM,
which is currently not supported when the borrower is a physical
machine.

103

ICPP ’18 Comp, August 13–16, 2018, Eugene, OR, USA Jonas Markussen et al.

6 MULTI-DEVICE INTEROPERABILITY
Some processing workloads may require the use of multiple IO
devices, and moving data between them in an efficient manner.
This often involves the use device-to-device DMA, as described
in Section 2.1, where a device is able to read from or write to the
memory regions of other devices. However, as IOMMUs introduce a
virtual address space for devices, TLPs must be routed through the
root of the PCIe tree in order for the IOMMU to resolve virtual ad-
dresses. This means that peer-to-peer transactions directly between
devices in the fabric is not possible when using an IOMMU. PCI-SIG
has developed an extension to the transaction layer protocol that
allows devices that have an understanding of IO virtual addresses
to cache resolved addresses [20], but this is not widely available as
it requires hardware support in devices.

Because of this, the general perception among device vendors
and driver developers has become that in order to make peer-to-
peer transactions work, the IOMMU must be disabled. This has
led to a situation where device drivers would indiscriminately use
physical addresses when setting up peer-to-peer access between
devices. For our original Device Lending implementation, this posed
a challenge, as we rely on intercepting calls made by the device
driver to inject our own mappings in order to make DMA across
the NTB transparent. However, this changed with the 4.9 version of
the Linux kernel, when the DMA API was extended with a unified
method for setting up mappings between devices. This extension
makes it possible for Device Lending to intercept when a device is
mapping another device’s memory regions.

However, as devices installed in different hosts reside in different
address space domains, the local IO address used by one host to
reach a remote device is not the same address a different host would
use to reach the same device. In order for a borrowed device, source,
to reach another borrowed device, target, the borrower needs a
mechanism to resolve virtual IO addresses it uses to addresses that
source’s lender would use to reach target. As such, our solution is
as follows:
• If target is local to the borrower, setting up a mapping is

trivial. The lender simply sets up DMA windows to the indi-
vidual memory regions of target, similar to how it already
has set up a DMA window to the borrower’s RAM. The
lender returns the local IO addresses it would use to reach
over the NTB to the memory regions of target. Note that this
would work for any device in the borrower, not only those
that are controlled by Device Lending.
• If target is locally installed in the same host as source (same

lender), the lender simply sets up a local IOMMU mapping
and returns the local IO addresses to the memory regions of
target.
• If target is a remote device (different lenders), the source’s

lender creates DMA windows through the appropriate NTB
to target’s lender. Note that this NTB may be different to the
one used in order to reach the borrower. It then returns the
memory addresses it would use to reach over the NTB to the
memory regions of target.

The borrower, after receiving these lender-local IO addresses, stores
them along with its own virtual addresses to the memory regions of
target. When the device driver using source calls the new DMA API

x8 Gen3

Intel Xeon
E5-2603 v4

RAM
DDR4

Nvidia
K420 PXH830

Lender

Intel Xeon
E5-2603 v4

RAM
DDR4

PXH830

Borrower

IOMMU Peer-to-peer

x16 Gen2

Local

Nvidia
K420

Borrowed
GPU

x8 Gen3

Figure 5: Configuration used in our IOMMU evaluation. The
borrower is using the remote GPU. When the lender-side
IOMMU is enabled, TLPs are routed through the lender’s
root before going over the NTB. We have also compared with
a local instance, running on the lender itself.

functions to map the memory regions of target for source, we are
able to look up the corresponding lender-local addresses and inject
these. The driver can in turn initiate DMA, completely unaware of
the location of both source and target, and the transfer will reach
target through the correct NTB.

7 PERFORMANCE EVALUATION
In this section, we evaluate the performance of our extensions to De-
vice Lending. As our newly added virtualization support require the
use of a lender-side IOMMU, we focus on the impact that IOMMU
address virtualization has on performance. With support for multi-
device interoperability, we have also evaluated the performance
of peer-to-peer transfers. For our evaluations, we use bandwidth
and latency as our performance metrics, as these two are the most
commonly used for comparing interconnects.

7.1 IOMMU performance penalty
Since IOMMUs create a virtual address space, TLPs need to be
routed through the root of the PCIe tree in order to resolve virtual
IO addresses, effectively disabling peer-to-peer transfers. Proces-
sor designs are complex and often not well-documented, making
it difficult to determine what exactly happens with the memory
operations in progress once they leave the PCIe complex and enter
the CPUs. Memory operations may be buffered, awaiting IOMMU
translations, or the IOMMU may need to perform a multi-level table
look up for resolving addresses.

TLPs are either posted or non-posted operations, meaning that
some transactions, such as memory reads, require a completion.
Read requests are affected by the number of hops in the path be-
tween requester and completer; the longer the path, the higher
the request-completion latency becomes. As the number of read
requests in flight is limited by how many uncompleted transactions
a requester is able to keep open, a longer path can potentially re-
duce performance. In addition, PCIe allows a completer to respond
with less data at the time than is actually requested. For example, a
read TLP requesting 256 bytes may terminate with 4 completions
containing 64 bytes each, rather than a single completion with
256 bytes.

In order to isolate the consequence of TLPs being routed through
the root, we have used the setup shown in Figure 5. Two Intel Xeon
machines are connected together with Dolphin’s PXH830 NTB host

104

Flexible Device Sharing using Device Lending ICPP ’18 Comp, August 13–16, 2018, Eugene, OR, USA

4
kB

8
kB

16
 k

B
32

 k
B

64
 k

B
12

8
kB

25
6

kB
51

2
kB

1
M
B

2
M
B

4
M
B

1

2

3

4

5

6

7

B
a
n
d
w

id
th

 (
G

B
/s

)

DMA Read (Host-to-Device)

4
kB

8
kB

16
 k

B
32

 k
B

64
 k

B
12

8
kB

25
6

kB
51

2
kB

1
M
B

2
M
B

4
M
B

DMA Write (Device-to-Host)

Local (Peer-to-peer)
Remote (Peer-to-peer)
Remote (IOMMU)

CUDA Samples bandwidthTest

Figure 6: Reported bandwidth for different transfer sizes.

adapters [8] and an external x8 PCIe cable. The lender has a PCIe
switch on the motherboard, with both the NTB adapter and an
Nvidia Quadro K420 GPU sitting below it. Note that since the K420
is Gen2 x16, we only need a Gen3 x8 link between the NTB adapters,
as they provide approximately the same bandwidth.

For this evaluation, we have chosen to create a high-bandwidth
workload using the bandwidthTest [18] program. This utility pro-
gram is from the CUDA Toolkit samples. Choosing this program
serves an additional purpose, demonstrating that Device Lending
truly works with remote devices, without requiring changes to
application or driver software. The bandwidth is measured running
on the borrower, using the remote K420’s onboard DMA engine to
copy data between GPU memory and borrower’s RAM. For each
transfer size, bandwidthTest initiates 100 transfers and then report
the average bandwidth.

Figure 6 shows the reported average bandwidth for both DMA
writes and DMA reads, comparing the performance of shortest path
(peer-to-peer) with TLPs being routed through the root (IOMMU).
We observe that the reported bandwidth is reduced when the
IOMMU is enabled, especially for the read performance. As men-
tioned, a PCIe completer is allowed to reply with multiple comple-
tions to a single request. In our case, using a PCIe tracer similar in
concept to that of network packet tracers, we observe that the read
TLPs are actually modified by the lender-side CPUs (and not the
completer). The maximum TLP payload size in our configuration is
256 bytes, meaning that devices can write or read up to 256 bytes per
request. We observe, however, that every 256 byte request routed
through the root is changed into 4×64 byte read requests before
they are sent over the NTB. As read performance is already lim-
ited by the number of requests they are able to keep open, already
changing the request size at the local side leads to less data being
requested at the time, which again leads to very poor utilization of
the link. Although not as bad as reads, write performance is also
affected when the lender-side IOMMU is enabled.

Note that we have also compared our results to running locally on
the lender, without using Device Lending. The achieved bandwidth
of the local run is slightly better than our peer-to-peer performance,
especially for the smaller transfer size; this is most likely due to
the fact that the GPU sits physically farther away from the CPU
running the driver, and therefore slightly increasing the time it
takes to initiate a DMA transfer as well as other synchronization
with the devices. We observe that for sizes of 1 megabyte and more,
the significance of this additional latency decreases.

Local B-Phys B-VM

1.8

2.0

2.2

2.4

2.6

2.8

B
a
n
d
w

id
th

 (
G

B
/s

)

1024 Sequential Blocks

Local B-Phys B-VM

7.2

7.4

7.6

7.8

8.0

8.2

8.4

La
te

n
cy

 (
m

ic
ro

se
co

n
d
s)

Random Pages (4 Blocks)

NVMe Read Performance

Figure 7: Bandwidth and latency when reading from disk
(DMA write). We read 1024 sequential blocks for measuring
bandwidth, and 4 blocks with a random offset for latency.

7.2 Pass-through comparison
We have evaluated our KVM implementation using an Intel Optane
900P NVMe disk on a local machine without using Device Lending,
a physical borrower (B-Phys), and from a VM guest (B-VM). The ma-
chines are connected back-to-back using PXH830 NTB adapters [8].
The RAM-to-RAM latency was measured to 550-580 nanoseconds,
where the NTB adds around 350-370 nanoseconds. We have used
QEMU 2.10.1 as our VM emulator, and running Ubuntu 17.04 LTS
as the guest OS. Note that while any guest OS would be possible,
including Microsoft Windows, we have chosen Linux in order to
run the same benchmarking code on a physical borrower, as well
as locally on the lender.

Figure 7 shows the bandwidth for reading 1024 sequential blocks
repeated 1000 times. One block is 512 bytes. There is very little
difference in the achieved bandwidth, except for a few additional
outliers for our VM borrower (B-VM). Interestingly, we observe that
the physical borrower (B-Phys) achieves slightly higher median
bandwidth than the local comparison.

Latency was measured by reading 4 blocks repeated 10,000 times,
each time at a random offset. Here, we observe that the difference
between running locally and on the physical borrower is an increase
in a little less than 1 microsecond. As the device now sits remotely,
it has to first reach over the NTB once in order to retrieve the IO
commands, and then reach over the NTB again in order to post
the IO completion. This adds 700-730 nanoseconds to the latency,
and is therefore an expected increase. We observe that passing the
disk to a VM running on the borrower (B-VM), only increases the
latency slightly compared to the physical borrower (B-Phys).

7.3 Device-to-device evaluation
In order to evaluate our multi-device support, we have evaluated
the performance of device-to-device DMA transfers between two
Nividia Quadro K420 GPUs. Using the CUDA API [18], there are
two ways of initiating DMA transfers. The first one is similar to
the bandwidthTest program, using the cudaMemcpy() function with
device-to-device semantics. Using this method, the driver initiates
the DMA transfer. The other method is code running on one GPU
that writes to another GPU’s memory directly. We have therefore
developed two CUDA programs, one using the first method to
measure DMA bandwidth (similarly to bandwidthTest) and the other
to measure latency between the GPUs using the second method.
Through CUDA’s unified memory model, it is possible for the GPUs

105

ICPP ’18 Comp, August 13–16, 2018, Eugene, OR, USA Jonas Markussen et al.

Intel Xeon
E5-2603 v4

DDR4
2133 MHz

Intel Xeon
E5-2603 v4

DDR4
2133 MHz

Borrower

Intel Xeon
E5-1650 v4

DDR4
2133 MHz

Nvidia
K420 Lender B

Lender A

IOMMU (1L-IOMMU)

Peer-to-Peer (1L-P2P)

Nvidia
K420

PXH830

PXH830

PXH830

Nvidia
K420

Nvidia
K420

Local Peer-to-Peer

(a) Two GPUs borrowed from the same lender.

Intel Xeon
E5-2603 v4

DDR4
2133 MHz

Intel Xeon
E5-2603 v4

DDR4
2133 MHz

Borrower

Intel Xeon
E5-1650 v4

DDR4
2133 MHz

Nvidia
K420

Lender B

Lender A

IOMMU (2L-IOMMU)

Peer-to-Peer (2L-P2P)

Nvidia
K420

PXH830 PXH830

PXH830Nvidia
K420

Nvidia
K420

(b) Two GPUs borrowed from different lenders.

Figure 8: The 3-node cluster configurations used in our
multi-device evaluation, showing the data path for direct
device-to-device transactions.

to access memory residing in RAM, without needing to explicitly
copy it to GPU memory. Our two programs therefore also support
this option, where one GPU first must write to the borrower’s RAM,
and then the other GPU must read from the borrower’s RAM. Note
that we do not use any special semantics in order to make our
CUDA programs work for remote borrowed GPUs, they simply
appear to the CUDA driver as if they are locally installed.

Figure 8 shows the two different configurations used in this eval-
uation, with the direct device-to-device data paths highlighted. Two
GPUs are installed either in the same lender (Figure 8a), or in differ-
ent lenders (Figure 8b). The machines are connected together using
the PXH830 NTB adapter in a three-way configuration, providing a
separate Gen3 x8 link between all three machines. The K420 GPUs
are Gen2 x16, which is roughly the same bandwidth as Gen3 x8.
Note that we have also included a peer-to-peer comparison, by
running our same programs on Lender A.

As part of our evaluation, we have also evaluated the perfor-
mance when memory buffers accessed by the GPUs reside in the
borrower’s RAM. In these scenarios, one GPU has to first write (over
the NTB) to the borrower’s RAM, and then the other GPU must
read from the borrower’s RAM (also over the NTB). The different
data paths are illustrated in Figure 9. Note that each additional “hop”
in the total path adds additional latency to the overall completion
time. To summarize, we have evaluated the bandwidth and latency
performance for the scenarios listed in Table 1.

7.3.1 Bandwidth. Using cudaMemcpy() for initiating transfers
and cudaEventRecord() for recording time before and after trans-
fers, our bandwidth program measures the DMA bandwidth for

Name Scenario Mem. IOMMU
Local Two local GPUs installed in same

machine as driver.
GPU Disabled

1L-P2P Two remote GPUs borrowed
from the same lender.

GPU Disabled

1L-IOMMU Two remote GPUs borrowed
from the same lender.

GPU Enabled

2L-P2P Two remote GPUs borrowed
from different lenders.

GPU Disabled

2L-IOMMU Two remote GPUs borrowed
from different lenders.

GPU Enabled

1L-RAM-P2P Two remote GPUs borrowed
from the same lender.

RAM —

2L-RAM-P2P Two remote GPUs borrowed
from different lenders.

RAM Disabled

2L-RAM-IOMMU Two remote GPUs borrowed
from different lenders.

RAM Enabled

Table 1: Scenarios used in our device-to-device evaluation.

different transfer sizes, as depicted in Figure 10. Each transfer size
is repeated 10,000 times, and we have plotted the median. The filled-
out areas show the 1st to 99th percentiles, demonstrating that the
variance between multiple runs is very low.

Comparing 1L-P2P and the local comparison in the top plot, the
DMA bandwidth for smaller transfer sizes are affected by the longer
distance between driver and GPU. As transfer sizes become larger,
this factor decreases in significance, and for transfers of 4 megabyte
and above, it is negligible. As with bandwidthTest (Figure 6), which
also uses CUDA events to record time, we suspect that the protocol
used by the driver in order to synchronize the GPU involves the
driver going back and forth over the NTB multiple times.

As seen in Figure 10, direct device-to-device transfer is a DMA
write operation only. Therefore, the difference between peer-to-
peer transfers and when the IOMMU is enabled is not so extreme as
it would be for reads. 2L-IOMMU is affected by needing to traverse
both Lender A’s and Lender B’s roots, achieving slightly lower band-
width than 1L-IOMMU. We see that when peer-to-peer transfers
are possible (2L-P2P), the bandwidth is not significantly affected
by having to traverse the NTB.

For transfers accessing the borrower’s memory, however, the
situation is quite different, as illustrated in Figure 10. As one GPU
has to first write to borrower’s RAM, before the other GPU can read
from RAM, the read operation is the most significant performance
factor. The performance is comparable to DMA reads shown in
Figure 6, where routing read TLPs through the root appears to
drastically reduce the link utilization because the read requests are
altered. Peer-to-peer transactions that do not cross the root achieve
a little under 6 GB/s (2L-RAM-P2P), which is the maximum expected
for reads. Note that in the 1L-RAM-P2P scenario, traffic would
traverse the same path regardless of the IOMMU being enabled
or not (as depicted in Figure 9). We observe that this achieves
the exact same performance as 2L-RAM-IOMMU, indicating that
routing reads through the root generally leads to poor performance,
and is not (exclusively) related to the use of IOMMUs.

7.3.2 Latency. We have also measured the ping-pong latency
between two GPUs through CUDA’s peer model. One GPU is tasked
with increasing a counter, writing it to the other GPU’s memory
and waiting for an acknowledgement before continuing. The other
GPU waits for the counter to increase by one, and acknowledges
the increase by writing back the first GPU’s memory. This process
of counting upwards is repeated 100,000 times. For every step,

106

Flexible Device Sharing using Device Lending ICPP ’18 Comp, August 13–16, 2018, Eugene, OR, USA

Lender A
Root

K420 K420

K420 K420

K420 PXH830 PXH830 K420

Lender A
Root

K420 PXH830
Lender B

Root
PXH830 K420

K420 PXH830 PXH830 PXH830 PXH830 K420

Lender A
Root

K420 PXH830 PXH830 Borrower
Root

PXH830
Lender A

Root
PXH830 K420

Lender A
Root

K420 PXH830 PXH830 PXH830
Lender B

Root
PXH830 K420

1L-P2P (One Lender)
Direct to GPU Memory

1L-IOMMU (One Lender)
Direct to GPU Memory

2L-P2P (Two Lenders)
GPU Memory over NTB

2L-IOMMU (Two Lenders)
GPU Memory over NTB

2L-RAM-P2P (Two Lenders)
Via Borrower's RAM

2L-RAM-IOMMU (Two Lend.)
Via Borrower's RAM

1L-RAM-P2P (One Lender)
Via Borrower's RAM

RAM

Borrower
Root

RAM

Borrower
Root

RAM

Device

PLX Switch

Link

External Cable

Figure 9: Data paths for the different scenarios. Each hop slightly increases the completion latency.

1

2

3

4

5

6

7

B
a
n
d
w

id
th

 (
G

B
/s

)

DMA Bandwidth -- One Lender (GPU Memory)

Local (Peer-to-peer)
1L-P2P
1L-IOMMU

1

2

3

4

5

6

7

B
a
n
d
w

id
th

 (
G

B
/s

)

DMA Bandwidth -- Two Lenders (GPU Memory)

Local (Same lender)
2L-P2P
2L-IOMMU

4
kB

8
kB

16
 k

B
32

 k
B

64
 k

B
12

8
kB

25
6

kB
51

2
kB

1
M
B

2
M
B

4
M
B

8
M
B

16
 M

B
32

 M
B

64
 M

B
12

8
M
B

1

2

3

4

5

6

7

B
a
n
d
w

id
th

 (
G

B
/s

)

DMA Bandwidth (via Borrower's RAM)

Local (Same lender)
1L-RAM-P2P
2L-RAM-P2P
2L-RAM-IOMMU

Figure 10: Median DMA bandwidth for different transfer
sizes. The filled-out area represents the distribution between
the 1st and 99th percentile for 10,000 runs. The local compar-
ison is included in all three plots.

Local 1L-P2P 1L-IOMMU 2L-P2P 2L-IOMMU

2

4

6

8

10

La
te

n
cy

 (
m

ic
ro

se
co

n
d
s)

1.92 1.92 2.17 2.64
3.58

Ping-Pong Latency (GPU Memory)

1L-RAM-P2P 2L-RAM-P2P 2L-RAM-IOMMU

2

4

6

8

10

La
te

n
cy

 (
m

ic
ro

se
co

n
d
s)

5.88
4.66

5.88

Ping-Pong Latency (via Borrower's RAM)

Figure 11: 99th percentiles of ping-pong latencies.

the current GPU clock cycle count is recorded and divided by the
GPU’s clock frequency. This provides us with an alternative to
cudaEventRecord() for recording elapsed time, and we avoid any
delay caused by explicit synchronization. We measured the RAM-to-
RAM memory latency between the borrower and lender B to around
700 nanoseconds, where the NTB adds 350-365 nanoseconds.

Figure 11 shows the 99th percentile of ping-pong latencies for
100,000 repeated runs. The distribution between different runs is
very low (less than 25 nanoseconds between minimum and maxi-
mum observed latency for each scenario). Using our alternative time
recording eliminates additional access latency in the synchroniza-
tion protocol between driver and GPU. When GPUs reside behind
the same switch (1L-P2P), we achieve the same latency as for our lo-
cal comparison. As the data paths increase, the latencies increase as
well. We see that the latency for 2L-P2P increases with a little more
than 700 nanoseconds, compared to 1L-P2P. This corresponds with
the 350 nanoseconds added by the NTB (in one direction). For the
scenarios where the memory buffers are hosted in the borrower’s
RAM, the latency increases significantly. Since their paths are the
same, 1L-RAM-P2P and 2L-RAM-IOMMU have the same latency.

8 DISCUSSION AND CONCLUSION
In this paper, we presented our implementation for supporting
interoperability between remote devices. As part of our work, we
evaluated the impact of IO address virtualization on performance.
Specifically, we have shown how lender-side IOMMUs affect the
data path in terms of latency and bandwidth. As observed in our
evaluations, longer paths introduce some additional latency for
TLPs. When the driver and the device frequently communicate
with each other, as seen in our GPU bandwidth evaluations, it
may affect performance as TLPs has to go back and forth over
the NTB. For device-to-device transfers that do not require driver
synchronization, as is the case for our ping-pong latency evaluation,
the distance between GPUs and driver is insignificant. It should be
noted that traversing the NTB adds less than half of the latency
added by InfiniBand FDR adapters [16, 25]. We have shown that
Device Lending works without adding any performance overhead
beyond what is expected of longer PCIe paths and the interconnect.

A major performance bottleneck occurs when DMA read re-
quests are routed through the root, as the Intel Xeon CPUs used in
our evaluation alter the requests in a way that leads to decreased
utilization of the PCIe links. We observed that this drastically re-
duces performance for some scenarios. However, this effect was

107

ICPP ’18 Comp, August 13–16, 2018, Eugene, OR, USA Jonas Markussen et al.

also observed when the IOMMU was not enabled as well, appearing
to be a problem with routing through the root in general, and not
specifically related to IOMMU address translation. As our KVM
implementation relies on the lender-side IOMMU, it is worth in-
vestigating further by evaluating other CPU architectures that im-
plement an IOMMU, such as AMD EPYC/Zen and IBM POWER.
Additional benefits to using the IOMMU include lenders isolating
devices in their own domains, and remapping NTB mappings to
lower memory for devices that do not support the entire 64-bit
address space. For non-VM borrowers, routing through the root can
be avoided by using PCIe switches and peer-to-peer transactions.

Additionally, our evaluation also demonstrates that it is possible
to use remote IO resources without requiring any special semantics
in application code or support in device drivers. We argue that
being able to run the exact same code using remote GPUs as if they
were locally installed, thus making use of one of the most complex
GPU drivers on the market, demonstrate the strength of Device
Lending compared to other approaches to distributed IO.

Finally, we have also presented how we have extended Device
Lending with support for passing through borrowed remote de-
vices for the KVM hypervisor. We have passed through a remote
SSD to a VM guest, achieving the same bandwidth as the disk was
locally installed and only slightly higher latency than that of a
disk borrowed by a physical machine. Having built the infrastruc-
ture for this, we are currently investigating if a malicious VM can
break out of the VM isolation by misusing Device Lending. Another
candidate for further investigation is if possible to migrate VM
instances running on one host to another with borrowed devices
being passed-through. With our VM support and multi-device sup-
port, it is possible to offer highly customizable configurations of
passed through remote devices, and dynamically reassign devices
in order to optimize resource utilization.

ACKNOWLEDGMENTS
This work has been performed mainly in the context of the BIA project
PCIe (#235530) funded by the Research Council of Norway (RCN), with
contributions from the LADIO project (EU H2020 #731970). The authors
would like to thank Kristoffer Robin Stokke for feedback on the manuscript.
We also thank Stig Baugstø, Roy Nordstrøm and Hugo Kohmann at Dolphin
Interconnect Solutions AS.

REFERENCES
[1] [n. d.]. Linux IOMMU Support. Retrieved April 28, 2018 from https://www.

kernel.org/doc/Documentation/Intel-IOMMU.txt
[2] [n. d.]. VFIO - "Virtual Function I/O". Retrieved April 28, 2018 from https:

//www.kernel.org/doc/Documentation/vfio.txt
[3] Darren Abramson, Jeff Jackson, Sridhar Muthrasanallur, Gil Neiger, Greg Regnier,

Rajes Sankaran, Ioannis Schoinas, Rich Uhlig, Balaji Vembu, and John Weigert.
2006. Intel Virtualization Technology for Directed I/O. Intel Technology Journal
10, 03 (2006).

[4] Knut Alnæs, Ernst H. Kristiansen, David B. Gustavson, and David V. James.
1990. Scalable Coherent Interface. In Proceedings of International Conference on
Computer Systems and Software Engineering (CompEuro). 446–453.

[5] Chelsio Communications Inc. 2015. The Case Against iWARP. Retrieved
April 28, 2018 from https://www.chelsio.com/wp-content/uploads/resources/
iWARP-Myths.pdf

[6] Paolo Costa, Hitesh Ballani, Kaveh Razavi, and Ian Kash. 2015. R2C2: A network
stack for rack-scale computers. ACM SIGCOMM Computer Communication Review
45, 4 (2015), 551–564.

[7] Alexandros Daglis, Stanko Novaković, Edouard Bugnion, Babak Falsafi, and Boris
Grot. 2015. Manycore network interfaces for in-memory rack-scale computing.
ACM SIGARCH Computer Architecture News 43, 3 (2015), 567–579.

[8] Dolphin Interconnect Solutions AS. [n. d.]. PXH830 Gen3 PCI Express NTB Host
Adapter. Retrieved March 1, 2018 from http://www.dolphinics.no/products/
PXH830.html

[9] J. Duato, A.J. Pena, F. Silla, R. Mayo, and E.S. Quintana-Ortí. 2010. rCUDA:
Reducing the number of GPU-based accelerators in high performance clusters.
In Proceedings of International Conference on High Performance Computing and
Simulation (HPCS). 224–231.

[10] T. Fountain, A. McCarthy, and F. Peng. 2005. PCI Express: An Overview of PCI
Express, Cabled PCI Express and PXI Express. In Proceedings of International
Conference on Accelerator & Large Expt. Physics Control Systems (ICALEPCS).

[11] John P Hayes, Trevor Mudge, Quentin F Stout, Stephen Colley, and John Palmer.
1986. A Microprocessor-based Hypercube Supercomputer. IEEE Micro 6, 5 (1986),
6–17.

[12] Jian Huang, Xiangyong Ouyang, Jithin Jose, Md Wasi-Ur-Rahman, Hao Wang,
Miao Luo, Hari Subramoni, Chet Murthy, and Dhabaleswar K. Panda. 2012. High-
performance design of hbase with RDMA over InfiniBand. In Proceedings of
International Parallel and Distributed Processing Symposium (IPDPS). 774–785.

[13] Neo Jia and Kirti Wankhede. [n. d.]. VFIO Mediated Devices. Retrieved April 29,
2018 from https://www.kernel.org/doc/Documentation/vfio-mediated-device.txt

[14] Weihang Jiang, Jiuxing Liu, Hyun-Wook Jin, D K Panda, W Gropp, and R Thakur.
2004. High performance MPI-2 one-sided communication over InfiniBand. In Pro-
ceedings of International Symposium on Cluster Computing and the Grid (CCGrid).
531–538.

[15] Lars Bjørlykke Kristiansen, Jonas Markussen, Håkon Kvale Stensland, Michael
Riegler, Hugo Kohmann, Friedrich Seifert, Roy Nordstrøm, Carsten Griwodz, and
Pål Halvorsen. 2016. Device Lending in PCI Express Networks. In Proceedings
of International Workshop on Network and Operating Systems Support for Digital
Audio and Video (NOSSDAV). 10:1–10:6.

[16] Mellanox Technologies. 2017. RoCE vs. iWARP Competitive Analysis. Retrieved
April 28, 2018 from http://www.mellanox.com/related-docs/whitepapers/WP_
RoCE_vs_iWARP.pdf

[17] NVIDIA Corporation. [n. d.]. Nvidia Virtual GPU Technology (vGPU). Retrieved
April 28, 2018 from http://www.nvidia.com/object/virtual-gpus.html

[18] NVIDIA Corporation. 2017. CUDA Toolkit Documentation 9.1.85. Retrieved
April 29, 2018 from http://docs.nvidia.com/cuda/

[19] Peripheral Component Interconnect Special Interest Group (PCI-SIG). 2008.
Multi-root I/O Virtualization and Sharing Specification. https://www.pcisig.com/
specifications/iov/multi-root/

[20] Peripheral Component Interconnect Special Interest Group (PCI-SIG) 2009. Ad-
dress Translation Services Revision 1.1. Peripheral Component Interconnect Special
Interest Group (PCI-SIG). https://www.pcisig.com/specifications/iov/ats/

[21] Peripheral Component Interconnect Special Interest Group (PCI-SIG). 2010. PCI
Express 3.1 Base Specification. https://pcisig.com/specifications

[22] Peripheral Component Interconnect Special Interest Group (PCI-SIG). 2010.
Single-root I/O Virtualization and Sharing Specification. https://www.pcisig.
com/specifications/iov/single-root/

[23] Murali Ravindran. 2008. Extending Cabled PCI Express to Connect Devices
with Independent PCI Domains. In Proceedings of the 2nd annual IEEE Systems
Conference (SysCon). 1–7.

[24] Jack Regula. 2004. Using Non-transparent Bridging in PCI Express Systems. PLX
Technology, Inc. White paper.

[25] Davide Rosetti. 2014. Benchmarking GPUDirect RDMA on Modern Server Plat-
forms. Retrieved April 29, 2018 from http://devblogs.nvidia.com/parallelforall/
benchmarking-gpudirect-rdma-on-modern-server-platforms/

[26] Kazuo Saito, Koji Anai, Keiju Igarashi, Takeshi Nishikawa, Ryoichi Himeno, and
Kazuhiro Yoguchi. 1998. ATM bus system. US patent No. 5,796,741 A.

[27] Mark J. Sullivan. 2010. Intel Xeon Processor C5500/C3500 Series Non-Transparent
Bridge. Technical Report. Intel Corporation.

[28] Jun Suzuki, Yoichi Hidaka, Junichi Higuchi, Teruyuki Baba, Nobuharu Kami, and
Takashi Yoshikawa. 2010. Multi-root Share of Single-Root I/O Virtualization
(SR-IOV) Compliant PCI Express Device. In Proceedings of Symposium on High
Performance Interconnects (HOTI). IEEE, 25–31.

[29] A Trivedi, B Metzler, and P Stuedi. 2011. A case for RDMA in clouds. In Proceedings
of the Second Asia-Pacific Workshop on Systems (APSys). 17:1–17:5.

[30] Cheng-Chun Tu, Chao-tang Lee, and Tzi-cker Chiueh. 2013. Secure I/O Device
Sharing Among Virtual Machines on Multiple Hosts. ACM SIGARCH Computing
Architecture News 41, 3 (2013), 108–119.

[31] A. Venkatesh, H. Subramoni, K. Hamidouche, and Dhabaleswar K. Panda. 2014.
A high performance broadcast design with hardware multicast and GPUDirect
RDMA for streaming applications on Infiniband clusters. In Proceedings of Inter-
national Conference on High Performance Computing (HiPC).

[32] Colin Whitby-Strevens. 1985. The transputer. ACM SIGARCH Computer Archi-
tecture News 13, 3 (1985), 292–300.

[33] Heymian Wong. [n. d.]. PCI Express Multi-Root Switch Reconfiguration During
System Operation. Master’s thesis. Massachusetts Institute of Technology.

108

Paper IV

Flexible Device Compositions and
Dynamic Resource Sharing in PCIe
Interconnected Clusters using
Device Lending

IV

Authors: Jonas Markussen, Lars Bjørlykke Kristiansen, Rune Johan Borgli,
Håkon Kvale Stensland, Friedrich Seifert, Michael Riegler, Carsten Griwodz,
Pål Halvorsen.

Abstract: Modern workloads often exceed the processing and I/O capabilities
provided by resource virtualization, requiring direct access to the physical
hardware in order to reduce latency and computing overhead. For
computers interconnected in a cluster, access to remote hardware resources
often requires facilitation both in hardware and specialized drivers with
virtualization support. This limits the availability of resources to specific
devices and drivers that are supported by the virtualization technology
being used, as well as what the interconnection technology supports. For
PCI Express (PCIe) clusters, we have previously proposed Device Lending
as a solution for enabling direct low latency access to remote devices.
The method has extremely low computing overhead, and does not require
any application- or device-specific distribution mechanisms. Any PCIe
device, such as network cards disks, and GPUs, can easily be shared
among the connected hosts. In this work, we have extended our solution
with support for a Virtual Machine (VM) hypervisor. Physical remote
devices can be “passed through” to VM guests, enabling direct access
to physical resources while still retaining the flexibility of virtualization.
Additionally, we have also implemented multi-device support, enabling
shortest-path peer-to-peer transfers between remote devices residing in
different hosts. Our experimental results prove that multiple remote devices
can be used, achieving bandwidth and latency close to native PCIe, and
without requiring any additional support in device drivers. I/O intensive
workloads run seamlessly using both local and remote resources. With
our added VM and multi-device support, Device Lending offers highly
customizable configurations of remote devices that can be dynamically
reassigned and shared to optimize resource utilization, thus enabling a

111

IV. Flexible Device Compositions and Dynamic Resource Sharing in PCIe
Interconnected Clusters using Device Lending

flexible composable I/O infrastructure for VMs as well as bare-metal
machines.

Candidate’s contributions: This paper is an extension of Paper III. Markussen
and Kristiansen developed the idea for a mechanism for detecting the
guest-physical memory layout of a VM, and Markussen extended the
MDEV implementation with support for this. He also extended the
evaluation by designing and performing additional peer-to-peer and VM
performance experiments, as well as conducting a new experiment with
an I/O-heavy machine learning workload to demonstrate the improved
performance. Markussen took the initiative to continue to investigate
potential performance bottlenecks, and contributed to further improve the
overall performance for both Device Lending and MDEV. Markussen wrote
most of the text for this paper, and also improved and extended the GPU
benchmarking programs used for Paper III.

Published in: Cluster Computing. Springer. Published online September 2019,
issue date June 2020, volume 23, issue 2, pp. 1211–1234.

DOI: 10.1007/s10586-019-02988-0

Contributed to: Objectives 1 to 4 and 6.

112

https://doi.org/10.1007/s10586-019-02988-0

Flexible device compositions and dynamic resource sharing in PCIe
interconnected clusters using Device Lending

Jonas Markussen1,2 • Lars Bjørlykke Kristiansen1 • Rune Johan Borgli2,3 • Håkon Kvale Stensland2,3 •

Friedrich Seifert1 • Michael Riegler3,4 • Carsten Griwodz2,3 • Pål Halvorsen3,4

Received: 29 March 2019 / Revised: 9 July 2019 / Accepted: 16 September 2019 / Published online: 21 September 2019
� The Author(s) 2019

Abstract
Modern workloads often exceed the processing and I/O capabilities provided by resource virtualization, requiring direct

access to the physical hardware in order to reduce latency and computing overhead. For computers interconnected in a

cluser, access to remote hardware resources often requires facilitation both in hardware and specialized drivers with

virtualization support. This limits the availability of resources to specific devices and drivers that are supported by the

virtualization technology being used, as well as what the interconnection technology supports. For PCI Express (PCIe)

clusters, we have previously proposed Device Lending as a solution for enabling direct low latency access to remote

devices. The method has extremely low computing overhead, and does not require any application- or device-specific

distribution mechanisms. Any PCIe device, such as network cards disks, and GPUs, can easily be shared among the

connected hosts. In this work, we have extended our solution with support for a virtual machine (VM) hypervisor. Physical

remote devices can be ‘‘passed through’’ to VM guests, enabling direct access to physical resources while still retaining the

flexibility of virtualization. Additionally, we have also implemented multi-device support, enabling shortest-path peer-to-

peer transfers between remote devices residing in different hosts.Our experimental results prove that multiple remote

devices can be used, achieving bandwidth and latency close to native PCIe, and without requiring any additional support in

device drivers. I/O intensive workloads run seamlessly using both local and remote resources. With our added VM and

multi-device support, Device Lending offers highly customizable configurations of remote devices that can be dynamically

reassigned and shared to optimize resource utilization, thus enabling a flexible composable I/O infrastructure for VMs as

well as bare-metal machines.

Keywords Resource sharing � KVM � Composable infrastructure � Virtual machines � PCIe � Non-transparent bridging

1 Introduction

The demand for processing power and I/O resources in a

cluster may, to a large degree, vary over time. Workloads

come and go, and even vary themselves with number of

users and amount of data to process. In this respect,

efficient and dynamic resource sharing and configuration is

important as it is desirable to be able to scale up and

allocate more resources on demand, or scale down and

release them when the resources are no longer needed.

Dynamically scaling up or down based on current workload

requirements, and being able to partitioning available

physical resources, leads to more efficient utilization in the

cluster.

VM hypervisors scale resources through device virtu-

alization. Software-emulated devices appear to the VM

guest as an I/O device, but all functionality is handled in

the VM implementation. Paravirtualized devices also offer

device functionality in software, but the software-defined

device is backed by hardware and often resemble the

physical device closely. As both methods of resource

& Jonas Markussen

jonassm@dolphinics.com

1 Dolphin Interconnect Solutions, Oslo, Norway

2 Simula Research Laboratory, Oslo, Norway

3 University of Oslo, Oslo, Norway

4 Simula Metropolitan Center for Digital Engineering, Oslo,

Norway

123

Cluster Computing (2020) 23:1211–1234
https://doi.org/10.1007/s10586-019-02988-0(0123456789().,-volV)(0123456789().,- volV)

113

virtualization require facilitation in the hypervisor, the

availability of different types of resources is limited by the

underlying virtualization technology being used. Further-

more, workloads that rely on multi-device interoperability

become a challenge, as setting up necessary memory

mappings for Remote Direct Memory Access (RDMA) and

direct access between devices is generally not possible

without extensive facilitation in both the hypervisor and

interconnection technology. In many cases, RDMA func-

tionality for paravirtualized devices even requires support

in the VM guest drivers themselves.

In this context, a processor’s I/O Memory Management

Unit (IOMMU) enables devices to be passed through to a

VM instance. A hypervisor can facilitate direct access to

hardware without compromising the memory encapsulation

provided by the virtualized environment. While pass-

through allows physical hardware to be used with minimal

software overhead, this technique does not have the flexi-

bility of resource virtualization. Using pass-through, VM

instances become tightly coupled with the physical

resources they use; distributing VMs across hosts in a

cluster in a way that maximizes utilization becomes a

challenge.

For clusters of machines interconnected with PCI

Express (PCIe), we propose a different strategy to efficient

resource sharing called Device Lending [1, 2]. In these

clusters, I/O devices and interconnection technology are

attached to the same PCIe fabric. Device Lending exploits

the memory addressing capabilities inherent in PCIe in

order to decouple devices from the hosts they physically

reside in, without requiring any application- or device-

specific distribution mechanisms. This decoupling allows a

remote resource to be used by any machine in the cluster as

if it is locally installed, without requiring any modifications

to device drivers or application software. However, our

previous implementation lacked support for dynamically

discovering the guest physical memory layout. Because of

this, it was necessary to limit the VM guest’s available

memory in order to force certain addresses used for device

memory.

In this paper, we have extended our Linux Kernel-based

virtual machine (KVM) support from [2] with a mecha-

nism for probing the memory used by the VM guest in

order to dynamically detect the guest physical memory

layout. This makes it possible to map device memory

regions for other pass-through devices, without requiring

any manual configuration of the VM instance. Such devices

can then access each other, using PCIe peer-to-peer

transactions. With this kind of virtualization support, it is

possible to enable custom configurations of multiple

devices that are passed through to VMs and enabling fast

data transfers between them. In addition, we have also

implemented full interrupt support, something that was

missing in our previous implementation.

We present our experimental performance evaluations

of multi-device configurations using GPUs and enabling

peer-to-peer between them, and compare our results to

bare-metal experiments. Our findings depict that we are

able to borrow and use multiple remote devices, achieving

the same bandwidth as native PCIe and without adding any

additional latency beyond that of the interconnect and the

hardware address translation. We also evaluate the per-

formance impact of increasing the distance between devi-

ces and CPUs, particularly focusing on the impact of I/O

address virtualization. Finally, we present the applicability

of using the system for a realistic I/O-intensive workload,

i.e., running medical image classification via deep neural

networks using remote GPUs and a remote NVMe drive.

We can observe that the system makes bare-metal remote

execution as efficient as local execution. Our results

demonstrate that Device Lending offers a highly flexible

I/O infrastructure in a PCIe cluster for both VMs and bare-

metal machines, allowing dynamic compositions of local

and remote I/O devices.

The remainder of this paper is organized as follows: we

present essential capabilities of PCIe in Sect. 2. In Sect. 3,

we discuss related work. In Sect. 4, we provide an outline

of our original Device Lending implementation. We

describe how we have extended Device Lending with vir-

tualization support in Sect. 5. Section 6 describes how we

have added support for borrowing devices from multiple

lenders. We present our performance evaluation in Sect. 7,

followed by a discussion of our findings and potential

improvements in Sect. 8. Finally, we conclude the paper in

Sect. 9.

2 PCIe overview

PCIe is today the most widely adopted industry standard

for connecting hardware peripherals (devices) to a com-

puter system [3]. Device memory, such as register and

onboard memory is mapped into an address space shared

with system memory (Fig. 1). Memory operations, such as

reads and writes, are transparently routed onto the PCIe

fabric, enabling a CPU to access device memory, as well as

allowing devices capable of DMA to directly read and

write to system memory.

PCIe uses point-to-point links, where a link consists of 1

to 16 lanes. Each lane is a full-duplex serial connection,

data is striped across multiple lanes, and broader links yield

higher bandwidth. The current revision, PCIe Gen3 [4], has

a throughput of around 13 GB/s for a x16 link.

1212 Cluster Computing (2020) 23:1211–1234

123

114

Not unlike other networking technologies, PCIe also

uses a layered protocol. The uppermost layer is called the

transaction layer, and one of its responsibilities is to for-

ward memory reads and writes as transaction layer packets

(TLPs). It is also responsible for packet ordering, ensuring

that memory operations in PCIe are strictly ordered.

Underneath the transaction layer lies the data link layer and

the physical layer, and their responsibilities include flow

control, error correction, and signal encoding.

As shown in Fig. 2, the entire PCIe network is struc-

tured as a tree, where devices form the leaf nodes. In PCIe

terminology, a device is therefore referred to as an ‘‘end-

point’’. Switches can be used to create subtrees in the

network. The ‘‘root ports’’ are at the top of the tree, and act

as the connection between the PCIe network and the CPU

(CPU cores, chipset, and memory controller). The entire

PCIe network comprises the ‘‘fabric’’.

Some PCIe devices may support multiple functions,

which appear to the system as a group of distinct devices,

each which a separate set of resources. The term ‘‘device’’

actually refers to an individual function. An example of a

multi-function device is a multi-port Ethernet adapter,

where individual ports can be implemented as a separate

functions.

2.1 Memory addressing and forwarding

The defining feature of PCIe is that device memory and

registers are mapped into the same address space as system

memory (Fig. 1). Because this mapping exists, a CPU is

able to read from and write to device memory regions, the

same way it would read from system memory. No spe-

cialized port I/O is required. Likewise, if a device is cap-

able of DMA, it can read from and write to system

memory, as well as other devices on the fabric.

In order to map device memory regions to address

ranges, the system scans the PCIe tree and accesses the

configuration space of each device attached to the fabric.

The configuration space describes the capabilities of the

device, such as describing the device’s memory regions.

Switches in the topology are assigned the combined

address range of their downstream devices. This allows

forwarding of memory operations based on address ranges

to occur in a strictly hierarchical fashion in the tree, and

TLPs are forwarded either upstream or downstream. An

important property of this hierarchical routing is that

packets do not need to pass through the root, but can be

routed using the shortest path if the chipset allows it. In

Fig. 2, the internal switch in the expansion chassis is

connected to the root through an external transparent link

(which differs from non-transparent links). The internal

switch will have the combined downstream address range

of both GPUs and the FPGA, allowing TLPs to be routed

directly between them without passing through the root.

This is referred to as peer-to-peer in PCIe terminology.

Another significant feature of PCIe, is the use of mes-

sage-signaled interrupts (MSI) instead of physical interrupt

lines. MSI-capable devices post a memory write TLP to the

root using a pre-determined address. The write TLP is then

interpreted by the CPU, which uses the payload to raise an

interrupt specified by the device. MSI-X is an extension to

MSI with support for more than one address, allowing up to

2048 different, targeting specific CPUs and mandatory

64-bit addressing support.

2.2 Virtualization support and pass-through

Modern processor architectures implement IOMMUs, such

as Intel VT-d [5]. The IOMMU provides a hardware vir-

tualization layer between I/O devices and the rest of the

system, including main memory. The defining feature of

the IOMMU is the ability to remap addresses of DMA

Fig. 1 Device memory is mapped into the same address space as the

CPUs, allowing devices to access both system memory and other

devices

Fig. 2 Example of a PCIe topology using an external transparent link.

The devices in an expansion chassis are attached to the same PCIe

root as the internal devices, and are mapped into the same address

space by the system

Cluster Computing (2020) 23:1211–1234 1213

123

115

operations issued by any I/O device [6]. In other words, it

translates virtual I/O addresses to physical addresses.

Similarly to pages mapped by an MMU for individual

userspace processes, an IOMMU can group PCIe devices

into IOMMU domains. As each domain has its own indi-

vidual mappings, members of an IOMMU domain conse-

quently have their own private virtual address space. Such

a domain can be part of the virtualized address space of a

VM, while other PCIe devices and the rest of memory

remain isolated. This allows the VM to interact directly

with the device using native device drivers from within the

guest, while the host retains the memory isolation provided

by the virtualization. This is often referred to as ‘‘pass-

through’’.

As most device drivers make the assumption that they

have exclusive control over a device, sharing a device

between several VM instances requires either paravirtual-

ization, such as Nvidia vGPUs [7], or SR-IOV [8]. SR-

IOV-capable devices allow a single physical device to act

as multiple virtual devices, allowing a hypervisor to map

the same device to several VMs.1

2.3 Non-transparent bridging

Because of its high bandwidth and low latency, it is

desirable to extend the PCIe fabric out of a single computer

and use it for high-speed interconnection networks [9].

This can be accomplished using an NTB implementa-

tion [10]. Although not standardized, NTBs are a widely

adopted solution for interconnecting independent PCIe

network roots, and all NTB implementations have similar

capabilities. Some processor architectures, such as recent

Intel Xeon and AMD Zen, have a built-in NTB

implementation [11].

Despite the name, an NTB actually appears as a PCIe

endpoint. This is illustrated in Fig. 3, where the connected

systems have their own NTB adapter card. Just like regular

endpoints, they appear to have one or more memory

regions that can be read from or written to by CPUs or

other devices. Memory operations on these regions are

forwarded from one PCIe network to the other. As the

interconnected networks use separate address spaces, the

NTB performs a hardware address translation on the TLPs

during the forwarding. Consequently, NTBs create a shared

memory architecture between separate systems with very

low additional overhead in terms of latency.

As the address ranges associated with the NTB may be

too small to cover the entire address space of the different

systems, some NTBs support dividing their range into

segments. A segment can be mapped anywhere into the

remote system’s address space. Due to the complexity of

translating addresses in hardware, the number of possible

mappings to remote systems is limited.

3 Related work

The idea of a unified network for the inner components of a

computer with those of another is not new. It was already

imagined for both ATM [12] and SCI [13]. However, these

ideas never got implemented, because none of these tech-

nologies were picked up for internal I/O interconnection

networks.

PCIe is the dominant standard for internal I/O bus, and

is also proving to be a relevant contender for external

interconnection networks. PCIe, however, was designed to

be used within a single computer system only. In this

section, we will discuss some solutions for sharing I/O

devices between multiple hosts.

3.1 Distributed I/O using RDMA

There are several technologies which are more widely

adopted for creating high-speed interconnection networks

than PCIe. These include InfiniBand, as well as 10Gb and

40Gb Ethernet [14, 15]. To make use of their high

throughput, they rely on RDMA [16]. Variants are sum-

marized by Huang et al. [17] and include native RDMA

over InfiniBand, Converged Enhanced Ethernet (RoCE),

and Internet Wide Area RDMA Protocol (iWARP). To

alleviate the complexity of programming for RDMA,

middleware extensions like RDMA for MPI-2 [18] and

rCUDA [19] have been developed. Those middleware

extensions have also been extended with device-specific

protocols like GPUDirect for RDMA [20, 21] or NVMe

over Fabrics.

Fig. 3 Two independent networks are connected together using an

NTB. The NTB Translates I/O addresses between the two different

address spaces, creating a shared address space between the networks

1 Note that Device Lending does not make any distinction between

physical devices and SR-IOV virtual devices.

1214 Cluster Computing (2020) 23:1211–1234

123

116

While RDMA extensions may achieve very high

throughput on the interconnection links, they are not as

closely integrated with the I/O bus fabric as PCIe, and

require translation between protocol stacks. Another

drawback is that it is currently only possible for such

protocols to work with devices and device drivers that

explicitly supports them. This is in contrast to Device

Lending, which works for all PCIe devices and does not

require any changes to drivers.

A proposed approach for overcoming the protocol

translation overhead would be to integrate network inter-

face functionality directly into SoCs [22], but the

improvement only takes effect when the SoCs are in

communication with each other. This idea is followed in

the rack-scale architecture [23], which generalizes a trend

returning from switched cluster architectures to hypercube

architectures [24, 25]. These approaches all focus on effi-

cient data exchange for parallel processing, rather than on

resource sharing between logically separate compute units.

3.2 Virtualization approaches

Multi-Root I/O Virtualization (MR-IOV) [26] specifies

how several hosts can be connected to the same PCIe

fabric. The fabric is logically partitioned into separate

virtual PCIe network trees, where each host sees its own

hierarchy without knowing about MR-IOV. MR-IOV

requires multi-root aware PCIe switches, and, in the same

way as SR-IOV requires SR-IOV-aware devices to be able

to provide virtual devices to several VMs, devices must be

multi-root aware to provide virtual devices to several PCIe

roots (and thus hosts) at the same time. Devices that are not

multi-root aware can only be part of one PCIe root at the

time. Despite being standardized in 2008 [26], we are not

aware of any MR-IOV-capable devices. Instead, there are

attempts to achieve MR-IOV-like functionality through a

combination of SR-IOV with NTB-like hardware [27].

However, this approach only works for SR-IOV devices,

while Device Lending makes no distinction between SR-

IOV virtual devices and physical devices.

An additional virtualization approach is the Ladon sys-

tem [28]. Ladon uses all PCIe and virtualization features as

proposed in this paper, and is also implemented using

NTBs. However, it achieves less freedom than our Device

Lending, as devices are installed in a dedicated manage-

ment host that manages the devices and distributes them to

different remote guest VMs. In addition, devices can only

be shared between different remote guest VMs, while

Device Lending supports both VMs and bare-metal

machines using the devices. In order to avoid management

hosts becoming single points of failure, Ladon has been

extended with fail-over mechanisms between management

hosts in a master-slave configuration [29]. Device Lending

is fully decentralized and thus avoids this all together.

Microsemi PAX [30] uses specialized PCIe switches

that allow virtualization. The downstream switch ports

reserve a large address range, called ‘‘synthetic endpoints’’,

which is similar to memory reserved by an NTB. Devices

can then be hot-added through the virtual switch ports by

remapping the synthetic endpoints to an actual device.

3.3 Partitioning the fabric

Rack-scale computers are so-called converged infrastruc-

ture systems, where both I/O devices and interconnects are

attached to a shared PCIe fabric. Rack-scale relies on

dynamically partitioning the shared fabric into different

subfabrics (using fabric IDs), in order to assign individual

devices to different CPUs. Unlike MR-IOV, rack-scale

does not require support in devices, but it does require

dedicated hardware switches which support the fabric ID

header extension in order to configure routes between

devices and CPUs. Additionally, these systems are only

modular to the extent of typical blade server configurations,

and scaling beyond a single system requires facilitation

using traditional distributed methods. Adding new I/O

devices requires additional modules, often only available

from the same vendor.

Last but not least it should be mentioned that there have

been some efforts in achieving live-partitioning using PLX

PCIe switches [31], but a performance evaluation of this

appears to be lacking.

4 Device lending

As illustrated in Fig. 4, it is possible to map the memory

regions of remote PCIe devices using an NTB. A local

CPU can perform memory operations on a remote device,

such as reading from or writing to registers. Conversely, it

is also possible to map local resources for the remote

device, allowing it to write MSI interrupts and access the

local system’s memory across the NTB.

In order to make such mappings transparent to both

devices and their drivers, we have previously implemented

Device Lending [1] for an unmodified Linux kernel using

Dolphin’s NTB hardware and driver. Our implementation

is composed of two parts, namely a ‘‘lender’’, allowing a

remote unit to use its device, and the ‘‘borrower’’ using the

device. By emulating a hot-plug event [9] while the system

is running, we insert a virtual device into the borrower’s

local device tree, making it appear to the system and device

driver as if a device was hot-added in the system. The

device’s memory regions are mapped through the NTB,

allowing the local driver to read and write to device

Cluster Computing (2020) 23:1211–1234 1215

123

117

registers without being aware that the device is actually

remote.

The lender is responsible for setting up reverse map-

pings for DMA and MSI.2 As mentioned in Sect. 2.3, the

address range of the NTB is not necessarily large enough to

cover the entire address space of the borrowing system.

Since it is generally not possible to know in advance which

memory addresses a device driver might use for DMA

transfers, we use an IOMMU on the borrower to set up

dynamic mappings to arbitrary addresses, allowing the

lender to set up a single DMA window. When the device

driver calls the Linux DMA API in order to create DMA

buffers, the borrower intercepts these calls. The borrower

injects the I/O address of the DMA window prepared by

the lender and sets up a local IOMMU mapping to the

DMA buffer. The driver then passes the injected address to

the device, completely unaware that the address is actually

a far-side address. This allows the device to reach across

the NTB, transparent to both driver and device. All address

translations between the different address domains are

done in hardware (NTB and IOMMU), meaning that we

achieve native PCIe performance in the data path.

By allowing remote devices to appear to a system as if

they are locally installed, Device Lending is a method for

decoupling devices from the systems they physically reside

in, allowing devices to be temporarily assigned and reas-

signed to different systems. As hosts can act as both lender

and borrower, we have created a highly flexible method of

sharing devices (Fig. 5). This has advantages over dis-

tributed I/O using traditional approaches; network inter-

faces can be assigned to a computer while it needs high

throughput, and released when it is no longer needed;

access latency in NVMe over Fabrics using RDMA can be

eliminated by borrowing the NVMe disk instead and

accessing it directly, as shown in Fig. 6; large-scale CUDA

programming tasks can make use of multiple GPUs that

appear to be local instead of relying on middleware such as

rCUDA [19]. In contrast to RDMA solutions, Device

Lending works for all standard PCIe devices, and does not

require any additional support in drivers.

Our original implementation, as described in [1], did not

account for peer-to-peer access when borrowing multiple

devices from different lenders. As the borrowing system is

not aware that the devices reside in different systems, we

need a mechanism to resolve I/O addresses to other bor-

rowed devices, in order to fully achieve device-to-device

data transfers. In addition, our original implementation

lacked support for borrowers that are VM guests. Adding

virtualization support greatly increases the usability of

Device Lending, as we introduce the flexibility of decou-

pled remote devices and be able to dynamically assign

devices using pass-through.

5 Supporting virtual machine borrowers

Many modern architectures now implement IOMMUs,

allowing DMA and interrupts to be remapped. This makes

it possible for a hypervisor to grant access a driver running

in a VM access to a physical device directly, without

breaking out of the memory isolation, by using I/O virtual

addresses. In Linux, such pass-through of devices is sup-

ported in the KVM hypervisor using the Virtual Function

I/O API (VFIO) [32]. This API provides a set of functions

for mapping memory for the device and control function-

ality, such as resetting the device, that the hypervisor can

call in order to set up necessary mappings for a VM

instance.

A hypothetical solution for passing through remote

devices, would be for the physical host to borrow the

remote device, injecting the device into its local device

tree, and then implement these functions. However, this

Fig. 4 Using an NTB, it is possible to map the memory regions of a

remote device so local CPUs are able to read and write to device

registers. The remote system can in turn reverse-map the local

system’s memory and CPUs for the device, making DMA and MSI

possible. Device Lending injects a hot-added device into the Linux

kernel device tree using these mappings

2 Legacy interrupts are not supported in the current Device Lending

implementation, as they cannot be remapped over the NTB.

1216 Cluster Computing (2020) 23:1211–1234

123

118

approach would not be feasible due to the following

reasons:

– The device would be borrowed by the physical host for

as long as it runs, regardless of whether any VM

instances would currently be using it or not. This leads

to poor utilization of device resources.

– All devices borrowed by the same physical host would

be placed in to the same IOMMU domain by Device

Lending. VFIO requires that pass-through devices must

be be placed in a per-guest IOMMU domain managed

by VFIO. This is required in order to prevent memory

accesses that could potentially break out of the memory

isolation provided by virtualization.

– VFIO requires the entire address space of the VM to be

mapped for the device. As there is no method of

knowing which physical memory pages will be allo-

cated for the VM instance before it is running,

establishing this mapping in advance would require

mapping all physical memory. We instead need a

mechanism for only pinning and mapping the memory

pages used by the VM instance in order to create

necessary DMA windows.

In the 4.10 version of the Linux kernel, an extension to

VFIO called mediated devices [33] was included. This

extension makes it possible to use VFIO for paravirtual-

ized devices. It introduces the concept of a physical parent

device having virtual child devices. When a VM guest

accesses the virtual device, certain operations, such as

accesses to the device’s configuration space or setting up

interrupts, are intercepted by the mediated device parent

driver. The idea is that a single physical device can be used

to emulate multiple virtual devices, while still allowing

some direct access to hardware. In our case, using the

mediated devices extension provides us with finer grained

control over what the hypervisor and guest OS is

attempting to do with the device than with ‘‘plain’’ VFIO.

Our implementation registers an mediated device parent

device for devices used by Device Lending without bor-

rowing them first. This allows KVM to pass through the

device to a VM guest without it being borrowed (and

locally injected) first. Only when the guest OS boots up and

resets the device, do we actually borrow the device and

take exclusive control. When the guest OS releases the

device, either by shutting down or because the device is

hot-removed, we return the device. Not only does this limit

the lifetime of a borrowed device to only when the VM is

running and using the device, but it also makes it possible

to hot-add a device to a live VM instance if the VM

emulator supports it.

As we now have control over when a device is being

used and which VM instance is using it, we can set up the

appropriate isolated IOMMU groups on the lender. As

shown in Fig. 7, this allows a device to be mapped in to the

same virtual address space (guest-physical) as the VM as

well as providing the necessary isolation to protect against

rogue memory accesses. We also set up IOMMU mappings

on the local system, in order to map continuous memory

ranges to physically scattered memory on the host over the

NTB.

While other implementations using mediated devices

implement virtual child devices, each with their own set of

emulated resources, we are passing through the physical

device itself. This difference becomes apparent when the

guest driver initiates DMA transfers; virtual device

implementations emulate device registers, and are there-

fore able to notify KVM to pin the appropriate memory

pages just before initiating the physical DMA engine. In

our case, the VM instance maps the physical device reg-

isters and accesses the device directly, which means that

without making assumptions about the type of device being

used and implementing virtual registers for it, we are not

able to replicate this specific behavior. We are also not able

Fig. 5 Device Lending decouples I/O resources from physical hosts

by allowing devices to be reassigned to hosts that currently need

them. We imagine this as hosts in the cluster contributing to a shared

pool of I/O resources that can be cooperatively time-shared among

them

Fig. 6 Illustration of native NVMe using Device Lending compared

to NVMe over Fabrics using RDMA. Device Lending makes remote

devices appear as if they are locally installed and there is no need for

specialized support in devices or drivers

Cluster Computing (2020) 23:1211–1234 1217

123

119

to know in advance what memory pages will be used until

the VM instance is actually loaded and the guest OS boots

up, because only then will the memory used by the VM

actually be allocated. In addition, the mediated device API

does not provide any information about the guest-physical

memory layout, which we need to know which address

ranges to map for the device.

However, in order for a device to do DMA, a dedicated

register in the device’s configuration space must be set.

This register is common for all PCIe devices. Relying on

the assumption that this register is disabled until the guest

OS is booting up (and memory for the instance has been

allocated), our solution intercepts when a configuration

cycle enables this register, and only then notifies KVM to

pin the necessary memory pages. With the pages now

locked in memory, we are able to properly set up DMA

windows to memory used by the VM instance. The x86

architecture uses well-defined addresses for low and high

memory. We are able to discover how much memory the

VM has allocated by attempting to pin memory starting at

these addresses. In this way, we are able to dynamically

detect the guest-physical memory layout.

Finally, VFIO and mediated devices use the eventfd API

to trigger interrupts in the VM instance. Our current

implementation intercepts calls to the configuration space

that enables interrupts and sets up an interrupt handler on

the lender-side. Whenever the device triggers an interrupt,

the lender-side request handler is invoked. This handler

must then notify the borrower, which in turn notifies the

hypervisor using eventfd. This method is not ideal, as the

latency of triggering an interrupt is increased. A benefit of

our solution is that it allows us to enable legacy interrupts

for devices borrowed by a VM, which is currently not

supported when the borrower is a physical machine. We

have also improved Device Lending in general with sup-

port for 64-bit MSI/MSI-X.

6 Supporting multiple devices and peer-to-
peer

Some processing workloads may require the use of

multiple I/O devices and/or compute accelerators, in

addition to moving data between them in an efficient

manner. This often involves the use device-to-device

DMA, as described in Sect. 2.1, where a device is able to

read from or write to the memory regions of other devices.

However, as IOMMUs introduce a virtual address space for

devices, TLPs must be routed through the root of the PCIe

tree in order for the IOMMU to resolve virtual addresses.

This means that shortest-route peer-to-peer transactions

directly between devices in the fabric is not possible when

using an IOMMU, and TLPs must traverse the root

(Fig. 8). PCI-SIG has developed an extension to the

transaction layer protocol that allows devices that have an

understanding of I/O virtual addresses to cache resolved

addresses [34], but this is not widely available as it requires

hardware support in devices.

Because of this, the general perception among device

vendors and driver developers has become that in order to

make peer-to-peer transactions work efficiently, the

Fig. 7 By using IOMMUs on both sides of the NTB, it is possible to

map a physically remote device into a local VM guest’s address

space. The borrower-side IOMMU provides continuous memory

ranges that can be mapped over the NTB, while the lender-side

IOMMU allows the device to be mapped into an address space using

the same guest-physical addresses used by the VM

Fig. 8 IOMMUs introduce a

virtual I/O address space for

devices. Peer-to-peer transac-

tions between devices is routed

through the root in order for the

IOMMU to resolve virtual

addresses to physical addresses

1218 Cluster Computing (2020) 23:1211–1234

123

120

IOMMU must be disabled. This has led to a situation where

device drivers would indiscriminately use physical

addresses when setting up peer-to-peer access between

devices. For our original Device Lending implementation,

this posed a challenge, as we rely on intercepting calls

made by the device driver to inject our own mappings in

order to make DMA across the NTB transparent. However,

this changed with the 4.9 version of the Linux kernel, when

the DMA API was extended with a unified method for

setting up mappings between devices. This extension

makes it possible for Device Lending to intercept when a

device is mapping another device’s memory regions.

However, as devices installed in different hosts reside in

different address space domains, the local I/O address used

by one host to reach a remote device is not the same

address a different host would use to reach the same

device. In order for a borrowed device, source, to reach

another borrowed device, target, the borrower needs a

mechanism to resolve virtual I/O addresses it uses to

addresses that source’s lender would use to reach target.

As such, our solution is as follows:

– If target is local to the borrower, setting up a mapping

is trivial. The lender simply sets up DMA windows to

the individual memory regions of target, similar to how

it already has set up a DMA window to the borrower’s

RAM. The lender returns the local I/O addresses it

would use to reach over the NTB to the memory regions

of target. Note that this would work for any device in

the borrower, not only those that are controlled by

Device Lending.

– If target is locally installed in the same host as source

(same lender), the lender simply sets up a local

IOMMU mapping and returns the local I/O addresses

to the memory regions of target. If IOMMU is disabled,

then it is simply a matter of returning the local I/O

addresses of memory regions of target.

– If target is a remote device (different lenders), the

source’s lender creates DMA windows through the

appropriate NTB to target’s lender. Note that this NTB

may be different to the one used in order to reach the

borrower. It then returns the memory addresses it would

use to reach over the NTB to the memory regions of

target.

The borrower, after receiving these lender-local I/O

addresses, stores them along with its own virtual addresses

to the memory regions of target. When the device driver

using source calls the new DMA API functions to map the

memory regions of target for source, we are able to look up

the corresponding lender-local addresses and inject these.

The driver can in turn initiate DMA, completely unaware

of the location of both source and target, and the transfer

will reach target through the correct NTB.

An additional consideration is required if the borrowing

machine is a VM. In this case, target is already mapped

into the guest-physical address space of the VM guest. The

memory regions of target must be mapped for source using

these exact addresses. Since the VM case already uses the

lender-side IOMMU, as explained in Sect. 5, we can sim-

ply use the IOMMU of source’s lender and specify the

addresses that correspond to the VM guest’s view of the

address space.

7 Performance evaluation

In order to evaluate our improved Device Lending imple-

mentation, we have done extensive evaluations of the

bandwidth and latency of peer-to-peer DMA transfers. As

VM pass-through require the use of an IOMMU on the

lending system, we particularly focus on the impact I/O

address virtualization has on performance with regards to

longer data paths. For all our comparisons, we present the

topology and machine configurations and compare perfor-

mance for native bare-metal borrowers and VM borrowers.

Our baseline comparison for all evaluations are running

locally, on a bare-metal machine.

In Sect. 7.5, we prove the capability of running

unmodified software and device drivers by presenting the

performance of an unmodified convolutional neural net-

work-based application, using the Keras framework with

Tensorflow. We argue that running unmodified code using

a complex machine learning framework on commodity

hardware demonstrates the strength and flexibility of our

Device Lending approach.

7.1 IOMMU performance penalty

Since IOMMUs create a virtual address space, TLPs need

to be routed through the root of the PCIe tree in order to

resolve virtual I/O addresses (Fig. 8). Processor designs are

complex and often not well-documented, making it difficult

to determine what exactly happens with the memory

operations in progress once they leave the PCIe fabric and

enter the CPUs. Memory operations may be buffered,

awaiting IOMMU translations, or the IOMMU may need to

perform a multi-level table look up for resolving addresses.

TLPs are either posted or non-posted operations,

meaning that some transactions, such as memory reads,

require a completion. Read requests are affected by the

number of hops in the path between requester and com-

pleter; the longer the path, the higher the request-comple-

tion latency becomes. As the number of read requests in

flight is limited by how many uncompleted transactions a

requester is able to keep open, a longer path can potentially

reduce performance. In addition, PCIe allows a completer

Cluster Computing (2020) 23:1211–1234 1219

123

121

to respond with less data at the time than is actually

requested. For example, a read TLP requesting 256 bytes

may terminate with 4 completions containing 64 bytes

each, rather than a single completion with 256 bytes.

In order to isolate the consequence of TLPs being routed

through the root, we have used the setup shown in Fig. 9.

Two Intel Xeon machines are connected together with

Dolphin’s PXH830 NTB host adapters [35] and an external

x8 PCIe cable. The lender has a PCIe switch on the

motherboard, with both the NTB adapter and an Nvidia

Quadro K420 GPU sitting below it. Note that since the

K420 is Gen2 x16, we only need a Gen3 x8 link between

the NTB adapters, as they provide approximately the same

bandwidth.

For this evaluation, we have chosen to create a high-

bandwidth workload using the bandwidthTest [36] pro-

gram. This utility program is from the CUDA Toolkit

samples. Choosing this program serves an additional pur-

pose, demonstrating that Device Lending truly works with

remote devices, without requiring changes to application or

driver software. The bandwidth is measured running on the

borrower, using the remote K420’s onboard DMA engine

to copy data between GPU memory and borrower’s RAM.

For each transfer size, bandwidthTest initiates 10 transfers

and then report the mean bandwidth. We have repeated this

10 times.

Figure 10 shows the reported mean bandwidth for both

DMA writes and DMA reads, comparing the performance

of shortest path (Rem-SW) with TLPs being routed through

the root (Rem-IOMMU). We observe that the reported

bandwidth is reduced when the IOMMU is enabled, espe-

cially for the read performance. As mentioned, a PCIe

completer is allowed to reply with multiple completions to

a single request. In our case, using a PCIe tracer similar in

concept to that of network packet tracers, we observe that

the read TLPs are actually modified by the lender-side

CPUs (and not the completer). The maximum TLP payload

size in our configuration is 256 bytes, meaning that devices

can write or read up to 256 bytes per request. We observe,

however, that every 256 byte request routed through the

root is emitted out again as 4� 64 byte read requests on

the other side of the root. As read performance is already

limited by the number of requests they are able to keep

open, requesting less data at a time leads to very poor

utilization of the link. Although not as bad as reads, write

performance is also affected when the lender-side IOMMU

is enabled.

Note that we also compared our results to running

locally on the lender without using Device Lending (Loc).

The achieved bandwidth of the local run is slightly better

than our peer-to-peer performance for smaller transfer

sizes; this is most likely due to the fact that the GPU is

further away from the CPU running the driver, and there-

fore slightly increasing the time it takes to initiate a DMA

transfer as well as other synchronization with the devices.

We observe that for sizes of 1 megabyte and more, the

Fig. 9 Configuration used in our IOMMU evaluation. The borrower is

using the remote GPU. When the lender-side IOMMU is enabled,

TLPs are routed through the lender’s root before going over the NTB

(Rem-IOMMU). We have also compared to a baseline comparison,

running locally on the lender machine itself (Loc)

Fig. 10 Reported bandwidth for different transfer sizes using an

unmodified version of the bandwidthTest CUDA samples program

1220 Cluster Computing (2020) 23:1211–1234

123

122

significance of this additional latency decreases and the

reported bandwidths starts to converge.

7.2 Native peer-to-peer evaluation

In order to evaluate our multi-device support, we have

measured the performance of peer-to-peer DMA transfers

between two Nvidia Quadro K420 GPUs. The machines

are connected together using the PXH830 NTB adapters in

a three-way configuration, providing a separate Gen3 x8

link between all three machines. The K420 GPUs are Gen2

x16, which provides roughly the same bandwidth as Gen3

x8.

Figure 11 shows the three different hardware configu-

rations used in this evaluation:

– A local machine using two GPUs installed in the same

local host, illustrated in Fig. 11a. This is our baseline

for comparing the performance of using remote devices

vs. local devices. Since it is not possible to enable peer-

to-peer transfers on a local machine using the IOMMU,

we instead force transfers to be routed through the root

by placing the GPUs behind different PCIe switches.

– A local machine (borrower) using two remote GPUs,

installed in a single remote host (one lender). This is

illustrated in Fig. 11b.

– A local machine (borrower) using two remote GPUs,

installed in different remote hosts (two lenders). This is

illustrated in Fig. 11c.

A complete list of the scenarios are given in Table 1. Note

that in Fig. 11, we have only highlighted the data path for

peer-to-peer DMA writes with the IOMMU enabled and

disabled. We compare the performance benefit of direct

device-to-device DMA writes, using peer-to-peer transac-

tions, to transfers via RAM, where one GPU first writes to

RAM and the other reads from it using DMA. In order to

do this, we have developed two CUDA [36] applications

for measuring transfers from one GPU to another. Note that

we do not use any special semantics or other userspace

software to make this CUDA program work for borrowed

remote GPUs, using Device Lending they simply appear to

the CUDA programs as if they are locally installed.

7.2.1 Bare-metal bandwidth evaluation

The first of the two CUDA programs measures the

bandwidth of DMA transfers from one GPU to another

using two different transfer ‘‘modes’’. The first mode is

enabling peer-to-peer transactions, allowing one GPU to

write directly into another GPUs memory. The second

mode is hosting an intermediate buffer in system memory

(RAM), where one GPU first writes to that buffer, followed

by the other GPU reading from it afterwards. We record a

CUDA event before and after each scheduled transfer, and

we also schedule a dummy CUDA kernel launch in order to

prevent our bandwidth measurements being affected by the

CUDA driver’s ability to pipeline transfers.3

Figure 12 shows the bandwidth for all three configura-

tions (depicted in Fig. 11). We have recorded the com-

pletion time for 1000 individual DMA transfers of a given

size, for each transfer size shown along the X-axis, and plot

the mean bandwidth. We also show the 95% confidence

interval as a filled-out area around the respective lines. The

top row shows our peer-to-peer transfers, while the bottom

row shows transfers via system memory. We also show the

difference in performance when the IOMMU is enabled

and disabled on the lender(s), where the GPUs reside. Note

that in our local comparison, we place the GPU behind a

different PCIe switch in order to force TLPs to traverse the

root, since it is not possible to enable the IOMMU in this

scenario.

Using peer-to-peer DMA writes (top row), we see that

the achieved bandwidth is almost the same as our local

comparison in the same lender scenario: 1L-P2P-SW is

almost identical to Loc-P2P-SW, and 1L-P2P-IOMMU is

almost identical to Loc-P2P-Root. Even though the GPUs

are remote, the data path between the GPUs are similar. For

smaller transfer sizes, the local transfers achieve slightly

higher bandwidth. However, when the transfer size

increases, the lines converge, and for transfers of

4 megabyte and above, the difference becomes negligible.

We suspect that the protocol used by the driver in order to

synchronize the GPU and schedule DMA transfers may

involve some reading and writing over the NTB. For small-

sized transfers, this additional latency relative to the

transfer size has an effect.

When the GPUs reside in different lenders, the data path

is increased, which has an expected impact on perfor-

mance. As shown in the 2L-P2P plot (top row, to the right)

in Fig. 12, particularly when the IOMMU is enabled, the

increased number of hops impacts the performance.

The second mode of our program was used to evaluate

‘‘bouncing’’ via system memory. By hosting a memory

buffer in RAM, one GPU has to first write to this buffer

before the other GPU in turn can read from it. Borrowing

remote GPUs using Device Lending, the distance between

system memory and GPU is now increased, and the impact

of this is visible, as illustrated in Fig. 12 (bottom row). We

see that transfers that do not cross the root (2L-RAM-SW)

3 The CUDA samples bandwidthTest program, used in Sect. 7.1,

schedules 10 rapid copy operations at the time and reports the average

of these ten, allowing the CUDA driver to pipeline transfers and

optimize small transfers.

Cluster Computing (2020) 23:1211–1234 1221

123

123

are very similar to our baseline local comparison (Loc-

RAM-Root). However, similarly to what we observed in

Sect. 7.1, DMA reads are significantly affected by TLPs

traversing the root, as this drastically reduces the link uti-

lization. This is seen in 1L-RAM-IOMMU and 2L-RAM-

IOMMU, where the reported bandwidth drops drastically.

(a)

(b)

(c)

Fig. 11 The three-node cluster

configurations used in our bare-

metal multi-device evaluation,

showing the the data paths for

direct peer-to-peer write

transactions

1222 Cluster Computing (2020) 23:1211–1234

123

124

It is interesting to note that 1L-RAM-IOMMU and 1L-

RAM-SW both traverse the root, but the IOMMU is

respectively on and off. This strengthens our suspicion that

the issue is TLPs being routed through the root, and not

necessarily some effect of using the IOMMU alone.

A simplified illustration of the data path for the full list

of scenarios is shown in Fig. 13. Note that each additional

‘‘hop’’ in the path adds additional latency to the TLP

completion time, something that particularly affects reads.

Our peer-to-peer bandwidth evaluation indicates that it is

possible to achieve close to local performance. For DMA

write operations, the performance of a local program using

borrowed remote devices is comparable to using local

devices. Note that while DMA reads are affected by the

increased distance between the device and the memory it

reads from, it is expected for longer data paths and not an

effect of our Device Lending mechanism.

Table 1 The different scenarios used in our bare-metal peer-to-peer evaluation. Note the number of hops and CPU roots transfers have to traverse

Name Scenario Transfer Roots Hops

Loc-P2P-SW Two local GPUs installed in same machine as driver. Peer-to-peer 0 1

Loc-P2P-Root Two local GPUs installed in same machine as driver. Peer-to-peer 1 3

Loc-RAM-Root Two local GPUs installed in same machine as driver. Via local RAM 1 3

1L-P2P-SW Two remote GPUs borrowed from the same lender. Peer-to-peer 0 1

1L-P2P-IOMMU Two remote GPUs borrowed from the same lender. Peer-to-peer 1 3

2L-P2P-SW Two remote GPUs borrowed from different lenders. Peer-to-peer 0 4

2L-P2P-IOMMU Two remote GPUs borrowed from different lenders. Peer-to-peer 2 8

1L-RAM-SW Two remote GPUs borrowed from the same lender. Via borrower’s RAM 3 11

1L-RAM-IOMMU Two remote GPUs borrowed from the same lender. Via borrower’s RAM 3 11

2L-RAM-SW Two remote GPUs borrowed from different lenders. Via borrower’s RAM 1 8

2L-RAM-IOMMU Two remote GPUs borrowed from different lenders. Via borrower’s RAM 3 11

Fig. 12 Mean DMA bandwidth for different transfer sizes. The filled-

out area represents the 95% confidence interval. The top row shows

writes using peer-to-peer, while the bottom row shows ‘‘bouncing’’

via RAM. For the peer-to-peer, we achieve almost the same

bandwidth as our local comparison. For transfers via RAM, the

bandwidth is reduced by read TLPs traversing through CPU roots

Cluster Computing (2020) 23:1211–1234 1223

123

125

7.2.2 Bare-metal latency evaluation

Using CUDA, there are two ways of initiating DMA

transfers; either the CPU can initiate DMA transfers, or the

device can do it itself. The first approach is similar to the

CUDA samples program bandwidthTest. The second

approach is possible using CUDA’s unified memory model,

where a CUDA kernel can access system RAM directly

through a memory pointer. This eliminates the need for an

explicit copy to GPU memory operation. With unified

memory, it is also possible for one GPU to directly access

memory of another GPU, using peer-to-peer DMA.

As shown in Sect. 7.1, we suspect that the increased

distance between CPU and device affects the time it takes

for the driver to synchronize with the device and initiate a

transfer. We also observed a similar effect for smaller-sized

transfers in Fig. 12. Therefore, we developed a second

CUDA program in order to measure peer-to-peer latency

more accurately. Using CUDA kernels and allowing the

GPUs themselves to initiate transfers, we eliminate any

synchronization overhead caused by the driver (running on

the local CPU). One GPU is tasked with increasing a

counter, writing it to the other GPU’s memory pointer and

waiting for an acknowledgement before continuing (ping).

The other GPU waits for the counter to increase by one,

and acknowledges by writing back to the first GPU’s

memory pointer (pong). The whole roundtrip is measured

by recording the current GPU clock cycle count and divide

it by the clock frequency, giving us the full ping–pong

latency.

The memory used for our counter can either be hosted in

GPU memory or in RAM. The difference is that in the

peer-to-peer scenarios we eliminate any DMA read oper-

ations and the GPUs are able to write directly to GPU

memory. When memory is hosted in RAM, one GPU has to

first write (over the NTB) to the borrower’s RAM, and then

the other GPU must read from the borrower’s RAM (also

over the NTB). The different data paths are illustrated in

Fig. 13. Note that each additional ‘‘hop’’ in the total path

adds additional latency to the overall completion time.

Figure 14 shows the mean ping-pong latency for all

scenarios. We measured the latency for 100,000 ping-

pongs, and the error bar depicts the 99% confidence

interval. For comparison, the one-way RAM-to-RAM

memory latency between the borrower and Lender B was

measured to around 700 nanoseconds, where the NTB

itself adds 350-365 nanoseconds. When GPUs reside

behind the same switch (1L-P2P-SW), we achieve the same

latency as our local comparison (Loc-P2P-SW). We also

see the same when the IOMMU is enabled (1L-P2P-

IOMMU) and the local comparison (Loc-P2P-Root).

Again, this demonstrate that our Device Lending mecha-

nism does not add any overhead.

We also observe that the latency increases according to

the increased data paths (illustrated in Fig. 13), as expec-

ted. The latency for 2L-P2P-SW increase with a little more

than 700 nanoseconds, compared to 1L-P2P-SW (and Loc-

P2P-SW), which corresponds with the 350 nanoseconds

added by the NTB (in one direction). In the scenarios

where the counter memory is hosted in the borrower’s

RAM, the latency increases significantly because both

GPUs now have to read in addition to writing. Our latency

evaluation show that the latency of reading and writing is

only affected by the path, and achieving the same latency

as our local comparison when the path is similar.

7.3 VM peer-to-peer evaluation

We have also evaluated peer-to-peer performance for

devices passed-through to a VM. We installed Ubuntu

16.04 with CUDA 9.0 on an Intel P4800X NVMe drive. As

our VM emulator, we used QEMU 2.10.1. Two Nvidia

Fig. 13 Data paths for the different bare-metal scenarios. Each hop slightly increases the completion latency

1224 Cluster Computing (2020) 23:1211–1234

123

126

Tesla K40c GPUs along with the boot disk was passed

through to a local VM using standard VFIO pass-

through [32] with KVM, and to a remote VM using our

Device Lending implementation. We used the same two

CUDA programs from Sect. 7.2 for measuring bandwidth

and latency respectively.

Figure 15 depicts the topologies used for these tests. The

GPUs, the disk and the NTB adapter are located in an

expansion chassis connected with a transparent link to the

lender. TLPs must be routed through the lender’s root

before they can be transmitted over the NTB (which also

resides in the expansion chassis), making this this config-

uration suboptimal for running a remote VM. As such, it

serves as a worst-case scenario for running a VM, espe-

cially for the scenario where transfers are bounced via

RAM. Figure 17 shows the data path for all scenarios. We

have also included a native remote comparison using

Device Lending where the IOMMU is enabled to illustrate

any virtualization overhead. Note that the data path is

similar for both local and remote scenarios when the

devices use peer-to-peer DMA. The evaluated scenarios are

listed in Table 2.

7.3.1 VM bandwidth evaluation

Figure 16 depicts the measured bandwidth for all config-

urations, using the same CUDA program as in Sect. 7.2.

For each transfer size, we plot the mean reported band-

width of 1000 transfers. We also show the 95% confidence

interval as a filled-out area surrounding the plotted lines.

The upper-most plot depicts direct peer-to-peer transfers

between the GPUs. We compare our Device Lending mdev

implementation, with two borrowed remote GPUs passed

to a local VM (VMRem-P2P), to a local comparison, or

baseline, where two local GPUs are passed to a local VM

(VMLoc-P2P). As with our previous bandwidth evalua-

tions, we see a similar pattern as before: timing and syn-

chronization between driver and GPUs appear to affect

smaller-sized transfer, but becomes less relevant when the

(a)

(b)

Fig. 15 Topologies used in our VM peer-to-peer evaluation. We have

compared a local VM using VFIO pass-through to a remote VM using

our extended Device Lending. Note that the devices are located in an

expansion chassis, which increases the number of hops to the lender

Fig. 14 Mean round-trip latency for 100,000 ping-pongs. The error

bar represents the 99% confidence interval. For the peer-to-peer

scenarios, we achieve the expected latency corresponding to the data

path. When bouncing through RAM, the latency increases drastically

due to the second GPU having to read from RAM

Cluster Computing (2020) 23:1211–1234 1225

123

127

transfer sizes increases. At around 4 megabytes this over-

head is insignificant.

We have also included an additional comparison,

namely a remote bare-metal machine borrowing the two

remote GPUs and using them natively (NatRem-P2P-

IOMMU). In order to force TLPs to traverse the same route

as our KVM implementation (where lender-side IOMMU

is required), the IOMMU is also enabled on the lender for

the native comparison. It is interesting to note that it

appears to achieve slightly lower bandwidth than when

running in a VM, despite the data path being the same. We

do not completely understand why this is the case.

The lower plot in Fig. 16 depicts transfers that are

‘‘bounced’’ via RAM. The memory buffer is allocated in

system memory, and one GPU has to first write to it, before

the other GPU can read from it. Since the lender’s root is

now even further away from the devices, read requests are

significantly affected by the increased path. Combined with

the reduced link utilization, as we observed in Sect. 7.1, the

result is a drastic decrease in achieved bandwidth, for both

our native Device Lending scenario (NatRem-RAM-

IOMMU) and our KVM implementation (VMRem-RAM).

A simplified view of the data paths of all scenarios is

illustrated in Fig. 17. We see that the path for NatRem-

RAM-IOMMU and VMRem-RAM consists of 21 hops,

traversing tree CPU roots, the NTB twice and the external

transparent link four times. Note, however, that the per-

formance for our VM implementation is similar to the

native bare-metal performance, indicating that the Device

Lending mechanism itself does not add any additional

overhead. For the direct peer-to-peer DMA writes, the

performance is comparable to the local comparison, which

serves as our baseline.

7.3.2 VM latency evaluation

Using the second CUDA program, we also measured the

ping-pong latency for the same scenarios. This is shown in

Fig. 18, each bar is the mean reported latency for 100,000

ping-pongs (the error bar represents the 99% confidence

interval). It is interesting to note that the latency for the

remote scenarios using Device Lending (NatRem-P2P-

IOMMU and VMRem-P2P) is actually slightly better than

our local comparison, even though the data path is the same

(Fig. 17). We assume this may be related to how VFIO

exposes the GPU registers to the driver in the local case. In

our KVM implementation, we expose the device memory

regions directly, allowing the driver running in the VM

guest to access GPU registers directly.

Fig. 16 Mean bandwidth for 1000 transfers per transfer size. 95%

confidence interval. For peer-to-peer transactions we achieve the

same bandwidth as running locally

Table 2 The different scenarios used in our VM peer-to-peer evaluation. Since the GPUs and the NTBs are now attached in an expansion chassis,

the number of hops is very high when the IOMMU is enabled

Name Scenario Transfer Roots Hops

VMLoc-P2P Two GPUs installed in same, local expansion chassis. Peer-to-peer 1 7

VMRem-P2P Two GPUs installed in same, remote expansion chassis. Peer-to-peer 1 7

NatRem-P2P-IOMMU Two GPUs installed in same, remote expansion chassis. Peer-to-peer 1 7

VMLoc-RAM Two GPUs installed in same, local expansion chassis. Via local VM’s RAM 1 7

VMRem-RAM Two GPUs installed in same, remote expansion chassis. Via borrowing VM’s RAM 3 21

NatRem-RAM-IOMMU Two GPUs installed in same, remote expansion chassis. Via borrower’s RAM 3 21

1226 Cluster Computing (2020) 23:1211–1234

123

128

The increased latency of reading from remote RAM

corresponds with the increased number of hops. The data

path of running the VM locally (VMLoc-RAM) has only 7

hops, while the data paths of our remote native comparison

(NatRem-RAM-IOMMU) and the remote VM (VMRem-

RAM) both have 21 hops.

Our VM peer-to-peer evaluation indicate that we are

able to achieve the same performance as a local VM when

the data path is the same, and that we achieve the same

performance as running natively (with lender-side

IOMMU) even in the worst-case scenario.

7.4 Pass-through NVMe experiments

We have also performed experiments with our VM

implementation using an Intel Optane 900P NVMe disk.

We have compared the performance of the disk on a local

machine without using Device Lending, a physical bor-

rower (NatRem), and from a VM guest (VMRem). The

machines are connected back-to-back using PXH830 NTB

adapters [35]. The one-way RAM-to-RAM latency was

measured to 550–580 nanoseconds, where the NTB adds

around 350–370 nanoseconds. We have used QEMU

2.10.1 as our VM emulator, and running Ubuntu 16.04 as

the guest OS. Note that while any guest OS would be

possible, including Microsoft Windows, we have chosen

Linux in order to run the same benchmarking code on a

physical borrower, as well as locally on the lender. Device

Lending requires Linux on the host.

Figure 19 shows the bandwidth for reading 1024

sequential blocks repeated 1000 times. One block is

512 bytes. There is very little difference in the achieved

bandwidth, except for a few additional outliers for our VM

borrower (VMRem). Interestingly, we observe that the

physical borrower (NatRem) achieves slightly higher

median bandwidth than compared to the local baseline.

Latency was measured by reading 8 blocks repeated

10,000 times, each time at a random offset. Here, we

observe that the difference between running locally and on

the physical borrower is an increase of a little less than

1 microsecond. As the device now sits remotely, it has to

first reach over the NTB once in order to retrieve the I/O

commands, and then reach over the NTB again in order to

post the I/O completion. This adds 700-730 nanoseconds to

the latency, and is therefore an expected increase. We

observe that passing the disk to a VM running on the

borrower (VMRem), only increases the latency slightly

compared to the physical borrower (NatRem). Our evalu-

ation show that it is possible to borrow a remote NVMe

Fig. 17 Data paths for the different VM scenarios. Each hop slightly increases the completion latency. Because the NTB adapter is in the

expansion chassis next to the GPUs, the number of hops when the lender-side IOMMU is enabled is very high

Fig. 18 Mean round-trip latency for 100,000 ping-pongs. 99%

confidence interval. For peer-to-peer transactions, we achieve the

same latency as running locally

Fig. 19 Bandwidth and latency when reading from disk (DMA write).

We read 1024 sequential blocks for measuring bandwidth, and 8

blocks with a random offset for latency

Cluster Computing (2020) 23:1211–1234 1227

123

129

drive without any performance overhead beyond the added

latency of the NTB. Additionally, it shows that our KVM

extension to Device Lending is able to achieve almost the

same bandwidth and latency as a native borrower.

7.5 Image classification workload

In order to demonstrate that Device Lending is applicable

for real-world workloads, we run a GPU-intensive machine

learning task. The program we use for the tests is a typical

implementation of convolutional neural network (CNN)

training in the Python machine learning framework Keras

[37]. Keras is a higher level framework and wraps different

lower level machine learning frameworks. In our case,

Keras uses Tensorflow [38] as its backend. Keras allows

multiple GPUs to work together by replicating the machine

learning model being trained on each of the GPUs, then

splitting the model’s inputs into sub-batches which are

distributed on the GPUs. When the GPUs are done, the sub-

batches are concatenated on the CPU into one batch. This

introduces quasi-linear speedup [39]. However, as our

machine learning program can only run on a single system,

we utilize multi-GPU support in Keras by borrowing

remote GPUs and making them appear locally installed

using Device Lending.

Our real-world workload is produced by a program that

trains available models in Keras on given datasets with

given hyperparameters using transfer learning [40].

Transfer learning is a technique for training datasets, where

we use models with weights that are pre-trained on a

dataset with similar classes to the dataset we want to train

on. In our case, we use a VGG19 [41] model pre-trained on

the ImageNet [42] dataset.

Transfer learning is done in two training steps: first, we

remove the classification block of the pre-trained model,

attach a new block corresponding to the number of classes

in the dataset we want to train on, and train the new

classification block only. In the second step, we train all the

layers. For both steps, we use the stochastic gradient des-

cent optimizer available in Keras. We ran the training on an

8-classes image dataset of the gastrointestinal tract called

Kvasir [43–45].

We measured the runtime of a single epoch of the model

training on two Nvidia K40c GPUs as well as loading

images from storage and writing the results back using an

Intel Optane P4800X. While a single epoch may not give

the statistical significance needed for reliable machine

learning results, we are only interested in the system per-

formance. We used Keras 2.2.4 with a Tensorflow backend

running on an Ubuntu 16.04 installation with CUDA 9.0

cuDNN 7.1. Both GPUs and the disk were used in all

scenarios, and we also booted VMs and physical machines

from the disk. For the native remote tests (NatRem-SW and

NatRem-IOMMU) the disk was instead locally installed, in

order to boot from it. The physical host had 16 GB memory

and 6 CPU cores (Intel Xeon CPU E5-2603 v4). We

reserved 4 cores and 8 GB for the VM, and used all 6 cores

and the remaining 8 GB for the native run.

Figure 20 depicts the topology of our evaluation. When

using the multi-GPU model in Keras, the Tensorflow

backend outputs a GPU peer-to-peer matrix, indicating that

it is capable of direct DMA without bouncing via RAM.4

We have used the same configuration for local and remote

runs. As discussed in Sect. 7.3, this topology is a form of

worst-case scenario for running remote VMs because the

IOMMU address virtualization requires TLPs to be routed

through the lender’s root. At the same time, it is a best-case

scenario for native runs with direct peer-to-peer transfers,

as devices reside behind the same switch.

Figure 21 show the total runtime of the model training

for the different scenarios. For the best-case scenario,

running natively with direct data paths, we see that the

remote run (NatRem-SW) runs as fast as the local native

comparison (NatLoc). Enabling the IOMMU and forcing

traffic through the lender’s root (NatRem-IOMMU)

increases the overall runtime. We have also compared a

local VM using standard VFIO pass-through (VMLoc) to

our KVM implementation (VMRem). It is interesting to

note that the local VM runtime is higher than the remote

native using the IOMMU. This indicates that virtualization

adds some additional overhead compared to running on

bare-metal. The VMs also use less memory and CPU cores

than native. We suspect this is also the case for the remote

Fig. 20 Configuration used for our workload. The we have run a local

native (NatLoc) and local VM (VMLoc) comparison on the lender

and remote runs on the borrower (NatRem and VMRem). Note that

this topology best-case scenario for the remote native peer-to-peer

data path (NatRem-SW), while simultaneously being worst-case for

remote VMs (VMRem)

4 We also confirmed that the GPU driver sets up peer-to-peer

transfers by observing IOMMU mappings ranges.

1228 Cluster Computing (2020) 23:1211–1234

123

130

VM (VMRem), which means that we get virtualization

overhead in addition to the performance penalty of longer

data paths through the IOMMU.

8 Discussion

Device Lending is a mechanism for decoupling devices

from the hosts they physically reside in. Using hardware

memory mappings, we facilitate the use of remote hard-

ware resources without adding any software over-

head [1, 2, 45]. We have extended our original Device

Lending with KVM support for peer-to-peer transfers

between multiple devices passed through to a VM. In this

section, we discuss some considerations for borrowing

devices from a VM guests.

8.1 I/O address virtualization

In our performance evaluation (Sect. 7), we observed that

the data path in terms of number of hops affects the TLP

completion latency. We also observed that using the

lender-side IOMMU forces TLPs to be routed through the

CPU on the lender. Our findings also seem to match pre-

vious performance evaluations of IOMMUs [46].

When the driver and the device frequently communicate

with each other, as seen as synchronization overhead for

small DMA transfers in our evaluations using Nvidia

GPUs, it may affect performance since TLPs has to go back

and forth over NTB. For larger DMA transfers, we

observed that the significance of this delay decreases. For

peer-to-peer transfers that do not require synchronization

by the CPU, as is the case for our ping-pong evaluations,

the distance between GPU and driver is insignificant. It

should be noted that traversing the NTB adds less than half

of the latency added by InfiniBand FDR adapters [15, 21].

For native peer-to-peer transfers with PCIe switches, where

shortest-path routing is possible, we therefore argue that

Device Lending can be used with extremely low perfor-

mance overhead.

A major performance bottleneck occurs when DMA

read requests are routed through the root, as the Intel Xeon

CPUs used in our evaluations alter the read requests to

request less data at the time (from 256 to 64 bytes). This

leads to decreased utilization of the PCIe links. Since

devices may be limited by the number of read requests they

are able to keep open, the combination of poor link uti-

lization and longer data paths can drastically affect the

DMA bandwidth for some scenarios. However, we also

observed a similar effect when read requests were routed

through the CPU without the IOMMU being enabled. This

strongly indicates that routing peer-to-peer through the

CPU is a problem in general. Since the I/O address virtu-

alization is required for both local and remote pass-

through, it is worth investigating further by evaluating

other CPU architectures that implement an IOMMU, such

as AMD EPYC/Zen and IBM Power.

Our recommendation is to try to minimize the number of

hops after the CPU in order to reduce the performance

penalty of routing through the root, and to use shortest-path

peer-to-peer transfers where possible. For bare-metal bor-

rowers, this can be accomplished by disabling the IOMMU

on the lender all together. For VMs, it may be possible to

create a PCIe backplane that uses an NTB per device,

allowing the NTBs to map the guest-physical address space

for the devices rather than using an IOMMU for this.

Another possibility for avoiding IOMMU performance

penalty, is using PCIe switches and devices that support

caching of resolved virtual addresses using the standard for

this specified by PCI-SIG [34]. Note that while it is also

possible to disable the IOMMU on the borrower as well,

this requires mapping the entire address space of borrower

through the lender-side NTB and is therefore not practical

with multiple borrowers. It also has little impact on peer-

Fig. 21 Total runtime of Keras workload in different scenarios. There

is a significant performance decrease when running in a VM and

when the GPUs are remote. Note that the local VM (VMLoc)

performs worse than the native remote, indicating that there is

additional performance overhead caused by virtualization

Cluster Computing (2020) 23:1211–1234 1229

123

131

to-peer performance, unless one of the peering devices are

local.

8.2 VM migration

Since Device Lending decouples devices from their phys-

ical location, our KVM implementation makes it possible

to shutdown, migrate and restart a VM on a different host

in the cluster (cold migration). The guest will retain access

to the same physical devices. We demonstrated this in VM

evaluation (Sect. 7.3) and in our image classification

workload (Sect. 7.5), where the OS image with all the

installed software and device drivers resides on the same

boot disk that is being used by the remote and local VM

guests, the native remote host, and the native local host

comparison.

With proper emulator support, it would also be possible

to hot-add and hot-remove devices to a running VM

instance. Using such hot-swap functionality, migrating a

VM while it is running could be achieved by first removing

all devices before migrating and then re-attaching them

afterwards. However, this would temporarily disrupt their

use and force guest drivers to reset all devices.

A strong candidate for future improvements is looking

into real hot-migration techniques, remapping devices

while they are in use and without (or with minimal) dis-

ruption. However, such a solution would be non-trivial.

Not only would it require keeping memory consistent

during the migration warm-up, but DMA TLPs could

potentially be in-flight during the migration. A mechanism

for rerouting TLPs without violating the strict ordering

required by PCIe must be implemented, which most likely

will require hardware-level support.

8.3 Security considerations

A VM may allocate several GB of memory, which may be

scattered in physical memory. In order to conserve map-

ping resources, we use the IOMMU on the local system in

order to provide linear continuous memory ranges that are

trivially mapped over the NTB. However, pass-through

uses the IOMMU in order to match I/O addresses with the

guest physical memory layout. Furthermore, VFIO requires

that passed-through devices are placed in an IOMMU

domain per VM, in order to provide isolation. In our case,

this is not possible since we already use the IOMMU, and

the virtual device is in another domain.

However, we use the IOMMU on the lender instead to

map I/O virtual addresses to guest physical memory layout

and provide the necessary memory isolation. This guar-

antees that the device is only able to access the specific

DMA windows to the VM it is assigned to, and the

IOMMU on the borrower guarantees that the same

windows can only be used to access the VM memory. Our

solution therefore provides the same level of memory

isolation as standard pass-through. It is also not possible for

software running in the VM to access memory outside the

device memory regions of assigned devices.

8.4 Interrupt forwarding

For VMs, we register an interrupt handler on the device-

side lender and forward interrupts to the local borrowing

system, as explained in Sect. 5. A benefit with this

approach is that we are able to support all types of PCIe

interrupts, legacy, MSI and MSI-X, while native Device

Lending only supports MSI and MSI-X. However, this

introduces additional latency and involves software han-

dling on the lender.

An evaluation is needed to determine what impact

increased latency for interrupts may have on the perfor-

mance of device drivers. As this impact most likely is not

negligible, a candidate for improvement is therefore to use

the same approach as bare-metal Device Lending for MSI

and MSI-X, and map these types of interrupts over the

NTB. This would remove any special software handling

other than on the borrowing system alone, where we still

need to use the eventfd API in order to notify the VM.

9 Conclusion

In this paper, we presented how we have extended our

Device Lending implementation with support for the KVM

hypervisor, allowing pass-through of physically remote

devices to local VM guests. By dynamically probing the

available memory and fully supporting both MSI and MSI-

X interrupts, we have greatly improved the usability of our

previous Device Lending implementation [2]. With

dynamic memory layout detection, it is possible to com-

pose custom configurations of distributed I/O resources in a

PCIe cluster, for both native and virtual machines. Our

experimental evaluations prove that we are able to com-

pose flexible configurations of remote devices and enable

dynamic time-sharing of resources using Device Lending.

Being able to scale by dynamically reassigning devices to

machines that currently need them, makes it possible to

support a flexible I/O infrastructure that meet processing

requirements and at the same time makes it possible to

optimize resource utilization.

We have also implemented support for borrowing mul-

tiple devices from different lenders and enabled peer-to-

peer access between them, allowing remote I/O resources

to be used as if they were attached to the same local fabric.

This allows physically remote devices to be used by the

local system, without requiring any modifications to either

1230 Cluster Computing (2020) 23:1211–1234

123

132

device drivers or applications and without adding any

software overhead in the data path. As part of this evalu-

ation, we have investigated the impact of I/O address vir-

tualization on performance. Specifically, we have

performed bandwidth and latency measurements for dif-

ferent data paths. By enabling peer-to-peer transfers and

routing shortest path between devices, we demonstrate that

native Device Lending does not add a performance over-

head in the data path beyond what is expected for longer

paths. However, our results indicate that a major perfor-

mance bottleneck occurs when DMA read requests traverse

the CPU root, as is the case when the IOMMU on the

lender is enabled. The Intel Xeon CPUs used in our eval-

uation alters the requests in a way that leads to poor link

utilization. This impacts our VM implementation, as it

requires the use of device-side IOMMU in order to map the

device to guest-physical address space. This warrants fur-

ther evaluations of other CPU architectures.

We have also run a real-world medical imaging classi-

fication application with borrowed remote hardware

resources. We compare a best-case bare-metal topology for

local and remote devices, and show that we achieve close

to local performance using Device Lending. We have also

compared our newly implemented VM support to a local

VM, and show that it is possible to run such a workload in

a VM using remote physical devices. We argue that being

able to run the exact same code using remote GPUs and

hard disks as if they were locally installed, thus making use

of a complex machine learning framework with one of the

most complex GPU implementations on the market,

demonstrate the strength of Device Lending.

Acknowledgements This work has been performed mainly in the

context of the BIA project PCIe (#235530) funded by the Research

Council of Norway, with contributions from the LADIO project (EU

Horizon 2020 #731970). The authors would like to thank Stig Magnus

Baugstø, Halvor Kielland-Gyrud, Roy Nordstrøm and Hugo Koh-

mann at Dolphin Interconnect Solutions. We also thank Kristoffer

Robin Stokke for feedback on the manuscript.

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://creative

commons.org/licenses/by/4.0/), which permits unrestricted use, dis-

tribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

1. Kristiansen, L.B., Markussen, J., Stensland, H.K., Riegler, M.,

Kohmann, H., Seifert, F., Nordstrøm, R., Griwodz, C., Halvorsen,

P.: Device Lending in PCI Express Networks. In: Proceedings of

International Workshop on Network and Operating Systems

Support for Digital Audio and Video, NOSSDAV, pp. 10:1–10:6

(2016). https://doi.org/10.1145/2910642.2910650

2. Markussen, J., Kristiansen, L.B., Stensland, H.K., Seifert, F.,

Griwodz, C., Halvorsen, P.: Flexible device sharing in pcie

clusters using device lending. In: Proceedings of the International

Conference on Parallel Processing Companion, ICPP Companion,

pp. 48:1–48:10 (2018). https://doi.org/10.1145/3229710.3229759

3. Fountain, T., McCarthy, A., Peng, F.: PCI express: an overview

of PCI express, cabled PCI express and PXI express. In: Pro-

ceedings of International Conference on Accelerator & Large

Experimental Physics Control Systems, ICALEPCS (2005)

4. Peripheral Component Interconnect Special Interest Group (PCI-

SIG): PCI Express 3.1 Base Specification (2010). https://pcisig.

com/specifications

5. Abramson, D., Jackson, J., Muthrasanallur, S., Neiger, G., Reg-

nier, G., Sankaran, R., Schoinas, I., Uhlig, R., Vembu, B., Wei-

gert, J.: Intel virtualization technology for directed I/O. Intel

Technol. J. 10(03) (2006) https://doi.org/10.1535/itj.1003.02
6. Linux IOMMU Support. https://www.kernel.org/doc/Documenta

tion/Intel-IOMMU.txt

7. Nvidia Virtual GPU Technology (vGPU). http://www.nvidia.

com/object/virtual-gpus.html

8. Peripheral Component Interconnect Special Interest Group (PCI-

SIG): Single-root I/O Virtualization and Sharing Specification

(2010). https://www.pcisig.com/specifications/iov/single-root/

9. Ravindran, M.: Extending Cabled PCI Express to Connect

Devices with Independent PCI Domains. In: Proceedings of the

IEEE Systems Conference, SysCon, pp. 1–7 (2008). https://doi.

org/10.1109/SYSTEMS.2008.4519048

10. Regula, J.: Using Non-transparent Bridging in PCI Express

Systems. PLX Technology Inc, Sunnyvale (2004)

11. Sullivan, M.J.: Intel Xeon Processor C5500/C3500 Series Non-

Transparent Bridge. Specification, Intel Corporation (2010)

12. Saito, K., Anai, K., Igarashi, K., Nishikawa, T., Himeno, R.,

Yoguchi, K.: ATM bus system (1998)

13. Alnæs, K., Kristiansen, E.H., Gustavson, D.B., James, D.V.:

Scalable coherent interface. In: Proceedings of International

Conference on Computer Systems and Software Engineering,

CompEuro, pp. 446–453 (1990). https://doi.org/10.1109/

CMPEUR.1990.113656

14. The Case Against iWARP (2015). https://www.chelsio.com/wp-

content/uploads/resources/iWARP-Myths.pdf

15. RoCE vs. iWARP Competitive Analysis (2017). http://www.mella

nox.com/related-docs/whitepapers/WP_RoCE_vs_iWARP.pdf

16. Trivedi, A., Metzler, B., Stuedi, P.: A case for RDMA in clouds.

In: Proceedings of the Second Asia-Pacific Workshop on Sys-

tems, APSys, pp. 17:1–17:5 (2011). https://doi.org/10.1145/

2103799.2103820

17. Huang, J., Ouyang, X., Jose, J., Wasi-Ur-Rahman, M., Wang, H.,

Luo, M., Subramoni, H., Murthy, C., Panda, D.K.: High-perfor-

mance design of hbase with RDMA over InfiniBand. In: Pro-

ceedings of International Parallel and Distributed Processing

Symposium, IPDPS, pp. 774–785 (2012). https://doi.org/10.1109/

IPDPS.2012.74

18. Jiang, W., Liu, J., Jin, H.W., Panda, D.K., Gropp, W., Thakur, R.:

High performance MPI-2 one-sided communication over Infini-

Band. In: Proceedings of International Symposium on Cluster

Computing and the Grid, CCGrid, pp. 531–538 (2004). https://

doi.org/10.1109/CCGrid.2004.1336648

19. Duato, J., Pena, A., Silla, F., Mayo, R., Quintana-Ortı́, E.:

rCUDA: reducing the number of GPU-based accelerators in high

performance clusters. In: Proceedings of International Conference

on High Performance Computing and Simulation, HPCS

pp. 224–231 (2010). https://doi.org/10.1109/HPCS.2010.5547126

20. Venkatesh, A., Subramoni, H., Hamidouche, K., Panda, D.K.: A

high performance broadcast design with hardware multicast and

GPUDirect RDMA for streaming applications on Infiniband

clusters. In: Proceedings of International Conference on High

Cluster Computing (2020) 23:1211–1234 1231

123

133

Performance Computing, HiPC (2014). https://doi.org/10.1109/

HiPC.2014.7116875

21. Rosetti, D.: Benchmarking GPUDirect RDMA on Modern Server

Platforms (2014). http://devblogs.nvidia.com/parallelforall/

benchmarking-gpudirect-rdma-on-modern-server-platforms/

22. Daglis, A., Novaković, S., Bugnion, E., Falsafi, B., Grot, B.:

Manycore network interfaces for in-memory rack-scale comput-

ing. ACM SIGARCH Comput. Archit. News 43(3), 567–579

(2015). https://doi.org/10.1145/2872887.2750415

23. Costa, P., Ballani, H., Razavi, K., Kash, I.: R2c2: a network stack

for rack-scale computers. ACM SIGCOMM Comput. Commun.

Rev. 45(4), 551–564 (2015). https://doi.org/10.1145/2829988.

2787492

24. Whitby-Strevens, C.: The transputer. ACM SIGARCH Comput.

Archit. News 13(3), 292–300 (1985). https://doi.org/10.1145/

327070.327269

25. Hayes, J.P., Mudge, T., Stout, Q.F., Colley, S., Palmer, J.: A

microprocessor-based hypercube supercomputer. IEEE Micro

6(5), 6–17 (1986). https://doi.org/10.1109/MM.1986.304707

26. Peripheral Component Interconnect Special Interest Group (PCI-

SIG): Multi-root I/O Virtualization and Sharing Specification

(2008). https://www.pcisig.com/specifications/iov/multi-root/

27. Suzuki, J., Hidaka, Y., Higuchi, J., Baba, T., Kami, N., Yoshi-

kawa, T.: Multi-root Share of Single-Root I/O Virtualization (SR-

IOV) Compliant PCI Express Device. In: Proceedings of Sym-

posium on High Performance Interconnects, HOTI, pp. 25–31

(2010). https://doi.org/10.1109/HOTI.2010.21

28. Tu, C.C., Lee, Ct, Chiueh, Tc: Secure I/O device sharing among

virtual machines on multiple hosts. ACM SIGARCH Comput.

Archit. News 41(3), 108–119 (2013). https://doi.org/10.1145/

2508148.2485932

29. Tu, C.C., Chiueh, T.c.: Seamless fail-over for PCIe switched

networks. In: Proceedings of the International Systems and

Storage Conference, SYSTOR, pp. 101–111 (2018). https://doi.

org/10.1145/3211890.3211895

30. Dilk, P.: Microsemi Switchtec PAX: Advanced fabric gen3 pcie

switch (2017). https://www.youtube.com/watch?v=OB7OuektR0E

31. Wong, H.: PCI express multi-root switch reconfiguration during

system operation (2011)

32. VFIO—‘‘Virtual Function I/O’’. https://www.kernel.org/doc/Doc

umentation/vfio.txt

33. Jia, N., Wankhede, K.: VFIO Mediated Devices. https://www.

kernel.org/doc/Documentation/vfio-mediated-device.txt

34. Peripheral Component Interconnect Special Interest Group (PCI-

SIG): Address Translation Services Revision 1.1 (2009). https://

www.pcisig.com/specifications/iov/ats/

35. PXH830 Gen3 PCI Express NTB Host Adapter. http://www.dol

phinics.no/products/PXH830.html

36. CUDA Toolkit Documentation v10.1.105 (2019). http://docs.nvi

dia.com/cuda/

37. Keras (2015). https://keras.io

38. TensorFlow: Large-scale machine learning on heterogeneous

systems (2015). https://www.tensorflow.org/

39. Keras documentation: multi_gpu_model (2015). https://keras.io/

utils/#multi_gpu_model

40. Borgli, R., Halvorsen, P., Riegler, M., Stensland, H.K.: Auto-

matic hyperparameter optimization in keras for the mediaeval

2018 medico multimedia task. In: Working Notes Proceedings of

the MediaEval 2018 Workshop (2018)

41. Simonyan, K., Zisserman, A.: Very deep convolutional networks

for large-scale image recognition. CoRR arXiv (2014). arXiv:abs/

1409.1556

42. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.:

ImageNet: A Large-Scale Hierarchical Image Database. In: Pro-

ceedings of the Conference on Computer Vision and Pattern

Recognition, CVPR (2009). https://doi.org/10.1109/CVPR.2009.

5206848

43. Pogorelov, K., Randel, K.R., Griwodz, C., Eskeland, S.L.,

de Lange, T., Johansen, D., Spampinato, C., Dang-Nguyen, D.T.,

Lux, M., Schmidt, P.T., Riegler, M., Halvorsen, P.: KVASIR: A

multi-class image dataset for computer aided gastrointestinal

disease detection. In: Proceedings of the ACM Multimedia Sys-

tems Conference, MMSys, pp. 164–169 (2017). https://doi.org/

10.1145/3083187.3083212

44. Hicks, S.A., Riegler, M., Pogorelov, K., Ånonsen, K.V.,

de Lange, T., Johansen, D., Jeppsson, M., Randel, K.R., Eske-
land, S., Halvorsen, P.: Dissecting deep neural networks for better

medical image classification and classification understanding. In:

Proceedings of International Symposium on Computer-Based

Medical Systems, CBMS (2018). https://doi.org/10.1109/CBMS.

2018.00070

45. Pogorelov, K., Ostroukhova, O., Jeppsson, M., Espeland, H.,

Griwodz, C., de Lange, T., Johansen, D., Riegler, M., Halvorsen,

P.: Deep learning and hand-crafted feature based approaches for

polyp detection in medical videos. In: Proceedings of Interna-

tional Symposium on Computer-Based Medical Systems, CBMS,

pp. 381–386 (2018). https://doi.org/10.1109/CBMS.2018.00073

46. Neugebauer, R., Antichi, G., Zazo, J.F., Audzevich, Y., López-

Buedo, S., Moore, A.W.: Understanding PCIe performance for

end host networking. In: Proceedings of the ACM Special Interest

Group on Data Communication, SIGCOMM, pp. 327–341

(2018). https://doi.org/10.1145/3230543.3230560

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Jonas Markussen Jonas Mar-

kussen is a PhD student at

Simula Research Laboratory,

where his research is focused on

new ways to use Non-Trans-

parent Bridges in order to opti-

mize data transfer paths and

memory accessing by using

their unique potential for map-

ping memory. Since 2018, Jonas

has been working as a software

architect for Dolphin Intercon-

nect Solutions, continuing his

work from his PhD. His

research interests are distributed

shared-memory applications, computer networks and cluster

interconnects.

1232 Cluster Computing (2020) 23:1211–1234

123

134

Lars Bjørlykke Kristiansen Lars

Bjørlykke Kristiansen is a soft-

ware architect at Dolphin Inter-

connect Solutions. He got his

master’s degree in Informatics

at the University of Oslo, Nor-

way in 2015 where his thesis

laid the foundation for Device

Lending. At Dolphin he contin-

ues his work on Device Lend-

ing, as well as exploring

innovative new ways to exploit

the unique shared memory

capabilites of PCIe clusters and

Non-Transparent Briding.

Rune Johan Borgli Rune Johan

Borgli is a Ph.D. student at

Simula Research Laboratory.

He received his master’s degree

from the University of Oslo in

2018, where his master thesis

topic was on hyperparameter

optimization using Bayesian

optimization on transfer learn-

ing for medical image classifi-

cation. His research interests are

machine learning workflows

and pipelines, image processing,

machine learning infrastructure

optimization, and secure and

privacy-oriented data handling. He is currently working on his Ph.D.

thesis which will explore secure machine learning processing of

privacy-sensitive data.

Håkon Kvale Stensland Håkon

Kvale Stensland is a senior

researcher at Simula Research

Laboratory. He finished his

master degree (MSc) in 2006

and received his doctoral degree

(Ph.D.) in 2015 from the

Department of Informatics,

University of Oslo. At Simula,

he is the deputy head of the

Department of Advanced Com-

puting and System Performance.

From Simula, he is also leading

the collaboration with Dolphin

Interconnect Solutions, where

we research sharing of GPUs and other IO devices between multiple

machines connected in a PCI Express network. Håkon is also an

adjunct associate professor at the University of Oslo, Department of

Informatics, where he is involved in teachings and supervising Ph.D.

and Master students.

Friedrich Seifert Friedrich Sei-

fert obtained his master’s degree

in Computer Science (Dipl.-

Inf.) from Chemnitz University

of Technology, Germany, in

1999. He is working as Senior

System and Software Architect

for Dolphin Interconnect Solu-

tions, where he focuses on

developing innovative concepts

for building compute and I/O

clusters using Non-Transparent

Bridging functionality found in

state-of-the-art PCIe chipsets.

Michael Riegler Michael Riegler

is a senior researcher at Simu-

laMet. He received his master’s

degree from Klagenfurt

University with distinction and

finished his PhD at the Univer-

sity of Oslo in two and a half

years. His research interests are

medical multimedia data analy-

sis and understanding, image

processing, image retrieval,

parallel processing, crowd-

sourcing, social computing and

user intent. He is involved in

several initiatives like the

MediaEval Benchmarking initiative for Multimedia Evaluation,

which runs this year the Medico task (automatic analysis of colono-

scopy videos). Furthermore he is part of an expert group for the

Norwegian Council of Technology on Machine Learning for

Healthcare reporting directly to the Norwegian Government.

Carsten Griwodz Carsten Gri-

wodz is professor at the

University of Oslo, Norway, and

co-founder of ForzaSys AS, a

social media startup for sports.

He received his doctoral degree

from Darmstadt University of

Technology, Germany in 2000.

His research interest is the per-

formance of multimedia sys-

tems and his goal to understand

how users can become suffi-

ciently immersed in an experi-

ence depending on their goals

and context. He explores

research advances in fields ranging from operating system and net-

works to computer vision to understand and reach the point of suf-

ficient immersion.

Cluster Computing (2020) 23:1211–1234 1233

123

135

Pål Halvorsen Pål Halvorsen is a

chief research scientist at Sim-

ulaMet, a professor at OsloMet

University, a professor II at

University of Oslo, Norway, and

the CEO of ForzaSys AS. He

received his doctoral degree

(Dr.Scient.) in 2001. His

research focuses mainly at dis-

tributed multimedia systems

including operating systems,

processing, storage and retrie-

val, communication and distri-

bution from a performance and

efficiency point of view. He also

is a member of the IEEE and ACM.

1234 Cluster Computing (2020) 23:1211–1234

123

136

Paper V

SmartIO: Zero-overhead Device
Sharing through PCIe Networking

V

Authors: Jonas Markussen, Lars Bjørlykke Kristiansen, Pål Halvorsen,
Halvor Kielland-Gyrud, Håkon Kvale Stensland, Carsten Griwodz.

Abstract: The large variety of compute-heavy and data-driven applications
accelerate the need for a distributed I/O solution that enables cost-
effective scaling of resources between networked hosts. For example, in a
cluster system, different machines may have various devices available at
different times, but moving workloads to remote units over the network
is often costly and introduce large overheads compared to accessing local
resources. To facilitate I/O disaggregation and device sharing among hosts
connected using Peripheral Component Interconnect Express (PCIe) non-
transparent bridges, we present SmartIO. NVMes, GPUs, network adapters,
or any other standard PCIe device may be borrowed and accessed directly,
as if they were local to the remote machines. We provide capabilities
beyond existing disaggregation solutions by combining traditional I/O
with distributed shared-memory functionality, allowing devices to become
part of the same global address space as cluster applications. Software
is entirely removed from the data path, and simultaneous sharing of a
device among application processes running on remote hosts is enabled.
Our experimental results show that I/O devices can be shared with remote
hosts, achieving native PCIe performance. Thus, compared to existing
device distribution mechanisms, SmartIO provides more efficient, low-cost
resource sharing, increasing the overall system performance.

Candidate’s contributions: The ideas for the device-oriented extension to the
SISCI API grew out from Markussen’s experiences with implementing
MDEV for Paper III and Paper IV. Markussen contributed with several new
ideas for the design of this API, and implemented these. He collaborated
on the effort of combining these ideas with previous work into the complete
SmartIO system. Furthermore, Markussen came up with the idea for,
designed, and implemented the prototype distributed NVMe driver using
this API extension, including the queue offloading idea and support for
running the driver on GPUs. Limitations in the initial API design
were uncovered during this process, and Markussen made subsequent
improvements to both design and implementation of the API throughout
the development of the driver. Additionally, he designed and implemented

139

V. SmartIO: Zero-overhead Device Sharing through PCIe Networking

several workloads for this NVMe driver using GPUs and Device Lending
in order to demonstrate the novelty and completeness of the SmartIO
solution, as well as the performance benefits. He conducted a thorough and
exhaustive performance analysis of all components of the SmartIO system,
as well as evaluating the entire system, and investigated and implemented
solutions for eliminating performance overheads in the system. Finally,
Markussen wrote most of the text for the paper, and also wrote the
necessary tools and benchmarking programs for the evaluation, including
the FIO integration for the NVMe driver and implementing GPU and
NVMe test programs.

Published in: Transactions on Computer Systems. ACM. Published on-
line June 2021, issue date July 2021, volume 38, issue 1-2, article 2,
pp. 2:1–2:78.

DOI: 10.1145/3462545

Contributed to: All objectives (Objectives 1–6).

140

https://doi.org/10.1145/3462545

2

SmartIO: Zero-overhead Device Sharing through
PCIe Networking

JONAS MARKUSSEN and LARS BJØRLYKKE KRISTIANSEN, Dolphin Interconnect
Solutions, Norway
PÅL HALVORSEN, SimulaMet, Norway
HALVOR KIELLAND-GYRUD, Dolphin Interconnect Solutions, Norway
HÅKON KVALE STENSLAND, Simula Research Laboratory, Norway
CARSTEN GRIWODZ, University of Oslo, Norway

The large variety of compute-heavy and data-driven applications accelerate the need for a distributed I/O
solution that enables cost-effective scaling of resources between networked hosts. For example, in a cluster
system, different machines may have various devices available at different times, but moving workloads to
remote units over the network is often costly and introduces large overheads compared to accessing local
resources. To facilitate I/O disaggregation and device sharing among hosts connected using Peripheral Com-
ponent Interconnect Express (PCIe) non-transparent bridges, we present SmartIO. NVMes, GPUs, network
adapters, or any other standard PCIe device may be borrowed and accessed directly, as if they were local to the
remote machines. We provide capabilities beyond existing disaggregation solutions by combining traditional
I/O with distributed shared-memory functionality, allowing devices to become part of the same global address
space as cluster applications. Software is entirely removed from the data path, and simultaneous sharing of a
device among application processes running on remote hosts is enabled. Our experimental results show that
I/O devices can be shared with remote hosts, achieving native PCIe performance. Thus, compared to existing
device distribution mechanisms, SmartIO provides more efficient, low-cost resource sharing, increasing the
overall system performance.

CCS Concepts: • Computer systems organization → Distributed architectures; Cloud computing; •
Hardware→ Buses and high-speed links; • Software and its engineering→Distributed memory; Distributed
systems organizing principles; • Information systems→ Distributed storage;

Additional Key Words and Phrases: Resource sharing, composable infrastructure, I/O disaggregation, PCIe,
cluster architecture, Device Lending, NVMe, GPU, NTB, distributed I/O

J. Markussen is also with Simula Research Laboratory, Norway.
P. Halvorsen also with Oslo Metropolitan University, Norway.
H. K. Stensland is also with University of Oslo, Norway.
C. Griwodz is also with SimulaMet, Norway.
Authors’ addresses: J. Markussen, L. B. Kristiansen, and H. Kielland-Gyrud, Dolphin Interconnect Solutions AS, Nils
Hansens vei 13, 0667 Oslo, Norway; emails: {jonas, larsk, halvor}@dolphinics.com; P. Halvorsen, Simula Metropolitan,
Pilestredet 52, 0167 Oslo, Norway; email: paalh@simula.no; H. K. Stensland, Simula Research Laboratory, PO Box 134,
1325 Lysaker, Norway; email: haakonks@simula.no; C. Griwodz, Department of Informatics, University of Oslo, PO Box
1080, Blindern, 0316 Oslo, Norway; email: griff@ifi.uio.no.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2021 Copyright held by the owner/author(s).
0734-2071/2021/06-ART2
https://doi.org/10.1145/3462545

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

141

2:2 J. Markussen et al.

ACM Reference format:
Jonas Markussen, Lars Bjørlykke Kristiansen, Pål Halvorsen, Halvor Kielland-Gyrud, Håkon Kvale Stensland,
and Carsten Griwodz. 2021. SmartIO: Zero-overhead Device Sharing through PCIe Networking. ACM Trans.
Comput. Syst. 38, 1-2, Article 2 (June 2021), 78 pages.
https://doi.org/10.1145/3462545

1 INTRODUCTION
High-performance computing workloads often have high requirements for I/O resources. For
example, many computing clusters rely on compute accelerators, such as graphics process-
ing units (GPUs) and field-programmable gate arrays (FPGAs), to increase the processing
speed. Moving data efficiently between networked nodes and onto such compute accelerators
has been a research challenge for decades. In recent years, we have also seen a convergence of
high-performance computing, big data, and machine learning research fields. This has led to new
demands to I/O performance where distributed, high-volume storage is becoming a requirement
for high-performance computing, while low latency networking and facilitating access to com-
pute accelerators have become cloud computing issues [16, 80, 84]. If I/O resources (devices) are
distributed scarcely among hosts, then cluster nodes with I/O resources may become bottlenecks
when a workload requires heavy computation on GPUs or fast access to storage. Contrarily, over-
provisioning nodes with resources may lead to devices becoming underutilized if the workload’s
demands are more sporadic. Heterogeneous workloads may even require widely different com-
positions of devices for individual nodes. Being able to share and dynamically partition devices
between nodes in a cluster leads to more efficient utilization, as I/O resources can be scaled up or
down based on current workload requirements.

In cloud computing environments, such dynamic scaling and resource partitioning is often han-
dled through virtualization. Virtual machine (VM) hypervisors may dynamically add virtual I/O
devices to VM instances on demand. It is even possible to temporarily suspend computation to
migrate VMs to hosts with more hardware resources, should the VM’s requirements exceed the
available local resources. However, resource virtualization may not be viable when the raw, bare-
metal I/O performance is required, for example in the case of GPU-intensive machine learning
workloads. In this regard, it is possible to “pass through” physical I/O devices to a VM guest using
an I/O Memory Management Unit (IOMMU). The IOMMU facilitates direct access to hard-
ware from the guest without compromising the virtualized environment. Although pass-through
allows physical hardware to be used with minimal software overhead, this technique suffers from
a lack of flexibility as the physical devices are tightly coupled with the hosts they are installed in.
Distributing VMs across hosts in the network in a way that maximizes resource utilization and
adapts dynamically to varying I/O requirements, without sacrificing the bare-metal performance
that pass-through provides, remains a challenge.

Another challenge is the networking technology itself. Many network adapters support zero-
copy of application memory from one system to another through remote direct memory access
(RDMA) [32]. RDMA is not only used in many distributed shared-memory cluster applications,
but is also frequently used for implementing resource disaggregation. Low-latency storage devices,
such as non-volatile memory express devices (NVMes), can be shared at the block-level in the
cluster. This is the case for NVMe over Fabrics (NVMe-oF) [29], where RDMA is used to provide
direct access and avoid going through the block-layer on the operating system (OS) on the
server. Similarly, the result of a GPU computation may be copied out of GPU memory and onto the
network directly using RDMA, without being copied to system memory first and going through
the network stack [91]. RDMA disaggregation is usually implemented as application-specific

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

142

SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:3

middleware. Although this often requires application software to use specific programming
models and semantics, such as message-passing, the benefit is that resources may be shared by
several hosts in the network. However, while RDMA allows data to be transferred efficiently
over the network, translation between the network protocol and the local I/O bus is unavoidable.
Compared to accessing a local device, this protocol translation incurs latency overheads that are
not insignificant.

Peripheral Component Interconnect Express (PCIe) is the most widely used standard for
connecting devices to a computer system. Although it was originally designed as a local I/O bus
connecting devices to the central processing unit (CPU) on a motherboard, extending the PCIe
bus out of a single computer and connecting several systems is made possible by using a spe-
cial type of device called non-transparent bridge (NTB). NTBs can be embedded as a CPU
feature [77, 95], but are more commonly implemented in PCIe switch chips [13, 82], allowing
independent computer systems to interconnect with plug-in host adapter cards and external ca-
bles [44, 50, 67, 69]. Unlike other interconnection technologies, solutions built with PCIe network-
ing allow resources to be accessed with very little performance overhead as no protocol translation
is required. However, while some disaggregation approaches using NTBs have been proposed in
the past [31, 89], these implementations present solutions where devices are owned by a dedicated
server. As distributing resources is generally only possible to hosts that are directly connected to
the same switch as this server, these approaches forgo the flexibility of fully distributed cluster
computing systems. Alternative PCIe-based solutions rely on additional virtualization functional-
ity in the PCIe switch chip hardware to partition the PCIe fabric and create virtual device trees for
each individual host [15, 51]. These solutions allow devices to be directly attached a switch rather
than a server. However, these solutions are only able to disaggregate resources at the device level.
Sharing the same device with multiple hosts either requires virtualization support in the device
itself, i.e., Single-Root I/O Virtualization (SR-IOV), or additional distribution methods, such as
RDMA.

To address these challenges, we present our SmartIO system for sharing resources and distribut-
ing devices in a heterogeneous, PCIe-interconnected cluster. Unlike existing solutions, our system
is able to provide sharing and disaggregation capabilities at multiple abstraction levels: distribut-
ing devices to physical hosts, distributing devices to VMs, and enabling disaggregation of devices
and memory in software. In addition, our SmartIO system is fully distributed. We avoid relying
on dedicated servers and instead allow all hosts to contribute their own local resources and access
remote resources, even at the same time. This blurs the distinction between remote and local re-
sources, and scaling out and increasing the overall I/O resource utilization in the system becomes
easier.

SmartIO is implemented on top of the inherent memory mapping capabilities of NTBs, allowing
cluster nodes to map parts of the address space in remote hosts. Our system effectively makes all
hosts, including their internal resources (both devices and memory), part of a common PCIe do-
main. Remote resources can be accessed directly over native PCIe, without requiring any software
in the data path or network protocol translation. Furthermore, by relying on PCIe shared-memory
techniques, SmartIO is able to abstract away the physical location of devices and memory resources.
Our implementation translates memory addresses between different address domains and resolves
paths through the PCIe network in a manner that is transparent to both application software and
device drivers. As all nodes may contribute their resources, and not only dedicated servers, our
SmartIO is able to provide optimizations based on resource locality and minimizing data move-
ment, without requiring the user to be aware of the underlying PCIe topology. This unlocks a new
potential in PCIe-connected cluster systems, as application software no longer needs to be written
with accessing remote resources in mind, but can be implemented as if resources are local.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

143

2:4 J. Markussen et al.

We have previously demonstrated how Device Lending allows devices to be dynamically as-
signed to different machines, making it possible for a system to access remote PCIe devices as if
they were locally installed [41]. We have also shown how our Device Lending method extends to
VMs by implementing a mediated device interface (MDEV), which facilitates pass-through of
remote PCIe devices to VMs running on any host in the cluster [48, 49]. Our new complete SmartIO
sharing solution does not only incorporate this earlier work, but greatly extends and supersedes
it. We have generalized the core components of our original Device Lending implementation, i.e.,
the mechanism that enables direct access over PCIe in a manner that is transparent to both device
and device driver, and have developed an entirely new application programming interface
(API). This new API provides device driver functionality to shared-memory cluster applications,
such as mapping shared memory regions for direct memory access (DMA) from the device and
memory-mapping device registers into application address space. By making device operation part
of distributed cluster applications and allowing devices to access shared memory regions using na-
tive DMA, it becomes possible to disaggregate devices in software. As such, our new API enables
simultaneous sharing of devices between software processes running on different hosts in the clus-
ter, in addition to device-level distribution capabilities provided by Device Lending and MDEV.

In short, SmartIO is a flexible framework for device distribution and resource sharing that en-
ables cost-effective scaling of resources between PCIe-networked hosts. The main contributions
of our work are listed as follows:
• We have incorporated our previous Device Lending method into our complete SmartIO so-

lution. NVMes, GPUs, network adapters, and any standard PCIe device can be distributed to
remote systems and used without any performance difference compared to local access. De-
vices appear as if they are dynamically hot-added to the system, and can be used by existing
application software and device drivers without requiring any modifications.
• SmartIO also includes our MDEV extension to Device Lending. This interface extends the

Linux Kernel-based Virtual Machine hypervisor (KVM). Our extension facilitates direct
access to remote physical devices for VM guests, allowing VMs to run on any host in the
network and use (remote) devices with bare-metal performance.
• We have created a new device-oriented API for writing device drivers as shared-memory

applications. This makes it possible to disaggregate devices in software, similarly to RDMA
disaggregation solutions. Unlike RDMA, however, resources are accessed over native PCIe,
which allows resources to be shared without introducing a performance penalty. Through
our API, device driver implementations may take full advantage of PCIe shared memory
capabilities, such as remote memory access and multicasting, without requiring awareness
of the PCIe topology and the different address domains of remote systems. This makes it
easier for application software to optimize data flow through the PCIe network.
• We have developed a prototype NVMe device driver using our new device-oriented API.

Although the Device Lending component of SmartIO makes it possible to use existing device
drivers, most device drivers are written in a way that assumes exclusive control over the
device. Using Device Lending alone, a device may only be used by a single host at the time.
To demonstrate software-enabled disaggregation, we have implemented a distributed NVMe
driver. As a proof of concept, we show a single NVMe device can be shared and operated by
30 cluster nodes simultaneously, without requiring SR-IOV. This driver also demonstrates
how multiple sharing aspects of our system may be combined, by disaggregating (remote)
GPU memory and enabling memory access optimizations.
• To prove that our solution enables zero-overhead sharing, we provide a comprehensive per-

formance evaluation covering all components of our SmartIO solution, including our earlier

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

144

SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:5

Fig. 1. SmartIO allows the internal devices of hosts in the network to be shared with other hosts connected
to the same fabric. Nodes in a PCIe-networked cluster can contribute their internal devices to a shared device
pool, and borrow resources from that pool when needed.

Device Lending and MDEV work. We have performed entirely new experiments, using both
synthetic microbenchmarks and realistic large-scale workloads. Our experimental results
confirm that I/O devices can be distributed to, and shared with, remote hosts, without any
performance penalty beyond what is expected for longer PCIe paths. In fact, all our exper-
iments prove that remote devices can be used without any performance overhead compared
to local access in terms of latency and throughput.

The rest of this article is structured as follows: Section 2 gives a high-level overview of our Smar-
tIO system. Section 3 explains the basic building blocks of shared-memory networking with PCIe.
In Section 4, we detail our Device Lending method, and in Section 5, we explain how the original
Device Lending was enhanced with hypervisor support (MDEV). In Section 6, we describe our new
software API and use a distributed NVMe driver implementation as an example implementation.
We present our experimental results and extensive evaluation in Section 7, before we provide a
discussion of other aspects and considerations of our SmartIO solution in Section 8. Finally, we
put the work in the context of state of the art in Section 9, and conclude the article in Section 10.

2 SYSTEM OVERVIEW
Our SmartIO solution allows the local resources of a host, i.e., memory and devices, to be accessed
directly by remote hosts, over standard PCIe. SmartIO works for all standard PCIe devices. Individ-
ual device functions of multi-function devices may be distributed to different hosts in the network,
or to the same host should it require multiple resources. It is even possible to disaggregate a single
device (function) in software, and distribute it to multiple hosts.

As depicted in Figure 1, we can imagine this as hosts contributing their internal resources to
a pool of shared resources. Through a process of borrowing devices and releasing them when
they are no longer needed, it is possible to support a dynamic and composable I/O infrastructure
consisting of a combination of local and remote resources. Whether devices are actually local or
remote becomes irrelevant to the user, as SmartIO eliminates this distinction, both function and
performance wise. In other words, SmartIO is a solution for scaling out and using more hardware
resources than there are available in a single host.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

145

2:6 J. Markussen et al.

Fig. 2. We can create a heterogeneous PCIe cluster by interconnecting nodes (hosts) with external PCIe links
using adapter cards capable of non-transparent bridging (NTB). In such clusters, the CPUs as well as the
internal devices of each node are all attached to the same PCIe network fabric.

2.1 Motivation and Challenges
Due to its very low latency overhead and memory addressing properties, using PCIe as a high-
speed interconnection technology is a compelling alternative to traditional networking technolo-
gies [44, 50, 67]. However, because PCIe was originally designed as a local I/O bus, connecting
devices to the CPU on a motherboard, individual computer systems operate with different PCIe
address domains. Interconnecting systems using PCIe require translating memory transactions
from one address domain to another. The most common method of translating addresses is to use
NTBs [69, 82, 87]. Figure 2 illustrates how several computer systems may be interconnected in
a cluster, by implementing adapter cards and cluster switches with NTBs. The inherent memory
address translation capabilities of NTBs make it possible to map (parts of) the address space of
remote systems. More interesting, however, is the fact that in such PCIe networks, both CPUs and
internal PCIe devices are attached to the same, shared PCIe fabric.

Remote resources, such as memory and I/O devices, can be mapped into a local system and
accessed through the NTB. Similarly, a remote device capable of DMA may also use the NTB to
access local resources. This eliminates the need to use memory on the remote node as an inter-
mediate step when transferring data. As illustrated in Figure 3, software overhead can be avoided,
since all memory address translations can be done in NTB hardware.

However, setting up such NTB mappings requires awareness of the address space on the remote
system. When initiating DMA transfers, a device driver must use addresses that corresponds with

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

146

SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:7

Fig. 3. Many disaggregation solutions have performance overheads, because they rely on middleware or
other forms of software facilitation on the remote system. Using SmartIO, remote hardware can be accessed
directly without any software in the critical path by setting up memory mappings over the NTB.

the remote device’s address space to enable a DMA-capable device to read or write across the
NTB. This greatly increases the programming complexity of device drivers. Therefore, our SmartIO
system provides a mechanism for using NTBs while remaining agnostic about the address space
in remote systems. The physical location of a resource, as well as the address space layout in the
host it is installed in, is entirely abstracted away.

Nevertheless, this abstraction gives rise to another challenge; a device driver that is unaware
that a device is remote may assume that the entire local address space can be reached by the device.
It is generally not possible to predict in advance which memory addresses a device driver may use,
yet NTB mappings must be in place before the device driver initiates DMA transfers. Deferring
mappings until the device driver initiates DMA would require synchronizing with the remote
system in the critical path, thus increasing the overall latency. A naive workaround is mapping
the entire memory for the device, but this solution does not scale for multiple hosts. SmartIO
solves this, and is able to prepare necessary memory-mappings in advance, without introducing
any communication overhead in the critical path.

2.2 Overall Design
Our system is composed of “borrowers” and “lenders.” A lender is a computer system that registers
one or more of its internal PCIe devices with SmartIO, allowing the devices to be distributed to and
used by remote hosts. A borrower is a system that is currently using such a device. While a device
only has one lender, namely, the computer system where it is physically installed, there can be
several borrowers using it simultaneously.1 SmartIO also makes it possible for a system to act as
both lender and borrower at the same time, lending out its own local devices and simultaneously
borrowing remote devices from other hosts.

Building PCIe networking into our system is a crucial part of our design, as it enables access
to remote resources with very low latency and extremely low computing overheads. The hard
separation between local and remote is blurred, with regard to both functionality and performance.
Furthermore, this design means that the implementation complexity of SmartIO lies in software.
SmartIO can be implemented for existing computer systems that are connected with NTBs, using
either on-board PCIe switch chips or plug-in adapter cards, in any network topology.

1Note that the term “borrower” is not always synonymous with the physical host using the device in every context, but
may refer to an individual software process or a VM.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

147

2:8 J. Markussen et al.

Fig. 4. SmartIO provides different interfaces that facilitate access to a remote resource. These interfaces
present an abstraction layer to application software and device drivers, providing a logical decoupling of
devices and which physical hosts they are installed in.

Figure 4 illustrates the different components of our system and how they fit together:
(1) Low-level NTB driver: Our SmartIO solution is built on top of NTB interconnection tech-

nology. The low-level NTB driver makes it possible to connect hosts over a PCIe network
fabric and set up memory-mappings on demand. Moreover, the NTB driver also enables in-
dividual systems to contribute parts (or “segments”) of their local memory to a cluster-wide,
distributed shared-memory space. Cluster applications may use the Software Infrastruc-
ture Shared-Memory Cluster Interconnect API (SISCI) [22] to manage local and remote
segments of memory and map them into the application’s local address space.

(2) Resource abstraction mechanism: SmartIO provides functionality for transparently
translating I/O addresses between different address domains, resolving paths in the clus-
ter, and dynamically setting up necessary NTB mappings for the borrowing system and
the device. This makes it possible to abstract away the location of the device, i.e., which
host machine it is installed in, in a manner that is transparent to both the device and the
software process using the device. With this abstraction, SmartIO can facilitate the use of
remote resources (both memory and devices) without requiring software to be aware of the
underlying, physical PCIe topology or the internal I/O address space layout of remote hosts.
SmartIO also supports setting up mappings between multiple devices, even when they re-
side in different lenders, allowing PCIe transactions between them to be routed along the
shortest path in the PCIe network (peer-to-peer).

(3) Device Lending: SmartIO incorporates our Device Lending method [41], which allows de-
vices to be time-shared among hosts in the PCIe network. By borrowing a device and insert-
ing it into the local device tree, the remote device appears to be hot-added to a local system.
Devices can, therefore, be dynamically added to the system, without requiring the borrowing
host to reboot. When the host performs configuration cycles and sets up memory mappings,
SmartIO is able to intercept this and inject resolved remote addresses. This allows existing
software to use our system without requiring any modifications or special adaptions; device
drivers, application software and even the OS can use the device as if it was locally installed.
While Device Lending only allows devices to be distributed to a single host at the time, it is
nevertheless highly suitable in the case where a device has a complex or proprietary device
driver, and using existing drivers is the only viable option for operating the device.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

148

SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:9

(4) MDEV: Our MDEV extension to the KVM hypervisor [48, 49] facilitates pass-through of
borrowed devices to VMs running on the host. VM guests can access these devices directly
without breaking out of the memory isolation provided by the virtualization, even when the
devices are remote. This allows VMs to be distributed on different hosts in the cluster while
benefiting from the bare-metal performance of direct access to physical hardware.

(5) Device driver API: As an alternative to Device Lending and MDEV, our SmartIO solution
also provides a new device driver API extension for managing devices and developing dis-
tributed device drivers using cluster functionality. This new contribution extends the ex-
isting SISCI API with programming semantics for memory-mapping device registers and
making shared memory segments available for a DMA-capable device. Device operation
becomes part of the cluster application itself, allowing devices to access shared memory seg-
ments using native DMA. Furthermore, by relying on our SmartIO system to resolve memory
addresses between the individual address domains, a driver implementation does not need
to consider the system-local address space of the cluster node where the device is installed.
This greatly reduces the complexity of implementing distributed applications, as it becomes
possible for software to assume that resources are local, while taking full advantage of PCIe-
based shared memory capabilities. Using this API extension, devices may be disaggregated
at the software level and shared simultaneously between application processes running on
different remote hosts.

Finally, it should be noted that the design of our system enables sharing at multiple abstraction
levels. It is possible to combine the different interfaces of SmartIO. For example, using our API
extension, we can disaggregate the device memory of a remote GPU being borrowed with Device
Lending, even if it is managed by a proprietary device driver that is unaware that the device is
remote.

3 PCIE-INTERCONNECTED CLUSTERS
While there are several networking technologies that make it possible to build clusters of net-
worked computers, such as Infiniband, 100/200 Gigabit Ethernet, and Fibre Channel, PCIe is inter-
esting in that connecting multiple systems with PCIe will also connect their internal devices to the
same interconnection fabric. The idea of a unified bus for the inner components of a computer to
connect the devices with the other cluster machines, however, is not new. It was already imagined
for both ATM [72] and SCI [6]. Nevertheless, these ideas never got implemented, because neither
technology were picked up as an internal interconnection network for computers. In contrast, PCIe
is today the most widely adopted standard for connecting devices in a system [25].

The most common way of extending the PCIe bus out of a single system to connect several
systems to the same PCIe fabric, is by using special devices called NTBs [50, 67, 69, 87, 89]. By
implementing NTBs as a peripheral device, independent computer systems can interconnect with
plug-in adapter cards and external cables. Using such adapter cards and cluster switches with NTB-
capable ports, we have created a heterogeneous PCIe cluster, supporting up to 60 PCIe-networked
nodes.

3.1 PCIe Endpoints
PCIe is a high-speed serial computer expansion bus standard and uses point-to-point links, where
a link consists of 1 to 16 lanes. Each lane is a full-duplex serial connection. Data is striped across
multiple lanes, so broader links yield higher bandwidth. PCIe revision 3.1 (Gen3) [61] allows a
theoretical maximum bandwidth of 15.75 GB/s for an x16 link — approximately 13.8 GB/s of usable
throughput.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

149

2:10 J. Markussen et al.

Fig. 5. Example of a PCIe topology using an external link to connect an expansion chassis to a computer
system. The devices in the expansion chassis are part of the same PCIe tree as the internal devices, because
all downstream links (including the external cable) are transparent.

As illustrated in Figure 5, a PCIe domain is structured as a tree. At the top of the tree, we have
the “root ports,” acting as the connection between the PCIe fabric and the CPU. This forms what
is known as a “root complex.” Devices are the leaf nodes in the PCIe domain, and are known as
“endpoints” in PCIe terminology.

Some PCIe devices may support multiple functions, which appear to the system as a group
of distinct devices, each with a separate set of resources and device memory regions. The term
“device” actually refers to an individual function. An example of a multi-function device is a multi-
port Ethernet adapter, where individual ports can be implemented as separate functions, or a GPU
with a sound device, where the video controller appears as one device and the sound card as
another. It is also possible for a device to implement SR-IOV [62]. SR-IOV-capable devices appear to
the system to have multiple (virtual) functions. Note that our SmartIO system makes no distinction
between physical and virtual functions.

3.2 Address-based Routing
The defining feature of PCIe is that devices are mapped into the same address space as the CPU
and system memory, as depicted in Figure 6. Because this mapping exists, a CPU can read and
write to device memory the same way it would access system memory.2 Likewise, if a device is
capable of direct memory access (DMA), then it can read from and write to system memory. A
device may even access other devices on the fabric, as they too are mapped into the same address
space.

This mapping occurs when a system enumerates the PCIe tree and accesses the configuration
space of each device attached to the fabric. The configuration space contains a description of the
capabilities of the device, such as the device’s memory regions. The system will reserve a memory
address range for each of the device’s memory regions. The start addresses are then written to the
device’s Base Address Registers (BARs) in its configuration space, making the device aware of
the address space mapping. Therefore, the term “BAR” is synonymously used for device memory
regions, and a device may have up to six BARs.

Like other networking technologies, PCIe also uses a layered protocol. The physical layer
and data link layer are responsible for flow control, error correction and signal encoding. The
uppermost layer is called the transaction layer, and its responsibility includes forwarding memory
reads and writes as “transactions.” Such transactions are routed in the PCIe fabric based on their

2This is often referred to as memory-mapped I/O (MMIO).

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

150

SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:11

Fig. 6. Device memory regions (BARs) are mapped into the same address space as system memory.

addresses. The transaction layer is also responsible for packet ordering, ensuring that memory
operations in PCIe are strictly ordered.3

In Figure 5, we also illustrate how the PCIe tree may be extended through the use of an ex-
pansion chassis. Devices in an expansion chassis are connected to the same root complex (CPU)
through a series of transparent switches. These switches form subtrees in the network. During the
enumeration, switch ports are assigned the combined address range of their downstream devices
(Figure 6). This allows memory transactions to be routed hierarchically in the PCIe tree where
memory transactions are forwarded either upstream or downstream based on the address. An in-
variant of this hierarchical routing is that memory accesses do not need to pass through the root,
but can be routed using the shortest path. This is referred to as “peer-to-peer” in PCIe terminol-
ogy. In Figure 5, the internal switch in the expansion chassis will have the combined downstream
address range of all three GPUs, allowing memory accesses to be routed directly between them.
Some PCIe switch chips also support multicasting, allowing memory writes to be replicated to
multiple selected ports in a single operation [61].

PCIe also uses message-signaled interrupts (MSI) instead of physical interrupt lines. MSI-
capable devices post a memory write to the CPU, using a specific address and payload assigned by
the system. The memory write is then interpreted by the CPU, which uses the payload and address
to raise an interrupt. MSI-X is an extension to MSI, allowing up to 2048 different interrupt vectors.
A benefit of this is that an MSI-X interrupt can target a specific CPU core on multi-core systems.
Additionally, separate MSI-X vectors can be used to indicate different types of events.

3.3 Non-transparent Bridging
As PCIe tree enumeration and address reservation is typically done during system start up, the ad-
dress space layout will vary from system to system. Different systems, or different root complexes,
will have independent address space layouts. Because of this, a PCIe domain has exactly one active
root complex at any point in time. Two independent CPUs are not allowed to coexist in the same
domain. However, by using an NTB implementation [44, 69, 82], two root complexes, meaning in-
dependent hosts, can be connected together over PCIe. Although not formally standardized, NTBs
are a widely adopted solution, and all NTB implementations have similar capabilities [87]. NTBs

3The PCIe standard also specifies optional support for relaxed ordering, but strict ordering is mandatory and used by
default.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

151

2:12 J. Markussen et al.

Fig. 7. Example of two independent PCIe root complexes connected together using an NTB. The link between
the two hosts is non-transparent, and the NTB translates addresses between the two domains. Host A has
mapped parts, or segments, of Host B’s memory through its local NTB, providing Host A with “windows”
into the remote system’s address space.

can be embedded as a CPU feature, such as Intel Xeon [77] and AMD Zeppelin [95], but are more
commonly implemented in PCIe switch chips [13, 82].

Figure 7 depicts two independent root complexes connected using NTB adapter cards with an
external PCIe cable. Despite the name, an NTB actually appears as a PCIe endpoint. Just like regular
endpoints, NTBs appear to have one or more memory regions, or BARs, that are reserved and
mapped by the system during the enumeration. However, instead of being backed by memory or
device registers, reads and writes to these memory regions will be forwarded from one side of
the NTB to the other, translating the memory addresses in the process. As these memory regions
appear to the system as any other memory-mapped device memory region, a local CPU can read
from or write to them as if it was local device memory.

Note that the address space associated with the NTB BAR may be too small to cover all sys-
tem memory of the remote system. While it is possible to adjust the BAR sizes and provide larger
ranges, many systems do not support support large device memory regions. However, NTB imple-
mentations also support dividing their range into “windows.” By using a different base offset per
NTB window, it is possible to map arbitrary ranges of the remote system’s address space. Such
offset mappings makes it is possible to map different parts of a remote system’s address space into
local address space. The far-side address of a mapping is stored in a look-up table, making the
address translation between the two domains very fast. However, the number of NTB windows is
limited by the number of entries in the look-up table.

The SISCI shared memory API [22] provides functionality for allocating linear “segments”
from a pool of contiguous memory pages that is reserved by the low-level NTB driver in ad-
vance. These linear segments can be “exported,” allowing remote hosts to map them through their
NTBs and access it as if it was local device memory. By allowing segments of their own local
memory to be mapped by remote hosts, individual nodes effectively contribute to a distributed
shared-memory architecture comprised of such memory segments. Multiple nodes may even map
the same memory segment. By using the SISCI API, these memory segments can be mapped
into the virtual address space used by application processes running on different nodes. This al-
lows distributed applications to read and write to shared memory segments as is if it was local
memory.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

152

SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:13

Fig. 8. Device Lending: Using NTBs, it is possible to map the memory regions of a remote device so a local
CPU can access device registers. The remote system can in turn reverse-map local resources for the device,
making DMA and MSI possible. Device Lending injects a hot-added “shadow device” into the Linux kernel
device tree using these mappings, making remote device access transparent to both CPU and device.

4 DEVICE LENDING
By using an NTB, it is possible to map the device memory regions, or BARs, of a remote PCIe
device (see Figure 8). A local CPU can perform memory operations on a remote device, such as
reading from or writing to device registers. Conversely, it is also possible to map local resources
for a remote device, allowing it to access memory across the NTB. By making such mappings over
the NTB transparent to a device and its driver, it is possible to facilitate use of a device without the
system being aware that the device is actually remote. These mappings can be set up dynamically
while systems are running, making it possible to reassign devices to different systems without
rebooting.

Using this method, we have implemented Device Lending for an unmodified Linux kernel [41].
As illustrated in Figure 8, the implementation is composed of two parts, namely, a “lender,” allowing
a remote system to use its device, and the “borrower” using the device. In this section, we will
describe how we have implemented our Device Lending mechanism.

4.1 Shadow Device
In the Linux kernel, PCIe devices are represented with generic descriptors, providing device drivers
with a generic handle that corresponds to a device. This allows Linux to provide a unified interface
for functionality that is common for all PCIe devices, such as accessing a device’s configuration
space, setting up interrupt vectors, memory-mapping device memory and mapping buffers for
device DMA. When Linux boots, it enumerates the PCIe device tree as explained in Section 3.2,
and generates a corresponding tree of device descriptors.

However, it is possible to manipulate this descriptor tree in software, while the system is running.
By implementing our borrower component as part of the NTB driver, we can inject a virtual device,
or “shadow device,” that appears as an endpoint alongside the NTB for each borrowed device.
To Linux, it appears that a (virtual) device has been hot-added [67] to the local system, and it
will load any appropriate device drivers using our shadow device as the device handle. In other
words, the shadow device acts as a local handle to the remote, borrowed device. By mapping the
remote device’s memory regions through the local NTB and overriding the shadow device’s device

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

153

2:14 J. Markussen et al.

memory regions with these mappings, a local device driver may read and write directly to physical
device registers without being aware that the device is actually remote.

4.2 Intercepting Configuration Cycles
In order for a device to become aware of the memory addresses used for MSI interrupts, as ex-
plained in Section 3.2, the kernel must write these addresses to the device’s configuration space.
By setting the configuration space accessor functions on our shadow device, we can forward config-
uration space operations on the shadow device to the remote device in a manner that is transparent
to the device driver. However, such interrupts must be mapped over the NTB to trigger the correct
interrupt routine on the borrower.

As illustrated in Figure 8, we can prepare a mapping on the device-side NTB to the local interrupt
vector assigned by the kernel (“MSI window”). By using the configuration space accessor functions,
we can intercept specific configuration cycles and look for writes to the MSI offset, injecting the
device-side address of the MSI window mapping into the actual configuration space of the device.
This allows interrupts raised by the device to be routed across the NTB and trigger the correct
interrupt routines on the borrowing system, transparent to both device and its driver. Additionally,
intercepting configuration cycles also makes it possible to mask certain features for the borrower.
For example, we can mask legacy interrupts, which can not be mapped over the NTB, so that the
device driver will not attempt to use them.

4.3 DMA Window
In order for a device to access local resources using DMA, the lender must set up mappings through
the device-side NTB to local memory as illustrated in Figure 8. However, it is generally not possible
to know in advance which memory addresses a device driver might use for DMA transfers. The
pages used for DMA memory buffers may be scattered in physical memory, or an application or
device driver may initiate multiple transfers to different parts of memory. Dynamically setting up
mappings is not a feasible solution as it would require communication with the lender host and
introduce a communication overhead. Additionally, as the number of mappings through the NTB
is a finite resource, mapping individual memory pages scales rather poorly.

A naive solution is to make the lender to map the entire physical memory of the borrowing
system through the NTB. However, while this would make it possible to set up a single mapping
to the remote borrower, the address range of the NTB is not necessarily large enough, as mentioned
in Section 3.3; the window on the device-side NTB must be equal to (or larger) than the size of
physical memory on a borrowing system to cover the borrower’s entire RAM. Moreover, a lender
with multiple connected borrowers must potentially map all physical memory of every one of
them. In other words, the naive solution would severely limit the number of borrowers as device
memory requirements of the NTB itself would become too large.

Modern processor architectures implement an IOMMU, such as Intel’s VT-d [3]. The defining
feature of the IOMMU is the ability to remap DMA operations issued by a device [38], effectively
translating virtual I/O addresses to physical addresses. By using an IOMMU on the borrowing
systems, it is possible to remap scattered memory pages to a continuous range. Figure 9 shows
how we use the IOMMU on the borrower, allowing the lender to set up a single mapping through
the NTB in advance (“DMA window”). When the device driver calls the Linux DMA API to create or
map DMA buffers using the shadow device, we inject the device-side address of the DMA window
with the appropriate offset, and set up a local IOMMU mapping to the local memory specified
by the driver. The device driver passes our injected address to the device, completely unaware
that the address is actually a far-side I/O address. This allows the device to reach across the NTB,
transparent to both device and device driver.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

154

SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:15

Fig. 9. DMA window: We use the local IOMMU in order create a single continuous memory range. This
allows us to conserve NTB resources by setting up a single mapping through the device-side NTB in order
for the remote device to reach local RAM. Adding and removing memory pages from the local IOMMU group
is inexpensive compared to actively communicating with the lender to set up mappings dynamically.

While our solution adds additional software when a device driver sets up DMA buffers, dynami-
cally adding and removing memory pages from a local IOMMU group has a relatively low overhead
compared to communicating with a remote host. Moreover, since mapping across the NTB is done
in advance, and all address translations between the different address domains are done in the NTB
and IOMMU hardware, our implementation achieves native PCIe performance in the data path.

Some PCIe devices, such as Nvidia GPUs, may have addressing limitations that make them un-
able to reach higher addresses of the 64-bit I/O address space. For such devices, it can be difficult
to configure large enough DMA windows, since the combined memory requirements of the DMA
windows must fit through the NTB BAR. Depending on the device memory requirements of down-
stream devices in the PCIe tree, configuring the NTB BAR size too large may force the system to
place the NTB at a high address (see Section 3.1). Because of this, our implementation also sup-
ports optionally using the IOMMU on the lender. By using the lender’s IOMMU, we can remap
NTB mappings from high to low addresses if it is necessary, similar to how the IOMMU can be
used to avoid so-called “bounce buffering” [52]. An additional benefit is that it also becomes pos-
sible to put borrowed devices in their own IOMMU address domains, isolated from other devices
in the system. This protects the lender system from any accidental address misconfiguration.

4.4 Shortest Path Routing
Some processing tasks may require the use of multiple devices, such as machine learning work-
loads that need several GPUs. Such workloads often transfer data from one device to another using
DMA, where a device reads from or writes to the memory regions (BARs) of other devices. As de-
scribed in Section 3.2, shortest path routing between such devices using peer-to-peer is possible
based on address ranges.

In the case of Device Lending, however, devices installed in different lender systems use different
address space domains. The local I/O address used by one host, i.e., the local address a borrower
uses to reach a remote device, is not the same address different host would use to reach the same
device. Furthermore, a lender may even use an entirely different NTB to reach the other device
than it would for reaching the borrower. In order for a borrowed device to reach another borrowed
device, we need a mechanism for resolving I/O addresses between the different domains.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

155

2:16 J. Markussen et al.

With the 4.9 version of the Linux kernel, functionality for setting up mappings between devices
to do peer-to-peer DMA between them was added to the device DMA API. By implementing these
functions for our injected shadow device, we are notified when a device driver is mapping the
device memory regions of another device, and we can inject our prepared mappings. We have
implemented the following method of resolving address domains in Device Lending, in order for
a borrowed device (the source) to reach another borrowed device (the target):

(1) Same lender: If the target is installed in the same host as the source, then setting up a
mapping is trivial. If the device-side IOMMU is disabled, then the lender simply returns its
local device-side I/O addresses of the BARs of the target. If the IOMMU is enabled, then the
lender additionally needs to set up IOMMU mappings, and returns the I/O virtual addresses.

(2) Local device: If the target is a device local to the borrower, i.e., residing within the borrowing
host, then the source’s lender set up DMA windows to the individual BARs of the target,
similar to how it has already mapped a DMA window to the borrower’s RAM. The lender
then returns the local device-side I/O addresses the source would use to reach through the
NTB to reach the the target’s BARs. This works for any device in the borrower, even local
devices that are not registered with our system. However, in this case, our only works for
setting up mappings for a remote device to a local device. The other way around is not
possible unless the local device is registered with our system, as we are unable to intercept
calls by the device driver without our virtual device handle (shadow device).

(3) Different lenders: If the target is a remote device, i.e., residing in a different lender host,
then the source’s lender creates DMA windows through the appropriate NTB to the target’s
lender. Note that this NTB may be different to the one used to reach the borrower. We then
return the local device-side I/O addresses the source’s lender would use to reach through the
NTB to the the target’ BARs.

The borrower, after resolving these lender-local I/O addresses, stores them along with its own
physical addresses to the BARs of the target. When the device driver using the source calls the
DMA API functions to map the BARs of the target for the source, the borrower is able to look up
the corresponding lender-local I/O addresses and use these. When the driver in turn initiates DMA,
it is completely unaware of the location of both the source and the target, and the source will be
able to access the target through the correct NTB. Figure 10 shows that the the source device can
reach the target device for all three scenarios. By resolving lender-local I/O addresses in advance,
we have enabled devices to directly access each other using peer-to-peer. In other words, we have
enabled device-to-device communication between remote devices with the lowest possible latency.

5 VM PASS-THROUGH USING MDEV
To provide I/O capabilities to a VM, a VM hypervisor may use emulated devices or paravirtual-
ization. Software-emulated devices appear to the VM guest as an I/O device, but all functionality
is handled in the VM implementation. Paravirtualized devices also offer device functionality in
software, but relies on facilitation by the hypervisor to use host resources. In many cases, paravir-
tualized devices are backed by actual hardware. However, emulation and paravirtualization may
not be viable options when bare-metal processing power is required.

In this regard, it is possible to to remap DMA and interrupts using an IOMMU. Similarly to
pages mapped by an MMU for individual processes, an IOMMU can group devices into IOMMU
domains. As each domain has its own individual mappings, members of an IOMMU domain conse-
quently have their own private virtual address space. Such a domain can be part of the virtualized
address space of a VM, enabling direct access to physical memory by the physical device, while
other devices and the rest of memory remain isolated. As such, the IOMMU provides a hardware

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

156

SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:17

Fig. 10. Shortest path routing: By resolving addresses of device memory regions and preparing mappings
for them in advance, we can route device-to-device using the shortest path when a device driver initiates a
DMA transfer. Our solution covers all three scenarios: (1) when both devices are in the same lender, (2) when
the target device is in the borrower, and (3) when the target device resides in a different lender.

virtualization layer between I/O devices and the rest of the system. This allows a VM hypervisor
to facilitate direct access to the physical device from within the VM guest, without compromis-
ing the memory isolation provided by the virtualization. This facilitation is often referred to as
“pass-through.”

In this section, we explain how we have implemented support for such pass-through of remote
devices in our SmartIO system [48, 49]. We explain how we generalized the core functionality in
our Device Lending mechanism, providing us with the necessary software capabilities for imple-
menting a kernel-space interface for the hypervisor. By implementing functionality for dynami-
cally assigning remote devices to VMs, we have extended our device distribution mechanism to
support OSes other than Linux, such as Microsoft Windows.

5.1 Mediated Devices
On Linux, pass-through of devices is supported in the KVM hypervisor by using Virtual Function
I/O (VFIO) [37]. By implementing a VFIO interface for a device, KVM is able to use the IOMMU
and map I/O virtual addresses for the device to the same guest-physical address layout used by a
VM.

Intuitively, a solution for passing through remote devices to a VM would be for the host to
borrow a device, injecting the device into its local device tree, and then use VFIO. However, this
would not be feasible as VFIO requires that pass-through devices are placed in a separate IOMMU
domain per VM guest. As described in Section 4.3, Device Lending places all borrowed devices in
the same IOMMU domain to preserve mappings over the NTB. Additionally, pass-through requires
the entire guest-physical memory of a VM to be mapped for the device. We need a mechanism for
detecting, pinning and mapping the physical memory pages used by the VM instance, in order

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

157

2:18 J. Markussen et al.

for the device to be able to DMA to it. VFIO does not provide this mechanism, thus detecting the
presence of a VM and mapping its memory is not possible.

In the 4.10 version of the Linux kernel, an extension to VFIO called mediated device drivers
(MDEV) was introduced [33]. The MDEV extension introduces the concept of a physical parent
device having virtual child devices, allowing a host device driver to emulate multiple virtual de-
vices, while still allowing some direct access to hardware. In other words, MDEV facilitates a form
of paravirtualization that enables “SR-IOV in software.” Some operations on the virtual device,
such as configuration cycles and device resets, are trapped (handled) by the parent device driver
running on the host, allowing some hardware resources to be emulated while other resources are
accessed directly. In our case, using this MDEV interface provides us with a finer-grained control
over what the hypervisor and VM guest is attempting to do with the device.

Our implementation registers itself as an MDEV parent device driver for devices under the con-
trol of SmartIO. With Device Lending, a device would be exclusively borrowed by the physical host
for as long as it runs, regardless of whether any VM instances is using it or not. By implementing
functionality for borrowing and releasing device references without injecting them into the local
device tree, KVM is able to pass through the device to a VM without it being borrowed first. Only
when the VM guest boots up and resets the device, do we actually borrow the device. Similarly,
when the guest OS releases the device, either by shutting down or hot-removing the device, we
return it. Not only does this limit the lifetime of a borrowed device to when a VM is running and
using it, but it also makes it possible to hot-add a device to a live VM.

5.2 Mapping VM Memory for Device
Using Device Lending, we can react to calls to the DMA API on a shadow device to dynamically
add or remove pages from the local IOMMU domain. In contrast, we have no way of knowing
which addresses a device driver running in the guest may use for DMA. Therefore, the only option
is to map all of the guest-physical memory used by the VM for the device.

By using an MDEV parent device driver instead of VFIO, we are aware of a VM instance using
the device. However, while the MDEV interface provides us with a method of using KVM to
resolve guest-physical addresses to host-physical and pinning the physical memory pages used
by the VM instance, we know nothing about the memory layout of a VM instance or even when
memory has been allocated. Other implementations using MDEV implement virtual child devices,
each with their own set of emulated resources. For example, when a guest driver initiates DMA
transfers, the parent device driver is notified by trapping emulated device registers, and is able to
resolve addresses and pin the appropriate pages in memory just before initiating the DMA engine
on the physical device. Our implementation, however, is actually passing through the physical
device itself. In our case, the VM instance maps all of the physical device registers and accesses
the entire device directly. This means that without making assumptions about the type of device
being used and implementing virtual registers for it, we are not able to replicate this specific
behavior. This poses a challenge, as the memory used by the VM has not yet been allocated when
the virtual device is first picked up by a VM instance.

However, before a PCIe device can use DMA, it must be enabled in a device’s configuration
space.4 This allows us to defer mapping of VM memory until our implementation detects a config-
uration cycle enabling DMA. By then, we can assume that the memory used for the VM is allocated.
Even so, we still do not have any information about the address space layout. The naive solution
is to map the entire range from start to end. As depicted in Figure 11, this solution is wasteful as a

4Enabling the “Bus Master” bit in the command register enables DMA for a device.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

158

SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:19

Fig. 11. Mapping VM memory for a device: The VM’s address space may be much larger than the actual
memory used by the guest. Only guest-physical memory needs to be mapped for a device.

Fig. 12. Pass-through of a remote device: By using IOMMUs on both sides of the NTB, it is possible to
map a remote device into a local VM guest’s address space. The borrower-side IOMMU provides continuous
memory ranges that can be mapped over the NTB, while the lender-side IOMMU is used to map the virtual
address space for the device, mirroring the guest-physical layout. We use two windows to map the VM’s
entire memory.

VM’s address space may be much larger than the guest-physical memory size, and not all of this
address space should be reachable by the device.

Instead, we can rely on an assumption: as the x86 architecture uses well-defined starting ad-
dresses for low and high memory, we can start at these guest-physical addresses and use KVM to
experimentally probe which address ranges resolves and which do not. This way, we are able to
both dynamically discover the memory layout of the VM and only map those ranges that should
be reachable by the device.

Figure 12 illustrates how a device is mapped into the address space of a VM. On the lender,
we use the IOMMU to create a virtual I/O address space that maps over the NTB, mirroring the
guest-physical memory layout. Because this mapping exists, a native device driver running in the
VM guest can initiate DMA transfers on the physical device using guest-physical addresses. On
the borrower, we use the IOMMU to provide continuous address ranges that are trivially mapped
over the NTB. Note that we create a separate DMA window for the low and high memory ranges,
allowing us to map the entire guest-physical memory, while being able to fit through the NTB
window.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

159

2:20 J. Markussen et al.

Fig. 13. Since IOMMUs introduce a virtual address space for devices, peer-to-peer transfers must be routed
through the root in order for the IOMMU to resolve virtual addresses to physical addresses. As a consequence,
shortest path routing is disrupted.

5.3 Peer-to-peer between Devices
Similarly to how guest-physical memory is mapped for a device, the guest-physical BARs of other
devices passed through to the same VM can also be mapped for a device. When the guest OS
enumerates its PCIe tree and write guest-physical addresses to a device’s configuration space, our
MDEV parent driver captures these addresses. For all other devices, we are able to set up I/O virtual
addresses that correspond to these guest-physical addresses using their lenders’ IOMMUs. Using
the same method described in Section 4.4, we are able to resolve which NTB adapter to map over
in order reach the device. This makes it possible to set up mappings between two or more devices
using our MDEV implementation, even when they reside in different hosts.

However, while this enables device-to-device access between the physical devices, shortest path
routing in the fabric is disrupted by the virtual address space. PCIe transactions must be routed
to the IOMMU to resolve I/O virtual addresses to physical addresses (Figure 13). PCI-SIG has de-
veloped an extension to the transaction layer that allows devices that have an understanding of
I/O virtual addresses to cache resolved addresses called Address Translation Service (ATS) [60].
However, ATS is not widely available as it requires hardware support in devices.

5.4 Relaying Interrupts
Similarly to VFIO pass-through, MDEV uses the eventfd API [36] to trigger interrupts in a VM
instance. When our MDEV parent device driver gets notified to set up an interrupt for a VM,
we register an interrupt request handler on the lender for the specified interrupt. Whenever the
device raises an interrupt, this interrupt request handler is invoked, which in turn notifies our
MDEV implementation. We can then use eventfd to signal that an interrupt has been raised to the
VM instance.

This method is not ideal, as the latency between a device raising an interrupt and the inter-
rupt routine being invoked within the VM increases. A latency reducing improvement would

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

160

SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:21

be to use the same approach as bare-metal Device Lending, and map MSI and MSI-X interrupts
over the NTB. However, a benefit of the current implementation is that it allows us to enable
legacy interrupts for devices borrowed by a VM, something that is not supported for bare-metal
machines.

5.5 VM Migration
As our SmartIO system abstracts away device location, our MDEV implementation supports so-
called “cold migration.” It is possible to shutdown, migrate, and restart a VM on a different
host, while keeping the same passed-through physical devices. If the VM emulator supports it,
then it is also possible to hot-add and hot-remove devices to running VMs. Using such hot-
swap functionality, live migration could theoretically be possible by first removing all devices,
migrating, and then re-attaching them afterwards. However, since such a solution would tem-
porarily disrupt device I/O and force guest drivers to reset all devices, its usefulness would be
limited.

Supporting real hot-migration, remapping devices while they are in use without (or with mini-
mal) disruption, is something we wish to implement in future work. Not only would such a solution
require keeping memory consistent during the migration warm-up, but DMA transactions could
potentially be in-flight during the migration. A mechanism for re-routing transactions, without
violating the strict ordering required by PCIe, must be implemented, and will most likely require
hardware support that does not exist today.

6 DISTRIBUTED NVME DRIVER
By borrowing a device and inserting it into the local device tree, using either Device Lending or
passing the device through to a VM using our MDEV implementation, a device driver may use a
device as if it was locally installed. No adaptations are required to use the device, allowing device
drivers, OS, and application software to use the device without any modifications.

However, most PCIe device drivers are written in a way that assumes exclusive control over
the device. Consequently, a device may only be distributed to a single host at the time, preventing
others from accessing it while it is used. This can lead to poor utilization of device resources, as it
requires hosts to cooperatively time share a device, resetting it every time it is reassigned to a new
host. Some devices implement SR-IOV [62], making a single physical device to appear as multiple
virtual devices, allowing each virtual device to be distributed by Device Lending. Regardless, as SR-
IOV capability increases the complexity of hardware implementations, it is not widely available,
especially for low- to medium-end devices.

During the development of our MDEV implementation (Section 5), we isolated functionality
shared with Device Lending and were able to expose this to userspace applications. Effectively, this
makes it possible to write device drivers that enable simultaneous sharing and parallel operation
of single-function devices by distributing it to multiple hosts at the same time.

In this section, we present our proof-of-concept NVMe driver allowing sharing to multiple hosts
simultaneously. NVMe [55] is an interface specification for non-volatile storage controllers that
are attached to the PCIe bus, such as solid state flash memory drives (SSDs). Compared to
traditional spinning hard disks, where seek time and mechanical disk rotation cause significant
delay, these storage drives have lower latency and support parallel operations. This is reflected in
the design of NVMe, which supports this parallelism through the use of multiple I/O queues that
operate independently and avoiding any form of locking in the I/O submission path. By distributing
individual I/O queues, we demonstrate how a single NVMe storage drive may be shared among
multiple hosts and operated in parallel.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

161

2:22 J. Markussen et al.

6.1 Device Driver API
We have extended the SISCI API [22] with device-oriented semantics, exposing core SmartIO capa-
bilities through the same shared-memory API used to write cluster applications. In other words, by
exposing this functionality through the SISCI API, it becomes possible to implement device drivers
as part of the application. Integrating device operation into the application itself makes devices
and drivers become part of the same shared global address space as distributed shared-memory
applications.

As mentioned in Section 3.3, a userspace application may map “segments” of a remote system’s
memory into its own virtual address space using SISCI. Moreover, as we explained in Section 4.3,
we can set up mappings to such shared memory segments for a device as well (“DMA windows”).
Devices may use DMA to access shared-memory segments directly, without requiring RDMA. Sim-
ilarly, by exporting device BARs as shared memory segments, device memory regions may be
mapped by several nodes, effectively disaggregating device memory. Memory segments (both sys-
tem memory and device memory) are associated with devices, rather than with hosts. By providing
functionality for translating device-side physical addresses, as well as resolving the path through
the network between the device and shared memory segments, our API extension allows device
driver implementations to be agnostic about address spaces in different cluster nodes. As such,
these mechanisms alleviate some of the complexity of implementing distributed device drivers,
as software can be written in a way that does not need to consider whether resources are local
or remote. The same driver software can run on any node in the cluster, using any device in the
cluster, without requiring that the application is actually aware of the specific PCIe topology.

Specifically, the following functionality was added to SISCI:
• API functions for letting application processes borrow and return devices. Borrowing a de-

vice can either be exclusive, allowing only one borrower at the time, or non-exclusive, al-
lowing several borrowers simultaneously. It possible for a single application process to first
take an exclusive reference, to reset, initiate and prepare the device, before allowing other
processes in the cluster to borrow the device.
• Automatically exporting device memory regions (device BARs) as segments, allowing them

to be memory-mapped into the application process’ virtual address space. Additionally, by
exporting BARs as segments, it is possible to map them for other devices and set up shortest-
path routing.
• API functions for mapping SISCI segments on behalf of a device, effectively setting up DMA

windows over the device-side NTB (lender’s NTB). This allows the device to use native DMA
to read and write to shared memory segments. Segments can be either local or remote to the
device, and SmartIO will automatically resolve device-side physical addresses to (remote)
memory segments under the hood, allowing the same software to run on any cluster node
and remain agnostic about the specific address space layout in other hosts. Note that since
BARs of any device registered with SmartIO are automatically exported as SISCI segments,
we can map them for other devices as well.
• API functions for allocating SISCI segments using access pattern hinting. While the original

SISCI implementation only allows hosts to allocate segments in local system memory, we
have added functionality for letting SmartIO choose which host to allocate memory in based
on expected access patterns. By relying on hinting rather than actively specifying which host
to allocate memory in, we can consider memory locality without requiring awareness of the
physical PCIe topology. Note that as these segments are associated with a device rather
than cluster nodes, we retain the logical decoupling of machines and devices provided by
SmartIO.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

162

SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:23

Fig. 14. NVMe avoids contention in the command submission and completion path by using parallel queues
that can be hosted anywhere in physical memory.

Perhaps the most obvious trade-off from using our API extension is that it requires implementing
a new device driver. Usually, implementing a driver from scratch entails a considerable engineer-
ing effort, and may not even be a viable option in most cases. After all, the main strength of both
our Device Lending mechanism and MDEV extension is that they do not require any modifica-
tions of existing device drivers. However, as using this API extension allows a device driver to be
implemented as part of cluster applications, it is potentially extremely useful for some application
domains. By implementing a driver using our API extension, devices can be disaggregated at the
software level, rather than at the PCIe device function level. Multiple application processes, run-
ning on different nodes, may share devices that do not support SR-IOV. Moreover, not only does
our API extension provide an interface for distributed device drivers, but it also becomes possible
to write device drivers that fully utilize PCIe shared-memory capabilities. For example, applica-
tions may use PCIe multicasting to stream data to several destinations in a single operation. It is
even possible to exploit memory locality to optimize data flow through the network.

6.2 Driver Implementation
By avoiding contention in command submission and completion paths and supporting up to 65,535
I/O queues per device, the NVMe standard [55] enables highly parallel operation. Figure 14(a) illus-
trates how NVMe utilizes a submission and completion queue mechanism. One or more submis-
sion queues (SQs) are paired with a completion queue (CQ), i.e., multiple SQs may be paired
with the same CQ. Commands posted to an SQ will be completed by an entry in the associated
CQ. Queues are implemented as ring-buffers, and are allocated in memory by the device driver
software as depicted in Figure 14(b). Each queue has its own dedicated doorbell register, avoiding

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

163

2:24 J. Markussen et al.

any contention. By allowing queues to operate in parallel, NVMe completely avoids locking and
other forms of synchronization between queues.

Figure 14(c) illustrates the basic operation of an NVMe device: The driver software places a
command, e.g., “read N blocks,” into an SQ. It then “rings” the associated SQ doorbell (by writing
the SQ tail pointer value). This notifies the NVMe device of how many new commands are ready
to be processed. The device fetches commands from SQ memory using DMA. After executing the
command, the drive writes a completion to the paired CQ, indicating the status of the operation.
The driver must poll CQ memory for new completions,5 and, as commands may be executed out of
order, the driver must keep track of command sequence numbers. Once completions are processed,
the driver notifies the NVMe device by updating the CQ doorbell (writing the CQ head pointer
value).

To configure I/O queues and manage the device, driver software must first “reset” the device.
This is done by clearing a control register on the NVMe controller and writing the base address of
the so-called “admin queues,” consisting of an admin SQ and an admin CQ. Whereas regular I/O
queues use an I/O command set, i.e., reading and writing blocks, the admin queues use a different
set of commands for managing the controller, e.g., creating and deleting I/O queues and retrieving
controller status.

Our driver implementation consists of a “manager” and one or more “clients,” running as
userspace software applications. The manager is responsible for initializing the NVMe device, con-
figuring admin queues and relaying admin commands on behalf of clients. A client is a userspace
process using one or more I/O queue pairs to read or write data from the NVMe device directly;
through using the SISCI API extension described in Section 6.1, the device can DMA directly to ap-
plication memory with minimal latency. Note that the device manager and clients in this instance
are not synonymous with the lender and borrowers. Any node in the cluster may run a manager
driver, and the same node may even run both a manager driver and client drivers.

Figure 15 illustrates how the driver implementation works. The manager, in this case running
on Borrower B, takes control over the NVMe device by using our SISCI SmartIO API extension
and borrowing the device. The device registers (NVMe BAR) are already exported as a memory
segment, allowing the manager to memory-map them into application address space. Also using
the API, the manager allocates a memory segment and maps it for the device (Segment B), re-
trieving the device-local I/O address (the address, as seen from the device). Finally, the manager
resets the NVMe device and sets up admin queues using the device-local I/O address with the ap-
propriate offsets. By having memory-mapped device registers, the manager may “ring” the queue
doorbell registers, notifying the device that an admin queue event has occurred. Similarly, as the
local memory segment is mapped for the device, the NVMe device is able to fetch commands and
post completions over the NTB.

A client driver also borrows the device using the API and memory-maps device registers. Addi-
tionally, it can allocate a local segment and map it for the device, retrieving the device-local I/O
address. By relaying admin commands using the manager, it can create SQs and CQs using the
device-local I/O address. As seen in Figure 15, Borrower A and Borrower C run client drivers and
have successfully requested I/O queues for themselves. With these in place, the NVMe device may
now be used for I/O, by multiple hosts in parallel. From the point of view of the device, the queues
are accessed just like they would be in local memory. In other words, our distributed driver imple-
mentation facilitate queue-level sharing of a non-SR-IOV NVMe device, enabling distributed I/O
with extremely low latency overhead.

5NVMe also supports using MSI/MSI-X interrupts to indicate CQ events, but our implementation relies on completion
polling alone.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

164

SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:25

Fig. 15. Simultaneous sharing: The NVMe device can access queues residing in memory segments on differ-
ent hosts by mapping the segments for the device (DMA windows). Likewise, the borrowers must in turn
map the doorbell registers for their respective queues to notify the device about queue events. Each queue
has a dedicated register, avoiding any contention between borrowers.

6.3 Multipath Failover
An added benefit of using our SmartIO API extension is that it becomes possible for systems with
multiple NTB adapters to borrow the same device through different paths. In the case of our proof-
of-concept NVMe driver explained in Section 6.2, it becomes possible to set up redundant I/O
queues in advance, and set up mappings through different paths. If the primary path fails, then the
driver software may switch over to a backup queue.

Figure 16 illustrates how this is possible: the borrower maps the NVMe device BAR through
both its NTB adapters, providing it with two separate paths to the NVMe queue doorbell registers.
It can then set up two separate queue pairs in local memory, and by specifying which of the local
adapters it is using to reach the NVMe device, our SmartIO system will automatically resolve
which of the lender-side NTB adapters to configure DMA windows through. Having established
two separate paths, our NVMe driver then chooses one path as its primary path and the other for
backup. In the case of a link failure, our NVMe driver is notified either by NVMe I/O command
time-out events, or by the low-level NTB driver notifying the NVMe driver about a link event
affecting its mapped segments. Reads and writes to mappings that are inactive are terminated by

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

165

2:26 J. Markussen et al.

Fig. 16. Multipath failover: We can configure multiple NVMe queue pairs and mapping their memory for
the device through different NTB adapters. Similarly, we can also map doorbell registers through separate
adapters for the borrower. By having different paths for each I/O queue pair, we can continue operating the
NVMe even if one of the paths fail.

the local NTB adapter.6 Depending on the kind of failure, for example in the case of a cable being
yanked out and plugged back in again, the link may come back up again with mappings still valid.
In this case, our NVMe driver can resume using the old queue pair.

The link may become active again with invalid mappings. In the case of I/O queue pairs, this
is inconsequential as the NVMe standard supports deleting and creating I/O queues during oper-
ation; we can simply delete the old queues, set up new DMA windows and create new queues.
However, special care must be taken with regards to the admin queues as they cannot be deleted
and recreated without resetting the device and halting all operation. Because of this, we prefer run-
ning the manager driver (owning the admin queues) on the lender node. Even if a client’s path to
the manager is lost, it can have a backup communication path or can re-establish communication
if the path comes back up again, without requiring a reset of the device.

6.4 GPU Support
Many GPU-accelerated applications require fast access to storage. For example, the datasets in
big data and machine learning tasks can be hundreds of terabytes. As datasets’ size for typical
GPU workloads is only increasing, GPU applications become bounded by transfers between stor-
age and GPU. To overcome this, many GPUs permit peer-to-peer DMA to avoid unnecessary copies
via system memory [11]. For Nvidia GPUs, such peer-to-peer DMA with third-party devices is sup-
ported using GPUDirect [53]. Introduced in the 5.0 version of the CUDA API, memory allocated
on the GPU can be exposed through the GPU’s device memory regions. This allows third-party
devices, such as NVMe devices and network cards, to access GPU memory directly [70, 91]. Fig-
ure 17 illustrates the steps involved in reading from storage and loading data onto GPU memory
before launching a CUDA kernel7 on the GPU. The unnecessary steps of first having to read from
storage into system memory, and then copying the data to the GPU, as shown in Figure 17(a), can
be avoided. Instead, we can map GPU memory for the NVMe (using GPUDirect) and allow the
NVMe to access this memory directly using peer-to-peer DMA, as illustrated in Figure 17(b).

6Writes are simply dropped by the NTB. Read transactions will result in an unsupported request completion error, which
by convention sets all requested bytes to 0xFF’s.
7A software process running on a GPU is called a “kernel” in CUDA. This should not be confused with the OS kernel.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

166

SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:27

Fig. 17. By exposing GPU memory through device memory regions (BARs), it is possible to read from storage
directly onto the GPU. This reduces the number of steps required for loading data in to GPU memory.

Fig. 18. Avoiding CPU synchronization: By hosting I/O queues in GPU memory and mapping doorbell reg-
isters for the GPU, a CUDA kernel running on the GPU can operate the NVMe without involving the CPU.

However, while the CUDA driver does a decent job with regard to pipelining and scheduling, ker-
nel launches are a costly operation from a computational point of view. A better approach would
be to avoid interleaving storage I/O and launches altogether, by allowing a long-running kernel
to initiate I/O instead. In version 8.0 of CUDA, additional support for registering device memory
with the CUDA driver was added to GPUDirect [90]. This feature makes it possible for CUDA
applications to use the GPU’s onboard DMA engine to access BARs of third-party devices. By
memory-mapping the NVMe’s BAR, and registering this memory with the CUDA driver, a CUDA
kernel can directly access doorbell registers. Similarly, the NVMe is able to fetch commands and
post completions to queues that are hosted in GPU memory by exporting GPU memory through
GPUDirect. Figure 18 depicts how both features of GPUDirect makes it possible to read from stor-
age directly without involving any software running on the CPU. By operating queues directly, a
long-running CUDA kernel can control the NVMe device itself. Loading and storing data can be

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

167

2:28 J. Markussen et al.

Fig. 19. By combining the SmartIO API extension and Device Lending, our NVMe driver supports direct ac-
cess to a remote NVMe from a borrowed GPU. To the CUDA driver running on the local system, both the
NVMe device and GPU appear local. Our SmartIO system injects necessary peer-to-peer mappings trans-
parently. Note that the GPU operates the NVMe independently; no CPU is needed to access storage.

initiated from the kernel running on the GPU, avoiding the CPU in the data path entirely. Not only
does this reduce the latency of loading data onto the GPU, as the kernel may simply batch up read
commands and initiate I/O on its own, but we also eliminate needing to schedule data copies from
RAM between costly kernel launches.

While controlling an NVMe device directly from a CUDA kernel is interesting in itself, it be-
comes particularly useful in the context of remote devices. Using our SmartIO API extension, our
NVMe driver implementation supports CUDA using GPUDirect, allowing queues and data to be
accessed directly in GPU memory and “ringing” queue doorbell registers from software on the
GPU. As our SmartIO system is aware of device memory regions and their BAR addresses, we
can set up such peer-to-peer mappings between remote devices in a manner that is transparent
for the CUDA driver. The NVMe may reside in the same host as the GPU, or a different host alto-
gether. Furthermore, the GPU itself may be remote to the host currently running the CUDA driver,
as depicted in Figure 19. By using Device Lending and inserting the borrowed GPU into the local
device tree, the CUDA application can launch kernels on a remote GPU. Since SmartIO resolves ad-
dresses between the different address spaces, the proprietary CUDA driver is completely unaware
that both NVMe and GPU are remote devices. To the application, and the local CUDA driver, de-
vice memory is available through virtual address pointers that is mapped by our API extension,
which are again passed to the GPU when the kernel is launched. This allows the kernel to operate
the (remote) NVMe device entirely independent, without involving CPUs or system RAM in the
data path at all.

6.5 Multicast
Some NTB-capable switch chips also support multicasting, as described in Section 3.2. Memory
writes to a multicast address are routed out on several switch ports. By reserving a continuous
address range and dividing it into equal sized “multicast groups,” the system can assign different

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

168

SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:29

Fig. 20. Multicast support makes it possible for a single DMA operation to be replicated to multiple destina-
tions. It is possible to map multicast destination to system memory and device memory alike.

groups to different switch ports. Subsequently, it is possible to use different destinations for differ-
ent multicast groups.

However, not all devices support multicast. To overcome this, switches may use a “multicast
overlay BAR.” If a multicast write matches the overlay BAR on an outgoing switch port, then the
top part of the address is replaced with an overlay address. As such, the overlay BAR provides a
window into unicast address space for devices (endpoints) that do not support multicast natively.
For example, a multicast address may be mapped onto the BAR of a downstream device.

Figure 20 illustrates how we can use multicast to load data from storage to multiple destinations
in a single operation. Our SmartIO API extension allows setting up NTB mappings to multicast
addresses, allowing a single DMA write operation to be replicated by the switch chip hardware in
the cluster switches. When the multicast write reaches the egress NTB adapter, we use an overlay
BAR to map the address into anywhere in local address space as long as the destination memory is
linear. This makes it possible to set up mappings to either system memory or the BAR of a device,
for example GPU memory.

7 PERFORMANCE EVALUATION
The SmartIO system makes it possible to distribute PCIe devices in a PCIe-interconnected cluster.
Our implementation relies on several software and hardware components that enable access to
remote devices over the network. We have evaluated Device Lending and the MDEV extension in
our previous work, explaining performance differences as being caused by increased latency from
longer PCIe paths [48, 49]. However, by setting up the necessary memory-mappings in advance

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

169

2:30 J. Markussen et al.

and injecting these prepared mappings during use of the device as explained in Section 4.3, there
should not be any impact on performance. After all, we only rely on native PCIe in the critical path.
Although it may be extrapolated from our previous results that Device Lending and MDEV does
not cause any performance degradation, it is not concrete evidence. The assertion that our Smar-
tIO system has no performance overhead compared to local access warrants proper investigation,
something our previous evaluations partly lacked.

To remedy this, we present here an evaluation consisting of several, entirely new performance
experiments. These new experiments are designed to verify that our sharing techniques them-
selves do not add any performance penalty compared to local access. By comparing the perfor-
mance of using remote devices to using devices attached to a local PCIe bus, thus establishing a
“local baseline” for comparison, any overhead caused by our implementation should be revealed.
All parts comprising our SmartIO system is evaluated from multiple angles to verify that our so-
lution is in fact “zero-overhead.” Not only do we here revalidate our previous findings [48, 49],
but we also argue that this improved evaluation supersedes our previous work, as we present
updated performance results using more recent hardware. In addition, we present evaluations
on other parts of the system that have not been presented in earlier work, such as an isolated
latency analysis of our memory-mapping routines, and an evaluation of the shared-memory capa-
bilities of our new NVMe driver. In total, this gives a complete evaluation of the entire SmartIO
system.

We have organized the evaluation of the different components of our SmartIO system as follows:
• In Section 7.1, we perform a series of experiments comparing Device Lending to local con-

figurations, showing that our implementation does not cause any performance degradation
beyond what is expected for deeper PCIe device trees. Additionally, we prove the capabil-
ity of running unmodified software and device drivers, by using standard benchmarking
applications and native device drivers.
• In Section 7.2, we evaluate the usefulness of Device Lending for realistic workloads by

presenting the performance of an image classification application implemented for Keras
and Tensorflow [1, 2]. By training a convolutional neural network using several remote
devices from different hosts, we prove the capability of Device Lending for scaling heavy
workloads.
• We evaluate our MDEV implementation in Section 7.3, where we pass-through physical

GPUs to a VM guest and benchmark DMA performance. We are able to demonstrate that
our implementation achieves the same performance as bare-metal configurations.
• Experiments using our distributed NVMe driver are presented in Section 7.4. We demon-

strate the flexibility of shared-memory clustering and our distributed device driver API by
demonstrating how memory locality can be fully exploited to reduce latency. Additionally,
we prove the latency benefit of using PCIe networking by comparing our implementation
to a state-of-the-art NVMe-oF implementation using InfiniBand RDMA.

Note that throughout our evaluation, we have used different software versions for the differ-
ent experiments, such as different Linux distributions and CUDA installations. This is to fully
demonstrate that our SmartIO system is not limited to a specific Linux version, but works for a
wide variety of distributions and software versions, including older versions. We make a point
of using standard and unmodified benchmarking software for our tests. Furthermore, while we
relied mostly on GPUs in our previous evaluations, we present here results using GPUs, network
adapters, and NVMe devices to show that we can share any standard PCIe device. This has the
added benefit of demonstrating several sharing scenarios for a range of applications, which are

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

170

SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:31

made possible by our SmartIO solution. For each set of experiments, we explicitly state what kind
of hardware and software is used in the configuration.

7.1 Device Lending
Our previous Device Lending evaluations focused on investigating how the increased latency from
longer PCIe paths affects performance with regard to increased DMA latency and decreased link
utilization [48, 49]. In the past, we have argued that this difference in performance is very small
when compared to other device distribution mechanisms, such as RDMA. While it may be extrap-
olated from our results that our implementation does not cause any performance degradation, it is
not sufficient evidence by itself that the performance difference is only caused by additional switch
chips in the PCIe paths.

Device Lending makes it is possible for application software on a local system to use remote
devices without requiring any modifications to device drivers, or even the OS. Comparing the
performance of using remote devices to a local baseline can be done by creating local PCIe device
trees that are as similar to to the Device Lending scenarios as possible, since all other conditions
are the same. We have performed a series of new experiments comparing Device Lending scenarios
to local performance using a BP-457-ATX PCIe expansion chassis, to create PCIe paths with the
same number of switch chips (or “hops”) for both local and remote topologies.

7.1.1 Latency Tests. To prepare a DMA transfer, memory must be mapped for a device. This
involves locking pages in memory so they are not swapped out and resolving their I/O addresses.
For reading from block device, i.e., a storage device, the Linux block-layer pin the pages used by a
memory buffer and create a scatter/gather list containing the physical addresses of the buffer. This
list is then passed to the device driver, which in turns iterates the list and resolves I/O addresses by
using the Linux DMA API. If the IOMMU is enabled, then the same API is used to set up IOMMU
mappings for the device. The driver can then use these I/O addresses and initiate DMA transfers.

As explained in Section 4.3, by inserting a shadow device into the local PCIe tree, our De-
vice Lending mechanism has a “hook” in the DMA API. When the device driver calls the DMA API
using the shadow device, we can calculate offsets and inject corresponding I/O addresses that map
over the device-side NTB. This allows us to prepare mappings over the NTB in advance (“DMA
windows”), and no communication between the lender and borrower is required. However, the
software routine that calculates offsets may still have an impact on performance, particularly in
the case of device drivers that frequently maps and unmaps memory for a device.

To measure any performance impact of our mapping routine, we have used the Flexible I/O
tester (FIO) [9]. FIO is a widely used userspace application for benchmarking the performance of
storage devices, such as NVMe devices. By configuring FIO to perform reads and using the sync
engine, FIO opens a file descriptor to the block-device setting the O_DIRECT and O_SYNC options.
This combination of options allows Linux to perform zero-copy reads from storage, bypassing
the block-cache and forcing the block-layer and NVMe driver to map and unmap the userspace
buffer for every single read operation. In other words, this FIO benchmark configuration forces
our mapping routine to be invoked as part of the critical path.

Figure 21 shows the hardware topologies for our test scenarios:
• Local Baseline, shown in Figure 21(a): An expansion chassis connected to a local host run-

ning CentOS 7, using the 3.10 version of the kernel and the built-in NVMe driver. We are
running FIO version 3.7 as available from the CentOS 7 software repositories.
The expansion chassis is connected to the upstream host through One Stop Systems HIB68-
x16 target adapter cards. These adapters use the same Broadcom PEX8733 switch chip used

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

171

2:32 J. Markussen et al.

Fig. 21. We benchmark our Device Lending driver software by using an NVMe benchmark that calls our
mapping code in the critical path (FIO). By using an expansion chassis, the NVMe device is the same number
of hops away from the CPU currently using it for both the Local Baseline comparison and Device Lending.
The only difference is whether the switch chip is configured in transparent or NTB mode.

in the Dolphin PXH830 NTB adapters.8 By placing the NVMe device in an expansion chassis,
we were able to create a similar PCIe path for both test scenarios. Additonally, the IOMMU
was disabled, to make the configuration comparable to Device Lending described below.
• Device Lending, shown in Figure 21(b): Two are connected together in a back-to-back topol-

ogy, using Dolphin PXH830 adapter cards and external PCIe cables Both hosts are running
CentOS 7 with the 3.10 kernel, and the local system running the benchmark has borrowed
the remote NVMe and inserted it into the local PCIe tree and using the in-kernel NVMe
driver. The IOMMU on the borrower is disabled, and we have configured the the DMA win-
dow size large enough to map the entire memory of the borrowing system. By disabling the
IOMMU on the borrower, we make sure that the only latency overhead is our own mapping
routine. The same expansion chassis configuration as in the local baseline is used, and by

8While it is possible to configure the PXH830 adapter cards in transparent mode rather than NTB mode, the One Stop
Systems expansion chassis used in our tests uses a non-standard connector pin for the PCIe clock signal. In lieu of the
possibility of putting the PXH830 in transparent mode, we therefore use HIB68-x16 adapters.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

172

SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:33

disabling the IOMMU on the lender, PCIe transactions are routed peer-to-peer as illustrated.
This ensures that the NVMe device is the same number of switch chips away from the CPU
currently using it, making the configuration comparable to the local baseline configuration
described above. The only difference is whether the switch chip in the adapter cards is con-
figured in transparent or non-transparent mode (NTB).9

In both scenarios, FIO was configured to perform 8,192 reads per run, each read is a page-sized
(4 kB) chunk at an offset generated by a pseudo-random generator. As FIO reuses the same buffer
for every read call, we ran FIO several times and concatenated the results. In addition, we reloaded
the NVMe driver between each fourth run to force the system to use different memory locations for
the internal I/O command queues. Moreover, we also rebooted the system between each eighth run
of FIO to ensure that the results were the same across multiple system reboots. In short, for both
scenarios, we had 10 reboots, 2 reloads of the NVMe driver per reboot, 4 FIO runs per driver reload,
and 8,192 read operations per run. As the purpose of this test is not to benchmark the performance
of the NVMe device, but rather a potential overhead of our Device Lending mechanism, the NVMe
drive we have used is a prototype RAM disk with an NVMe controller from PMC-Sierra. This is to
avoid any effects caused by prefetching and caching that modern SSDs are capable of.

Figure 21(c) shows the latency distribution of read operations for both using a local NVMe device
(Local Baseline) and when accessing a remote NVMe device using Device Lending. Although the
purpose of the test is simply to compare Device Lending to local access, it is interesting to note
that the distributions have distinctive “spikes” occurring at regular intervals. We suspect that these
spikes may be caused by a combination of task scheduling in the kernel and interrupt aggregation
by the NVMe device. We see that the two distributions overlap, and the medians differ with 23 ns.
Considering the spread of the distribution, this is not statistically significant. We argue that this
demonstrates that there is no significant difference in performance for local and remote.

7.1.2 Throughput Tests. As mentioned in Section 4, it is not feasible for a lender to map the
entire memory of multiple borrowers in a cluster. This would potentially require setting the NTB
BAR size larger than what system limitations permits. Furthermore, not all devices support high
I/O addresses, and such devices would be unable reach the higher address offsets of the NTB for
large DMA windows. To overcome this, our implementation uses the IOMMU on the borrower
instead. By using the borrower-side IOMMU, we can create continuous address ranges using pre-
determined I/O addresses. These continuous ranges are trivially mapped by the device-side NTB
(DMA windows) and can be done in advance. However, this requires dynamically adding memory
pages to the IOMMU domain when the device driver is preparing DMA buffers. Our implemen-
tation must also make sure to not choose virtual I/O addresses that risk thrashing the IOMMU
translation look-aside buffer [7].

By performing large DMA transfers, we saturate the PCIe links with DMA traffic and also stress
system memory. This allows us to investigate if there is any performance difference between using
a local device or a borrowed, remote device for high-throughput workloads. Any overhead caused
by our IOMMU support would show as a noticeable performance difference in the achieved mem-
ory throughput. Figure 22 shows the hardware topologies used in our tests:
• Local Baseline, shown in Figure 22(a): A local system using a local Nvidia Quadro P4000

GPU in an expansion chassis. As with the NVMe tests, we use an expansion chassis to
make the PCIe path similar to the Device Lending scenario. The IOMMU on the local

9Since an NVMe read operation involves a register write, several DMA transactions and interrupts, comparing similar
hardware topologies would also reveal any latency overhead in the address translation mechanism of the NTBs as well.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

173

2:34 J. Markussen et al.

Fig. 22. By performing large DMA transfers, any overhead in the critical path would have been revealed as
a difference in performance. As performance is the same for Device Lending and the Local Baseline, this is
not the case, and the performance is indeed similar.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

174

SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:35

CPU is enabled, and the Linux kernel decides IOMMU mappings. This makes the scenario
comparable to the Device Lending scenario below.
• Device Lending, shown in Figure 22(b): Two hosts connected back-to-back using Dolphin

PXH830 NTB adapter cards, one host is borrowing the Quadro P4000 GPU. The IOMMU
on the lender host is disabled, to enable DMA transfers to be routed shortest path over the
NTB in the expansion chassis, making this scenario comparable to the Local Baseline. Since
the GPU used in our tests is unable to reach high I/O addresses, mapping the entire memory
of the borrower is not possible. Because of this, we configured the NTB BAR size to 1 GB.
This is small enough for the system to place the NTB at low addresses during the PCIe bus
enumeration described in Section 3.1. Since the IOMMU on the borrower is enabled, we can
detect any overhead in how we use the IOMMU compared to the Local Baseline.

We installed version 10.1 of CUDA (418.39 version of the Nvidia driver), and the systems are
running Ubuntu 18.04.2 with the 4.15 version of the kernel. We used the bandwidthTest program
to create the workload. This CUDA program uses the GPU’s on-board DMA engine to copy data
between GPU memory and system memory, and is included in the CUDA Toolkit sample pro-
grams [54]. For both scenarios, we configured bandwidthTest to initiate 1,000 DMA writes to sys-
tem memory, and 1,000 DMA reads from system memory. We repeated this for sizes from 4 kB to
128 MB, to reveal any trends in increased transfer sizes.

Figure 22(c) depicts the results of our test, with DMA writes in the top row and DMA reads in
the bottom row. The different transfer sizes are plotted along the X-axis. The left column depicts
the median of 1,000 runs. To show that even the distribution of measurements are similar for lo-
cal and remote, we depict the min–max distance of the reported throughput samples on the right
column. Since the Nvidia driver actively trains down the PCIe link to conserve power consump-
tion, we enabled persistence mode on the GPU. However, this was not enough to entirely avoid
that the GPU’s DMA engine takes some time to “warm up” caches on the GPU. Because of this,
measurements below the 0.1th percentile are marked as outliers. The throughput for Local Base-
line and Back-to-Back scenarios overlap almost perfectly, which should be interpreted as a strong
indication that our Device Lending implementation does not introduce any overhead compared
to local performance. Finally, we also observe a strange effect for DMA reads where the achieved
throughput for Device Lending appears to overtake local performance. This “boost” is statistically
significant, as can be seen in the min–max plot. We do not fully understand what causes this effect,
but we suspect that it may be caused by different IOMMU mappings for the Local Baseline and De-
vice Lending scenarios, since they are decided by the kernel and our implementation, respectively.

7.1.3 Longer PCIe Paths. PCIe transactions are either posted or non-posted operations, meaning
that some transactions require a completion to be sent back. DMA reads are requests that require a
completion with data. As such, reads are affected by the number of hops in the data path between
requester and completer; the longer the path, the higher the request-completion latency becomes.
In addition, the PCIe data link layer uses a credit-based flow control algorithm. The number of
requests in flight is limited by how many uncompleted transactions a PCIe requester is able to
keep open. Since it is not allowed to send more than the maximum payload size at the time,10

a requester may need to split requests into several transactions. Longer paths can therefore re-
duce DMA performance, as the link becomes underutilized when the distance between device and
memory increases.

10The maximum payload size for a device is configured by the system. While it can be configured individually for each
device, it is usually configured to be the same for all devices in the PCIe tree due to several practical reasons, and is most
commonly set to 128, 256, or 512 bytes.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

175

2:36 J. Markussen et al.

Fig. 23. By increasing the distance with a single hop, we are able to determine the impact of longer PCIe
paths on DMA performance. DMA reads are particularly affected by the decreased link utilization.

We used the bandwidthTest program described in Section 7.1.2 and a borrowed, remote Nvidia
Quadro P4000 GPU. Figure 23 shows the topologies used to evaluate the performance impact of
increased PCIe paths. By increasing the distance between device and memory with an additional
hop, namely, the Microsemi PM8536 PFX switch used internally in the MSX824 cluster switch, we
can compare the performance to the Back-to-Back scenario. The hosts are running Ubuntu 18.02.2
with the 4.15 version of the Linux kernel. As with our previous tests, we used CUDA version
10.1.

Figure 23(c) shows the results of our test. As expected, the additional hop in the Cluster Switch
scenario affects DMA performance. We can see that smaller writes are affected by the increased
latency through the switch, because even small differences in delay impact the time it takes for
transactions with data to arrive. However, this additional latency becomes less significant for larger

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

176

SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:37

writes, as the number of transactions in flight increases. We see that the throughput converges
towards the Back-to-Back performance for transfers larger than 512 kB.

DMA reads suffer noticeably from the increased distance. Unlike writes, which are posted trans-
actions, the number of read requests simultaneously being held open is limited. Moreover, PCIe
allows a completer to respond with less data at the time than is actually requested. For example, a
read requesting 512 bytes may terminate with 2 completions containing 256 bytes each, rather than
a single completion with all 512 bytes. This depends on the maximum payload size and maximum
read request size, configured by the system. Since the time before completions arrive increases be-
cause of the longer distance between the GPU and system memory, the link becomes underutilized
as there are fewer transactions in flight. We observe this as a drop in the measured throughput, as
seen on the right-hand plot in Figure 23(c).

7.1.4 Peer-to-peer: Local vs. Remote. In addition to enabling access to individual remote devices,
Device Lending also supports creating groups of arbitrary devices and enabling direct peer-to-peer
access between them (shortest-path routing). To show that the address resolving method described
in Section 4.4 enables shortest-path routing and to demonstrate that relying on the borrower-
side IOMMU does not disrupt peer-to-peer transactions on the lender, we have performed DMA
throughput and latency tests using two Nvidia Quadro P4000 GPUs. The borrower uses CUDA
10.1 with the 418.39 version of the Nvidia driver, and both borrower and lender run Ubuntu
18.04.2 with the 4.15 version of the Linux kernel. The configurations of the tests are shown in
Figure 24:
• Local Baseline, shown in Figure 24(a): A local system using two local GPUs in an expansion

chassis. We have disabled the IOMMU on the local CPU, to enable shortest path routing
within the expansion chassis.
• Device Lending, shown in Figure 24(b): Two hosts connected together using Dolphin

PXH830 NTB adapter cards. Note that we also use a Dolphin MXS824 PCIe cluster switch in
this test. Even though the switch increases the distance between CPU and two GPUs, it does
not matter in this test; we only measure traffic between the two GPUs. The IOMMU on the
lender is disabled to allow shortest path routing. Since the GPUs used in our tests are unable
to reach high I/O addresses, we configured the DMA window size to 1 GB and enabled the
IOMMU on the borrower.

Figure 24(c) shows the result of using the CUDA bandwidthTest program to copy memory from
one GPU to the other using the first GPU’s on-board DMA engine. For each transfer size, we
configured bandwidthTest to do 1,000 transfers. On the left, we show the median throughput, and
we show the distribution as a min–max distance on the right. Note that GPU memory latency
varies significantly more than RAM (as seen in Figure 22).

Using the same topologies as depicted in Figure 24, we have also measured the latency of DMA
writes between the two GPUs. We developed a small CUDA program to measure peer-to-peer
latency, as depicted in Figure 25(a). One GPU is tasked with increasing a counter, writing it to the
other GPU’s memory and waiting for an acknowledgement. The other GPU waits for the counter
to increase by one, and acknowledges the received counter by writing it back to the first GPU.
The whole round-trip is measured by recording the current GPU clock cycle and dividing it by
the clock frequency. We call the elapsed time of one cycle of DMA transfers back and forth the
ping–pong latency. For getting the clock cycles, we use the clock64() function. We measured that
calling this function takes around 32 ns on the P4000 GPUs. We also measured that reading from
the local memory pointer takes around 15 ns. While this skews the results somewhat, we argue
that the skew should be identical for both scenarios.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

177

2:38 J. Markussen et al.

Fig. 24. Peer-to-peer throughput: We demonstrate that our Device Lending implementation supports short-
est path routing by comparing peer-to-peer DMA performance. The IOMMU on the borrowing system does
not affect traffic between borrowed devices.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

178

SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:39

Fig. 25. Peer-to-peer latency: by implementing a ping-pong program in CUDA, we can measure the latency
of DMA writes between two GPUs. One GPU writes a 4-byte message to the other GPU’s memory, before
waiting for an acknowledgement and recording the time before and after (ping). The other GPU waits for
the message and sends an acknowledgement back (pong).

Figure 25(b) shows the latency distributions for the Local Baseline and Device Lending scenar-
ios for 100,000 ping-pong iterations each. As the distribution has three distinct “steps,” with no
measurements falling in between, we present it as a set of percentiles rather than a histogram.
We see that the distributions of throughput and latency measurements are similar for both sce-
narios, proving that there is no difference between local and remote. From this, we can conclude
that our implementation supports shortest-path routing between two devices, without adding any
overhead in the critical path.

7.1.5 Peer-to-peer: Multiple Lenders. As described in Section 4.4, our Device Lending imple-
mentation also supports shortest-path routing between devices even when they reside in different
lender systems. By composing a PCIe infrastructure consisting of devices spread out over multiple
hosts in the cluster, the PCIe device tree unavoidably becomes deeper. While this can potentially
increase resource utilization significantly, we need to evaluate the performance impact of moving
resources further away as each additional hop in the data path will slightly increase the latency.

By using the same peer-to-peer benchmarks described in the previous section, we have evalu-
ated the impact of moving one of the GPUs to a third host. Figure 26 illustrates the topologies of
our comparison tests:
• Same Lender, shown in Figure 26(a): Using two GPUs from the same lender. As we estab-

lished in the previous section, this scenario is similar to a local system using local devices.
• Different Lenders, shown in Figure 26(b): Using two GPUs from different lenders. DMA

transactions have to traverse four additional hops (NTB, cluster switch, NTB, internal
switch) compared to the baseline. We expect the additional latency to manifest itself as an
observable performance difference when compared to the Same Lender scenario:

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

179

2:40 J. Markussen et al.

Fig. 26. Peer-to-peer throughput: We evaluate the impact of increasing the distance between the devices.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

180

SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:41

Fig. 27. Peer-to-peer latency: using a ping–pong CUDA program, we measure the latency of DMA writes
between two GPUs residing in different hosts. While the additional hops increase the ping–pong latency,
this is expected for longer PCIe paths.

— The PEX8733 switch chip used in the PXH830 NTB adapters specifies that up to 132 ns
may be added to a transaction in worst-case [13].

— The internal PEX8796 chip used internally in the expansion chassis can add up to 150 ns
to transactions in worst case [14].

— Experiments in our lab show that the PM8536 PFX chip used internally in the MXS824
cluster switch adds an average latency of around 170 ns.

All hosts are running Ubuntu 18.04.2 with the 4.15 version of the Linux kernel. As before, the
borrower is using CUDA 10.1 with the corresponding 418.39 version of the Nvidia CUDA driver.

Figure 26(c) shows the result of running the CUDA bandwidthTest program, copying memory
from one GPU to the other using the on-board DMA engine with different transfer sizes. Fig-
ure 27(b) show the ping–pong latency using the CUDA program we described earlier. While we
observe that the additional distance affects the measured throughput and back-and-forth latency,
this difference is less than the worst case. This is a strong indicating that our implementation does
not add any additional latency beyond what we expect from the hardware. We argue that the added
latency from increasing the distance between GPUs is a reasonable trade-off with regards to in-
creasing device utilization. It is also possible to optimize for data movement by borrowing devices
that are physically close to each other in terms of number of hops, thus minimizing the distance
between them. Finally, we can observe that when conditions are comparable, i.e., the PCIe path
is similar, the performance is the same. We argue that this demonstrates that our Device Lending
implementation does not add any overhead. After all, the speed of electrons through the silicone
of the hardware is beyond the scope of our implementation.

7.1.6 Sharing SR-IOV Devices. As mentioned in Section 3.1, the term “device” actually refers
to individual PCIe endpoints, or rather device functions. Some devices may implement SR-IOV,
allowing a single device to virtualize multiple device functions in hardware. Each virtual function
appears to the system as a separate device function with its own resources. Since our SmartIO

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

181

2:42 J. Markussen et al.

system does not make any distinction between physical and virtual functions, it is possible to
disaggregate an SR-IOV device and assign a virtual function to a remote host (without any per-
formance penalty) the same way SmartIO distributes physical functions. Therefore, we have con-
ducted experiments using a Mellanox ConnectX-5 100 Gigabit Ethernet adapter, which supports
up to 1024 virtual functions [81]. Each virtual function implements a (virtual) Ethernet controller.
By generating high network throughput and comparing the performance of a virtual function to
the performance of the physical function, for both a local system and a remote system using De-
vice Lending, we argue that this will reveal any hidden performance overheads caused by our
implementation that could affect hardware virtualization.

To create network workload and generate network traffic, we have used the iperf2 tool. This tool
is widely used for measuring network performance, and is available on most Linux distributions.
iperf2 supports creating TCP data streams between a client, running on a local host, and a server,
running on a remote host. The client writes as much data to the TCP stream as it is able to, and the
server reads from the stream.11 In this respect, TCP is designed to provide a reliable data stream
over a lossy IP network where the kernel is involved in encapsulating raw data into TCP segments
and IP packets, managing transmission and receive buffers, handling retransmissions and flow
control, and network congestion avoidance—all of which require CPU time. Therefore, to fully
saturate a 100 Gigabit link without becoming CPU-bound, iperf2 supports spawning dedicated
threads for each individual TCP connection on both the server and the client. Each individual
thread can run on its own CPU core.

Figure 28 depicts the configuration used in these tests, where the client connects to the server
running on the receiver host:
• Local Baseline, shown in Figure 28(a): A local system using its local network adapter to

connect to the dedicated Receiver Host, running the iperf2 server. The iperf2 client is running
on the local CPU. We ran one test using the adapter’s physical function and one test using
one of the adapter’s virtual functions, to rule out any performance overhead caused by the
virtualization.
• Device Lending, shown in Figure 28(b): A borrower using a remote network adapter to

connect to the dedicated Receiver Host. As with our Local Baseline tests, we borrowed first
the physical function and then the virtual function, to rule out any performance difference.

All hosts run Ubuntu 18.04 with the 4.15 version of the Linux kernel, using the in-kernel Mellanox
Ethernet driver. To compare apples to apples, we have disabled the IOMMU on both lender and
borrower, as well as on the receiver host. In all cases, the iperf2 client runs for a duration of
five minutes, writing to the TCP streams and reports the throughput every half-second. The client
and the server were configured to use four parallel connections, and, consequently, using four
threads each. We relied on the default kernel scheduler to schedule threads on different CPU cores.
We also experimented with various network related settings in the kernel, such as increasing buffer
sizes and using alternative TCP congestion control mechanisms. Additionally, we tried different
offloading mechanisms supported by the adapter. However, besides setting the Ethernet maximum
transfer unit to 9,000 bytes (“jumbo frames”), the default 4.15 kernel settings and disabling all forms
of offloading provided highest throughput.

Figure 28(c) shows the throughput measurements of our comparison, with performance for a
physical function shown on the left (PF), and performance for a virtual function on the right (VF).
Note that while it is common to describe network performance in terms of Gigabits, we have

11The behavior of iperf2 is perhaps counter-intuitive. In most client/server applications, the client will typically request
data from the server rather than the server acting as a receiver. We have used the same terminology as the program uses.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

182

SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:43

Fig. 28. TCP throughput comparison: We compare the achieved throughput for a client/server application.

plotted performance in terms Gigabytes to be consistent throughout this article. By comparing
the performance of these functions being used locally (Local Baseline) and remote (Device Lend-
ing), we prove that accessing a borrowed virtual function does not introduce any performance
overhead. Additionally, we also observe that for the Mellanox adapter used in this experiment,
there is no measurable difference when using a virtual function compared to using a physical
function.

Moreover, multiple hosts can share the same device by distributing individual virtual functions.
Since most SR-IOV-capable devices support several virtual functions, this becomes highly useful

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

183

2:44 J. Markussen et al.

Fig. 29. Two hosts using the same SR-IOV-capable network adapter simultaneously.

with regard to our SmartIO system. To demonstrate this, we have performed an additional test
where the lender and the borrower share the same sender-side network adapter simultaneously,
to transmit data to the receiving server. Figure 29(a) shows the topology of this multi-host sharing
test. We configured two virtual functions for the network adapter and assigned them to the two
hosts: One function is used locally by the lender, and we run an iperf2 client on the lender with
two parallel connections (threads) to the iperf2 server (Client on Lender). The other function is
used simultaneously by the borrower, and we run an iperf2 client on the borrower as well, also
using two threads (Client on Borrower).

Figure 29(b) shows the results of our multi-host test, where we have plotted the reported
throughput for both clients. The server’s reported received data rate, which is the combined rate of
the two clients, is also shown. While throughput for the two clients fluctuate a little, they approach
the same throughput over time (as can also be seen by comparing the mean throughput). This is
expected behavior for TCP streams, as they alternate between increasing transmission rate in an
attempt to estimate the available network bandwidth, and backing off when they exceed their fair
share of the total capacity.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

184

SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:45

Finally, it should also be mentioned that sharing the Mellanox network adapter does not only
provide connectivity to the receiver host for both lender and borrower, but it also becomes possible
for the lender and borrower to establish IP connections to each other as well. In a larger PCIe cluster,
this could be useful for IP network applications that could communicate with each other, using
only a single network adapter and without sending a single packet out on the Ethernet link.

7.2 Scaling Heavy Workloads
Another method of demonstrating that there is no hidden overhead in our Device Lending imple-
mentation, is investigating how it behaves under stress. It might be the case that there are small
overheads caused by the implementation that only become visible when the system is under heavy
load. Because of this, we have also designed an experiment using a realistic GPU-intensive machine
learning workload, to prove that Device Lending is a solution for composable and disaggregated
PCIe infrastructure suitable for real-world applications.

Our workload is a typical convolutional neural network training using the Python machine
learning framework Keras [1]. Keras is a high level framework that wraps different lower level
machine learning frameworks. In our case, Keras uses Tensorflow [2] as its back-end. Keras also
allows multiple GPUs to work together, by replicating the machine learning model being trained
on each of the GPUs, and splitting the model’s inputs into “sub-batches” and distributing them
on the GPUs. When the GPUs are done, the sub-batches are concatenated on the CPU into one
batch. This introduces quasi-linear speed-up. We used Python 3.6 and Keras 2.2.4, running on
Ubuntu 16.04 (4.9 kernel) with CUDA 9.0 and cuDNN 7.1 in our tests.

We wrote a program that trains available models in Keras on given datasets with given hyperpa-
rameters using transfer learning [57]. In our case, we use a VGG19 [76] model that is pre-trained
on the ImageNet dataset [20], and the model was re-trained using an 8-classes image dataset of
the gastroaintestinal tract called Kvasir [30, 63, 64] to perform disease classification [65].

We measure the runtime of 12 epochs of the model training on two Nvidia P4000 GPUs as
well as loading images from storage and writing the results back using an Intel Optane P4800X
NVMe device. While 12 epochs may not give the statistical significance needed for reliable machine
learning results, we are only interested in system performance. Both GPUs and the NVMe were
used in all scenarios. Figure 30 shows the scenarios and results of our experiment:
• Local Devices, shown in Figure 30(a): A local system using both GPUs and the NVMe device

locally. This scenario serves as our baseline comparison. The IOMMU is disabled, to allow
peer-to-peer transactions between the GPUs.
• Single Lender (not depicted): A borrowing system connected back-to-back and accessing

all three devices remotely. The number of hops in the path is similar to the Local Devices
scenario. The IOMMU on the lender is disabled, while it is enabled on the borrower to shrink
the DMA window size down to 1 GB. We can see from the results in Figure 30(c) that this
scenario achieves approximately the same epoch runtimes as the local comparison scenario,
demonstrating that there is no hidden overhead in our Device Lending implementation.
• Two Lenders, shown in Figure 30(b): A borrowing system accessing devices from two sepa-

rate lenders. The IOMMU on the borrower is enabled, while it is disabled on both lenders. As
the GPUs reside in different hosts, the path between them increases. This appears to slightly
affect the epoch runtimes, as seen in Figure 30(c).

Our machine learning workload proves it is possible to use Device Lending for realistic
workloads in a PCIe cluster, dynamically creating configurations of both local and remote devices
and accessing them without any performance penalty beyond what is expected for longer PCIe
paths. We argue that this effectively demonstrates the capacity of our implementation for creating

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

185

2:46 J. Markussen et al.

Fig. 30. Scaling heavy workloads: We demonstrate the usability of SmartIO for composable and disaggre-
gated PCIe infrastructure, by comparing the performance of running a GPU-intensive machine learning
workload on a local system using local devices to Device Lending using remote devices. As data is moved
between the GPUs, the increased distance between them affects the total runtime. However, we can see that
when the devices reside in the same host, our Device Lending implementation does not add any measurable
overhead.

a disaggregated PCIe infrastructure that supports dynamic scaling of devices that are distributed
in the cluster.

7.3 VM Pass-through with MDEV
While VFIO pass-through enables direct access to local physical devices from a VM guest, our
MDEV pass-through mechanism enables direct access to remote devices. However, our MDEV ex-
tension to KVM requires the use of an IOMMU on the lender to map the device into the same guest-
physical address space as the VM as explained in Section 5.2. This effectively disables shortest-path
routing in the fabric, as transactions must be forwarded through the CPU on the lender in order
for the IOMMU to resolve virtual addresses to physical addresses. Intuitively, we expect this to
cause some performance degradation.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

186

SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:47

7.3.1 IOMMU Performance Penalty. Processor designs are complex and often not well-
documented, making it difficult to determine what exactly happens with memory transactions
in progress once they leave the PCIe root complex and enter the CPU. Memory transactions may
be buffered while awaiting IOMMU translations, or the IOMMU may need to perform a multi-level
table look up for resolving addresses.

To distinguish between overhead caused by our software implementation and any overhead
caused by the hardware address virtualization, we compare the performance of the MDEV im-
plementation to bare-metal performance using Device Lending. As described in Section 4.3, De-
vice Lending includes optional IOMMU support allowing us to isolate the performance penalty
of enabling the IOMMU. As such, this establishes a baseline we can compare our MDEV imple-
mentation with. Note that our exhaustive evaluations of Device Lending presented in Section 7.1
demonstrate that the Device Lending mechanism does not add any performance overhead com-
pared to native access. Therefore, we argue that Device Lending a valid bare-metal comparison to
our MDEV implementation to reveal any overhead caused by MDEV.

Two hosts are connected back-to-back with Dolphin PXH830 NTB adapters, and we use the
same One Stop Systems expansion chassis as our previous tests. We installed an Nvidia Tesla K40c
GPU alongside the NTB adapter in the chassis. The expansion chassis is connected upstream using
Dolphin MXH832 host and MXH833 target transparent adapters. By turning the IOMMU on the
lender on and off, we are able to compare the performance difference of address virtualization on
peer-to-peer DMA transfers over the NTB. By using the expansion chassis, we are able to create
a worst-case scenario for enabling the IOMMU, as the distance between the devices and the CPU
increases. Figure 31(a) depicts the three scenarios compared in this evaluation:
• Bare-metal No-IOMMU, where we use Device Lending to facilitate direct access to the

remote GPU. The IOMMU on the lender is turned off to enable shortest-path routing within
the expansion chassis. Since the GPU is unable to reach high I/O addresses, we enabled
the borrower-side IOMMU and configured the DMA window size to 512 MB. We also made
sure that the bandwidthTest program ran with the same CPU core affinity as the local NTB
adapter.
• Bare-metal IOMMU is similar to the No-IOMMU scenario in every way, except that lender-

side IOMMU is enabled. By using the lender’s IOMMU, we are able to configure larger DMA
windows while still setting up mappings over the NTB for the GPU using low addresses.
Note that since we are using the expansion chassis, this becomes the aforementioned worst-
case scenario for Device Lending; all transactions must be routed towards the lender’s CPU
so that the IOMMU can resolve virtual I/O addresses. As with the No-IOMMU scenario, we
made sure to run the bandwidthTest program with the same CPU core affinity as the local
adapter.
• MDEV: We also installed Qemu 2.10.1 on the local host and configured it to use the KVM

hypervisor. Using our MDEV extension to KVM, we borrow and “pass through” the GPU to
the VM guest, enabling direct hardware access to the guest driver. The VM was configured to
have 4 GB memory, and we used 2 MB “huge pages” on the host. Our MDEV implementation
probes the VM for low and high guest physical memory dynamically, and sets up respective
DMA windows. Because of this, we need to configure the NTB BAR size to be larger than
the VM memory. Finally, we also made sure that Qemu ran with the same CPU core affinity
as the local NTB adapter.

We installed Ubuntu 16.04 with the 4.10 version of the Linux kernel on both machines, as well
as the guest OS in the VM. Although Device Lending is currently only supported on Linux, any
guest OS would have been possible, including Microsoft Windows. However, we chose to use

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

187

2:48 J. Markussen et al.

same version of Linux as both host and guest OS, to run as similar software as possible in all
scenarios. CUDA version 9 was installed on the local host and in the VM guest. We used the
bandwidthTest program described in Section 7.1, to measure the throughput of DMA writes and
DMA reads to system memory using the GPU’s own on-board DMA engine. As with our previous
evaluations, bandwidthTest was configured to do 1,000 iterations for each transfer size from 4 kB to
128 MB.

Figure 31(b) shows the median DMA read and write throughput for all three scenarios. We
observe that the throughput drops significantly when the IOMMU is enabled, particularly for reads
(drops from 10.2 GB/s to just a little over 1.5 GB/s. There are two primary reasons for this significant
performance drop:

(1) Reads suffer particularly from the increased distance, as addresses are routed through the
lender’s CPU twice per transaction; the first time in order for the IOMMU to translate the
addresses of the read requests, and the second time for completions with the requested data.

(2) By using a PCIe tracer, similar in concept to that of network packet tracers, we were able to
investigate what the actual transactions look like on the fabric. By first using the tracer in the
GPU slot, and then in the lender-side NTB slot, we were able to observe that the transactions
are modified by the Intel Xeon CPU used in our test; the GPU requests 256 bytes per request,
but each request is emitted as 4 × 64 byte requests on the other side of the IOMMU. As the
CPU is only able to keep a limited number of non-posted requests open at the same time,
splitting up read requests into multiple smaller requests leads to very poor link utilization.

Regardless, by comparing the bare-metal scenario with the IOMMU enabled to MDEV, we
observe that the performance of DMA transfers is almost identical for both scenarios. While the
performance drops because of the increased paths and IOMMU address translation, our results
indicate that our MDEV implementation does not add any overhead on top of the hardware
virtualization.

7.3.2 Pass-through Comparison. We have also repeated the same peer-to-peer benchmarks de-
scribed in Section 7.1 using VMs. By using the peer-to-peer benchmarks to measure throughput
and latency between two GPUs, we are able to compare our MDEV extension using remote devices
to “normal” VFIO pass-through on a local system.

Figure 32 shows the topologies used in our comparison evaluation:
• Local VFIO, shown in Figure 32(a): A Qemu 2.10.1 instance running on a local system using

the KVM hypervisor. By using VFIO, we pass-through two local Nvidia Tesla K40c GPUs. The
local IOMMU is enabled, in order for KVM to map the devices into the same guest-physical
address space as the VM. The guest OS is Ubuntu 6.04 with the 4.10 version of the Linux
kernel, and we are using CUDA version 9. The host OS is Fedora 29 using the 4.18 version
of the kernel.
• MDEV, shown in Figure 32(b): A Qemu 2.10.1 instance using the KVM hypervisor and our

MDEV extension to borrow and pass-through two remote GPUs from the lender. We used
the same OS image for the VM as the VFIO scenario, and Fedora 29 on the hosts. The lender’s
IOMMU is enabled, as is required by MDEV.
• Bare-metal, shown in Figure 32(b): We also include a bare-metal baseline, running band-

widthTest natively on a bare-metal machine using Device Lending. Two remote GPUs are
borrowed by a bare-metal machine. The bare-metal borrower machine boots the same OS
image as we used for our VMs. On the lender, we ran Fedora 29. The lender’s IOMMU is
enabled, to make the data path comparable to MDEV.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

188

SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:49

Fig. 31. IOMMU performance penalty: By using the IOMMU on the lender, shortest path routing is
disrupted.

Both VM instances were configured with 4 GB memory, and we enabled 2 MB huge pages on the
host. We also set the CPU affinity to be the same as the local adapter in both the bare-metal and
MDEV scenarios.

Like before, we configured bandwidthTest to copy memory from one GPU to another using
transfer sizes from 4 kB to 128 MB. Figure 33(a) shows the median throughput (left) and throughput
distribution as a min–max distance (right). Each transfer size is repeated 1,000 times, and we have
marked measurements below the 0.2th percentile as outliers. We observe that the local VFIO pass-
through scenario reports a slightly higher throughput than both our MDEV implementation and
the bare-metal comparison(!) for smaller transfer sizes.

In order for the GPU to notify the host driver that the DMA transfer is complete, it relies on
interrupts. The bandwidthTest program measures throughput by initiating a memory copy (DMA
transfer) and recording the time elapsed until the transfer is complete. As KVM uses a different
mechanism for notifying the VM guest about an interrupt for VFIO pass-through devices than our
MDEV implementation, we speculate that interrupts raised by VFIO pass-through devices may
cause KVM to briefly suspend the execution of Qemu to handle the interrupt and signal eventfd
events. This would in turn would affect timing measurements by software running in the VM.
However, as the measured throughput converge for all three scenarios when the transfer size
increases, this suspected measurement discrepancy seems to become less significant.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

189

2:50 J. Markussen et al.

Fig. 32. Peer-to-peer topologies: We compare the measured throughput and latency between two GPUs
passed through to a VM using local VFIO pass-through to using our MDEV pass-through of remote devices.
Note that we have also included a configuration using bare-metal Device Lending.

Figure 33(c) shows the distribution ping–pong latency measurements using the CUDA program
we described in Section 7.1.4, where two GPUs writes a counter back and forth to each other’s mem-
ory. The maximum measurement for MDEV appears to be an outlier, so we have annotated the
99.99th percentiles instead. The distributions for MDEV and bare-metal are similar, indicating that
our MDEV implementation does not add any additional overhead beyond hardware virtualization.
Unlike the bandwidthTest program, which uses device interrupts for synchronizing timing mea-
surements, the ping–pong measurements use elapsed clock cycle for recording time (as described
in Section 7.1.4). With this method, it appears that the strange effect where VFIO performs bet-
ter than bare-metal is not present, which strengthens our suspicion that it is related to delivering
interrupts to the VM.

7.4 Distributed NVMe Driver Evaluation
Our Device Lending and MDEV extension make it possible for a local device driver to operate
a remote device in a manner that is fully transparent to both device and driver. This is possi-
ble as we prepare memory mappings in advance and inject addresses that map over the respec-
tive NTBs. However, as the physical memory allocated by a device driver or a VM instance is
outside of our control, we are forced to map all of local memory for a remote device. As we
have seen in Sections 7.1.4 and 7.1.5, increasing the distance PCIe transactions has to travel has

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

190

SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:51

Fig. 33. Peer-to-peer evaluation: Using the same bandwidthTest and ping–pong CUDA programs as previ-
ous evaluations, we measure both throughput and latency of DMA writes between two GPUs. Our MDEV
implementation does not add any overhead compared to bare-metal.

an impact on performance. Particularly non-posted transactions, such as reads, are affected by
longer distance between requester and completer. In other words, increasing the distance between
the borrower and the device will negatively impact performance, as the distance between the
device and the memory it accesses also increases.

However, a programmer can fully exploit shared memory capabilities in PCIe clusters by using
the SISCI API [22]. Local memory may be exported for other nodes, and remote memory can be
mapped for the local application. It is even possible for a node to allocate memory buffers on local
devices, such as GPUDirect-capable GPUs, and other nodes to map this memory through their
own NTBs.

Our SmartIO device driver extension to SISCI aims to combine the best of both worlds. Device
drivers can remain agnostic about the local address space in the node where the device physically
resides as our SmartIO system resolves local I/O addresses. Simultaneously, drivers may fully

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

191

2:52 J. Markussen et al.

exploiting shared memory capabilities of the PCIe network by building on top of the existing
SISCI functionality. The trade-off is that existing device drivers must be modified or rewritten
to use this new API extension. In an attempt to make the case for why this trade-off might be
worthwhile, we have evaluated the latency benefit our proof-of-concept distributed NVMe driver.

7.4.1 Optimizing Data Access Patterns. We outlined our userspace NVMe driver implementa-
tion using the SmartIO SISCI API extension in Section 6. Not only are we able to assign individual
queues to different nodes, but we are also able use GPUDirect-capable GPUs to host queues in GPU
memory as explained in Section 6.4. Since it is possible to combine the SmartIO API extension with
borrowed GPUs (using Device Lending), we can design truly elastic workloads. Any type of (lin-
ear) memory, such as RAM or device memory, may be exported and made available for a cluster
application, whether it runs on a CPU, a GPU, or another PCIe computing accelerator—or even a
combination of CPUs, GPUs, and accelerators.

To avoid reading over long distances in the cluster, we can use this flexibility to facilitate moving
data around in the cluster by using a “push” strategy instead. The NVMe standard does not have
any restrictions regarding memory locations for paired queues; from the NVMe device’s point of
view, any address it can use DMA to is potentially a valid queue memory location. This means that
we can allocate an SQ in memory close to the device, while allocating the associated CQ in memory
close to the CPU that polls it. As explained in Section 6.1, our API extension supports specifying
access pattern hints when allocating memory segments. By specifying that the CQ segment will
be mostly read from by the CPU and only written to by the device, the CQ memory segment will
be allocated in the borrower’s local memory. Similarly, by specifying read access by the device
(and only write access by the CPU) for the SQ memory segment, our SmartIO driver API will
prefer memory close to the NVMe. As PCIe provides us with an ordering guarantee, the CPU or
GPU may simply write the command to remote memory and immediately after ring the doorbell
register.12 This means that when the NVMe device is notified by the doorbell write, we can be
certain that the command has arrived in the queue, and the NVMe may read it using DMA.

To evaluate the performance benefit of this strategy, we have designed the following experi-
ment: a local CPU runs our proof-of-concept userspace NVMe driver (implemented as a CUDA
application). It uses a local Nvidia Quadro P620 GPU and a remote Intel Optane P4800X DC NVMe
device. The local GPU is managed by the native CUDA driver, while the remote NVMe device is
operated by our application (proof-of-concept driver). The application reads data from the NVMe
directly into GPU memory on the local GPU. Note that “local” and “remote” in this experiment
refer to the CPU the application runs on. The NVMe CQ is allocated in the borrower’s local RAM,
while we have used three different memory locations for placing the SQ as shown in Figure 34(a):

(1) SQ hosted in Local RAM: We allocated queue memory for the first SQ in local RAM, and
mapped this for the NVMe device. When the application rings the doorbell register, the
NVMe has to read across 4 hops along the path, including internal PEX8796 switch chip in
the expansion chassis, the PM8536 PFX switch chip used internally in the MSX824 cluster
switch, as well as the PEX8733 chips used in the PXH830 NTB adapter cards.

(2) SQ hosted in Remote RAM: The memory for the second SQ was allocated in remote mem-
ory, i.e., RAM on the lender. As we use the same expansion chassis as previous evaluations
with HIB68-16 transparent adapters, the NVMe has to read across 3 hops when the applica-
tion rings the doorbell, including the internal switch chip in the expansion chassis and the
PEX8733 chips used in the HIB68-16 transparent adapter cards.

12NVMe I/O commands are 64 bytes, so writing a command will automatically flush the Write-Combining Buffer on x86.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

192

SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:53

Fig. 34. SQ placement: We evaluate the impact of moving the SQ closer to the NVMe device. By reducing
the distance the NVMe device has to read to fetch I/O commands, we are able to reduce the command
completion latency.

(3) SQ hosted in Remote GPU memory: Using Device Lending, we also borrowed an Nvidia
Quadro P4000 GPU from the same lender and allocated memory for the third SQ as a mem-
ory buffer on this GPU. While the borrowed GPU is operated by the local CUDA driver,
both Device Lending and the SmartIO API extension uses the same underlying SmartIO sys-
tem, so mapping this memory for the NVMe device uses the same address resolving mecha-
nism described in Section 4.4. As the GPU is installed next to the NVMe device in the same

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

193

2:54 J. Markussen et al.

expansion chassis, the NVMe only has to read through the internal switch chip in the expan-
sion chassis. Note that GPU memory has different memory characteristics than system RAM.

Both hosts are running Ubuntu 18.04.4 with the 4.15 version of the Linux kernel, and the local host
(borrower) is running CUDA 10.2 with the included GPU driver. The IOMMU is enabled on the
local host, while it is disabled on the remote host (lender) to use shortest-path routing. While not
strictly necessary for this experiment, we also enabled persistent mode on both GPUs.

For each SQ location, one by one, our application executes 327,680 NVMe read commands of
4 kB chunks of data from storage each, starting at a pseudo-random offset for each chunk. The
command completion latency for each single command was recorded, and we used a queue depth
of just one entry to avoid aggregated measurements. We define the command completion latency
as the time elapsed between the driver writing a command to the SQ, followed by a write to the
doorbell register, until the corresponding completion shows up in CQ memory (local memory). As
we start the timer before writing the command, part of the latency measurement is the time it takes
to write to (remote) memory. Note that our NVMe driver implementation uses polling instead of
relying on interrupts, and that the data is written by the NVMe directly into memory onboard the
local GPU using peer-to-peer DMA.

Figure 34(b) depicts the distributions of latency measurements for all three SQ placements. The
same datasets are shown as both a histogram (left) and as a boxplot (right). Note that we have ad-
justed the Y-axis, so outliers are not shown. Our results demonstrate that moving the SQ memory
closer to the NVMe device significantly reduces latency, as the distance that the NVMe device has
to read across shrinks. We argue that this indicates that while there is a development cost of im-
plementing device drivers using the SmartIO API extension, the reward is improved performance
over Device Lending and native device drivers. There is also the added benefit of being able to fully
utilize PCIe clustering capabilities to implement functionality such as streaming data directly into
GPU memory.

Finally, it should be noted that the NVMe standard specifies optional support for one or more
controller memory buffers (CMBs) [55]. CMBs are BARs with generic device memory that an
NVMe driver may read from and write to. The intention of CMBs is that becomes possible for
a driver to host queue memory on the NVMe device itself, elminiating the need for the NVMe
controller to use DMA to fetch commands entirely. While the Intel Optane P4800X DC NVMe
device used in our experiments does not support CMB, implementing support for it to move queues
as close as possible to the NVMe would be trivial. Our SmartIO system automatically export device
BARs as mappable memory segments, so supporting CMB would be a matter of mapping the BAR
and setting up the necessary descriptors in CMB memory.

7.4.2 Sharing a Single-function NVMe Device. Due to the complexity of implementing SR-IOV
in hardware, NVMe devices with SR-IOV support are not widely available. Most NVMe devices on
the market are single-function devices. However, the inherent parallel design of the NVMe stan-
dard provides us with great flexibility. Each queue has its own dedicated doorbell register, which
avoids contention. Pairs of SQs and CQs can operate completely in parallel, making it possible
to distribute queue pairs to different nodes in the cluster using the SmartIO API extension, as ex-
plained in Section 6.2. As such, we can treat a non-SR-IOV device as a shared resource by using
our NVMe driver implementation.

To demonstrate this, we designed an experiment in a larger cluster of nodes. The MSX824 clus-
ter switch has 24 × 4 Gen3 ports that can be configured to ×8 and ×16 links by grouping two
or four ports, respectively. This makes it possible to create a cluster of 60 nodes by connecting
seven MSX824 switches in cascade (one top switch with six subswitches). Each individual node is
connected to one of the subswitches through a x8 Gen3 link. One node was dedicated as lender,

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

194

SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:55

Fig. 35. By distributing an SQ and a CQ to 30 cluster nodes, we demonstrate that it is possible to concurrently
share a single-function NVMe device in a larger cluster.

and was configured with an expansion chassis with the NTB adapter and an Intel Optane P4800X
DC NVMe device as illustrated in Figure 35. Using our 60 node cluster setup, we performed two
experiments:

(1) Simulatenous sharing: The P4800X NVMe used in our experiment supports up to 32 queue
pairs (one queue pair is reserved for admin queues). We configured the lender to be the NVMe
manager, setting up the admin queues and resetting the device, and we configured 30 other
nodes to act as NVMe clients as described in Section 6.2. Each of the 30 clients configured one
SQ and one CQ, allowing them to operate the NVMe independently of the other nodes, as
illustrated in Figure 35. All 30 nodes each read chunks of 4 kB data in a loop, demonstrating
that our queue-distribution mechanism works.

(2) Multicast: We configured all 59 nodes (all nodes excluding the lender) to subscribe to the
same multicast group, allocating a buffer in their local memory and setting up multicast
mappings. We then used one of the nodes to initiate an NVMe identify command using
the address of the multicast segment. This replicated 4 kB of controller information to the
memory of all 59 nodes in a single operation.

While number of switches in the path increases command completion latency (as is expected),
hosting queues in the lender’s RAM rather than in memory on the borrowers would provide a
latency benefit similar to what we observed in Section 7.4.1. However, since the number of simul-
taneous borrowers is limited by the number of queues supported by the P4000X NVMe used in our
experiments, our latency measurements are affected by the round-robin scheduling mechanism
implemented in the NVMe controller hardware. Some borrowers suffer from starvation: they are
unlucky with regard to timing, ending up having to wait significantly longer than other borrowers

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

195

2:56 J. Markussen et al.

for their commands to be executed by the NVMe. Furthermore, the NVMe device itself is only PCIe
Gen3× 4, and the simultaneous read requests from several nodes far exceed the bandwidth capacity
of the device. Thus, a performance analysis is not particularly interesting with respect to evaluating
our queue-sharing concept, as we end up evaluating how well the NVMe device performs instead.
Nonetheless, while the small amount of data and low throughput in our tests may not be particu-
larly useful for an application, we have shown that it is possible for a larger number of nodes in a
cluster to access the same storage device simultaneously. In practice, we have successfully demon-
strated a form of “MR-IOV in software.”13 Newer NVMes with higher bandwidth and lower latency,
as well as support for a higher number of queues, will benefit from this kind of sharing capability.

7.4.3 NVMe-oF RDMA Comparison. NVMe-oF [56, 94] is a widely adopted standard for access-
ing remote NVMe devices over a network. NVMe-oF implementations are composed of two parts:
a device-side “target” driver and a client-side “initiator” driver. The target driver is responsible
for managing the NVMe device, setting up queue pairs and facilitating asynchronous access by
allocating dedicated queue pairs for each individual initiator. I/O commands are forwarded by the
initiator to the target driver, which enqueues them for the NVMe device. The NVMe-oF protocol
is agnostic regarding the transport layer, allowing commands and completions to be transmitted
over any kind of message-passing communication channel, and leaves the transportation of data
entirely up to the network fabric.

For network fabrics that support InfiniBand RDMA, NVMe-oF can be supported with very high
performance [29]. The defining feature of InfiniBand RDMA is that InfiniBand channel adapters
(HCAs) may access application memory directly, allowing data to be be transferred directly from
the application on one host to the application on another host without going through a network
stack. By avoiding kernel transmission buffers, InfiniBand RDMA applications have very high
throughput and low latency. Additionally, as the CPU is not involved in transmission, RDMA is
completely asynchronous, and avoids blocked send and receive calls.

In regard to NVMe-oF, the target driver can provide direct access to both data and queue memory
via system memory on the target host.14 Application memory used for RDMA is registered with
the InfiniBand driver in advance as so-called memory regions (MRs). This allows the InfiniBand
driver to pin the physical memory pages in memory, avoiding them being swapped out. Addition-
ally, as it allows other hosts to resolve the local physical addresses of MRs, an NVMe-oF initiator
driver can prepare I/O commands using target-local addresses. In other words, the initiator is able
to use the target’s MR as intermediate memory for NVMe data.

Similar to the SQ and CQ queue pairing mechanism for NVMe devices described in Section 6.2,
InfiniBand also uses queue pairs of work queues (WQs) and completion queues (CQs). HCAs
support hosting WQs on device memory (similar to NVMe CMBs described in Section 7.4.1), and
hosting CQs in system memory. This allows a userspace application to post work requests, such as
send and receive operations, and poll for completions directly, bypassing the kernel entirely in the
data path. An additional benefit is that this design maps very well onto the NVMe-oF architecture;
the NVMe-oF target driver can “bind” the receive WQ to the NVMe SQ. This means that NVMe
commands are already enqueued (in memory) when the target driver is notified about received
commands, and the target driver may simply ring the SQ’s doorbell register. Figure 36 illustrates
the steps involved in reading 4 kB of data from storage using RDMA:

13Multi-Root I/O Virtualization, see Section 9.1.
14In RDMA terminology, this is known as “zero-copy,” because the CPU is not involved in copying data. However, the
authors argue that in the context of NVMe-oF, quite literally copying data from the NVMe to system memory on the target
host, before sending it over the network, is actually not “zero-copy” at all.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

196

SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:57

Fig. 36. Flow chart of an I/O read operation for NVMe-oF using InfiniBand RDMA. While the target-side CPU
is required to initiate NVMe operations and start the RDMA write transfer, neither commands, completions,
nor data is moved by the CPU. As InfiniBand queues and NVMe queues are bound to each other, commands
and completions are written directly to the queues by the HCAs using DMA.

(1) The initiator prepares an I/O read command for the NVMe device with the desired block
offset. Memory used for RDMA is already known to both NVMe-oF initiator, as it was regis-
tered by the target driver as a RDMA MR in advance. This allows the initiator to simply use
target-side physical addresses of this MR in the read command. It then posts the command
to the send WQ, sending the command across the network, directly to the target drivers
memory.

(2) The target driver receives a receive completion indicating that it has received an NVMe
command. As the HCA has already written the command to the appropriate location in
target’s memory, the target driver can immediately ring the doorbell register of the bound
SQ, initiating the NVMe I/O operation. The initiator driver has already resolved target-side
physical addresses in advance, so there is no processing required. After ringing the doorbell,
it checks what type of NVMe command this is. Seeing that it is an read command, it starts
preparing a WQ request for RDMA write from the local MR to a known MR on the initiator
host.

(3) The target driver receives the NVMe command completion, indicating that the NVMe device
has written data to memory. The target posts the prepared RDMA write request to the appro-
priate WQ. By using DMA to read from the MR, the HCA begins sending the data over the
InfiniBand fabric. The initiator-side HCA will start writing received data into the initiators
memory, also using DMA.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

197

2:58 J. Markussen et al.

(4) Since requests in the same WQ are always ordered, the target driver immediately posts a
send request for the NVMe completion, knowing that when the initiator driver receives the
completion the data must have arrived before it. This optimization means that the target
driver avoids needing to wait for the RDMA write completion, which is particularly useful
for larger data transfers.

(5) The initiator driver receives a receive completion for the NVMe command completion, and
knows that the data must have arrived in its local memory before the completion due to WQ
ordering. The data read from the remote NVMe device is now available for use.

We have designed an experiment to compare the Storage Performance Development Kit
(SPDK) [94] to our SmartIO NVMe driver implementation. SPDK is a storage application frame-
work that implements support for a wide variety of storage devices, including NVMe devices.
Similarly to our SmartIO NVMe driver, it is implemented in userspace, bypassing the kernel and
primarily relying on polling. Furthermore, SPDK has a built-in NVMe-oF stack with support for
InfiniBand RDMA. As such, SPDK is a suitable comparison for our SmartIO NVMe driver.

However, as SPDK and our proof-of-concept NVMe driver are two different NVMe driver im-
plementations, comparing them to each other would be comparing apples to oranges. As such,
we have instead conducted two separate tests, one where we compare the standard SPDK NVMe
driver to SPDK NVMe-oF, and the other where we compare our own NVMe driver using a local
and a remote NVMe device. Figure 37 depicts the four scenarios were used in our experiment:
• Local SPDK, shown in Figure 37(a): The standard SPDK NVMe driver operating a local

Intel Optane P4800X DC. The NVMe is installed in an expansion chassis, and connected
upstream using the HIB68-16 transparent adapters. This scenario serves as our local baseline
comparison for SPDK.
• SPDK NVMe-oF, shown in Figure 37(b): The SPDK NVMe-oF driver stack (initiator and

target) operating a remote P4800X using RDMA for transport. The two hosts are connected
back-to-back with two Mellanox InfiniBand ConnectX-5 EDR channel adapters. The target
driver has the same CPU core affinity as its InfiniBand HCA and the NVMe device. The
InfiniBand maximum transfer unit was configured to 64 kB, leaving more than enough
space within a packet for the data payload. This scenario is compared to the Local SPDK
scenario. Note that while we are measuring latency, the EDR speed of 100 Gb/s is equivalent
to 12.5 GB/s regardless. This is similar to an x16 Gen3 PCIe link.
• Local SmartIO, shown in Figure 37(a): Our proof-of-concept NVMe driver implemented

with the SmartIO API extension (as explained in Section 6.2), operating a local P4800X. The
topology is identical as the Local SPDK scenario, but we run our NVMe driver implementa-
tion instead of SPDK. As before, the HIB68-16 transparent adapters connecting the expansion
chassis use the same PEX8733 switch chips used in the PXH830 NTB adapters. This scenario
therefore serves as the local baseline comparison for SmartIO.
• Remote SmartIO, shown in Figure 37(c): Our driver operating a remote P4800X NVMe. The

two systems are connected back-to-back using PXH830 NTB adapters. Note that because we
use the expansion chassis in our configuration, there is the same number of switch chips in
the path as the Local SmartIO scenario.

On both hosts, we installed Ubuntu 18.04.2 with the 4.15 version of the Linux kernel, and we used
version 19.1.1 of SPDK. We also disabled the IOMMU on both hosts in all four of the evaluated
scenarios.

To measure read latency, we used FIO version 3.13 [9] to perform 327,680 reads, each read page-
sized chunk (4 kB) with an offset generated by a pseudo-random number generator. Figure 38

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

198

SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:59

Fig. 37. The different scenarios in our NVMe-oF comparison experiment. Note that the local scenario is the
same for both SPDK and SmartIO, the difference is only which NVMe driver software is running.

shows the latency distributions for SPDK (left) and our NVMe driver (right). We observe that
compared to local access, where the NVMe device is able to access host memory directly, NVMe-
oF introduces a significant performance overhead, even when using RDMA. There are two primary
reasons for this performance difference. First, the CPU on the target host is involved in the critical
path, as software is needed to ring the NVMe doorbell registers as well as starting RDMA writes
back to the initiator. Second, to use RDMA, data must first be written to target’s memory by the
NVMe, in order for the InfiniBand HCA to access it and transfer it over the network fabric. In
comparison, our SmartIO NVMe driver is able to initiate DMA regardless of whether the NVMe
device is local or remote. Not only does this avoid the lender’s CPU in the critical path entirely,
but we also do not need to bounce data via memory on the lender in the same way RDMA does.
In the SmartIO scenarios, because the device and the driver are the same number of switch chips

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

199

2:60 J. Markussen et al.

Fig. 38. Distribution of I/O command completion latencies for Local SPDK and SPDK NVMe-oF (left) and
using our proof-of-concept SmartIO NVMe driver (right). By avoiding the device-side CPU in the critical
path, as well as being able to use DMA directly, our NVMe driver achieves the same performance for both
local and remote. Meanwhile, SPDK NVMe-oF introduces a visible latency overhead compared to local SPDK.

apart, there is no difference in performance for local and remote access. While SPDK and our own
proof-of-concept driver are two widely different NVMe driver implementations, it is interesting
to note that our driver appears to be slightly faster than local SPDK (around 600 ns on average),
even for remote access.

Finally, it should be mentioned that Mellanox has implemented support for NVMe-oF target
offloading in their InfiniBand adapters. Target offloading is a mechanism for avoiding target-side
CPU in the critical path, by moving some of the target driver logic into hardware on the target-side
HCA instead. For example, rather than relying on the target driver running on the CPU, the HCA
itself can ring the NVMe doorbell by using peer-to-peer DMA when it receives an NVMe-oF com-
mand. However, we argue that a performance overhead compared to local access is unavoidable,
since the RDMA mechanism inevitably requires the NVMe device to write data to memory before
it can be accessed by the HCA and sent over the network.

8 DISCUSSION
Our SmartIO solution offers several benefits over traditional approaches to distributed I/O. In the
previous section, we presented experiments demonstrating the usefulness and the performance
benefits of SmartIO. Particularly, we have performed experiments demonstrating that it is possi-
ble to facilitate remote access to devices with native PCIe performance. In this section, we provide
a short discussion on some topics and considerations that have not yet been covered by our eval-
uation.

8.1 Security
The challenge with security for distributed I/O and so-called “one-sided communication,” where
only the initiator-side (sender) software is involved in initiating I/O but not the target (receiver),
is an understudied research topic [85]. In the case of accessing remote devices using our Smar-
tIO system, particularly DMA is a security concern. By lending away a local device, the lender
effectively yields control over it to software running on a remote system. A flawed device driver
on the borrower may cause a device to read from or write to rogue memory addresses on the
lender. For Device Lending, it is possible to protect against unintentional memory accesses by us-
ing the lender-side IOMMU. Our SmartIO system is able to isolate devices on the lender, protecting

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

200

SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:61

against accidental memory reads and writes. However, the current implementation is not able to
sufficiently protect against a malicious device driver, as any software running in kernel space on
the borrower system in practice has full access to the local NTB adapter. Regardless, we argue that
the in the case of a malicious kernel space driver, the entire local system is compromised as well.
In other words, we consider this scenario to be beyond the scope of our SmartIO implementation.

In case of the SmartIO extension to the SISCI API, where we expose device driver capabilities
to userspace software, a malicious program on the borrower is also a valid concern. An attacker
might intentionally use a DMA-capable device to overwrite memory on the lender, causing it to
crash, or use the DMA engine to snoop data from memory. In cases where the userspace software
cannot be trusted, we can also use the lender-side IOMMU to protect against undesired memory
accesses. By placing devices in separate IOMMU domains, SmartIO creates a virtual I/O address
space per device.15 This guarantees that the device is only able to access specific DMA windows
mapped for it, thus protecting system memory and other devices on the lender. Unlike a device
driver, a userspace application cannot exploit kernel space privileges to manipulate the local NTB,
and is only able to set up mappings to remote memory by using the SISCI API. We argue that
this provides sufficient protection against both defect and malicious userspace programs, as SISCI
prevents setting up mappings to arbitrary memory by only allowing registered memory segments.

Finally, for VM pass-through with KVM, our MDEV implementation requires using the lender’s
IOMMU, as explained in Section 5.2. By mapping a device to the guest-physical memory layout,
we limit the passed through device to only accessing DMA windows to the VM it is assigned to. In
other words, it is not possible for guest software to misuse our SmartIO system to break out of the
virtualized environment, since SmartIO provides the same level of memory isolation as standard
pass-through.

It should be noted that relying on the lender-side IOMMU in combination with long PCIe paths
may severely impair DMA performance, as we saw in our IOMMU evaluation in Section 7.3.1. As
a general advice, we recommend trying to minimize the distance between a device its lender’s
IOMMU. Devices that support PCIe ATS [60] are able to cache resolved I/O virtual addresses, thus
avoiding routing transactions via the CPU. However, it has been demonstrated that some devices,
such as FPGAs and programmable network adapters, can be exploited by an attacker to abuse ATS
to break out of IOMMU isolation [47].

8.2 Supported OSes
As explained in Section 4.1, PCIe devices are represented in the Linux kernel using generic device
handles. This handle provides device drivers with a unified interface for accessing a device’s con-
figuration space as well as mapping DMA buffers. Through hot-adding a virtual “shadow” device
handle into the Linux device tree, the borrower component of our Device Lending mechanism is
able to to intercept configuration cycles and calls to the Linux DMA API. As such, we are able
to inject I/O addresses that map over the device-side NTB in a manner that is transparent to the
device driver.

Other OSes may represent devices differently in their system. Microsoft Windows, for example,
does not provide such a unified device handle interface, and uses separate driver frameworks for
different classes of devices instead. The lack of a generic PCIe device interface that we can easily
manipulate makes porting the Device Lending mechanism to Windows non-trivial, and a large
engineering effort is required to support similar capabilities.

15Some IOMMUs support isolation per application by using Protected Address Space ID, but as this also requires support
in devices, our implementation does not currently support this.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

201

2:62 J. Markussen et al.

However, supporting the lender component of our SmartIO system is more straight forward.
The lender’s responsibility is essentially to facilitate remote access by setting up mappings over
the NTB when it is requested by a borrower. The low-level NTB driver and SISCI API are sup-
ported on a wide variety of OSes, including Windows, meaning that a Windows machine lending
out its devices is possible. Additionally, as the SISCI shared-memory API is also supported on
Windows, so is our SmartIO API extension. This means that while Device Lending may not be
possible on Windows, implementing userspace drivers is. We have proved this by running our
proof-of-concept NVMe driver on a Windows 10 installation.

Finally, it should be noted that by using our MDEV extension to KVM, devices may be passed
through to a VM running any guest OS. By passing through an Intel Optane 900P NVMe and an
Nvidia GTX 1080 Ti GPU to a VM instance using Qemu, booting the Windows 10 image from
the NVMe device itself and using the GPU for video output, we have confirmed that it works.
Investigating the possibility for extending our SmartIO solution by implementing support for other
hypervisors, such as Xen or Hyper-V, is, however, a candidate for future work.

8.3 Supported CPU Architectures
While we primarily used Intel Xeon CPUs in our performance evaluation presented in Section 7,
our implementation is not bound to any specific CPU architecture. For example, we have con-
firmed that our proof-of-concept NVMe driver works on an Nvidia Jetson TX2, running on its
ARM Cortex-A57 processor, and accessing a remote NVMe device. Even so, our SmartIO imple-
mentation does require some considerations in regard to CPU architecture:
• Lenders must be able to support PCIe peer-to-peer to route transactions between the NTB

and the device. In our experience, most CPU architectures are capable of this, but some
consumer-level CPUs are not. However, this CPU limitation can be alleviated by using peer-
to-peer capable switches in the PCIe tree, for example by using an expansion chassis.
• Our implementation of Device Lending only includes support for Intel and AMD IOMMUs.

While the borrower’s IOMMU is not strictly required for Device Lending, without it, a
lender needs to map the entire memory of the borrower for the device. This limits the
number of devices that can be lent out to different borrowers at the same time, as explained
in Section 4.3. However, userspace drivers using our SmartIO API extension do not need
the IOMMU for anything else than protecting memory. It should be mentioned that we are
currently working on implementing support for IOMMU on ARM (known as the System
Memory Management Unit).
• Some systems do not support assigning 64-bit I/O addresses to BARs, limiting how large the

NTB BAR size can be as the combined device memory requirements must fit below 4 GB.
This may limit how many devices the system is able to borrow, or how many devices the
system can lend out, depending on whether the system is used as a lender or a borrower. In
our experience, most modern systems support 64-bit I/O address space by enabling it in the
system’s BIOS.

8.4 Supported Devices
The main benefit of building our system on top of standard PCIe, is that our sharing idea will
work for any standard PCIe device. As PCIe is the industry standard for connecting I/O devices to
a computer system, our SmartIO system can support a wide range of devices with different form
factors and connectors. Even though we primarily presented performance measurements using an
Ethernet adapter, NVMe devices and Nvidia GPUs in our evaluation (Section 7), we have during the
development of SmartIO experimented with FPGAs, AMD GPUs, InfiniBand HCAs, sound cards,

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

202

SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:63

and PCIe-attached cameras. We are even able to lend out individual functions of multi-function
and SR-IOV devices to different borrowers, as shown in Section 7.1.6.

Legacy device interrupts is currently only supported by our MDEV extension to KVM. By setting
up an interrupt handler on the lender for legacy interrupts, similar to how we forward interrupts
in our MDEV implementation, it would be possible to use software for forwarding legacy inter-
rupts while mapping MSI/MSI-X interrupts directly over the NTB as our current Device Lending
implementation does. The same solution could be used to map MSI/MSI-X interrupts directly over
the NTB for our MDEV implementation. However, we do not consider this a priority as the PCIe
standard require devices to implement either MSI or MSI-X (or both) [61].

8.5 Alternative NTB Implementations
Our low-level NTB driver is not limited to the specific Dolphin NTB adapter cards and cluster
switches used in our experiments, but supports multiple families of NTB-capable switch chips from
both Broadcom and Microsemi. Any hardware implementation integrating one of these switch
chips can be trivially supported by our driver, requiring only minor software adjustments. Ad-
ditionally, the SmartIO concepts themselves are general and could be implemented for any NTB
solution that supports similar capabilities. However, special attention may be required when using
an integrated NTB as an embedded CPU rather than as a peripheral device. For example, it is pos-
sible that the lender IOMMU must always be enabled, to properly route DMA transactions over
the NTB. We have not tested this, and we will investigate how embedded NTBs can be supported
in future work.

Although the SmartIO implementation is incorporated into Dolphin’s software stack due to its
high-level shared memory support, it should be mentioned that the Linux kernel also has an NTB
driver framework [35]. A handful of NTB implementations are already supported in the kernel
through this framework, such as Microsemi switches, Intel Xeon’s NTB, and the AMD Zeppelin
NTB. While this framework has only rudimentary support for low-level NTB functionality, i.e.,
setting up memory mappings and configuring interrupts, we hope that NTBs’ potential for PCIe-
based interconnection and shared-memory clustering is something that eventually may be picked
up by the community.

8.6 Scalability
The Dolphin PXH830 NTB adapters and MXS824 cluster switches used in our experiments support
external copper cables of lengths from 0.5 m up to 5 m. It is also possible to use fiber-optic cables
that can be up to 100 m long [21]. The MXS824 cluster switch has 24 × 4 Gen3 ports, which can
be configured to different combinations of ×4, ×8, and ×16 links. By connecting 7 switches (1 top
switch and 6 subswitches) in cascade, and connecting each node to a subswitch through a x8 link,
we demonstrated in Section 7.4.2 that our SmartIO solution works in a 60 node cluster sharing
an NVMe device. However, while up to 60 nodes can be supported in the cluster, there are some
limitations with regard to the number of devices that can be supported.

One such limitation is the number of available look-up table entries in the NTB implementation.
As we briefly discussed in Section 3.3, the number of mappings over the NTB is limited by the num-
ber of entries in the NTB’s internal look-up table. Reading from remote memory is a non-posted
request that require a completion, as we described in Sections 7.1.3 and 7.3.1. While the request is
routed based on its address, the completion (with data) is routed back again based on the requester.
This means that to support read operations to remote memory, the NTB must support mapping re-
questers as well as addresses, to make sure that completions are routed back to requesters through
the NTB. In other words, NTBs have two kinds of look-up tables, one used for translating a local
I/O address into an arbitrary remote address, and another used for returning completions to the

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

203

2:64 J. Markussen et al.

appropriate requester (a CPU or a device). The number of devices that can be borrowed or lent out
is limited by the size of this requester look-up table.

The PXH830 NTB adapters used in our evaluation support 32 such requester mappings per
adapter card. With two nodes connected back to back with PXH830 adapters, each of the two
nodes may borrow up to 30 devices from the other node and (simultaneously) lend out up to 30
local devices. In this context, we are referring to devices, rather than individual device functions,
and any of these 30 devices may have several device functions (such as an SR-IOV-capable device).
Two mappings are reserved for each of the CPUs, which must also be able to reach across the NTB
due to our implementation of the underlying shared-memory communication. While any single
node may only lend out 30 local devices and/or borrow up to 30 remote devices, it is possible to add
switches to the topology and connect more nodes, thus increasing the total number of available
devices in the cluster.

However, the cluster switch itself also has a finite number of available requester mappings per
NTB-capable switch port. Setting up an outgoing requester mapping on one switch port consumes
ingoing requester mappings on all the other ports. Therefore, adding switches and nodes to the
topology will consume requester mappings cluster-wide, as CPUs will require two requester map-
pings each to reach all the other nodes in the cluster. Although the number of these mappings is
very high, it does not scale indefinitely. The exact threshold for when adding more nodes starts
decreasing the possible number of devices that can be shared varies, and depends on the config-
uration of the cluster. However, this limitation can be avoided by designing the cluster topology
with device sharing in mind, rather than maximizing the number of nodes.

Another limitation on the number of devices a borrower is able to borrow is the NTB BAR
size, or, the size of the “NTB window.” As the borrower must map device BARs through its local
NTB, borrowing devices with large BARs would use up more of the NTB window than devices with
smaller BARs. For example, it would most likely be possible to borrow more NVMes than GPUs, as
NVMes usually have smaller device memory requirements than GPUs. Moreover, the NTB window
size can also affect how many devices a lender may lend out at any given time. Devices that require
large DMA windows would use more of the NTB window than devices that do not require large
DMA transfers. Because of this, it is desirable to set the NTB window size as large as possible.

However, some devices may have addressing limitations making them incapable of reaching
high memory addresses. This can become an issue in the case where a lender has many devices
or where the workflow requires very large DMA windows, and we need to configure a very large
NTB BAR size. As we explained in Section 4.3, increasing device memory requirements may
force the system to place the NTB at a high address. The sum of all device memory requirements,
i.e., the combined size of the combined downstream BARs (including the NTB), may be so large
that the system is forced to assign device memory at high addresses. In the case of the NTBs in our
evaluation, devices with addressing limitations would be incapable of reaching DMA windows.
The lender-side IOMMU can be used to remap DMA windows from high to low addresses for
devices with addressing limitations, but this may come with a performance cost as we observed
in Section 7.3.1. Without the lender’s IOMMU, the number of devices within a lender is therefore
limited by the devices’ memory requirements and addressing capabilities. However, in cases
where device memory limitations is a concern, it is possible to simply add more dedicated lender
nodes to the topology. This way, we can spread out devices over several lenders, ensuring that that
any one lender’s combined device memory requirements does not exceed the system’s low/high
memory assignment threshold.

Thus, the limitation on the number of devices and nodes depends on several factors, such as
cluster topology, addressing capabilities of the devices, memory requirements of the devices, and
the NTBs’ look-up table sizes. As such, there is no straight forward answer to the question of

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

204

SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:65

how many devices and nodes can be supported (beyond the topologies already described in this
article). However, it should be noted that these limitations stem from limitations in the hardware
implementations of different devices and NTBs, and not from our SmartIO sharing methods.

8.7 Disaggregated and Composable Infrastructure
Using SmartIO, it is possible to design custom configurations of remote and local devices on the
fly, while all systems are running. Multiple hosts in the PCIe-networked cluster may contribute
their devices, effectively turning the entire cluster into a shared, disaggregated PCIe infrastructure.
Individual nodes can dynamically allocate device resources according to immediate application
requirements, and release them when they are no longer required. This can potentially greatly
increase the utilization of devices in the cluster, as devices are no longer tightly coupled with the
hosts they are installed in.

Moreover, as it is possible to use all three sharing aspects of our SmartIO framework, i.e., De-
vice Lending, MDEV, and the new SmartIO API extension, in different combinations, we are able
to support a wide variety of applications at different abstraction levels. Our system effectively
eliminates the distinction between local and remote, as well as device and system memory, provid-
ing great flexibility with regard to heterogeneous cluster computing. This makes it easier for an
application developer to scale out in a cluster and design advanced cluster workflows, e.g.:
• Using Device Lending, remote devices appear to a system as if they are locally installed,

facilitating remote access in a manner that is completely transparent to device driver, appli-
cation, and even the OS. Large-scale CUDA programming tasks can make use of multiple
GPUs that appear to be local, instead of writing a distributed applications or relying on
middleware such as rCUDA [23, 68]. In Section 7.2, we for example demonstrated that it is
possible to scale-out a GPU-intensive convolutional neural network training task. Pogorelov
et al. [66] have previously shown how a multimedia workload can be offloaded to remote
GPUs using Device Lending to meet real-time requirements.
• Access latency in NVMe-oF can be avoided by borrowing the remote NVMe device instead,

and accessing it directly, either by using Device Lending as demonstrated in Section 7.1.1 or
extending our proof-of-concept NVMe driver as demonstrated in Section 7.4.3. Distributed
database applications may reduce query times by using a combination of local and remote
NVMe devices for caching and data consistency. By distributing I/O queues for NVMe de-
vices to multiple nodes as demonstrated in Section 7.4.2, it becomes possible for each node
to control data locality and thereby reduce the latency for data consistency across nodes.
• Using Device Lending, high-speed network interfaces, such as InfiniBand HCAs and 100 Gi-

gabit Ethernet adapters, can be assigned to a node while it needs high throughput, and re-
leased when no longer needed. Furthermore, many network interfaces are also capable of
SR-IOV, allowing a single network card to be distributed to multiple cluster nodes simulta-
neously, without requiring any software adaptions as demonstrated in Section 7.1.6.
• In addition to enabling access to individual remote devices, SmartIO also supports creat-

ing groups of arbitrary devices and enabling direct peer-to-peer access between them. This
makes it possible to create workflows that are optimized for both resource utilization and
data locality. By combining Device Lending and the SmartIO API extension, we demon-
strated in Section 7.4.1 how it is possible to stream data directly into GPUDirect-capable
GPUs across the PCIe network. In Section 6.4, we also explained how a long-running GPU
kernel may load and store data by itself, eliminating CPUs and system RAM in the data path
entirely.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

205

2:66 J. Markussen et al.

Throughout this article, we have demonstrated how we can facilitate remote access to devices,
without any performance overhead compared to local access. As such, we argue that we have
demonstrated that our SmartIO sharing system turns a PCIe shared-memory cluster into a dis-
tributed, composable infrastructure.

9 RELATED WORK
As a complete system with several components, each component of SmartIO could potentially be
discussed at great length to place them in proper context. In fact, several aspects of related work
has already been presented throughout the article, such as PCIe shared-memory networking in
Section 3 and an implementation of NVMe-oF using RDMA in Section 7.4.3. Our SmartIO solution
is at its core a system for sharing I/O devices and facilitating remote access. We have therefore
condensed this section to compare our solution to disaggregation solutions we consider the most
relevant. In particular, we summarize disaggregation techniques based on PCIe fabric partitioning,
followed by a comparison to I/O distribution solutions implemented with NTBs. We also provide a
short discussion on using RDMA for distributed I/O. This is followed by some background for the
ideas behind our proof-of-concept NVMe driver, before we finally present memory disaggregation
ideas that are related to our shared-memory techniques.

9.1 PCIe Fabric Partitioning
The idea of using the PCIe bus as a shared interconnection fabric between independent host sys-
tems is not new. An early approach is Multi-Root I/O Virtualization (MR-IOV) [59]. MR-IOV
specifies how a single PCIe fabric may be logically partitioned into separate virtual PCIe trees,
where each host sees its own PCIe tree without knowing about the others. This partitioning be-
comes possible using special multi-root aware switches in the fabric. Additionally, in the same way
SR-IOV requires virtualization support implemented in hardware, MR-IOV too require devices to
be multi-root aware and support multi-host access. Devices without multi-root capabilities can
not be shared on the function level. Due to the complexity of implementing MR-IOV, particularly
its requirement that both switches and devices are multi-root ware, it did not see any widespread
adoption. At the time of writing, we are not aware of any commercially available devices capable
of MR-IOV. Wong [92] have demonstrated live partitioning using PLX/Broadcom switches with-
out requiring multi-root aware switches and devices, but their solution does not allow splitting
individual device functions or simultaneous access from multiple CPUs either.

Rack-scale computers [17, 18] are computer systems where multiple (independent) CPUs and
free-standing I/O devices are attached to the same PCIe fabric, usually connected by a so-called
“top-of-rack” PCIe switch. These solutions support disaggregation by dynamically partitioning the
shared fabric into different “subfabrics.” The partitioning is made possible by prefixing standard
PCIe transactions with a custom header extension called fabric IDs. Devices are transparently
attached to their respective partitioned fabric, and are only seen by a single CPU at the time. Unlike
MR-IOV, these partitioning solutions does not require support in devices, but they do require
dedicated switch chips that support the proprietary fabric ID header extension to configure routes
between devices and CPUs through the fabric. Chung et al. [15] present a proprietary solution
using Broadcom PEX9797 chips to partition the fabric and distribute individual SR-IOV functions.
Similar solutions also exist for Microsemi switch chips [51].

Solutions based on partitioning allow devices to be disaggregated at the (virtual) function level,
thus they can be said to enable a composable infrastructure. However, they do not specify any
memory-to-memory communication between hosts. In other words, partitioning solutions do not
offer any shared-memory capabilities as part of the system, making a solution like our device dri-
ver API extension impossible. Consequently, fabric partitioning does not provide the same level

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

206

SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:67

of sharing capabilities compared to our shared memory-based system, and simultaneously shar-
ing a device between multiple CPUs requires additional distribution methods, such as RDMA. In
contrast, our SmartIO implementation is not only able to share distribute individual device func-
tions (both physical functions and SR-IOV virtual functions), but makes it possible to implement
“MR-IOV in software” even for non-SR-IOV single function devices. Our proof-of-concept NVMe
driver described in Section 6.2 demonstrates this in practice.

It should also be mentioned that most solutions based on fabric partitioning are only modular
to the extent of a typical blade server configuration, and scaling beyond this requires I/O distribu-
tion over traditional network. As many of them rely on proprietary technology, adding new I/O
devices or CPUs to the configuration requires additional modules, often only available from the
same vendor. In comparison, SmartIO is fully distributed, and enables a heterogeneous computing
system, where different CPU architectures may be connected in a cluster and sharing their devices.
Any standard PCIe device may be distributed and shared.

9.2 NTB-based Solutions
Using the same Broadcom PEX8733 switch chips used in Dolphin’s PXH830 NTB adapters,
Lim et al. [44, 75] have developed NTB host adapters and connected three hosts in a cluster. By
extending a shared-memory API with NTB support, their focus seem to be shared-memory func-
tionality for high-performance computing applications, and distributing devices appears not to
have been considered. It should be noted that the memory-mapping capabilities they have devel-
oped for their API support are similar to functionality already existing in the SISCI API [22].

Bielski et al. [12] summarize various disaggregation solutions of I/O devices in the context of
high-performance computing. Interestingly, they point out that NTB-based device distribution so-
lutions appear to have relied almost exclusively on network adapters in their performance evalua-
tions, as they were only able to find one example that used GPUs in their evaluation. Additionally,
they also point out that most solutions for disaggregating SR-IOV devices seem to be limited to
distributing virtual functions to (remote) VMs. Our SmartIO system, however, works for any stan-
dard PCIe device. We have used network adapters, NVMe devices and GPUs in our experiments
presented in Section 7. Moreover, while we also support pass through to VMs using our MDEV ex-
tension (Section 5), we have demonstrated how we can share individual virtual SR-IOV functions
to bare-metal machines in Section 7.1.6. Additionally, it becomes possible to disaggregate single-
function devices in software by using our SISCI API extension, as demonstrated by our NVMe
driver implementation explained in Section 6.

Suzuki et al. [79] have implemented NTB-like capabilities in an FPGA in order distribute SR-IOV
functions to different hosts. Although their solution is specific to tunnelling PCIe over Ethernet
(ExpEther), their initial performance evaluation showed promising throughput measurements for
a Gen2 x8 PCIe device. The authors have since shown that the additional network latency has a
negative performance impact for DMA reads [78].

Guleria et al. [27] propose to connect an expansion chassis to one or more hosts using an NTB.
By using an ARM CPU add-in card that enumerates the devices in the expansion chassis, they
propose an interesting solution that allows programmable devices, such as a GPU, to continue to
operate independent of host assignment. However, the implementation of the actual distribution
method seems to be lacking, and the authors do not suggest any solutions for allowing the device
to be seen by multiple CPUs, or providing any mechanism for dynamically setting up any memory-
mappings necessary for DMA. Instead, they propose various traditional distribution methods, such
as RDMA or adapting GPU-specific middleware.

Hou et al. [31] present a solution where hosts are connected to NTB-capable ports on a Broad-
com PEX 8648 switch chip. Devices are installed in a dedicated server host, which enumerates the

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

207

2:68 J. Markussen et al.

devices and assists the other hosts in setting up NTB mappings. However, instead of leveraging
the NTB to map device BARs for the local host and mapping memory for the device, their solution
appears to be based on transferring data from memory to memory, and then involving the local
device driver on the dedicated server. This solution incurs a performance reduction compared to
local device access, as reflected in their performance evaluation.

The Ladon system [88] provides functionality that is very similar to our own MDEV implemen-
tation, and could potentially be extended to support something similar to both Device Lending
and our device driver API. By using a top-of-rack switch with NTB-capabilities, Ladon facilitates
access to the same SR-IOV device from multiple VM guests. The device and a dedicated “manage-
ment host” are connected to the switch transparently, and the management host enumerates the
PCIe fabric and takes ownership of the device. In that regard, the management host is concep-
tually similar to our lender. Multiple “compute hosts” are connected to the same switch through
non-transparent switch ports, i.e., NTBs. The management host maps the entire memory of each
compute host for the device, and assists the compute hosts in setting up mappings to individual (vir-
tual) device functions, to pass them through to VM guests running on the compute hosts. Ladon’s
static setup, where all hosts are connected directly to the same top-of-rack switch as the device
and the entire memory of each compute host is mapped, allows transactions to be routed directly
to each compute host without relying on the IOMMU on the management host. Additionally, by
extending the compute hosts’ hypervisor with a specialized host driver, Ladon can support map-
ping MSI-X interrupts directly into VMs [86, 89]. However, by requiring device-specific drivers,
this interrupt mapping does not appear to be a generic solution.

The main difference between Ladon and our SmartIO solution is that while a single host owns
the device in Ladon, our SmartIO system is truly distributed by supporting multiple hosts acting
as lenders. Hosts may even act as both lender and borrower at the same time. Moreover, in Ladon,
the management host becomes a single point of failure. Ladon has since been extended with fail-
over support, allowing a back-up management host to copy the PCIe fabric enumeration of the first
host, and seamlessly take over ownership of the device in case the first management host fails [87].
However, we argue that this still does not make Ladon distributed in the same sense our SmartIO
system. It is not possible for a compute host to use devices from different management hosts. In
other words, the Ladon system appears to be limited to devices attached directly to a single rack
switch managed by a single host (with fail-over). In contrast, SmartIO solution supports scaling out
and using devices from several hosts across an entire cluster. Because the Ladon implementation
maps the entire memory space of each physical compute host (rather than just memory used by
the VMs), the number of compute hosts in Ladon setup will be limited to a handful hosts due to the
combined device memory requirements of the NTBs. Our MDEV implementation, however, scales
better by probing the guest-physical memory layout and only mapping VM memory, as explained
in Section 5.2. Not only does this allow a lender to support more borrowers as we are able to fit more
DMA windows through the NTB BAR, but we can simply add more lender systems should device
memory requirements become an issue. Finally, the Ladon system appears to work only for VMs
unless device-specific host drivers are implemented. Our SmartIO system, however, supports both
physical machines and VMs alike by combining Device Lending and the MDEV extension. With
Device Lending, devices can be used by the bare-metal host without requiring any modifications
to driver software.

9.3 Distributed I/O Using RDMA
There are several widely adopted high-speed interconnection technologies used in high-
performance computing clusters today, such as InfiniBand and 100/200 Gigabit Ethernet. To make

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

208

SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:69

Fig. 39. Even though RDMA allows efficient memory-to-memory transfer, a device-side driver is still needed
to initiate the I/O operation. Using our SmartIO solution, the local device driver can initiate I/O operations
directly and avoids software in the critical path.

use of their high throughput and low latency, many cluster applications make use of RDMA [84].
RDMA variants are summarized by Huang et al. [32], and include RDMA over InfiniBand, RDMA
over Converged Ethernet (RoCE) and Internet Wide Area RDMA Protocol (iWARP). By
using one-sided communication and providing direct access to application memory, RDMA so-
lutions have been shown to greatly improve performance for a variety of distributed applica-
tions [32, 34, 45].

One of the most successful GPU disaggregation frameworks on the market today is rCUDA [23,
68]. Similarly to how the shadow device in our Device Lending mechanism makes it possible
to intercept calls to the kernel’s DMA API, rCUDA uses virtualization techniques to intercept
CUDA API calls and enable access to remote GPUs while the programming model remains simple.
By supporting GPUDirect, rCUDA and other RDMA-based GPU disaggregation solutions are able
to copy data directly in and out of GPU memory using RDMA with very high performance [70, 91].
However, these solutions are not as closely integrated to the PCIe fabric as our NTB-based solution;
using Device Lending or our MDEV extension, we are able to support CUDA Unified Memory [73],
allowing GPUs to access host memory and memory of other GPUs directly. We are not aware of
any RDMA-based GPU disaggregation solutions that are able to support this.

Many different frameworks for distributed I/O using RDMA exist, such as NVMe-oF [28, 29, 56]
and rCUDA discussed above. However, RDMA solutions are tightly coupled with the device (or
type of devices) they are implemented for. As illustrated in Figure 39, even though RDMA facilitates
memory-to-memory transmission, a specialized device driver is still required on the device-side
system to initiate the actual I/O operation.

Additional software complexity in the form of target-side drivers inevitably leads to a perfor-
mance overhead compared to accessing a local device, as we observed in our NVMe-oF comparison
in Section 7.4.3. Some of this target driver functionality can be implemented in network adapter
hardware, for example in the case of NVMe-oF target offloading. Another approach is implement-
ing network interface capabilities directly into device controllers, as proposed by Daglis et al. [19].
While such solutions may improve I/O performance to the point were it becomes comparable to
local access, we argue that these solutions become even more coupled with the specific devices
they are implemented for by requiring implementation in hardware. In contrast, our SmartIO sys-
tem is general in terms of device support, as we can distribute any PCIe device without requiring
specific support in devices or device drivers.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

209

2:70 J. Markussen et al.

9.4 NVMe Queue Distribution
Using the SmartIO extension to the SISCI API, we have implemented a working proof-of-concept
userspace NVMe driver, as described in Section 6.2. To the best of our knowledge, our driver is
unique in that it is able distribute individual I/O queues of a single-function NVMe device to remote
systems in an cluster, without using RDMA. As such, we disaggregate an NVMe device at the
software-level. However, similar ideas for sharing an NVMe device at the queue-level for userspace
applications running on the same local system can be found in several implementations, including
SPDK [94].

Peng et al. [58] implement a paravirtualized NVMe driver using the same mediated device driver
interface we have used for our MDEV implementation. Instead of passing through the device itself,
their solution is based on using passing through I/O queues instead. They accomplish this by as-
signing individual I/O queues to emulated NVMe child devices. An interesting observation is that
the authors report that relying on polling instead of interrupts significantly increases performance,
which could suggest that their performance measurements are affected by same interrupt notifica-
tion delays we observed in our own MDEV evaluation (Section 7.3.2). Furthermore, Kim et al. [39]
extend the Linux NVMe driver with a dedicated queue management kernel module that is respon-
sible for creating and deleting SQs and CQs, as well as mapping DMA buffers and doorbell registers
for a userspace application. This way, a userspace application is given control over queue memory
and can submit I/O commands and poll for completions directly, without going through the kernel
block layer. By mapping queue memory directly for the application, this solution is conceptually
very similar to how our own driver is implemented, but by using our SmartIO system we can
assign queues to applications running on remote hosts as well.

Our NVMe driver implementations also supports GPUDirect. Although several solutions using
GPUDirect to facilitate peer-to-peer access between an NVMe device and a GPU already exist [10,
11, 40, 83], we believe our proof-of-concept device driver’s ability use (remote) GPU memory to
host I/O queues closer to an NVMe device to be a new idea. This becomes possible by combining
our driver with using Device Lending to access remote GPUs. We have demonstrated the latency
benefit of this in Section 7.4.1.

Additionally, our implementation supports offloading NVMe operation onto a GPU entirely
and eliminating the CPU in the data path altogether, as we explained in Section 6.4. While this
would arguably prove to be highly useful in the case of a local system, the utility of this increases
significantly for applications that can now freely make use of accelerators, storage devices and
memory anywhere in a cluster and optimize the data flow through the PCIe network. Support-
ing this kind of flexibility while allowing applications and application programmers to remain
agnostic about address space layout on remote systems is, to the best of our knowledge, a novel
contribution.

9.5 Memory Disaggregation
In our work, we enable efficient distribution of devices across a cluster system, alleviating both
load balancing problems and lack of or limited numbers of local devices. While we are primarily
concerned with I/O device sharing to make active resources available to cluster nodes, our SmartIO
implementation is made possible through distributed shared memory. After all, we are effectively
mapping and enabling access to remote memory regions. As such, our work has an inherent rela-
tionship with memory disaggregation techniques.

Memory disaggregation concepts originally sprung out of related ideas from early work on dis-
tributed memory and distributed OSes. Since CPUs have only operated on local memory, scarce
memory would be augmented by swap space. Remote memory has frequently been proposed as a

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

210

SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:71

faster alternative to disk-backed swap spaces [24, 26, 42, 46], to overcome the limited throughput
and high latency of hard disks. Although this premise has been questioned due to the software
overhead [8], performance gains have been measured with both centralized [24] and decentral-
ized [42, 46] approaches. By relying on the same PCIe-based distributed shared memory capabil-
ities that our own SmartIO is built on, an implementation for (partial) memory disaggregation
solution can be imagined. If combined with our extended SISCI API explained in Section 6.1, then
it could support a combination of local and remote RAM, as well as remote device memory. In fact,
we have already demonstrated something similar to this in Section 7.4.1. Even though the main
purpose of this experiment was to prove reduced memory access latency for a remote NVMe, it
also showed that we are able to map both remote RAM and onboard device memory (of the remote
GPU) for the local CPU.

More recent memory disaggregation solutions rely on RDMA for efficient access to remote mem-
ory. Gu et al. [26] show how software overhead of swapping to remote memory can nearly en-
tirely be avoided by using RDMA. Similarly, Aguilera et al. [5] propose a solution where clients
use remote memory more explicitly, through a file system-like API that acts as an abstraction
over RDMA. The most interesting aspect of this idea is that as their file system interface sup-
ports POSIX semantics, it becomes possible to support the mmap operation. A local process may
memory-map a file descriptor, and, by relying on virtual memory trapping (page faults), RDMA
transfers are initiated under the hood. By using the SISCI API to map remote memory directly into
a process’ virtual address space, we avoid any latency from handling traps in software. Instead,
the local CPU can access memory across the NTB directly, thus avoiding software in the path
altogether.

So-called “byte-adressable” NVMe devices are becoming increasingly common. These NVMes
implement memory controllers and expose non-volatile flash memory through device BARs, sim-
ilar in concept to the GPUDirect-capable GPUs used in our experiments. As such, they are fre-
quently used for persistent memory solutions [71, 93]. Abulila et al. [4] argue that because non-
volatile flash memory is approaching dynamic RAM speeds, traditional swapping semantics incur
significant system performance overhead. They propose an extension to the Linux kernel virtual
memory manager that short-cuts the Linux block-layer, to support efficient swapping to byte-
addressable NVMe devices. With our SmartIO API extension, this solution could be extended to
remote NVMe devices as well, by mapping the remote BAR for the local CPU. However, additional
adaptions would be required, to limit or, preferably, avoid reading over the NTB.

Although the use of dedicated blade servers may stretch the term disaggregation, Lim et al. [43]
nevertheless propose an interesting solution for swapping to remote memory blades over PCIe.
They suggest a hardware modification to the memory controller by which the CPU could prefetch
cache lines directly over the PCIe bus and “fault in” remote memory pages, by initiating DMA
transfers on the remote server. While their proposed solution would avoid reading over the PCIe
bus, their evaluation appears not to take into account any latency that would be added by this
hardware DMA mechanism.

The disaggregation concept is perhaps taken to its most extreme by LegoOS [74]. Here, process-
ing, memory, and storage resources are all encapsulated into components that can be combined
arbitrarily to serve cluster applications. Other hardware devices can be encapsulated in the same
manner. Although the authors note that it is not possible to fully separate CPUs and memory man-
agement in practice, their idea of building disaggregation concepts into the OS itself instead of
using middleware is intriguing. LegoOS only stops short of being a fully distributed OS by pre-
senting users with virtualized nodes that appear as individual VMs. While it is possible to run
existing Linux applications on these virtual nodes, device drivers must be adapted to fit this new

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

211

2:72 J. Markussen et al.

OS design. In contrast, our own Device Lending mechanism is able to facilitate this kind of dis-
aggregation at a level “underneath” the OS. In effect, it is possible to use remote devices without
requiring any modifications to existing device drivers. Finally, LegoOS claims to have performance
comparable to a standard Linux server, but their NVMe benchmark shows a significant reduction
in number of I/O operations per second compared to Linux when the amount of data is more than
a few kilobytes. This performance gap is explained with network overhead. In comparison, be-
cause our own SmartIO solution is PCIe-based, we have zero overhead compared to local access,
as shown in Section 7.

10 CONCLUSION
In this article, we have presented our SmartIO system for efficient, zero-overhead sharing of I/O
devices in a heterogeneous PCIe cluster. By using memory-mapping capabilities inherent in NTBs,
we combine traditional I/O with distributed shared-memory functionality over native PCIe. Our
system consists of the following five components:

(1) Our low-level NTB driver, facilitating shared-memory abilities and providing mechanisms
for mapping remote memory. As such, we use this to create a global address space comprised
of all hosts in the cluster, including their internal devices and memory.

(2) A common abstraction mechanism, providing the necessary functionality for translating
remote I/O addresses and resolving paths in the network. This allows both software and
devices to be agnostic about address space layouts in remote hosts.

(3) Our Device Lending method, making remote devices appear to a system as if they are locally
installed. Existing device drivers, application software, and even the OS itself may use the
remote devices without requiring any adaptions.

(4) Our MDEV extension to KVM hypervisor, allowing pass-through of remote devices to a VM,
and enabling direct access to hardware over native PCIe without breaking out of memory
isolation.

(5) Our new SmartIO device driver API extension to the SISCI shared-memory API, enabling
cluster applications to take full advantage of shared-memory capabilities and write device
drivers optimized for shared-memory cluster workloads.

Additionally, we have also presented our proof-of-concept NVMe driver implementation, using
our SmartIO API extension. This driver demonstrates several aspects of I/O with shared-memory
capabilities, such as simultaneously sharing a non-SR-IOV device among multiple hosts (“MR-IOV
in software”) and enabling peer-to-peer memory access to (remote) GPUDirect-capable GPUs.

Using our SmartIO system, devices can be distributed in a way that meets current processing
requirements, while at the same time the overall resource utilization in the cluster is improved as
resources are no longer locked to individual hosts. We prove the flexibility of our solution through
a broad range of performance evaluations for different scenarios and topologies for all three dis-
tribution aspects of our SmartIO system, i.e., Device Lending, MDEV, and the API extension (in
the form of experiments with our proof-of-concept NVMe driver). By comparing the performance
of using remote devices to local access, our results show that we do not add any performance
overhead beyond what is expected for longer PCIe paths.

While our current system shows great potentials for resource sharing, there are still several ar-
eas that still may be investigated. For example, currently only cold migration of VMs with passed-
through devices is possible. Adding support for a dynamic migration during runtime (live migra-
tion) is desirable. Such a solution would most likely require the development of new hardware as it
must support either pausing or re-routing transactions without violating strict ordering required

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

212

SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:73

by PCIe. Additionally, our experimental results also show that a major performance bottleneck oc-
curs when DMA read requests traverse the lender’s CPU in order for addresses to be resolved by
the IOMMU. The Intel Xeon CPUs used in our performance experiments alter the requests in a way
that leads to poor link utilization. As our MDEV implementation requires the lender’s IOMMU to
map guest-physical memory for the device, this warrants further evaluations of alternative CPU
architectures. Furthermore, while our proof-of-concept NVMe driver provides block-level access
for userspace applications, implementing a file system or coordinating access is currently the re-
sponsibility of the application. Another candidate for improvement is therefore to implement the
sharing idea in a kernel space driver, making it possible to implement a shared-disk file system for
general use. As the device is shared on the queue-level, this solution could easily co-exist with the
existing userspace implementation, and we could assign queues to both application instances and
kernel drivers alike. Finally, as the Intel P4800X NVMe used in our queue-sharing experiments did
not perform adequately, it would prove useful to perform a large-scale evaluation of our queue-
sharing concept using a newer PCIe Gen4 NVMe with greater bandwidth capacity and support for
a higher number of queues.

AVAILABILITY
The source code of our proof-of-concept distributed NVMe driver is licensed using the BSD soft-
ware license, and is available at the following URL: https://github.com/enfiskutensykkel/ssd-gpu-
dma/.

The source code of the ping-pong CUDA program used in our latency evaluation can be found at
the following URL: https://gist.github.com/enfiskutensykkel/2b0f7afcb35d12477165746f062c7453.

The datasets and benchmarking results in this article are available from the corresponding author
upon request.

ACKNOWLEDGMENTS
The authors thank the Dolphin Interconnect Solutions developers team, particularly Eivind
Bergem and Eivind Eriksen for their input on data visualization. We also thank Friedrich Seifert,
Preben N. Olsen, and Calin Iaru for their feedback on the manuscript. The authors also thank
Hugo Kohmann and Roy Nordstrøm. Finally, we give a big thank you to all the anonymous re-
viewers. They have had a tedious task reviewing this long manuscript but still have provided a list
of valuable insights and suggestions that greatly improved this article.

REFERENCES
[1] Keras. [n.d.]. Retrieved from https://keras.io.
[2] TensorFlow. [n.d.]. Large-Scale Machine Learning on Heterogeneous Systems. Retrieved from https://www.tensorflow.

org/.
[3] Darren Abramson, Jeff Jackson, Sridhar Muthrasanallur, Gil Neiger, Greg Regnier, Rajes Sankaran, Ioannis Schoinas,

Rich Uhlig, Balaji Vembu, and John Weigert. 2006. Intel virtualization technology for directed I/O. Intel Technol. J. 10,
03 (2006). https://doi.org/10.1535/itj.1003.02

[4] Ahmed Abulila, Vikram Sharma Mailthody, Zaid Qureshi, Jian Huang, Nam Sung Kim, Jinjun Xiong, and Wen-mei
Hwu. 2019. FlatFlash: Exploiting the byte-accessibility of SSDs within a unified memory-storage hierarchy. In Pro-
ceedings of the International Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS). 971–985. https://doi.org/10.1145/3297858.3304061

[5] Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier Deguillard, Jayneel Gandhi, Stanko Novaković, Arun
Ramanathan, Pratap Subrahmanyam, Lalith Suresh, Kiran Tati, Rajesh Venkatasubramanian, and Michael Wei. 2018.
Remote regions: A simple abstraction for remote memory. In Proceedings of the USENIX Annual Technical Conference
(ATC’18). 775–787.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

213

2:74 J. Markussen et al.

[6] Knut Alnæs, Ernst H. Kristiansen, David B. Gustavson, and David V. James. 1990. Scalable coherent interface. In
Proceedings of the International Conference on Computer Systems and Software Engineering (CompEuro’90). 446–453.
https://doi.org/10.1109/CMPEUR.1990.113656

[7] Nadav Amit, Muli Ben-Yehuda, and Ben-Ami Yassour. 2010. IOMMU: Strategies for mitigating the IOTLB bottleneck.
In Proceedings of the International Symposium on Computer Architecture (ISCA’10). Springer, 256–274. https://doi.org/
10.1007/978-3-642-24322-6_22

[8] Eric A. Anderson and Jeanna M. Neefe. 1994. An Exploration of Network RAM. Technical Report. EECS Department,
University of California. Retrieved from https://www2.eecs.berkeley.edu/Pubs/TechRpts/1998/CSD-98-1000.pdf.

[9] Jens Axboe. [n.d.]. Flexible I/O Tester. Retrieved from https://github.com/axboe/fio.
[10] Stephen Bates. 2015. Project Donard. Retrieved from https://github.com/sbates130272/donard.
[11] Shai Bergman, Tanya Brokhman, Tzachi Cohen, and Mark Silberstein. 2017. SPIN: Seamless operating system inte-

gration of peer-to-peer DMA between SSDs and GPUs. In Proceedings of the USENIX Annual Technical Conference
(ATC’17). 665–676.

[12] Maciej Bielski, Christian Pinto, Daniel Raho, and Renaud Pacalet. 2016. Survey on memory and devices disaggregation
solutions for HPC systems. In Proceedings of the International Conference on Computational Science and Engineering
and International Conference on Embedded and Ubiquitous Computing and International Symposium on Distributed
Computing and Applications for Business Engineering (CSE-EUC-DCABES’16). 197–204. https://doi.org/10.1109/CSE-
EUC-DCABES.2016.185

[13] Broadcom. 2011. PEX8733, PCI Express Gen 3 Switch, 32 Lanes, 18 Ports. Retrieved from https://docs.broadcom.com/
docs/12351852.

[14] Broadcom. 2012. PEX8796, PCI Express Gen 3 Switch, 96 Lanes, 24 Ports. Retrieved from https://docs.broadcom.com/
docs/12351860.

[15] I.-Hsin Chung, Bulent Abali, and Paul Crumley. 2018. Towards a composable computer system. In Proceedings of the
International Conference on High Performance Computing in Asia-Pacific Region (HPCAsia’18). 137–147. https://doi.org/
10.1145/3149457.3149466

[16] Adam Coates, Brody Huval, Tao Wang, David J. Wu, Andrew Y. Ng, and Bryan Catanzaro. 2013. Deep learning with
COTS HPC systems. In Proceedings of the International Conference on Machine Learning (ICML’13). 1337–1345.

[17] Intel Corporation. 2015. Intel Rack Scale Design. Retrieved from https://www.intel.com/content/www/us/en/
architecture-and-technology/rack-scale-design-overview.html.

[18] Liqid Corporation. [n.d.]. Liqid Composable Infrastructure. Retrieved from https://www.liqid.com/.
[19] Alexandros Daglis, Stanko Novaković, Edouard Bugnion, Babak Falsafi, and Boris Grot. 2015. Manycore network

interfaces for in-memory rack-scale computing. ACM SIGARCH Comput. Architect. News 43, 3 (2015), 567–579. https:
//doi.org/10.1145/2872887.2750415

[20] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. ImageNet: A large-scale hierarchical image
database. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR’09). 248–255. https://doi.
org/10.1109/CVPR.2009.5206848

[21] Dolphin Interconnect Solutions. [n.d.]. SFF-8644 MiniSAS-HD PCIe Gen3 cables. Retrieved from https://www.
dolphinics.com/products/PCI_Express_SFF-8644_cables.html.

[22] Dolphin Interconnect Solutions [n.d.]. SISCI API Documentation. Dolphin Interconnect Solutions. Retrieved from http:
//ww.dolphinics.no/download/SISCI_DOC_V2/.

[23] José Duato, Antonio J. Pena, Frederico Silla, Rafael Mayo, and Enrique S. Quintana-Ortí. 2010. rCUDA: Reducing the
number of GPU-based accelerators in high performance clusters. In Proceedings of the International Conference on
High Performance Computing and Simulation (HPCS’10). 224–231. https://doi.org/10.1109/HPCS.2010.5547126

[24] Michael J. Feeley, William E. Morgan, Frederic H. Pighin, Anna R. Karlin, and Henry M. Levy. 1995. Implementing
global memory management in a workstation cluster. In Proceedings of the ACM Symposium on Operating Systems
Principles (SOSP’95). 201–212. https://doi.org/10.1145/224056.224072

[25] Trevor Fountain, Alexandra McCarthy, and Fangfang Peng. 2005. PCI express: An overview of PCI express, cabled PCI
express and PXI express. In Proceedings of the International Conference on Accelerator & Large Experimental Physics
Control Systems (ICALEPCS’05).

[26] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdury, and Kang G. Shin. 2017. Efficient memory dis-
aggregation with INFINISWAP. In Proceedings of the Symposium on Networked Systems Design and Implementation
(NSDI’17). 649–667.

[27] Anubhav Guleria, J. Lakshmi, and Chakri Padala. 2019. EMF: Disaggregated GPUs in datacenters for efficiency, modu-
larity and flexibility. In Proceedings of the International Conference on Cloud Computing in Emerging Markets (CCEM’19).
1–8. https://doi.org/10.1109/CCEM48484.2019.000-5

[28] Zvika Guz, Harry Li, Anahita Shayesteh, and Vijay Balakrishnan. 2017. NVMe-over-fabrics performance character-
ization and the path to low-overhead flash disaggregation. In Proceedings of the International Systems and Storage
Conference (SYSTOR’17). 1–9. https://doi.org/10.1145/3078468.3078483

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

214

SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:75

[29] Zvika Guz, Harry Li, Anahita Shayesteh, and Vijay Balkrishnan. 2018. Performance characterization of NVMe-over-
fabrics storage disaggregation. ACM Trans. Stor. 14, 4 (Dec. 2018), 1–18. https://doi.org/10.1145/3239563

[30] Steven Alexander Hicks, Michael Riegler, Konstantin Pogorelov, Kim V. Ånonsen, Thomas de Lange, Dag Johansen,
Mattis Jeppsson, Kristin Ranheim Randel, Sigrun Eskeland, and Pål Halvorsen. 2018. Dissecting deep neural networks
for better medical image classification and classification understanding. In Proceedings of the International Symposium
on Computer-Based Medical Systems (CBMS’18). 363–368. https://doi.org/10.1109/CBMS.2018.00070

[31] Rui Hou, Tao Jiang, Liuhang Zhang, Pengfei Qi, Jianbo Dong, Haibin Wang, Xiongli Gu, and Shujie Zhang. 2013. Cost
effective data center servers. In Proceedings of the International Symposium on High Performance Computer Architecture
(HPCA’13). 179–187. https://doi.org/10.1109/HPCA.2013.6522317

[32] Jian Huang, Xiangyong Ouyang, Jithin Jose, Md Wasi-Ur-Rahman, Hao Wang, Miao Luo, Hari Subramoni, Chet
Murthy, and Dhabaleswar K. Panda. 2012. High-performance design of hbase with RDMA over InfiniBand. In Proceed-
ings of the International Parallel and Distributed Processing Symposium (IPDPS’12). 774–785. https://doi.org/10.1109/
IPDPS.2012.74

[33] Neo Jia and Kirti Wankhede. 2016. VFIO Mediated Devices. Retrieved from https://www.kernel.org/doc/
Documentation/vfio-mediated-device.txt.

[34] Weihang Jiang, Jiuxing Liu, Hyun-Wook Jin, Dhabaleswar K. Panda, William Gropp, and Rajeev Thakur. 2004. High
performance MPI-2 one-sided communication over InfiniBand. In Proceedings of the International Symposium on Clus-
ter Computing and the Grid (CCGrid’04). 531–538. https://doi.org/10.1109/CCGrid.2004.1336648

[35] Linux kernel development community. [n.d.]. NTB Drivers. Retrieved from https://www.kernel.org/doc/html/latest/
driver-api/ntb.html.

[36] Linux kernel development community. 2013. Linux Filesystems API. Retrieved from https://www.kernel.org/doc/
htmldocs/filesystems/index.html.

[37] Linux kernel development community. 2013. VFIO—“Virtual Function I/O.” Retrieved from https://www.kernel.org/
doc/Documentation/vfio.txt.

[38] Linux kernel development community. 2019. Linux IOMMU Support. Retrieved from https://www.kernel.org/doc/
Documentation/Intel-IOMMU.txt.

[39] Hyeong-Jun Kim, Young-Sik Lee, and Jin-Soo Kim. 2016. NVMeDirect: A user-space I/O framework for application-
specific optimization on NVMe SSDs. In Proceedings of the USENIX Workshop on Hot Topics in Storage and File Systems
(HotStorage’16). 41–45.

[40] KaiGai Kohei. 2016. GpuScan + SSD-to-GPUDirect DMA. Retrieved from https://kaigai.hatenablog.com/entry/2016/
09/08/003556.

[41] Lars Bjørlykke Kristiansen, Jonas Markussen, Håkon Kvale Stensland, Michael Riegler, Hugo Kohmann, Friedrich
Seifert, Roy Nordstrøm, Carsten Griwodz, and Pål Halvorsen. 2016. Device lending in PCI express networks. In Pro-
ceedings of the International Workshop on Network and Operating Systems Support for Digital Audio and Video (NOSS-
DAV’16). 10:1–10:6. https://doi.org/10.1145/2910642.2910650

[42] Shuang Liang, Ranjit Noronha, and Dhabaleswar K. Panda. 2005. Swapping to remote memory over Infiniband: An
approach using a high performance network block device. In Proceedings of the IEEE International Conference on Cluster
Computing (Cluster’05). 1–10. https://doi.org/10.1109/CLUSTR.2005.347050

[43] Kevin Lim, Jichuan Chang, Trevor Mudge, Parthasarathy Ranganathan, Steven K. Reinhardt, and Thomas F. Wenisch.
2009. Disaggregated memory for expansion and sharing in blade servers. In Proceedings of the the Annual International
Symposium on Computer Architecture (ISCA’09). 267–278. https://doi.org/10.1145/1555754.1555789

[44] Seung-Ho Lim, Ki-Woong Park, and Kwang-Ho Cha. 2019. Developing an OpenSHMEM model over a switchless PCIe
non-transparent bridge interface. In Proceedings of the International Parallel and Distributed Processing Symposium
Workshops (IPDPSW’19). 593–602. https://doi.org/10.1109/IPDPSW.2019.00104

[45] Xiaoyi Lu, Nusrat S. Islam, Md. Wasi-Ur-Rahman, Jithin Jose, Hari Subramoni, Hao Wang, and Dhabaleswar K. Panda.
2013. High-performance design of Hadoop RPC with RDMA over InfiniBand. In Proceedings of the International Con-
ference on Parallel Processing (ICPP’13). 641–650. https://doi.org/10.1109/ICPP.2013.78

[46] Evangelos P. Markatos and George Dramitinos. 1996. Implementation of a reliable remote memory pager. In Proceed-
ings of the USENIX Annual Technical Conference (ATC’96).

[47] Athanasios Theodore Markettos, Colin Rothwell, Brett F. Gutstein, Allison Pearce, Peter G. Neumann, Simon W.
Moore, and Robert N. M. Watson. 2019. Thunderclap: Exploring vulnerabilities in operating system IOMMU protection
via DMA from untrustworthy peripherals. In Proceedings of the Network and Distributed System Security Symposium
(NDSS’19). https://doi.org/10.14722/ndss.2019.23194

[48] Jonas Markussen, Lars Bjørlykke Kristiansen, Rune Johan Borgli, Håkon Kvale Stensland, Friedrich Seifert, Michael
Riegler, Carsten Griwodz, and Pål Halvorsen. 2020. Flexible device compositions and dynamic resource sharing in
PCIe interconnected clusters using Device lending. Cluster Comput. 23 (2020), 1211–1234. Issue 2. https://doi.org/10.
1007/s10586-019-02988-0

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

215

2:76 J. Markussen et al.

[49] Jonas Markussen, Lars Bjørlykke Kristiansen, Håkon Kvale Stensland, Friedrich Seifert, Carsten Griwodz, and Pål
Halvorsen. 2018. Flexible device sharing in PCIe clusters using device lending. In Proceedings of the International
Conference on Parallel Processing Companion (ICPPComp’18). Article 48, 48:1–48:10. https://doi.org/10.1145/3229710.
3229759

[50] Vijay Meduri. 2011. A Case for PCI Express as a High-Performance Cluster Interconnect. Retrieved from https://www.
hpcwire.com/2011/01/24/a_case_for_pci_express_as_a_high-performance_cluster_interconnect/.

[51] Microsemi. 2019. Multi-Host Sharing of NVMe Drives and GPUs Using PCIe Fabrics. Technical Report. Mi-
crosemi. Retrieved from http://www.symmttm.com/document-portal/doc_download/1244483-multi-host-sharing-of-
nvme-drives-and-gpus-using-pcie.

[52] Ben-Yehuda Muli, Jon Mason, Orran Krieger, Jimi Xenidis, Leendert Van Doorn, Asit Mallick, Jun Nakijima, and Elsie
Wahlig. 2006. Utilizing IOMMUs for virtualization in Linux and Xen. In Proceedings of the Linux Symposium. 71–85.

[53] NVIDIA Corporation 2019. GPUDirect RDMA Documentation. NVIDIA Corporation. Retrieved from https://docs.
nvidia.com/cuda/gpudirect-rdma/index.html.

[54] NVIDIA Corporation 2020. CUDA Toolkit Documentation v11.0.171. NVIDIA Corporation. Retrieved from http://docs.
nvidia.com/cuda/.

[55] NVM Express 2019. NVM Express Base Specification. NVM Express. Retrieved from https://nvmexpress.org/wp-
content/uploads/NVM-Express-1_3d-2019.03.20-Ratified.pdf.

[56] NVM Express 2019. NVM Express Over Fabrics. NVM Express. Retrieved from https://nvmexpress.org/wp-content/
uploads/NVMe-over-Fabrics-1.1-2019.10.22-Ratified.pdf.

[57] Sinno Jialin Pan and Qiang Yang. 2010. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22, 10 (Oct. 2010),
1345–1359. https://doi.org/10.1109/TKDE.2009.191

[58] Bo Peng, Haozhong Zhang, Jianguo Yao, Yaozu Dong, Yu Xu, and Haibing Guan. 2018. MDev-NVMe: A NVMe stor-
age virtualization solution with mediated pass-through. In Proceedings of the USENIX Annual Technical Conference
(ATC’18). 665–676.

[59] Peripheral Component Interconnect Special Interest Group (PCI-SIG) 2008. Multi-root I/O Virtualization and Shar-
ing Specification. Peripheral Component Interconnect Special Interest Group (PCI-SIG). Retrieved from https://www.
pcisig.com/specifications/iov/multi-root/.

[60] Peripheral Component Interconnect Special Interest Group (PCI-SIG) 2009. Address Translation Services Revision
1.1. Peripheral Component Interconnect Special Interest Group (PCI-SIG). Retrieved from https://www.pcisig.com/
specifications/iov/ats/.

[61] Peripheral Component Interconnect Special Interest Group (PCI-SIG) 2010. PCI Express 3.1 Base Specification. Periph-
eral Component Interconnect Special Interest Group (PCI-SIG). Retrieved from https://pcisig.com/specifications.

[62] Peripheral Component Interconnect Special Interest Group (PCI-SIG) 2010. Single-root I/O Virtualization and Shar-
ing Specification. Peripheral Component Interconnect Special Interest Group (PCI-SIG). Retrieved from https://www.
pcisig.com/specifications/iov/single-root/.

[63] Konstantin Pogorelov, Olga Ostroukhova, Mattis Jeppsson, Håvard Espeland, Carsten Griwodz, Thomas de Lange,
Dag Johansen, Michael Riegler, and Pål Halvorsen. 2018. Deep learning and hand-crafted feature based approaches for
polyp detection in medical videos. In Proceedings of the International Symposium on Computer-Based Medical Systems
(CBMS’18). 381–386. https://doi.org/10.1109/CBMS.2018.00073

[64] Konstantin Pogorelov, Kristin Ranheim Randel, Carsten Griwodz, Sigrun Losada Eskeland, Thomas de Lange, Dag
Johansen, Concetto Spampinato, Duc-Tien Dang-Nguyen, Mathias Lux, Peter Thelin Schmidt, Michael Riegler, and
Pål Halvorsen. 2017. KVASIR: A multi-class image dataset for computer aided gastrointestinal disease detection. In
Proceedings of the ACM Multimedia Systems Conference (MMSys’17). 164–169. https://doi.org/10.1145/3083187.3083212

[65] Konstantin Pogorelov, Michael Riegler, Sigrun Eskeland, Thomas de Lange, Dag Johansen, Carsten Griwodz, Peter The-
lin Schmidt, and Pål Halvorsen. 2017. Efficient disease detection in gastrointestinal videos–global features versus
neural networks. Multimedia Tools Appl. 76, 21 (2017), 22493–22525. https://doi.org/10.1007/s11042-017-4989-y

[66] Konstantin Pogorelov, Michael Riegler, Jonas Markussen, Mathias Kux, Håkon Kvale Stensland, Thomas Lange,
Carsten Griwodz, Pål Halvorsen, Dag Johansen, Peter Schmidt, and Sigrun Eskeland. 2016. Efficient processing of
videos in a multi auditory environment using device lending of GPUs. In Proceedings of the International Conference
on Multimedia Systems (MMSys’16). 381–386. https://doi.org/10.1145/2910017.2910636

[67] Murali Ravindran. 2008. Extending cabled PCI express to connect devices with independent PCI domains. In Proceed-
ings of the IEEE Systems Conference (SysCon’08). 1–7. https://doi.org/10.1109/SYSTEMS.2008.4519048

[68] Carlos Reaño, Federico Silla, and José Duato. 2017. Enhancing the rCUDA remote GPU virtualization framework:
From a prototype to a production solution. In Proceedings of the International Symposium on Cluster, Cloud and Grid
Computing (CCGRID’17). 695–698. https://doi.org/10.1109/CCGRID.2017.42

[69] Jack Regula. 2004. Using Non-Transparent Bridging in PCI Express Systems. Whitepaper. PLX Technology/Broadcom.
Retrieved from https://www.digikey.no/no/pdf/b/broadcom/using-non-transparent-bridging-pci.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

216

SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:77

[70] Davide Rosetti. 2014. Benchmarking GPUDirect RDMA on Modern Server Platforms. Retrieved from https://developer.
nvidia.com/blog/benchmarking-gpudirect-rdma-on-modern-server-platforms/.

[71] Andy Rudoff. 2017. Persistent memory programming. USENIX ;login: 42, 2 (2017), 34–40. Retrieved from https://www.
usenix.org/system/files/login/articles/login_summer17_07_rudoff.pdf.

[72] Kazuo Saito, Koji Anai, Keiju Igarashi, Takeshi Nishikawa, Ryoichi Himeno, and Kazuhiro Yoguchi. 1998. ATM bus
system. U.S. patent No. 5,796,741 A.

[73] Nikolay Sakharnykh. 2016. Beyond GPU Memory Limits with Unified Memory on Pascal. Retrieved from https://
developer.nvidia.com/blog/beyond-gpu-memory-limits-unified-memory-pascal/.

[74] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. 2018. LegoOS: A disseminated, distributed OS for hard-
ware resource disaggregation. In Proceedings of the Conference on Operating Systems Design and Implementation
(OSDI’18). 69–87.

[75] Cheol Shim, Kwang-Ho Cha, and Min Choi. 2018. Design and implementation of initial OpenSHMEM on PCIe NTB
based cloud computing. Cluster Comput. 22 (Feb. 2018), 1815–1826. https://doi.org/10.1007/s10586-018-1707-0

[76] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks for large-scale image recognition.
Retrieved from https://arXiv:1409.1556.

[77] Mark J. Sullivan. 2010. Intel Xeon Processor C5500/C3500 Series Non-Transparent Bridge. Technical Report. Intel Corpo-
ration.

[78] Jun Suzuki, Yoichi Hidaka, Hunichi Higuchi, Masaki Kan, and Takashi Yoshikawa. 2016. Disaggregation and sharing
of I/O devices in cloud data centers. IEEE Trans. Comput. 65 (Dec. 2016), 3013–3026. Issue 10. https://doi.org/10.1109/
TC.2015.2513759

[79] Jun Suzuki, Yoichi Hidaka, Junichi Higuchi, Teruyuki Baba, Nobuharu Kami, and Takashi Yoshikawa. 2010. Multi-root
share of single-root I/O virtualization (SR-IOV) compliant PCI express device. In Proceedings of the IEEE Symposium
on High Performance Interconnects (HOTI’10). 25–31. https://doi.org/10.1109/HOTI.2010.21

[80] Amir Taherkordi, Feroz Zahid, Yiannis Verginadis, and Geir Horn. 2018. Future cloud system designs: Challenges and
research directions. IEEE Access 6 (2018). https://doi.org/10.1109/ACCESS.2018.2883149

[81] Mellanox Technologies. [n.d.]. ConnectX-5 EN Single/Dual-Port Adapter Supporting 100Gb/s Ethernet. Retrieved
from https://www.mellanox.com/products/ethernet-adapters/connectx-5-en.

[82] PLX Technologies. 2005. Multi-Host System and Intelligent I/O Design with PCI Express. Whitepaper. PLX Tech-
nology/Broadcom. Retrieved from https://docs.broadcom.com/docs-and-downloads/pdf/technical/expresslane/NTB_
Brief_April-05.pdf.

[83] Adam Thompson and Chris J. Newburn. 2019. GPUDirect Storage: A Direct Path Between Storage and GPU Memory.
Retrieved from https://developer.nvidia.com/blog/gpudirect-storage/.

[84] Animesh Trivedi, Bernard Metzler, and Patrick Stuedi. 2011. A case for RDMA in clouds. In Proceedings of the Second
Asia-Pacific Workshop on Systems (APSys’11). 17:1–17:5. https://doi.org/10.1145/2103799.2103820

[85] Shin-Yeh Tsai and Yiying Zhang. 2019. A double-edged sword: Security threats and opportunities in one-sided network
communication. In Proceedings of the Workshop on Hot Topics in Cloud Computing (HotCloud’19).

[86] Cheng-Chun Tu. 2014. Memory-Based Rack Area Networking. Ph.D. Dissertation. Stony Brook University.
[87] Cheng-Chun Tu and Tzi-cker Chiueh. 2018. Seamless fail-over for PCIe switched networks. In Proceedings of the

International Systems and Storage Conference (SYSTOR’18). 101–111. https://doi.org/10.1145/3211890.3211895
[88] Cheng-Chun Tu, Chao-tang Lee, and Tzi-cker Chiueh. 2013. Secure I/O device sharing among virtual machines on

multiple hosts. ACM SIGARCH Comput. Architect. News 41, 3 (2013), 108–119. https://doi.org/10.1145/2508148.2485932
[89] Cheng-Chun Tu, Chao-tang Lee, and Tzi-cker Chiueh. 2014. Marlin: A memory-based rack area network. In Proceed-

ings of the ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS’14). 125–136.
https://doi.org/10.1145/2658260.2658262

[90] Akshay Venkatesh, Khaled Hamidouche, Sreeram Potluri, Davide Rosettig, Ching-Hsiang Chu, and Dhabaleswar K.
Panda. 2017. MPI-GDS: High performance MPI designs with GPUDirect-aSync for CPU-GPU control flow decoupling.
In Proceedings of the International Conference on Parallel Processing (ICPP’17). 151–160. https://doi.org/10.1109/ICPP.
2017.24

[91] Akshay Venkatesh, Hari Subramoni, Khaled Hamidouche, and Dhabaleswar K. Panda. 2014. A high performance
broadcast design with hardware multicast and GPUDirect RDMA for streaming applications on Infiniband clusters.
In Proceedings of the International Conference on High Performance Computing (HiPC’14). 1–10. https://doi.org/10.1109/
HiPC.2014.7116875

[92] Heymian Wong. 2011. PCI Express Multi-Root Switch Reconfiguration During System Operation. Master’s thesis. Mas-
sachusetts Institute of Technology.

[93] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and Steve Swanson. 2020. An empirical guide to the be-
havior and use of scalable persistent memory. In Proceedings of the USENIX Conference on File and Storage Technologies
(FAST’20). 169–182.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

217

2:78 J. Markussen et al.

[94] Ziye Yang, James R. Harris, Benjamin Walker, Daniel Verkamp, Changpeng Liu, Cunyin Chang, Gang Cao, Jonathan
Stern, Vishal Verma, and Luse E. Paul. 2017. SPDK: A development kit to build high performance storage applications.
In Proceedings of the International Conference on Cloud Computing Technology and Science (CloudCom’17). 154–161.
https://doi.org/10.1109/CloudCom.2017.14

[95] Xiangliang Yu. 2016. NTB: Add support for AMD PCI-Express Non-Transparent Bridge. Retrieved from https://lwn.
net/Articles/672752/.

Received July 2020; revised February 2021; accepted April 2021

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

218

	Abstract
	Acknowledgements
	List of papers
	Contents
	List of figures
	List of abbreviations
	Introduction
	Background and motivation
	Problem statement
	Scope and limitations
	Research methodology
	Contributions
	Outline

	SmartIO
	Underlying idea
	Main challenges
	Implementation
	Low-level NTB driver
	SmartIO driver
	Device Lending
	MDEV
	API extension
	Proof-of-concept NVMe driver

	Performance measurements
	Device Lending: latency comparison
	Device Lending: throughput comparison
	Proof-of-concept NVMe driver experiment

	Related work
	Solutions not using NTBs
	Solutions using NTBs

	Conclusion
	Summary
	Revisiting the problem statement
	Future work

	Glossary
	Bibliography
	Published Papers
	Device Lending in PCI Express Networks
	Introduction
	PCI Express
	Memory-mapped IO

	Virtualization support in PCIe
	IO memory management unit
	Single-Root IO Virtualization
	Performance penalty

	Related work
	Implementation
	Evaluation and discussion
	Reference evaluation
	Device Lending evaluation

	Conclusion and future work

	Efficient Processing of Videos in a Multi-auditory Environment using Device Lending of GPUs
	Introduction
	Real-time computer aided diagnosis support
	GPU implementation
	Device Lending
	Performance evaluation

	Demonstration setup
	Conclusion and future work

	Flexible Device Sharing in PCIe Clusters using Device Lending
	Introduction
	PCIe overview
	Memory addressing and forwarding
	Virtualization support and pass-through
	Non-transparent bridging

	Related work
	Distributed IO using RDMA
	Virtualization approaches
	Partitioning the fabric

	Device Lending
	Supporting virtual borrowers
	Multi-device interoperability
	Performance evaluation
	IOMMU performance penalty
	Pass-through comparison
	Device-to-device evaluation

	Discussion and conclustion

	Flexible Device Compositions and Dynamic Resource Sharing in PCIe Interconnected Clusters using Device Lending
	Introduction
	PCIe overview
	Memory addressing and forwarding
	Virtualization support and pass-through
	Non-transparent bridging

	Related work
	Distributed I/O using RDMA
	Virtualization approaches
	Partitioning the fabric

	Device Lending
	Supporting virtual machine borrowers
	Supporting multiple devices and peer-to-peer
	Performance evaluation
	IOMMU performance penalty
	Native peer-to-peer evaluation
	Bare-metal bandwidth evaluation
	Bare-metal latency evaluation

	VM peer-to-peer evaluation
	VM bandwidth evaluation
	VM latency evaluation

	Pass-through NVMe experiments
	Image classificaiton workload

	Discussion
	I/O address virtualization
	VM migration
	Security considerations
	Interrupt forwarding

	Conclusion

	SmartIO: Zero-overhead Device Sharing through PCIe Networking
	Introduction
	System overview
	Motivation and challenges
	Overall design

	PCIe-interconnected clusters
	PCIe endpoints
	Address-based routing
	Non-transparent bridging

	Device Lending
	Shadow device
	Intercepting configuration cycles
	DMA window
	Shortest path routing

	VM pass-through using MDEV
	Mediated devices
	Mapping VM memory for device
	Peer-to-peer between devices
	Relaying interrupts
	VM migration

	Distrubted NVMe driver
	Device driver API
	Driver implementation
	Multipath failover
	GPU support
	Multicast

	Performance evaluation
	Device Lending
	Latency tests
	Throughput tests
	Longer PCIe paths
	Peer-to-peer: local vs. remote
	Peer-to-peer: multiple lenders
	Sharing SR-IOV devices

	Scaling heavy workloads
	VM pass-through with MDEV
	IOMMU performance penalty
	Pass-through comparison

	Distributed NVMe driver evaluation
	Optimizing data access patterns
	Sharing a single-function NVMe device
	NVMe-oF RDMA comparison

	Discussion
	Security
	Supported OSes
	Supported CPU architectures
	Supported devices
	Alternative NTB implementations
	Scalability
	Disaggregated and composable infrastructure

	Related work
	PCIe fabric partitioning
	NTB-based solutions
	Distributed I/O using RDMA
	NVMe queue distribution
	Memory disaggregation

	Conclusion

