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Abstract

This thesis use the extreme powers of the GPU for linear algebra. Selec-
ted linear algebra algorithms, more specifically the LU and the conjugate
gradient algorithm for solving linear systems, has been ported to execute
its main computational load on the graphics processing unit available on
most computers. The main contributions in the thesis is more efficient
pivoting in the LU-algorithm, where a minimum of data is copied, and
gathering of the inner products for simultainous readback and reduction
on the GPU.






Prefeace

This thesis is a part of the GPGPU project [?] at Sintef ICT that aims to use
the GPU as a high performance computational resource. This is individual
work, but multiple topics from the work have been discussed with and are
influenced by the thoughts of other students in the group. The algorithms
provided in this thesis have been tested in WindowsXP on a computer
with an Intel Pentium IV 3.00GHz processor, 2GB ram, and a NVIDIA
7800GT graphics card.

Attached paper: At the end of the thesis a white-paper is attached. This
is the result of the co-operation between Brodtkorb, Seetra and me on ap-
plying the LU-algorithm to a cluster of computers. My special contribu-
tions include design of the local LU-algorithm, that is basically just a reim-
plementation of the LU-algorithm deduced in this thesis, and the imple-
mentation of the local pivot and eliminate procedure. It is difficult to take
credit for details in the paper, because it has been rewritten and changed
by all of us many times, but at least the pivot and eliminate sections are
originally written by me.
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Chapter 1

Introduction

Graphics processors have traditionally had a very predetermined set of
available commands, controlled by graphics APIs like OpenGL and Dir-
ectX. During recent years the graphics chips have rapidly evolved into
fast and programmable stream processors to an affordable price. Simul-
taneously the rise in “gigahertz” has started to hit the wall on conventional
processors and we can see an emerging multi-core trend. Executives from
Intel have announced they are five to eight years away from producing 80-
core chips and Intel is currently experimenting with new core designs !. In
this thesis the GPU is utilized as a multi-core co-processor to allow us to
experiment with stream-programming and the process of splitting tasks
into tiny data-parallel pieces that are assigned to multiple cores. More
specifically the field of research in this thesis is numerical linear algebra
applied on heterogeneous multi-core processors. In this thesis these pro-
cessors are the CPU and the GPU, but the basic ideas should fit with other
stream processors as well.

There is already much work done in the field of General Purpose Com-
puting on the GPU, but there is still much to do. Researchers have been
able to demonstrate a set of algorithms that proves that the GPU can be
suited as a computational resource. In this thesis I have investigated exist-
ing functionality related to linear algebra on the GPU, and implemented
some algorithms, for best possible performance.

1.1 Organization of the thesis

In the thesis I will first go through the basics of parallel programming,
before I follow-up with categorizing the graphics processor into the class

Ihttp://informationweek.com/news/showArticle. jhtml?articleID=196901935
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Introduction

of Heterogeneous processors. Then I continue with more details related
to the GPU, before I end with what I have done; implementation of the
conjugate gradient method and the LU-algorithm on the GPU.



Chapter 2

Parallel programming

Traditional software is mainly written in a serial fashion targeting a single
CPU. Unfortunately, the speed of computations in serial programs has to
date more or less been limited by the doubling of the number of transistors
every 18 months (Moores Law). This issue has been overcome on larger
computations by splitting up the task and adapting it to simultaneously
execute on multiple CPUs. Lately, we have also seen a multi-core revolu-
tion on standard computers. The catch is that programmers must leave the
idea of traditional serial programs and adjust to a parallel programming
model, choose parallel algorithms or redesign serial algorithms, in order
to take advantage of the extra speed. This chapter will give an overview
of common issues, concepts and terminology related to parallel program-
ming. Some of the background material on general terminology is based
on Wikipedia article [Wik07c] and article [Wik07b].

2.1 Types of parallelism

There are in general three different ways a problem can be parallelized.
Task-, instruction- and data-based parallelism. The way parallelization is
implemented in a program can typically be divided in the two categories,
implicit and explicit parallelism. Implicit parallelism is that the system,
the compiler, or some other control mechanism partitions the problem and
sends tasks to processors automatically, as opposed to explicit parallelism
where this is for the programmer to determine. Below there will be a closer
inspection of the three different ways of parallelization.

Task parallelism: Task parallelism is to identify sections of code that can
be executed independently on multiple cores or CPUs. The main problem

3



Parallel programming

might be that there are often a limited number of independent tasks avail-
able that can be performed simultaneously, so it might be hard to scale the
program beyond a few cores. Another issue is balancing the load, so that
processors do not have to idle.

Instruction parallelism: Instruction based parallelism is widely used on
computers today. The compiler groups several simple instructions to-
gether and tries to optimize the program to execute the instructions sim-
ultaneously.

Data parallelism: Data parallelism is when array or stream elements are
distributed to each processor, so that each processor owns a portion of
the stream and executes instructions on a sub-stream. This model scales
extremely well when there is little dependency between elements in a
stream. See in Listing 2.1 how this would be expressed as a loop in a
sequential program.

Listing 2.1: Inner loop data parallelism

float aln], blbl, clnl;
for(int i = 0; i < n; i++)
cli]l = al[il+b[i]

Algorithms that for efficiency reasons can be vectorized for use with
Matlab or Python map very well to this level of parallelization and because
all sub-arrays usually are about the same size, this type of parallelization
will balance the load well to multiple processors.

2.2 Communication

Like serial, parallel algorithms need to be optimized for memory usage
and cpu- time, but unlike serial algorithms it is also necessary to optim-
ize for communication between processors. There are four patterns in
communication that tend to show up during the design phase in many
algorithms. These patterns will be outlined, but first there will be an over-
view of the two ways parallel processors can communicate.

Shared memory: Multiple processors share a global address space. Changes
to one memory location affected by one processor will immediately be
available to all other processors in the domain. Because there is a risk that
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Scatter

Figure 2.1: Gather and Scatter

Gather

different threads will read and write, or two threads will write simultan-
eously to the same location, it is necessary to synchronize the threads to
avoid race conditions and errors in the result.

Message passing: Processors have their own memory and communic-
ation is done by passing messages, which may incur some added time,
latency, to initiate communication. Often it is desirable to group trans-
fers between processors to reduce the significance of latency at the cost of
bandwidth.

Broadcast and Reduction: Broadcast is to distribute relatively few val-
ues to all processors available and is limited only by propagation of values
in the processor grid. The opposite is called, reduction which is to reduce
a set of values to fewer, for example to find the highest, lowest, or the sum
of the elements in an array. Reduction should be relatively fast and paral-
lelizable until there are fewer values than processors left, since it always is
possible to read values that reside in cache or local memory.

Gather and Scatter: The gather operation takes a list of addresses and
writes the values in these addresses into an ordered array. Scatter takes an
array and a list of pointers to scattered locations, and scatters the values
to these locations. These operations are in other words opposite of each
other. See Figure™?. Unfortunately, these operations may lead to cache
misses and increased communication, if the data structure is not carefully
planned.
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Synchronous and Asynchronous Communication: There are two more
important terms related to communication. The first is synchronous com-
munication which requires the processors to wait for each other to finish
with current jobs before data can be transferred. The other is asynchronous
communication which allows tasks to transfer data independently from
one another.

2.3 Parallel architectures

After stating the differences between data-, instruction- and task-based
parallelism and the differences of communication patterns, we discuss the
classification of parallel architectures.

Flynn’s Taxonomy: Flynn’s Taxonomy is one of the widest used classi-
tications of parallel computers. The most interesting categories today are
SIMD, Single Instruction Multiple Data and MIMD, Multiple Instruction
Multiple Data. Most modern CPUs are able to execute multiple instruc-
tions on multiple data simultaneously, MIMD. SIMD is a vector processor
which performs the same instruction on hundreds of elements in a stream
simultaneously. In addition to the GPU which is SIMD, modern CPUs also
have SIMD in their instruction set (Intel SSE) and the IBM Cell processor
has multiple vector processors.



Chapter 3

Heterogeneous processors

If you look at it, by the time you
put dozens of cores on a chip, they
won't be the same kind that you
can put three or four on a chip
today

—-MANNY VARA
Technology strategist with
Intel’s RD labs

There are two types of architectures for numerical computation in par-
allel environments. There is the more traditional homogenous multi-core
style, where the code is set to run on equal parallel processors or cores, and
the heterogeneous computing environment where there are several differ-
ent architectures working together. Obviously it is easier to port existing
codes to homogenous computers than heterogeneous because all cores can
run the same code, but when a new homogenous computer is installed,
there may be some tweaking to get the code to run optimally with respect
to maximum cache re-usage and special optimized instructions. For in-
stance a lot of effort has been put into getting ATLAS to Auto Tune itself
for speed and getting compilers to translate code to the fastest instruction
set available.

Heterogeneous multi-core computing is the utilization of several ar-
chitectures, were some are designed for a special purpose. The algorithms
are reimplemented to make the best usage of the special purpose architec-
tures and handle constraints in the architecture. The advantage of such
architectures is that they are designed for speed in one special application
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and not for usage in everything between desktop applications and high-
performance computing. The IBM Cell Broadband Engine Architecture
is a heterogeneous multi-core architecture on a chip that has gotten a lot
of attention lately as the processor in Playstation 3. This processor has
one main processor (PPE), and eight Synergistic Processing Units (SPU)
made for acceleration of high-performance applications. AMD has also
outlined plans for "Accelerating Processing Units", that is, multi-core chips
that include any mix of dedicated processors !. Natural choices for such
processors could be a GPU, media accelerators, something similar to, or
licensed, ClearSpeed 2 3 acceleration technology for high-end computa-
tional systems, and Ageia *PhysX physics accelerator. All are parts that
are delivered on extension cards today and together with a CPU provide a
heterogeneous programming environment. One advantage of such an in-
tegral system will be low cost of communication between the processors.

Even though on-chip heterogeneous processors yet are less common,
heterogeneous environments have been common for years. The most com-
putationally demanding consumer applications are 3D rendering and con-
sequently about all commodity computers have a dedicated graphics pro-
cessor unit (GPU). Because of increased flexibility in the architecture in
recent years, General Purpose computations on the GPU (GPGPU) has be-
come an important part of the research as a data-parallel processor in het-
erogeneous multi-core systems. Therefore the work in this report is also
based on this system.

[PPMO6] presents parallel matrix multiplication in a CPU and GPU het-
erogeneous environment. One challenge they point out is to balance the
load of multiplication between the CPU cores and the GPU, and they con-
sider to research further on developing an automatic performance tuning
library. In chapter 5 of this report there is also done some work on util-
izing both the CPU and GPU simultaneously. However, load balancing
will not be an issue, since different parts are task-parallelized between the
CPU and the GPU in a way that favors the most effective features in both
architectures.

The benefits from utilizing heterogeneous processors are reflected in

1http: / /techreport.com/onearticle.x/11438

http:/ /www.clearspeed.com/
3http://www.reghardware.co.uk/2006/03/15/amd_clearspeed_opteron_maths_co-pro/
4http:/ /www.ageia.com/
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Table 3.1: This is an overview of available processors and their peak FLOPS.
Prices are collected from a Norwegian webshop in April 2007

Processor type Cores | GFlops | Price (NOK)
Intel Core 2 Extreme Quad Core QX6800 2.93GHz 8MB 4 94 9950,-
Cell Broadband Engine 8+1 | 204.8 N/A
NVIDIA GeForce 8800 550 128 5049,-

the performance table 3.1. Of course it shcould be mentioned that the
standard CPU, is also useful. Special purpose architectures can can only
work on for example computations. Not general tasks, like handling logic
and running an operating system.







Chapter 4

General-Purpose Computing on
Graphics Processing Units

The GPU (Graphics Processing Unit) is a parallel coprocessor designed to
do high performance visualizations in graphics applications. One of its
main applications today is games; which has made it a commercial suc-
cess story. Cutting-edge features demanded from the gaming industry
and relatively cheap price due to its widespread popularity has recently
made it interesting for general purpose computing (GPGPU). Throughout
this chapter the concepts from last chapter is mapped to the GPUs parallel
architecture and its peculiarities are illuminated in order to be able to im-
plement efficient linear algebra. However, there is much secrecy around
details in this architecture, so a general rule to speed is that things that

look like graphics to the GPU should be fast.

4.1 Textures

An array in graphics memory is called a texture. The GPU can read from
one input buffer, and write to another output buffer, but not use the same
buffer as input and output, respectively, read-only and write-only. There-
fore one run in the pipeline requires at least two textures. The graphics
APIs offer one-, two- and three- dimensional textures, but the render tex-
ture has to be two-dimensional. The length of one-dimensional textures is
also limited (4096 for NVIDIA G70).

Relatively short read-only vectors can be stored as one-dimensional tex-
tures, but if the elements in the vector should be updated by the GPU or
the vector is to long, it is necessary to store the vector in two-dimensional
texture layout. The vector can for example be packed like in Figure 4.1.

11
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Figure 4.1: Packaging of a vector into a 2d-matrix

Dense matrices map very naturally to the two-dimensional layout of
textures. However, to maximize speed it is important to consider if the
most natural way is the fastest. Since a texture is designed to keep color
images, each position in a texture can hold up to four components (red-,
green-, blue-, alpha- channels). Because of limited cache, further discussed
in a later section, it may be vital to consider utilizing these channels in a
column-, row- or block-wise fashion in order to improve the chance of
cache hit in the direction of your data. Of course, the gain in perform-
ance has to be evaluated against the cost of repacking. The processors are
also pipelined in such ways that work on four-wide arrays are just as fast
as working on a scalar value, making the computation four times faster
as long as it is not bandwidth limited. This does not apply for the new
generation G80 graphics card from NVIDIA, that is a scalar architecture.

4.2 The architecture

The graphics processor is a SIMD architecture capable of doing lots of
arithmetic operations in 32bit floating point precision. To utilize this for
general purpose, every step in the parallel algorithm has to be converted to
render operations. For general purpose usage the most interesting parts of
the render pipeline are the two programmable processors, the vertex- and
fragment- processors, and one special purpose device called the rasterizer.
The vertex processor is designed to work on vertices, while the fragment
processor is designed to do per-pixel operations. Since there in most ap-
plications are more pixels than there are vertices in the geometry, the frag-
ment processor is more powerful, so the heaviest calculations should be
done in this part of the pipeline. Due to its capability to render independ-
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ent pixels at high speed it is great for data-parallel applications.

4.2.1 The programmable pipeline

The programmable graphics pipeline is shown in Figure 4.2. First, two
streams are sent to the vertex processor. In GPGPU the first stream de-
scribes the computational range of the problem and the other stream is
texture coordinates and describes the computational domain. In addition,
the vertex processors can read textures. The vertex processors can do cal-
culations on all these streams, to change the range, domain or something
else that linearly changes over the grid. Then the result is sent to a very
efficient special purpose device, called the rasterizer in which geometry
is turned into fragments. The rasterizer linearly interpolates the texture
coordinates, so they can be used as addresses to look up values in a tex-
ture, and sends them to the fragment processor, thus the rasterizer can be
recognized as an address interpolator. The next step is the fragment pro-
cessor which is designed to take the computational load, before the results
are written to a texture.

The fragment program can be compared with the "inner loop" on a
CPU that iterates over elements in a stream. The counter in the "inner
loop" that indexes the arrays is replaced with the results from the raster-
izer hardware. The fragment processor on NVIDIA G70 is able to output
up to four values per target in four targets and one depth value.

There are still some steps in the rendering pipeline that may have some
occasional interest. The depth buffer can be used to find a subset of val-
ues, where one of them is the maximum [HHL"05], or it can be used for
some other branching purpose where a set of values has to be checked.
This mechanism can also be used for something called early z-cull that
eliminates calculations on elements that are not affecting the result. An-
other feature is the occlusion query that is designed to count the number
of rendered pixels and return the answer, without stalling the pipeline.
This feature can potentially be used to check equality of vectors [HB05].
There are still some post-processing operations left, like blending, but on
NVIDIA G70, these operations are not supported for 32bit floating point.
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Vertex shader

Rasterizer

Textures —* | Fragment shader

Render buffers

Figure 4.2: The programmable pipeline: Shader model 4 hardware, intro-
duced with DirectX 10, may also specify a geometry shader, to
be executed between the vertex and fragment shader.
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4.2.2 Memory management

There are different design goals for texture memory on the graphics chip
and main memory in a computer. CPUs have natively little parallelism
in the instruction set so it is essential that memory references are returned
from main memory with as little latency as possible while texture memory
is designed for high throughput only. The GPU is pipelined in such a
way that non-dependent operations are done if some are available, while
high latency out-of-cache memory is fetched, to hide the additional cost of
texture read. Therefore most high-end graphics chips are equipped with
ddr3 or ddr4 memory, while high-end main memory is the well estab-
lished ddr2.

To further lower the latency and compensate for bandwidth, the CPU has
some extensive hierarchical caching mechanisms. On the GPU the cache
is designed for a completely different purpose. The cache is designed to
accelerate texture filtering and is therefore caching relatively low amounts
of data in two directions. Locality is therefore important when GPU al-
gorithms are optimized for cache. For algorithms that read large amounts
of data once, the speed on the CPU will, in spite of caching, fall back to
memory speed, so in bandwidth hungry applications the GPU easily out-
performs the CPU.

4.2.3 Shader Model 4

Shader model 4 were introduced with DirectX 10. The main difference
is that the shader execution units are unfor, which means that the pro-
cessors are shared between the vertex processing stage and the fragment
processing stage, allocating resources where it is most needed.

4.3 Communication

The graphics processors are designed to work on small independent parts
of a stream, thus there is no communication between the processors. Each
time a processor needs values computed on another processor, it has to fin-
ish execution of the kernel and render the results to shared memory. The
enormous bandwidth can compensate for the lacking capability to store
intermediate results in cache on large data sets, but since cache on the
CPU is faster than texture memory, very cache-friendly algorithms on the
CPU may still be faster. On the upside, there is little need to worry about
synchronization issues because each processor writes to its own restricted
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part of the memory.

For communication between the graphics chip and the main board
there is both a bandwidth and latency challenge. The bandwidth over
the PCI-Express x16 bus is up to 4GB/s in each direction, but in practice
it can be under half that speed, which is severely slower than the internal
memory transfer speed on the graphics chip. To hide the overhead from
tirst transferring data to texture memory and then read it back, it is neces-
sary in between the two operations to iterate over the transferred data set
many times. The GPU is able to do independent work while a new texture
is uploaded; efficiently hiding both the latency and eventual bandwidth
limitations from streaming of the texture over the bus, but readback from
the render target stalls the pipeline, because it is required that the render-
ing of the image is completed before the data can be transferred, introdu-
cing latency from both later restart of the render pipeline and transferring
memory over the bus, eventually making the performance suffer.

During traditional readback, neither the CPU nor the GPU is able to do
anything else than wait, first for the other side to catch up, if it is slower,
and then for the data to be transferred. As long as the render target is
read back, it is impossible to do anything, but there is an extension called
Pixel Buffer Object that may help in some cases. PBO is actually an ex-
tension to Vertex Buffer Object (VBO), which is there to instantiate geo-
metry from rendered data by copying it into a buffer that can be used by
the vertex processor. The PBO extension includes some additional targets
for data from the render target allowing asynchronous readback. The PBO
extension allows for copying of data in high-bandwidth graphics memory.
After this is done, the GPU is free to start again with more rendering. On
the CPU the, readback call is non-blocking and returns immediately, hence
other important work can be done while the data is read back with help
from the DMA [EIhO5]. When the data for sure is in system memory, it can
be accessed and processed. Traditional synchronous readback is still faster
if there is no work to be done while waiting for memory to be transferred.

Many parallel algorithms are actually designed to reduce the latency
from memory transfers. Especially techniques designed to lower latency
on clusters with message passing are interesting. This topic will again be
discussed in chapter6, but the essence is that the algorithm is rewritten to
send less often, but in larger blocks.
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4.4 Communication Patterns

In chapter 2 a few patterns of communication were mentioned. Those
were broadcast, reduction, gather and scatter. This section will describe
how these patterns adapt to the GPU.

Broadcast: Broadcast adapts very well to this architecture. If the value to
be broadcasted is on the CPU, it can be sent as a uniform parameter, which
is a "runtime constant" that is distributed very fast to all GPU- kernels. If
the value reside in texture memory, each fragment program can look it up.

Reduce: A lot of effort has been put into detection of the most efficient
way to reduce a set of values to a smaller set or only to one scalar, either
by summation or searching for the element with e.g. highest value on
GPUs. This operation can frequently be found in linear algebra algorithms
as inner products, and is generally popular in algorithms because of its
cache friendly sequential access behavior. There are multiple procedures
for how to do this on the GPU. Reduction can be performed by altern-
ately render and read from two buffers (ping-pong) in multiple passes,
and render fewer values in each pass [BP04]. [BP04] also proposes to
read back before there are fewer elements left than the degree of paral-
lelism offered by the graphics processor. [HHL'05] finds the maximum
in an "all-reduce" operation exploiting the depth buffer, and reads back
to the CPU in the end for final calculations. [GGHMO05] runs a sequen-
tial fragment program at a single texel location, and reads back that texel
in search for a pivot. [GGHMO05] also provides a figure showing that this
step has little performance impact on the underlying algorithm for partial-
pivoting, even though there is no parallelism in this approach.

Gather: Gather can easily be implemented on a GPU. Two textures can
be used such thats one is an address texture and the other one contains
the values. This can for example be used to represent sparse matrices as in
GPU GEMS 2 [?].

For each value there will be two texture fetches, where the second is
depends on the result of the first. This may lead to poor performance. First
of all, if there is no non-dependent work left for the fragment processor to
do while it fetches memory, the pipeline will stall and clock cycles are
wasted. In addition, texture fetches will take more time, because of poor
random access performance [BucO5][Page 510]. Dependent texture fetch
also breaks the possibility for the graphics chip to prefetch larger segments
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of memory, altdoug if the dependent pixel is in cache e.g. a neighbouring
pixel it should be fast.

Scatter: Scatter is much harder to implement, since all fragment addresses
are pre-computed, before execution of the kernel. [Buc05] has done some
work on a couple of cases were scatter can be seen as gather and a way
to scatter values by also outputting memory addresses, and then sort by
these addresses in multiple passes.

If only a few values are to be scattered in a large texture, [Buc05] pro-
poses to render points, with the vertex processor, but the snag is poor us-
age of the rasterization hardware, and higher chance for collisions. Still,
in chapter 5 this method will be used.

4.5 Programming

When the graphics chip is programmed for general purpose, the legacy
from graphics APIs, which is designed for just graphics rendering, is no-
ticeable. Knowledge of OpenGL or DirectX is necessary to avoid hollow
error messages like “OpenGL: Invalid operation”. New technologies tar-
geting general purpose usage has emerged, that help abstracting away the
most excessive difficulties.

GLSL and Cg: The graphics APIs have support for shader languages
that is used to program the graphics processors. GLSL and Cg are ex-
amples of high level “C-like” languages that provides an interface to the
parallel hardware. After compilation, kernel operations are executed in
parallel on entire streams. A GLSL shader is shown in Listing 4.1. The
languages offers natively vector data types with up to four components
that can be reordered arbitrary at no cost with an operator called swizzle,
and some built-in functions, like the dot- product.

Shallows: Shallows is a C++ library built upon OpenGL that abstracts

away the OpenGL calls for the user, but still allows users to control OpenGL
directly if that is wanted under some circumstance. The library provides

easy creation of the environment necessary to run vertex and fragment

shaders designed in GLSL or Cg with textures as input and output, and

also easy access to error checking functionality.
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Glift: CGlift [?] is a STL like generic template library for the GPU for al-
gorithms and data structures. The library is programmed in Nvidia C for
graphics and C++, and offers a large amount of reusable data structures.
A library like this is a good idea, because like STL, it will be able to save
considerable time for development. A challenge right now is to maintain
the library and include new algorithms as they get introduced in a high
rate.

CUDA: Computed Unified Device Architecture, Cuda, is an extension to
the C-programming language designed by NVIDIA for the G80 generation
of graphics processors. CUDA extends the C-language with a few extra
function type qualifiers and some other notion that allows the compiler to
determine which functions that shall execute on the GPU, and which func-
tions that shall execute on the CPU. CUDA offers a few libraries, where the
cuBLAS library, that includes BLAS functionality for the GPU, is specially
interesting for the scope of this thesis.

4.6 Branching on the GPU

As for inner loops on the CPU, branching should be minimized on the
GPU. When a branch is taken by some, but not all fragments, many pro-
cessors will execute both branches. For the Nvidia GeForce 7 series a con-
ditional branch will process 880 pixels. I have unfortunately not found
any other places than this article . It should be mentioned that branching
is getting better on all new generations of graphics chips, but still; if it is
possible the branches should be moved to the CPU, or the preprocessor, or
alternatively the expression should be rewritten, so that there is no need
for branching.

4.7 Computational superiority

Through the former sections we have clarified some of the things to con-
sider when programming the GPU for general purpose, and tasks that fit
the programming model can benefit from for example higher-bandwidth
memory. In this section the computational superiority of the GPU is illus-
trated. The flexibility of the CPU comes with a cost. A huge part of the

1http ://wuw.extremetech.com/article2/0,1697,20563310,00.aspthatcanverythenumber
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Listing 4.1: Fragment shader

uniform sampler2D matrix;

void main ()
{
//Read wvector from the tezture
vec4 top = texture2D (matrix, gl_TexCoord [2].st);

//Read a float from the tezture
float multiplier = texture2D (matrix, gl_TexCoord [1].st).x;

//scalar -vector multiplication
top = top * multiplier;

//Read a new vector
gl_FragColor = texture2D (matrix, gl_TexCoord [0].st);

//Subtract the wectors and save the result to the pizel
gl_FragColor -= top;

transistors on the CPU is devoted to control mechanisms to direct com-
munication or branching in the software. On the GPU, branching has over
the years become better, but there is still far less transistors used to control
the processors on the GPU, with the result that multiple processors are
treated uniformly. To compensate for slower main memory and the de-
mand for low latency in each memory fetch, the CPU uses almost half the
transistors on the chip for cache. However, the GPU is designed to work
on large streams of data, which will not fit in the cache anyway, so there is
only a little cache available. The transistors saved on reduced cache-, and
control-mechanisms on the GPU is put into the Arithmetic Logic Unit. In
applications that have a high rate of arithmetic operations, like the Black-
Scholes [Wik(07a] PDE, the GPU can really outperform the CPU. In a Peak-
stream based implementation [Pea(06] there was a speed-up of 28x on an
ATI R580 GPU versus a dual Intel Xenon processor. See figure 4.3 for a
rough schematic comparison of the distribution of transistors on the CPU
and the GPU.
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CPU GPU
Figure 4.3: Schematic comparison of the distribution of transistors on the

CPU and the GPU






Chapter 5

LU factorization

During 1951 a programme for
solving simultaneous linear
algebraic equations was used for
the first time

—MICHAEL WOODGER

The History and Present Use of
Digital Computers at the
National Physical Laboratory
(1958)

My LU-implementation is designed to solve a dense linear system of
equations, Ax = b, on the GPU. The algorithm set for this task is the LU-
algorithm. First there will be a presentation of the algorithm, before re-
lated work is introduced. Then there will be a presentation of this imple-
mentation followed by an analysis of the results from the implementation.

5.1 LU-decomposition

LU- decomposition is a factorization technique utilizing basic row opera-
tions to obtain triangular forms that easily can be solved with substitution,
A = LU. Because it inherently breaks down into a factorization phase and
a substitution phase, the two phases will be discussed separately, start-
ing with the former. The Crout- and the Doolittle algorithms are the two
most common LU- decomposition algorithms, but because the differences
are minor and Doolittle is chosen for later implementation for simplicity
reasons, the theory in this chapter will apply to the Doolittle method. The
difference is that with Doolittle there are ones on the diagonal in the lower
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k—th steg

N Submatrix

Figure 5.1: LU-factorization

triangular matrix, and with Crout the ones are with the upper diagonal
matrix.

5.1.1 LU- factorization

The factorization phase is two-split. First multipliers are calculated, before
the remaining submatrix is updated. The multipliers are the multiple of
the entry at the upper left position in the k-th step subtracted from the
tirst column of the rows below. At each position in the submatrix the
product of the corresponding entries in the k-th row and the multiplier
column is subtracted from the underlying submatrix, in concordance with
tigure3. Once Doolittle is finished there is a unit lower triangular matrix L,
and a upper triangular matrix U, related to A by the matrix multiplication,
A = LU. Both matrices can be stored in one matrix as is done in the vector-
ized algorithm 5.1. Notice the predictable indexing and data-parallelism
qualities.
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Listing 5.1: Vectorized LU

for k=1:N-1

A(Ck+1:N,k) = A(k+1:N,k) / A(k,k)

A(k+1:N,k+1:N) = A(k+1:N,k+1:N) - A(k+1:N,k) * A(k, k+1:N)
end

5.1.2 Substitution

When the factorization is complete, forward and backward substitution
may be done in order to solve the system, LUx = b. First Ux = y is set,
and Ly = b is calculated by forward substitution.

Then Ux = y is calculated by backward substitution and the solution to

Algorithm 1 Forward substitution:

for k=1to N —1do
v = by — Y5 Ly
end for

the system is obtained.

Algorithm 2 Backward substitution:

fork=n t%nl dou
Yk Ljmke1 YK
Yk = Uk
end for

5.1.3 Pivot

If the upper left entry in k-th step is zero, a, = 0, the algorithm will at-
tempt to divide by zero and break down. If the absolute value of the entry
is small, the multiplier may get large and errors in the submatrix will be
enlarged caused by finite precision in floating point arithmetic. The ex-
ample below borrowed from [Hig96][Chap. 1] illustrates this phenomena

well.
(e -1\ (1 0 Uil Ui
A_<1 1)‘(1211)<0 1y )0 <€
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Uyl =€,upp = —1,1 = 671, Uy =1—Ibhiup =1+ el Ifeis sufficiently
small, 1y, evaluates to e ! When L and U are multiplied and subtracted
from A, there is an error in the result.

At (33 ( L) G )=

However, if the rows in pear. There are several strategies to keep the mul-
tipliers small, in order to avoid accumulation of large errors. The most
common strategy is partial pivoting which searches for the largest abso-
lute value entry, the pivot, in the k-th column in the k-th step and does a
corresponding row interchange. The risk of breakdown is simultaneously
eliminated.

pivoty = MaXy<iop|a|

On the cpu row interchanges can efficently be represented with a per-
mutation array, representing the reordering. See Figure 5.2(a). Initially the
permutation array contains an ordered sequence of numbers from zero to
n. Each time rows are interchanged the corresponding positions in the
permutation array are interchanged. Then p(k) is used to represent row
k. This will ensure minimal overhead. Reordering the rows is essentially
the same operation as premultiplying A with a permutation matrix and
calculate PA = LU. To solve this system, the right hand side also has to be
premultiplied with P, so the system to be solved is LUx = Pb.

5.2 Related work

LU- decomposition is earlier implemented on the GPU by [GGHMO5],
and this effort has functioned as a guideline to what to give full atten-
tion to, and what is less important to focus on through the work described
later in this chapter. This section summarizes some of [GGHMO05]’s work
and outlines ideas from this implementation that is brought further. The
section is split so that the parts that directly relate to the LU- algorithm
outlined in a later section get more space.

[GGHMO5] implements and tests both the Gauss-Jordan and the LU-
decomposition algorithms, and the LU- decomposition is tested with par-
tial pivoting, full pivoting and without pivoting. It provides an analysis of
texture accesses and arithmetic operations for each fragment and the total
number of updates in the two algorithms and concludes that LU is faster
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Figure 5.2: Rowinterchange: In the left figure the representation of row in-
terchanges is viewed and to the right the corresponding permuta-
tions matrix is shown.

than Gauss-Jordan on the GPU.

One of the sweetest things about this implementation is that due to the
GPU?s massive data-parallelism design the LU-algorithm shows as a very
clean and clear non-complex algorithm. It is basically just the vectorized
algorithm of the standard LU-algorithm and because the vectorized ver-
sion favors a sequential access pattern for memory as the GPU does for
texture accesses the two seems like a perfect match.

The implementation features a very clean and intuitive mapping of

matrices to textures that matches the two dimensional data layout of GPUs.

The matrix is directly mapped to a one-channel 2D texture and in each pass
the lower right (N-k) * (N-k+1) matrix, that matches the pattern of a large
quadrilateral, is updated. This allows for high utilization of the graphics
pipeline.

It is easy to keep track of the number of passes that is done, so the top
row and multiplier column in k-th step is during update of the remain-
ing submatrix found with help from texture coordinates. This quality of
the implementation is dubbed index pair streaming. The advantage with
this model over computed index pairs is that this allows for memory to be
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prefetched by the fragment processor. To utilize available cache the frag-
ment processor fetches memory in large 2D blocks. Since the index pairs
are a column and a row the fetches of these two parts in a fragment should
match the spatial locality of these blocks and get fetched from cache and
therefore put little stress on the bandwidth, allowing for a faster execu-
tion. Texture cache and block sizes are kept secret by graphics vendors,
but since the rasterization engine can be used, the design is cache oblivi-
ous and should therefore perform well on a GPU.

Both partial and full pivoting are implemented and tested. Both meth-
ods sweeps the matrix for a pivot to increase the stability of the linear set,
but full pivoting is significantly slower than partial pivoting and is there-
fore a less often wanted strategy. The partial pivoting implementation run
a fragment kernel in a single texel that loops over the texture and write the
address of the highest pixel to the target. Then that texel is read back to
the cpu.

Since pointers based on dependent-texture fetch are very inefficient on
GPUs, the algorithm runs a copy fragment program for row interchange.
The two rows are rendered to the correct position in the target, and then
rendered back to the source. This approach is more efficient, because of the
high bandwidth on graphics memory. Since rows are actually swapped,
the main drawback of pointer interchanges on CPUs, namely thrashing of
cache on frequent row interchanges, is eliminated.

For every pass in the LU algorithm with partial pivoting, one single
pixel find pivot program will run, two instances of the copy fragment pro-
gram will run to interchange rows, one normalize program to calculate
multipliers, a new instance of the copy program to render the multipliers
back to the source buffer and then a row operation program that updates
the remaining submatrix, before proceeding to next pass.

Only data stored in texture memory is used, so the bandwidth will be
tully utilized during every stage in a pass, and results from benchmarking
shows that the algorithm is a little faster than ATLAS for partial pivoting.
Another interesting result is that the performance impact from readback
and row interchange in LU with partial pivoting is relatively small com-
pared to LU with no pivoting.

The High Performance LINPACK benchmark (HPL) [APCO04] imple-
mentation of LU is designed to benchmark supercomputers. Much of the
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work done in this implementation does not relate to implementing LU on
a single node e.g. block cyclic distribution of data, but one particular op-
timization is very relevant. The lower triangular factor L is applied to the
right-hand side b, as the factorization steps forward. This trick is the key
to one of the optimizations done in my implementation.

5.3 The Implementation

Much of the effort put in this implementation is inspired by the LU on
GPU work of [GGHMO05] and the details of this will be reflected in this
text. For speed, flexibility and stability reasons the algorithm that is imple-
mented and tested is the vectorized LU- algorithm 5.1 with partial pivot-
ing. Even though parts of the design have much resemblance with the
[GGHMO05] implementation, there is one major difference in the concept.
While [GGHMO5] does almost everything on the GPU, this implement-
ation spreads tasks to both the CPU and the GPU based on the degree
of data- and task- parallelism in each step in the algorithm, to optimize
for best utilization of the strengths in both architectures and simultaneous
execution of tasks. The other main difference is that this algorithm in ad-
dition to factorization also performs forward and backward substitution
to obtain a final solution from solving a linear system.

5.3.1 Design goals

During the design phase of this implementation I sat the following guidelines

to focus on, for optimum usage of the graphics hardware. These guidelines
are partly based on Galoppo et. al. [GGHMO05]’s analyses of what lead to
most speed, and partly some consequences that may occur, when other
optimization techniques are applied.

Index pair streaming

Memory locations in the LU- algorithm can be read in a very predict-
able pattern, allowing the vertex processor and the rasterizer hardware
to compute where to find values. Since these addresses are computed out-
side the fragment processor, the graphics processor can pre-fetch blocks
of memory to the fragment processor, which should lead to faster execu-
tion. Galoppo et. al. [GGHMO05] streams the addresses for the top row and
the multiplier column to the vertex program and the rasterizer interpol-
ates the result and send the addresses to the fragment processor. In their



30

LU factorization

implementation of the algorithm it yielded a 25% speedup over computed
index pairs.

4-wide vectors

Since the GPU is designed to work on four component color vectors, there
will be a theoretical computational speedup bound to packing the matrix
such that every calculation is done on four component vectors. The extent
of this optimization is hard to predict, since there is an increased chance
that the algorithm will be bandwidth limited because more memory is
read simultaneously, and the algorithm has relatively few independent
arithmetic operations that can hide the cost of texture fetches. Galoppo et.
al. [GGHMO05] observed close to peak bandwidth on NVIDIA Ultra 6800
on their one-component texture algorithm.

There may also be an increased amount of wasted work in the algorithm
since the LU eliminates one row and one column in each pass, and not a
multiple of four values, but this may depend on the packing of the matrix.
This issue will be discussed further later.

If the 4-wide vectors are put either along the rows or along the columns
in the texture, there will most probably be an increase in speed, either be-
cause there is 4 times as many top row elements read from cache or there
is 4 times as many multiplier column elements read from cache as index
pairs when a block is processed.

Even though there will not be an increase of a multiple of four in speed,
the bandwidth will be fully utilized more often, since it is a better chance

for bandwidth limitations when four times as much data are processed in
a block.

Simple matrix representation

Repacking a matrix for more efficient representation on the GPU in main
memory can potentially be costly due to cache misses. If the algorithm
packs four components along the rows or the columns the access pattern
will match either Fortran or C style arrays and can be mapped directly to
2D texture memory. If the matrix size is not a multiple of four it can easily
be padded in the process of copying it to driver controlled memory.
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Figure 5.3: Packing of components in a texture

More effective solution for row interchanges

On the CPU, rows are swapped with pointers in memory. A “pointer tex-
ture” is not very efficient on the GPU because it will lead to dependent
texture fetch. [GGHMO5] solves this by copying rows to the right location,
utilizing the high bandwidth texture memory, to copy 4*4*matrix-width
bytes of data in each pass to get the rows to the correct location. On a CPU
the maximum copying at this step in each pass is 3*4 bytes if an int array
is used to represent the pivots, but [GGHMO05] argues there may be an
added cost from lots of cache misses during update of the submatrix on
the CPU.

“Pointer textures” is a non-solution, but there is a lot of copying in
the [GGHMO5] implementation that may affect performance. A hybrid
approach where less data is copied could potentially increase perform-
ance, but since data must be copied between two buffers (ping-pong) this
guideline was a hard challenge to overcome.

5.3.2 Matrix representation

A matrix is represented as a texture on the GPU. A matrix matches the two
dimensional layout of texture memory very well. In this implementation
the width of the matrix is divided by four and mapped to a texture with
four-wide sub-arrays in a row-wise fashion. See figure 5.3 for illustration.
If the matrix width is not a multiple of four it has to be padded to the right
width. The reason why the matrix is packed in this style, is that it allows
for a minimum amount of data to be copied for row interchanges.

Four component textures is chosen because most graphics processors are
built to work on four- color textures (Red, Green, Blue, Alpha). This is a
design choice done to utilize as much GPU power as possible on all avail-
able hardware when working on the update submatrix part. In addition
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to the matrix there is one special purpose texture column to the left in the
texture, used for multipliers and intermediate results.

5.3.3 Flow in the implementation

The implementation is divided into two shaders that execute in each pass;
one for each data-parallel operation in the vectorized algorithm 5.1. The
tirst shader calculates all the multipliers in the k-th pass and stores the res-
ults in the left most column in the texture. The other updates the submatrix
based on the previous calculated multipliers. When a pass is finished the
buffers are swapped and the procedure is done over again.

5.3.4 Row interchanges

The algorithm is in particular designed for partial pivoting. The challenge
is to interchange rows with minimum impact on performance. In this ap-
proach to the problem, rows are scattered to the correct location during
calculation of new values. Since the algorithm has to ping-pong between
buffers on the GPU, the k-th row in k-th step should after it has been up-
dated with respect to the corresponding multiplier and the pivot row, be
located at the pivot row’s index in the other buffer. The pivot row could
then be copied to an “upper-diagonal” texture to be saved in anticipation
of backward substitution. If the k-th row is rendered to the “pivot row
location” in the other texture during the row-operation and multiplier cal-
culation part of the LU-algorithm, simultaneously as the other rows that
are not interchanged are processed, the only cost not eliminated is copying
the pivot-row to the “upper-diagonal” texture once in each pass.

The figure 5.4 tries to illustrate the procedure. Red is the color of the
k-th row, blue are rows that are just updated and rendered to the target
buffer in the right figure, but not moved to another index and yellow is
the color of the pivot row. The source buffer is the left-most column in the
tigure and a pivot is selected in it to be used in calculation by the other ele-
ments. During both calculation of the multipliers and row operations in
the lower right sub-matrix, the blue elements are updated and rendered to
the corresponding indices in the right buffer. Simultaneously instructions
to execute the same computational kernel on the red element, specified
by texture coordinates, from the source buffer and render it to the index
corresponding to the yellow element from the source buffer, specified by
vertex coordinates, but in the target buffer, are queued to the graphics
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Figure 5.4: Rows are read from the left figure, permuted, and written to the
right figure

pipeline. When the instructions have finished executing, the updated red
element has been scattered to the correct location and all elements that is
needed for continues reduction are ready for next step in the algorithm.
This operation should be fast because the location is after all just geo-
metry. The yellow pivot row will not be used further in the factorization
algorithm and will have to get copied to another buffer, utilizing the high
bandwidth of graphics memory, to not get overwritten in the next pass.
Although this is a copy operation, relatively few bytes are copied.

The observant reader may have discovered that something does not
add up. The k-th row is rendered directly to it’s new location as it is up-
dated in the factorization process, and there is no additional step to main-
tain the order of the rows in the lower triangular matrix based on earlier
calculated multipliers, as rows in later passes are interchanged (hatched
area in k-th row and pivot row in figure 5.1), thus leading to columns
with dissimilar permutation. Like in the high performance LINPACK
(HPL) [APCO04] benchmark algorithm the multipliers are applied to the
right hand side b as the factorization progresses with the result that the
system Ly = b has been solved when the algorithm ends. Since previous
multipliers are of no further usage for the proceedings of the algorithm
on the GPU, they are read back to the CPU in the dissimilar permuta-
tion order they are calculated in. This trick allows for the shader that cal-
culates multipliers to also interchange the indices in intermediate results
from solving Ly = b. The exact details of this procedure are discussed in
the next sub-section.
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Figure 5.5: Overview of how values int the left-most column in the texture is

placed.

5.3.5 Calculation of multipliers

Multipliers are calculated and rendered to the left-most four-wide vector
column in the texture, but two more operations are also done in the pro-
cess. Just as in the HPL algorithm [APC04] forward substitution is done as
the factorization of the system progresses. In the substitution algorithm 1
the most computationally demanding operation is the inner product that
is done for each row in the lower triangular matrix. In each pass of the
algorithm on the GPU we can do a multiplication between the multiplier
column and the result that is calculated from the last pass, y[k — 1] from
algorithm 1, that is streamed to the GPU as a float uniform, and add it to
the partial inner products from rows from last pass.

The last operation done in this shader is the reduction of the first column
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in the remaining sub-matrix, and the result is rendered to the same pixels
as the multipliers. The purpose of this reduction is that the texture column
including the multiplier, partial inner products and reduced column is
read back to the CPU, so the CPU can, while the rest of the sub-matrix
is reduced, calculate a new y[k], and find a new pivot. See Figure 5.5 for
the organization of the results in the texture row.

During execution of this shader two pixels are read in each fragment.
The first is the last multiplier pixel where the partial sum from forward
substitution and the first column from the sub-matrix are stored. The sub-
matrix column from the multiplier row is used to calculate new multipli-
ers. Then the next column in the sub-matrix is read to allow for calculation
of new elements with a new pivot among them.

On the CPU the pixel column from the texture can be seen as a two di-
mensional array with a multiplier column, a search for pivot column and
a partial sum column where the element found in the same row as the new
pivot, is used to calculate a new y[k] that in next pass is sent to the GPU, to
continue inner product calculation. The location of the pivot is used to cal-
culate new texture coordinates to decide how the next rows are swapped
in graphics memory, and the pivot itself is streamed as a uniform float so
that during calculation of multipliers the GPU will not have to look it up
in the texture. The multipliers can either be droped or further permuted
with pointer swaps on the CPU to create a lower triangular texture.

After multiplier, find pivot elements, and partial sum columns are cal-
culated this column in the texture is copied back to the source texture, so
the multipliers can be used to reduce the sub-matrix.

5.3.6 Reduction of sub-matrix

Reduction is the simplest procedure. Addresses to the multiplier column
and the pivot row are streamed to the GPU with the index-pair streaming
technique [GGHMO05] and a the sub-matrix is reduced with respect to the
multipliers and the pivot row. In every fourth pass the computational
range of the sub-matrix is shifted one position to the left. This has to do
with more efficient caching and will be further explained in next section
when the algorithm is seen as a whole. When the reduction procedure has
finished, the row that next will be the pivot row is copied to a U texture.
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Listing 5.2: LU implementation

(CPU) Search for pivot row in main memory
bind buffer0 as source and bufferl as target
(GPU) Copy pivot row to the U- texture.
(GPU) Swap rows and render multiplier column
for_each row
(GPU) Copy multiplier column to source buffer
(GPU) Copy multiplier column to readback buffer (PBO)
(GPU) Swap rows and render reduced sub-matrix to target
(CPU) Search for next pivot row (PBO)
(CPU) Forward substitution (PBO)
(GPU) Copy pivot row from gpu to U texture.
Swap buffers
(GPU) Swap rows and render multiplier column
end for

(a) (b) (©

Figure 5.6: In the first figure the light row is selected for pivoting. In the next
figure we can se that the shaded row in the multiplier shader is
rendered to it correct location. In the last figure the submatrix is
reduced and the shaded matrix is rendered to its corrrect location.

5.3.7 Overview of the implementation

Now, each part of the main algorithm has been explained. Here these parts
are put into the bigger picture, and the relation between the parts is illus-
trated. First see listing 5.2 for the overall LU-factorization algorithm.

In figure 5.6(a) we have a matrix represented in a texture. The shaded
area is the k-th row in k-th step in the texture and the lighter area is se-
lected for pivot row. In figure 5.6(b) the multipliers are calculated and
rendered to the correct location in the target texture. The new multiplier
based on values from the shaded row, has been swapped and rendered to
the pivot location. Then the rendered “texture-column” has been copied
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Figure 5.7: In this case there are no elements left in four-wide texture column,
and the red row will collapse.

back to the source texture. In figure 5.6(c) a new sub-matrix has been cal-
culated based on the multipliers and the sub-matrix from previous step.
The lighter area was used as a “top-row” and the updated version of the
shaded area has been rendered to the pivot position in the new sub-matrix.
In the next step this result is used as input. There is one row less to con-
sider in next step, but because of the packing the number of columns re-
mains the same, until we have calculated four steps. In figure 5.7(a) we
have selected a pivot row just as in figure 5.6(a), but the result from the
reduction of the sub-matrix will require one column less than the input.
In figure 5.7(b) we can see the red column is removed, but instead of ren-
dering the output to the location shown, the whole remaining sub-texture
is shifted one pixel-length to the left as in Figure 5.7(c). The reason the
column-position is collapsed is to ensure that during multiplier calcula-
tion the first row in the sub-matrix always is read from cache. Performance
will be analyzed further in next section.

5.3.8 Backward substitution

Backward substitution is done partly on the GPU and partly on the CPU.
The matrix is dived into four blocks, where the CPU at all times calcu-
lates the substitution of the lower block, and the GPU does row vise inner
products on the rows in the texture. This is clearly illustrated in the Fig-
ure 5.8(a) and Figure 5.8(a).
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Figure 5.8: The inner products in the yellow box is processed on the CPU,
and the inner product in the green box is processed on the CPU.
This is to save readbackoperation. In total the matrix is split in
four parts.

5.3.9 Synthetic performance analyses

The two shaders executed in each pass is the multiplier shader and re-
duce sub-matrix shader. Both shaders use texture coordinates to lookup
values in a texture and not computed indices, thus pre-fetching of texture
memory should be possible. This section contains:fddfdf

Multiplier calculation The result from forward substitution in last step
and the pivot value are broadcasted as a uniform to the GPU from the
CPU, so the values will not have to get looked up in the texture. The
shader still requires lookup of four fp32 values. Two of these values share
a pixel, and since the sub-matrix is shifted to the left every fourth step the
next value to be read will reside in the neighbour pixel, thus the lookup
of this value should be from cache. The last value is the value next to the
pivot in the pivot row for all fragments, so the fetch of this value should
also be from cache. The arithmetic instructions done in this shader is a
scalar multiplication, a scalar subtraction and a two-wide vector multiply
add (MAD) operation.
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Reduction of the sub-matrix The Nvidia SIMD GPU does one instruc-
tion on hundreds of pixels simultaneously. Since the pivot row has the
width of the sub-matrix and the multipliers has the height of the sub-
matrix it is natural to assume that in either direction the render target is
updated the "neighbour fragment shader" already has read at least one of
the index pairs that is needed into cache already, which will ease on the
available bandwidth. Each fragment program read two four-wide vectors
and a scalar multiplier value. The arithmetic instructions available in each
shader to hide the cost of texture fetch are one four-wide multiplication
and one four-wide subtraction.

Search for pivot While the sub-matrix is being reduced the multiplier
column is read back to the CPU and a new pivot is searched for on the
CPU. It is relatively little data that needs to be searched through and since
the search for pivot can be done in parallel to reduction on the GPU and
the CPU has faster cache, it should lead to increased overall throughput.

When the remaining sub-matrix is getting sufficiently small the sub-
matrix is read back and the final calculations are done from inside cache
on the CPU. This is because it is harder to utilize the parallelism of the ar-
chitecture beyond a certain point, and the cost of communication is getting
relatively high.

Memory transfers In each pass the pivot row is copied to an upper di-
agonal texture, and the rendered multipliers are copied to the source. Of
course there is a cost related to this, but both copies are done fully in high
bandwidth texture memory.

Wasted work Since the rows are packed as four-component sub-vectors
and the algorithm eliminates one column at a time it is almost impossible
to avoid wasted work in the computations. The left-most column in the
matrix, column k+1 in k-th step is always calculated twice. In the case
where the k+1 column is rendered to the alpha- position of the texture
during reduction of the sub-matrix a whole pixel-column in the texture is
wasted computations and memory accesses.
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Table 5.1: This is the results from benchmarking the LU-algorithm

Matrix size | GPU LU ATLAS
128 0,093 | 0,002808

256 0,156 | 0,026375

512 0,344 | 0,063747

1024 0,797 | 0,400158

2048 2,531 | 2,685458

2560 3,922 | 5,133072

3072 5,953 | 8,669463

3584 8,422 | 13,674318

4096 11,907 | 25,856191

5.4 Future extensions

The implementation as it is has one big limitation. The input matrix size
must be a multiple of four. This is alright because it merely is a case study,
but if the implementation was to be used in production, this issue can eas-
ily be fixed by shifting each row in the matrix the appropriate number of
positions to the right when the matrix is copied to a texture, at no extra
cost by utilizing the texture stream functionality in pixel buffer objects.

Another interesting feature would be to expand the implementation to
work with multiple right-hand sides, as about the only change necessary
would be that the multiplier shader works on a quad instead of a line.

Mixed-precision iterative refinement is another feature that could be
interesting to examine for LU on GPU. Factorization of A and substitution
is performed in single precision at single precision speed, and the only op-
erations performed in double precision are the calculation of the residual
and consecutive update of the solution.

5.5 Benchmarking

For benchmarking I have chosen random data, because the same number
of operations are done no matter which values that are put in. For simple
cheching of the answer the rows in the matrix are summed to a b-vector.
See Figure5.9 and Table5.1.
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Figure 5.9: A graph showing the performance of the ATLAS Packing of com-
ponents in a texture






Chapter 6

The Conjugate gradient method

The conjugate gradient method was
originally proposed by Magnus R.
Hestenes and Eduard Stiefel (1952)

6.1 Mathematical background

The Conjugate Gradient Method, (henceforth, CG), is an algorithm de-
signed to iteratively solve a large symmetric positive definite linear system
of equations on the form, Ax = b, where A is the matrix, b is a known vec-
tor and x is an unknown vector. The method is specially suited for solving
of sparse systems, because the footprint in memory usually is smaller than
for factorization methods. The need for efficient solving of this type of sys-
tems can be found in many important settings, including discretization of
partial differential equations (PDEs). An initial starting vector xq is chosen
and a new approximation xy, 1 is computed from the previous xi, by the
formula xj 1 = x; + aypy, repeatedly until the algorithm converges.
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Choose a starting vector xo:

(6.1)
po=ro="b— Axp (6.2)
(xo =0=>b—Axg = b) (6.3)
vy =<rgryg > k=0 (6.4)
while % > k < kmax (6.5)

0
tk = Apk (6.6)
Ok < Pro b > (6.7)

_ Tk
K = o (68)
Xk41 = X + QP (6.9)
Tka1 = Ty + aptp (6.10)
Yk < Tk41,Vkt1 > (611)
B = Pesd (6.12)
Tk

Pk+1 = ket + B * pi (6.13)
k = k+1 (6.14)

The Conjugate Gradient Method:
Xy is the approximated solution
« is step length

px is the search direction

7k is the residual

A closer inspection of the algorithm above reveals that the most com-
putational demanding work involved in each iteration of the method is
the following:

1. One matrix-vector product
2. Two inner products

3. Three vector plus scaled vector additions

6.2 Related work

In this section related work will get introduced. Much work is done already.
The conjugate gradient method has earlier been implemted on the GPU by
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Bolz. et. al. [?] and also by Kriiger et. al. [?].

6.2.1 Synchronization Overhead on Distributed Memory
Multiprocessors

This subsection is based on the work of DAzevedo et. al. [?] for reducing
the synchronization overhead on distributed memory multiprocessors. The
reason this subsection is included is inner products. Inner products are a
common operation in many algorithms and the CG- algorithm is not an
exception. The standard formulation of the CG- algorithm requires two
inner products, and the first inner product must be completed before the
data is available for computation of the second inner product. Each time
an inner product is calculated the result has to get read back to the CPU to
interact as a scaling parameter or termination criteria, implying two stalls
in the graphics pipeline and wasted time that could be used for calculation
of the next iteration in the algorithm.

This is where the work presented by DAzevedo et. al. [?] can be used.
They present ways to reformulate the CG method such that both inner
products simultaneously can be calculated; hence one of the communic-
ation phases is eliminated, without compromising the stability of the ori-
ginal CG. The deduction of such a reformulation follows.

Rearangment of the method:

To derive the modified method, p{ Apy is expanded by substituting py =

Tk + Pk—-1

< Pro by >= < Pr, Apx > (6.15)
< T+ BrpPr—1, At + Bt > (6.16)
= < 1, Arg > +,Bk < T, b1 >+
B < Pi—1, At > +B% < Pt tie1 > (6.17)
(6.18)

Symmetri of the coeffecient matrix and the matrix vector product (6.6)
gives

< Prote >= <1y, Ar > +2,Bk < Ty, b1 > —l—‘B%(Tk,l (6.19)
A property of the CG procedure (Orthogonality of residual vectors):

<Tk Tl > _ <Podpe1 >

6.20
< Tk, T > < Pk, Apk > ( )
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Tk = Tg—1 — &p—10k-1
T, T > = < Tt > 01 < Tg, tk,1 >
Yo = 0—wapq <7rg b1 >
B = Tk
Yk-1

The result is the following algorithm:

r1=>b,y1=<r,rn > p =rv=Ap;
o1 =< p1,01 >, %2 = (11/01)p1

while \/% > k < kmax(6.28)
sy = Ar(6.29)

Yk =< T, T > (6.30)
wi =< 14,5 > (6.31)
B = vr/7k-1(6.32)

Ok = wi — Pok-1(6.33)
ax = i/ 0x(6.34)

Pk = "k + Brpr-1(6.35)
t = s + Brte_1(6.36)
Xp+1 = Xk + 2 pi(6.37)
Tpy1 = Te — Qr(6.38)
k=k+1 (639

The Conjugate Gradient Method:
xy is the approximated solution
« is step length

Pk is the search direction

7k is the residual

(6.21)
(6.22)
(6.23)

(6.24)

(6.25)
(6.26)
(6.27)
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6.3 Implementation of the Conjugate Gradient
method on the GPU

In my implementation of the Conjugate Gradient method I use the mod-
ified version deduced in the background material section of this chapter.
The reason for this choice is communication. The GPU calculates inner
products on four-wide sub-arrays, and the results from each of these sub-
inner-products are added afterwards in a reduction shader, before the res-
ultis read back to the CPU. In the original CG there are two inner products
which consequences in two reductions and two readback operations in
each iteration in the algorithm. The modified version of CG allows for
the inner products to be grouped for simultaneous calculation, and read
back in one operation, thus the latency from communication in the imple-
mentation is minimized. In this implementation I have mainly focused on
providing an efficient solution for matrices with some sort of sparse pat-
tern, because with these types of matrices the CG-method really performs
well, compared to factorization methods.

6.3.1 Splitting the work over multiple shaders

Parts that do not depend on output from work done to other locations
in the computational range, are identified and grouped to be executed in
the same shader, to minimize the number of overall render operations. In
the algorithm above we can identify two groups in each iteration. Matrix-
vector calculation and the multiplication part of the inner products can
be put in one group and the four vector-plus-scaled-vector operations can
be put in a second group. The grouping of operations requires multiple
output targets, and this is supported through the Multiple Render Targets
(MRT) extension on all commodity GPUs.

Matrix-vector and inner product shader: The matrix-vector and inner
product shader calculates the matrix-vector product, sy = Arg, and the
inner products, < ry, 1y > and < s, ¢ >, of four-wide sub-arrays. The ac-
cumulation of the results from the inner products is discussed in the next
paragraph. Four rows in the matrix are processed in each kernel, which
means that four rows are read from the matrix and multiplied with the
matching elements in the vector, and written to the output texture. For
a dense matrix, reading all elements in all columns in four rows is much
work, but the implementation is mainly designed for sparse matrices. An-
other output texture, is used to output the results from the two inner
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15

20

Listing 6.1: scaled vector-plus-vector

uniform sampler2DRect p;
uniform sampler2DRect r;
uniform sampler2DRect t;
uniform sampler2DRect s;
uniform sampler2DRect x;
uniform float alpha;

uniform float betha;

void main ()
{
vecd varl = texture2DRect(t, gl_TexCoord [0].xy);
vec4 var2 = texture2DRect(s, gl_TexCoord [0].xy);
gl_FragData [1] = var2 + betha * varl; // t_k
varl = texture2DRect(r, gl_TexCoord [0].xy);
gl_FragData [3] = varl - alpha * gl_FragDatal[1]; // r_(k+1)
var2 = texture2DRect(p, gl_TexCoord [0].xy);
gl_FragData [0] = varl + betha * var2; // p_k
varl = texture2DRect(x, gl_TexCoord [0].xy);
gl_FragData [2] = varl + alpha * gl_FragData[0]; // x_(k+1)

products, one scalar from each inner product.

Summing of the inner products: After the sub-parts of the inner products
have been calculated, they are reduced by summation to fewer elements

in a reduce shader, but when there are only a few values left the reduction

is hard to parallelize further and the results are read back for final accu-

mulation and usage on the CPU. Accumulating the inner products in this

manner, see equations below, also has the advantage of minimizing the er-

ror bound in the final result as deduced in Higham [Hig96] [Chap. 3 p.70].

The shader reads blocks of neighboring values, and stores the result in an

output texture.

sp = x(1:m)Ty(1:m) (6.40)
so=x(m+1:m)Ty(m+1:n) (6.41)
Sy =51+ 52 (6.42)

Vector-plus-scaled-vector: The vector-plus-scaled-vector shader reads all
vectors, and updates the values for next iteration. The domain where vec-
tors are read from is linear and is calculated by the vertex shader, so the
fragment shader just reads vectors and writes the result from the update.
Five textures are read and four textures are written to, so the memory



6.3 Implementation of the Conjugate Gradient method on the GPU

49

bandwidth can be stressed, but compared with splitting up the work, there
will be less texture read operations by stacking the vector update opera-
tions together. The implementation of this shader is shown in Listing 6.1.

6.3.2 Matrix and vector representation

The representation of matrices and vectors is a challenge. Vectors in tex-
ture memory must be represented as a two dimensional texture to be able
to render to them. The matrix is static during iterations and should be rep-
resented in a pattern that leads to maximum throughput for matrix-vector
calculations. Below the texture representation of the vectors and matrix
are presented.

Vector: The vectors are originally 1D-data structures, but because 1D-
textures have a limited length the vectors will have to get represented in
2D-texture memory, as in Figure 4.1. In the matrix-vector product shader it
is necessary to consider the 2D-texture as a one-dimensional vector, since
the shader processes all columns in four rows. To achieve this, the meth-
ods for translating 2D-1D addresses and 1D-2D addresses deduced in GPU
GEMS 2 [?] are applied to be able to jump to the next row in the texture. In
this implementation a total of nine equally sized textures are required to
store vectors. The reason for nine textures is that the vector-plus-scaled-
vector shader uses five vectors as input and four as output. Each vector
is packed into multiple four-wide sub-arrays matching the channels avail-
able to store colors in, in the texture, so the number of pixels in the texture
is the number of elements in the vector divided by four plus padding with
zeroes in the end to get a full square 2D-texture.

Matrix: Representation of matrices for the CG-algorithm is a challen-
ging task. To achieve the best possible speed it is necessary to consider
sparse patterns in the matrices. Sparse patterns are non-zero patterns in
matrices with many zero elements. Some matrices does not have a pat-
tern, thus they require a more general storage structure. I have experi-
mented with different types of matrix representations, including banded
and random sparse matrices. For banded matrices the diagonals are coun-
ted and the distance between the diagonals are registered. Then the first
four-wide pixel store the distance between the diagonals for the next four
diagonals excluding the middle diagonal that has known distance. The
next four pixels will contain the diagonals, and then the next pixel is used
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Figure 6.1: Packing of the matrix in the texture

for storage of the next distance pixel, and so on. Last the middle diag-
onal is stored. The series of the four-wide diagonals and their distance is
squared and packed in a two-dimensional box with padding in the end
if that is necessary to get a square box. Se Figure 6.1 for an illustration.
To determine the end of the series, the last "distance pixel" will have to
be zero-terminated, just like a text string. The same solution applies for
random-sparse matrices. An element is seen as a four-row diagonal and
stored in the same manner as diagonals. The main problem with this solu-
tion is that it requires branching in the shader, which can be slow if the
branch diverges over the computational range.

To achieve more speed for diagonals, I implemented a solution where the
distance between the diagonals are set in the shader source code, and the
branching is done by the GLSL preprocessor. This move yielded approx-
imately a five time speed-up compared to the other solution, but it does
not apply to random-sparse matrices. The diagonals where this solution
is applied are the diagonals closest to the middle diagonal, and they are
stored first in the sub-boxes in the texture.
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6.3.3 The overall algorithm

The algorithm is identical to that shown in the algorithm deduced in the
background material section this chapter. The algorithm also includes an
extra shader, which really is a reduced edition of the scale-vector shader,
to initialize the calculations.

6.4 Benchmarking

The Poisson equation is used to test the efficiency of the algorithm. The
equation is important in physics for simulation of fluids. The GPU-implementation
followed my C++ reference implementation in speed carefully. I got the

exact same timings. The lack of variations is a little bit strange, but I double
checked that it is not the same implementation that was executed twice.
Unfortunately, I think there is a bug that I have not discovered earlier, and
therefore I choose not to relaese any tables with timings for this implemen-

taion, because the results will most probably wrong.

6.5 Future extensions

A natural extension would be to continue with preconditioning in the
GPU-algorithm. One solution could maybe be to use a method that does
not require readback in every iteration, and use it as a preconditionar for
CG on the CPU. Another thing is to continue to work with mixed preci-
sion. I have started with that, but for some reason I never got the answer
to converge when I sent it back to the GPU, after it had been processed on
the CPU for one iteration.






Chapter 7

Conclusions and future work

Results: In this thesis [ have investigated functionality in the GPU, for its
usage as a co-processor for accelerating numerical linear algebra. A selec-
tion of algorithms has been ported to execute on the GPU, including the
LU-algorithm with partial pivoting and the conjugate gradient method.
From the results from for example the LU- algorithm, we can see that we
beat the highly tuned ATLAS implementation on the CPU, thus if we split
the computational domain, and run parts of it on the CPU and parts on
the GPU, we can be able to increase the speed of computations dramatic-
ally with little added cost. On the CPU years have been spent on altering
linear algebra algorithms for optimal cache re-usage, but the data-parallel
graphics processor performs likewise with the standard vectorized ver-
sion of the LU-algorithm, even though there is some idling on both the
GPU and the CPU when the column where the pivot should be searched
for is read back, and the upper triangular rows has to be copied to its final
location. On some new architectures, like the Playstation 3, the graphics
memory can be directly accessed from the main processor, thus the read-
back is less of a bottle-neck.

Contributions: There are two main contributions in this thesis. The LU-
implementation includes a special pivoting strategy where the pivot row
is rendered to its correct location during update of the sub-matrix. The
other main contribution can be found in the conjugate gradient imple-
mentation. Gathering of the inner-product calculations on the GPU allows
for simultaneous accumulation and readback of both inner products and
that results in a reduction of about halve the cost of communication and
accumulation. Although this strategy is old, it has not been applied on
GPUs before.
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Conclusions and future work

Further research on the topics discussed in this thesis: In addition to
porting other linear algebra algorithms to the GPU, there is still room for
improvements in both implementations, for example a closer examination
of pre-conditioning in the conjugate gradient method. More importantly
new libraries that can access the GPU directly from outside graphics APIs,
including CUDA, have been publicly available during the last period of
this master thesis, and such APIs should be closer inspected. Especially
CUDA, that includes a BLAS library.

Application in the future: We can generally see an increasing trend of
multi-core processors and the data-parallel programming model utilized
through this thesis provides a simple interface to the underlying parallel
architecture. To utilize massively parallel processors in the future, there
is a possibility that the data-parallel programming model will have to be
used and the GPU is about as close as we can come to a massively parallel
architecture today. The interface to the parallel architecture will probably
change a lot over the next years, and the futuristic architectures will prob-
ably have more cache and be more flexible, but the same rules for perform-
ance as I have worked with in this thesis will most probably apply.
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PLU FACTORIZATION ON A CLUSTER OF GPUs USING FAST
ETHERNET

André Rigland Brodtkorb, Martin Lilleng Szetra and Trygve Fladby
1st May 2007

Abstract In this white paper, we present a novel approach to solve linear systems of equations
on a cluster using the PLU factorization. We use the graphics processing unit (GPU) as the main
computational engine at each node, and a block-cyclic data distribution to solve the system. The local
computation is a new way of solving the PLU factorization on the GPU. It utilizes the full four-way
vectorized arithmetic found in most GPUs, and a new pivoting strategy. The global algorithm uses
the message passing interface (MPI) for communication between nodes. We show that our algorithm is
highly efficient on the local nodes, but bounded by the relatively slow network. A faster network will
eliminate this bottleneck, and the speed of the local computations show promising results.

1 Introduction

This paper explores the field of general purpose computation on graphics processing units (GPGPU). We
specifically target the PLU factorization of a large system of linear equations on a cluster of nodes. Solving
large linear systems of equations using dense algorithms is used extensively as a benchmark for clusters
and supercomputers. The High Performance LINPACK benchmark (HPL) [1] which computes the PLU
factorization, is the standard way of benchmarking and ranking the fastest 500 supercomputers in the
world [2]. This benchmark, however, has been criticized for neglecting the importance of faster inter-node
communication. This is because the HPL benchmark can run the benchmark with different parameters
that compensate for slow network communication by letting each node execute extra computations (e.g.,
look-ahead).

While the HPL benchmark uses the CPU to compute partial results on each node, we utilize the
graphics processing unit (GPU) as the main computational engine to solve the same problem. The
GPU is a massively parallel processor with vast amounts of processing power [3]. Current GPUs have
a theoretical peak of 400 GFLOPS [1], compared to 90 GFLOPS [1] for current high-end CPUs. When
comparing the price! per FLOP, the GPU comes out ahead as well with approximately $1.50 per GFLOP,
compared to the CPU that costs approximately $18 per GFLOP.

During the last years, we have seen an enormous development in 3D-graphics. The demand for more
powerful programmable graphics processing units (GPU) from for example the gaming industry has led
to increased flexibility in the processors. The rapid evolution in speed and flexibility has made the GPU
interesting for scientific purposes as well. The field of general-purpose computation on GPUs (GPGPU)
has emerged as a new and exiting research area [3]. Even though the GPU is a far more powerful and
cost-effective processor than the CPU, there is another price. While the CPU has complex logic for
branch prediction, cache management, and instruction pipelining, most of the transistors on the GPU
are used for pure floating-point operations. There is another architectural difference as well. The CPU
is designed to operate on sequential code, such as word processing where each character is entered and
processed sequentially. The GPU on the other hand, is designed to simultaneously compute all the pixels
that together make up the screen image. In addition, the GPU could traditionally only be accessed via
a graphics API, such as OpenGL [5] or DirectX [6]. The architectural differences, and the need to access
the GPU through a graphics API require new algorithms and techniques to be employed when the GPU
is to be used for general-purpose computing.

2 Background

The Top 500 project [2] was started in 1993 to provide a reliable basis for tracking and detecting trends
in the field of high-performance computing. It is a list of the 500 most powerful supercomputers, which
is updated twice per year. The ranking of the supercomputer sites is determined by how well they
perform on the LINPACK benchmark. A parallel version of LINPACK named HPL [I] was introduced

IPrices are from the Norwegian web shop komplett.no 2007-04-23.



Listing 1: Example on a deadlock in an MPI-2 program

MPI_Init (&argc, &argv);

if (processId == 0) {
MPI_Recv (buf, 10, MPI_INT, 1 101, MPI_COMM_WORLD, &status);
MPI_Send (buf, 10, MPI_INT, O, 100, MPI_COMM_WORLD);

} else(processId == 1) {
MPI_Recv (buf, 10, MPI_INT, O, 100, MPI_COMM_WORLD, &status);
MPI_Send (buf, 10, MPI_INT, 1 101, MPI_COMM_WORLD);

}

MPI_Finalize();

by Dongarra, for this purpose. HPL is short for High-Performance LINPACK Benchmark for Distributed-
Memory Computers. HPL utilizes the Message Passing Interface (MPI) and the Basic Linear Algebra
Subprograms (BLAS). The algorithm used by HPL implements a two-dimensional block-cyclic data
distribution. In addition a look-ahead strategy and bandwidth reducing swap-broadcast algorithm is
used to increase performance. The complete operation count sums up to O(%n3) + O(n?).

LU factorization on the GPU has previously been implemented by Galoppo et al. [7]. One of their
main contributions was index-pair streaming, which uses texture coordinates to make a cache-oblivious
algorithm. The index-pair streaming technique sets texture coordinates from the CPU in order for the
GPU to pre-fetch data, in contrast to computing them on the fly on the GPU. This data pre-fetch
resulted in about 25% speed increase [7]. They also reported their algorithm as faster than ATLAS, but
the benchmark was highly synthetic.

To run our application in parallel on multiple nodes, we have utilized the Message Passing Interface
2.0 (MPI-2) [8]. MPI-2 is a C/C++ and Fortran interface for message passing between multiple processes
spread over any number of nodes. It can be used in many different setups, e.g., supercomputers, distrib-
uted memory clusters, and shared memory clusters. Several implementations of MPI-2 exist, where we
have chosen MPICH2 [9] for our application. The most important uses of MPI-2 in our application are
the automatic generation of a block-cyclic Cartesian grid of processes and broadcast of data to groups
of processes.

There are two concepts related to our use of MPI-2 that require some explanation; communicators,
and blocking- and non-blocking calls. A communicator in MPI is a collection of processes. Many functions
in MPI-2 take a communicator as argument and perform the requested operation on all processes in that
communicator. A call to the broadcast function in MPI, for example, can look like this: MPI_Bcast (buf,
10, MPI_FLOAT, O, MPI_COMM_WORLD). This call will broadcast ten elements of the array buf to all
processes in the MPI_COMM_WORLD communicator. The other processes in the communicator must also
call the MPI_Bcast function to receive these elements. The MPI_COMM_WORLD communicator is a special
communicator that contains all processes, and it is initialized automatically by MPI. When an MPI
function is called on all processes within a communicator (or group) it is referred to as a collective
operation. MPI_Bcast is a collective operation.

A blocking call will make the application wait for the call to complete before continuing execution. In
this way you will know if the call has finished successfully or aborted due to some error. This also means
that the application may get deadlocked, where two or more processes have called competing blocking
functions that are circularly dependent on each other [10]. For example, if we have two processes that
execute the code in Listing 1, it will result in a deadlock. Both processes are waiting for the other
to send data, thus blocking program execution. A non-blocking call on the other hand, will not cause
the application to wait for the call to return. In this way it is possible to call a function and continue
executing the application before the function returns. Collective operations in MPI-2, however, are
always blocking.

3 Algorithm

The LU factorization of a matrix A can be written as LU = A, where L and U are lower and upper
triangular respectively. Using the Doolittle algorithm, we can construct the upper triangular matrix
U using Gaussian elimination. The lower triangular matrix is constructed from the multipliers used to
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Figure 1: PLU decomposition on a cluster of nodes: (a) the four different parts of the LU factorization. (b)
the block-cyclic distribution of data on four nodes, 0, 1, 2 and 3.

reduce A to an upper triangular form. For our algorithm to be numerically stable, we also permute the
rows of A. This is known as partial pivoting, and ensures that the row we are eliminating with creates
smaller perturbations of the result than would normally occur. With the permutation of the rows in A,
our factorization takes the form A = PTLU, where P is the permutation matrix that permutes rows of
A.

Our algorithm has two layers, the global and the local computation. The global algorithm solves
the PLU factorization of the matrix spread over all the nodes, shown in Figure 1(b), whilst the local
algorithm is what each node needs to compute for the global algorithm to be correct.

Each node in the computation receives a block-cyclic part of the matrix, as shown in Figure 1(b).
Then, all the processors compute what type of operation they need to compute. Our algorithm splits
the computation into four distinct operations: pivot, normalize, eliminate and reduce, as shown in
Figure 1(a). The operation computed on each node depends on the global position of the pivot operation.
All processors that hold elements in the same row as the pivot operation need to compute the normalize
operation, and similarly all nodes with elements in the same column as the pivot operation need to
compute the eliminate operation. All remaining nodes need to compute the reduction operation. In
Figure 1(b) this means that process 0 is the pivot, process 1 executes normalize, process 2 eliminate, and
process 3 reduce. The pivot node shifts one down along the diagonal for each global pass.

3.1 Global algorithm

Computing the PLU factorization is an almost embarrassingly parallel operation. However, vanilla
implementations demand a lot of data to be transferred between nodes, which is a very costly operation.
In addition, many nodes would simply idle as we reach the end of the computation.

To reduce the idling, we distribute the matrix A block cyclically in the same fashion as the HPL
algorithm [1]|. Figure 1(b) shows this distribution, where all nodes have a part of the matrix to process
throughout the whole factorization, except for the very last block. The last block is computed by the last
node in an extra pass. For each pass in the global domain, we compute the result of one row of blocks,
and one column of blocks. In the following, we refer to these as block-row and block-column respectively.

To lessen the amount and number of transfers between nodes, we use partial pivoting within in-core
memory, thus eliminating the need to transfer rows between processors. It is trivial to create examples



where partial pivoting fails, but sufficient accuracy is attainable in practice. This also holds for our
pivoting, which pivots in a subset of the regular pivot candidates.

In order to compute one pass in the global domain, we have to execute the four different operations
pivot, normalize, eliminate and reduce. It should be mentioned that this data distribution, and splitting
into different operations per node allows for multiple nodes, not only four as shown in this example. In
the third pass of this algorithm, we have the following situation (see also Figure 2):

Pivot: The pivot position (process 0) must compute the PLU factorization of the current active pivot
block in its local domain. The block size is subsize x subsize. In addition, it has to reduce the
rest of the local matrix according to the computed L and U. These blocks belong elsewhere in the
global domain (see Figure 1(b)). In each global pass, there is always only one pivot node.

Normalize: The normalize operation (process 1) needs to compute U according to the P and L com-
puted by the pivot operation. It will also have to reduce all remaining elements in the local matrix,
which again belong elsewhere in the global domain. There are s — 1 nodes that compute the
normalize operation in each global pass, where s is the width and height of the processor grid.

Eliminate: Eliminate (process 2) calculates the multipliers needed to forward substitute one block by
using the computed U’s from pivot. In addition, it has to reduce the rest of the local matrix,
according to the computed U. In each global pass, the number of eliminate nodes is also s — 1.

Reduce: The reduce operation simply reduces the local matrix according to the L and U computed
in eliminate and normalize respectively. All remaining processes compute this operation, s x s —
2(s — 1) — 1 nodes.

As stated in the list of operations, the different processes depend on data from other processes. This
dependency is not static, but varies with the operation the current node is set to execute. Figure 2 shows
how the data is sent in the already used example. The nodes waiting for data cannot continue before
they have received the data. This effectively limits the computational speed to the slowest node. The
HPL [1] algorithm uses look-ahead to remedy this somewhat. As this chart shows, there is still quite a
lot of idling for the four nodes. The pivot node, for example, computes its result and then waits until all
other nodes have completed their computations.

3.2 Local algorithm

The local algorithm includes four stages pivot, eliminate, normalize and reduce, but first we will introduce
the matrix representation. The data is row-wise represented in four-wide vectors [11]. This is to utilize
as much computational power and bandwidth as possible, since most GPUs can execute one MAD
instruction on four-long vectors per clock cycle. The advantage of this packing scheme is that it does
not require restructuring of the data in main memory before it is sent to the GPU?. Another reason for
this choice is that it fits well with the solution we have for pivoting. In addition to storing the matrix,
we add an extra column leftmost in the matrix, as shown in in Figure 3(a). This column is used to
speed up the calculation of the next pivot element, explained later. Because the result of writing to the
same buffer as we read from is explicitly undefined in OpenGL, we have to use an extra texture. The
two textures are used as one virtual matrix, but we alternate between reading / writing and writing /
reading to the front and back textures, respectively. This technique is referred to as ping-ponging in the
field of GPGPU.

3.2.1 Pivot

The pivot procedure computes the PLU factorization of A, but stops when one block-row and one
block-column has been computed (see Figure 1(b)). It can roughly be split into two tasks: multiplier
calculation, and reduction, each explained below. To compute a single row and column, we start by
permuting the first column simultaneously as we compute the multipliers. Then, we reduce the rest of
the matrix, whilst permuting the rows here as well.

To compute one column of multipliers, we read from the correct location in the source texture, and
write to the leftmost column in the destination, as shown in Figure 3(a). The top element is rendered at

2 Assuming its width is divisible by four.
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Figure 2: Data send patterns for PLU decomposition using four nodes in the third global pass (corresponds
to the situation in Figure 1(b)). The shaded areas represent the part of the matrix we already
have computed.

the position of the pivot element. Because the multiplier for the top row always is one, we do not need
to compute it. In addition to computing the multipliers, we also compute the values of the column to
the right of the pivot position and store in one of the other color channels (see Figure 3(b)).

When the computation is complete, we transfer the multipliers and the reduced next column to the
CPU using a pixel buffer object (PBO). The PBO uses asynchronous read-back to the CPU, allowing
both the CPU and the GPU to continue execution. When the whole leftmost column has been transferred
to the CPU, the next pivot element is found by the CPU. Simultaneously as the data is copied, and the
CPU searches for the pivot element, the GPU subtracts the multiplier times the top row throughout the
rest of the matrix. The top and pivot row are also interchanged simultaneously in the same manner as in
the first column. In addition, we employ the index pair streaming technique to increase performance [7].
When the computation is complete, the top row is copied to the CPU, again using a PBO. The algorithm
continues until we have computed the whole block-row of U, and block-column of L.

3.2.2 Normalize

The normalize step computed on the local domain executes as follows: The L matrix from this global
time-step’s pivot node is uploaded to the GPU as a texture. Then, we execute a for-loop that sequentially
computes one row of U at a time. First, the current top row and pivot row are swapped, simultaneously
as we eliminate using the multipliers in L. Because we are using two buffers, we read back the pivot
row simultaneously using PBO’s, and store them in main memory. When all rows in the block-row have
been computed, U is sent to all nodes in the same column for the reduction operation.

3.2.3 Eliminate

The elimination procedure calculates multipliers. Normalized rows (U) are sent from the current time-
step’s pivot node, and the multipliers are calculated using these. The elimination step follows much of
the same procedure as the pivot step, but it is a simpler case since there is no complications with row
interchanges. This is again because the pivot node only pivots within in-core memory.
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Figure 3: Data representation on the GPU: (a) Row interchange of the multipliers (leftmost column) and the
rest of the matrix (cyan part). (b) The leftmost column of the texture, with both the multiplier,
and the reduced next column in the PLU factorization. The multiplier is stored in the red color
channel, and the reduced next column is stored in the blue color channel.

Listing 2: Setting up row- and column-communicators

/* Set up row communicators */
MPI_Cart_sub(origcom, {0, 1}, &rowcom);

/* Set up column communicators */
MPI_Cart_sub(origcom, {1, 0}, &colcom);

3.2.4 Reduce

The reduction step is trivial on the local node. Using a for-loop, we sequentially reduce the whole
remaining sub-matrix by looking up one row from U and one column from L, and calculating the
reduced A as Ai,j = Ai,j - Li,k . Uk,j~

3.2.5 Sending of data

This section describes how data is sent between different nodes. The use of MPI-2 for this inter-node
communication will also be explained in detail.
Based on the algorithm discussed in Section 3.1 we have the following communication scenarios:

1. Sending data to all processes in the same row as active process (to normalize and reduce).
2. Sending data to all processes in the same column as active process (to eliminate and reduce).

For broadcasting data to all processes in the same row as the active process, the broadcast function in
MPI, MPI_Bcast, is used. This function takes a communicator, a pointer to the data, and a count of data
elements as arguments. When called, it broadcasts the data to all processes within that communicator.
Broadcasting data to the same row as yourself is done by calling MPI_Bcast with the row communicator.

To broadcast to columns we use the column communicator instead of the row communicator.

Since the MPI_Bcast function is collective, it needs to be called in every process within the current
communicator. This implies that each process needs to know a priori from which node it will receive the
next broadcast. In our application we have a function dedicated to calculate this. This function bases
the calculation on which global pass the process is currently in, and which type it currently is (pivot,
normalize, eliminate or reduce). This method is fairly complicated, but can be briefly explained as
follows: The normalize nodes will always receive a broadcast from the pivot node, which is the diagonal
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element in its row communicator. Eliminate is similar, but will receive from the diagonal element in
its column communicator. Finally, reduce will receive data from normalize, which is the node with the
same column index as the current node, and the same row index as the current pivot node. Reduce also
receives data from eliminate, which is computed in a similar fashion.

To facilitate the communication needed by our algorithm, row- and column-wise communicators are
set up. Listing 2 shows the code used to create these communicators. In this listing, the array sent as
the second parameter sets which dimension we wish to keep in the new communicators. When we create
the row communicators we keep the y-dimension intact, and when creating the column communicators
we do the opposite and keep the x-dimension. When the code is executed, each process will set up a row
communicator called rowcom and a column communicator called colcom relative to the process’ location
in the grid.

4 Results

The cluster which we benchmarked our application on consists of four one-CPU, one-GPU nodes as
shown in Figure 4. The nodes were all equipped were Intel Pentium 4 processors with Hyper-Threading
Technology (HTT) and 2 GB of RAM. All nodes had an NVIDIA GeForce 7800 GT graphics adapter
on a PCI-Express 16x slot.

4.1 Benchmark

Benchmarking of our algorithms showed that it gives sufficiently accurate results considering that all
computation is executed on single precision hardware.

When benchmarking the algorithm, we have varied several variables to identify possible bottlenecks.
The variables we have varied are:

1. Number of nodes.

2. Number of processes.

3. The size of the block to factorize in each global pass (subsize).
4. The total size of the problem matrix (n).

In addition, we have benchmarked the pivot operation on a single node executed on the full matrix, as
well as only network communication. This gives us performance results for our network setup, the local
algorithm, as well as the global algorithm, enabling analysis of the limiting factor.



Table 1: Variation of the subsize parameter, as well as the impact of several nodes. The number of processes
is 4, and the times are in seconds.

- Nodes
n Subsize 1 2 3 4
8 0,20607 | 0,14006 | 0,13756 | 0,28482
198 16 | 0,23247 | 0,11918 | 0,14593 | 0,28739
32| 0,19208 | 0,10213 | 0,11030 | 0,27609
64 | 0,13572 | 0,09238 | 0,08232 | 0,24506
32 | 0,54457 | 0,25811 0,28454 | 1,11726
519 64 | 0,49388 | 0,24161 0,26360 | 0,78500
128 | 0,32307 | 0,23648 | 0,24194 | 0,64518
256 | 0,24012 | 0,20242 | 0,21688 | 0,36138
128 | 3,17257 | 2,43952 | 2,95311 | 3,19620
9048 256 | 3,07729 | 2,43028 | 2,95513 | 3,15248
512 | 2,88925 | 2,41467 | 2,87859 | 3,05907
1024 | 2,59612 | 2,39955 | 2,68849 | 2,93310
256 | 13,76410 | 13,03520 | 14,77890 | 15,26550
4096 512 | 13,70820 | 13,18710 | 14,74090 | 15,78910
1024 | 13,59550 | 13,59640 | 14,73430 | 16,26440
2048 | 14,62520 | 14,45370 | 14,50600 | 16,66760

Table 1 shows the time used to compute the PLU factorization while varying the number of nodes,
size of the matrix, and the block size. The maximum achieved performance is 3.5 GFLOPS (for n = 4096
on two nodes), and the general trend seems to suggest that using only two nodes is faster than using
four. This can somewhat be explained by interprocess communication being faster with two processes
per node, than one process per node, as this eliminates a lot of network communication.

Table 2 shows the time used to compute the PLU factorization while varying the number of processes
on four nodes. As the table shows, the speed of the algorithm can be greatly influenced by tuning
this parameter. However, the optimal number of processes seems to vary with the size of the matrix.
The maximum achieved performance achieved was now increased to 4.2 GFLOPS (16 processes on four
nodes). We also timed the network-communication, and measured the percentage of the total time used
for network communication. The percentages show that there is a substantial time used to send and
receive data alone.

To analyze the impact of the network, we ran the network communication while varying the number of
nodes. Table 3 shows the time of the network communication, and the impact of the subsize parameter,

Table 2: Variation of the number of processes. The number of nodes is four, and the times are in seconds.

Procs | Subsize Time | Network time %
256 97,78950 42

4 512 98,19350 36
1024 | 99,65560 31

2048 | 102,98800 30

256 86,30310 37

16 512 88,69330 35
1024 | 89,53110 35

2048 95,1656 33

128 | 122,72900 24

64 256 | 124,48000 23
512 | 120,79000 23

1024 | 124,32000 21




Table 3: The time spent transmitting data. The number of processes is four and the problem size is 2048,
while the number of nodes is varied. This shows the impact of the network communication.

- Nodes
Subsize 1 2 3 4
128 0,57228 | 3,18597 | 5,70082 | 6,30781
256 0,59500 | 3,14385 | 5,72201 | 5,73072
512 0,62175 | 3,13140 | 5,64543 | 5,65009
1024 0,69741 | 3,02938 | 5,37086 | 5,38025

Table 4: The time spent computing using only a single node where subsize = n. The times are in seconds.

n Time
64 0,0284489
256 | 0,0491337

1024 0,280545
2048 1,44955
4096 10,051

as well as the use of multiple nodes. The subsize parameter seems to have little effect on the time, whilst
the number of nodes has a massive impact. Using two nodes with four processes is approximately half
as expensive as using four nodes.

Finally, we have benchmarked the pivot operation on one node. This is the most computationally
heavy operation, and a limiting factor. Table 4 shows the time spent to compute a full matrix using
the pivot operation. The peak performance was measured for the largest matrix, 4096 x 4096, where
the algorithm performed 4.6 GFLOPS. As a comparison, we timed the ATLAS implementation used in
MATLAB, which achieved 3.5 GFLOPS on the same problem size.

4.2 Analysis

Our global algorithm had a maximum measured performance of 4.2 GFLOPS using four nodes, while
our local algorithm showed a promising 4.6 GFLOPS. The network communication could account for at
least 20% of the total runtime. However, because of the way the presented algorithm is executed, most of
the processes simply idle, waiting for data. This is the largest bottleneck, but there are some solutions.

Using a look-ahead strategy, as used in the HPL [1] algorithm, will increase the workload per node,
and decrease the idling. In addition, restructuring the computation into smaller parts, so that pivot,
eliminate, normalize and reduce are split into smaller subproblems, will also decrease the time spent
idling per node.

We have not been able to show the full potential of this algorithm, because we have only have had four
nodes at disposal. Having only four nodes makes almost all the computation execute serially, because
we only have one node per operation at each global time-step. This parallelizes the computation of
normalize and eliminate only. Using more nodes, will parallelize the reduction step of the algorithm as
well, and probably speed up the total computational speed.

5 Conclusions and further research

We have presented a new way of computing the PLU factorization of a matrix, by using the GPU on a
cluster of nodes. We have shown that the algorithms computed locally are efficient, even outperforming
ATLAS. Our global algorithm, however, is less efficient. We have pointed to a slow network link, a lot
of idling of nodes, and the use of only four nodes as the main reasons.

A faster network link will decrease the impact of the network communication in our algorithm. It is
also possible to lessen the issue with idling of nodes by using techniques such as look-ahead, or splitting
up the computation further.



It is possible to extend our algorithm to include forward and backward substitution, as the HPL
algorithm does. The computation of the forward substitution will be virtually free, while the backward
substitution will require more global passes. Including the forward and backward substitution in the
algorithm will fulfill the complexity demands for the Top500 benchmark [2].
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