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Summary/Sammendrag

This master thesis is a quantitative study aiming to map the risk of land sub-
sidence in Skøyen at the ward of Ullern, which is an urbanized area in Oslo.
Land subsidence is a type of natural hazard that cause gradual insulation on
the subsurface and is a common problem in many cities. Land subsidence can
lead to significant financial costs in society and potential damage in buildings.
The purpose of this study is therefore to check the possibility of mapping the
risk of subsidence based upon 7 criteria. The thesis is divided in two different
method. The first method is a multi-criterion analysis that is based on hu-
man decision making, prioritizing 7 different criteria that are potentially linked
with land subsidence. The second method also use the same 7 criteria, but
use machine learning methods such as neural networks and XGBoost to map
subsidence based upon finding a pattern in the 7 criteria by using InSAR as
a feeding algorithm. The dataset comes from many different sources such as
the Norwegian Water and Energy Directorate, the Norwegian Geological Sur-
vey, the Mapping Authority and NIBIO. The resulting subsidence maps tend to
vary. While multi-criterion analysis and neural networks have classified several
areas as high risk for land subsidence with multiple outliers, XGBoost appears
to have a lot more defined areas for high-risk subsidence. This should however
be taken into more consideration as the data set is quite limited in the study,
and there are potentially more criteria that are more suitable than the original
7 criteria chosen.

Denne masteroppgaven er en kvantitativ studie som skal kartlegge risikograden
for subsidens på Skøyen i Ullern bydel som er et urbanisert område i Oslo. Sub-
sidens er en form for naturfare som skaper gradvis innsynkning i overflaten og
har vært en kjent problem i flere storbyer som følger av bevegelser i grunnvann.
Dette kan føre til store økonomiske kostnader i samfunnet og potensielle skader
i bebygde områder. Formålet med oppgaven er derfor å sjekke muligheten for
å kartlegge risikograden for subsidens på bakgrunn av syv ulike kriterier. Opp-
gaven bruker to ulike metoder. Den ene metoden er en multikriterieanalyse som
er basert på å lage et risikokart for subsidens etter menneskelig beslutnings-
grunnlag gjennom vekting og prioritering av 7 ulike kriterier som kan bidra til
subsidens. Den andre metoden bruker også de samme 7 kriteriene, men bruker
istedenfor maskinlæringsmetodene nevrale nettverk og XGBoost for å kartlegge
subsidens gjennom å finne et mønster i de 7 kriteriene ved å bruke InSAR-data
som grunnlag. Datagrunnlaget kommer fra flere ulike kilder og tar bakgrunn i
kartlag fra blant annet Norges vassdrags- og energidirektorat, Norsk Geologisk
Undersøkelse, Kartverket og NIBIO. Resultatene har en tendens til å variere.
Mens multikriterieanalysen og nevrale nettverk har flere områder klassifisert som
høyrisiko for subsidens med mer støy i risikokartet, så har maskinlæringsmeto-
den XGBoost stort sett klart å definere tydelige mønstre på utsatte områder i lik
grad med InSAR. Det må likevel tas høyde for at datagrunnlaget er begrenset
i studiet, og at andre kriterier utenom de 7 kriteriene kan være mer aktuelle.
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Abstract

Slow mass movements such as land subsidence have been quite a big
issue with regards to infrastructural projects, which have caused delays in
road planning or collapse of buildings in urban areas. The dominant ex-
planation for these incidents is due to hydrogeological conditions such as
pumping of groundwater. Previous research has mostly focused on creat-
ing susceptibility maps for natural hazards in general rather than specif-
ically for land subsidence. While machine learning methods have been
more commonly used, there are very few studies that have attempted to
use multicriteria decision analysis (MCDA) to map land subsidence. The
intention of this project is to create land subsidence susceptibility map
using MCDA and machine learning algorithms such as neural networks
and XGBoost to check how differently they perform. The same dataset
will be applied for both MCDA and machine learning, containing 7 cri-
teria. Additionally InSAR-data will be used as a feeding algorithm for
the machine learning algorithms. The results of this project shows that
maps generated from MCDA strongly deviate from the InSAR-reference
map. Regression analyses have shown an R2-score below 0.01 for MCDA
even for the maps created even when adjusting the weights or removing
some criteria during the sensitivity analysis. On the contrary, both neu-
ral networks and XGBoost gained better accuracy with 0.6468 and 0.7128
respectively after tuning their hyperparameters. The neural network did
however show some similar pattern as the MCDA when visualizing the
sensitivity maps, and had a quite poor AUC-score of 0.65 compared to
XGBoost with an AUC-score of 0.82. The findings of this project sug-
gest that the choice of criteria could be improved by choosing factors or
criteria more specifically directed at hydrogeological conditions which are
limited in the study area. Testing a larger set of hyperparameters is also
relevant for the machine learning algorithms to avoid bias. Nevertheless,
the machine learning algorithms appear to be more suitable for predicting
land subsidence due to the subjective nature of MCDA.

6



1 Introduction

Detecting slow mass movements are important to avoid disruption of engineer-
ing projects as selecting suitable areas are crucial for the development of infras-
tructures such as roads, tunnels and skyscrapers. It is a long-term investment
providing economic growth and speed up city development. Inadequate infras-
tructure could therefore be detrimental to the society if a project is hindered
or delayed (Beiler and Treat, 2014). The rapid expansion of larger and cost-
efficient projects has thus raised issues regarding site planning vulnerable to
natural hazards such as land subsidence or other slow mass movements. For
instances, the Norwegian Road Authorities have experienced and documented
gradual risks of land subsidence related to infrastructural projects in Bjørvika,
Oslo which has caused precautions when planning newer infrastructures nearby
ports or setting up a new tramline in the area (Vegvesen, 2016). In a worst
case scenario, such instances of land subsidence may result in the formation of
sinkholes, potholes, settlement of structures, and subsidence of roads. Grad-
ual subsidence can potentially make roads collapse into subsurface cavities due
to loss of bearing capacity in the ground. This can for example take place
when limestone is dissoluted by fluid flow in the surface, which creates voids
underground causing the subsidence. Groundwater often plays a central role
for causing subsidence due to exploitation. This a global phenomena and has
occurred in larger cities around the world such as Mexico City, Mexico (Sowter
et al., 2016), Bangkok, Thailand (Zeitoun and Wakshal, 2013), Shanghai, China
and Tianjin, China (Yuan et al., 2020).

The study of susceptibility mapping of natural hazards has been the focus of
major scientific research, engineering study, and practices throughout the world
(Pourghasemi and Saravi, 2019). Susceptibility mapping for land subsidence
provides crucial information in spatial mapping for areas vulnerable to differ-
ent types of natural hazards such as landslide and land subsidence. In recent
times, land susceptibility maps have been generated using geological, geomor-
phological, topographical and hydrological data; which also are the main fac-
tors of land subsidence (Hakim et al., 2020a). There are various methods for
generating a land subsidence susceptibility map. GIS-MCDA poses as one of
the more common methods creating susceptibility maps (Ghorbanzadeh et al.,
2018). In brief, GIS-MCDA is a general framework for supporting complex
decision-making situations with many and, quite often, conflicting objectives
that stakeholders and/or decision-makers value differently. Decision makers in
GIS-MCDA procedures make use of a variety of spatial data, taken into ac-
count of the expert’s opinions where the preferences are set according to rules
established in the decision-making process (Malczewski, 1999a). Although GIS-
MCDA often yields accurate and satisfactory results, it has been demonstrated
that there is a degree of uncertainty associated with the method (Feizizadeh
et al., 2013). This could for example occur during the weighting process where
the individual’s preferences might be inconsistent. Furthermore, since the pro-
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cess of MCDA are often based on the experts’ opinions, the results from the
susceptibility maps highly depend on each individual’s preferences, which could
result in multiple susceptibility maps with different outcomes. Analytical hi-
erarchy process (AHP) is therefore sometimes applied in MCDA to organize
complex decisions. In short, the goal of the AHP is to provide a rational frame-
work for a needed decision by quantifying its criteria and options, and relating
those elements for an overall goal.

Alternatively, risk maps for land subsidence can also be created by using meth-
ods from machine learning. The application of artificial intelligence for spatial
processing and analysis have recently been under development within the GIS-
community. Many machine learning models such as logistic regression, random
forests, support vector machines and neural networks has been applied in geo-
graphic information systems to create maps for different purposes from predict-
ing susceptibility of gully erosion (Shahabi et al., 2019) to even determining the
most profitable location to establish a hotel (Yang, 2015). The main reasons
why machine learning models are getting more widely used in the fields of spatial
analysis and engineering are the remarkable performance, flexibility and accu-
racy in modeling and predicting phenomena whereas knowledge based models
depend highly on expert’s judgment and are associated with uncertainty. On
the other hand, rigid systems such machine learning may not always function as
the designers have intended since there are aspects of human decision-making
that are difficult to automate (Sui, 1994). Therefore an automated strategy
that can simulate the experts’ learning and reasoning process would be highly
highly desirable.

1.1 Goals

This thesis intends to create risk maps of slow mass movements, mainly focusing
on land subsidence. Two different approaches will be made. The first approach is
to use expert-based decision-making to create a risk map. The same 7 criteria
will be used later as input-data when using machine learning techniques to
predict subsidence on InSAR-data as output. Its purpose is to observe and
compare how a risk map based upon human decision making might differentiate
with a more technical approach using machine learning algorithms. Both risk
maps generated from these techniques will be further compared with a reference
map from InSAR-data gathered by Norwegian Geological Survey (NGU).

The thesis will first introduce the geological background of the study area, and
briefly present some of the infrastructure in the urban areas of Oslo. Further-
more the concepts of land subsidence such as major causes, processes and some
examples where subsidence have previously appeared will be introduced and.
Previous research of land subsidence mapping using multicriteria decision anal-
ysis (MCDA) and/or machine learning methods will also be presented. The
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thesis will then also discuss common practices of monitoring and predicting
land subsidence with emphasis to interferometric synthetic aperture radar (In-
SAR) and its advantages and disadvantages. After presenting the fundamentals
of land subsidence and some general practices of subsidence monitoring, a the-
oretical background of the desired methods to generate the susceptibility maps
will be discussed and examples of earlier practices of using such methods will
be mentioned as well. Background information of the seven criteria chosen to
predict land subsidence in the analysis and their connection to land subsidence
are to be introduced at the end of the background chapter.

By using different approaches, the research questions revolves around if expert-
based mapping can be used to detect the susceptibility of land subsidence, and
maybe even be potentially used in geotechnical planning. The study area will
therefore be applied on a heavily trafficked area in the intersection between
Drammensveien and Bygdøy allé at Ullern district in Oslo, Norway. This will
also include the area of Skøyen where a new subway station are planned to
be built. The study area will be briefly presented later on in the background
chapter.

Overall, the goal is to create subsidence risk maps by using three different meth-
ods, namely: GIS-MCDA with analytical hierarchy process (AHP) and pairwise
comparisons, neural networks and XGBoost, which is a machine learning method
based on an ensemble of decision trees. The first method will be GIS-MCDA,
while the next two methods focus more on predicting land subsidence with
neural networks and XGBoost as machine learning techniques. The approach of
GIS-MCDA will be based on a spatial multicriteria analysis in ArcGIS Pro. Mul-
tiple criteria such as geological, topographic and hydrological conditions will be
taken into into consideration based on recommendations and data from Norwe-
gian Road Authorities (Statens Vegvesen), Bane Nor and NGU. All data types
used to generate the 7 chosen criteria are stored in a common geodatabase in
order to process and create the final product of each criterion. The processing of
each individual criterion will be described further in-depth in the methodology-
chapter. Additionally, the criteria will also be chosen with respect to causes of
groundwater exploitation in tunnels. Each criterion will be ranked based on the
algorithms of AHP where the relative importance of each individual criterion is
compared with the other criterion. The result of the analysis will represent the
weight of each criterion. A sensitivity analysis involving removal of one criterion
at a time are made at the end of the GIS-MCDA analysis to test the robustness
of the result along with tweaking the weights added to each criterion. To briefly
summarize, the aim of this thesis is to check how differently GIS-MCDA, neu-
ral networks, and XGBoost predicts suitable areas for infrastructural projects
based on the risk of land subsidence in the area, and the discussion in the thesis
will thus emphasize on how credible these susceptibility maps based upon the
known conditions of the area and the observed land subsidence. In other words,
it is of great interest in the thesis to observe how human knowledge-based de-
cision making compares to machine learning when evaluating suitable places to
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build new infrastructure.

The next two methods of neural networks and XGBoost do have the same kind
of practices where the seven criteria chosen from the the MCDA are used to
predict land subsidence based on observed InSAR-data of the study area. The
InSAR-data will represent the target value and the machine learning models
will attempt to look after patterns in the criteria to predict subsidence/uplift.
Multiple hyperparameters of those methods will be tuned to get as optimal result
as possible. Unlike MCDA, those two methods will require some processing and
file conversion of the data set in order to run the prediction in Python-format.
The results/prediction will then be converted back into ArcGIS Pro.

Both methods of GIS-MCDA and machine learning are well known to create
susceptibility maps and have been applied on multiple occasions earlier with
varying results and different types of criteria around the globe. On the other
hand, similar studies has not currently taken place in this particular area of
Norway. It is also worth to mention that most articles study those two methods
separately rather than comparing them to each other.

2 Background

2.1 Study site

This project will focus on Skøyen and Bygdøy alle from Ullern district in Oslo.
The area has recently been of interest by Oslo municipality as it has been decided
to further develop the area as a hub for public transportation with regards to
building a new metro station as a part of Fornebubanen, which is related to
the extension of the metro system in Oslo and parts of Bærum municipality.
Additionally the municipality has also set plans to build at least 5000 new houses
in the area (Områderegulering for Skøyen, 2021). The technical reports from
Områderegulering for Skøyen (2021) do however further mention that Skøyen
is particularly an area where the loose materials in the subsurface contains
lot of clay, which makes the area vulnerable to subsidence-related damage in
buildings, and there is a high probability for causing more subsidence if the
groundwater-level changes in the area.

2.2 General geology

The Oslo-area was completely covered by large ice masses during the ice age for
around 20 000 years ago (Klemsdal, 2002). The underlying land surface were

10



pressed down by the enormous ice masses during the late-glacial and post-glacial
periods to the extent that the global sea level was lowered. This has resulted in
glaciers delivering debris ranging in size from clay-sized rock flour to boulders
to the front of the glacier/sea boundary as unconsolidated deposits. Coarse
materials accumulated close to the glacier snout while silt and clay particles
were further transported towards the sea as they were flocculated into aggregates
and settled to the sea floor. Melt water from glaciers continued to deliver fine
particles to the sea forming deltas at river mouths where the flocculation process
continued as the glaciers slowly retreated. When the ice sheets retreated even
farther, local land surface rebounded faster than the sea level rose due to ice
melt, lifting more of the old sea bottom above sea level. The surface got exposed
to subaerial processes which in turn formed weathered crust in the surface zone.
Due to delays in the Earth’s crust, it will take some time to retain an equilibrium
after the ice masses has melted. Thus, most of Oslo still experience a post-glacial
rebound, i.e the landmasses are still slowly heaving upwards. This means that
the majority of the study area are now dry land that were once ocean floor
during the ice age.

Figure 1: An illustration over unconsolidated material deposits within the Oslo fjord. Source:
(Klemsdal, 2002)
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As figure 1 illustrates, the area lies in the Oslo rift which were formed by stretch-
ing, dilution and cracking of the crust in carbon and perm (Nordgulen et al.,
1998). Most of the study area are covered by 540-415 million cambrosilurian
bedrock. Although the Oslo rift is affected by the processes during carbon-
perm, the structures are also to a larger extent influenced by the development
under the caledonian orogeny when the area got exposed to compressive forces
from northwest. The faults in the area have affected the bedrock during late-
caledonian and permian time where the cambrosilurian bedrock folded. This has
caused several decimeters of thick clay zones along these faults, but the bending
folds have been replaced with cracks and faults causing weakness zones parallel
to the strike (Nordgulen et al., 1998). The weakness zones can additionally be
partially open and create canals where water can infiltrate the bedrock.

Figure 2: The study area. Most of the study area are based in Skøyen and partially the
intersection between Frogner and Bygdøy. (Lat 59.919258, Long 10.683225) Source: (NGU,
n.d.)

The study area of Skøyen itself is dominated by limestone nodules (light blue)
with layers of slate (light green) as shown from figure 2. Most of the area are
highly urbanized with few exposed bedrock on the surface as illustrated in fig-
ure 2. A larger North-South fault can be found further east of Skøyen Station,
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but there are otherwise no other known fault zones in the area. Otherwise,
larger parts of the area consists of marine deposits, which potentially can con-
tain quick clay. The thickness of loose materials tend to variate by area from
outcrops to more than 50 meters of depth to bedrock. Multiple samples from
the municipality indicate loose materials to a larger extent consist of very wet to
medium solid clay with little to no sensitive clay. The case of subsidence is not
only particular to Skøyen, but also other urbanized areas in Oslo as well such
as the Oslo Central railstation and the Barcode area (Eriksson et al., 2021).
Significant subsidence deformation of more than 5 mm/year within Oslo has
also been observed during the 90s (Lauknes et al., 2006). The study area itself
do also show similar activites in figure 3, especially around the trains stations
and along the roads.

Figure 3: An example of subsidence distribution in the Skøyen-area using InSAR. Some
parts of Skøyen has a subsidence rate as high as 27 mm/year, particularly within the train
station. Source:(Romsenter, n.d.)
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2.3 Theoretical background of land subsidence

Land subsidence is a gradual settling or sudden sinking of the Earth’s surface
due to removal or displacement of subsurface earth materials, and it is a problem
that occurs around the world. For instances, many countries have suffered costly
from the damages of land subsidence, especially from major city areas such
as Tokyo, Japan; Shanghai, China; and the California region in USA. Causes
of land subsidence include compaction of aquifer-systems, drainage of organic
soils, underground compaction, natural compaction, sinkholes and thawing of
permafrost (Galloway et al., 1999). Exploitation of groundwater appears to be
one of the more common occurrences for land subsidence as more than 80 % of
identified cases in the US stems from underground water exploitation. Likewise
in Shanghai, China, the exploitation in the deeper aquifer during the 1990s
caused an aggravation of land subsidence due delayed drainage in a watertight
layer (Cui, 2018).

Any kinds of fluid in pore spaces or fractures in rock are under pressure due
to the weight of overlying rock. Fluid pressure decreases when withdrawn from
the subsurface, removing the support and potentially cause a collapse. Water in
the form of groundwater and petroleum from natural gas and oil are the most
common fluids that gets withdrawn for human use, and thus subsidence related
to withdrawal of fluids are often manmade.

Subsidence can also occur by hydro-compaction. Hydro-compaction is the shrink-
age of clay due to the removal or drying of water the clay minerals have absorbed.
In relatively dry areas where the ground contains a mix of sand, silt and clay,
the dry silt or clay particles behaves like a cement that holds the sand particles
in an open matrix with air spaces between them. Water infiltration through
intense rainfall, irrigation or broken pipes leaves the open soil structure vul-
nerable since the sudden influx of water dissolves silt and clay, making the air
spaces between the sand particles collapse, and causes the affected area to sink
as illustrated in figure 4.

Processes that lowers the water table can also potentially trigger land subsi-
dence. The water table defines the level below in which the ground is saturated
with water. Anything beneath the water table, i.e the saturated zone, are fully
saturated with water, and the pore spaces are occupied. It is possible that the
water level are exposed at the surface such as in streams, lakes and swamps.
The level of the water table can be changed either by recharge; where water is
introduced in the groundwater system such as when intense rainfall infiltrates
the surface or by discharge where groundwater leaves the system through surface
bodies of water, springs and wells.
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Figure 4: An illustration of the stages of subsidence due to hydro-compaction. Pumping
groundwater leads to gradual subsidence, lowering the depth to water table. Source: Zeitoun
and Wakshal (2013)

Houses and other buildings are also contributing to land settlements during
a consolidation process. Along with hydro-compaction, consolidation applies
stress to the soil reducing the bulk volume. The water from the saturated soil
will be squeezed out, and when stress is removed from the soil, it will regain some
of the volume it has lost in the process. Occurrences of natural hazards such as
landslides and land subsidence are expected to rise since climate change affect
the stability of natural and engineered slope as a result of increasing rainfall
intensity and higher temperatures (Gariano and Guzzetti, 2016). Additionally,
groundwater exploitation from porous sediments and fine-grained material is
also proven to enhance land subsidence globally (Huang et al., 2012). Along
with climatic parameters, the demand for water supply in plains and cities,
leads to excessive extraction of groundwater which in turn increase the dangers
of land subsidence in these areas. The sudden and gradual movement in clay
acquifers has the potential to cause demolition of buildings and rising pipes from
the ground (Pourghasemi and Saravi, 2019). Groundwater activity is also an
issue in some places in Norway as well. For instances, planned site projects are
potentially threatened by groundwater leakage in the tunnels due to the area
lying below groundwater level (Braathen, 2018) in the municipality of Fredrik-
stad. It was assumed that the groundwater potential varies significantly from
the area, but the most susceptible area contain little to no bedrock in the sub-
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surface with an abundance of soft sediments.

Groundwater exploitation in city areas is however not the sole cause of subsi-
dence as man-made infrastructure and large-scale engineering construction also
contributed to ground displacements such as building loads, pit excavation and
dewatering, shield tunnelling and tunnel leakage (Yang and Gong, 2010). Sub-
sidence in urbanized areas is in fact an issue since leakage of human-made sewer
pipes or water mains might cause erosion of underground soil and/or rock lead-
ing to sudden collapse. Cities built on unconsolidated sediments such as clay,
silt, peat and sand are particularly vulnerable to subsidence. This applies to
cities located in delta areas, where rivers fare into the sea, along floodplains ad-
jacent to rivers, and in coastal marsh lands (Zeitoun and Wakshal, 2013). Sub-
sidence is a natural process in such settings. Sediments deposited by rivers and
oceans gets buried, and the weights of the overlying, newly-deposited sediments,
compacts the sediment and the material subsides. There are several reasons
building cities in such areas contributes to subsidence. One of them being that
the construction of buildings and streets adds weight to the region and further
adds more stress to the soil underneath. For instances, there have been some
instances of large and unforeseen subsidence events around Oslo Central Station
relating to building projects in the neighborhood area of Bjørvika (Vegvesen,
2016). It was concluded in a technical report from Norwegian Road Authorities
that adding fill material from asphalting made the area more vulnerable to sub-
sidence along with the reduction of pore pressure due to causing drainage effects
when performing drill samples. Areas often have to be drained to be occupied,
resulting in lowering the groundwater table and leads to hydro-compaction and
consolidation. Another man-made structures that could potentially are dams
and levees built to prevent or control flooding. Usually sedimentation from
floods helps replenish the sediments that subside, decreasing the overall rate of
subsidence. When the sediment supply is suddenly cut off, the replenishment
does not occur and the subsidence rate enhances.

2.4 InSAR and the practices of predicting ground subsi-
dence

Monitoring elevation-change are fundamental to track land subsidence. Mea-
surements by continuous GPS (CGPS), campaign global positioning system
(GPS), spirit-leveling, and use of interferometric synthetic aperture radar (In-
SAR) are among the most common methods for measuring land subsidence.
Compaction of aquifer-systems can also be measured by extensometers, which
is an instrument that are often used to measure deformation of materials under
stress.

InSAR provides more cost-efficient and higher resolution subsidence than those
provided by benchmark releveling, extensometers and GPS surveys, providing
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DEMs with meter accuracy and terrain deformation with millimeter accuracy.
In principle, DEMs and deformation patterns can be estimated in a very dense
grid at low cost compared with any other traditional methods. The rationale
behind a multi-image approach to estimate surface displacements stems from
the interferogram. Interferograms are maps of relative ground-surface change
that are constructed from InSAR data. It requires at least two images taken at
intervals in time to determine if there has been any shift in land surface levels.
If the ground has moved away (subsidence) or towards (uplift) the satellite be-
tween the times of the two SAR-images, a different portion of the wavelength
is reflected back to the satellite resulting in a phase shift. That is when sur-
face movement has been detected, measured and recorded via an interferogram.
Figure 5 shows the acquisition process. Two radar images are collected from
different times from similar points in space that can be compared against each
other. Any movements are measured and portrayed as a picture.

Figure 5: An example of how InSAR is recorded. A satellite passes over an area and records
data about it. Two or nore passes are required to create InSAR images. Source: (USGS,
n.d.a)

A pixel value in a SAR-image changes phase depending on the relative position
of the satellite scatterer, temporal changes of the target and atmospheric vari-
ations. If we have K + 1 SAR images of the same area as the reference master
acquisition m, the phase difference of pixel x =

[
ξ
µ

]
(where ξ and µ representing

the azimuth and slant range coordinates respectively) between the generic slave
image k with respect to the master image will be represented as:

ψk(x) =ψk(x)− ψm(x)

=
4π

λ
[rk(x)− rm(x)] + [σk(x)− σm(x)]

+ [ak(x)− am(x)]

(1)

where r is the distance of the satellite target, σ is the scatterer reflectivity phase,
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and a is the atmospheric phase contribution Ferretti et al. (2001). In repeat-pass
interferometry, it is also possible to represent rk as:

rk = rm +4rk +4µk (2)

4rk is the range of variation due to different satellite positions, and 4µk is the
possible target motion in the direction of the satellite line-of-sight that appears
during the time interval between the two acquisitions.

Although InSAR often gives precise measurement of subsidence, use of tradi-
tional methods such as extensometers have been utilized to constrain the mea-
surements from InSAR. For instances, Buckley et al. (2003) used extensometers
to measure ground subsidence around local areas in Houston, Texas giving a
root-mean squared error of less than 2.5 mm. It was proven that radar in-
terferometry can benefit from complementary use of ground-based subsidence
measurements since measurements from InSAR could be disturbed from atmo-
spheric artefacts, decorrelation or heavy vegetation. Temporal decorrelation
makes InSAR-measurements unfeasible over vegetated areas and where electro-
magnetic profiles and/or the positions of the scatterers change with time within
the resolution cell. Furthermore, geometrical decorrelation also limits the num-
ber of image pairs suitable for interferometric applications and prevents one
from fully exploring the data sets available.

2.5 GIS-MCDA and application of machine learning for
generating susceptibility maps

2.5.1 Basic concepts of GIS-MCDA

In the past decades, several studies of subsidence susceptibility and zonation has
been carried out across the globe with a diverse range of methods included such
as the applications of neural network (Lee et al., 2012), interferometric synthetic
aperture radar (Dehghani et al., 2014), and AHP (Ghorbanzadeh et al., 2018).
Since it takes time for land subsidence to instigate, where it often takes a couple
of years before deformation begin to appear at the surface, a geospatial approach
to land subsidence susceptibility mapping (LSSM) could therefore be an effective
technique to improve the understanding of susceptibility to such kind of hazards.
LSSM attempts to discover areas with high susceptibility of land subsidence
and also reduce the severe adverse effects of this type of natural hazards. By
implementing geospatial analysis such as GIS-MCDA in the process, a prediction
of potential land subsidence occurrences can be zoned and mapped, which can
contribute to reduce negative effects during site planning. GIS-MCDA provides
a powerful method for overlaying maps that can be sufficiently used for LSSM
due GIS’ efficiency of data collection, analysis and validation (Gaspar et al.,
2004).
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In order to start to start a multicriteria decision analysis (MCDA), it is first
important to have a clearly defined goal in the analysis. This could for instances
be: Where is the most ideal place to live in Norway as a student? Which areas
are prone to landslide? Where is to most suitable place to build a shopping
mall? Such objectives are often quite difficult to answer as it often depends on
what factors the decision-maker wants prioritize. The decision-maker can be
an individual, a group of individuals, or an organization (Malczewski, 1999a).
It is therefore important to have decision alternatives evaluated on the basis of
a set of criteria, that includes both attributes and objectives. Both individual
criterion and a set of criteria should posses properties to adequately represent
the nature of the decision situation. For instances, if the criterion housing price
is included in the first question, it must be measurable and comprehensible.
According to Malczewski and Rinner (2015b), the properties of a set of criteria
must fit the following description:

1. Complete (Cover all aspects of a decision problem)

2. Operational (Meaningfully used in the analysis)

3. Decomposable (The set of criteria can be broken into parts and simplified)

4. Non-redundant (Avoid problem of double counting)

5. Minimal (The number of criteria should be as small as possible)

Additionally a criterion can be spatially explicit or implicit. A spatially explicit
criteria involves spatial characteristics of decision alternatives such as shape
and size, while a spatially implicit criterion indicates that data are needed to
compute the level of achievement of criterion such as distance to roads and
equity of income distribution.

Furthermore, a criterion is a generic term including both the concepts of objec-
tive and attribute (Malczewski, 1999a). An objective is a statement about the
desired state of a system under consideration, while an attribute is a property
of an element of a real-world geographical system.

Each criterion needs to be given a certain weight that indicates how important
the criterion is in the decision-making process. It is worth to mention that the
methods of assessing criterion weights are context-related, but there are some
desired properties that the criterion weights should have. That is, the criterion
weights w1, w2...wk are typically assumed to meet the conditions: 0 ≤ wk ≤ 1
and

∑n
k=1 = 1. The greater the weight, the more important is the criterion in

the overall value. There are also some additional ways to improve the weighting
the criteria such as the analytical hierarchy process and pairwise comparison.
This will be discussed in more detail in the chapter of methodology.
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Figure 6: An example flow chart for the project. All 7 criteria go through several processes
before the fina product.

Figure 6 shows a simplified process of the MCDA workflow. Not all criteria for
the project contain numerical values. Thus, the criteria containing categorical
values such as the "land use and land cover" contain classes such as "Urban
fabric" and "Arable" land must be reclassified into numeric values before the
overlay analysis. The step of analytical hierarchy process could come at any
step, but must be before weighted overlay analysis as the process itself define
the exact weights for each criterion based on individual pairwise comparison
between each criterion. During the reclassification, it is important to rate each
class to each individual criterion on a scale from 0 to 10 in order to create a
normalized map. After the normalization, the weights that resulted from AHP
are applied in the weighted overlay analysis as described from the last paragraph.

2.5.2 Studies of MCDA vs machine learning methods

There is a wide variety of implementing GIS multicriteria decision analysis
(MCDA) to evaluate ground susceptibility and site selection. De Luca et al.
(2012) constructed a value-focused MCDA approach for developing three hypo-
thetical corridors in order to create a high-speed train track between Palermo,
Italy and Berlin, Germany. Skilodimou et al. (2019) on the other hand used
MCDA to delineate suitable areas for urban planning with emphasis on past
landslide and flood events. Similarly, Dai et al. (2001) made a geo-environmental
evaluation for urban land-use planning in northwest China. By applying topog-
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raphy, surface and bedrock geology, groundwater condition and historic geologic
hazards as factors in the analysis, suitability maps for different types of land-use
and projects such as high-rise buildings and natural conservation was created.
Using a more traditional approach for geo-environmental planning by manual
mapping in the area would otherwise be more laborious, time-consuming and
less cost-efficient.

One of the critical aspects of applying spatial multicriteria analysis is that it
involves evaluation of geographic events based on chosen criteria and the de-
cision maker’s preferences with respect to the given set of evaluation criteria
(Malczewski, 1999b). There are two considerations that are crucial for success-
fully applying MCDA with spatial data. One of them is the GIS’ capabilities of
data acquisition, storage, retrieval, manipulation and analysis. When attempt-
ing to acquire and process them to gather information for decision making, the
complexity of the problem may exceed the decision maker’s cognitive abilities.
Although there are no standard limitations for selecting the number of criteria
included in the analysis, the efficiency of MCDA-application depends on the
number of considered criteria. Studies conducted by Saaty and Ozdemir (2003)
implies that the number of elements for making judgements through MCDA-
techniques, such as the analytical hierarchy process (AHP), should not be more
than seven. The reasoning is founded in the consistency of information derived
from the relations among the elements. As the number of elements surpass
seven, the increase in inconsistencies will become too small for the mind to sin-
gle out the element. Another factor is the MCDA capabilities for aggregating
geographical data and decision maker’s preferences into unidimensional values
of alternative decisions. This is also related to the number of criteria and the
performance of sensitivity analysis. Karlsson et al. (2017) for instances made
a susceptibility analysis of natural hazards with regards to road planning in
Sweden. The results indicates that the use of spatial MCDA needs further de-
velopment regarding decision rules and criteria. This is due to the uncertainties
subjected in the susceptibility assessment. The experts involved in the project
made more or less subjective, and partially inconsistent judgement of the cri-
teria used to determine natural hazards. In spite of the current limitations of
MCDA, it is still a useful method for spatially identifying potentially natural
hazard susceptible areas, but it should be followed up with in-situ investigations
and more detailed modeling for use as decision support.

Since the processes of natural hazards are quite complex in nature and can be
affected by multiple factors, it requires huge amount of data to represent each
conditional criteria properly. Thus, data mining techniques has gradually been
implemented in decision-making process for GIS-environments. In general, data
mining is described as an analysis tool for a large amount of data sets. Data
mining techniques such as ANN (Artificial Neural Networks), SVM (Support
Vector Machine), LR (Logistic regression) etc., are considered to be efficient
ways for analyzing large chunks of data and for producing landslide suscepti-
bility, hazard and risk maps (Yilmaz and Ercanoglu, 2019). For instances, Lee
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et al. (2004) utilized ANN to weight criteria of landslide susceptibility in Yon-
gin, South-Korea. The area was suffering to landslide damage due to heavy
rainfall in 1991. Determining the weights of the landslide criteria through ANN
were therefore investigated in order to compare the performance between data
mining and the ordinary statistical approach in the multicriteria analysis. Lee
et al. (2012) has also applied ANN for measuring ground subsidence suscep-
tibility (GSS) in areas nearby an abandoned coal mine. Their procedure was
based on eight physiographic and structural factors as input data. The back-
propagation algorithm was then applied to calculate the weights between the
input and hidden layers and between the hidden and output layers by using a
MATLAB software package. Another example of using data mining in GIS is
the application of logistic regression by using equal proportions of the binary
pixels 1 ("landslide") and 0 ("no landslide") to represent landslide susceptibil-
ity. Ayalew and Yamagishi (2005) got the results by arranging all classes of
their chosen parameters according to corresponding landslide densities. The
regression was performed among independent variables.

Traditional methods of overlay and multicriteria evaluation are capable to repli-
cate and perhaps even be replaced by neural networks. The concept behind
the ANN-model is derived from the simulation of the human brain. Each basic
computational unit in the network represents a neuron, which performs a simple
weighted summation and nonlinear mapping (Zhou and Civco, 1996). An ANN-
model are composed of highly interconnected processing elements arranged in
a way that are analogous the neurons. Furthermore, ANN also contains a se-
quence of layers and slabs with full or random connection between successive
layers. The connection is usually described as input layer, where data/criteria
are presented to the networks, and output layers holds the response of the given
input to the network. Otherwise, the layers distinct from input and output are
considered as hidden layers. These types of intermediate layers usually captures
low-level features such as the weighted average of several inputs of criteria or
the presence of simple patterns within one criterion. By using such approaches
for geospatial analysis, ANN-modeling is capable to automatically determine
weights of each factor considered for the MCDA based on representative train-
ing sets in an objective and nonlinear manner in comparison to overlay analysis
which subjectively assigns weights. This was proven in a case study by Sui
(1994) where he used six criteria as input for ANN in order to make a suitabil-
ity map for site planning. Land parcels were first extracted as overlay and by
polygon selection capabilities. Some of the data were then used as training sets
to find the easiest path to solve a particular problem. The analysis also includes
a learning rate that controls how much of the errors between network output and
desired output propagates back to preceding nodes in the network. The artificial
neural networks learns by adjusting weights between the neurons in response to
the errors between the actual output values and the target output values. The
generated output will then produce the thematic suitability map. Overall, this
technique provides a promising approach to handle uncertainties in input data.
Problems occurring from traditional cartographic modeling techniques such as
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weight determination and inability to handle noisy and/or missing data can be
resolved through learning process and hidden layers in ANN.

2.6 Machine learning algorithms used in this thesis

2.6.1 Neural networks

In its simplistic form, a neural network is either a two-stage regression or classi-
fication model, that is typically represented as a network diagram. It consist of
a large number of interconnected processing elements called neurons which are
working together to resolve a specific problem.

Figure 7: An example of the neural network architecture for predicting land subsidence using
5 criteria that potentially could influence the risk. Source: Bagheri et al. (2019a)

Figure 5 shows an example of how a neural network can be used to predict land
subsidence. The network is built upon three types of layers, namely: an input
layer, a hidden layer, and an output layer. The input layer in this example shows
the criteria and data that has been used to predict land subsidence. The last two
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layers process the input they receive from the input layer by multiplying each
input by a corresponding weight, summing the product, and then processing
the sum using a non-linear transfer function (activation function) to produce the
result. The neurons in these models act like nodes where data and computations
flow. They receive one or more input signals, and these signals can either stem
from a raw data set or from neurons positioned at a previous layer of the neural
net. Each connection between neurons are represented by weights. Once a
neuron receives its inputs from the neurons of the preceding layer of the model,
it sums up each signal multiplied by its corresponding weight and passes them
further to an activation function. The general aim of the neural networks is to
tune the weights of every connection to properly estimate an output or reaction
with a given a set of inputs. In this project, we will look closer to the Feed
Forward Neural Network (FFNN) algorithm. The paragraphs below will dive a
little deeper into the algorithms used to create the neural network algorithms
for this project.

The activation functions The biological neuron is simulated in a neural by
an activation function. In a classification task, an activation function has to
have the switch-on characteristic, which mean that the output should change
state. This simulates the "turning on" of a biological neuron. In a regression
problem on the other hand, the final layer of the neural network will have one
neuron and the value it returns is a continuous numerical value. The expression
"z" represent the input data.

A common activation function for both classification and regression problem is
the sigmoid function:

f(z) =
1

1 + e−z
(3)

The sigmoid function moves from 0 to 1 when the input z is greater than a
certain value. It is not a stepwise function, and the output does not change
instantaneously. This activation function is often utilized due to its smooth
behavior where the function goes from 0 to 1 in a well-behaved way. In a binary
case, the output class depends on the value of the activation function used in
the last layer. If the f(zl) ≥ 0.5, the output will be defined as class type 0, and
class type 1 otherwise.

Another activation function is the rectified linear unit (ReLU):

f(z) =

{
0, for z < 0.
z, for z ≥ 0.

ReLU is linear for all positive values and 0 for all negative values. This makes
it computationally cheap compared to sigmoid as the model takes less time to
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train or run. Additionally, it also converge faster since it does not have the
vanishing gradients, and it is sparsely activated. Sparsity results in concise
models often leads to better predictive powers and less overfitting/noise. Unlike
sigmoid, ReLU has no upper limit of the value it can take.

Another variant of ReLU is the leaky ReLU. Leaky ReLU has a small slope for
negative values, instead of 0 altogether. Leaky ReLU may for instances have
y = 0.01z when z < 0. An advantage of leaky ReLU over ordinary ReLU is
that we can worry less about the initialization of the neural network. In the
case of ReLU, it is possible to end up with a neural network that never learns
if the neurons are not activated in the beginning. The network may have many
"dead" ReLU, e.g ReLU always gives values under 0, without even noticing.

In a classification problem, one might also consider softmax as an activation
function for the output layer. Softmax assigns decimal probabilities to each
class in a multi-class problem. Those decimal probabilities must add up to 1.0.
This additional constraint helps training converge more quickly. Softmax is
implemented through a neural network layer just before the output layer. The
softmax layer must have the same number of nodes as the output layer. The
equation of softmax is as follows:

f(z)i =
exp zi∑n
j=1 exp zj

(4)

The equation above shows the expression of softmax. z represents the inpt vector
which consist of n elements for n classes. zi is the i-th element and can be any
real value. The activation function calculates a probability for every possible
class. This form of activation function is usually computationally cheap when
the number of classes are small but becomes more expensive when the number of
classes increases (Géron, 2017). For binary classification, using softmax should
give the same result as sigmoid, since softmax is a generalization of sigmoid for
a larger number of classes.

The basic notations Before diving in to the algorithm, it is essential to
explain some basic notation first. For the upcoming equations, each weight is
identified with w(l)

ij . The i represents the node number of the connection in layer
l + 1, while j refers to the node number of the connection in the l-th layer.For
instances, the connection between node 1 in layer 1 and node 2 in layer 2 will
gain the weight notation w

(1)
21 . The notation of the bias weight is considered

as b(l)i where i is the node number just like the weight notation. Note that the
bias generally has no input value since it is not a true node with an activation
function. Both the values w(

ji1) and b(l)i must be calculated during the training
phase of the neural network. The ANN also consist of an output notation h(l)j ,
where j is the node number in layer l of the network.
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Feed Forward propagation In a feed forward process, a new variable z(l)i is
introduced, which represents the sum of inputs into node i of layer l, with the
bias term included. For example, in the case of the first node in layer 2, z is
equal to:

z
(2)
1 = w

(1)
11 x1 + w

(1)
12 x2 + w

(1)
13 x3 + b

(1)
1 =

n∑
j=1

w
(1)
ij xi + b

(1)
i (5)

It is possible to forward propagate the calculation through any given number of
layers in the neural network. The generalized term is then:

z(l+1) = W (l)h(l) + b(l) (6)

where
h(l+1) = f(z(l+1)) (7)

The output of layer l becomes the input of layer l+ 1. h(1) is simply considered
as input layer x, while the last layer is the output layer.

Cost function It is always important iteratively minimize the error of the
output the neural network by varying weights and gradient descent. This makes
it possible to prevent overfitting of the data, and the optimization revolves
around minimizing the cost function. In neural networks , the equivalent cost
function of a single training pair (xz, yz) is expressed as:

J(w, b, x, y) =
1

2
||yz − hn1(xz)||2

=
1

2
||yz − ypred(xz)||2

(8)

The equation above shows the cost function of the z-th training sample where
hn1 represents the final layer of the neural network, the output layer in other
words. The error is represented in the L2 norm, which is a common way of
representing the error of machine learning algorithms. Instead of taking the
absolute value between the predicted value and the actual value, the square of
error is calculated.

The downside of using a quadratic function in equation (8) is that there’s a risk
for getting a learning slowdown. This means that when the neuron’s output is
getting closer to 1, the curve flattens, and the derivative of the cost function
gets very small, which in turn leads to ∂C

∂w and ∂C
∂b being very small as well

(Nielsen, 2015). To address the issue of learning slowdown, the cost function
can be replaced with a different cost function called the cross-entropy function:

J(w, b, x, y) = −
∑

[y ln(hn1(xz)) + (1− y) ln(1− hn1(xz))] (9)
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The cross-entropy is positive and tends toward zero as the neuron gets better at
computing the desired output, y, for all training inputs. If we replace hn1(xz)
with σ(z), the partial derivative of the cost function can be described as:

∂C

∂wj
=

1

n

∑ σ′(z)xj
σ(z)(1− σ(z))

(σ(z)− y) (10)

The terms σ′(z) and σ(z)(1 − σ(z)) cancel in the equation and gets simplified
to become:

∂C

∂wj
=

1

n

∑
xj(σ(z)− y). (11)

where xj are the input variables and n is the total number of items in the training
data. The equation above indicates that the learning rate of the weights are
controlled by the error in output. The larger the error, the faster the neuron
will learn. In particular, it avoids learning slowdown caused by the term σ′(z)
as it is cancelled out using cross-entropy. σ(z) in this equation is the probability
of an input data point being class type 1, while the term 1 − σ(z) represents
the probability of class 0. In a multiclass case, the softmax function are used.
One-hot encoding will be utilized, and in a binary case, the classes may for
instances be represented as (1, 0) = 0 and (0, 1) = 1.

Backpropagation In equation (5) as discussed for the feed forward algorithm,
we have defined the simple foundational equation of the neural network by using
three layers as an example. One of the purposes of the backpropagation process
is to find out how much a change in the weight w(2)

12 has on the cost function J
in order to evaluate the chain function:

∂J

∂w
(2)
12

=
∂J

∂h
(3)
1

∂h
(3)
1

∂z
(2)
1

∂z
(2)
1

∂w
(2)
12

(12)

For the weights connecting to the output layer, the cost function can be directly
calculated by comparing the output layer to the training data set (Nielsen,
2015). The output of the hidden nodes does on the other hand have no such
direct reference. They are connected to the cost function only through mediating
weights and other layers of nodes. This is where backpropagation will do its
work. The term that needs to propagate back through the network is denoted
as δ(n1)

i . This term represents the neural network’s ultimate connection to the
cost function, and it contributes through the weight w(2)

ij . The output layer δ is
communicated through the hidden node by the weight of the connection. The
hidden layer δ can in a vectorized form be described as:

δlj =
∑
i=1

(δ
(l+1)
1 w

(l)
ij )f ′(zj)

l (13)

It is then possible to calculate the gradient descent for the weights and biases:

∂

∂W
(l)
ij

J(W, b, x, y) = δ
(l)
i h

(l−1)
j (14)
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∂

∂b
(l)
j

J(W, b, x, y) = δ
(l)
i (15)

for all layers l. The derivatives in the activation function enters in equation
(13), behaving like a weight to error used in the gradients. This might cause a
vanishing gradient when using the sigmoid function. If the weighted inputs to
the of the sigmoid function is substantially large such that |z| >> 0, then its
derivatives will be close to zero. This will, as a consequence, wind up with very
small gradients for the weights and biases, and it will take a lot of iterations to
optimize the weights and biases for the stochastic gradient descent. This will
become less of an issue when using ReLU as an activation function. Since the
output of its derivative is either 1 or 0, the vanishing gradient will not cause too
much of an issue since not all of the weighted inputs become less than zero.

Error metrics Measuring the performance by estimating the error metric is
important to check how well a model predicts data. In a classification problem
this could for instances be the accuracy score:

Accuracy =

∑n
i=1 I(ti = yi)

n
(16)

The accuracy is measured by the number of correctly guessed targets ti divided
by the n total of targets. I is the indicator which will give the value of 1.0 if
ti = yi and 0 otherwise in a binary case. This method is easy to implement, but
could be biased if the data set is biased as well.

An alternative error metric method for machine learning is the AUC-score, which
stands for the area under the ROC-curve. AUC provides an aggregate measure
of performance across all positive classification threshold. An interpretation of
AUC is that a random positive example are ranked more highly than a random
negative in a machine learning model.

Figure 8: A sample illustration of predicted data using logistic regression. Source:
(GoogleDev, 2020)

In the figure above, AUC represents the probability that a random positive (i.e
green) example is placed to the right of random negative (red) example. AUC
ranges in value from 0 to 1. If a model predicted all samples wrong, then AUC
would have a value of 0.0, and a model with 100% correct prediction would have
an AUC-score of 1.0. The reason AUC is included as an error metric is because it
is scale-invariant. It measures how good predictions are ranked rather than their
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absolute values. Furthermore, AUC also measures the quality of the predictions
of a model regardless of what classification threshold is chosen. However, scale
invariancy is not always desirable because it is sometimes necessary to have well
calibrated probability outputs, which AUC would not take into considerations
compared to accuracy.

AUC and accuracy will thus be used as error metrics when performing the land
subsidence predictions for both neural networks and XGBoost. These would be
the key factors when deciding the most optimal parameters to use.

2.6.2 XGBoost

Just like neural networks, XGBoost use training data xi to predict a target
variable yi. XGBoost stands for "extreme gradient boosting", and it is an open-
source implementation of the gradient boosted trees algorithm, which inspired
from decision trees. Decision trees create a model that predicts a label by
evaluating a tree of if-then-else statements and true/false questions. The goal of
a decision tree is to estimate the minimum number of questions needed to assess
the probability of making a correct prediction of category in a classification
problem.

The difference between an ordinary decision tree and XGBoost is that XGBoost
uses an ensemble of decision trees. The ensemble consist of a set of classification
and regression trees.

Figure 9: A simple illustration of a decision tree ensemble using family members as an
example.Source: (XGBoostDev, 2020).

For instances, the figure above classify family members into different leaves, and
gives them a score on the corresponding leaf, which in this case are based on age
and the preference of a video game. The real score is associated with each of
the leaves, which gives a richer interpretation of that go beyond classification.
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A single tree is not strong enough, and the ensemble model is thus used to sum
the prediction of multiple trees together.

Figure 10: The model are splitted into two trees: One for age and one for daily computer
usage, creating an ensemble. (XGBoostDev, 2020)

The figure above shows a tree ensemble of two trees. The prediction scores of
each individual tree are summed up to get the final score. It can be mathemat-
ically be expressed as:

ŷi =

K∑
k=1

fk(xi), fk ∈ Υ (17)

where K is the number of trees, fk is a function in the functional space Υ, which
is the set of all possible classification and regression trees (Chen and Guestrin,
2016).

In short, XGBoost learns a model by taking a weighted sum of a suitable number
of base learners. The base learners are a part of an ensemble. This differs from
ordinary machine learning which try to learn one hypothesis from training data,
while ensemble methods construct a set hypotheses and combine them to use.

Moreover, a regularized objective is minimized in order to learn the set of func-
tion used in the model by the expression:

L(φ) =
∑
i

l (ŷi, yi) +
∑
k

Ω (fk) (18)

where Ω(f) = γT + 1
2λ‖w‖

2. In this context, l represents a convex loss function
that represents the difference between the prediction ŷ and the target y. The
second term Ω on the other hand penalizes the complexity of the model. It
helps to smooth the final learnt weights to avoid overfitting.
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The tree ensemble model is trained in an additive manner. Several base learners
or functions are explored, and an objective function is picked for minimizing the
loss, having the expression:

L<t> =

n∑
i=1

l
(
yi, ŷ

〈t−1〉
i + ft (xi)

)
+ Ω (ft) (19)

ŷ
(t)
i is the prediction og the i-th instance at the t-th iteration, where ft is added
to to minimize the objective to improve the model. The purpose of the training
loss function is to measure how predictive a model is with respect to training
data.

2.7 Criteria for land subsidence analysis

In general, the choice of criteria for land subsidence and main details of geo-
graphical information are not expressing land subsidence susceptibility assess-
ment based on statistical methods, but rather as a decision-making process
defined by multiple experts, as they have more in-depth knowledge of local
movements in specific locations (Gigović et al., 2019, Rikalovic et al., 2014,
Karlsson et al., 2017). This chapter will briefly explain the 7 criteria chosen
for this project. Several of the criteria have some connection with other nat-
ural hazards, especially with landslide, and some of the articles referenced are
multicriteria analyses which emphasizes on creating general natural hazards sus-
ceptibility maps. There however still some criteria that are particularly relevant
to subsidence such as altitude to groundwater table.

2.7.1 Slope

Slope stability remain one of the most important factors for evaluating risk of
natural hazards. This is because slope stability affects numerous factors relat-
ing to land subsidence including terrain, underground water level, mechanical
parameters, and unit weights of geomaterials (Wang, 2019). Traditionally, most
MCDA relating to natural hazards uses slope as a criteria where higher degrees
of slope are considered to increase the susceptibility. For example, when evaluat-
ing "safe" areas for portals in mountain tunnels or railways, it is often preferred
to consider areas with flatter terrain due to difficulties in construction, main-
tenance and usage for slopes higher than 1.5 degrees as anything higher could
increase the risk of landslides (Karlsson, 2016).The case for land subsidence is
on the other hand quite different. Pourghasemi and Saravi (2019) for instances
concluded in his creation of land subsidence inventory that land subsidence oc-
cur on flat slopes and smooth land as the increase in slope percentage decreases
the subsidence occurrence. Despite preferring a flatter terrain when evaluating
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natural hazards, lower slopes are more susceptible to land subsidence. This is
due to the speed of surface runoff is less, giving more sufficient time for water to
penetrate deeper into the subsurface and form dissolution cavities (Yeh et al.,
2016). Determining areas safe to natural hazards are therefore highly dependent
on the slope, and deciding the most suitable slope degrees are contextual.

2.7.2 Soil typr

Soil type has been used in multiple multicriteria analyses for natural hazards
(Gigović et al., 2019, Kanungo et al., 2006, Rikalovic et al., 2014). Variation in
structure and composition of different rock and soil types, also determines the
strength of the material. Stronger rocks give more resistance to driving forces
compared to weaker rocks and are hence less prone to susceptibility of natural
hazards. The composition of soil must thus be emphasized due to the fact that
the study area are mostly situated below the marine limit, where numerous
instances of marine clay mixed with other deposits pose a threat to ground
stability due to the risk of quick clay slides (Andersen et al., 2019).

Soil compaction are often caused by the structures of rocks and extraction of
groundwater from them, especially from highly porous sediments (Petersen-
Perlman et al., 2017). This quite a crucial factor since land subsidence itself
are affected by groundwater drawdown associated with afforestation and water
exploitation activities (Rahmati et al., 2019). The lithological condition in an
area would thus determine the rate of infiltration and indirectly influence the
occurrences of land subsidence.

2.7.3 Distance to rivers

The evolution of alluvial plains in the area during the Holocene period due
to eustatic sea level rise has resulted in occurrences of marine deposits nearby
the rivers of the study area in this project. Studies integrating machine learn-
ing methods for land subsidence susceptibility indicates that incidents of sub-
sidence movement is closely correlated to the distance from a river network
(Pourghasemi and Saravi, 2019, Wang et al., 2019). In such studies, the highest
weights of subsidence occurrence are often assigned at a distance of <50 m from
a river. It is therefore often implied that lower distances from rivers have the
greatest effect on land subsidence.
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2.7.4 Altitude of groundwater table

Among all possible causes of land subsidence, withdrawal of groundwater is
particularly troublesome, primarily because it is able to produce noticeable set-
tlements with rapid rates. Recent alluvial, marine or lacustrine deposits with
altered coarse-grained water bearing strata and fine-grained compressible layers
has been recognized to be more vulnerable to subsidence induced by groundwa-
ter withdrawal (Modoni et al., 2013). It should also be noticed that excessive
groundwater pumping often weakens the soil structure in the subsurface and
often controls the subsidence rate. For instances, field data from Shanghai
measured 2-3m of subsidence in the central area ever since land surveys took
place in 1921, while the subsidence curve flattened when the pumping activity
was limited (Shen et al., 2004). This is mainly related to the consolidation
mechanism caused by pore water pressure drawdown. Similar behavior were
also observed in the Marand Plain, Iran, where reduction of total volume in an
aquifer for agricultural purposes was considered to contribute to land subsidence
in a multicriteria analysis (Ghorbanzadeh et al., 2018). Massive exploitation of
groundwater resources was regarded as the main reason for a severe decline in
groundwater levels in the last three decades in the area.

The hydrological system, the geotechnical system, and the building system are
often correlated to each other when evaluating the impact of groundwater on
land subsidence. Withdrawal of groundwater from deep aquifers causes hy-
drological effects in the aquifers and the semi-pervious layer. Changes in the
groundwater table elevation along with the drop of the piezometric head im-
pacts the geotechnical system. Within the geotechnical system, processes such
as oxidation, shrinkage and compaction plays a crucial role for the degree of
land subsidence. Oxidation as a result of dewatering, can for instances increase
the subsidence in soil with high content of organic material. Additionally, low-
ering the piezometric head and groundwater table may cause the pore pressure
in compressible Holocene layers to decrease and increase the effective stress in
these layers, resulting in compaction and settlement of soil. Damages to build-
ings is a result between the calculated hydrological effects, and the geotechnical
system which determines the settlement.

2.7.5 Land use and land cover

Aside from different environmental factors on the spatial distribution of nat-
ural hazards, land use and land cover dynamics are important for assessing
susceptibility of natural hazards since vegetation types and covering dimensions
determines ground stability to some extent (Meneses et al., 2019). Certain
changes in land use such as deforestation and slope ruptures to roads increases
the number of unstable slopes in an area, which in turn promotes the propensity
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of occurences in natural harzards. The land use variable itself is rather dynamic
over time and is often influenced by climate-driven changes and anthropogenic
impacts (Promper et al., 2014). Land use and land cover maps can thus be
directly implemented in hazard models in order to evaluate different scenarios
of hazard susceptibility and at the same generate consistent susceptibility maps.
This was also evident from Rahmati et al. (2019) where anthropogenic influence
on the surface have significant effects on subsidence activity. In more detail,
Orhan (2021) conducted a study researching the connection between land cover
and subsidence activity in Konya, Turkey. He concluded that different types of
land cover such as agricultural areas, vegetation and urbanization did all posi-
tively impact the subsidence rate of the local area. It happened each time major
changes of land cover occurred, and the increase of subsidence were related to
declination of groundwater levels, but each type of land cover did however de-
cline the groundwater levels at a different pace.

Utilizing remote sensing is quite common to generate an land use map layer
for analysis of natural hazards. Chen et al. (2019) for instances managed to
extract a landslide susceptibility map using landslide-related factors from optical
remote sensing imagery with predictive models using decision trees. The DEM’s
in their study were generated from ASTER satellite imagery where the classes
are divided into grass land, forest land, farmland, residential areas and water
bodies. Such classes are also commonly used from other authors such as (Chen
et al., 2019) or (Karlsson et al., 2017). Water bodies are however quite irrelevant
in the case for analyzing land subsidence activities. Vegetation could also be
analyzed further using Normalized Vegetation Index (NDVI) which quantifies
greenness and density of vegetation. NDVI commonly occurs along with land
cover when studying land subsidence for machine learning (Rafiei Sardooi et al.,
2021), but this will however not be included further in the project as a criterion
since most of the study area is heavily urbanized (Nordgulen et al., 1998) and
using it as criterion could otherwise just increase the value of all pixels in the
map layer when performing overlay analysis.

2.7.6 Topographic wetness index (TWI)

The topographic wetness index (TWI) quantifies the topographic control on
hydrological processes, and was first developed within the runoff model TOP-
MODEL (Sørensen et al., 2006). TWI is commonly defined as ln( α

tan β ) where
α represents the local upslope area draining through a certain point in the wa-
tershed per unit contour length and tanβ is the local slope. TWI has often
been used as a criteria in multicriteria analysis where the study site is more
vulnerable to floods and heavy rainfall (Chen et al., 2019, Karlsson, 2016). This
is because topography controls spatial distribution of groundwater level and soil
moisture which can trigger land subsidence events caused by saturated condi-
tions within the soil. TWI is also used as a criterion because it is a secondary
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topographical vector defining the degree of deposition of water at a given po-
sition (Arabameri et al., 2020) which in turn also contributes to the degree of
groundwater drawdown. However, TWI does not account for soil type and land
cover, both of which are affecting the water saturation in the area. This must
therefore be taken into consideration for the overlay analysis in GIS.

2.7.7 Rock type

A prediction of potential subsidence and its magnitude are of great interest in
land reclamation or drainage projects. Compression/compaction, consolidation,
shrinkage, and oxidation are the four main causes of contributing downward
movement of the ground surface. Unlike other processes, subsidence caused by
consolidation can only occur on clays or soils of low permeability. The amount
of subsidence brought by these processes is a function of the pore space of
the original material, the effectiveness of the compacting mechanism, and the
thickness of the deposit undergoing compaction (Glopper and Ritzema, 2006).
Geology and soil type contain properties of permeability based on grain size,
but they are only sufficient for predicting subsidence caused by compression/-
compaction which only occurs on soil with at least some sand. Oh et al. (2019)
did for instance include both soil type and permeability when they conducted
a study to predict land subsidence in abandoned coal mines in Taebaek, South
Korea. In underground coal mining subsidence are often caused by sinkholes
occurring due to sudden collapse of overburden into underground voids, which
in turn are due to the decline of water levels in the soil as a result of pump-
ing. Despite a wide range for similar lithologies is indicated, it appears that
underground voids holding considerable amounts of water tend to be stored in
sediments of low permeability that commonly constitutes the bulk of aquifer-
aquitard systems (Domenico and Mifflin, 1965). This is especially relevant to
take the rocks permeability and its vulnerability of weathering in consideration
when the study area in this project is situated in an urban environment with
lots of construction activity underground. This has experience-wise proven to
be one of the main causes of anthropogenic subsidence such as Zarazoga city,
Spain Sevil et al. (2017) and Napoli, Italy Scotto di Santolo et al. (2016).

3 Methodology

3.1 Evaluation criteria

Creating a land subsidence susceptibility map requires data from multiple types
of criteria, originating from different sources, data types and resolution. During
the MCDA-process, satellite images, geological maps, point data of wells, and
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DEM’s were applied to generate a susceptibility map from the study area. As
mentioned earlier, seven criteria were taken into consideration to study the
susceptibility in the area, including: slope, distance to streams, land use and
land cover, rock type, topographic wetness index, and water table altitude. This
chapter will give an overview of the criteria chosen for the study.

Table 1: The data used in the susceptibility assessment, the data sources, and the associated
factor classes for the landslide susceptibility mapping in the study area.

Data layer Source data Data type Scale/Original resolution

Slope
DEM obtained
from Kartverket Raster 50 m

Distance from
major streams River data from NVE Line 1:50 000
Land cover
and land use LANDSAT-8 OLI Raster 50 m

Risk of
deep weathering

NGU and Norwegian
Road Authorities Polygon 1: 150 000

Soil type NGU Polygon 1:50 000

Topographic
Wetness
Index

DEM obtained
from Kartverket Raster 50 m

Water table
altitude

GRANADA
database Point 1:50 000

The methodological hierarchy behind generating the susceptibility maps is based
on the GIS-multicriteria decision analysis (GIS-MCDA) structure. This ap-
proach uses the capabilities of GIS for management of geospatial data and the
flexibility of MCDA to combine factual pieces of information from the criteria
with value-based information such as expert opinions, meaning that the inte-
gration of GIS and MCDA supplement each other.

3.2 Spatial database construction, environment set-up and
data preparation

All data used in the current study were georeferenced to Universal Transversal
Mercator (UTM), ETRS_1989_UTM, zone 32. Data sources originally in vec-
tor data format were transformed into raster-data with a 50x50m cell size. This
is because not all criteria layers had finer resolutions available.

The data of the criteria were stored in a geodatabase within ArcGIS Pro 2.4.
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The program is one of the latest GIS application for Esri, which opens up op-
portunities to explore, visualize, and analyze data. Some of the criteria comes
in forms of vector data such as points, lines or polygons to describe the geo-
graphical phenomena. Since the project requires querying attribute data and
involves reclassifying a subset of data within each criteria, all types of data were
converted into map layers and stored in multiple separate geodatabases: One
containing original data, one exclusively containing map layers under process-
ing, and one containing the final prodcts. The geospatial database management
system (DBMS) within GIS are designed to store and manage large amount
of data to handle ordering, sorting and retrieval. This is to ensure that data
are quickly available while still maintaining the integrity. This is to protect
data against deletion and corruption, and to facilitate the addition, removal
and updating of data when necessary. Geographical data are quite special in
way that each data for database modelling contains both spatial and attribute
information associated with it (McDonnell et al., 2015). A relational database
were integrated in the GIS-analysis which stores data in tuples. All records
have identification codes to use as unique keys to identify records in each file.
Relational databases often have the advantage of being very flexible in terms of
meeting the demands of all queries that can be expressed as Boolean logic or
mathematical operations.

ArcGIS provides a plethora of tools for processing data. The tools are grouped
into toolboxes by the type of actions they perform and each toolbox contain
toolsets that further defines the tools by their functionality. For instances,
the Analysis toolbox is grouped into Extract, Overlay, and Statistics. The
toolset Proximity then consists of tools involving calculations about the nearby
surroundings of points, lines and/or polygons such as buffer analysis and polygon
neighbors.

Both the MCDA-analysis using AHP and machine learning algorithms creating
the susceptibility maps for land subsidence requires use of multiple tools and
toolsets such as spatial analysis, data management, and geostatistical analysis.
To optimize the workflow of the project, the programming language Python
was integrated with the GIS-environment to run and automate most of the
tools used for processing the data in the analysis. Geoprocessing scripts begin
by importing the arcpy-package in Python. This package ensures all of the
functionalities in ArcGIS are available in Python. The arcpy-package has an
object-oriented design which can defined using object-oriented terms (Tateosian,
2015). The semi-automated script used to prepare data sets for MCDA-analysis
can be found on appendix A. The environment was set up on Jupyter.
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3.2.1 DEM-based criteria: Slope and TWI

the digital elevation model of the area was extracted from the Norwegian Map-
ping and Cadastre Authority (Statens Kartverk) with a spatial resolution of
50x50 meters. The DEM was produced by the authorities through planes and/or
helicopter with mounted laser scanners. The data-sets have a point density with
2 points per square meter. The slope of the area was calculated through the
DEM where the pixel values give an estimation of the elevation in meters above
sea level. In the analysis, the slope is defined in degrees. The calculation are
performed by using a 3 by 3 cell neighborhood with using a planar method as
an algorithm for calculating the slope. For each cell, the slope-tool in ArcGIS
calculates the maximum rate of change in value from a given cell compared
to its neighboring cells. In other words, the maximum change in elevation is
defined as the distance between a given cell and its eight cell neighbors, which
also identifies the steepest downhill descent from the cell. Mathematically, this
is expressed as:

slope = arctan(

√
∂z

∂x

2

+
∂z

∂y

2

∗ 180

π
) (20)

The equation shows that the rate of change of the surface in the horizontal ( ∂z∂x )

and vertical ( ∂z∂y ) direction from the cell center determines the slope, while 180
π

converts the value from radians to degrees.

Besides from slope, the criterion for TWI was also based on the DEM from
Statens Kartverk. Generating a TWI for the study area required using several
hydrological tools within ArcGIS. After gathering the DEM of the study area,
the resulting raster-layer was used further to calculate the flow direction. This
is the direction the water will flow out from an area that is represented by a
specific raster cell. The flow direction is decided from one cell by estimating the
gradient for each neighboring cell (ESRI, n.d.). The direction with the steepest
gradient will determine the flow direction. The D8-method was used for giving
an approximation of the flow direction, which measures one direction of flow
out of eight possible directions because of 8 neighboring cells. When direction
is decided, the relevant cell in the drainage raster is coded with a value that
represents the specified direction.

Furthermore, the resulting layer from flow direction are processed by a tool
that calculates flow accumulation. This tool provides information about how
many cells that drains to a certain point. In other words, the tool calculates
the accumulated flow as the accumulated weight of all cells flowing into each
downslope cell in the output raster. The number of cells is given as a float-
number accordingly to the D8-method as illustrated in figure 11.
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Figure 11: Each raster cells are first assigned a direction of travel in the flow direction tool,
then a value is given during flow accumulation processing. The top right image shows the
number of cells that flows into each cell. Source: (ESRI, n.d.)

After undergoing flow direction and flow accumulation, the slope-raster needs to
converted to radians. ArcGIS in general works with trigonometrical functions
based on radians, and it is thus necessary to calculate the local slope tangent
in order to get the TWI. This was performed in the raster calculator tool that
builds and executes map algebraic expressions. The original slope-raster was
used as input, and each cell within the raster-grid were multiplied by a factor of
π

180o . The raster calculator was then used to calculate the local slope (β), which
is based on an if-then-statement. The local upslope area draining through a
certain point per unit contour length α on the other hand are based on the earlier
flow calculations. In raster calculator, the statements would be the following:

tan (beta) = Con(slope>0,tan(slope),0.001)
alpha = (flow_acc + 1)*cell_size
TWI = ln(alpha/beta)

The local slope is based on a condition stating that only cells with a slope-value
higher than 0 will be calculated in the tangent function. Otherwise the cells
that does not satisfy the condition are automatically assigned as 0.001 in the
output-raster. The α-value was rescaled by adding a factor of 1 to the raster-
layer of the flow accumulation, and then multiplied by 50 in order to scale with
the cell size used for the general MCDA-analysis. The TWI-raster layer is finally
generated by the natural logarithm of the upslope area and the tangent of the
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local slope.

It should be notified that water can flow from one point to an infinite number
of direction rather than just eight directions as defined for the D8-method Rød
(2015). The flow direction in this part is hence restricted to to eight direc-
tion, which represents a surface flow that are less distributed than in a real life
scenario.

3.2.2 Criteria from vector-data (soil and rock type)

The soil type layer contains information about the general distribution of un-
consolidated materials covering the surface of the mountain. The data shows
only which soil type that are dominating the first upper meters of the terrain.
Thicker and thinner layer from other types of soil may occur further down the
soil profile. The data for soil type is based on the content of different Quater-
nary geological maps in different scales (from 1:20000 to 1:250000). The soil
and rock data from Norwegian Geological Survey (NGU) were converted into
raster format, reprojected to the proper reference system, UTM ETRS 1989,
and masked in order to generate a layer only containing the study area. The
maps are converted in digital format by scanning and vectorizing the Quater-
nary maps. There are in total 11 different classes in the original soil map layer,
consisting of: bare ground, fluvial deposits, anthropogenic material, sea- and
fjord deposits (inconsistent cover), fjord- and sea deposits (consistent cover),
humus cover, marine beach deposit, moraine material, rand-moraine, organic
material, and wind deposits. Once the soil type layer has been clipped to only
contain the study area, only 4 classes remain. The original data for rock types
did also had much more classes in its original form and did contain all rock
compositions existing in Norway. The classes however are much more limited in
the study area, and it was therefore decided to only include the six classes that
covered the study area. Additionally, the area is primarily dominated by slate
and limestone. Most of the classes are thus different degrees of a combination
between those rocks.

River Generating map layer for proximity to main river streams were based
upon calculating the euclidean distance from the lines of river streams based on
data from the Norwegian Water Resources and Energy Directorate (NVE). In
this case, the Euclidean distance tools within ArcGIS Pro describes the cell’s
relationship based on the line distance from the river dataset from NVE. The
river streams functions as a source which identifies the objects of interest. The
distance is then calculated from the center of the source cell to the center of each
of the surrounding cells. The output values for the Euclidean distance raster are
described as floating-point distance values, and contains the measured distance
from every cell to the nearest source.
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Groundwater table To create the map layer for altitude of water table, a com-
bination of point data representing different type of wells were acquired NGU’s
national groundwater database (GRANADA). Those wells consisted mainly of
densely distributed measurements along the urban area of Skøyen, with reg-
istered groundwater levels. The well data are based on several geotechnical
ground measurements such as cone penetration testing and oedometer tests.
The tests are further investigated in to acquire knowledge about, the density,
water content, plasticity boundaries, organic content and strength parameters
of the soil. There are in total 223 points with measured groundwater level from
the database.

The dataset from GRANADA gives a national overview of groundwater wells,
energy wells, and natural groundwater resources, which covers the entire main-
land Norway (NGU, 2017). The groundwater wells in GRANADA are defined
as points where groundwater was extracted for the purpose of water supply,
surveillance of groundwater parameters over time, energy wells for heat pump-
ing, insights for natural water resources, and for research purposes. All data
points registered from GRANADA are given the map projection ETRS UTM
zone 32 with varying resolutions. Not all data points from GRANADA within
the study area are used in the analysis. In fact, only 113 wells from GRANADA
were taken further in the analysis. This is due to the fact that most wells in the
area did not measure groundwater level and lacks proper date for measuring the
groundwater level, giving them an automatic point value of 0 meters. A simple
SQL-query in GIS are therefore applied to only include point data with given
groundwater values above 0 meters.
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Figure 12: A map illustrating the distribution of well data in the study area. The point
data was gathered from NGU’s GRANDA database. There in total 215 wells within the study
area with verified water level.

Data points from the wells were merged together. A new attribute table was
then created by subtracting the groundwater level with the altitude, which is
represented by the same 10m-resolution DEM for calculating the TWI of the
area. The newly created point values, containing the groundwater level eleva-
tion, are then interpolated by using the principles of inverse distance weighting
(IDW). IDW gives more weight to nearby points than to distant points. The
analytical expression of the surface is stated as:

f(x, y) =

∑
j=1...N w(dj)vj∑
j=1...N w(dj)

(21)

where N is the number of wells, vj represents the point j value, dj is the
Euclidean distance with point j, and w(d) is the weighting function, which has
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the formula:

w(d) =


1

d2min
, d ≤ dmin

1
d , dmin < d < dmax

0, d > dmax

(22)

where dmin is the minimum distance and dmax is the maximum distance. The
index dmin prevents infinite weight values for d = 0, while dmax avoids using
too distant points in the weighting process (Caruso and Quarta, 1998).

3.2.3 CORINE Land Cover

The land cover map comes from CORINE Land Cover (CLC). It consists of
an inventory of land cover with 44 classes, using a minimum mapping unit of
25 hectares for areal phenomena and a minimum width of 100 m for linear
phenomena. The data set for the map layer are from 2018 and were retrieved
from NIBIO. Nothing much were edited in the data layer before reclassifying.
Only 4 land cover classes exist within the study area, excluding water.

3.2.4 Attempts of remote sensing for classifying land cover

There was an earlier attempt to classify land cover through remote sensing in
order to get land cover maps newer than 2018, but this was later scratched from
the project as the chosen map layer had more accurate coverage. Classifying
land use and land cover were based on spectral signatures of different objects
in satellite images from LANDSAT 8 OLI, which is defined by the radiance
emitted from a material with respect to certain wavelengths. Landsat satellites
have multiple sensors with different bands and resolution. Each band cover a
specific wavelength, but some of the bands also overlaps other bands in the
same wavelength area, making them compatible for change detection analysis
Rød (2015).
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Figure 13: A table consisting of Landat 8 OLI’s wavelength bands with defined resolutions.
Source: (USGS, n.d.b)

The bands in Landsat 8 OLI are stored as a single band raster dataset. A single
raster dataset was created as a combination of all the separate band images
to make a raster dataset containing information about the entire wavelength
spectrum of the image in order to assign training polygons. The maximum like-
lihood classification (MLC) tool in ArcGIS is one of the more common approach
to classify land cover pixels, and was considered to be used as a classifier in the
project. However, using MLC requires a large training area and the data must
be normally distributed (Binti Saiful Bahari et al., 2014),which is not the case
for the study area. A support vector machine was therefore used as the chosen
classifier within ArcGIS Pro’s classification wizard. With SVM, misclassifica-
tion is also minimized since the classifier finds optimal separating hyperplanes
between classes by focusing on the training cases (support vectors) that lie at
the edge of class distributions, while excluding other training classes.

To assign training polygons the band combination was set to its natural color
composite (4,3,2). The classification process is supervised, with a set of classes
that are manually established. The parameters of the classes represents a sig-
nature, which is defined by a statistical distribution of how frequent the colors
blue, green and red appear in the class. The signatures of the different classes is
generated by using training samples in ArcGIS. A number of polygons is estab-
lished for each class, creating a mean-value of how frequent the complementary
colors appear within the polygons of the classes they represent. In this case, 6
land cover classes were identified which each of them having at least 10 training
polygons, i.e water, forest, bare ground, urban and coastline. The average color
combination in the classes were then stored as a signature file to distribute the
pixels of the satellite image to the class where the color combination matches
the most.
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Figure 14: An overview of the workspace environment in ArcGIS Pro for classifying land-
cover. 10 training polygons for each class are drawn within the study area. The Landsat 8
OLI image in the background is the subject for gathering spectral information.

Figure 14 shows the process of creating a land cover map in Fredrikstad as a
prototype project. The idea was later scratched off because it had a tendency
to misclassify gray rocks as urban areas as well as the coastline. Furthermore,
the CORINE land cover map had more detailed classes such as distinguishing
between continuous and discontinuous urban fabric which would otherwise be
nearly impossible to do manually.

3.3 Normalization of criteria

Before the criteria went into the weighting process, the values within each crite-
rion must first be standardized to get abstract spatial data/criteria into numer-
ical input model such that arithmetic operations are possible to perform. For
instances, the soil type layer contains nominal text values that would otherwise
be impossible to interpret the relative importance without giving it interval val-
ues. The standardization process were performed by reclassifying each criterion
into several classes, which were individually normalized in a scale between 0-10.
This subchapter will briefly explain the choice of normalization for each class.
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Table 2: The ranking process of each classes for each criterion.

Criterion Class name Scale
Slope 0 - 3 10

3 - 6 8
6 - 9 6
9 - 12 3
12 < 0

Distance to streams 0-110 10
110 - 250 7
250 - 410 3
410 < 0

Land use and
land cover Water

Irrelevant
(NODATA)

Continuous urban fabric 10
Discontinous urban fabric 8

Green urban areas 4
Arable land 0

Soil type Anthropogenic 5
Sea deposits and marine clay 10

Marine deposits 0
weathering materials 7

TWI 5 - 6.9 0
6.9 - 8.1 3
8.1 - 9.7 6
9.7 - 12.3 8
12.3 < 10

GW-table elevation 0 - 6.5 10
6.5 - 12.7 8
12.7 - 18.6 6
18.6 - 25.3 4
25.3 - 38.6 0

Rock type Slate 0
Slate w. lenses of limestone 4

Knollekalk w. slate 6
Knollekalk 8

Limestone w. sediments 10
Slate w. knollekalk 2

The table above shows the normalization process of all the classes within each
criterion. The criteria "Land use and land cover", "Soil type" and "Rock type"
all contain nominal values, where the classes are distinguished by a naming sys-
tem rather than a numeric value, while "slope", "distance to streams", "TWI"
and "GW-table" all have ordinal values, which are given a numeric value where
most of them have given unit.

The slope layer originally had stretched values which ranged from 0 to 15 de-
grees. As mentioned from subchapter 2.6.1, slope usually are normalized in a
manner that classes containing flatter slopes are given lower values in the nor-
malization process. What is considered "lower" values is quite relative. (Ghor-
banzadeh et al., 2018) for instances divided the slope classes evenly where a new
class are created for every fifth degree , i.e (0-5, 5-10, 10-15, etc.). Similarly
was done when defining the slope classes, creating a new class for every third
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degree. The normalization process of the slope criterion is chosen with respect
to runoff water’s capability to infiltrate to the subsurface. Since flatter terrain
tend is usually considered easier for water to infiltrate according to Yeh et al.
(2016), the lowest slope class were given the highest value, while the value for
the next classes decreases the higher slope values are within a class.

The choice of classes within the "distance to streams"-criterion follow a similar
pattern. Studies from Pourghasemi and Saravi (2019) have shown that there
are to a larger extent some correlation between distance to river and subsidence
events where areas closer to river streams. This also related to how proximity
to rivers could the groundwater level in the area and eventually also how the
risk of erosion could affect the subsidence rate (Hakim et al., 2020b). It was
thus decided to normalize the river class where the first 110 meters closest to
river streams were given the highest values while the area furthest away were
given the lowest value during the normalization process.

The land cover layer was one of the layers with nominal values. It is somewhat
difficult to determine which type of land cover that could potentially contribute
most to the subsidence process as each type of land cover do to some experi-
ence land cover due to groundwater depletion. One could argue that it depends
on the water content of each land cover type. However, urbanization appears
to be the main factor of groundwater pumping, and studies has shown that
urbanization was the clearest indication that groundwater was consumed. Ad-
ditionally, the municipality has allegedly planned to build new housing areas
and a new metro station within the study area (Områderegulering for Skøyen,
2021), which indicates that the urbanization process is still active in the area,
and thus giving these type of land cover the highest value. Vegetation and
arable land has both the potential cause significant depletion of groundwater
as well. The "arable land" class was however given the lowest class since it is
unclear whether or not the area is fully cultivated or if the area is irrigated.
The water class were assigned with "NODATA". This is because those classes
are irrelevant for measuring susceptibility ground subsidence. When a class is
assigned as "NODATA", the reclassification process in ArcGIS Pro will exclude
those classes and the pixels belonging to these classes will no longer be counted
in for the weighted overlay analysis.

The soil type layer originally contained 11 soil types, but was reduced to 4
classes. This is because these soil types are the only classes that is confined
within the study area. The process of assigning the values are given accordingly
to grain size, water content and permeability. Thus, the lower the porosity of
soil type, the lower is the class value. On a side note, the class "anthropogenic"
is given a value in the middle of the normalization scale, since anthropogenic
materials could have a varying rate of porosity and permeability.

As mentioned from chapter 2.6.6 TWI is a topographic variable that expresses
flow accumulation in soil due to slope and upstream catchment areas. The
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higher the value, the larger the flow accumulation, and the normalization is
therefore arranged in a way where higher values the lowest value would be in
the lower scale. TWI is a unitless scale from 0 and upwards. Since the lowest
TWI-value in the area are 5, the class value begins from there and new classes
are formed for every increase of 1.9. This is because the highest possible value
is in a decimal value. Something similar was also used by Oh et al. (2019) where
TWI was considered as one of the more important conditioning factors for land
subsidence.

Changing the altitude of the groundwater table is a crucial conditioning factor
for land subsidence since excessive pumping of groundwater could weaken the
soil. It could be discussed if the groundwater level would be representative
enough as a criterion as other studies have used it as a conditioning factor
instead of (Rezaei et al., 2020a). However, the shape and height of a water
table is influenced by the surface that lies above it. It curves up under hills and
drops under valleys. The groundwater found below the water table comes from
precipitation that has seeped through the surface. In the normalization process
of GW-table, the lower water table altitudes , given in meters, were ranked the
highest, and the next classes would decrease in value. This is because smaller
differences between altitude and water table could potentially increase the risk
of groundwater drawdown within an area compared to an area where the water
table lies very low Ghorbanzadeh et al. (2018). The elevation would change
over time due to variations of groundwater levels as a result of groundwater
extractions (Chen, Wang, Hsu, Yu and Kuo, 2010).

As for the rock type layer, the normalization process were based upon on the
strength of the rock materials and the risk of weathering. For instances, lime-
stone with sediments were given the lowest value since dissolution of carbonate
rocks are a quite common cause of sudden collapse. This is because rocks
containing calcite is very susceptible to dissolution by groundwater during the
process of chemical weathering. The same applies for "knollekalk", which con-
tains lenses of limestone but contain slate as well. Slate were given the highest
value since it can be considered a very durable stone and usually resistant to
weathering (Wichert, 2020).
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(a) Deep weathering

(b) Groundwater table elevation (c) Soil type

(d) Slope (e) Land use and land cover

(f) Distance to rivers (g) Topographic wetness index

Figure 15: The seven criteria prior to reclassification
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3.4 Analytical hierarchy process

The analytical hierarchy process (AHP) is a combination where the analyst (i.e
the author) uses expert knowledge to assign weights to a series of parameter
maps. It is a method based on the principles of decomposition, comparative
judgement, and synthesis of priorities Malczewski and Rinner (2015a). When
decomposing, the decision problem were divided into a hierarchy that captures
the elements of the problem. The principle of comparative judgement on the
other hand requires an assessment of pairwise comparisons of the elements with
a given level of the hierarchical structure Malczewski (1999b). The synthesis
principle takes each of the derived ratio-scale priorities in the various levels of
priorities for the elements of the lowest level of the hierarchy. In other words,
the AHP involves developing the hierarchy, assigning weights of importance to
each element/criterion of the hierarchical structure using pairwise comparison,
and finally constructing an overall priority rating.

The ranking process of each criterion tend to variate and the expert knowledge
of the in this project is to some extent limited. Some of the evaluation were
based upon similar studies such as (Karlsson et al., 2017). It is also worth to
mention that all seven criteria could in theory also apply for other natural haz-
ards as well such as flooding or landslides. The normalization process has thus
played an important role upon how the criteria were ranked with each other.
Land cover and slope were for instances the first and second most important
criteria respectively since the normalization were more specifically tailored to-
wards risk of land subsidence. For instances, lower slope classes were given
higher normalization values, while the opposite is often more common when
evaluating landslides (Skilodimou et al., 2019). This also explains why criteria
such as TWI and distance to streams were not prioritized higher in the pairwise
comparison matrix. Despite these criteria have been used as conditioning factor
for land subsidence in (Arabameri et al., 2020), they are also applied more often
in general studies of natural hazards such as in (Karlsson, 2016). Altitude of
groundwater were on the other hand ranked lower despite being related to land
subsidence. This is because the risk of water drawdown on itself could be af-
fected by other criteria as well such as land use and rock type. It is also among
the conditioning factors that are not as much prioritized from other studies
(Rezaei et al., 2020b).

The pairwise comparison matrices in the analysis involved comparing all possible
pairs of criteria to one another in order to determine which of the criteria is
of higher priority. This creates a 7x7-matrix containing the land subsidence
criteria.

The 7 criteria were then ranked accordingly to an underlying scale that was
proposed by Saaty and Vargas (2001) for pairwise comparisons in AHP, with
values from 1/9 to 9:
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Table 3: Criteria ranking for AHP

Importance level Scalar value reciprocal scalar value
Equally important 1 1

Equally important to slightly more important 2 1/2
Slightly more important 3 1/3

Slightly important to much more important 4 1/4
Much more important 5 1/5

Much more important to very much more important 6 1/6
Very much important 7 1/7

Very much more important to extremely important 8 1/8
Extremely important 9 1/9

The 7x7-matrix in this project were stored in an Excel-file in order to calculate
the weights, and contained the following values:

Table 4: The pairwise comparison matrix

A B C D E F G

Rock type (A) 1 3 1/3 7 1/2 2 3
Altitude of groundwater table (B) 1/3 1 1/4 2 1/3 1/5 4
Land use and land cover (C) 3 4 1 6 2 3 7
Distance to streams (D) 1/7 1/2 1/6 1 1/5 1/3 1/3
Slope in degrees (E) 2 3 1/2 5 1 3 7
Soil type (F) 1/2 5 1/3 3 1/3 1 1
Topographic wetness index (G) 1/3 1/4 1/7 3 1/7 1 1

Fraction values indicates that the criteria is n-times less important than the other
criterion it compares to.

After setting up the pairwise comparison matrix, the weights are estimated by
averaging over normalized columns. This involves normalizing the entries in the
comparison matrix C:

C∗kp =
Ckp∑n
k=1 Ckp

∀ k = 1, 2, . . . , n (23)

The weigthts are then given by:

wk =

∑n
p=1 C

∗
kp

n
∀ k = 1, 2, . . . , n (24)

The sum of all the weights are strictly required to be equal to 1.0.

The AHP-process is intended to be as transitive as possible. For any given cri-
teria such as A,B,C, a consistent set of pairwise comparison would need that
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if land use and land cover (C) is three times more important as the rock type,
i.e 3C > A, and rock type is twice as important as altitude of groundwater
table (B), 2A > B, then the land use and land cover layer must be six time as
important as the altitude of the groundwater table. However, considering that
inconsistent judgement is inevitable when assigning importance of each criterion
(Saaty, 1980), it was decided to implement an algorithm for measuring incon-
sistency during the decision making progress in for the pairwise comparisons.
The inconsistency was determined according to the observation λmax > n for,
positive reciprocal matrices and λmax = n if C is a consistent matrix. The
consistency ratio is defined as:

CR =
λmax − n
RI(n− 1)

(25)

where RI is the random index, which is the consistency index of a randomly
generated pairwise comparison matrix dependent on the number of criteria used
and λmax is the principal eigenvector of the matrix. The consistency ratio must
be at least less than 0.1, indicating that there is a reasonable level of consistency
in the pairwise comparisons, whilst a consistency ratio exceeding 0.1 implies
that it is necessary to reconsider and revise the primary values in the pairwise
comparisons. The pairwise comparison matrix from table 4 has consistency
ratio of 0.0664 which is within the recommended value. The algorithm used for
calculating the consistency ratio can be found at the very end of appendix A.

From the AHP-process, the criteria was assigned the following weights from
most to least important:

1. Land use and land cover: 0.335858

2. Slope: 0.243126

3. Rock type: 0.165127

4. Soil type: 0.104140

5. Altitude of groundwater table: 0.068511

6. Topographic Wetness Index: 0.050288

7. Distance to river streams: 0.032950

3.5 Weighted overlay

After rating the classes in each criterion and comparing the relative importance
of the criteria to each other through AHP, the overall score of land subsidence
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susceptibility (LSSI) was estimated by the means of the weighted linear combi-
nation method according to the following equation:

LSSI =

n∑
i=1

Riwi (26)

where LSSI correspond to the land subsidence susceptibility index, n is the num-
ber of criteria, Ri represents criterion layer containing the ratings of criterion
number i and wi is the weights for each criteria number i, which was generated
from the AHP. ¨

The results of the susceptibility map are originally given in a continuous unitless
scale from 0 to 10, where 0 labels areas least susceptible to ground subsidence,
while 10 shows the most susceptible areas to subsidence. A score of 5 will
thus be interpreted as neither low risk or high risk. Those results were later
reclassified into four different classes with an interval based on natural breaks
prior to investigating the the Skøyen-area. In brief, natural breaks classification
are based on natural groupings inherent in the data. The class breaks groups
similar values together and maximizes the differences between classes. The
reclassified maps will be given as default values further in the analysis. The
unitless scale are reclassified as following:

Table 5: Class division in MCDA

Class Description Value range
1 Low 0 - 3.8
2 Medium-low 3.8 - 5.6
3 medium-high 5.6 - 7.4
4 High 7.4 - 10.0

The class column represent the numerical value of each class in the reclassi-
fication. The description column shows the labels these classes are assigned
during the analysis, and the value range will show how the original values are
distributed into the classes. During the sensitivity analysis the results will
be interpreted by the descriptions "Low", "Medium-low", "Medium-high", and
"High" unless told otherwise. For comparing the results to MCDA with machine
learning method, the first to classes will be merged into one class, and labeled
as low-risk zone.
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3.6 The data set

Figure 16: Correlation matrix between the criteria within the study area. The values inside
each cell represent a score where a value close to ±1.0 indicates a strong correlation. The
criteria are mostly not correlated to each other

The table above shows the correlation matrix of the criteria. It is observed
that each individual criterion are relatively little correlated to the other criteria
as the score remains mostly nearby 0. This can in particular be observed on
the River-layer where almost all of its score-values lie within ±0.1. Its highest
correlation is with the land cover layer with 0.45. The correlation is significant
compared to the other criteria, but still quite low considering that the ground-
water contributes to streams in most physiographic and climatic settings to a
certain degree. The correlation between the slope and TWI-layer is the highest
within the matrix with a value of 0.63. This is to be expected as the creation
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of the TWI-layer is dependent on the slope-layer. This might also explain the
TWI-layers slight correlation with the river-layer.

On the other hand, the land cover layers is fairly correlated between most criteria
with the exception of the rock type layer. Interestingly enough, its highest
correlation is with the slope-layer (0.39). The river and TWI-layer are slightly
correlated with scores of 0.29 and 0.3 respectively. There seems to be a negative
correlation with the soil type. This might be explained that most of the surface
area in the land cover layer is heavily urbanized while the soil in the study area
does not exclusively include anthropogenic material. This might also be the
same case for the rock type layer.

Figure 17: The distribution of the feature data set. The density of each criterion are
measured and presented in a histogram.

The histograms above shows how the values from the different criteria are dis-
tributed. The x-axis shows the labeled classes for each criterion during the
normalization process on chapter 3.3 on table 2.

The histogram of well, i.e GW-table elevation, in the study area are given given
in m.a.sl. Based upon the histogram, most of the elevations of the water tables
are on the three highest classes evenly distributed among them. Most of the
area do have a water table elevation below 18.6 m.a.s.l on average.

The histograms of the slope shows that the vast majority of the terrain is is flat
since barely any pixels in the analysis belong to a class lower than 4, indicating
that only a few areas have a slope steeper than 6 degrees. The TWI-layer follows
a similar pattern, but most of the values are classified in the lower classes instead.
Barely any area of the map exceeds a wetness index above 9.7. The correlation
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between TWI and slope are as expected since TWI are derived from the slope-
layer. The histogram for the river layer show that most of the study area is
between 110 and 250 meters away from a major river stream, but there are also
a fair number of pixels that are more than 250 meters away.

The soil, land use and rock all had their classes changed during the normal-
ization process. For instances, the "soil"-histogram originally had four nominal
classes that were converted into numerical values. Those were: Anthropogenic
materials (5), marine deposits (0), sea deposits and marine clay (10), weathering
materials (7). Considering the nature of the study area, it was an unexpected
outcome that the pixels distribution is quite even between anthropogenic ma-
terials, sea deposits and marine clay, and weathering materials. Most of the
anthropogenic layer are to be found on the core of the city area, but also near
the docks while the type of soil with the lowest class rank are only to be found
on the westernmost side of the study area, which mostly consist of green park
vegetation. The pixel distribution of the rock type is very sparse. It appears
that most of the area are covered in slate with "knollekalk", class 2. The only
other significant rock to be found on the area is the limestone on the eastern
part of the area. In addition, the land cover layer is quite homogeneous with
two classes dominating, namely discontinuous urban fabric (8) and continuous
urban fabric (10). Arable land (0) are only found on the southernmost tip of
the study area.

3.7 Sensitivity analysis and comparisons

As the multicriteria analysis grows more complex in nature, enhancing GIS-
based MCDA with sensitivity analysis procedures is crucial to understand the
model behavior and its limitation. The sensitivity analysis explores the de-
pendency of model outputs of the weights of the input parameters, identifying
criteria that are especially prone to weight changes and to show impacts of
changing weights to the model outcomes in a spatial dimensions (Chen, Yu and
Khan, 2010). A common approach in the sensitivity analysis is to change the
input factors one at the time, the OAT-method, to see what effect this produces
on the output. This was applied recursively by removing one criterion at a time
to evaluate changes in the pairwise comparison matrix during the AHP-process
and to observe any improvements consistency ratio. By changing one factor at a
time, all other factors can be fixed to some extent, and the comparability of the
results increases. It also worth to mention that the OAT-method is convenient
to implement due to its simplicity and not considered computationally expen-
sive. Performing the sensitivity analysis serves the specific aspects of interests:
(1) Quantify changes in weights once after removal of a criterion; (2) visualizing
spatial changes; and (3) check for improvements of the consistency ratio. Re-
gression analysis were also implemented between the values obtained from the
original results vs. the new values gathered from the sensitivity analysis.
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3.8 InSAR reference map

Information about ground subsidence activity is limited for the study area, and
there are per this date no national database containing information about previ-
ous subsidence events. Processed InSAR-images were therefore used to attempt
validating the ground subsidence in the area. The InSAR data set was gathered
from the Norwegian Geological Survey (NGU). It consists of point data with dif-
ferent color codes to indicate ground movement from the Earth’s surface to the
satellite. The InSAR dataset originates from the two satellites, Sentinel-1A and
Sentinel-1B, which is a part of the EU program for Earth observation. Those
satellites move in polar orbit around the Earth and are labeled as ascending
and descending depending whether the satellite orbit moves towards north or
towards south. The radar aims right in the direction of the satellite orbit, where
the azimuth angle are different for ascending and descending data.

Figure 18: An example of InSAR-map from NGU. The units of the mean velocity of ground
movement are described in mm/year. A positive value represents uplift while negative values
indicates subsidence. Source: insar.ngu.no
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Information about each point was gathered by simply clicking on a desired spot.
Clicking will also reveal more detailed information about the point as illustrated
on the figure below. Time series for multiple points can be gathered by drawing
a polygon of the desired map. Each point contains the mean velocity, incident
angle, track angle and azimuth angle. Approximately 80 000 InSAR-points were
gathered from InSAR Norway, but only 554 InSAR points within the study
area was taken in the analysis as the areas where those points are located, also
contains data from the 7 criteria. Information of all InSAR-point within the
study area has been gathered by drawing a polygon on the website insar.ngu.no
stored as a csv-file.

Figure 19: Information of a random single point in the study area. The point data indicates
that the area is gradually descending.

The data from InSAR Norway are still under development, and the current
version used for the analysis still needs improvements. For instances, noises
and outliers might occur occasionally, giving some points wrong values. Some
outliers might however be accurate, and the outliers must be interpreted with
precautions. Seasonal variation in wetlands might also impose anomalies due to
variation of water content. Since the InSAR data mostly measures in the period
from June to October, such variation can cause issues with the processing of
data. This can be shown either by areas with large pointwise variations, i.e
remarkable variations in mean velocity, or areas with continuous positive values.
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3.9 InSAR-data as target value

Figure 20: The interpolated land subsidence map based on InSAR-data from NGU. IDW
was used as interpolation method with 9374 InSAR data point values in total within the study
area.

The figure above represents the initial target value in the machine learning
analysis prior to classification. The units were given as mm/year, and the scales
are based on the maximum and minimum pixel values detected in the study
area. The extrema values are interpreted as outliers since they only consist of
one pixel value each. Most of the observed values from InSAR lie between -6.3 to
2.3 mm/year as shown from the figure below. Moreover, the mean value of the
study area was considered to have a subsidence rate of -0.8 mm/year indicating
that the area are slightly subsiding on average.
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Figure 21: The interpolated land subsidence map based on InSAR-data from NGU. IDW
was used as interpolation method with over 80 000 InSAR data point values in total within
the study area.

The creation of land subsidence map was originally attempted to be solved as a
regression problem. The results from generating subsidence map on a regression
problem did however yield negative results as the R2-score remained very low.
Thus, the initial subsidence map was reclassified accordingly to the method
sections. The class values and colors defined in the initial target value will be
used for all maps generated from neural networks and XGBoost.
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Figure 22: The reclassified InSAR-map. The values are distributed into four classes based
on the degree of subsidence. Water was not clipped in the InSAR-layer, but all point data
that would be transferred for processing in Python will be based upon the raster layer from
the MCDA-analysis, which did erase water.

The reclassification are divided into four classes. The red zones shows areas
that are subsiding more than 5 mm/year. Subsidence in this case was defined
as a negative value. Class value 2 in yellow shows all values between -5 and -1.5
mm/year. The light green class is for all areas with subsidence rate between -1.5
and -0.8 mm/year, while the last class in dark green shows all subsidence rate
above -0.8 mm/year including areas experiencing an uplift. The patterns are
somewhat similar to the subsidence map fromMCDA with subsidence commonly
occurring nearby bodies of urbanized settlements. There however much more
low-risk areas, considering that over half of the pixel values are categorized in
class 1, but at the same time, the InSAR-layer has as mentioned earlier a finer
resolution compared to MCDA. The southern tip on the study area did however
contain more pixels within class 3, and the easternmost part of the area appears
to be a lot "safer" compared to the results in the MCDA.
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Table 6: Pixel distribution of the target value InSAR-data

Risk class No. of pixels Percentage of total area (%)
1 (Above -0.8 mm/year) 76872 63.9
2 (-1.5 - (-0.8)) 20602 17.1
3 (-5 - (-1.5)) 20817 17.3
4 (Below -5 mm/year) 1943 1.7

The resolution from the maps made by machine learning techniques are much
finer in comparison to the MCDA-maps. The subsidence map contains 19 506
pixels in total. In the target value as shown above, almost half (47 %) of the
area are considered to not being vulnerable to subsidence while just as many
are classified to be in the middle (45 %), leaving around 8 % of the area to be
considered as strongly subsiding.

3.10 Code implementation of Neural networks

3.10.1 Data preparation

As mentioned, 554 data points where picked from the study area based on where
InSAR-data is available. Values from the 7 criteria in its reclassified form are
extracted into each data point containing InSAR-data. The points from the
processed InSAR-image will be used as a target value when performing the
analysis in the neural network.
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Figure 23: Converting the file geodatabase into csv-format in FME. The file geodatabase
has in total 11 extracted attributes. These includes the 7 criteria, the latitude and longitude,
and InSAR subsidence rate. A transformer in FME "Tester" was used to remove any empty
values in the data set before conversion. Latitude and longitude was only converted so that
the predicted data can be transferred back to ArcGIS, but was otherwise not involved to train
the data.

The point data set are originally stored as a file geodatabase (.gdb). The data
set must be converted into a csv-format in order to perform the neural network
analysis and XGBoost in Python. Feature Manipulation Engine (FME) was
utilized to convert the files, which is a platform that streamlines the translation
of spatial data between geometric and digital formats. This can be observed
from figure 23. Three transformers were used in FME to manipulate the data.
Some attributes that are irrelevant to the analysis such as track angle, burst
and amplitude distortion of the InSAR dataset were removed. Furthermore, a
transformer called "tester" was used use to raise a condition that none of the
attributes should contain a null-value. Every point instance with null-values in
one of the eight attributes will be removed. In the final transformer, two new
attributes will be created, namely "Binary" and "Multiclass" which classifies
the values of InSAR mean velocity. This is in order to perform a prediction
from the neural network. In "Binary", there are only two possible values: 1,
which represents all negative mean velocities, and 0 that represents all positive
values. Although very rare, if the mean velocity is exactly 0 mm/year, the
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point will be classified into 0 along with the positive values since it does not
represent subsidence. The "Multiclass"-attribute on the other hand contains 4
classes. Unlike "Binary", the "Multiclass"-attribute also consider the degree of
subsidence/uplift, and has the following class distribution:

Table 7: Class division in Multiclass attibute. In some cases, the classes 1, 2, 3 and 4 might
also be refered to as "Low", "Medium-low", "Medium-high" and "High" respectively just like
the MCDA.

Class Subsidence (mm/year)
1 −0.8 ≥
2 (-1.5) - (-0.8)
3 (-5) - (-1.5)
4 −5 ≤

The latitude and longitude of each data point containing data of the 7 criteria
and InSAR were added as field values before converting the file geodatabase
into a csv-file. This is to ensure that it is possible to convert the file back into
geospatial data when the predicted values are generated from neural network
and added to the csv-file.

3.10.2 Training the neural network

The code produced in the neural network is built upon defining the structure
of the neural network. It is already defined that there are 7 criteria taken into
consideration to predict land subsidence, and thus 7 nodes will be needed to
cover these features. It is also known that 4 output nodes are necessary since
the target value are divided into 4 classes. When it comes to the of hidden layers,
a reasonable number of nodes should be somewhere in-between the number of
input layers and the number of output layers. In the Python code, the structure
of the hidden layers of the neural network will be defined in a list such as
hidden_neuron_list = [5, 5, 5] or hidden_neuron_list = [2]. The first case
gives 3 hidden layers with 5 neurons each while the second example defines one
hidden layer with two hidden neurons. It is also possible to define a flexible
number of neurons for each hidden layer.

The aim of the neural networks is to use it for classification problems. The entire
structure is defined as an object-oriented function. The general neural network
architectures contains the feed forward and back propagation algorithms train-
ing the network, and initializing the weights and biases. The neural network
structure for classification can be found in appendix C. Additionally, the cost
functions and activation functions used for the problem are stored in the class
function appendix B. When initializing the classification problem through the
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class function, the type of activation functions used in hidden layers and the
output layers are fixed. This also applies to the cost function as well. The
feedforward and backpropagation algorithms are expressed in a matrix format
which represents the formula from equation (5) and (13) in chapter 2.6.1, giving:

zl = (wl)Thl−1 + bl (27)

and
δl = δl+1(wl+1)Tσ′(zl) (28)

To predict land subsidence with artificial neural networks the seven criteria was
set up as a design matrix X with the multiclass pixel values from the InSAR-
image used as a target value y. The data set was split into training and test
data which consist of 30 % of the data set. To avoid outliers the design matrix
was scaled before training the data in the neural network.

The number of neurons depends on the input data set, while the output layer
on the other hand depends on the type of problem. In a binary case, there will
be two output neurons and seven inputs. In a multiclass case, it is necessary
for the output layer to classify multiple samples. A sensible neural network
architecture would thus have an output layer of 4 nodes, where each of these
nodes represents a class from 0 to 3. To make the neural network architecture
as flexible as possible, a function in the Python-code for neural networks was
created to convert a single vector that lines up with the n-node output layers.
In this data set, if a point was predicted to class 2, the number will be converted
as a vector [0, 0, 1, 0].

Softmax was used as the activation function with cost function being defined
by the cross-entropy function that uses the output error:

δL = hl − y (29)

When training the neural network, the entire data set are scaled to help with
the convergence of the neural network, which in particular important when
combining different data types. The scaling was applied using a standard scaler
from the Python module Scikit.

After defining and implementing different activation functions, the weights were
randomly initialized for each W (l)-layer. This was performed by using a loop
over the number of iterations/epochs where the weight-matrix ∆W and its re-
spective bias ∆b were initialized to zero.

A feed forward propagation was performed through all the n number of layers
where the activation function output h(l) is stored. Then, the δ(n1) value for the
output layer is calculated while the backpropagation algorithm are calculated
for the layers. Finally, the stochastic gradient descent step is implemented in
the code. This is an iterative algorithm that starts from a random point on a
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function and travels down its slope stepwise until it hits the global minimum of
that function. It would make the algorithm much faster since there is very little
data to manipulate for every iteration, and due to its randomness, it can also
escape local minima in the function (Géron, 2017). Mini-batches were also added
before setting the data into training. They refer to equally sized subsets of the
dataset over which the gradient is calculated and weights updated. The chosen
cost function is averaged over a small number of samples. In this particular
case, 20 mini-batches, bs, were created in default. The cost function will then
have the structure of:

J(W, b, x(z:z+bs), y(z:z+bs)) =
1

bs

bs∑
z=0

J(W, b, x(z), y(z)) (30)

The stochastic gradient descent routine is repeated until the average of the
chosen cost function has reached a minimum. At that stage, the network is
trained and should ideally be ready for use. The cost function is important
because it determines how well a machine learning model performs for a given
set of data. As explained earlier, the cost function calculates the difference
between anticipated and expected value.

3.11 Testing hyperparameters

The grid search algorithm was performed on both ML-methods. It is the pro-
cess that searches exhaustively through the specified subset choosen from neural
networks and XGBoost and it is a manually specified subset of the hyperparam-
eter space of the targeted algorithm. It also evaluated the cost function of the
respective algorithm based upon the generated hyperparameter set.

In most statistical models, it is preferable to tune different hyperparameters to
obtain optimal values of the error metrics. This involves tuning every parameter
and testing out different values for each of them such as the learning rate,
number of epochs, number of hidden layers etc.

It is ideal to test as many hyperparameters as possible since they are often
strongly related to each other. However, the neural network algorithm often has
a large number of hyperparameters. In its simplest form, the neural network can
have up to 5-10 different hyperparameters. This could for instance be the type
of activation function used, the cost function and the number of neurons in a
hidden layer. Another recurring issue with classifying the data is the runtime for
optimizing every parameter. Visualizing what combinations of hyperparameters
yields the best results also proves to be quite challenging. If 10 hyperparameters
were tested for three instances each, then it would be approximately 59 000
combinations to test.
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It was therefore decided to limit the testing to approximately 4 hyperparameters:
number of epochs, learning rate, regularization value, and the number of neurons
per layer. The type of activation function will be occasionally tested as well. A
full list of values to test can be seen below. Every combination was run 15 with
a randomly selected test data.

regularization value : 0.0, 0.1, 0.01, 0.001
Neurons per layer: 2, 5, 6

Epochs: 100, 500, 1000
Learning rate: 0.001 0.01, 0.1

Table 8: Table showing set of values tested for hyperparameter optimalization in neural
networks

3.12 Predicting data with XGBoost

Just like in neural networks, the data set in ArcGIS were exported to Python
for further processing. Each pixel value in the study area were defined as point
data containing extracted values from the seven criteria, the coordinates, and
the generated values from InSAR-data. The latitude and longitude were first
added in the field by using the geometry calculator. The point data were con-
verted from a File Geodatabase to an Excel-file through the conversion tool
FME, where null-values were removed, the latitude and longitude were given
proper UTM-values, and the InSAR-values were reclassified. Then the machine
learning algorithms were performed in Python using the generated Excel-file.
70% of data set were used for training data while the rest were used for test
data. Only the prediction from test data were converted back to ArcGIS, con-
taining only the predicted values along with its latitude and longitude. FME
were also used on this step, but no other modification were used at this point
other than transforming the excel-file to an ESRI shapefile. Finally, IDW as
an interpolation technique were used to predict the rest of the study area. The
predicted values should then have a value of either 0,1,2 or 3 just like the InSAR-
data. The grid search algorithm on XGBoost can be found on appendix D.

Similarly to neural networks, training in XGBoost is also executed by passing
pairs of training and testing data. Key parameters in XGBoost includes the
maximum depth, describing the depth of the decision tree; subsample, which is
equivalent to percentage of data evaluated; and objective, which specifies the
classification algorithm. Other relevant parameters also includes the number of
estimators, learning rate, and parameters that could prevent overfitting of the
data set. The hyperparameters mus be determined with parameter optimiza-
tion. Each parameter to be estimated is represented by a list of values, and each
combination is hen tested by the model whose metrics are compared to deduce
the best combination. The search for parameters are then guided with metrics

67



using cross-validation. Both grid search and randomized search will be utilized
to find the best combination of parameters, which contains:

Number of estimators: 50, 100, 250, 500
Learning rate: 0.001, 0.1, 1.0

Maximum depth: 5, 10, 25, 50

Table 9: Table showing set of values tested for hyperparameter optimalization in XGBoost

The definition of learning rate in XGBoost remains the same as for neural net-
works. The number of estimators represents the base learners, and the maximum
depth controls the depth of the tree that will be created. It can be described as
the length of the longest path from the tree root to a leaf.

The analysis is also performed using the matplotlib library where the training
results are plotted for each run in each XGBoost output. This is verified in order
to understand if the iteration chosen to build the model was best one possible.
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4 Results

4.1 Maps from MCDA

Figure 24: The land susceptibility map created from MCDA over the region. The value is a
continuous unitless scale. Lower values indicates larger risk for subsidence while higher values
indicates high risk of subsidence.

The figure above shows the final results of the MCDA using the 7 criteria and
weighting each criterion by the standards of AHP. It is based on a unitless scale
from 0 to 10 where the most ideal places are located in areas with lower values.
In this particular area however, none of the pixel values managed to achieve a
lower value than 2.1 or any higher value than 9.2. A visual interpretation of
the map indicates that the most susceptible areas appears to be in places with
many infrastructures, while the "safer" places are located in the western parts
which also have a lot of vegetation. The majority of the pixel values seems
to be closer to the maximum value than to the minimum value, which in turn
might indicate that the entire study area is in general quite susceptible to land
subsidence. This is mostly due to the prioritization of land use and land cover
criterion which is dominated by urban fabric as observed from figure 15.
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Figure 25: The distribution of pixel values from the MCDA in the entire area.

Looking at the distribution of pixel values in the first MCDA-map, the min-
imum value achieved from the weighted overlay analysis is approximately 2.2
while the maximum pixel in the area gained a score of 9.2. The occurrences
of such minimum values are however insignificant since there are less than 10
pixels in total that are classified within the five lowest bars in the histogram.
The mean pixel value lays around 6.45 which is quite high. The median value
is a bit larger than the mean value with 6.5 as the most common pixel. Mos
pixel values are within the range between 5.1 and 8.0 which signalize that the
majority of the area are prone to land subsidence according to the 7 criteria
used in MCDA. This might be an indication that anthropogenic activities, in-
frastructural projects could have an effect as there multiple ongoing site projects
planned (Områderegulering for Skøyen, 2021).
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Figure 26: A simplified version of the susceptibility map in the study area. The values from
the MCDA are reclassified into four different classes: low, medium-low, medium-high, and
high risk. The intervals are decided upon natural breaks.

The classes in the reclassification follow the values from table 5 in chapter 3.5
and are based upon the distribution of the original map from MCDA where the
classes are divided into 4 equal value ranges from 2.1 and 9.2. Class number 1
is extended from 0 to 3.8 to include pixel values lower than 2.1 for the maps
created in the sensitivity analysis. Likewise, class 4 is also extended to 1 value
10 to include values over 9.2 in the sensitivity analysis.

It is evident that the classes follow a certain pattern to some extent. The
center of the area, where most buildings are set up tend to be in the same areas
classified as high risk. Despite proximity to river was among the criteria ranked
the least important, every single pixel value adjacent to major river streams
were either classified as medium-high or high risk. There are few outliers that
have occurred in the process. This could for instances be the low risk pixels in
the southern part of the map, surrounded by mostly high-risk pixel values. On
the other hand, the distribution of the pixel values seems to be mostly consistent
with high-risk pixels are far more prevalent in the central-eastern part of the
area. It could also be observed that the majority of areas further away from the
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city center are classified as low or medium-low risk. The table below shows how
the pixels in the susceptibility map are distributed.

Table 10: Pixel distribution From first MCDA results

Risk class No. of pixels Percentage of total area (%)
Low 16 2.29
Medium-low 116 20.9
Medium-high 260 46.9
High 162 29.91

There were 554 classified pixels in the study area in total. The majority of
the pixels in the study area were classified within the medium-level risk of the
category with 116 and 260 pixels classified as "Medium-low" and "Medium-
High" respectively. The category "Low" and "High" cover 32.2 % of the area,
which is not as much compared to the medium-level pixel which takes more than
half of the map area in total with 67.8 % with barely any low-risk pixels at all.

4.2 Sensitivity analysis

To check the robustness of the results, the MCDA-method was redone by us-
ing the OAT-method as mentioned in section 3.9. One criterion was removed
to observe how the assigned weights change and to see if there are any ma-
jor changes from the original susceptibility map generated from the MCDA.
Another method is to slightly adjust the weighted values from section 3.4.

In the first sensitivity analysis, the original weighted values are rounded into
the following weights:

1. Land use and land cover: 0.30

2. Slope: 0.20

3. Rock: 0.20

4. Soil: 0.10

5. Altitude of groundwater table: 0.10

6. Topographic Wetness Index: 0.05

7. Distance to rivers: 0.05
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During this weighting, slope and rock are equally weighted with each other.
This also applies between soil and GW-table, and for TWI and river distance
respectively. Land use and land cover are however still the criterion with the
most weighting.

Figure 27: Rounded values to nearest fifth

As seen from the pattern of figure 27, the distribution of classes are still mostly
the same. The medium-high classes are still more prevalent in the area. How-
ever, some high-risk pixels along the river canal are now ranked as medium-high
in the northernmost part of the river. There slight changes in the low class pix-
els, but are mostly on the same place. Due to the rounded weighting produced
mostly the same results as the original, it was decided not to include it anymore
further when comparing results.

On the second sensitivity analysis, the weights of the most important criterion
and the second most important criterion are swapped, giving slope a weight
of 0.34 and Land use and land cover are assigned with a weight of 0.24. The
distribution of the pixel values have then slightly changed compared to the
original MCDA map.
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(a) Original MCDA (b) MCDA with swapped values

Figure 28: The original MCDA and swapped MCDA side by side.

Surprisingly enough, there are still minimal changes when swapping the weights
between the land use and land cover criterion with the soil layer as seen from
figure 28b. The shape of the high risk class remained the same and there are only
minor changes, particularly in the northwestern tip of the map, which gained a
few extra low-class pixels compared to the original map.

Most of the "shape" in the southern part of the map layer remained the same
during the swap of weights. The city center and the most urbanized areas are
still labeled as mostly high risk areas. The easternmost part are still considered
as the safest, but the medium-high class has slightly shrunk eastwards. Other
parts of the area do however still remain the same, but there are a bit more
occurrences of outliers where low class pixels is being surrounded by medium-
high pixels. It is also worth to mention that the pixels closest to water bodies
mostly did not experience any change, with most of them still being classified as
medium-high, but there are some pixels that transferred from high to medium-
high.

On the third part of the sensitivity analysis, a single criterion was removed to
check its impact on the result as a whole. It was decided to create a susceptibility
map without the soil type layer, one without the land cover layer, and another
one without the river distance layer in order to perform sensitivity analysis based
on removing criteria with varying importance. This has naturally changed the
distribution of weights and will affect the consistency ratio as well.

The susceptibility maps generated from MCDA without soil type and without
land cover as a criterion will be referred to as layer A and layer B respectively
unless told otherwise. It appears that all the criteria in layer B would gain
a notable change in weight value due to LULC being originally considered as
the most important criteria. The weights assigned became less consistent as
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Table 11: Columns showing the changed weights when removing a specific criterion. Layer
A represents an overlay analysis without the soil type layer, and layer 2 represents an overlay
analysis without land use and land cover. The last row shows the consistency ratio for each
of the resulting map layer.

Criterion Layer A (% of weight) Layer B (% of weight)

Rock type 0.1778 0.2573
GW-table altitude 0.0936 0.0967
Soil type – 0.1503
LULC 0.3808 –
River distance 0.0366 0.044
Slope 0.2612 0.3777
TWI 0.0499 0.074

Consistency ratio 0.04933 0.08964

the consistency ratio increased up to 0.08961 compared to the original result
(0.0664). It is however less than 0.1, which still made the weights consistent to
an acceptable level. Removing the soil type layer did on the other hand slightly
improved the consistency ratio with 0.04933.
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Figure 29: Generated MCDA land subsidence map with one criterion removed. The distri-
bution of pixel values between the 4 classes are significantly more different than the original
subsidence map.

(a) Layer A

(b) Layer B

The maps above illustrates land subsidence maps when removing one criterion
in the MCDA. Figure 29a shows the subsidence susceptibility map when the soil
criterion was removed while figure 29b shows the susceptibility map when the
land use and land cover criterion was removed. It appears that the two highest
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classes has expanded slightly northwards when removing the soil criterion with a
more defined high risk area on the eastern part adjacent to the river. Otherwise,
the area are quite similar, but the low and medium-low class are starting to
diminish.

Removing the land use and land cover criteria on the other hand made the low
risk classes expand. The medium-high classes has been reduced, and the high-
risk class are now more concentrated in a particular area. Contrarily to the map
without the soil type and the original MCDA risk map, there has been a drastic
increase in the number of low and medium-low pixels. This is to expected as
removing the criterion with most weights also had a lot of urban fabric. When
removing the land use and land cover criterion, it is basically evaluating the
study area without taking urbanization into consideration.

Layer Risk class No. pixels (%) of total area

A Low 14 2.5
Medium-low 65 11.7
Medium-high 269 48.5
High 206 40.1

B Low 69 12.4
Medium-low 211 38.0
Medium-high 249 44.9
High 25 4.7

Table 12: Distribution of pixel of the two susceptibility maps.

The removal of one criteria has drastically change the pixel distribution of the
risk maps and the impact is slightly different for each map. The table shows
the exact number of pixels for each class in these two maps. The susceptibility
map of layer A had a similar pattern as the original map. There are major
differences with the medium-low and high classes. Layer A has 9.2 percentage
points less in the medium-low category while it gained 10.19 percentage point
in the high risk class. It has a more defined high-risk class area on the eastern
part as well.

The susceptibility map without considering land cover (layer B) had a much
more different distribution compared to the original. While there are minimal
changes in the medium-high risk class, the low risk and medium low risk class
has gained 10.11 and 17.1 percentage point respectively. The increase came
at the expense of the high-risk class which now only cover 4.7% of the study
area compared to 29.91 % in the original.Overall, layer B had by far the most
areas labeled into the two lowest risk classes. Excluding the soil layer in the
weighting process has lead to the majority of the eastern part of the study area
being classified as medium-high risk. The areas near the borders of the study
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did on the other hand remain unaffected during the sensitivity analysis.

(a) Regression analysis of layer A (b) Regression analysis of layer B

Figure 30: A simple regression analysis showing the relation between original MCDA and
the map layers excluding soil layer or land cover respectively.

Additionally, a regression analysis between the map layers with removed crite-
ria and the original MCDA was compared to each other based on their original
MCDA-value scale prior to reclassification. This is to ensure if there are sig-
nificant or major changes when excluding important criteria that were ranked
highly during the decision making process and the source code are available on
appendix E. The R2-score for both maps still were relatively high with approx-
imately 0.99 and 0.79 for the maps without soil or land cover respectively. It
turns out that removing the soil layer did not have as much impact and were
originally almost a perfect fit with the original MCDA. The slight changes when
removing the soil layer would thus be more likely related to the class bound-
aries during the reclassification process. Removing the land cover layer on the
other hand did show that the MCDA values are more shifted. Some pixels had
even two or more units in difference between the original MCDA and the map
without land use and land cover.

Table 13: Number of changed pixels compared to original MCDA map.

Layer No. of pixels changed Total change from original (%)
A 99 17.9
B 354 63.9

The table above shows how many pixels has changed when creating alternate
maps from the sensitivity analysis and comparing it to the original MCDA-
map. Out of 554 pixels from the original MCDA-map, about 99 pixels has
changed class value when removing the soil layer. This is about 17.9 % of the
total area. Furthermore, it appears that all pixel value that changed, moved
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up 1 class value, indicating that the risk of subsidence overall increased when
removing the soil criterion. Otherwise, there are no major changes removing
the criterion.

On the other hand, removing the land use and land cover criterion changed
the pixel distribution significantly where 354 out of 554 changed value. This
makes about 63.9 % of the total study area. Most of the pixels has either
moved 1 class up or 1 class down compared to the original MCDA-value. The
majority of the pixels (340) moved one class down, which consist of 61.3 % of
all pixels. Removing the land use and land cover has thus an opposite effect on
the susceptibility map, making the study area appear much less prone to land
subsidence. This is also the only case in the sensitivity analysis to significantly
change the susceptibility map of the study area. This is also the only case where
the easternmost part of the study area mostly consist of low or medium-low class
pixels. The results from layer should on the other hand be interpreted with
caution as it appears to be most inconsistent on assigning the weights to each
criterion based on the calculated consistency ratio. As mentioned earlier, it did
have an approximate consistency ratio of 0.09, barely passing the requirement
of having a value under 0.1.

4.3 Machine learning

4.3.1 XGBoost and tuning the algorithms

XGBoost was tuned based on testing a combination of hyperparameters as illus-
trated on table 14 below. Then, the combination that gave the highest accuracy
score were considered to be the optimized version of the susceptibility map.
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Table 14: The error metrics of XGBoost based on number of estimators, learning rate, and
depth

XGBoost
Estimator learning rate Depth Acc AUC

50 0.001 5 0.6596 0.6679
50 0.1 50 0.6596 0.7563
50 1 25 0.6330 0.7440
100 0.001 50 0.5957 0.7079
100 0.1 50 0.6143 0.8163
100 0.1 10 0.7128 0.8200
250 0.001 25 0.6383 0.7783
250 0.1 10 0.6649 0.7692
250 1 50 0.6755 0.7712

The accuracy score in XGBoost were within the range between 0.6 and 0.67,
while the highest reached AUC-score mostly had values between 0.7 and 0.8,
except for the set [estimator = 100, learning rate = 0.1, Depth = 10], which
reached an AUC-score below 0.7. If the land subsidence map were created solely
depending on accuracy score, the optimal set would be a tie between the sets
[estimator = 250, learning rate = 1, Depth = 50] and [estimator = 100, learning
rate = 1, Depth = 10] . This would however be the set with not the most optimal
AUC-score. If the value with highest AUC-score were taken into consideration
then the optimal set of parameters would be [estimator = 100, learning rate =
0.1, Depth = 50]. This set had however generated the lowest accuracy score.
Furthermore, the learning rate tend to influence the AUC-score where a learning
rate of 0.1 often gives good results regardless of number of estimator or depth.
The most optimal values also appeared to favor sets with large depths, but the
number of estimators did not matter much as any values of the estimator had
the potential to generate decent AUC-scores as long as the other parameters are
tuned well.

To summarize, the classifiers for XGBoost reached an optimized value where the
AUC-score is substantially larger compared to their respective accuracy scores.
The XGBoost appeared to yield far higher average AUC-scores when running
the code 5 times. However, in some cases the AUC-score might even surpass
0.8.
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(a) Original XGBoost (b) Optimized XGBoost

Figure 31: The resulting land subsidence susceptibility maps generated from XGBoost by
default (left) and the optimized result after tuning (right)

The same color scale for the initial InSAR-map were used for defining the results
from machine learning techniques and figure 31 a and b shows the predictions
from XGBoost before and after optimization. XGBoost appear to follow a
similar pattern to the InSAR map in figure 22 even before tuning and optimizing
the hyperparameters. It follows a pattern where there are a particular spot in
the eastern part of the study area classified as high risk. Most values rame
the same after optimization, but it appears that there are no longer a strip of
medium-low class pixels that follows the red spot in the optimized XGBoost in
figure 31b compared to 31a. The westernmost part mostly remains the same
and it also applies for the pixels along water bodies.

Method Risk class No. pixels (%) of total area

XGBoost 1 440 67.9
2 137 21.1
3 61 9.4
4 10 1.6

XGBoost w. optimization 1 476 73.4
2 127 19.7
3 42 6.5
4 3 0.4

Table 15: Distribution of pixels in the susceptibility maps from XGBoost. The classes follow
the same subsidence rate ranges as in table 6 from chapter 3.6

The distribution of classes prior to and after optimization of XGBoost tend to
not variate much. Both maps had the "Low"-class value as the most common
pixel value (67.9 % and 73.4 % respectively). This also applies for the initial
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InSAR-map. Both InSAR and XGBoost also did agree with the highest class
being the least prevalent in the area, which is mostly concentrated on a spot in
the eastern part of the area. XGBoost has managed to detect risk areas within
the same area to some extent, but not on the same level as the target value map
in figure 22. The target value map has detected far more medium-high pixels
scattered on the western part as well and there are in fact more high risk areas
defined in the western parts as well.

After tuning the parameters for XGBoost, the occurrences of the two highest
class values has been reduced. There are otherwise no significant major changes
as the lowest class value still dominate in the map, and the spot of high-risk
pixels are still present on the same area of the map.

4.3.2 Hyperparameter tuning for neural networks

Tuning and tweaking the hyperparameters had the purpose of checking how
certain parameters would affect the accuracy and the auc-score of the predic-
tions. This is to see if the current land subsidence maps could be improvised
and resemble a similar pattern as the target value. This were also the case for
neural networks.

For the neural networks, the hyperparameters were tested manually using the
combinations mentioned in section 3.8. The best performing networks are given
in the table below, where the maximum accuracy score reaches 0.4938 when
using sigmoid. There are however no clear tendencies of which hyperparameter
combination of hyperparameters performed the best, since every possible com-
bination at least appeared once in the list. Most of the accuracy scores and
AUC-scores also remained stable with accuracy scores being around 0.5, and
AUC-scores with approximately 0.62. This most likely indicates that the neural
network algorithm do not perform as well as expected compared to XGBoost.
In some cases, it appears that neural networks make random guesses when clas-
sifying pixel values. Moreover, the AUC-scores are mostly the same regardless
of values except when the learning rate reaches 0.1 or higher.

Table 16: List of best performing accuracy and AUC-score by manual tuning. The algorithm
was run 5 times and the table illustrates the average accuracy and AUC-score based on all
the 5 runs.

Activation function regularization nr of neurons Epochs learning rate AUC-score Accuracy score
ReLU 0 5 500 0.001 0.4938 0.6468
Sigmoid 0.01 6 500 0.01 0.4900 0.6159

Leaky ReLU 0.001 2 1000 0.001 0.6285 0.6108
ReLU 0.001 6 1000 0.1 0.51 0.5
Sigmoid 0.001 5 500 0.001 0.65 0.6238
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Figure 32: Grid search between learning rate and regularization parameter. Since the R2-
score appears to flatten for larger epochs, the number of epochs is fixed at a value of 500.

In spite of having no clear solution of which hyperparameter combination yields
optimal values, there were some slight indications of correlations between the
AUC-score and the combination of learning rate and regularization parameter.
A grid search matrix containing the AUC-score of each combination set of learn-
ing rate and regularization parameter were able to prove this. The rest of the
parameters were given fixed values while different combinations of learning rates
and regularization parameters were tested. The learning rate was checked for
the values 0.00001, 0.0001, 0.001 , 0.01, and 0.1. The heat map in figure 32 have
assigned the lowest value as 0 and the largest value as 4. The regularization
parameter on the other hand was tested for 7 values, being: 0.00001, 0.0001,
0.001 , 0.01, 0.1, 1.0 and 10. Again, lowest value gets labeled as 0 and highest as
6. The optimal results were obtained in a learning rate between 0.001 and 0.01.
Any smaller or larger learning rates drastically worsens the results. Within this
range of learning rate, higher AUC-scores can be obtained when λ ∈ [10−3, 10−1]
where λ = 10−2 contained the optimal value of approximately 0.6. It should
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be mentioned that the AUC-score based on the random search table generated
slightly higher AUC-scores, which shows that the other hyperparameters have
smaller influence when optimizing the values.

The AUC-values from the neural networks are still quite low in comparison
to XGBoost, and an attempt to simplify the problem by only operating with
binary classes has been tried. In this attempt, every subsidence value above
-1.5 mm/year were assigned as risk class 0, and everything below are classified
in risk class 1. This gave slightly higher average accuracy scores being about
0.8 after 30 runs. However, the AUC-scores remained mostly at the same value
as for the original multiclass classification. It has therefore been decided not
convert these classification back to ArcGIS Pro.

At its best, the neural network algorithm generated an AUC-score of 0.65 and
in some cases, the AUC-score remained at 0.5, which means that the algorithm
are guessing randomly.

Figure 33: Plot showing the accuracy score with epochs. All five runs are showcased for
both the training data and test data.

While studying the correlation between the accuracy score and the number of
epochs in the five runs of the neural network algorithm, the accuracy score
reaches its peak at approximately 10 epochs shown in figure 33. Some runs
might even reach its peak earlier. The accuracy score flattens for all five cases
the higher number of epochs used.

The map below shows land subsidence susceptibility with supposedly optimized
parameters based upon the observed grid search map. The parameters on the
last row on table 17 were used in the neural networks algorithm.
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Figure 34: Land subsidence susceptibility maps with tuning showing XGBoost (left) and
neural network (right) respectively.

The resulting subsidence map after tuning a set of hyperparameters for the
neural network algorithm managed to create more complex patterns with some
similarities to the map from InSAR-data. It does rather have an inconsistent
pattern compared to the XGBoost maps on figure 31 a and b. Most of the
westernmost and easternmost part are however still classified as low-risk zones,
and an overwhelming majority of the southwestern tip is classified as high-risk
which deviate from the other maps such as XGBoost, InSAR and even MCDA.
It also have far more outliers of "high"-risk pixels scattered around the map and
the pattern seems to be randomly distributed.

Method Risk class No. pixels (%) of total area

Neural network 1 87 13.4
2 248 38.3
3 235 36.2
4 78 12.1

Table 17: Distribution of pixels after tuning.

The distribution of pixel values for the neural networks was also more evenly
distributed among four classes according to table 17. The distribution of pixels
happens to differ the most from the original InSAR-map. The intermediate-
classes (class 2 and class 3) were the most common class value prior to tuning
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covering about half of the map layer, which is not the case for XGBoost.

4.4 Comparison between MCDA and machine learning

Figure 35: A recap of all the final four maps in the project. InSAR (top left), NN (top right),
XGBoost (bottom left), and MCDA (bottom right). The map from MCDA were reclassified
into three classes as mentioned in section 3.5

In short, all land subsidence susceptibility maps created in the project has shown
certain patterns, but was not able to replicate the exact extent as the the InSAR-
reference map as shown on figure 22. The results between the InSAR-generated
map, MCDA and the machine learning algorithms tend to show quite different
results, with the XGBoost algorithm being more similar to InSAR, and neural
network being a combination between InSAR and MCDA since it has marked
high risk spots on different sides of the river canal in the study area. The
MCDA on the other hand had more defined shapes for each class with very
few outliers. The medium-high and high-risk classes which are more frequent in
MCDA and neural networks. It is difficult to observe similarities of all the four
maps. While XGBoost and the InSAR-map point out the northwestern part
of the area as the most susceptible to land subsidence, the neural network and
MCDA has several high-risk zones across the study area. Not only did these
maps also point out a part of the northwestern area as either medium-high or
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high risk, but also larger areas east from the major river. The maps from neural
networks was however much more noisy compared to the maps generated from
the other two. The rather large difference between MCDA and InSAR was
expected since it were based more upon decision-making processes and expert
judgement. Unlike neural networks and XGBoost, the MCDA-map did not use
the original InSAR-map as reference point. The results of MCDA would thus
be different as shown from the sensitivity analysis in section 4.3 since it heavily
relied upon the decision-makers’ preferences. The neural network map on the
other hand did perform quite badly despite using the same inputs as XGBoost.

Table 18: Difference between MCDA and InSAR. Given the pixel class values for both map
layers

Difference No. of pixels
-3 87
-2 193
-1 143
0 69
1 20
2 5

When subtracting the map layer of InSAR with the MCDA subsidence map,
only 69 pixels had the same value for both MCDA and the InSAR-reference
map, which means that only 13.8 % of MCDA and InSARs map matched. The
table shows that MCDA has a tendency overestimate the risk of subsidence
compared to InSAR. Approximately 84% are classified 1, 2 or even 3 classes
higher in MCDA than the InSAR map. The fact that 87 pixels are classified
three classes higher means that MCDA had classified certain areas as high-risk
classes despite the InSAR-map had labeled those in the lowest risk class.

This shows that there are significant gaps between those two map layers since the
majority of the area in MCDA had different values than InSAR. The biggest
difference is the easternmost part of the study area, where the MCDA-map
almost classified the portion of the area as medium-high or high risk. Out of all
maps, the original MCDA was the only map that classified most of the pixels
adjacent to major rivers as either medium-high or high risk. This would also be
the case for the other MCDA-maps generated from the sensitivity analysis.
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(a) No soil vs InSAR (b) No land cover vs InSAR

(c) Original MCDA vs InSAR

Figure 36: Regression analysis between InSAR and MCDA

Regression analysis was once more performed to see the fit between original
InSAR-values and MCDA. In MCDA, the produced maps excluding soil or land
cover data were also included since they had the most impact on the change of
class distribution. Nevertheless, none of the maps fitted InSAR well enough with
very many outliers. The original MCDA and the layer excluding soil data had
R2-values of 0.006 while the layer not including land cover did perform slightly
better with 0.015. Based upon the regression analysis and earlier results, the
MCDA map differs a lot from the initial InSAR-data that was used as output for
the machine learning algorithms. This could explain why the maps generated
different areas as high risk zones.

Table 19: Optimal accuracy of all three methods compared to InSAR

Accuracy score
Neural network XGBoost
0.6468 0.7128
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5 Discussions

5.1 Distribution of high risk areas

The subsidence susceptibility maps from the results of MCDA had the tendency
to create different patterns when the sensitivity analysis was performed. This
lead to various uncertainties of the susceptibility assessment. Unlike machine
learning methods, the assessment of MCDA was more or less based upon expert
judgement and subjectivity to some extent. In addition, many assumptions
had to made, such as ranking of criteria classes, dividing each criterion into
sub-classes, as well as the break values between low susceptibility and high
susceptibility. All these assumptions will affect the overall results of the land
subsidence susceptibility analysis. This was also proven to be the case for other
studies of susceptibility assessments for natural hazards. For instances, MCDA-
GIS used by Rezaei et al. (2020a) to map land subsidence susceptibility in
Neyshabur Plain, Iran gained less prediction accuracy than the other methods of
Certain Factor, which relied less on decision making. Similarly, in Karlsson et al.
(2017), the susceptibility assessment of natural hazards were partly inconsistent
due to the experts participating in the decision making process had different
opinions of how each criterion should be ranked. The inconsistencies did however
partly disappear when applying AHP, which made the results perform equally
well as weighting the criteria equally. All susceptibility maps created from
MCDA fulfilled the requirements having a consistency ratio less than 0.1. The
result with the highest consistency ratio value (i.e the map layer without land
cover criterion in figure 29b) did however perform differently compared to the
other susceptibility maps with slightly mpre of the area being classified in the
two lowest categories. It was also the map with the highest number of pixels
within the low category, deviating from the original MCDA-map by 10.11 %
percentage points. When measuring the credibility of the weighting process in
MCDA, it is important to keep the consistency ratio as low as possible. The
closer the consistency ratio is to 0.1, the more likely it is for the judgement to
be untrustworthy (Saaty, 1980). This is because the judgments made are too
close for comfort randomness and it is then advisable for the ranking process to
be repeated.

On the other hand, the results of MCDA also managed to illustrate how much
a single criterion could impact the outcome of the susceptibility assessment.
The land use and land cover (LULC) layer was considered the most important
criterion for almost all the maps from MCDA. With the exception some slight
changes in the high category, the pattern of the susceptibility map remained
similar to the original even after decreasing the weights of LULC by 10 % shown
from figure 28b. On the other hand, it was also observed that the MCDA-
map with consistency ratio closest to 0.1 were in fact the map without taking
LULC into consideration (fig. 29b), which had the most change during the
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sensitivity analysis. Land use and land cover often play a significant role for
assessment of natural hazards (Meneses et al., 2019). LULC is considered as
a dynamic variable that is driven by climate change and direct anthropogenic
impact. Thus, land use and land cover are usually taken into consideration
for susceptibility assessment of natural hazards since the type of land cover also
could determine other factors such as slope stability or depletion of groundwater
(Paola et al., 2013).

5.2 The machine learning algorithms

Neural network-based hyperparameter tuning was performed in order to identify
the parameters with the greatest impact on the assessment of land subsidence.
Even after tuning 4-5 hyperparameters, the performances of neural networks
were still lower than expected since the accuracy often lies around 0.5 while the
highest AUC-score barely surpassed 0.64. It is difficult to find an exact expla-
nation for the results of the neural networks algorithm. One reason could be
that there is simply not enough data in the area to ensure the algorithm could
perform optimally. In fact, there are only 648 data points taken into considera-
tion, and much more data point might be necessary to improve the AUC-score.
Another reason could be structure of the algorithm itself. The algorithm in this
project did not emphasize too much on the number of layers when tuning the
parameters. Most of the runs did only contain a single layer. Although feedfor-
ward network with a single layer is sufficient enough to represent any function,
the layer may be infeasibly large and may fail to learn and generalize correctly
(Goodfellow et al., 2016). On the other hand, the neural networks algorithm still
had higher accuracy than MCDA with AHP. The lower accuracy of MCDA with
AHP compared to other studies is also notable in other previous studies of land
subsidence assessments. For instances, in the study from the Neyshabur Plain,
Iran, Rezaei et al. (2020b) concluded that the MCDA with AHP had slightly
less prediction accuracy than the use of Certainty Factor with accuracies of 85
% and 90.2 % respectively. Subsequent R-index methods did also confirm that
the Certainty Factor method had a better match with reality compared to AHP.
It is however also important to note that the results from the MCDA-analysis
in this project had much worse fit with InSAR as shown in figure 36 compared
to neural networks which at least had an accuracy score of 63 %. The accu-
racy score of neural networks in this project is also considered to be quite low.
One could argue that some of the criteria used in this project need to use more
map layers and data related to certain conditions that causes land subsidence.
Rezaei et al. (2020b) did to a higher extent use a more detailed and specified cri-
teria towards hydrogeological conditions causing land subsidence. The criteria
used for land subsidence predictions in Iran used for instances, alluvium thick-
ness, saturation thickness and the thickness of compressive clay layers. Another
study conducted in the Rafsanjan plain also included groundwater level decline
as criteria, which was determined to be the parameter with the greatest impact
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on the assessment of land subsidence using artificial neural networks (Bagheri
et al., 2019b). The correlation matrix from figure 16 confirms the criteria used
in the project does not follow a certain pattern, which makes it more difficult
to train the machine learning algorithm.

The performance of XGBoost did exceptionally well when calculating the AUC-
score. Compared to neural networks and other traditional machine learning
methods, it had faster calculation speed and stronger generalization. Similar
studies of the Beijing plain were conducted by Shi et al. (2020) using linear
regression, Random Forest, and XGBoost as a regression problem. Out of the
three algorithms, XGBoost had the highest R2-score with 0.9431 after opti-
mization compared to 0.4234 using linear regression. The prediction effects of
XGBoost were good and reasonable and had very few deviations. This were
also the case for the study in Skøyen-area were the sample results from figure
24 mostly reflected the original map from the InSAR-layer. The use of InSAR
as output data could also be debated upon since data could be exposed to at-
mospheric effects or vegetation as discussed in previously in the background
chapter, but the study area are mostly urbanized and would thus have limited
influence on the raw data from NGU.

Although various supervised machine learning methods have been used for map-
ping natural hazards before, the use of XGBoost algorithm is fairly new. Can
et al. (2021) did use similar criteria as this study such as TWI, soil type and
land cover for mapping landslide susceptibility in the upper basin of Ataturk
dam, Turkey. The overall accuracy was 90.18 % with an AUC-score of 0.96.
The input features from Can et al. (2021) are similar to this project by selecting
effective factors that are highly dependent on geoenvironmental settings. Using
multiple criteria related to topographic derivatives such as slope and TWI may
have multicollinearity, which in turn could have affected the prediction. This
should however not be the case for decision tree algorithms such as XGBoost as
they usually are immune to these problems (Piramuthu, 2008). Multicollinear-
ity can reduce the accuracy when making predictions and it should therefore be
better to use independent variables that are not correlated or repetitive when
building models, and could to some extent explain the performance of XGBoost.
On the other hand, there are studies that had gained a more accurate model
using neural networks when comparing XGBoost. Pradhan and Kim (2020)
studied and mapped landslides in two catchments in South Korea and gained
76.73 % and 83.71 % accuracy from XGBoost and neural networks respectively.
An explanation of this could be the use of different criteria or conditioning fac-
tors, but also due to the different qualities of DEM’s used or the methods of
hyperparameter optimization itself. The study area of the mentioned studies us-
ing XGBoost is also significantly larger than the studies itself. The results from
these studies are therefore more representative for risk assessment in a regional
scale. Another improvement could also be to first simplify the problem by only
dividing the machine learning algorithm to only include two classes similarly to
(Ayalew and Yamagishi, 2005). By only creating class 0 (No subsidence) and
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class 1 (Subsidence), it would be easier to know the threshold and assess the
accuracy of the functions for both neural networks and XGBoost.

5.3 The study area and use of MCDA

The local area itself should also be taken into consideration when interpreting
the resulting maps. The Skøyen-area, as discussed in the background-section,
is heavily urbanized with few exceptions. In the maps from MCDA and neural
networks, all of the high-risk areas were placed upon areas with tall buildings
and dense infrastructure. Oslo in general has been rising from the sea since the
last ice age due to isostatic uplift. Natural compaction with thick sets of marine
and fluvial sediments might have an impact on subsidence to some extent. How-
ever, main settling can also occur within anthropogenic fill material to expand
and areas. Such occurrences of subsidence had in fact affected infrastructure
and buildings in central parts of Oslo (Eriksson et al., 2021). It has also been
claimed in the report from Eriksson et al. (2021) that the development in central
Oslo might have accelerated subsidence in the area by altering the groundwater
table reducing the pore pressure in sediments. This might explain the pattern
of the MCDA-map in this project as anthropogenic materials have been em-
phasized during the ranking process. Groundwater has also been included in
the study. As mentioned earlier, the study area is also a connection hub for
public transportation and there has been ongoing building projects currently
(Områderegulering for Skøyen, 2021). This requires lot of deconstruction in the
local area, and the results from MCDA with many high risk areas could be
reasonable with respect to groundwater depletion. Furthermore, studies from
Hakim et al. (2020a) using machine learning had shown a strong correlation
between land subsidence and urban development, which was most likely related
to excessive groundwater extraction within the urban areas.

On the other hand, it is still quite unclear why the map from MCDA differs from
XGBoost despite using the exact same input criteria. The differences could be
explained with MCDA being more based upon more on subjective decision-
making. AHP was implemented in the analysis to make sure all decisions and
rankings were more consistent. One could also argue that creating land sub-
sidence maps through MCDA is more challenging due to its slow processes,
similarities to other natural hazards or the fact that they tend to variate year
by year depending groundwater depeletion relating to infrastructural projects
Cui (2018). There is also a limited number of studies creating land subsidence
through MCDA. Most of the previous MCDA-studies are conducted through
multi-hazards analysis such as Karlsson (2016) or Skilodimou et al. (2019). In
Skilodimou et al. (2019), the multihazard-analysis emphasized more on finding
suitable places for urban development with respect to previous events of natural
hazards in the area. The resulting MCDA-map of the Skøyen-area might have
the potential showing "safe" areas for site planning, but would most likely not
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predict the true risk of land subsidence compared to maps from InSAR and
machine learning itself.

Similarly from (Karlsson et al., 2017), the susceptibility analysis for natural
hazards assessment in Swedish roads faced some uncertainties due to the nature
of AHP modeling. The assessment was more or less subjective, and most of the
experts’ judgement were inconsistent from the beginning. Higher uncertainties
also lies upon the break values used for dividing different classes of susceptibili-
ties since the results of MCDA is a unitless value between 0 to 10. More studies
need to be done before proper guidelines are developed to decide what should
be considered low, medium-low, medium-high or high susceptibility. This is
because any slight change in the way break values are selected for dividing the
results would affect the percentage of pixels belonging to certain classes. MCDA
is also highly dependent of defining main objectives, the region of interest and
choosing criteria. Although small changes during the weighting process in the
sensitivity analysis barely affect the overall ranking of each criterion, some ar-
eas would completely change in susceptibility by simply removing or swapping
the rank of a criterion. More successful MCDAs focused to narrow down their
respective study areas such as Gigović et al. (2019) and Rikalovic et al. (2014).
The purpose of narrowing down the study area was to make sure that the choice
of sites meet the basic criteria for their respective problems. This was to some
extent also done in this project. The choice of study area was based on the sub-
sidence activities from InSAR Norway and technical reports proving incidences
of subsidence. However, this has also lead to some issues gathering enough data
for the study area, which had some limitations regarding the choice of criteria.

5.4 Comments about choice of criteria

Land use and land cover were considered the most important criteria during
MCDA. This criteria has commonly been used before as an important factor
for predicting other types of natural hazards such as landslides (Meneses et al.,
2019). The use of this criteria from earlier studies was argued due to the prop-
erties of data used produce land cover was closely integrated to landslide sus-
ceptibility models. The connection between land subsidence and and land cover
is uncertain. Considering the study area mostly consist of urban fabric, there
might also be some bias ranking the classes in the land cover map.

Bias could also have occurred in other criteria as well. For instances, the dis-
tribution of rock type is rather homogeneous mostly consisting of slate. The
distribution were more diverse in other studies such as in Gigović et al. (2019),
Rikalovic et al. (2014). Interestingly, the study of earthquake-induced natural
hazards in China from Li et al. (2012) found that there are no significant connec-
tion between soil type and natural hazards occurring in the area. The purpose
of including soil type in the analysis is because certain rock types such as sand-
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stone or phyllite are more likely to trigger subsidence, but there are however
no such occurrences in the study area, and the structural characteristics could
play a larger role affecting land subsidence. It could therefore be a discussion to
include a map layer containing distance to faults as a criteria instead, but this
was not included in the analysis due to lack of information and data access. The
calculation of TWI and its spacial distribution of its values appear to be rea-
sonable when creating the layer. It was based on a general method that would
be valid for spacial distribution of soil, pH-value groundwater and soil moisture
(Sørensen et al., 2006). This is however adapted towards Fennoscandian forests,
and the author of this TWI-method could not identify a single best method that
could suit all topographic conditions.

The altitude of groundwater table could also use some improvements regarding
choice of interpolation method. The criteria layer of groundwater level were
created by interpolating point data within the study area using. This was not
too problematic as there were over 100 wells which are fairly distributed in the
study area. Kriging as a geostatistical interpolation method was used by Modoni
et al. (2013) when interpolating 200 water heads land in Bologna, Italy. This
procedure was chosen to combine different information in the same geographical
points, regardless of the positions they have been determined. This is however
not much the case for Skøyen as a study area where none of the point data are
located within the same positions.

From the sensitivity analysis, it could be discussed more whether or not the
land use and land cover were weighted too much in the MCDA. When land
use and land cover were removed as a criterion in figure 29b, a large portion
of the westermost part of study area moved towards lower risk classes, while
the red spot from InSAR in figure 22 were represented as medium-high risk.
This is something expected as the majority of the land use and land cover layer
consist of urban fabric, which had the highest values during the normalization
process. The reasoning behind the weighting of land use and land cover is be-
cause intense urbanization has been documented to be among the land cover
types that has caused land subsidence (Orhan, 2021). However, it could be ar-
gued that the analytical hierarchy process did have some form of bias towards
land use and land cover, as it was evaluated to be much more important than
all other criteria. AHP has a subjective nature, which means that methodol-
ogy cannot guarantee the decisions are definitely true, and is more based upon
probability and possibility measures (WHY FUZZY ANALYTIC HIERARCHY
PROCESS APPROACH FOR TRANSPORT PROBLEMS?, 2011). This was
evident from Karlsson et al. (2017), where more than thirty experts had differ-
ent opinions which criterion are considered important when evaluating natural
hazards. Some of the criterion could however be evaluated differently during the
AHP. Orhan (2021) did also emphasize that groundwater usage is considered to
be the most important parameters caused by anthropogenic conditions. This
could mean that the GW-table criterion could in theory be ranked more impor-
tant than land use and land cover during the ranking process or at least more
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equally important as land use and land cover since groundwater exploitation
and building infrastructure often go hand in urbanization projects such as in
building new railroads (Braathen, 2018) as explained in chapter 2.2. However,
(Zeitoun and Wakshal, 2013) also mentioned that the materials on the subsur-
face often have much more impact the contribution of subsidence rather than
the level of groundwater level alone, which is why the GW-table criterion was
not ranked any higher during the analytical hierarchy process.

6 Conclusion

In conclusion, the main purpose of this study was to create land subsidence
susceptibility maps using the methods of MCDA and the machine learning al-
gorithms of neural networks and XGBoost within a heavily urbanized area in
Skøyen to see how they compare to each other. Analytical hierarchy process was
added in the MCDA process to increase the consistency in the decision mak-
ing process. Sensitivity analysis were also applied to check the robustness of
the MCDA-model and observe how the susceptibility map would change when
slightly tweaking the weights of the criteria or removing one criterion altogether.
Likewise, for the machine learning methods, hyperparameters were tuned in or-
der to optimize the accuracy AUC-score of the performances. Seven criteria were
used as input, namely: Land use and land cover, topographic wetness index, soil
type, rock type, distance to river streams, slope and altitude to groundwater
level. InSAR-data from NGU was used as output data for neural networks and
XGBoost.

The results for MCDA and machine learning methods turn out to be substan-
tially different from each other. While MCDA mostly had medium to high
subsidence susceptibility scattered across the area, the initial InSAR-data and
XGBoost mostly had low or medium-low pixels with the exception of the north-
western part of the area. Surprisingly enough, neural networks appear to gener-
ate a pattern in between MCDA and InSAR with a great mix of pixels from all
classes with more outliers. The use of neural network is however the machine
learning that generated the lowest accuracy score and AUC-score with optimized
value of 0.6468 and 0.65 respectively after several runs. XGBoost performed
much better with an optimized accuracy score of 0.7128 and an AUC-score of
0.82.

It is difficult to find an exact explanation why neural networks performed less
than expected. One could argue that there simply are not enough data used in
the study or there is a need to tune more hypermaterers in order to gain better
results. The only pattern observed from neural networks is the fact that larger
learning rates perform slightly better regardless of the other hyperparameters.
There is a lot of potential to explore a larger set of hyperparameters to optimize
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the results, not only for neural networks, but also for XGBoost. It might also
be beneficial to experiment on other activation functions or to use other type of
gradient descent optimization algorithms such as AdaGrad or RMSProp. The
AUC-scores remained mostly unchanged regardless of the set of hyperparameters
used neural networks, but the accuracy score tend to vary. This showed how
important it is to choose an error metric accordingly to the data set. Only small
parts of the initial InSAR-data belong to the highest subsidence class, which in
turn gives a large number of low- and medium-low class values. The issue of
such class imbalance is that it could have resulted in a bias towards the majority
class in XGBoost, reducing the classification performance. Thus, it was perhaps
taken for granted that an unbalanced data set would not cause too much of an
issue. A common remedy to handle imbalanced data set could for example be
to use undersampling techniques where the distances between all instances of
the majority class and minority class are calculated.

Considering the results of MCDA, it can be concluded that it requires more ex-
pert judgement in order to compete with machine learning methods to predict
land subsidence. The regression analysis performed against initial InSAR-data
showed very low R2-values which indicates the results from MCDA do not co-
incide with InSAR-data. The sensitivity analysis had on the other hand shown
consistency throughout the decision making process, there are some reasonable
arguments why incidences of medium-high and high pixels are dominating from
the MCDA-map since highly urbanized areas are often more vulnerable to land
subsidence due to extraction of groundwater. This is however not verified in the
area, and there are uncertainties of MCDA as a model itself. MCDA are more
prone to subjective opinions and former studies such as Karlsson et al. (2017)
has shown that even experts can disagree on how to rank chosen criteria prop-
erly. The choice of criteria and the ranking of those criteria were based solely
upon the author of this project. An improvement could be consulting multiple
experts and rank the respective criteria based on their expertise and calculate
the average weights from them. Alternatively, there is a need for criteria more
specified towards hydrogeological conditions such as rainfall, specific yield and
aquifer type. The criteria chosen can easily be linked towards other kinds of
natural hazards as studies of landslide uses similar criteria. In its current form,
it might also be beneficial for the project to conduct studies in a more regional
scale rather than a local scale or eventually perform MCDA in other urbanized
areas where InSAR has shown to be strongly subsiding.
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Appendix A Processing raw data of MCDA, in-
cluding formula for AHP

#!/usr/bin/env python
# coding: utf-8

# In[2]:

"""This is the entire script for the ordinary MCDA-analysis.
Some preprocessing of the criteria are not
included due to it being a pre-planning stage that is independent from MCDA.
All seven criteria exist in the work environment raw_data.gdb."""

import arcpy
from arcpy import env
from arcpy.sa import *

# Set up work-environment
arcpy.env.workspace = 'D:/Master_skøyen/skript/raw_data.gdb/'
mydir = arcpy.env.workspace
arcpy.env.overwriteOutput = True

# First we need to remove water from our dataset
# river is considered raster!!!
area = "skoyen2"
river = "river"
material = "Loose_material"
corine = "corine_land"
rock = "rock"
Bronn = "Bronn"

arcpy.Buffer_analysis("river", "D:/Master_skøyen/skript/raw_data.gdb/buffer",
"10 Meters")

buffer = "buffer"
arcpy.analysis.Erase(area, buffer, "clipped_area")
new_area = "clipped_area"

# Clip analysis of current raw data

Indata = [[new_area,material],[new_area,corine],[new_area,rock],
[new_area,Bronn]]
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Outdata = ["material_map","corine_map","rock_map","Bronn_map"]

for i,j in zip(Indata,Outdata):
arcpy.analysis.Intersect(i,j)

# In[3]:

"""
Now, we create the water table altitude map
"""

dtm = "D:/Master_skøyen/Criteria/eksport_537364_20211226/dtm50/data/dtm50_6602_50m_33.dem"
outDEM = ExtractByMask(dtm,area)
inDEM = 'Altitude'
outDEM.save(inDEM)

ExtractValuesToPoints('Bronn_map', 'Altitude',
'alt_and_wells')

"""Must do polygontoraster before recassify"""
in_features = 'alt_and_wells'
field_name = 'water_altitude'

arcpy.AddField_management(in_features, "Raster",
field_type = 'DOUBLE')

arcpy.CalculateField_management(in_features, "Raster",
"!RASTERVALU!")

expression = '!Raster! - !vannstandb!'

arcpy.AddField_management(in_features, field_name,
field_type = 'DOUBLE')

arcpy.CalculateField_management(in_features, field_name,
expression)

input_points = 'alt_and_wells'
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zField = 'water_altitude'
outlay = 'IDW_wells'
outRast = 'IDW_RastWells'
cellSize = 50
power = 2

# Set up variables for search neighborhood
majSemiaxis = 300000
minSemiaxis = 300000
angle = 0
maxNeighbors = 15
minNeighbors = 10
sectorType = 'ONE_SECTOR'

searchNeigborhood = arcpy.SearchNeighborhoodStandard(majSemiaxis,
minSemiaxis,angle,
maxNeighbors,minNeighbors,
sectorType)

# Execute IDW
arcpy.IDW_ga(input_points,zField,outlay,outRast)

# In[4]:

# Converting polygons to raster
arcpy.conversion.PolygonToRaster("material_map", "jorda_navn",

"raster_material")
arcpy.conversion.PolygonToRaster("rock_map", "FID_rock", "raster_rock")
arcpy.conversion.PolygonToRaster("corine_map", "FID_corine_land",

"raster_corine")

# In[6]:

"""
Now for reclassification
"""

inWell = "well_map"
inSlope = "slope_map"
inLand = "raster_corine"
inRock = "raster_rock"
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inMaterial = "raster_material"
inRiver = "river_map"
inTWI = "twi_map"

# Remapping values
myRemapRiver = RemapRange([[0,110,10],[110,250,7],

[250,410,3],[410,6000,0]])

myRemapRock = RemapValue([[25,0],[190,2],[195,6],[206,6],[224,8],
[239,8],[372,10],[797,2]])

myRemapSlope = RemapRange([[0,3,10],[3,6,8],[6,9,6],
[9,12,3],[12,20,0]])

myRemapLand = RemapValue([[2,"NODATA"],[61,0],[120,8],
[36,4],[66,4],[74,10],[65,4],[62,10]])

myRemapTWI = RemapRange([[5,6.9,0],[6.9,8.1,3],
[8.1,9.7,6],[9.7,12.3,8],[12.3,30,10]])

myRemapMaterial = RemapValue([[41,10],[120,5],[70,7],[42,0]])

myRemapWell = RemapRange([[0,6.5,10],[6.5,12.7,8],
[12.7,18.6,6],[18.6,25.3,4],

[25.3,38.6,2],[38.6,40,0]])

# Reclassification
outReclassRiver = Reclassify(inRiver,"VALUE",myRemapRiver)
outReclassRock = Reclassify(inRock,"VALUE",myRemapRock)
outReclassSlope = Reclassify(inSlope,"VALUE",myRemapSlope)
outReclassLand = Reclassify(inLand,"VALUE",myRemapLand)
outReclassTWI = Reclassify(inTWI,"VALUE",myRemapTWI)
outReclassMaterial = Reclassify(inMaterial,"VALUE",myRemapMaterial)
outReclassWell = Reclassify(inWell,"VALUE",myRemapWell)

# Save reclass-files to geodatabase containing
outReclassRiver.save('D:/Master_skøyen/skript/vectorize.gdb/river')
outReclassRock.save('D:/Master_skøyen/skript/vectorize.gdb/rock')
outReclassSlope.save('D:/Master_skøyen/skript/vectorize.gdb/slope')
outReclassLand.save('D:/Master_skøyen/skript/vectorize.gdb/land')
outReclassTWI.save('D:/Master_skøyen/skript/vectorize.gdb/TWI')
outReclassMaterial.save('D:/Master_skøyen/skript/vectorize.gdb/material')
outReclassWell.save('D:/Master_skøyen/skript/vectorize.gdb/Well')
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# In[ ]:

"""
For the next step, we need to apply Analytical Hierarchy process.
Now, we have to measure the relative importance of the criteria to each other.
Use the Python-module Pandas to read the Excel-file containing the
pairwise comparison matrix to calculate the results.
"""

def AHP(n, sheet_no):

# n: No of criteria
# sheet_no: Sheet name in Excel
# RI: Random Index
# CI: Consistency Index
# CR: Consistency Ratio

# Reading file location of the 7x7 pairwise comparison matrix
file_loc = "C:/Users/rmbp/GIS-project/Excel-files/AHP.xlsx"
df = pd.read_excel(file_loc,sheet_name=sheet_no)
df1 = df.drop(["Letter"],axis=1)

# Normalizing the nth root of products to get appropriate weights
root = df1.product(axis = 1)**(1/n)
sum_val = sum(root)

# The final priority vectors
weights = root/sum_val

# Calculating the consistency ratio
if n == 7:

col_list = ["A","B","C","D","E","F","G"]
RI = 1.32

elif n == 6:
col_list = ["A","B","C","D","E","F"]
RI = 1.24

col_sum = []
for i in col_list:

col_sum.append(df[i].sum())

lam_max = np.sum(col_sum*weights)
CI = (lam_max - n)/(n - 1)
CR = CI/RI
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return weights, CR

# Original weights
W1, C1 = AHP(7,"Sheet2")

# Removal of DW
W2, C2 = AHP(6,"Sheet3")

# Removal of Lithology
W3, C3 = AHP(6,"Sheet4")

# Removal of land cover
W4, C4 = AHP(6,"Sheet5")

# Example printing results
print(W1)
print(C1,C2,C3,C4)
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Appendix B Core algorithm of neural network
classification

# -*- coding: utf-8 -*-
"""
Created on Mon Nov 2 12:35:56 2020
@author: rmbp
"""

import numpy as np

class Classify():

def __init__(self,
hidden_activation="ReLU",
output_activation="softmax",
cost_func="cross_entropy"):

self.h_a = hidden_activation
self.o_a = output_activation
self.cost = cost_func

def hidden_activation(self,x,deriv=False):

if self.h_a == 'ReLU':
if deriv:

return self._ReLU_deriv(x)
else:

return self._ReLU(x)
elif self.h_a == 'sigmoid':

if deriv:
return self._sigmoid_deriv(x)

else:
return self._sigmoid(x)

elif self.h_a == "leaky_ReLU":
if deriv:

return self._leaky_ReLU_deriv(x)
else:

return self._leaky_ReLU(x)

def output_activation(self,x,deriv=False):
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if self.o_a == 'sigmoid':
if deriv:

return self._sigmoid_deriv(x)
else:

return self._sigmoid(x)

if self.o_a == 'softmax':
return self._softmax(x)

def output_error(self,a,t,x=None):
if self.cost == 'cross_entropy':

return (a-t)

def cost_function(self,a,t):
if self.cost == 'cross_entropy':

return self._cross_entropy_cost(a,t)

def _cross_entropy_cost(self,a,t):
return -np.sum(np.nan_to_num(t*np.log(a)-(1-t)*np.log(1-a)))

# Again the activation function, now including softmax

_softmax = lambda self, x: np.exp(x)/np.sum(np.exp(x),
axis=1, keepdims=True)

_sigmoid = lambda self, x: 1/(1+np.exp(-x))
_sigmoid_deriv = lambda self, x: self._sigmoid(x)*(1 - self._sigmoid(x))

_leaky_ReLU = lambda self, x: np.where(x > 0, x, x * 0.01)
_leaky_ReLU_deriv = lambda self, x: np.where(x > 0, 1, 0.01)

_ReLU = lambda self,x: np.where(x<0,0,x)
_ReLU_deriv = lambda self, x: np.where(x<0,0,1)
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Appendix C Running neural network

# -*- coding: utf-8 -*-
"""
Created on Sun Mar 13 12:17:35 2022

@author: rmpay
"""

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib as mpl
import seaborn as sns

from tqdm import tqdm

from sklearn.model_selection import cross_val_score, KFold, train_test_split
from sklearn.metrics import mean_squared_error as MSE, roc_auc_score as AUC_score
from sklearn import preprocessing

#from classification_problem import Classification
from Classify import Classify

mpl.rcdefaults()
plt.style.use('seaborn-darkgrid')
mpl.rcParams['figure.figsize'] = [10.0, 4.0]
mpl.rcParams['figure.dpi'] = 80
mpl.rcParams['savefig.dpi'] = 100
mpl.rcParams['font.size'] = 18

"""
The hidden layer and output activation functions
are previously defined in Classify.py
"""

class NeuralNetwork:

def __init__(
self,
X_data,
Y_data,
problem,
n_hidden_neurons_list =[2],
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n_output_neurons=2,
epochs=10,
batch_size=100,
lr_rate=0.1,
lmbd=0.0):

self.X_data_full = X_data
self.Y_data_full = Y_data

self.n_inputs = X_data.shape[0]
self.n_features = X_data.shape[1]
self.n_layers = len(n_hidden_neurons_list)
self.n_hidden_neurons_list = n_hidden_neurons_list
self.n_output_neurons = n_output_neurons

self.Problem = problem
self.epochs = epochs
self.batch_size = batch_size
self.iterations = self.n_inputs // self.batch_size
self.lr_rate = lr_rate
self.lmbd = lmbd

self.accuracy_train = np.zeros(epochs)
self.accuracy_test = np.zeros(epochs)
self.auc_train = np.zeros(epochs)
self.auc_test = np.zeros(epochs)

self.initialize_layers()

def initialize_layers(self):
n_hidden = self.n_hidden_neurons_list

self.bias_list = [np.zeros(n)+0.01 for n in n_hidden]
self.bias_list.append(np.zeros(self.n_output_neurons)+0.01)

self.weights_list = [np.random.randn(self.n_features,n_hidden[0])]
for i in range(1,self.n_layers):

self.weights_list.append(np.random.randn(n_hidden[i-1],
n_hidden[i]))

self.weights_list.append(np.random.randn(n_hidden[-1],
self.n_output_neurons))

def FeedForward(self):

problem = self.Problem
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self.a_list = [self.X_data]
self.z_list = []

for w,b in zip(self.weights_list,self.bias_list):

self.z_list.append(np.matmul(self.a_list[-1],w)+b)
self.a_list.append(problem.hidden_activation(self.z_list[-1]))

self.a_list[-1] = problem.output_activation(self.z_list[-1])

def FeedForward_out(self, X):
problem = self.Problem
a_list = [X]
z_list = []

for w,b in zip(self.weights_list,self.bias_list):
z_list.append(np.matmul(a_list[-1],w)+b)
a_list.append(problem.hidden_activation(z_list[-1]))

a_list[-1] = problem.output_activation(z_list[-1])
return a_list[-1]

def Backpropagation(self):

problem = self.Problem

error_list = []; grad_w_list = []; grad_b_list = []

output_error = problem.output_error(self.a_list[-1],self.Y_data)
error_list.append(output_error)

L = self.n_layers

for l in range(2,L+2):
prev_error = error_list[-1]
prev_w = self.weights_list[-l+1]
current_z = self.z_list[-l]
error_hidden = np.matmul(

prev_error,prev_w.T)*problem.hidden_activation(
current_z,deriv=True)

error_list.append(error_hidden)
error_list.reverse()

for l in range(L+1):
grad_b_list.append(np.sum(error_list[l],axis=0))
grad_w_list.append(np.matmul(self.a_list[l].T,error_list[l]))
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if self.lmbd > 0.0:
grad_w_list[l] += self.lmbd * self.weights_list[l]

self.weights_list[l] -= self.lr_rate*grad_w_list[l]
self.bias_list[l] -= self.lr_rate*grad_b_list[l]

def predict(self, X):
probabilities = self.FeedForward_out(X)
return np.argmax(probabilities, axis=1)

def predict_proba(self, X):
probabilities = self.FeedForward_out(X)
return probabilities

def SGD(self,auc=True):
data_idx = np.arange(self.n_inputs)

for i in range(self.epochs):
for j in range(self.iterations):

chosen_datapoints = np.random.choice(
data_idx, size=self.batch_size, replace=False

)

self.X_data = self.X_data_full[chosen_datapoints]
self.Y_data = self.Y_data_full[chosen_datapoints]

self.FeedForward()
self.Backpropagation()

pred_test = self.predict_proba(X_test_scaled)
pred_train = self.predict_proba(X_train_scaled)
self.accuracy_test[i] = accuracy_score(from_one_hot(Y_test),

np.argmax(pred_test,axis=1))
self.accuracy_train[i] = accuracy_score(

from_one_hot(self.Y_data_full),np.argmax(pred_train,axis=1))

if auc==True:
self.auc_test[i] = AUC_score(Y_test,

pred_test,multi_class='ovr')
self.auc_train[i] = AUC_score(Y_train,pred_train,

multi_class='ovr')

def accuracy_score(Y_test, Y_pred):
return np.sum(Y_test == Y_pred) / len(Y_test)
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"""
Defining one-hot encoder
"""
def to_one_hot(category_array):

ca = category_array # 1D array with values of the categories
nr_categories = np.max(ca)+1
nr_points = len(ca)
one_hot = np.zeros((nr_points,nr_categories),dtype=int)
one_hot[range(nr_points),ca] = 1
return one_hot

def from_one_hot(one_hot_array):
category_arr = np.nonzero(one_hot_array)[1]
return category_arr

# Running the data

# Defining the data sets
df = pd.read_excel("D:/Master_skøyen/INSAR/only_two.xlsx")
df = df.dropna()

# Input and output data
input_data = df[["Lat","Long","Land_cover","River","Rock_type",

"Slope","TWI","Soil_type","GW_table"]].to_numpy()
output = df["classed_insar"].to_numpy(int)

output_one_hot = to_one_hot(output)

"""
Hyperparameters for tuning, runs decide how many times
the algorithm should perform
"""
hidden_neuron_list = [3,3,3]
epochs = 100
runs = 30
lr_rate = 0.001
lmbd = 0

# Storing values
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AUC = []
accuracy = []

# Defining the parameters run for grid search
acc_test = np.zeros((runs,epochs))
acc_train = np.zeros((runs,epochs))
clf = Classify(hidden_activation="sigmoid",output_activation="softmax")

for i in tqdm(range(runs)):
X_train, X_test, Y_train, Y_test = train_test_split(input_data,

output_one_hot,
test_size=0.2)

Scaler = preprocessing.StandardScaler()
X_train_scaled = Scaler.fit_transform(X_train)
X_test_scaled = Scaler.transform(X_test)

#Storing values for latitude and longitude
X_train_feats = X_train_scaled.copy()
X_test_feats = X_test_scaled.copy()
latlong = X_train_feats[:,[0,1]]

nn = NeuralNetwork( X_train_scaled,
Y_train,
problem = clf,
n_hidden_neurons_list=hidden_neuron_list,
n_output_neurons=2,
epochs=epochs,
batch_size=100,
lr_rate=lr_rate,
lmbd=lmbd)

nn.SGD(auc=True)
AUC.append(nn.auc_test[-1])
accuracy.append(nn.accuracy_test[-1])
acc_test[i,:] = nn.accuracy_test
acc_train[i,:] = nn.accuracy_train

hotter = from_one_hot(nn.predict_proba(X_test_scaled))

#Saving predicted alues
#np.savetxt("D:/Master_skøyen/skript/testnn.csv", hotter)
#np.savetxt("D:/Master_skøyen/skript/latlong.csv",latlong, delimiter=',')
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# Printing mean accuracy after n runs
AUC_mean = np.mean(AUC)
accuracy_mean = np.mean(accuracy)
print('AUC mean = ',AUC_mean, ' accuracy mean = ',accuracy_mean)

fig,ax = plt.subplots()
for i in range(len(acc_test)):

ax.plot(acc_test[i],color='green',label='test')
ax.plot(acc_train[i],color='black',label='train')
if i == 0:

ax.legend(loc=2)
ax.set_ylim(0.5,1)
plt.title("Prediction, sigmoid")
ax.set_ylabel('Accuracy')
ax.set_xlabel('Epochs')
plt.tight_layout()

#Grid search
eta_vals = np.logspace(-5, -1, 5)
lmbd_vals = np.logspace(-5, 1, 7)
# store the models for later use
DNN_numpy = np.zeros((len(eta_vals), len(lmbd_vals)), dtype=object)

for i, lr_rate in enumerate(eta_vals):
for j, lmbd in enumerate(lmbd_vals):

nn = NeuralNetwork( X_train_scaled,
Y_train,
problem=clf,
n_hidden_neurons_list=hidden_neuron_list,
n_output_neurons=2,
epochs=epochs,
batch_size=100,
lr_rate=lr_rate,
lmbd=lmbd)

nn.SGD(auc=False)

DNN_numpy[i][j] = nn

test_predict = nn.predict_proba(X_test_scaled)
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print("Learning rate = ", lr_rate)
print("Lambda = ", lmbd)
print("Accuracy score on test set: ",

accuracy_score(from_one_hot(Y_test),
np.argmax(test_predict,axis=1)))

print()

# Creating a grid search matrix
sns.set()
test_accuracy = np.zeros((len(eta_vals), len(lmbd_vals)))
for i in range(len(eta_vals)):

for j in range(len(lmbd_vals)):
nn = DNN_numpy[i][j]

test_predict = nn.predict_proba(X_test_scaled)
test_accuracy[i][j] = accuracy_score(from_one_hot(Y_test),

np.argmax(test_predict,axis=1))

fig, ax = plt.subplots(figsize = (10, 10))
sns.heatmap(test_accuracy, annot=True, ax=ax, cmap="viridis")
ax.set_title("Grid search of Accuracy-score, Softmax")
ax.set_ylabel("Learning rate")
ax.set_xlabel("Regularization parameter")
plt.show()
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Appendix D XGBoost Grid search

# -*- coding: utf-8 -*-
"""
Created on Mon Jan 11 12:15:12 2021

@author: rmbp
"""

from xgboost import XGBClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, roc_auc_score as AUC_score
from sklearn import preprocessing

import numpy as np
import pandas as pd

# Opening the data set and dividing them to train and test set
df = pd.read_excel("D:/Master_skøyen/INSAR/all_data_content.xlsx")
df = df.dropna()
X = df[["Lat","Long","Land_cover","River","Rock_type","Slope",

"TWI","Soil_type","GW_table"]].to_numpy()
y = df["classed_insar"]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3)

# Storing latitude and altitude for later, excluding them from analysis
latlong = X_test[:,[0,1]]

#Scaling the model
Scaler = preprocessing.StandardScaler()
X_train = Scaler.fit_transform(X_train)
X_test = Scaler.transform(X_test)

#Fitting the model
model = XGBClassifier(objective='multi:softprob',n_estimators=100,

learning_rate=0.1,max_depth=10)
model.fit(X_train,y_train)
y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test,y_pred)
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#Making the prediction
y_pred_prob = model.predict_proba(X_test)
pred = y_pred[:,np.newaxis]
together = np.hstack((latlong,pred))

# Save the results for converting back to ArcGIS
np.savetxt("D:/Master_skøyen/INSAR/xgoptim.csv", together, delimiter=",")
AUC = AUC_score(y_test,y_pred_prob, multi_class="ovr")

# Printing the AUC and accuracy score
print("Accuracy: %.2f%%" % (accuracy * 100.0))
print("AUC: %.2f%%" % (AUC* 100.0))
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Appendix E Regression analysis

# -*- coding: utf-8 -*-
"""
Created on Tue Apr 19 10:34:06 2022

@author: rmpay
"""

from scipy import stats
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np

def rsquared(x,y):
slope, intercept, r_value, p_value, std_err = stats.linregress(x,y)
return r_value**2

df = pd.read_excel("D:/Master_skøyen/INSAR/Regression.xlsx","to_regression")
df = df.dropna(how='any',axis=0)

x = df["sense_nosoil"].values
y = df["InSARdata_Resample"].values

gradient, intercept, r_value, p_value, std_err = stats.linregress(x,y)

mn = np.min(x)
mx = np.max(x)
x1 = np.linspace(mn,mx,100)
y1 = gradient*x1+intercept

plt.plot(x,y,"og",label="MCDA value points",markersize=6)
plt.plot(x1,y1,"r-",label="Regression line" )
plt.xlabel("MCDA value")
plt.ylabel("Subsidence rate (mm/year)")
plt.grid("on")
plt.title("Relation between layer B MCDA and InSAR-data")
plt.plot([],[],"" ,label= r'$R^2$ =%f' %rsquared(x,y))
plt.plot([],[],"",label= '%f x + %f' %(gradient,intercept))
plt.legend(loc=0,prop={'size': 10})
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Appendix F Code for showing distribution of data

# -*- coding: utf-8 -*-
"""
Spyder Editor

This is a temporary script file.
"""

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import datetime
import time

import matplotlib as mpl
import seaborn as sns
from sklearn.model_selection import cross_val_score, KFold, train_test_split
from sklearn.metrics import mean_squared_error as MSE
from sklearn import preprocessing
from sklearn.linear_model import Lasso, LinearRegression, Ridge
from sklearn.preprocessing import PolynomialFeatures
from sklearn.metrics import r2_score
from tqdm import trange

# Showing distribution of data to the depression data set
df = pd.read_excel("D:/Master_skøyen/INSAR/all_data_content.xlsx")

X = df[["Land_cover","River","Rock_type","Slope","TWI",
"Soil_type","GW_table","classed_insar"]]

y = df["classed_insar"]

# Creating heat map
plt.figure(figsize=(9, 9))
correlation = X.corr()
heatmap = sns.heatmap(correlation, annot=True,fmt='.2f')
plt.title("Correlation matrix of InSAR")
plt.show()

#Plotting density of each criterion
for i in X:
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plt.title(i)
sns.set_style('darkgrid')
sns.distplot(df[i])
plt.figure()
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