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Abstract 

The identification and characterization of faults is an important process that provides 

necessary knowledge from the subsurface in geological and geophysical research. 3D 

seismic surveys are commonly utilized for the task of exploring the structural framework of 

the subsurface, as they enable the view of entire large structures in 3D. In seismic 

interpretation manual interpretation of faults is a tedious and complicated process, 

additionally the results are prone to human error. Another approach for interpreting faults on 

seismic data is to use attributes. Attributes that highlight discontinuity on seismic data have 

been used to detect faults. Although, these methods are not capable to evolve 

independently, thus constantly rely on the interpreters knowledge. Recently, Machine 

Learning (ML) techniques in general and Convolutional Neural Networks (CNN) as part of 

Deep Neural Networks (DNN) have been used to detect and image faults on seismic data 

with the aim of making the process more automated. CNN networks learn and evolve from 

manually annotated or labeled fault interpretations. 

In this study I have applied supervised CNN to image faults through binary segmentation, 

where faults are detected pixel-wise as ones and other background as zeros. The task was 

solved on 3D seismic surveys collected from three separate locations along the Norwegian 

Continental Shelf and the Efficient UNET and Light UNET CNN architectures were utilized to 

perform the task. Additionally, techniques such as data augmentation (geometric 

transformations) and hyperparameter adjustments were applied to improve the learning 

process and performance of the deep learning algorithms. 

The application of data augmentation to the training and testing data, generally led to 

improvement in the performance of CNN on fault predictions. Although the magnitude of 

improvement was varying with respect to the different surveys. The initial CNN fault 

prediction improvement mainly relied on the quality, and size of faults present in the 3D 

seismic volume. Further, improvement was achieved by the adjustment of certain 

hyperparameters affecting the training and testing process of the CNN. Regardless, little to 

no improvement was noticed particularly on one seismic volume containing high levels of 

noise.  

The characterization of fault geometries and the width of fault damage zone utilizing the best 

performing CNN was successfully conducted. Additionally, fault frequency plots and 

cumulative fault frequency plots were created to estimate the extent of the fault damage zone 

with focus on one fault. Although, the precision of the characterization is limited in detail due 

to seismic resolution and the interval spacing of fault frequency plots.       
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1 Introduction 

1.1 Study Background 

The understanding of subsurface features such as faults, has for a long time been important 

in several geological disciplines. Faults are common geological features present in numerous 

geological settings within the brittle portion of Earth’s crust, and exist as many different types. 

Most types of faults can be located in most of the tectonic regimes on earth, ranging from 

compressional tectonic regimes (e.g. accretionary orogens and collisional orogens) 

commonly related to the thrusting and folding, thus stacking of different lithological 

sequences. Moving through strike-slip regimes, all the way to extensional settings where 

rifting commonly results in rifted margins.  

Rifted continental margins such as the Norwegian rifted continental margin encompass 

several graben structures, half-graben structures, structural highs and platforms, bounded by 

large faults and fault complexes (Faleide et al., 2015). Graben and platform structures are 

further generally divided into fault blocks, which are again internally faulted. A majority of the 

fault structures in rifted settings involve normal faults, but generally all margins host 

components of compression and strike-slip, or a mixture (transtension or transpression) such 

as in the rifted margin between the western Barents Sea and Svalbard (Faleide et al., 2008), 

resulting in reverse or strike-slip faults.  

Fault geometries have by utilizing several different methods like field studies, analog 

sandbox experiments and seismic surveys been extensively studied. Various studies of faults 

are conducted as they play significant roles when it comes to fluid flow and fluid-rock 

interactions. As individual faults grow and form different structures due to the interaction of 

various rock lithologies, stress, strain and other factors, they can connect and form large 

complexes with complicated geometries (McClay et al., 2004; Groshong, 2006; Fredman et 

al., 2007). Such complexes can provide excellent pathways for fluids or create barriers 

(Bense et al., 2013) by the juxtaposition of impermeable lithologies and by the formation of 

gouge or clay smear in the so-called fault core, thus faults commonly provide great oil and 

gas reservoirs (Gabrielsen et al., 1990). The intense deformation within fault cores generally 

encompass slip surfaces, fault rock assemblages, diagenetic structures and lenses of 

undeformed rock (Wibberley et al., 2008; Bastesen et al., 2009; Braathen et al., 2009). Fluid 

flow is generally enhanced by the surrounding damage zone, which has gone through less 

intense deformation (Torabi et al., 2020).  
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It is therefore desirable to characterize fault geometries. Often studied geometric fault 

attributes include fault displacement, fault height and length, and the thickness of the 

damage zone and the fault core (Torabi and Berg, 2011).  

Seismic imaging has for decades been used to image and characterize faults, commonly 

used with accompanying well data in areas such as the Norwegian continental shelf (Faleide 

et al., 2015) where extensive search for hydrocarbon reservoirs is still ongoing. The detection 

and characterization of faults in seismic images is a challenging task, as manual tracing of 

faults conducted by interpreters is a highly time-consuming task (Bahorich and Farmer, 1995; 

Aqrawi and Boe, 2011). The task commonly also is affected by human bias and the 

experience of the interpreter. The development of several seismic tools has assisted 

interpreters such as coherence feature extraction (Bahorich and Farmer, 1995), automatic 

discontinuity tracking (Admasu et al., 2006) and automatic fault extraction (Dorn et al., 2005). 

Such methods often come with limitations, involving difficulties of adapting to different 

seismic surveys and not being able to learn or evolve based on the interpreters knowledge 

(Xiong et al., 2018).  

Machine learning methods, especially deep learning, are in contrast to more traditional tools 

well suited for learning from human input (Fulkerson, 1995; LeCun et al., 2015; 

Schmidhuber, 2015). These methods are well known for analyzing big-data automatically. 

For tasks such as image recognition and classification, CNN (LeCun and Bengio, 1998; 

Krizhevsky et al., 2012) have proven to be successful. Despite the great success of CNN, 

performance can always be improved, thus in recent years a technique known as data 

augmentation was introduced to CNN in order to boost their performance. Data 

Augmentation is applied for several different tasks, thereunder object detection (Redmon et 

al., 2016) and semantic segmentation (Long et al., 2014). One commonly applied CNN is the 

UNET (Ronneberger et al., 2015). Data augmentation in form of simple geometric 

transformations were in this study applied to Efficient UNET and Light UNET which are 

variations of the UNET architecture. In this approach I train the Efficient and Light UNET on 

data augmented slices from three different 3D seismic surveys located along the Norwegian 

continental shelf in order to boost their fault imaging performance. In addition, certain 

parameters are changed to change the architecture of the UNET, aiming to achieve further 

performance increase.  
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1.2 Study Areas 

In this study, three 3D seismic volumes from three different seismic surveys are utilized: 

1. Volume LN17001_Full_Stack from LN17001 3D survey. 

2. Volume ST14200Z15_OBN_Full_Stack from ST14200_OBN 3D survey. 

3. Volume SG9202_Full_Stack from SG9202 3D survey. 

The seismic volumes have separate locations, distributed in the Norwegian North Sea and 

the Barents Sea (figure 1-1). In the following I will present the location for each 3D seismic 

survey area, individually.  
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Figure 1-1: Map over the location of the study areas.  

1.2.1 LN17001 3D Survey, Loppa High, Southwestern Barents Sea  

LN17001 3D seismic survey in this study is acquired on the Loppa High in the southwestern 

Barents Sea. Seismic data from this area was collected in September 2018, utilizing TopSeis 

technology and covers the Loppa High blocks of PL609, PL492, PL533 and PL902 

exploration licenses. These blocks are in this study represented by the full stack seismic 

volume of LN17001. The survey was shot by CGG in operation for Lundin Norway AS and it 

includes part of the southwestern Loppa High transitioning trough the Jason Fault Complex 

(Jason FC) in to the Polhem Subplatform. LN17001 is a pre-stack time migrated seismic 

survey with the following geometry: 3685 inlines (IL) with 8,33 m IL spacing, 6561 crosslines 

(XL) with 6,25 m XL spacing and a 2ms sample interval. The location of the survey is shown 

in the figure 1-1.  
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1.2.2 ST14200Z15_OBN_Full_Stack 3D Survey, Johan Sverdrup Field, 

Norwegian North Sea 

The full stack seismic volume of 3D seismic survey ST14200Z15_OBN covers Johan 

Sverdrup block 16/2 and data was collected in February 2016 by SGS in operation for Statoil. 

ST1400Z15_OBN is a merged full angle seismic survey in two-way-travel time (TWT) with 

the following geometry: 728 IL with 12,50 m IL spacing, 694 XL with 12,50 m XL spacing and 

a 4ms sample interval. The Johan Sverdrup field is located in the Utsira High in the 

Norwegian North Sea and the studied seismic volume covers the southern part of the Utsira 

High. The Utsira High is located about 190 km west of Stavanger, Norway, bounding to the 

Stord Basin to the west and the southern Viking Graben to the east (Riber et al., 2015). The 

exact location of the survey is shown in figure 1-1.  

1.2.3 SG9202 3D Survey, Horda Platform, Northern North Sea 

The SG9202 3D survey used in this thesis is located in the Horda platform (The northern part 

of the volume), and the Stord Basin in the south. The survey is acquired in 1992 and covers 

the middle portion of the Northern Horda Platform and northern-most part of the Stord Basin, 

including middle sections of the major Vette Fault in the east and Tusse Fault in the west. 

The SG9202 survey has the following geometry: 2215 IL with 12,50 m IL spacing, 3451 XL 

with 12,50 m XL spacing and a 2ms sample interval. The location of volume 

SG9202_Full_Stack is shown in figure 1-1.  
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1.3 Study Objectives 

The aim of this study is to image faults using CNN and study the role of data augmentation 

on the fault enhancement and subsequently characterizing some of the faults in one of the 

survey areas by extracting fault statistics along certain scanlines spatially and in depth. The 

following steps were followed in order to achieve the main objectives. The steps are 

organized as bullet points under the main objectives:  

1. Using Fault detection and imaging using Deep Learning 

• Creating training labels 

• Creating baseline CNN  

• Applying data augmentation to the CNN 

• Adjusting training and testing hyperparameters  

• Exploring the effect of training and testing CNN only on seismic inlines or 

crosslines  

• Comparing the performance of different CNN architectures: Efficient UNET 

and Light UNET 

2. Fault characterization using 3D fault volumes 

• Creating 3D fault models  

• Creating scanlines and fault frequency plots  

• Focusing on one fault for more detailed characterization  

 

 

 

 

 

 

 

 

 

 

 



7 
 

1.4 State of the Art on Fault Identification and Characterization  

Many studies have been conducted on fault geometries like length, width, displacement, 

height, fault core and damage zone (Walsh and Watterson, 1988; Shipton et al., 2006; 

Wibberley et al., 2008; Bastesen et al., 2013; Childs et al., 2009). In outcrop, faults can be 

observed in great detail. The numerous features in the complicated fault core can in a good 

outcrop be closely examined, this includes features such as different slip surfaces, fault rock 

assemblages (gouge, clay smear, breccia, cataclasites), factures and veins, cementation and 

mineralization. In outcrop, the surrounding damage zone and its numerous amounts of minor 

faults and fractures or veins can also be closely evaluated.  

On the other hand, it is often challenging to view the entire extent of a fault and its 

surrounding damage zone in the field, as its full extent is not visible. Thus, statistical 

distributions of fault attributes mentioned above are used to determine the relationship 

between them and estimate their dimensions in the subsurface. Research on the distribution 

and spacing of deformation bands and fractures surrounding faults have been used to 

estimate the width of damage zones (Barnett et al., 1987; Walsh and Watterson, 1988; Nicol 

et al., 1996; Torabi and Berg, 2011). Additionally, fault attribute relationships have been 

utilized to predict the evolution of faults such as the relationship between displacement and 

damage zone width (e.g. Scholz et al., 1993; Shipton et al., 2006; Torabi and Berg, 2011) or 

the relationship between displacement and fault length (e.g. Cowie and Scholz, 1992; 

Dawers et al., 1993; Kim and Sanderson, 2005; Kolyukhin and Torabi, 2012). Anyways, it is 

important to keep in mind that these statistics are limited (Choi et al., 2016).   

When considering the use of seismic images, it is easier to capture the full extent of faults in 

terms of their height, displacement and length. At least to the extent seismic resolution allows 

it. In 3D seismic images faults are generally recognized by causing discontinuities in lateral 

reflections. Accordingly, several methods utilizing the calculation of attributes measuring the 

reflection continuity in seismic have been used to detect faults. Such attributes are for 

instance different types of coherence (Marfurt et al., 1999; Li and Lu, 2014; Wu, 2017). 

However, these methods are sensitive to noise and stratigraphic features, and thus 

insufficient to detecting faults when used alone (Hale, 2013).  

Complimentary to the seismic attribute methods such as coherence, Gersztenkorn and 

Marfurt (1999) introduced vertically elongated windows to enhance faults, based on the 

observation that faults are typically more vertical than seismic reflectors. Other 

complimentary methods applied to coherence or semblance are smoothing in directions 

normal to seismic reflectors (Bakker, 2002; Hale, 2009; Wu, 2017), involving assumptions 

that faults always are perpendicular to seismic reflectors, which is somewhat inaccurate. By 
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modifying this approach slightly researchers (Hale, 2013; Wu and Hale, 2016) smoothened 

the numerator and denominator along fault strike and dip. This approach is known as the 

fault likelihood, calculating the fault-oriented semblance. Pedersen et al. (2002; 2003) 

introduced “artificial ants” involving the smoothing of fault attributes of all existing fault strike 

and dip combinations to better enhance fault features. This method was further evolved by 

Wu and Fomel (2018), more efficiently utilizing the maximum fault attributes to find optimal 

surfaces and using these to generate fault images of fault probability, strike and dip.  

CNN methods have recently been introduced to the detection of faults as a pixel-wise fault 

classification, where individual pixels are identified as fault or non-fault (Huang et al., 2017; 

Di et al., 2018; Guo et al., 2018; Wu et al., 2018, 2019; Zhao and Mukhopadhyay, 2018). 

Such CNN methods come with high computational costs, thus more efficient methods have 

been proposed. Several powerful CNN architectures have been established which achieve 

great image segmentation results (e.g. Girshick et al., 2014; Ronneberger et al., 2015; Xie 

and Tu, 2015; Badrinarayanan et al., 2017; He et al., 2017; Ren et al., 2017).  

Wu et al. (2019) created a simplified efficient end-to-end CNN based on the UNET from 

Ronneberger et al. (2015) for conducting 3D binary fault segmentation. In the approach of 

Wu et al. (2019) synthetic 3D seismic data is created automatically to train the CNN by using 

a parameterized workflow designed to generate fold and fault structures, wavelet peaks and 

noise. Choosing random sets of parameters, numerous sets of seismic images can be 

generated. In addition, Wu et al. (2019) apply data augmentation (vertical and horizontal flip) 

during training to increase diversity in the dataset. Other approaches to identifying faults in 

seismic using synthetic seismic data (Wu et al., 2020) or a combining both real and synthetic 

seismic (Aseev et al., 2019) have been introduced with great success, even when applied to 

completely different real seismic surveys (Wu et al., 2019). CNN based methods generally 

exceed the performance of more traditional methods, for instance Xiong et al. (2018) stated 

that fault probabilities derived from CNN better highlight seismic discontinuities than seismic 

coherence.  
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1.5 Thesis Outline 

This thesis consists of the following 6 chapters listed below: 

• Chapter 1- Introduction: A brief introduction to the topic of using ML for the task of 

identifying and characterizing fault in seismic, introducing the study areas, presenting 

the study objectives and providing an overview over the state of the art on fault 

identification and characterization.   

• Chapter 2- Geological Setting: Providing context to the geological evolution of the 

study areas and their present-day geology.  

• Chapter 3- Methods: Introducing concepts and different ML networks with focus on 

supervised learning, CNN and data augmentation, in addition to giving insight to the 

workflow used in this thesis. 

• Chapter 4- Results: Imaging of faults in 3D seismic data volumes using Efficient 

UNET and Light UNET when applying different data augmentation techniques and 

hyper parameter values. Thereafter, using a CNN for fault characterization. 

• Chapter 5- Discussion: Discussing the main findings. 

• Chapter 6- Conclusions: Summarizing the most important observations of this 

study.  
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2 Geological Setting: Evolution of the Barents Sea and 

the North Sea 

The three seismic surveys used in this thesis are located in the Norwegian North Sea and 

Southwestern Barents Sea. The Norwegian continental margin is characterized by two 

distinguishable segments; 1) a dominantly rifted volcanic margin located 62-70°N offshore 

mid-Norway and 2) the dominantly sheared margin stretching along the western Barents Sea 

and Svalbard, 70-82°N (figure 2-1). The Norwegian continental shelf is considered part of the 

margin, including the Norwegian continental slope, leading into the deep NE Atlantic Ocean 

(Faleide et al., 2008).  

The shallower North Sea and Barents Sea were before the opening of the Atlantic Ocean in 

early Cenozoic time, part of a larger epicontinental ocean, situated between Fennoscandia, 

Svalbard and Greenland. Since the Devonian (i.e. after the Caledonian collapse), the margin 

of Norway, Greenland (Brekke, 2000; Skogseid et al., 2000; Hamann et al., 2005; Tsikalas et 

al., 2005) and the Barents Sea (Faleide et al., 1993; Gudlaugsson et al., 1998) underwent 

extension comprising several events until the early Cenozoic breakup. These margins are 

included in the North Atlantic Volcanic Province (NAVP) (Saunders et al., 1997), thus 

imprints of extrusive and intrusive magmatism form the breakup can be found at different 

crustal levels of the rifted margins.  

The interplay of geological structures and compositions of stratigraphy within the Norwegian 

continental shelf, stretching from the Norwegian continental margin to onshore Norway, is a 

result of pre-breakup basin evolution, breakup-related tectonism and magmatism, and post-

breakup margin evolution. In this chapter the geological evolution of the Barents Sea and the 

North Sea is presented. In addition, more detailed descriptions of the Loppa High 

(southwestern Barents Sea), the Johan Sverdrup field (Norwegian North Sea) and the Horda 

Platform (northern North Sea) will be given. 
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Figure 2-1: Regional structural map of the NE Atlantic region including the most important rift phases and areas that are 
affected by the evolution of the Norwegian Rifted Margin. From Faleide et al. (2015) (modified/updated from Faleide et al. 

(2008)). JMMC = Jan Mayen microcontinent.  
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2.1 Geological Evolution of the Barents Sea 

The Barents Sea at present day is an epicontinental sea situated in the northwestern corner 

of the Eurasian tectonic plate. The continental shelf below it has undergone several 

extensional events since the Caledonian orogen collapsed (e.g. Faleide et al., 1984), forming 

multiple basins, highs and fault complexes (Gabrielsen et al., 1990). After the Caledonian 

collapse multiple rifting events occurred. In Late Paleozoic, rift basins between Norway and 

Greenland were created in the western Barents Sea along the NE-SW trend of the 

Caledonites. Thereafter, prior to the opening of the Atlantic Ocean, in Late Jurassic to Early 

Cretaceous, rift events along the northeastern Atlantic-Arctic margin formed deep 

Cretaceous basins in the southwestern Barents Sea (Faleide et al., 2008). Doré (1991) has 

suggested that the major Late Paleozoic to early Mesozoic rift events occurred in mid-

Carboniferous, Carboniferous to Permian and Permian to Early Triassic times. Although, due 

to younger tectonic overprint and deep sedimentary burial, these events are poorly resolved. 

An Upper Carboniferous to Lower Permian carbonate platform overlayed large portions of 

the present-day Arctic continental blocks. Below it, commonly carboniferous rift structures 

are found in the western Barents Sea (Gudlaugsson et al., 1998). In Late Paleozoic rift 

basins along the southwestern Barents Sea margin, thick evaporites were deposited. 

During a late Middle Jurassic to earliest Cretaceous rift episode of the NE Atlantic-Arctic 

margin a change in the extensional stress field to NW-SE was noticed. The event is related 

to the northward movement of the Atlantic rifting (Faleide et al., 1993), and led in the 

southwestern Barents Sea to the formation of the Harstad, Tromsø, Bjørnøya, and 

Sørvestsnaget basins. Further, differential subsidence and segmentation divided the basins 

into sub-basins and highs (Faleide et al., 2008). In mid Cretaceous another mild extensional 

episode was noticed in the southwestern Barents Sea, well constrained to Aptian time 

(Faleide et al., 1993). During the Cretaceous, regional uplift occurred in the north, which 

resulted in sediment progradation southward in the Barents Sea (Faleide et al., 2008).  

In the Late Cretaceous to Paleocene, just prior to the NE Atlantic breakup the De Geer Zone 

was accommodating strike-slip movement during the extension between Norway and 

Greenland, forming pull-apart basins in the southwestern Barents Sea (e.g., Faleide et al., 

1993; Breivik et al., 1998; Ryseth et al., 2003), thus a deep marine Paleocene succession 

was deposited in the Sørvestsnaget Basin and Vestbakken Volcanic Province (Ryseth et al., 

2003).  

Approximately, 55-54 Ma final lithospheric breakup at the Norwegian margin occurred, with a 

duration of 3 to 6 million years. Due to the sheared margin setting of the western Barents 

Sea-Svalbard margin, its evolution became quite complex. The southwestern Barents Sea 
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margin developed during the opening of the Norwegian-Greenland Sea in Eocene time, 

along the Senja Fracture Zone. It first developed by continent-continent shear, further 

developing into continent-ocean shear, which eventually turned passive in the earliest 

Oligocene. Within the Sørvestsnaget Basin conditions remained deep marine throughout the 

Eocene, characterized during the Middle Eocene by the deposition of sandy sub-marine fans 

(Ryseth et al., 2003). Thick Eocene sediments were also deposited in the Vestbakken 

Volcanic Province, after magmatic activity and down-faulting related to the breakup (Faleide 

et al., 2008). During Eocene, the Bjørnøya-Spitsbergen margin segment underwent oblique 

continent-continent shear and some continent-ocean shear, with both transtensional and 

transpressional components (Grogan et al., 1999; Bergh and Grogan, 2003).  

In earliest Oligocene, the tectonic plate movement was reorientated, and Greenland moved 

in a more westerly direction relative to Eurasia (Faleide et al., 2008). Rifting related to this 

event, reactivated mostly NE-SW oriented fault blocks in the Vestbakken Volcanic Province, 

occurring in Early Oligocene. Additionally, in the Eocene to Oligocene transition, pronounced 

marine shallowing happened in the Sørvestsnaget Basin (Ryseth et al., 2003).  

After the margin breakup, the complex, mainly sheared western Barents Sea-Svalbard 

margin became passive over time, with different segments of the margin reaching this state 

at various times (Faleide et al., 2008). In the Late Miocene, at the western Barents Sea 

margin, uplift happened which was increasingly significant towards the eastern part of the 

Vestbakken Volcanic Province and possibly linked to pre-glacial tectonic uplift of the Barents 

shelf (Jebsen and Faleide, 1998).  

A clear unconformity is found within the entire continental shelf, which marks the change to 

glacial sediment depositions with oldest ages dated approximately 2,6 Ma (Pliocene), during 

the glaciation of the Northern Hemisphere. For instance, in the Barents Sea the unconformity 

on the slope becomes a downlap surface for large prograding, sandy and silty mud wedges 

formed with sediments from the mainland around the NE Atlantic and continental shelfs. 

Within the Pliocene sediments, scattered deposits of ice-rafted debris exist, marking events 

of regional cooling and the formation of glaciers. As a consequence of ice streams eroding 

the shelf, large deposits of Plio-Pleistocene sediments formed in deep throughs (Faleide et 

al., 1996; Laberg and Vorren, 1996; Dahlgren et al., 2005; Nygård et al., 2005; Rise et al., 

2005). During the Pliocene and Pleistocene, the glacial erosion of the Barents Shelf and 

major deposition of glacial deposits in submarine fans combined with uplift, led to reginal tilt 

of the Norwegian margin (Dimakis et al., 1998). A stratigraphic chart summarizing major 

stratigraphic sequences including locations in and around the Barents Sea, thereunder the 

Tromsø Basin, can be found in figure 2-2. Glacial sediments make up about 50 percent of 
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the total post-opening sediments along the western Barents Sea margin. That large amount 

of Pliocene and Pleistocene sediments in the submarine fans was a factor leading to 

instability and numerous submarine slides over a longer period of time (Bryn et al., 2005; 

Evans et al., 2005; Solheim et al., 2005; Hjelstuen et al., 2007).  

 

Figure 2-2: Stratigraphic chart providing a overview over the general stratigraphic sequences in the North Sea and Barents 
Sea formed after Devonian time (Faleide et al., 2015; modified from Brekke et al., 2001). 

 

2.1.1 Geological Evolution of the North Sea, Focusing on the Northern 

North Sea 

The present-day North Sea is an intracontinental basin located on the Baltican continental 

crust (Faleide et al., 2015). The ocean is bounded by the NE Atlantic in the north, the 

Shetland Islands and Great Britain in the northwest and west, respectively, Central Europe in 

the south and Scandinavia in the east (figure 2-3).  
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The North Sea, in similarity to the Barents Sea, was affected by the evolution of the 

Norwegian Continental Margin. In contrast to the Barents Sea, the North Sea was rather 

affected by the dominantly rifted volcanic margin located 62-70°N offshore mid-Norway than 

the dominantly sheared margin stretching along the western Barents Sea and Svalbard, 70-

82°N as introduced in figure 2-1. The formation and collapse of the Caledonian orogeny 

amongst other events, also had a large influence on the structural evolution of the North Sea 

basin (Faleide et al., 2015). According to Faleide et al. (2015) in addition to the two 

previously mentioned marginal provinces, the North Sea is considered as its own Norwegian 

continental shelf province. The North Sea has a long history of multiple events that hosted 

stretching/thinning and subsidence of the crust. Essentially, these were rift phases that 

occurred in late Carboniferous, Permian to Early Triassic and Late Jurassic times. The rift 

phases were always followed by thermal cooling and regional subsidence of the basins 

(Faleide et al., 2015).  

Major elements of the Northern North Sea province include the Viking Graben which towards 

the north becomes the Sogn Graben. West of these grabens are the East Shetland Basin 

and the Tampen Spur, and to the east of the grabens the Horda Platform is located (figure 2-

3). A cross-section of these Jurassic to Cretaceous structural features is shown in figure 2-4. 

Crustal thinning occurred in the late Middle to Late Jurassic, followed by subsidence and 

sedimentation in the Cretaceous. However, below the Jurassic to Cretaceous structures 

earlier rift basins are found, presumably of Permian to Early Triassic age. The axis of this rift 

system is located below the Horda Platform and the eastern and western boundaries are the 

Øygarden Fault zone and the Eastern Shetland Platform, respectively. Generally, this area 

consists of half-grabens formed by rotation of fault blocks during lithospheric extension and 

crustal thinning (figure 2-4). Most likely during late Devonian time, the area was also affected 

by post-Caledonian extension (Faleide et al., 2015).  

Further south, along the graben structures of the Viking Graben, we transition into the 

Norwegian Central North Sea Province where the northwestern part of the Central Graben is 

located. The Central Graben is of Jurassic-Cretaceous age and its strata was affected by 

halokinesis in the Triassic, forming large salt-structures in the graben in pre-Jurassic times. 

Although, some areas hosted salt movement until the Tertiary. The formation of large, 

rotated fault blocks during Jurassic rifting led to area dependent major erosion. Further 

complexity was added to the area as tectonic inversion occurred in the Cretaceous. In 

addition to the Central Graben, the Norwegian-Danish Basin also contains numerous salt 

structures, but the basin was not involved in any significant rifting events (Faleide et al., 

2015).  



16 
 

The Caledonian basement rocks which underlie most of the North Sea sedimentary basin, 

including zones of weakness originated from the Caledonian Orogeny have influenced its 

shape, together with the thickness of the continental crust. The Hercynian (Variscan) 

mountain range, oriented E-W, occurring in Germany, northern France and southwestern 

England marks the southern boundary of the North Sea Basin. This mountain range was 

formed in Carboniferous to Permian time. Contraction and uplift caused large amounts of 

sediments to be deposited to the north, initiating basin formation in the North Sea (Faleide et 

al., 2015). figure 2-2 includes a stratigraphic summary of a few areas scattered around the 

North Sea Basin.    

 

Figure 2-3: Major structural features in the North Sea (close-up from figure 2-1 – from Faleide et al., 2015 
(modified/updated from Faleide et al., 2008)). The cross-section marked with a red line (1) is shown in Figure 2-4. CG = 

Central Graben, ESB = East Shetland Basin, ESP = East Shetland Platform, HG = Horn Graben, HP = Horda Platform, MgB = 
Magnus Basin, MNSH = Mid North Sea High, MrB = Marulk Basin, NDB = Norwegian-Danish Basin, OG = Oslo Graben, RFH = 

Ringkøbing-Fyn High, SB = Stord Basin, SG = Sogn Graben, SH = Sele High, SkG = Skagerrak Graben, STZ = 
SorgenfreiTornquist Zone, TS = Tampen Spur, UH = Utsira High, VG = Viking Graben, WG = Witchground Graben, ÅG =  Åsta 

Graben. 
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Figure 2-4: Interpreted regional cross-section from regional deep seismic lines across the northern North Sea. From Faleide 
et al. 2015 (modified from Christiansson et al., 2000).  

 

2.2 Geological Evolution and Stratigraphy Specific to the 

Survey Locations 

2.2.1 Loppa High, Southwestern Barents Sea 

Geological Evolution of the Loppa High and Polhem Subplatform 

In the southwestern Barents Sea, Rifting discontinued after the opening of the North Atlantic 

and Arctic Oceans. During the late stages of rifting the southwestern Barents Sea was 

characterized by a simple rift system in the south, transitioning to a dextral transform system 

in the northwest, connecting the North Atlantic rift to the Arctic rift system (Faleide et al., 

2008). In total, the southern Barents Sea has a history of extension ranging over at least 300 

million years. Multiple researchers have found evidence of tectonic inversion occurring as 

late Paleozoic to Cenozoic events, amongst the researchers are Gabrielsen et al. (1990) who 

also discovered an important example around the Loppa High. The prominent example 

occurred during early Cretaceous, where the uplift of a late Triassic to mid-Jurassic 
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depocenter caused the high to form an island. Simultaneously, transpression along the 

Bjørnøyrenna Fault Complex (Bjørnøyrenna FC) (Gabrielsen et al., 1997) and wrench-

related tectonic inversion in the area occurred (Rønnevik et al., 1982). Areas that are 

involved in the tectonic inversion which occurred during early Cretaceous include the Loppa 

High, the Polhem Subplatform, the Hammerfest Basin, the Bjørnøya Basin and the Tromsø 

Basin (figure 2-5).  

The Loppa High is in the west separated from the Polhem Subplatform, by the Jason FC. 

The Polhem Subplatform, which was part of the Loppa High for a majority of its existence, 

has its southwestern and northwestern boundaries by the Ringvassøy-Loppa Fault Complex 

and Bjørnøyrenna FC, respectively. The northeastern portion of the Bjørnøyrenna FC also 

acts as the border between the Loppa High and the Bjørnøya Basin. Towards the south, the 

Loppa High is separated from the Hammerfest basin by the southward dipping Asterias Fault 

Complex (Asterias FC). In the east, the Loppa High connects to the Bjarmeland Platform 

(figure 2-5).  

 

Figure 2-5: Map over the main structural elements of the Loppa High (Marked in grey) and the main surrounding structural 
features. The location of seismic lines in Figures 2-6 and 2-7 are also marked on the map. Modified from Indrevær et al. 

(2016). 
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The Loppa High underwent multiple subsidence and uplift events. The Selis Ridge, an 

eastward tilted high, now buried along the western side within the Loppa High is known as 

the “paleo-Loppa High”. “Paleo-Loppa High” indicates that it existed as a structural high or 

platform, prior to the present-day Loppa High. The Selis Ridge formed as the footwall of the 

westward dipping Ringvassøy-Loppa and Bjørnøyrenna FC which was uplifted in the late 

Carboniferous, early Permian, late Permian and early to middle Triassic (Riis et al. 1986; 

Wood et al. 1989; Gudlaugsson et al. 1998; Glørstad-Clark et al. 2010; Glørstad-Clark 2011). 

Part of the Selis Ridge was down faulted in the early to middle Triassic, forming the Polhem 

Subplatform (Gabrielsen et al., 1990). The N-S-striking Selis Ridge became an elongated 

structural high functioning as a barrier for sediments (Gudlaugsson et al., 1998). Thereafter, 

the Selis Ridge was subsided and by the Late Triassic a large sediment depocenter was 

formed on top of the ridge. During the late Jurassic or earliest Cretaceous a larger platform 

encompassing the Selis Ridge and Polhem Subplatform was uplifted causing the late 

Triassic to mid-Jurassic depocenter to create a subaerially exposed Loppa High (Wood et al., 

1989). Estimations made by Clark et al. (2014) suggest that the platform was uplifted 300 m. 

Composite tectonism in the southwestern Barents Sea with pronounced increase in 

subsidence of the Tromsø and Bjørnøya basins in the early Cretaceous caused by regional 

wrench tectonics, is by several authors with different arguments and observations (Ziegler, 

1978; Rønnevik et al., 1982; Gabrielsen, 1984; Berglund et al., 1986; Riis et al., 1986; Sund 

et al., 1986; Gabrielsen and Færseth, 1988; Gabrielsen et al., 1993; Gabrielsen et al., 2011) 

suggested to have caused uplift of the Loppa High. Gradual erosion and subsidence of the 

Loppa High during the early Cretaceous, brought it down to similar levels as the Barents Sea 

shelf by the late Cretaceous (Glørstad-Clark, 2011). Some of the structures within or 

bounding the Loppa High described in this paragraph and the paragraphs bellow, such as 

the Selis ridge, Jason FC and Polhem subplatform are to be found in volume LN17001 of this 

study. The structures are visible in the scanlines presented in section 4.2 of this thesis.  

 

Present-day Geology and Stratigraphy of the Loppa High 

The interior of the Loppa High contains an asymmetric deposition of sub-Carboniferous rocks 

which shallow towards the west and become the structurally elevated Selis Ridge. The 

eastern flank of the Selis Ridge is onlapped by Carboniferous and Permian sedimentary 

rocks (comprising Carbonates). The sub-Carboniferous, Carboniferous and Permian units 

are covered by upper Triassic to mid-Jurassic sedimentary units which were uplifted in the 

late Triassic or earliest Cretaceous to form the Loppa High. Jurassic rocks are mainly 

characterized as sandstones (Faleide et al., 2015). Those units are thickening towards the 
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eastern part of the Loppa High, away from the Selis Ridge and thinning when entering the 

Bjarmeland Platform. Generally, there is an absence of younger sediments (Jurassic and 

younger) on top of the Loppa High, due to erosion. Locally, lower Cretaceous and Jurassic 

sediments are preserved by NNE-SSW-and NE-SW-oriented grabens bounded by faults 

converging with depth and terminating in Permian evaporites (figure 2-6). 

 

Figure 2-6: Uninterpreted and interpreted seismic image encompassing the Bjarmeland Platform in the SE and the Loppa 
High, Selis Ridge, Jason FC and Polhem Subplatform moving NW. The location of the seismic line is indicated in figure 2-5. 

From Indrevær et al. 2016. 
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Present-day Geology and Stratigraphy of the Polhem Subplatform 

The Polhem Subplatform consists of multiple N-S-striking fault blocks that are rotated and 

bordered by several west-dipping large normal faults (figure 2-7). Those large normal faults 

are most easily determined at the base Cretaceous. In the hanging walls of the faults 

sedimentary wedges are formed, indicating synsedimentary faulting which began in the late 

Jurassic. In addition, accelerated subsidence by the early Barremian and onwards is 

suggested. Located closely to the Jason FC are densely spaced fault block (figure 2-7 b). 

Within the fault blocks are at least four anticlines forming a left-stepping en-echelon pattern. 

The blocks are forming a positive flower structure when viewed in a WSW-ENE-oriented 

cross-section, which is forming a N-S- orientated, elongated and elevated structure, 

traceable for about 40 km along the northern part of the Jason FC, on the hanging wall side. 

Further west on the Polhem Subplatform, fault blocks are also generally internally folded and 

locally contain growth wedges of Ryazanian to late Barremian age showing signs of localized 

inversion indicated by the reverse activation of faults at graben boundaries and/or internal 

folding (figure 2-7 c). Both, the fault blocks in the immediate hanging wall of the Jason FC 

and the fault blocks located further west are characterized by erosional surfaces at the 

crests, which should be of similar age. The erosional surfaces truncate the contractional 

structures found in the fault blocks, thus the erosional event occurred simultaneously as the 

compressional event or afterwards. Within the growth wedges the upper Barremian 

sequence onlaps the lower Barremian sequence. The lower Barremian sequence shows 

more folding, whilst the upper Barremian sequence only is affected by later minor folding. 

Further, these units are overlain by upper Barremian to middle Albian sediments. Combining 

these observations, the inversion of the Polhem Subplatform can be constrained to have 

occurred between the early Barremian and middle Albian time (Indrevær et al., 2016).    
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Figure 2-7: (a) Uninterpreted and interpreted seismic line capturing a cross-section of the Loppa High ENE and moving across 
the Jason FC, Polhem Subplatform and Bjørnøya Basin (b) More detailed section from (a). (c) Details from the same area. 

Locations of the seismic lines are marked in figure 2-5. Modified from Indrevær et al. 2016.   
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2.2.2 Utsira High (Johan Sverdrup), Northern North Sea 

The Johan Sverdrup field which is part of this study is located in the Utsira High. The Utsira 

High is one of several intrabasinal structural highs located in the Norwegian North Sea, 

bounded by grabens. To the west, the Utsira High is bounded by the southern Viking 

Graben, and to the north and east by the Stord Basin. Just south of the Utsira High, the Ling 

Depression is located (figure 2-8).  

In the Silurian to Early Devonian times uplift, exhumation and erosion of the Caledonian 

mountain chain happened fast (Coward et al., 2003; Fossen et al., 2008; Gabrielsen et al., 

2010). During the Devonian the North Sea was located in a hot, arid and continental setting, 

moving from 20°S to 15°S (Downie, 1998), depositing sandstone (Old Red Sandstone) in half 

graben basins (Marshall and Hewett, 2003). The sandstones are found in basins in western 

Norway and on the British Isles, but have not been detected as a continuous layer across the 

North Sea (Seranne and Seguret, 1987; Downie, 1998).  

In Early Carboniferous, the North Sea was located close to the equator, which led to warm 

and more moist conditions (Glennie and Underhill, 1998). Transgression occurred in the 

Early Carboniferous and covered the Devonian landscape changing deposition from mostly 

continental to marine (Glennie and Underhill, 1998; Bruce and Stemmerik, 2003). Clastic 

sedimentation sourced from the north increased during the Middle Carboniferous, as 

kaolinite is found to be the dominant clay mineral on the British Isles (Weaver, 1989; Brekke 

et al., 2001). This was followed by folding and trusting due to the Variscan Orogeny. The 

North Sea was affected by uplift and erosion combined with sedimentation sourced from the 

south (Besly, 1998; Lundmark et al., 2013). Carboniferous sediments are thought to be 

preserved on the Utsira High in pre-Permian half grabens (Brekke et al., 2001).  

During the Permian, climate in the North Sea changed to more dry and arid conditions as the 

region continued to drift northwards to approximately 20°N (Glennie and Underhill, 1998). A 

climate barrier was formed as a combined result of the closing of the Caledonian and 

Variscan oceans and formation of mountain belts (Coward et al., 2003). As the Variscan 

Orogen collapsed in Early Permian the area south of the Norwegian sector developed 

extensional fracture systems and widespread volcanism (Glennie and Underhill, 1998). 

Thermal relaxation of the lithosphere, as a post-extensional reaction, formed the Permian 

basins in the North Sea (Ziegler, 1992).  
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Figure 2-8: (A) Regional map of the North Sea area, taken from Riber et al. 2015 (modified from Gregersen et al., 1997) with 
cross-section marked X–Y. (B) Cross-section (X–Y) of the Shetland Platform,  South Viking Graben, Utsira High and Stord 

Basin (modified from Ziegler, 1992). 
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A phase of rifting occurred during Permian and Triassic times, although its onset is under 

debate, it most likely lasted until the Middle Triassic (Glennie, 1995; Odinsen et al., 2000). 

The Permo-Triassic rifting caused lithospheric stretching resulting in the absence of pre-

Permian sediments on the structural highs due to tilting and deep erosion. This also exposed 

basement rocks and formed half grabens (Færseth et al., 1995; Nøttvedt et al., 1995; 

Gabrielsen et al., 2010). In grabens within the Utsira High Permian sediments are found, 

probably related to the Permian transgression of the Zechstein Sea, probably through the 

Viking graben where 2-3 km of Zechstein Group sediments (shales, carbonates and 

evaporites) were deposited (Ziegler, 1992; Taylor, 1998). Such Permian sediments are 

absent elsewhere on the Utsira High, proposing exposure during deposition or erosion in the 

Late Triassic (Laursen et al., 1995; Bergslien, 2002; Coward et al., 2003; Sørlie et al., 2014).  

During the Early Triassic rifting, the northern North Sea was characterized by N-S trending 

graben geometry (Ziegler, 1992; Lervik, 2006). Simultaneously, regression of the Zechstein 

Sea changed deposition from carbonates and fine-grained marine sediments to continental 

red bed sediments (Fisher and Mudge, 1998). It is suggested that the Utsira High was 

exposed subaerially at the time (Steel and Ryseth, 1990; Lervik, 2006).  

The warm and arid climate lasted from the Permian to Late Triassic and Permo-Triassic 

denudation surfaces onshore (Fennoscandian Shield), were a result of peneplanation that 

progressed during that time (Lidmar-Bergström, 1993; Fisher and Mudge, 1998). Thick layers 

of sediment filled the basins formed previously from thermal subsidence, and onlapped 

structural highs (Fisher and Mudge, 1998). A shift in climate characterized by more humidity 

during the Late Triassic was a result of the North Sea region drifting further North, to 

approximately 40°N (Lidmar-Bergström, 1982; Preto et al., 2010) and the break-up of 

Pangea allowing humid air to reach the area (Nøttvedt et al., 2008). The denudated surfaces 

of the Fennoscandian Shield underwent deep weathering (Lidmar-Bergström, 1993), 

probably stretching into the North Sea. At the same time the Tethys Sea formed further south 

providing the southern North Sea with marine incursions due to episodic transgression. The 

southern Utsira High was affected by fluvial channel deposits, known as the Eiriksson 

Formation in the Statfjord Group, which are found in the grabens of the High (Sørlie et al., 

2014). Late Triassic to earliest Jurassic extension of the Boreal Sea resulted in deposition of 

marine facies in the northern North Sea (Clemmensen et al., 1980).  

In Early Jurassic (Pliensbachian-Sinemurian) time the Shetland Platform and the 

Fennoscandian Shield marked the outer boundaries of a channel connecting the northern 

Boreal Sea and the southern Tethys Sea (Hamar et al., 1980; Ziegler, 1992; Charnock et al., 

2001; Husmo et al., 2002). From that time depositions of marine shales and sandstones 
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(Dunlin Group) are preserved in the Viking Graben, Horda Platform and the northern part of 

the Utsira High. The deposits resulted from transgression from the north (Vollset and Dorè, 

1984). The established gateway between the Boreal and Tethys Sea was blocked as a 

consequence of thermal doming of the central North Sea combined with global regression. 

As a consequence of the blockage, Early Jurassic and older sediments were eroded (Vail et 

al., 1977; Ziegler, 1992), marked by the mid-Cimmerian or intra-Aalenian unconformity in the 

region, between Lower Jurassic and Middle and Upper Jurassic deposits (Davies et al., 

1999).  

From Late Bajocian time, influence of sedimentation from the North Sea Dome on the Viking 

Graben was reduced due to synrift development, transgression from north and reconnection 

of the Boreal and Tethys seas (Bathonian to Callovian times) (Ziegler, 1992; Husmo et al., 

2002; Coward et al., 2003). The main Jurassic rifting phase followed (Callovian to early 

Kimmeridgian) establishing the main structural setting for the Viking Graben (Coward et al., 

2003). The Utsira High is in latest Jurassic times believed to have experienced subaerial 

exposure, indicated by coarse-grained Callovian to Volgian clastics found in grabens within 

the high (Sørlie et al., 2014). Drowning of the source area resulted in a transition from 

Draupne sandstone to marine Draupne shale depositions (Sørlie et al., 2014).  

Rifting terminated in Early Cretaceous in the southern Viking Graben linked to fast 

subsidence and burial (Ziegler, 1992; Nøttvedt et al., 2008). On the Utsira High the end of 

subaerial exposure is marked by Early Cretaceous shallow-marine sediments. The Utsira 

High has since subsided to its present depth (Riber et al., 2015). Basement and sedimentary 

logs derived from well drilled on the Utsira High are presented in figure 2-9.  
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Figure 2-9: Sedimentary well logs from the Utsira High presenting basement rocks and sedimentary sequences. (A) Map 
showing the well locations and the distribution of igneous, volcanic and metamorphic rocks. (B) Log panel 1 including wells: 
16/1–15, 16/1–15A, 16/2–4, 16/3–6, 16/3–4 and 16/3–4A. (C) Log panel 2 including wells: 16/4–1, 16/1–12, 16/4–5, 16/5–
1, 16/3–2 and 16/6–1. (D) Log panel 3 including wells: 16/1–4, 16/2–1, 25/11–17, 25/10–2R, 25/11–1 and 25/7– 1S. (from 

Riber et al., 2015). 
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2.2.3 Horda Platform, Northern North Sea 

The Horda Platform is located by the coast of western Norway, characterized as a N-S 

trending structural high (Whipp et al., 2014). As observed in figure 2-8, this study area is 

located close to the Utsira High. Moving south from the Horda Platform we transition into the 

Stord Basin. At the western margin of the Stord Basin, the Utsira High is located. The Utsira 

High is located towards the southwest with respect to the Horda Platform. To the East, the 

Horda Platform is bounded by the Øygarden Fault Complex (Øygarden FC), the Nordfjord-

Sogn detachment towards the north, the Viking Graben towards northwest and the 

Hardangerfjord Shear Zone towards the south (Phillips et al., 2019). 

Geologically and climatically, the Horda Platform experienced similar changes as the Utsira 

High throughout its existence, thus sedimentary depositions are somewhat similar. But of 

course, the structural and depositional history of the two structural highs is not identical. 

Bellow, the main tectonic and stratigraphic evolution of the Horda Platform is summarized 

with respect to the evolution of the North Sea.    

Devonian sediments from the continental depositional setting (Marshall and Hewett, 2003) 

are believed to exist in Triassic half grabens under the Horda Platform (Faleide et al., 2015). 

The Stord Basin and northern Horda Platform acted as large depocenters during the Late 

Permian to Early Triassic rifting. In the northern Horda Platform, the Tusse, Vette and 

Øygarden faults formed half grabens comprising syn-rift wedges (Phillips et al., 2019). During 

that time the Hegre Group sandstones and mudstones were deposited and are considered 

the lowest synrift strata (Steel and Ryseth, 1990; Lervik, 2006).  

After the rifting phase, during Early to Middle Jurassic the northern Horda Platform was 

affected by thermal subsidence (Roberts et al., 1993; Steel, 1993; Roberts et al., 1995). As a 

result, deposited sediments were of fluvial deltaic and shallow marine origin, known as the 

Statfjord, Dunlin and Brent groups (figure 2-10) (Helland-Hansen et al., 1992; Steel, 1993; 

Færseth and Ravnås, 1998). During the period most faults were inactive, although wedges of 

sediments west on the Horda Platform indicate rifting during Bajocian to latest Oxfordian 

times (Rattey and Hayward, 1993; Steel, 1993; Ravnås and Bondevik, 1997; Færseth and 

Ravnås, 1998; Ravnås et al., 2000).    

During Late Jurassic rifting in the northern North Sea, the faults in the Horda Platform were 

mostly inactive, as no sedimentary thickening in the Hanging walls of the Tusse, Vette and 

Øygarden faults is observed in sediments of that age (Phillips et al., 2019). Exceptions 

regarding N-S and NW-SE striking faults are suggested by Whipp et al. (2014), showing 

extension which rotated fault blocks within the high eastwards during Late Kimmeridgian to 

Late Berrisian time. During this period marine deposition of sediments continued. The three 
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lowest formations (Krossfjord, Fensfjord and Sognefjord formations) of the Viking Group 

(middle Jurassic to Lower Cretaceous) were deposited (figure 2-10) during fault-driven 

subsidence. The formations consist of stacked, regressive, shallow marine, clastic 

sequences (Dreyer et al., 2005; Bell et al., 2014). The upper Viking Group; the Draupne 

Formation (figure 2-10) consisting of deep marine mudstones were deposited in Late 

Kimmeridgian to Late Beriasian after flooding occurred (Bell et al., 2014).  

A Cretaceous unconformity truncates the Viking Group. The unconformity is associated with 

the termination of rifting (Kyrkjebø et al., 2004). In the Cenozoic uplift of clastic sources and 

subsidence led to mud-dominated sedimentation, burying the Viking Group and carbonate 

Cromer Knoll and Shetland groups (figure 2-10) (Deng et al., 2017).  
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Figure 2-10: Northern North Sea stratigraphic column also relevant for the Horda Platform (modified from Whipp et al. 
(2014)). P=Period, E=Epoch. The main stratigraphic groups and formations are added and tied to a typical seismic section. 

Horizons are marked with their respective age, derived from well 31/6-6. (Modified from Bell et al. 2014).  
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3 Method: ML and Methods for Identifying and 

Characterizing Faults  

3.1 Introduction to ML and Historic Background 
 

ML is a subcategory of artificial intelligence (AI) and is highly connected to applied statistics, 

which is about creating computational models that use inference and pattern recognition 

rather than a large set of rules (Dramsch, 2020). 

A ML algorithm is in general written as 

𝑦 = 𝑓(𝑥) 

where 𝑥 is the input, 𝑦 is the output and 𝑓 is the function used by the algorithm to determine 

the correct output (𝑦) based on the input (𝑥). 𝑓 is learned during training to eventually, make 

independent predictions.   

ML algorithms can be divided into several types based on specific criteria, and algorithms 

can consist of different model architectures. Generally, ML has found numerous applications 

across a broad range of industries and domains. Just to give a brief overview, ML is used in 

algorithmic trading (Sezer and Ozbayoglu, 2018), online fraud detection (Bhattacharyya et 

al., 2011), natural language processing (NLP) (Boiy and Moens, 2009; Luo et al., 2019), 

health (Shickel et al., 2017), surveillance (Liu et al., 2016) and speech recognition (Lei et al., 

2014). It should also be mentioned that ML has led to important progress in sciences such as 

biology (Ching et al., 2018), chemistry (Schütt et al., 2017), medicine (Shen et al., 2017), 

pharmacology (Kadurin et al., 2017) and geosciences (Wu et el., 2019).  

The term ML was first introduced by Arthur Samuel in 1959 (Samuel, 1959). ML is regarded 

as a subdivision of AI, which for the first time was introduced only a few years prior, in 1950 

by Alan Mathison Turing (Turing, 1950). The Perceptron, proposed by Rosenblatt in 1958, 

was the first artificial neural network (Rosenblatt, 1958).  

In the beginning, ML led to great optimism, and machines in the 1950s and 1960s learned 

simple tasks such as playing simple games and route mapping. Already in the 60s rather 

simple methods like k-means (Preston and Henderson, 1964), Markov models (Krumbein 

and Dacey, 1969) and decision trees (Newendorp, 1976) were applied to complete tasks in 

geoscience.  

The 1970s was a decade with few developments in ML and AI in general, marking the “first 

AI winter”. The absence of progress led to a loss in interest, which was restored in the 1980s. 

The year 1982 marks the first significant achievement, when the first bidirectional network 
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was implemented by Hopfield. Building on bidirectional networks, backpropagation was 

introduced to neural networks in 1986 (Zhao and Mendel, 1988). Backpropagation enabled 

adjusting the networks by running data backwards through them, these were so-called 

“expert systems”. This enabled the use of multiple layers, but interest in ML, despite this 

progress was limited. The “second AI winter” occurred during that same time (late 1980s) 

due to the collapse of a large hardware industry, caused by desktop hardware from non-

specialist vendors outperforming the expensive machines built specifically for the “expert 

systems”. The interest in ML increased in 1997, when the world champion in chess was beat 

by the IBM computer Deep Blue. 

During the 2000s, significant changes and new developments, which continuously are 

happening to this day, significantly increased both the use and usability of ML. Contributing 

to the increased use and improved usability is a change in tooling. The majority of tools and 

software used to run ML projects had prior to this been proprietary, like Matlab with the 

Neural Network Toolbox and Wolfram Mathmatica, or independent university projects, like 

the Stuttgart Neural Network Simulator (SNNS). Generally, tools and software were hard to 

access and difficult to operate due to very limited complimentary documents. The change in 

tooling gave easier access to tools and software through free open-source software (FOSS), 

in addition new accompanying documents were more frequently published (Dramsch, 2020). 

Another important factor contributing to the increased use of machines learning, were more 

powerful computers, allowing more complex models to process larger sets of data in a 

shorter amount of time. Powerful computers allow to run complex deep learning architectures 

more efficiently. In 2012 Alex Net won the ImageNet competition (Krizhevsky et al., 2012). 

Since then, the field of deep learning has evolved, introducing several different model 

architectures and techniques, constantly improving the performance on various tasks. 

3.2 Learning-Structures for ML Algorithms 

In order to understand ML algorithms learning structures it must be understood how the term 

“learning” is defined in ML to begin with. A definition is provided by Mitchell (1997) “A 

computer program is said to learn from experience E with respect to some class of tasks T 

and performance measure P, if its performance at tasks in T, as measured by P, improves 

with experience E.” What also needs to be clear is that there are numerous different 

experiences E, Tasks T and performance measures P (Goodfellow et al., 2016). Thus, a 

large variety of ML algorithms exist, which to some degree can be categorized. For chapter 

3.2, the focus is on tasks T and experience E. 
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3.2.1 Supervised Learning vs. Unsupervised Learning 

Broadly, learning structures can be divided into supervised and unsupervised learning based 

on what they are allowed to experience when learning. Although there is no clear margin 

between those two types, as there is no clear definition distinguishing the experiences 

(Goodfellow et al., 2016). The following sections provide some elements of distinction. 

3.2.1.1 Supervised Learning 

Algorithms that learn in a supervised fashion, experience a dataset containing features, but 

the solutions are given in form of labels or targets (Goodfellow et al., 2016). Supervised 

learning algorithms are trained on prelabeled data so that the algorithm can learn certain 

features and details necessary to succeed in any identification task it is designed for. In the 

case of an image recognition task the algorithm will be fed with images. During training the 

label would inform the algorithm what the image contains. The algorithm then would analyze 

the contents of the image and recognize features and details that would help the algorithm to 

identify that same contents independently at a later stage. Supervised learning requires 

enough size of training data.  

3.2.1.1.1 CLASSIFICATION VS. REGRESSION 

Usually, ML tasks such as classification and regression are referred to supervised learning 

(Goodfellow et al., 2016). Classification places the output in defined classes. Classification is 

applied to discrete data which is normally found in tasks such as image recognition or 

lithofacies classification, where different objects (humans, cars, cats etc.) can be identified in 

form of numerical codes and are categorized in different categories (Goodfellow et al., 2016). 

Regression is similar to classification, but it is used in cases where data consists of 

continuous numerical values, resulting in a different output format. It is also possible to 

convert continuous data into discrete data in order to use classification. In this case the 

numerical values are divided into intervals or bins. An example is converting porosity values 

from 0 to 0.30 into 6 bins of 0.05 range for each bin. 

3.2.1.2 Unsupervised Learning 

In cases where training data is not so easy to obtain or variables in the input data are 

unknown, unsupervised algorithms are suitable. These algorithms experience datasets with 

several features and learn important structural properties of a dataset. Meaning that they do 

not need training labels, but rather find hidden patterns and group similar data in similar 

outputs (Goodfellow et al., 2016). 
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3.2.2 Supervised Learning Structure 

3.2.2.1 Train/Test Split 

The aim in ML is to create an algorithm that performs well on new, unseen data based on its 

experience from the training data. The ability to perform well on new inputs is known as 

generalization. Good generalizability is achieved from performing a train/test split of the 

training dataset. When dividing the data into training and testing data, essentially a minor 

part of the total training data is hidden from the network and is used to later test the algorithm 

on unseen data. A well performing ML algorithm should ideally be able to achieve 1) a small 

training error and 2) a small gap between training and test error. The training and test (or 

generalization) errors are the algorithms respective, performance measures on the training 

and test data (Goodfellow et al., 2016).  

With that in mind, train/test split can be used to determine whenever a model is underfitting 

or overfitting. Underfitting corresponds to situations where the algorithm cannot achieve a 

sufficiently low error value on the training dataset and overfitting is related to the gap 

between training error and test error being too large. One factor controlling the models 

likelihood of underfitting or overfitting is the capacity, which is the ability a model has to fit a 

large variety of functions. If the capacity is too low, the model might struggle to fit the training 

data (underfitting) and on the other hand, too high capacity may lead to memorization of 

properties that give a disadvantage on the test data (Overfitting) (Goodfellow et al., 2016). An 

example of underfitting and overfitting due to capacity is shown in figure 3-1, where 

hypothesis space is used as a way to control the capacity. In the example, a linear, quadratic 

and degree-9 predictor are compared in the attempt to fit a problem where the underlying 

function is quadratic. The linear function is underfitting as it is not able to capture the 

curvature of the underlying problem. On the other hand, the degree-9 function is overfitting 

the test dataset as it is represents the wrong structure of the test dataset. It is capable of 

representing the correct function, but this is difficult to achieve as it is capable of finding an 

infinite number of other functions that fit all the data points in the test dataset. In this 

example, the quadratic function has the perfect capacity and is neither underfitting nor 

overfitting as it is able to perfectly fit the test data points while representing the correct 

structure of the underlying problem (Goodfellow et al., 2016).  
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Figure 3-1: The 10 blue data points represent data from an previously unseen (test) data. The model on the left using a linear 
function is underfitting as it is not able to capture the curvature of the test dataset due to missing capacity. In the center the 

model using a quadratic function is able to fit the test dataset quite well, reflecting an appropriate capacity. On the right, 
the model using polynomial of degree 9 is overfitting the test dataset as it does not represent the correct structure of the 

test dataset, although it passes though all the data points exactly (Goodfellow et al., 2016).   

 

3.2.2.2 Hyperparameter Tuning 

Hyperparameters are found in most ML algorithms and are defined as settings that can 

adjust the algorithm’s behavior, but the learning algorithm itself does not adapt the values of 

hyperparameters (Goodfellow et al., 2016). Looking at the earlier example from figure 3-1, 

the degree of the polynomial is the single hyperparameter and acts as a capacity 

hyperparameter. In general, hyperparameters are chosen to be hyperparameters whenever 

they are too complicated to learn or, more commonly, it is not appropriate for the model to 

learn them on the training dataset. Capacity is a good example of a hyperparameter that is 

not appropriate to learn from the training dataset as it is easier for the model to fit a function 

to the data points when capacity is high, which in return results in overfitting (figure 3-1).   

3.2.2.3 Validation Sets and Cross-Validation 

To solve the problems associated with the learning of hyperparameters, a validation dataset 

needs to be used. The validation set needs to be separate from the test set, and usually the 

training set is split, where some portion of the training data (for example 20 percent) is used 

for validation. This creates two disjoint subsets. The validation set then can be used to 

estimate the generalization error and the hyperparameters can be tuned thereafter 

(Goodfellow et al., 2016).  

Cross-Validation is used in cases where only small datasets are available. This is more 

accurate than dividing the set into fixed training and test sets. When using fixed sets, the test 

set becomes very small, resulting in high statistical uncertainty in the estimated test error. 

Making it difficult to determine whether one algorithm performs a given task better compared 
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to another algorithm. Cross-Validation solves this problem by completing several training and 

testing runs, always using different, nonoverlapping, randomly chosen subsets of the initial 

dataset. The average test error from the repeated training and testing then may be computed 

(Goodfellow et al., 2016).  

 

3.3 ML Algorithms 

Generally, we distinguish between shallow and deep ML. Shallow ML encompasses rather 

simple methods or algorithms with simple architectures or structures. Such methods include 

models like, random forests, gradient boost, support-vector machines, and simple neural 

networks like Multi Linear Perceptron (MLP). When increasing the complexity of tasks and 

patterns in the data become more complicated, the algorithms that are supposed to solve 

them need to be structurally more advanced. This usually involves adding more layers and 

components to a model. The model is then referred to as a deep ML model, including several 

variants of deep neural networks (DNN) e.g. feed-forward neural networks, CNN, recurrent 

neural networks (RNN) and generative adversarial networks (GAN) (Dramsch, 2020). 

3.3.1 Traditional Algorithms 

3.3.1.1 Random Forests 

Random forests is a method based on decision trees, which ask a series of yes or no 

questions in order to make a decision. These models can become very complex, which 

makes them powerful predictive models (Breiman, 2001). Random forests also are well 

suited for approximating regression problems and time series, being able to perform tasks 

within seismological applications like localization (Dodge and Harris, 2016), event 

classification in volcanic tremors (Maggi et al. 2017) and slow slip analysis (Hulbert et al. 

2018). The fact that random forests treat each data sample independently, unlike neural 

networks, makes them of limited use when applied to ASI (Guillen et al. 2015). 

3.3.1.2 Support-Vector Machines (SVM) 

SVM can be applied for all the different types of ML problems, such as classification, 

regression and clustering. In the case of a two-class problem, the algorithm aims to 

determine hyperplanes that separates the different classes of input. However, there can be 

two different types of scenarios: 1) the data has no overlap, 2) the data has overlap. In cases 

where the data has no overlap, the classes are linearly separable in terms of a hard margin. 

In most cases there is overlap in the data. The SVM is dealing with a more complex 

optimalization problem, trying to find the best-fit hyperplane. This ability increases the 

success of such algorithms (Dramsch, 2020). Due to the strong mathematical foundation of 
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SVM they can be applied to microseismic event classification (Zhao and Gross, 2017), 

seismic well ties (Chaki et al., 2018) and landslide susceptibility (Marjanovic et al., 2011). 

3.3.2 Neural Networks 

Neural networks function in a similar way as the human brain. Inspired by the human brain, 

neural networks use neurons in order to learn and memorize. Different model architectures 

can change the level of complexity and make them more suitable for variations of tasks. The 

simplest neural network architectures comprise an input layer, one hidden layer and an 

output layer, evolving to DNN with multiple hidden layers. However, in general each layer in 

a neural network consists of neurons. In the input and output layer the number of neurons 

depends on the amount of input and output variables, respectively. In the hidden layer the 

number of neurons is determined otherwise. Neural networks also use activation functions, 

loss functions, weights and biases to be able to learn and perform well on identification tasks. 

The strength of neural networks lays within the ability to learn patterns in any given training 

data, as long as there is enough data available. This is performed by forming complex 

nonlinear rules in high-dimensional spaces, rather than defining any specific rules. Therefore, 

neural networks are suited to complete several tasks, such as image recognition, audio 

recognition or identifying object based different input parameters (e.g. weight, height, volume 

etc.). Bellow, different types of neural networks such as Feed-Forward Networks, CNN, RNN, 

and GAN are explained.  

3.3.2.1 (Deep) Feed-Forward Networks 

The simplest neural network which is the feed-forward network consists of an input and 

output layer with only one hidden layer between, it also has a feed-forward architecture 

(Schmidhuber, 2015). The term “deep” indicates the presence of multiple hidden layers 

(figure 3-2), reflecting the depth (complexity) of the network. Feed-forward networks 

compared to networks such as RNN (section 3.3.2.3), do not possess the ability of receiving 

feedback from their own outputs. Referring to the general function 𝑦 = 𝑓(𝑥), “feed-forward” 

indicates that information evaluated from 𝑥 flows through the function 𝑓, defined by 

intermediate calculations, and results in the final output 𝑦. The term “network” is referred to 

the composition of different functions, which typically is the case. Functions are arranged in 

chains. As an example, a chain comprising three functions 𝑓(1),  𝑓(2), 𝑓(3) may be written as 

𝑓(𝑥) = 𝑓(3)(𝑓(2)(𝑓(1)(𝑥))). A function corresponds to a layer in the network, so increasing the 

number of functions increases the networks depth, increasing the complexity. The final layer 

within the feed-forward networks is the output layer. (Goodfellow et al., 2016). Increased 

network complexity, adds a larger number of parameters, emphasizing the need of large 

training datasets. The name “hidden layers” is derived from the training process. During the 
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training of neural networks, the aim is to approximate a function which is as similar to the 

actual function (𝑓(𝑥)) as possible. Training data provides approximate and noisy examples 𝑥 

of 𝑓(𝑥), at different points during training. 𝑥 is connected to a label 𝑦 ≈ 𝑓(𝑥). The training 

data defines that the output layer needs to generate a value close 𝑦 at point 𝑥, but the 

training data does not define the behavior of the other layers, therefore the name “hidden 

layers”. In the hidden layers, the algorithm must decide what should happen in order to 

achieve the desired output. Hidden layers are vector valued, and their dimensionality define 

the “width” of the neural network (Goodfellow et al., 2016). 

 

Figure 3-2: A deep feed-forward neural network, in this case comprising four hidden layers (Ahmed (2020), modified from 
Jamil (2020)). 

3.3.2.2 Convolutional Neural Networks (CNN) 

A CNN is a specialized type of DNN. The architecture of this network uses convolution layers 

and pooling layers instead of the conventional layers seen in figure 3-2. The layers allow the 

CNN to learn hierarchical feature representations form information-rich data like images and 

videos. An example of a CNN architecture is illustrated in figure 3-3. The convolution layers 

contain filters, which for example are of size 5 x 5 or 3 x 3 pixels, that are able to detect 

features and patterns like edges, shapes, textures or even whole objects, in images. The 

size of the filters tells us the size of the block of pixels the filter processes simultaneously in 

an image. The specific example in figure 3-3 is learning to identify objects associated with 

roads, such as cars, trucks, vans, bicycles etc. The pooling layers reduce the dimensions of 

the input data by removing features that are insignificant to the convolutional layers. This 

procedure increases the processing speed. Finally, the reduced input is flattened and fed to 

a fully connected layer (Saha, 2018). 
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Figure 3-3: A typical architecture of a convolutional neural network (CNN) (Saha, 2018). 

3.3.2.3 Recurrent Neural Networks (RNN) 

RNN are bi-directional (figure 3-4), allowing them to have an internal memory state. In 

comparison to feed-forward neural networks, RNN are able to loop data between the hidden 

layers. This enables previously used inputs to be taken into account together with new 

inputs. In practice, each neuron produces an output based on inputs from previous neurons 

combined with current inputs (IBM Cloud Education, 2020). The internal memory state 

makes these networks well suited for handwriting detection and speech recognition. Different 

types of RNN exist, like Long Short-Term Memory Networks and Hopfield Networks. 

 

Figure 3-4: A typical architecture of a recurrent neural network (RNN) (Matlab one, 2022).  

3.3.2.4 Generative Adversarial Networks (GAN) 

GAN in contrast to other neural networks have two algorithms: a generator and a 

discriminator (figure 3-5). The generators task is to learn the description of the data in order 

to generate fake data. The generators goal is to produce realistic, fake data and trick the 

discriminator which has the task of distinguishing between real and fake data. This procedure 

makes the algorithms work together to understand variations in a dataset (Goodfellow et al., 

2014). In geoscience GAN have been used to generate unconditional simulations of pore- 
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and reservoir-scale models of the petrophysical properties of oil and gas reservoirs (Mosser 

et al., 2018).   

 

Figure 3-5: A typical architecture of a generative adversarial network (GAN) (Roy, 2019). 

3.3.3 Neural Network Components 

3.3.3.1 Metrics 

Metrics are a measure of performance for ML models. There are several different metrics 

which can present unique measures of performance. The metrics covered in this section are 

accuracy, mean Intersection Over Union (IOU) and F1 score. In relation to metrics, terms like 

true positives (TP), true negatives (TN), false positives (FP) and false negatives (FN) are 

often used. The terms “positives” and “negatives” are in classification problems referred to as 

the ground truth label and background, respectively, and “true” and “false” refers to if the 

prediction is correct or not. In the following section about loss functions it will become clear 

that some metrics and loss functions are closely related.  

Accuracy: 

Accuracy is a ratio which determines what portion of the total predictions made by a ML 

model actually are correct. Hence, accuracy can be written as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Accuracy is useful in ML problems where the number of positives and negatives are well 

balanced but can be extremely misleading in cases where the number of negatives is 

significantly larger than the number of positives. That is due to the fact that the negatives, 

which are far less challenging to classify correctly, overshadow cases where a low portion of 

positives are classified correctly. Accuracy can therefore be really high even if a model is 

overfitting the data (Agarwal, 2019).  
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Mean IOU: 

Intersection-Over-Union (IOU) or mean IOU, for multi-class classification, is commonly used 

in semantic segmentation (Matcha, 2021). Keras’ definition of IOU is written as: 

𝐼𝑂𝑈 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

(TensorFlow, 2021). 

The IOU metric essentially is a ratio telling what portion of the models predicted labels 

overlap with the ground truth labels (figure 3-6). In other words, IOU is a measure of 

similarity comparing the ground truth labels to the models predicted labels. The ratio ranges 

from 0 to 1, which is no overlap and full overlap, respectively (Matcha, 2021).  

 

Figure 3-6: Visualization of the IOU (Rosebrock, 2016).  

F1 Score:  

The F1 Score or F1 macro consists of two metrics; precision and recall. Precision can be 

written as 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

and recall can be written as 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

The F1 score is defined as the harmonic mean of the two metrics and is written as 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
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telling the certainty of a model on predicting a true positive (Precision) combined with the 

proportion of true positive actually identified by the model. Again, this metric is also a ratio 

ranging from 0 to 1 where 1 is the best possible score (Agarwal, 2019).  

3.3.3.2 Activation Functions 

In CNN we distinguish between activation functions used within each independent 

convolutional layer and activation functions used in the output layer. Within the convolutional 

layers functions like ReLU (Rectified Linear Unit) are used and contribute to the non-linear 

activation of neurons. On the other hand, output activation functions are applied to output 

vectors from CNN (𝑠) before loss is calculated. The purpose is to normalize the output within 

a certain range and popular choices are the sigmoid or softmax activation functions. In this 

thesis we utilize ReLU within the layers and the softmax activation function for outputs.    

ReLU 

The ReLU is one of the functions that commonly are used in convolutional layers of a CNN. 

These functions implement non-linear relationship to the activation of neurons, which is 

necessary for solving complex tasks. Without activation functions like ReLU the output 

calculated by neurons in one layer would just be the linear response to the calculated output 

from neurons in the previous layer. ReLU also normalizes neuron outputs in such a way that 

all negative values become 0 and positive values remain the same (figure 3-7).  

 

Figure 3-7: ReLU (Rectified Linear Unit) function (Datacamp, 2019). 
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Sigmoid 

A sigmoid activation functions normalizes a vector between 0 and 1. It is applied 

independently to each element of the output vector score 𝑠 𝑠𝑖. A sigmoid shaped graph is 

visualized in figure 3-8. And the sigmoid function is written as:  

𝑓(𝑆𝑖) =
1

1 + 𝑒−𝑆𝑖
 

(Gómez, 2018). 

 

Figure 3-8: Sigmoid function (Gómez, 2018). 

Softmax 

A softmax activation function is a function that gives the output vector a value between 0 and 

1, and the resulting elements add up to 1. The function is applied to the output scores 𝑠. As 

elements represent classes, they can be interpreted as class probabilities. The function can 

unlike the sigmoid function not be applied independently to each vector score 𝑠𝑖, since it 

depends on all vector scores 𝑠. For a given class the vector score 𝑠𝑖 can be written as: 

𝑓(𝑠)𝑖 =
𝑒𝑠𝑖

∑ 𝑒𝑠𝑗𝐶
𝑗

 

Where 𝑠𝑗 are the scores inferred by the net for each class in 𝐶. The Softmax activation for a 

class 𝑠𝑖 depends on all the score in 𝑠 (Gómez, 2018). An example of how a softmax function 

may look is provided in figure 3-9.  
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Figure 3-9: Example of a softmax function (Shen et al., 2019). 

 

3.3.3.3 Loss Functions 

Loss functions are used to calculate how wrong the prediction of a model is (difference 

between prediction and ground truth), which further is used to propagate it back to the 

network layers and adjust the weights to achieve minimal loss. Loss functions are different 

from metric. Metrics are quantities that are used to judge the performance of a given model. 

Loss functions tell our models how they can improve on the training data. Popular choices of 

loss functions for semantic segmentation are different variations of Cross Entropy loss and 

Jaccard loss. In our approach we use Categorical Cross-Entropy loss and Jaccard loss as 

loss functions for our CNN.  

Cross-Entropy Loss 

Other names for Cross-Entropy loss are Logistic loss and Multinominal Logistic loss. The 

function of Cross-Entropy Loss is written as: 

𝐶𝐸 = − ∑ 𝑡𝑖

𝐶

𝑖

log (𝑠𝑖) 

where 𝑡𝑖 are the ground truth labels and 𝑠𝑖 are the CNN scores for each class 𝑖 in 𝐶. Cross-

Entropy Loss, contains under-categories. The ones introduced here are Binary Cross-

Entropy Loss and Categorical Cross-Entropy Loss. The difference in these two Cross-

Entropy losses lays in type of classification problem they are used for and whether the 

Cross-Entropy Loss is combined with a sigmoid or softmax activation (Gómez, 2018). Cross-

entropy losses are either used for multi-class classification or multi-label classification 

problems (figure 3-10). 
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Figure 3-10: Visualization of the differences between multi-class classification and multi-label classification (Gómez, 2018). 

 

Binary Cross-Entropy Loss 

Binary Cross-Entropy Loss also known as Sigmoid Cross-Entropy loss is a variation of 

Cross-Entropy loss and is used for multi-label classification, where there can be more labels 

in one image which can belong to several classes (figure 3-10). The model needs to predict 

to which class each label belongs. The Binary Cross-Entropy loss is a combination of a 

Sigmoid activation and a Cross-Entropy loss and visualized with these formulas (Gómez, 

2018): 

 

                                             𝑓(𝑆𝑖) =
1

1+𝑒−𝑆𝑖
                       𝐶𝐸 = −𝑡1 log(𝑓(𝑠1)) − (1 − 𝑡1)log (1 − 𝑓(𝑠1)) 

 

Categorical Cross-Entropy Loss 

Categorical Cross-Entropy Loss also known as Softmax loss is a variation of the of the 

Cross-Entropy Loss is for Multi-class classification (figure 3-10 (or in cases of one class 

label)) where each image contains one label and the model should predict to what class the 

label belongs. The Cross-Entropy loss function for multi-class classification looks like this: 

 

                                𝑓(𝑠)𝑖 =
𝑒𝑠𝑖

∑ 𝑒
𝑠𝑗𝐶

𝑗

                                     𝐶𝐸 = − ∑ 𝑡𝑖
𝐶
𝑖 log (𝑠𝑖)   
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But as this classification problem is One-hot problem, only the identified positive class 𝐶𝑝 

label = 1, and the rest = 0. The only component of the target vector 𝑡 that is not 0 is 𝑡𝑖 = 𝑡𝑝 . 

So the function can be written as a negative logarithm of the softmax class probability of a 

single label/class (Gómez,2018): 

𝐶𝐸 = − log (
𝑒𝑠𝑝

∑ 𝑒𝑠𝑗𝐶
𝑗

) 

where 𝑠𝑝 is the positive class CNN score.  

 

Jaccard Loss 

Jaccard Loss is a loss function well suited for semantic segmentation (Duque-Arias et al., 

2021) based on the Jaccard distance (Deza and Deza, 2009), which is written as 

𝐽𝑑 = 1 −
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
 

where 
|𝐴∩𝐵|

|𝐴∪𝐵|
 is the Jaccard index introduced by Jaccard (1901). The Jaccard index measures 

the similarity between finite sample sets 𝐴 and 𝐵 as the IoU. The Jaccard index will therefore 

be zero when the samples have no similarities and 1 if they are identical. The Jaccard 

distance is preferably used over the Jaccard index for minimization purposes (Duque-Arias et 

al., 2021).  

The implementation of the Jaccard distance as a loss function is presented as different 

functions where the purpose is, during segmentation, to evaluate each pixel 𝑖 by measuring 

the distance between the ground truth label 𝑦𝑖 ∈ {0, 1} and the models output label 𝑦̂𝑖. For 

simplicity the 𝑖 is removed from 𝑦𝑖 and 𝑦̂𝑖. Straightforward, the Jaccard distances replaces 

the IoU the following way (Rahman and Wang, 2016; Martire et al., 2017): 

𝐽1(𝑦, 𝑦̂) =
(𝑦 ∙ 𝑦̂) + 𝜀

(𝑦 + 𝑦̂ − 𝑦 ∙ 𝑦̂) + 𝜀
 

where 𝜀 is preventing zero division.  
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3.3.3.4 Optimizers 

Optimizers are algorithms used to find the optimal weight when adjusting the weights in a 

model during training, in order to achieve the lowest loss. Several different optimizers exist, 

which can be suiting for different ML problems. Optimizers constantly adjust the weights as 

training progresses and the optimizers are exposed to more model output vectors. A simple 

optimizer such as Gradient decent, will adjust the weight for every new model output vector. 

Constantly differing outputs will cause oscillation, making the optimizer less efficient. 

Momentum is often used to reduce the oscillation by taking previous outputs into account, 

adjusting the loss on a more average output rather than individual outputs. Momentum will 

cause acceleration towards the minimal loss, making the optimizer more efficient (Dozat, 

2016). Momentum can be implemented in two different approaches. One being the classical 

momentum (which is described above) and another being Nesterov’s momentum. The 

differences between these two momentums also marks the difference between the following 

optimizers: Adam and Nadam.  

Adam (Adaptive momentum estimation, (Kingma and Ba, 2014)) combines classical 

momentum with RMSprop (Tieleman and Hinton, 2012). RMSprop is an alternative to 

AdaGrad (Adaptive subgradient descent, (Duchi et al., 2011)), allowing a model to learn 

indefinitely.  

Nadam (Nesterov-accelerated adaptive moment estimation, (Dozat, 2016)) adds NAG 

(Nesterov’s accelerated gradient, (Nesterov, 1983)) or Nesterov’s momentum to Adam. NAG 

is generally better than classical momentum (Sutskever et al., 2013). Dozat (2016) 

concluded that Nadam in the majority of cases is better suited than Adam in combination with 

RMSprop. The Nadam optimizer is utilized whilst training models in this study.  
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3.4 Model Optimization Techniques  
 

Model optimization techniques have become significantly important with the increased use of 

CNN in recent years. The objective of these techniques is to improve one of the great 

struggles of CNN models which is generalizability. Generalizability refers to the difference of 

performance a model has on training data and testing data. In cases where a model has 

good performance on the training data, but bad performance on the testing data, we would 

refer to poor generalizability, also referred to as overfitting. Generalizability can further be 

linked to the “experience” a model gathers during training, which has an impact on its future 

performance on unseen data. In other words, a model will have good generalizability when it 

is able to identify a large variety of the same objects or images. This is most commonly 

achieved in two different approaches; 1) by addressing the problem at its origin (training 

data) with the use of data augmentation or 2) applying modifications to the architecture of the 

network. 

3.4.1 Data Augmentation 

Data augmentation, as implied by its name, is generally used to increase the size of a 

training dataset. Data augmentation has several different purposes and techniques, all 

adding up to improving the generalizability of a model. CNN are deep learning models with 

often complex architectures where already the simplest model architectures can contain a 

few million parameters. For instance, the Efficient UNET used in this study contains 

3 056 166 trainable parameters and 16 880 non-trainable parameters, and the Light UNET 

contains 4 370 594 trainable parameters and 5 136 non-trainable parameters. The large 

number of parameters ideally requires an equally large amount of training samples. With that 

in mind, data augmentation can be used for the simple purpose of increasing the training 

data for better performance, but the augmentation of data often brings several other benefits. 

The benefits include improving the diversity of the training data, increasing the number of 

relevant training data and balancing out minority and majority classes. Data augmentation 

techniques can be divided into simple and more advanced techniques. The simple 

techniques are also known as original data augmentation and apply changes to the existing 

data. Like the methods presented in this thesis in the sections below. More advanced 

techniques are developed rather recently, with the implementation of GAN and other deep 

learning algorithms that have the ability to create completely new synthetical data from the 

original data. Original data augmentation encompasses the use of kernel filters, color space 

transformations, geometric transformations, random erasing and mixing images. Examples of 

advanced augmentation techniques are neural style transfer and the use of conditional 

GANs.   
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Data augmentation is one of the techniques which in recent years massively have boosted 

the performance of ML models, in the field of CNN especially. Early examples go back to 

LeNet-5 (LeCun et al., 1998), where CNN were applied to handwritten digit classification for 

the first time. One of the more familiar CNN, AlexNet (Krizhevsky et al., 2012), which 

revolutionized image classification on the ImageNet dataset, used simple data augmentation 

techniques such as random cropping, horizontal flip and changing the intensity of RGB 

channels. Data augmentation improved the error rate of the model by over 1%, as claimed by 

the authors.  

The introduction of GAN (Goodfellow et al., 2014) enabled the implementation of more 

advanced data augmentation techniques like Neural Style Transfer (Gatys et al., 2015) and 

Neural Architecture Search (NAS) (Zoph and Le, 2017). Meta learning which are concepts 

from NAS have become popular applications to data augmentation with works like Neural 

Augmentation (Perez and Wang, 2017), Smart Augmentation (Lemley et al., 2017) and Auto 

Augment (Cubuk et al., 2018). The use of GAN-based data augmentation in medical imaging 

has been documented in numerous papers, which demonstrate the positive effect of data 

augmentation on image classification. In 2018, Frid-Adar et al. used GAN-based data 

augmentation for liver lesion classification, which resulted in a classification performance 

increase from 78,6% sensitivity and 88,4% specificity using the original augmentation to 

85,7% sensitivity and 92,4% specificity.   

For the most part, data augmentation is focused on improving image recognition models, but 

it can be utilized in other computer vision tasks like object detection (Redmon et al., 2016) or 

semantic segmentation (Long et al., 2014) with algorithms like UNET (Ronneberger et al., 

2015). This idea is further explored in this study, by applying data augmentation to the 

semantic segmentation task of predicting faults in seismic images.  

3.4.1.1 Data Augmentation in EarthNet 

The EarthNet software by Earth Science Analytics provides easy application of data 

augmentation for image segmentation or seismic interpretation on 3D seismic volumes. Data 

augmentations included in the software are methods encompassing three types of geometric 

transformations like horizontal flip, grid distortion 1D and elastic transformation 1D. The 

following sections go into detail on each individual augmentation type and how they were 

applied to the seismic in this study.  

3.4.1.1.1 HORIZONTAL FLIP  

As the name implies, horizontal flip rotates the original seismic image (figure 3-11 a) 180 

degrees around its vertical axis, resulting in a horizontally flipped image (figure 3-11 b). This 

data augmentation technique essentially duplicates every image in the data set it is applied 
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to, doubling the amount of data. In addition to increasing the training data for the CNN in this 

study, it also ads variety to the data set. Most noticeably in figure 3-11 is that the majority of 

faults have the same orientation, horizontal flip in this case ads variety to the orientations of 

faults. 

 

Figure 3-11: A section out of Inline 5090, survey LN17001_Full_Stack and volume LN17001 3D survey.(a) Displays the original 
seismic which is compared to the same section when horizontal flip is applied (b). 

 

3.4.1.1.2 GRID DISTORTION 1D 

Grid distortion 1D creates new seismic images by applying a slightly more complex 

geometric transformation than horizontal flip. As illustrated in figure 3-12, it distorts the 

seismic images resulting in sections of varying size that are offset with respect to each other. 

Obvious changes in the distorted image (figure 3-12 b) are offset features like faults and 

bedding in addition gaps without any seismic are left within the image as a direct 

consequence of the distortion. It is worth mentioning that the steps observed in the example 

shown in figure 3-12 b is not happening when using data augmentation in practice in 

EarthNet. The patch sizes are large enough to avoid such offsets which have no geological 

meaning. This type of artifacts have to be avoided in any data augmentation approach for 

automatic interpretation using CNN. Grid distortion 1D in contrast to horizontal flip has 

several adjustable parameters allowing to determine the amount of distortion. For seismic 

interpretation it is desirable to apply mild, but noticeable changes while avoiding to make the 

image unrecognizable. The major parameters for controlling the grid distortion are “number 

of steps” and distortion limit, controlling the degree of distortion. Parameters used for data 

augmentation, can be found in table 3-1. 
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Figure 3-12: A section out of Inline 5090, survey LN17001_Full_Stack and volume LN17001 3D survey. (a) Displays the 
original seismic which is compared to the same section when grid distortion 1D is applied (b). Offset faults are marked in 

yellow. 

3.4.1.1.3 ELASTIC TRANSFORMATION 1D 

Elastic transformation 1D in similarity to grid distortion 1D, is an adjustable geometric 

transformation. This type of data augmentation distorts the grid of the seismic image, and in 

addition it has a component of elastic transformation. As marked in figure 3-13, we observe 

areas within the seismic image where the elastic transformation is especially pronounced. 

Marked in yellow ellipses we see that originally rather straight lines (figure 3-13 a), have 

become more curved (figure 3-13 b). The elastic transformation paired with the distortion 

element, results in new seismic images where the curvature, position and angle of both 

seismic bedding reflectors and faults are changed. Parameters determining the elastic 

transformation 1D are alpha, sigma and alpha affine, where each parameter controls 

individual aspects of the elastic transformation. The exact parameters used, can be found in 

table 3-1.    
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Figure 3-13: A section out of Inline 5090, survey LN17001_Full_Stack and volume LN17001 3D survey.(a) Displays the original 
seismic which is compared to the same section when elastic transformation 1D is applied (b). Clearly transformed areas are 

marked with yellow ellipses. 

 

3.5 ML in Geoscience 

Geoscience is part of the early history of machine learning. Initially, k-means, Markov models 

and decision trees have been used already since the early 60s. K-means was used in the 

field of sedimentology (Preston and Henderson, 1964). Markov chains had several purposes 

early on, within the fields of sedimentology (Schwarzacher, 1972), well log analysis 

(Agterberg, 1966), hydrology (Matalas, 1967) and volcanology (Wickman, 1968). Decision 

tree-based methods were applied in economic geology and prospectivity mapping 

(Newendorp, 1976; Reddy and Bonham-Carter, 1991).  

During the late 80s, new tools for automatic differentiation and backpropagation for error-

correcting were introduced, which made neural networks usable in geophysics. As a result, a 

RNN (Hopfield network) was used by Zhao and Mendel (1988) to conduct seismic 

deconvolution. A few years later, Dowla et al. (1990) used feed-forward neural networks to 

distinguish between natural earthquakes and underground nuclear explosions, reaching 

accuracies of 97%. In addition, Huang et al. (1990) published work on picking seismic 

horizons with a type of unsupervised neural network called self-organizing maps. 

The shift from knowledge-driven to a data-driven approach in machine learning during the 

90s, marks the establishment of SVM (Cortes and Vapnik, 1995), Random Forests (Ho, 

1995) and Long Short-Term Memories (Hochreiter and Schmidhuber, 1997). SVM initially 

were used for land usage classification in remote sensing (Hermes et al., 1999) and later on 

to approximate the Zoeppritz equations for AVO inversion (Kuzma, 2003). The 
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implementation of the two other methods was rather poor, at least in geoscience during this 

decade.  

An important factor for the development of ML algorithms in geoscience was the 

implementation of free open-source software (FOSS), machine learning libraries and 

languages. The ones with the largest significance, are the WEKA (Witten and Frank, 2005) 

and LibSVM (Chang and Lin, 2011) free open-source softwares and the PyTorch (Paszke et 

al., 2017), Theano and Scikit-learn (Theano Development Team, 2016; Pedregosa et al. 

2011) libraries. The WEKA software mainly supports SVM efficiently. SVM including other 

shallow machine learning algorithms like random forests and shallow neural networks are 

supported by Scikit-learn, whilst DNN are well supported by Theano.  

In recent years shallow machine learning algorithms have found several applications due to 

scikit-learn. Random forests and gradient boosting were applied to several seismological 

(Dodge and Harris, 2016; Maggi et al., 2017; Hulbert et al., 2018) and geochemical 

applications (Valera et al., 2017; Rouet-Leduc et al., 2017, 2018; Cao and Roy, 2017). 

Gradient boosted trees were also in the 2016 SEG ML challenge as winning models (Hall 

and Hall, 2017). 

3.5.1 ML for Seismic Interpretation 

The task of seismic interpretation in geology can be difficult and time consuming. Machine 

learning algorithms can be used as a way for geologists to easier understand relationships in 

large geological datasets. Since seismic data consists of images, neural networks are well 

suited for this kind of interpretation task and both supervised and unsupervised learning can 

be used. However, due to the heterogeneity of earth, supervised neural networks can get 

very unprecise if the unseen data is very different to the training data (Smith, 2010). Hence, 

unsupervised neural networks are preferred.  

Although unsupervised neural networks are preferred, supervised neural networks can still 

be used for seismic interpretation. In case of pattern recognition, approximation and 

classification, a multi-layered perceptron is used (Roden and Santogrossi, 2017). Another 

method involves the use of probabilistic neural networks. This method uses vectors to show 

how close the input is to the training data and calculates the probability, ranging from 1 to 0, 

where 1 is the maximum probability (Mohri et al., 2012).  

Unsupervised algorithms on the other hand, do not require labeled training data. They can 

figure out patterns in the data and use conventional analytical methods to display missing 

geological features. Unsupervised algorithms can be used to determine fluid properties, 
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lithological changes, well analysis and the optimal seismic attributes to interpret the seismic 

(Smith, 2010).  

A possible workflow when interpreting seismic data using an unsupervised neural network is 

illustrated in figure 3-14. This kind of workflow is known as a multi-attribute ML interpretation, 

which involves the use of a principal component analysis (PCA) and self-organizing maps 

(SOM) (Roden, 2017). In such a workflow, first the interpretation task needs to be defined 

(e.g. interpretation of facies, stratigraphy, bed thickness, direct hydrocarbon indicators 

(DHIs), etc.) It is important to choose the most significant attributes needed to perform the 

task. Those are determined by the PCA (Roden and Santogrossi, 2017). 

 

Figure 3-14: Typical unsupervised multi-attribute ML interpretation workflow (Roden, 2017). 

Thereafter, SOM are used to organize multiple seismic attributes into volumes of 

classification and probability (Kohonen, 1982). As a part of DNN, SOM analyze clusters and 

patterns in a nonlinear way. Basically, a SOM takes a various amount of seismic datasets 

and organizes the data in a 2D colormap (Roden, 2017), as shown in figure 3-15. 

 

Figure 3-15: SOM processing of 3D seismic survey (Roden, 2017). 
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3.5.1.1 ML for Fault Interpretation 

In geological context, fault interpretation using seismic images plays a significant role. It is 

important for hydrocarbon reservoir characterization (Knipe et al., 1998), well planning 

(Ellevset et al., 1998; Rivenæs et al., 2005), building structure models (Caumon et al., 2009) 

and tectonic analysis (Kusznir and Karner, 2007; Baudon and Cartwright, 2008). As, we 

move on from original deterministic methods developed to make fault interpretation more 

automated, we apply methods involving the use of CNN. Some approaches similar to our 

approach are mentioned bellow.  

Xiong et al. (2018) introduced a CNN to interpret faults from 3D seismic data-cubes. They 

used real seismic data to train the network in a supervised fashion. The network interprets 

the seismic in form of an image classification task. During training, labels were applied to the 

data, denoted as fault (1) or non-fault (0). When, later on, applied to a different sets of data 

the CNN managed to perform better than the conventional seismic coherence method. The 

CNN was showing about the same fault probability as the seismic coherence, but the seismic 

discontinuities were better highlighted (figure 3-16). 

 

Figure 3-16: a) Fault probability interpreted by the CNN with b) the corresponding coherence cube as reference (Xiong et al. 
2018). 

Similarly, Wu et al. (2019) introduced the use of a supervised fully convolutional neural 

network to perform image-to-image fault segmentation. Even though the network only was 

trained on synthetic data, it managed to very precisely detect faults in real seismic data. This 

method was found to predict faults more accurately than the conventional methods 

mentioned earlier. The architecture of the CNN is a simplified UNET (figure 3-17). The UNET 

consist of a contraction path to the left and an expansion path to the right. The contraction 

path consists of several steps, with two 3 x 3 x 3 convolutional layers. Thereafter comes a 

ReLU activation followed by a 2 x 2 x 2 max poling for down-sampling. As the data is down-

sampled, the number of features is doubled. In the expansion path, the steps consist of a 2 x 
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2 x 2 up-sampling, a pairing of features from the contraction path and 3 x 3 x 3 convolutional 

layers with ReLU activation functions. A simplified version encompasses reduction of 

convolutional layers and features at each layer to save memory and computational capacity. 

 

Figure 3-17: The UNET structure of a simplified end-to-end convolutional neural network (CNN) for 3D fault detection (Wu et 
al., 2019). 

3.6 Applied Workflow 

In this study the CNN architectures Efficient UNET and Light UNET are utilized. They are 

modified versions of the original UNET architecture (figure 3-17) developed by Ronneberger 

et al. (2015). The UNET, Efficient UNET and Light UNET architectures are described in the 

sections bellow.  

3.6.1 UNET Architecture 

The first UNET architecture, created by Ronneberger et al. (2015) for semantic 

segmentation, was inspired the “fully convolutional network” (Long et al., 2014). The nearly 

symmetrical u-shaped encoder/decoder architecture (figure 3-18) is the result of a increased 

number of feature channels, further enabling the network to propagate context information to 

layers with higher resolution. Another difference to the network of Long et al. (2014) is that 

the UNET does not have fully connected layers, in addition only the valid portion of each 

convolution is used, i.e. the segmentation map only contains pixels, where the full context is 

provided in the input image.   



58 
 

 

Figure 3-18: UNET architecture with 32 x 32 pixels at the lowest resolution. Multi-channel feature maps are represented by 
the blue boxes with the number of channels and the x-y-size denoted at the top and bottom left of the boxes, respectively. 

The white portion of the boxes are copied feature maps and the arrows denote the different operation performed 
(Ronneberger et al., 2015). 

The architecture proposed by Ronneberger et al. (2015) is illustrated in figure 3-18. It 

consists of a encoder (contracting) and decoder (expansive) path. The encoder still 

represents the typical architecture of a convolutional network: repeatedly, two 3 x 3 

convolutions (unpadded convolutions) are applied, each followed by ReLU and a 2 x 2 max 

pooling (stride 2 for downsampling, where the number of feature channels is doubled). In the 

encoder upsampling of the feature map, halves the number of feature channels as it is 

followed up by a 2 x 2 convolution (“up-convolution”), additionally it is followed by a 

concatenation with the correspondingly cropped feature map from the encoder and two 3 x 3 

convolutions, each followed by a ReLU. In every convolution, pixels are lost at the borders 

thus cropping is necessary. The final layer applies a 1 x 1 convolution so each of the 64-

component feature vectors are mapped to the amount of classes. Overall, the network 

comprises 23 convolutional layers.     

   

Efficient UNET 

The Efficient UNET architecture builds on the u-shaped encoder and decoder UNET 

architecture by Ronneberger et al. (2015) in figure 3-18, and additionally employs the 
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technique of automatic compound scaling. Tan and Le (2019) introduced the uniform 

(determined by ratio) compound scaling of convolutional network depth (number of layers), 

width (number of feature channels) and resolution (resolution of input; number of pixels) in 

order to most efficiently adapt and solve any given problem. In figure 3-19 the compound 

scaling introduced by Tan and Le (2019) is compared to a baseline network layout, and the 

adjustment of width, depth and resolution individually. In the EarthNet software it is possible 

to change the network sizes by choosing different presets from the efficient encoder 

parameter (setting a1 is used in this thesis).  

 

Figure 3-19: Model scaling. (a) example of baseline network; (b)-(d) conventional scaling where only adjusting one 
dimension at the time (width, depth or resolution); (e) compound scaling proposed by Tan and Le (2019) which uniformly 

scales the tree dimensions given a fixed ratio (Tan and Le, 2019).   

 

Light UNET 

The Light UNET architecture is similar to the UNET architecture proposed by Ronneberger et 

al. (2015) in figure 3-18, but additionally the Light UNET is fully adjustable. This provides the 

possibility to adjust the number of initial feature channels, by what number the feature 

channels should be multiplied for each convolution, number of layers in the encoder and 

decoder, whether a depth channel should be added, and which activation function to use. In 

this thesis the Light UNET architecture comprises 24 initial feature channels, x2 feature 

channel multiplier, 4 convolutional layers in the encoder and 4 convolutional layers in the 

decoder, no depth channel and ReLU activation function.    

3.6.2 Software 

I have used the fault automatic interpretation module of EarthNet. The software is developed 

by Earth Science Analytics (earthanalytics.ai). EarthNet is a cloud-native web-based 

software which enables to easily apply ML on seismic data. The software has multiple 

functions where large amounts of data containing information about the subsurface can be 
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combined with human interpretations and artificial intelligence. EarthNet allows interpreters 

to access, and quality control, both well data and 3D seismic data volumes and crate training 

labels in order to customize and train their own ML models for seismic interpretation and 

1D/3D reservoir characterization.     

3.6.2.1 Model assisted Labeling 

The labeling of geological features for seismic interpretation and faults in case of this study is 

an essential part of training a ML algorithm for the task of fault prediction in seismic. In the 

approach of using supervised learning on Efficient UNET and Light UNET the training 

dataset is created by human interpreted labels. The process of labeling faults involved a 

pretrained Light UNET model in combination with manual human quality control and labeling. 

The pretrained Light UNET provided by earth science analytics was trained on tens of 3D 

seismic surveys from the Norwegian Continental Shelf and open data from other localities 

such as Australia and New Zealand. This pretrained model was used to carry out the so-

called model assisted labeling by predicting faults on selected 2D slices. Thereafter, 

validation of the interpretations was necessary and changes were made if needed. Model 

assisted labeling reduces the time needed for the time consuming task of fault labeling. 

Training labels were created on both inlines and crosslines within all three 3D seismic 

volumes that are part of this study. A certain interval spacing between the training labels with 

respect to the size of the 3D seismic volume was used to achieve an even distribution and to 

create labels representing the seismic variety throughout the volumes. For the smaller 

seismic volume ST14200Z15-OBN in survey ST14200_OBN with in total 728 inlines and 694 

crosslines, an inline and crossline spacing of 50 was chosen, resulting in 12 labeled inlines 

and 12 labeled crosslines. For the larger 3D seismic volumes SG9202_Full_Stack in survey 

SG9202 and LN17001_Full_Stack in survey LN17001 the total number of labeled inlines and 

crosslines was larger. Volume SG9202_Full_Stack with a total of 2215 inlines and 3451 

crosslines a total of 21 inlines and 21 crosslines were labeled with a spacing of 110 and 170, 

respectively. Volume LN17001_Full_Stack with a total of 3685 inlines and 6561 crosslines a 

total of 22 inlines and 20 crosslines were labeled with a spacing of 180 and 240, respectively.  

3.6.2.2 Training 

The Efficient and Light UNET were trained independently on labels from all three 3D seismic 

data volumes, meaning that one model only was trained on labels from the same seismic 

volume, never on labels from two different volumes. Models were also trained with and 

without data augmentation applied. Data augmentation was applied in form of horizontal flip, 

grid distortion 1D and elastic transformation 1D. The different types of data augmentation 

were applied separately. An important step to determining the effect of data augmentation is 

finding the optimal augmentation parameters. The parameters for grid distortion 1D and 
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elastic transformation 1D were determined, by experimenting with different settings and 

using geological understanding to evaluate the effect of transformation on the seismic data 

volumes directly. The resulting parameters for the different data augmentations are 

summarized in table 3-1.  

Table 3-1: All parameters related to the data augmentation utilized in this study. 

 

The first step for data augmentation is to select a patch including labeled faults (a non-empty 

mask) and then select randomly some patches that may or may not include labels. I have 

applied equal probability (table 3-1) which means that equal patches of non-empty masks 

and random masks will be selected for data augmentation. 50% of the selected patches for 

augmentation will be used for the horizontal flip option. Then 50% of the selected patches for 

data augmentation (not another 50% compared to horizontal flip) will be used for grid 

distortion 1D and also 50% of the selected patches for the data augmentation will be used for 

elastic transformation 1D. These probabilities for horizontal flip, grid distortion 1D and elastic 

transformation 1D are independent of each other. This means that there could be patches 

that will be used for all of these three approaches.   

Models were both trained on inlines and crosslines, but also inlines and crosslines 

separately. Both, Efficient UNET and Light UNET model architectures were trained using 

different hyperparameters. For this, the learning structure of the models was changed by 

implementing different values to hyperparameters, such as the training epochs and extra 

training epochs, training patch size and dropout. Notice that the amount of extra training 

epochs changes depending on the amount of training epochs. Extra training epochs always 

add an additional 50% of training epochs to the initial training epochs. When speaking of 

training epochs in the results, it should be understood that the extra training epochs are not 

considered within the numbers. Table 4-1 and 4-2 give an overview over the most important 

CNN fault prediction models including essential parameters.  
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3.6.2.3 CNN Evaluation and Testing 

After training all fault prediction models they were evaluated and tested, and this was done 

both statistically and by blind testing the models on the 3D seismic volumes directly. 

Whenever a model has completed the training process in EarthNet a model review becomes 

available, containing a confusion matrix and confusion matrix validation, basically 

corresponding to the train and test subset of the labeled slices. The matrixes show the 

percentage of correctly identified faults and background, and wrongly identified faults and 

background, related to the terms true positives (TP), true negatives (TN), false positives (FP) 

and false negatives (FN) introduced in section 3.3.3.1. In the model review, training and 

validation metrics can also be evaluated, both final values and how those changed 

throughout training. Table 4-2 and 4-3 provide metrics, training and test scores for the most 

important models of this study.  

In addition to the evaluation of the model statistics, it is important to actually test the models 

capability of identifying faults in the 3D seismic data and evaluating the quality of predictions 

on slices which the model has not seen. For this purpose, blind tests of the models were 

performed both on accompanying 3D seismic volumes inlines and crosslines. The process of 

blind testing the CNN encompasses choosing inlines or crosslines that are located right in 

the middle of labeled inlines or crosslines. This is done to test the model’s true performance 

with as little influence from the labels as possible. 

The different approaches of evaluation were performed in order to determine what model 

architecture, data augmentation technique and combination of hyperparameters resulted in 

the best performing models for predicting faults in the three different 3D seismic volumes. 

For volume LN17001_Full_Stack, this was also done in order to determine which model 

should be utilized for fault damage zone characterization. The performance of the various 

fault prediction model is compared both statistically and practically in chapter 4.  

3.6.2.4 Fault Characterization 

The fault predictions that were used for the fault characterization in chapter 4.2 were created 

by applying the best performing CNN to 3D seismic volume LN17001_Full_Stack. For this 

volume the best performing CNN was a Light UNET with model ID: 4852 (see figure 4-14 c 

or table 4-2 and 4-3). The application of the Light UNET on the 3D seismic volume involves 

creating a 3D fault volume, which covers CNN fault predictions across the entire 3D seismic 

volume. Additionally, an average between the inline and crossline fault predictions is created 

which further provides the fault probability estimation (for an example, see e.g. figure 4-17).  

The scanlines were oriented in the inline orientation of 3D seismic volume 

LN17001_Full_Stack and the spacing between the scanlines is 1,5 km, corresponding to 180 
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inline spacing (8.33m). In total 7 scanlines (Inline 5000, 5180, 5360, 5540, 5720, 5900 and 

6080) approximately varying between 23-28 km of length were placed crossing fault F3 (see 

figure 4-16 for reference). Additionally, 6 scanlines were placed at depths of 800, 1300, 

1800, 2300, 2800 and 3300ms TWT (two-way-travel time) at each of the 7 inline scanline 

locations.   
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4 Results: ML Models for Fault Identification and Fault 

Characterization 

The objective of the result section is divided into three parts; 1) determining the optimal 

configuration of ML models suited for the task of characterizing faults in 3D seismic data 

volumes, 2) utilizing the best performing model for the characterization of faults, with focus 

on one specific fault and the surrounding damage zone and finally 3) fault characterization 

using fault geometric data derived from fault probability volumes which were derived in step 

2.   

The results presented in the results-section are extracted from research completed by 

utilizing Efficient UNET and Light UNET networks on the full stack volumes of 3D seismic 

surveys ST14200_OBN, LN17001 and SG9202. Additionally, the characterization of faults 

was executed on the LN17001 3D survey by generating and analyzing 3D fault volumes.  

 

4.1 ML Models for Fault Identification 

The objective of this section is to figure out the best combination of ML model architectures, 

by using data augmentation and tuning hyperparameters. In this approach two different CNN 

model architectures were utilized; the Efficient UNET and the Light UNET. Initially, CNN with 

the Efficient UNET architecture were applied to the seismic. Further, we explored the effect 

of models trained and tested on both inlines and crosslines, compared to models trained and 

tested on inlines and crosslines separately. At last, the performance of Efficient UNET and 

Light UNET was compared.  

4.1.1 The Effect of Applying Data Augmentation to 3D Seismic Data 

Volumes 

This part of the study evaluates the effect application of simple data augmentation in terms of 

geometric transformation has on the performance of CNN, focusing on Efficient UNET and 

Light UNET networks. To begin with, we explore the effect of geometric transformations, 

known as horizontal flip, grid distortion 1D and elastic transformation 1D. The results from 

seismic volume ST14200Z15_OBN_Full_Stack show the effect of data augmentation on fault 

prediction (figure 4-1 c-e) compared to the performance of a baseline Efficient UNET, where 

no data augmentation is applied and hyperparameters are kept default (figure 4 b). From 

analyzing these images, it is noticeable that a large portion of the faults were missed. The 

baseline model has a few continuous fault predictions, but mostly large portions of most 

faults are missed, and predictions are highly discontinuous. It is clear that all data 
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augmentation techniques applied in this study contribute to a significant CNN performance 

increase (figure 4-1 c-e). Generally, all three techniques of data augmentation have identified 

the majority of faults with maintaining the continuity of faults. This is the case even for the 

larger faults, which often are more challenging capture. However, the Efficient UNET with 

grid distortion 1D applied had slightly more continuous fault predictions paired with slightly 

better fault detection than the two other data augmentations.  

 

Figure 4-1: Images of Inline 2985 from volume ST14200Z15_OBN_Full_Stack in survey ST14200_OBN comparing the 
performance of Efficient UNET trained and tested on the different types of data augmentation. a) Inline 2985 without fault 
predictions, b) faults predicted by Efficient UNET (model ID: 4749) trained and tested on both inlines and crosslines without 
data augmentation c) faults predicted by Efficient UNET (model ID: 4757) trained and tested on both inlines and crosslines 
with Horizontal Flip, d) faults predicted by Efficient UNET (model ID: 4751) trained and tested on both inlines and crosslines 
with Grid Distortion, e) faults predicted by Efficient UNET (model ID: 4758) trained and tested on both inlines and crosslines 

with Elastic Transformation.  

The same comparison made in figure 4-1 is made in figure 4-2, only for volume 

LN17001_Full_Stack. The two figures also reflect similar results, where the Efficient UNET 

with data augmentation applied (figure 4-2 c-e) outperform the baseline Efficient UNET 

(figure 4-2 b). Although, the CNN performance increase between the baseline Efficient UNET 

and the Efficient UNET applying data augmentation is less significant on volume 

LN17001_Full_Stack compared to volume ST14200Z15_Full_Stack.  

While taking a closer look at the major fault in figure 4-2, it is noticeable that the Efficient 

UNET trained on augmented data (figure 4-2 c-e) generally have a more pronounced and 

continuous interpretation compared to the baseline model (figure 4-2 b). Comparing the 

baseline model to the model where horizontal flip is applied (figure 4-2 c), the baseline model 

has detected a larger portion of the major fault, but the horizontal flip model still has a more 
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continuous prediction. That also applies to the smaller faults surrounding the major fault. The 

models that apply grid distortion 1D (figure 4-2 d) and elastic transformation 1D (figure 4-2 e) 

have identified a similar portion of the major fault compared to the baseline model, but again, 

the augmented models have better prediction continuity, which also applies for the 

surrounding faults. The predictions of grid distortion 1D and elastic transform 1D are almost 

identical. 

 

Figure 4-2: Images of Inline 5090 from volume LN17001_Full_Stack in survey LN17001 3D survey comparing the 
performance of Efficient UNET trained and tested on the different types of data augmentation. a) Inline 5090 without fault 
predictions, b) faults predicted by Efficient UNET (model ID: 4750) trained and tested on both inlines and crosslines without 
data augmentation c) faults predicted by Efficient UNET (model ID: 4772) trained and tested on both inlines and crosslines 
with Horizontal Flip, d) faults predicted by Efficient UNET (model ID:4755) trained and tested on both inlines and crosslines 

with Grid Distortion 1D, e) faults predicted by Efficient UNET (model ID: 4773) trained and tested on both inlines and 
crosslines with Elastic Transformation 1D.      
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When comparing Efficient UNET without data augmentation and Efficient UNET with data 

augmentation for 3D seismic volume SG9202_Full_Stack (figure 4-3), similar to 3D seismic 

volume LN17001_Full_Stack only minor details change. The none-augmented Efficient 

UNET (figure 4-3 b) images a moderate portion of the faults. The model has detected some 

fault segments with good continuity, and others with rather poor continuity. Generally, the 

CNN with data augmentation applied (figure 4-3 c-e) do not necessarily detect a larger 

portion of faults, but some of the predictions are just slightly more continuous and some 

faults are just better covered. Actually, one exception may be the predictions in figure 4-3 e 

(elastic transformation 1D) where a majority of the seismic in all aspects is somewhat worse 

interpreted than by the other models. When comparing the horizontal flip interpretation 

(figure 4-3 c) to the grid distortion 1D interpretation (figure 4-3 d) it is only possible to tell 

slight differences.  

 

Figure 4-3: Images of Inline 1055 from volume SG9202_Full_Stack in survey SG9202 comparing the performance of Efficient 
UNET trained and tested on the different types of data augmentation. a) Inline 1055 without fault predictions, b) faults 

predicted by Efficient UNET (model ID: 4986) trained and tested on both inlines and crosslines without data augmentation c) 
faults predicted by Efficient UNET (model ID: 4987) trained and tested on both inlines and crosslines with Horizontal Flip, d) 
faults predicted by Efficient UNET (model ID:4988) trained and tested on both inlines and crosslines with Grid Distortion 1D, 

e) faults predicted by Efficient UNET (model ID: 4991) trained and tested on both inlines and crosslines with Elastic 
Transformation 1D. 

When blind tests were run to test the Efficient UNET on the seismic volumes, the networks 

trained and tested on augmented data generally had an improved ability to identify faults 

over the networks trained and tested on non-augmented data. The improvement was most 

significant on 3D seismic volume ST14200Z15_Full_Stack. From the comparison so far, the 
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conclusion is that data augmentation (with some exceptions) leads to better performing 

Efficient UNET.   

4.1.2 The Effect of Patch Size 
 

For Efficient UNET, the default patch size in EarthNet is set to 192 x 192 pixels, which is the 

patch size used to explore the effect of data augmentation in section 4.1.1. Now the effect of 

a larger patch size (320 x 320 pixels) on the Efficient UNET performance will be determined. 

Grid distortion 1D was chosen to be applied to the CNN for further comparisons.  

The results from seismic volume ST14200Z15_OBN_Full_Stack (figure 4-4, c) are evaluated 

in relation to figure 4-4 b where the original patch size (192 x 192 pixels) is used for training 

and testing. At first glance, in the fault predictions where the larger patch size is utilized for 

training and testing, overall less faults were detected. In addition, there is less connectivity 

between faults and less continuity in each individual fault. There are a few exceptions where 

the larger patch size has contributed to a better detection of some faults. 

 

Figure 4-4: Images of Inline 2985 from volume ST14200Z15_OBN_Full_Stack in survey ST14200_OBN comparing the 
performance of Efficient UNET with grid distortion 1D and different hyperparameters for training and testing. a) Inline 2985 

without fault predictions, b) faults predicted by Efficient UNET (model ID: 4751) trained and tested on both inlines and 
crosslines with grid distortion 1D and default hyperparameters (patch size 192 x 192, 50 training epochs and 0.3 dropout), c) 
faults predicted by Efficient UNET (model ID: 4754) trained and tested on both inlines and crosslines with grid distortion 1D, 
patch size 320 x 320, 50 training epochs and 0.3 dropout, d) faults predicted by Efficient UNET (model ID: 4842) trained and 
tested on both inlines and crosslines with grid distortion 1D, patch size 192 x 192, 200 training epochs and 0.3 dropout, e) 

faults predicted by Efficient UNET (model ID: 4843)  trained and tested on both inlines and crosslines with grid distortion 1D, 
patch size 192 x 192, 50 training epochs and 0.4 dropout. 
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When comparing the results from seismic volume ST14200Z15_OBN_Full_Stack to the 

results form seismic volume LN17001_Full_Stack, the effect of a larger patch size is rather 

positive. In figure 4-5 c a larger portion of the of the major fault is detected, although the 

continuity of the fault prediction at depth is not great, it still performs better than the baseline 

model, with the smaller patch size in figure 4-5 b. In addition, the smaller surrounding faults 

are more continuous and overall better detected with the larger patch size.  

 

Figure 4-5: Images of Inline 5090 from volume LN17001_Full_Stack in survey LN17001 3D survey comparing the 
performance of Efficient UNET with grid distortion 1D and different hyperparameters for training and testing. a) Inline 5090 

without fault predictions, b) faults predicted by Efficient UNET (model ID: 4755) trained and tested on both inlines and 
crosslines with grid distortion 1D and default hyperparameters (patch size 192 x 192, 50 training epochs and 0.3 dropout), c) 
faults predicted by Efficient UNET (model ID: 4756) trained and tested on both inlines and crosslines with grid distortion 1D, 
patch size 320 x 320, 50 training epochs and 0.3 dropout, d) faults predicted by Efficient UNET (model ID: 4839) trained and 
tested on both inlines and crosslines with grid distortion 1D, patch size 320 x 320, 200 training epochs and 0.3 dropout, e) 

faults predicted by Efficient UNET (model ID: 4840) trained and tested on both inlines and crosslines with grid distortion 1D, 
patch size 320 x 320, 200 training epochs and 0.4 dropout. 
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In section 4.1.1 when evaluation the performance of the Efficient UNET trained and tested on 

data augmented seismic for volume SG9202_Full_Stack, there were no clear advantages 

between horizontal flip and grid distortion 1D. Still, grid distortion 1D is applied in the 

following sections, as it is applied to the CNN used on the other 3D seismic volumes. The 

effect of increased patch size during training and testing on the Efficient UNET fault 

prediction performance is shown in figure 4-6 c. Compared to the Efficient UNET with default 

hyperparameters (figure 4-6 b) the larger patch size gives better fault interpretations when it 

comes to detecting faults and making continuous interpretations, although the improvement 

is not large.   

 

Figure 4-6: Images of Inline 1055 from volume SG9202_Full_Stack in survey SG9202 comparing the performance of Efficient 
UNET with grid distortion 1D and different hyperparameters for training and testing. a) Inline 1055 without fault predictions, 

b) faults predicted by Efficient UNET (model ID: 4988) trained and tested on both inlines and crosslines with grid distortion 
1D and default hyperparameters (patch size 192 x 192, 50 training epochs and 0.3 dropout), c) faults predicted by Efficient 

UNET (model ID: 4992) trained and tested on both inlines and crosslines with grid distortion 1D, patch size 320 x 320, 50 
training epochs and 0.3 dropout, d) faults predicted by Efficient UNET (model ID: 5115) trained and tested on both inlines 

and crosslines with grid distortion 1D, patch size 320 x 320, 200 training epochs and 0.3 dropout, e) faults predicted by 
Efficient UNET (model ID: 5118) trained and tested on both inlines and crosslines with grid distortion 1D, patch size 320 x 

320, 200 training epochs and 04 dropout. 

4.1.3 Effect of Epochs During Training and Testing 
 

In search for further improvement of the Efficient UNET fault predictions, the effect of 

increasing the number of training epochs was investigated. In EarthNet the default number of 

epochs is set to 75, including 50 training epochs and 25 extra epochs. The duration of 



71 
 

training and testing was increased to 200 training epochs and 100 extra epochs, meaning 

300 epochs in total.  

The result of increasing the training epochs for Efficient UNET in seismic volume 

ST14200Z15_OBN_Full_Stack is illustrated in figure 4-4 d. Because the larger patch size 

(320 x 320 pixels) did not improve the Efficient UNET fault prediction, the original patch size 

was again used in combination with the larger number of epochs. From evaluating the fault 

prediction in figure 4-4 d it is observed that increasing the duration of training did not have 

the desired effect. The fault prediction in figure 4-4 d, is worse than the fault predictions in 

both figure 4-4 b (baseline Efficient UNET) and figure 4-4 c (320 x 320 pixels patch size). 

Again, what makes the prediction worse is poor detection of faults overall combined with 

worse continuity of individual faults and worse connectivity between fault predictions.  

On the seismic volume LN17001_Full_Stack, the increase of training epochs had a positive 

effect compared to result of seismic volume ST14200Z15-OBN. The increased number of 

epochs was applied to the training of the Efficient UNET in addition to the larger patch size, 

as the larger patch size already had a positive effect on model performance. From figure 4-5 

d a further increase in fault prediction performance from figure 4-5 c is observed. On the 

major fault of this particular section the detection and continuity in the deeper part of the 

seismic image was increased in figure 4-5 d, compared to figure 4-5 c. In the shallower part 

of the seismic the prediction in figure 4-5 c has some slightly more continuous prediction than 

figure 4-5 d, but the degree of detection is similar. Figure 4-5 d shows more detection of 

faults and a more continuous prediction for fault segments than figure 4-5 c on the smaller 

surrounding faults.  

The application of the larger patch size also had a positive effect on the fault predicting 

performance on the Efficient UNET trained and tested on 3D seismic volume 

SG9202_Full_Stack, thus the increased number of epochs was applied in addition to the 

increased patch size (figure 4-6 d). When comparing figure 4-6 c to figure 4-6 d, there is one 

reoccurring observation which is similar to the comparison of figure 4-3 c and figure 4-3 d: 

there are some slight changes in the fault predictions with regards to continuity and 

detection, but overall it is difficult to determine a performance increase.    

4.1.4 Effect of Dropout 
 

The last hyperparameter of which the effect was explored is dropout. The objective was to 

determine whether the default dropout (0.3) or a slightly higher dropout (0.4) would give the 

better fault prediction.  
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Previously none of the hyperparameter adjustments had any positive effect on fault 

predictions of Efficient UNET on seismic volume ST14200Z15-OBN. Therefor the effect of a 

higher dropout value was explored while keeping the other hyperparameter values default. 

From observing figure 4-4 e (dropout 0.4) and comparing it to figure 4-4 b (default 

parameters) we see that dropout 0.4 in similarity to the other adjusted hyperparameters had 

a negative effect on the fault predictions.  

For seismic volume LN17001_Full_Stack the higher dropout value was added to the Efficient 

UNET together with a patch size of 320 x 320 pixels and 200 training epochs, which already 

had shown a positive effect. The fault prediction of the Efficient UNET with a dropout of 0.4 is 

shown in figure 4-5 e. At first, the fault predictions in figure 4-5 d and figure 4-5 e look quite 

similar, but with some minor differences. In figure 4-5 e, the prediction of the main fault is 

similar to figure 4-5 d at larger depths, but with some differences at shallower parts. In figure 

4-5 e a somewhat better continuity is observed. Both Efficient UNET have areas in the 

section where they perform better than the other, which in total is close to equalizing the 

UNET, but with the prediction of the model in figure 4-5 d being marginally more satisfactory.     

The effect dropout 0.4 has on 3D seismic volume SG9202_Full_Stack in addition to 320 x 

320 pixels patch size and 200 epochs is illustrated in figure 4-6 e. Faults from 1300ms TWT 

and downwards are similarly predicted when comparing figure 4-6 d to figure 4-6 e. The 

difference in the predictions prominently lies in the seismic above 1300ms TWT, where the 

Efficient UNET in figure 4-6 d both has better detection and continuity in its predictions than 

the Efficient UNET in figure 4-6 e. 

In summary the adjustment of the hyperparameters presented in section 4.1.2 to 4.1.4 gave 

mixed results. In 3D seismic volume ST14200Z15_Full_Stack default hyperparameters 

remain superior. In contrast the adjustment of all hyperparameters (except dropout) 

increased the Efficient UNET performance on fault prediction on 3D seismic full stack 

LN17001. The conclusion for volume SG9202_Full_Stack is similar to LN17001_Full_Stack, 

only that the improvement is far less noticeable.   

4.1.5 Effect of Training and Testing CNN on Inlines and Crosslines 
Individually 

 

In the previous sections of this study all Efficient UNET were trained and tested on both 

inlines and crosslines in their respective seismic volumes. In addition, we attempted to train 

and test Efficient UNET individually on inlines or crosslines. The results of the fault 

predictions were compared to results from Efficient UNET that were trained and tested on 

both inlines and crosslines, but otherwise are identical (augmentation and hyperparameters). 
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The results were compared on both seismic inlines and crosslines in the respective surveys. 

In order to make the description of the results easier to follow, I refer to inline trained and 

tested, crossline trained and tested, and inline and crossline trained and tested as IL, XL, 

and IL/XL, respectively.  

Based on the conclusion from section 4.1.4, the Efficient UNET from figure 4-4 b) is used as 

a base for further comparison. Comparing the performance of IL (figure 4-7 c) and XL (figure 

4-7 d) Efficient UNET to a IL/XL Efficient UNET (figure 4-7 b) on inlines in seismic volume 

ST14200Z15-OBN_Full_Stack. It is noticeable that the IL/XL Efficient UNET is performing 

slightly better than the IL Efficient UNET, in terms of fault detection, fault continuity and 

linkage. The XL Efficient UNET is performing far worse than the two other Efficient UNET. 

 

 

Figure 4-7: Images of Inline 2985 from volume ST14200Z15_OBN_Full_Stack  in survey ST14200_OBN comparing the 
performance of Efficient UNET b) trained and tested on both Inlines (IL) and Crosslines (XL) (model ID: 4751), c) trained and 

tested only on IL (model ID: 4797) and d) trained and tested only on XL (model ID: 4798). Otherwise, the Efficient UNET have 
grid distortion 1D applied and the same hyperparameters are used for training and testing (Patch size: 192 x 192, Training 

Epochs: 50 and Dropout: 0.3). 

Completing the same comparison on crosslines in seismic volume ST14200Z15-OBN, it is 

observed that the IL Efficient UNET (figure 4-8 c) is outperforming both the IL/XL Efficient 

UNET (figure 4-8 b) and the XL Efficient UNET (figure 4-8 d), in terms of fault detection, fault 
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continuity and linkage. The largest difference between figure 4-8 b and figure 4-8 c is seen in 

the less pronounced faults. Even tough fault predictions are performed on crosslines, the XL 

Efficient UNET is being outperformed.  

 

Figure 4-8: Images of Crossline 3355 from volume ST14200Z15_OBN_Full_Stack  in survey ST14200_OBN comparing the 
performance of a Efficient UNET b) trained and tested on both Inlines (IL) and Crosslines (XL) (model ID: 4751), c) trained and 
tested only on IL (model ID: 4797) and d) trained and tested only on XL (model ID: 4798). Otherwise, the Efficient UNET have 
grid distortion 1D applied and the same hyperparameters are used for training and testing (Patch size: 192 x 192, Training 

Epochs: 50 and Dropout: 0.3). 

The comparison of fault predictions on seismic inlines in seismic volume 

LN17001_Full_Stack (figure 4-9) reveals that the IL/XL Efficient UNET (figure 4-9 b) has the 

best performance. There is no signifficant difference between the IL/XL Efficient UNET and 

the IL Efficient UNET (figure 4-9 c) fault predictions within the main fault, but the IL/XL 

Efficient UNET has better detection and more continuous predictions of the smaller 

surrounding faults. The XL Efficient UNET (figure 4-9 d) in similarity to seismic volume 

ST14200Z15_OBN_Full_Stack has the worst performance, both in sense of prediction of the 

main and surrounding faults. 
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Figure 4-9: Images of Inline 5090 from volume LN17001_Full_Stack in survey LN17001 3D survey comparing the 
performance of a Efficient UNET b) trained and tested on both Inlines (IL) and Crosslines (XL) (model ID: 4852), c) trained and 
tested only on IL (model ID: 4877) and d) trained and tested only on XL (model ID: 4878). Otherwise, the Efficient UNET have 
grid distortion 1D applied and the same hyperparameters are used for training and testing (Patch size: 320 x 320, Training 

Epochs: 200 and Dropout: 0.3). 

In figure 4-10 the same comparison as in figure 4-9 is illustrated, only for seismic crosslines 

in seismic volume LN17001_Full_Stack instead of inlines. Again, when comparing between 
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the IL/XL Efficient UNET (figure 4-10 b) and the IL Efficient UNET (figure 4-10 c), there are a 

lot of similarities in the fault predictions. But overall, the IL Efficient UNET detects greater 

portions of the larger faults while simultaneously having larger continuous fault segments. 

Otherwise, the two Efficient UNET have a similar coverage of smaller faults and fault 

segments. Similar to the other comparisons, the XL Efficient UNET (figure 4-10 d) has the 

worst performance.   

 

Figure 4-10: Images of Crossline 8030 from volume LN17001_Full_Stack in survey LN17001 3D survey comparing the 
performance of a Efficient UNET b) trained and tested on both Inlines (IL) and Crosslines (XL) (model ID: 4852), c) trained and 
tested only on IL (model ID: 4877) and d) trained and tested only on XL (model ID: 4878). Otherwise, the Efficient UNET have 
grid distortion 1D applied and the same hyperparameters are used for training and testing (Patch size: 320 x 320, Training 

Epochs: 200 and Dropout: 0.3). 
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At last, we compare IL/XL Efficient UNET to IL Efficient UNET and XL Efficient UNET fault 

predictions on 3D seismic volume SG9202_Full_Stack. The IL/XL Efficient UNET in figure 4-

11 b is compared to IL Efficient UNET (figure 4-11 c) and XL Efficient UNET (figure 4-11 d). 

First, the comparison is performed on inlines in the seismic volume where increasingly worse 

fault predictions are observed figure 4-11 b-d.  

 

Figure 4-11: Images of Inline 1055 from volume SG9202_Full_Stack   in survey SG9202 comparing the performance of a 
Efficient UNET b) trained and tested on both Inlines (IL) and Crosslines (XL) (model ID: 5115), c) trained and tested only on IL 
(model ID: 5121) and d) trained and tested only on XL (model ID: 5122). Otherwise, the Efficient UNET have grid distortion 

1D applied and the same hyperparameters are used for training and testing (Patch size: 320 x 320, Training Epochs: 200 and 
Dropout: 0.3). 

In figure 4-12 the exact same Efficient UNET are compared as in figure 4-11, only on 

crosslines instead. Similar, to figure 4-11 the IL/XL Efficinent UNET (figure 4-12 b) is 

outperforming the the two others (figure 4-12 c and figure 4-12 d). Additionally, it should be 

said that none of the models preform well on this seismic section, as very few of the faults 

are identified. Especially, the large fault pentrating almost the entire seismic section is poorly 

captured.  
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Figure 4-12: Images of Crossline 1920 from volume SG9202_Full_Stack in survey SG9202 comparing the performance of a 
Efficient UNET b) trained and tested on both Inlines (IL) and Crosslines (XL) (model ID: 5115), c) trained and tested only on IL 
(model ID: 5121) and d) trained and tested only on XL (model ID: 5122). Otherwise, the Efficient UNET have grid distortion 

1D applied and the same hyperparameters are used for training and testing (Patch size: 320 x 320, Training Epochs: 200 and 
Dropout: 0.3). 

4.1.6 Comparison between Efficient UNET and Light UNET 

Previously, the effect of different data augmentations and change of hyperparameter values 

was explored for Efficient UNET, but what happens if the same modifications are applied to 

Light UNET. To compare the performance of the two CNN model architectures, best 

performing data augmentation paired with the best combination of hyperparameter values for 

the Efficient UNET was applied to Light UNET.  
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For volume ST14200Z15-OBN none of the hyperparameter adjustments improved the 

performance of the default hyperparameters, therefore the same setup was applied to the 

Light UNET. The comparison of the two CNN architectures is visualized in figure 4-13. Both 

CNN have overall managed to detect most faults in the seismic section. Although the 

Efficient UNET (figure 4-13 b) has a higher detection ratio and is able to detect less 

pronounced fault segments. The continuity of fault predictions and connectivity of fault 

predictions is also better with the Efficient UNET, resulting in longer, connected fault 

segments compared to the Light UNET (figure 4-13 c).     

 

Figure 4-13: Images of Inline 2985 from volume ST14200Z15_OBN_Full_Stack in survey ST14200_OBN comparing the 
performance of a Efficient UNET with the performance of a Light UNET. Both models have grid distortion 1D applied and the 

same hyperparameters are used for training and testing (Patch size: 192 x 192, Training Epochs: 50 and Dropout: 0.3). a) 
Seismic without any interpretation, b) faults predicted by a Efficient UNET (model ID: 4751) and c) faults predicted by a Light 

UNET (model ID: 4829). 
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In the comparison of Efficient UNET and Light UNET on seismic volume 

LN17001_Full_Stack, grid distortion 1D in combination with patch size 320 x 320 pixels, 200 

training epochs and dropout 0.3 was used. This combination of data augmentation and 

hyperparameter values resulted in the best fault predictions for the Efficient UNET. In figure 

4-14, the comparison between the Efficient and Light UNET is shown for seismic volume 

LN17001_Full_Stack. The Light UNET in figure 4-14 c further exceeds the performance of 

the Efficient UNET in figure 4-14 b, which is identified by more coverage of the faults and 

larger interpreted and connected fault segments in general.  

 

Figure 4-14: Images of Inline 5090 from volume LN17001_Full_Stack in survey LN17001 3D survey comparing the 
performance of a Efficient UNET with the performance of a Light UNET. Both models have grid distortion 1D applied and the 
same hyperparameters are used for training and testing (Patch size: 320 x 320, Training Epochs: 200 and Dropout: 0.3). a) 

Seismic without any interpretation, b) faults predicted by a Efficient UNET (model ID: 4839) and c) faults predicted by a Light 
UNET (model ID: 4852). 

The performance of the best performing Efficient UNET (figure 4-15 b) on 3D seismic volume 

SG9202_Full_Stack (grid distortion 1D, 320 x 320 patch size, 200 epochs, 0.3 dropout) was 

compared to a Light UNET (figure 4-15 c) with identical parameters as the Efficient UNET. In 

contrast to volume LN17001_Full_Stack and in similarity to volume ST14200Z15_OBN, in 

this case the Efficient UNET is performing better than the Light UNET. The Efficient UNET in 

general predicts a significantly larger portion of the faults visible in seismic. It also manages 

to connect the predicted faults segments better, leading to more continuous predictions.  
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Figure 4-15: Images of Inline 1055 from volume SG9202_Full_Stack   in survey SG9202 comparing the performance of a 
Efficient UNET with the performance of a Light UNET. Both models have grid distortion 1D applied and the same 

hyperparameters are used for training and testing (Patch size: 320 x 320, Training Epochs: 200 and Dropout: 0.3). a) Seismic 
without any interpretation, b) faults predicted by a Efficient UNET (model ID: 5115) and c) faults predicted by a Light UNET 

(model ID: 5120). 

 

4.1.7 Model scores 

An important part of evaluating the performance of the CNN presented in sections 4.1.1 – 

4.1.6, besides visual evaluation and geological sense check of the predictions, is to monitor 

and observe the models statistical results or scores. The models are evaluated in form of 
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various metrics/validation metrics, confusion matrix/validation confusion metrics and overall 

train/test scores. In this section all scores of the several CNN are presented in table 4-1 and 

4-2. Table 4-1 gives an overview of some technical information which for the most part 

already was presented in the result sections above, such as the model type, 

hyperparameters, training/testing on IL/XL, IL or XL and data augmentation technique 

applied. In addition, validation confusion matrix scores and overall model train/test scores are 

presented. Table 4-2 is a complimentary table to Table 4-1 where additional scores from 

training/testing are included.   

The CNN with model ID 4751, 4852 and 5115 were by visual evaluation determined to the 

best performing models on 3D seismic volumes ST14200Z15-OBN, LN17001_Full_Stack 

and SG9202_Full_Stack, respectively. This decision was based on a combination of factors, 

such as the portion of detected faults, continuity of fault predictions and linkage between 

different faults. In contrast, the model scores do not consider the CNN performance with the 

same complexity, they purely consider with pixels were correctly or wrongly segmented as 

either faults or background. With that in mind, the statistical model scores are given below for 

each survey.   

4.1.7.1 Model Scores: ST14200Z15-OBN 

There is a general observation regarding CNN trained and tested on 3D seismic volume 

ST14200Z15-OBN: the one model where no data augmentation was applied (model ID 

4749), received the best train and test scores (table 4-1 and 4-2), whilst models applying 

data augmentation received significantly lower scores. These results provide a contrast to 

the results from section 4.1.1 where all models with data augmentation applied, clearly 

outperform model 4749. Model 4751, which visually had the best fault prediction 

performance, received fairly good train/test scores, although model 4749 achieved 

significantly better scores. 

4.1.7.2 Model Scores: LN17001_Full_Stack 

The scores from table 4-1 and 4-2 regarding the CNN fault predictions on 3D seismic volume 

LN17001_Full_Stack, similar to the scores from volume ST14200Z15_OBN_Full_Stack do 

not always match the observations made in sections 4.1.1 – 4.1.6. One example is figure 4-2 

where an Efficient UNET (ID 4750) without data augmentation applied, was compared to 

models with three different data augmentation techniques applied (models 4772, 4755 and 

4773). From the visual comparison and geological sense check, the fault predictions 

performed by the Efficient UNET with data augmentation applied, generally outperformed the 

model which did not apply data augmentation. This observation is not confirmed by the 

scores in table 4-1 and 4-2, as the overall train/test scores are similar and the percentage of 



83 
 

correctly interpreted faults (TF) is significantly lower for the models utilizing data 

augmentation. When hyperparameters were changed, the CNN scores improved. Model 

4839, which in addition to grid distortion 1D was trained and tested on 320 x 320 patch size 

and 200 epochs, achieved higher scores, which also is reflected by the seismic image in 

figure 4-5. Another observation is that models trained and tested on only inlines or crosslines 

(models 4877 and 4878) receive greater scores than for instance model 4839, despite similar 

or worse performance on seismic, as captured in figure 4-9 and 4-10. If model 4877 and 

4878 are ignored, model 4852 receives the best score, which is slightly better than model 

4839, which corresponds to the results from figure 4-14 in the geological sense check.     

4.1.7.3 Model Scores: SG9202_Full_Stack   

The model scores achieved by CNN trained and tested on 3D seismic volume 

SG9202_Full_Stack (figure 4-2 and 4-3), in contrast to the CNN trained and tested on the 

other 3D seismic volumes, correspond fairly well to visual observations made in seismic. 

Model 4986, where data augmentation was not utilized has a lower score than model 4987, 

4988 and 4991 were different techniques of data augmentation was applied. The model 

scores overall (with one exception), increase and decrease according to how the CNN 

performance was evaluated in sections 4.1.1 – 4.1.6. One exception in the correlation 

between the statistical model scores and the visually observed fault prediction performance 

is found with models 5121 and 5122. These two models are trained and tested only on either 

inlines or crosslines, which in similarity to the models from volume LN17001_Full_Stack, led 

to similar or higher performance ratings than some other, better performing models such as 

model 5115.   
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Table 4-1: Overview of CNN presented in the results, including the model ID, model type (architecture), central parameters that were changed, validation scores and model scores. TF = True 
Fault, TB = True Background, FF = False Fault, FB = False Background, Val=Validation. 



85 
 

Table 4-2: Complimentary table to table 4-1. Presents all test/validation scores for the CNN included in the results. The scores include all metrics, train/test (validation) scores and final model 
train/test scores. TF = True Fault, TB = True Background, FF = False Fault, FB = False Background, Val = Validation.   
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4.2 Fault Characterization using ML models  

The CNN with the overall best performance on predicting faults on 3D seismic volume 

LN17001_Full_Stack in survey LN17001 was utilized to predict and characterize minor faults 

in the damage zone of major faults along predefined scanlines. The particular CNN chosen 

for this task was the Light UNET with model ID 4852. 

4.2.1 Determination of Damage Zone Surrounding Major Faults 

For characterizing the fault damage zone, one fault in particular was chosen to be the main 

fault of interest and an array of scanlines was placed along 7 different inlines (5000, 5180, 

5360, 5540, 5720, 5900 and 6080) in the LN17001_Full_Stack seismic volume. The fault F3, 

in figure 4-16, is the major studied fault. This fault is also highlighted in figures 4-17 – 4-29. 

This fault is located within the Polhem Subplatform, west of the Jason FC and the Loppa 

High (Indrevær et al., 2016). Similar to most of the larger faults within the Polhem 

Subplatform, F3 is a N-S striking normal fault. The fact that other large faults exist within the 

chosen scanline locations cannot be ignored, as it naturally would affect the population of 

minor faults around them. These larger (major) faults are considered and highlighted 

wherever they are present in both the inlines and fault density plots in figures 4-17 – 4-29. 

For each inline, 6 additional scanlines were made at varying depths (800ms, 1300ms, 

1800ms, 2300ms 2800ms and 3300ms TWT) to capture vertical variation in addition to 

lateral variation across the fault damage zone. Along each scanline, the frequency of faults 

was calculated per kilometer to roughly determine the extent of the faults damage zone.  
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Figure 4-16: Time slice 2700ms (TWT) of 3D seismic volume LN17001_Full_Stack in survey LN17001_PSTM_FULLOFFSET with 
all 7 scanlines placed on Inline 5000, 5180, 5360, 5540, 5720, 5900 and 6080. Each scanline contains further 6 scanlines at 
different depths 800ms, 1300ms, 1800ms, 2300ms 2800 and 3300ms TWT. For reference, the Jason FC, and fault F3 (main 

fault of interest) are included. 

Both Inline 5000 (figure 4-17) and the accompanying fault frequency plots (figure 4-18), 

indicate that the populations of minor faults are affected by several larger faults in addition to 

F3. At least three other large faults (Jason FC, F1 and F2) affect the occurrence of minor 

faults crossing the scanlines in Inline 5000. Considering F3, all fault frequency plots show an 

increased frequency within 1 to 2 km horizontal distance away from the fault, except from the 

scanline at 3300ms TWT where none of the larger faults are present. For scanlines at 800ms 

TWT and 1800ms TWT, a large fault frequency increase is noticed within 1 km horizontal 

distance to F3. In addition, the population of minor faults around F3 is generally high at 

shallower depths (600-1300ms TWT) and on the hanging wall (HW) side (Summarized in 

table 4-3 and fault frequency plot figure 4-18). These observations on the fault frequency 

plots could be related to splaying of faults towards the faults tip at shallow depths, where the 

numerous minor faults branch of the major fault (figure 4-17). The minor faults close to F3 

are observed to link with it between 1300 and 1800ms TWT (figure 4-17). Generally, all 

minor faults are synthetic and form with a similar angle (dip orientation) to F3, except the two 

minor faults branching of the main fault on the footwall side, just below where the previously 

mentioned linkage occurs. These two faults appear subvertical to vertical (figure 4-17). 

From the fault frequency plots and inline 5000 (figure 4-18), both faults F1 and F2 are 

surrounded by a relatively high frequency of minor faults compared to the rest of the area. 

This applies for F1 at 1300ms TWT, and for F2 at 800ms and 1800ms TWT.  
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Table 4-3: Summarizing the quantity of all faults surrounding fault F3. The number of fault surrounding F3 given for each 
inline (5000, 5180, 5360, 5540, 5720, 5900, 6080), depth (800, 1300, 1800, 2300, 2800, 3300ms TWT) and whether they are 

located on the footwall (FW) or hanging wall (HW). NV=Fault F3 is not visible.   

 

At 800ms TWT a generally large number of minor faults is observed between the hanging 

wall of F2 and footwall of F3. From the plots (figure 4-18) and seismic image (figure 4-17) it is 

difficult to determine a boundary between the damage zones of the two faults as they seem 

to overlap, also there is about one kilometer where faults are absent, close to F3 on the 

footwall side. A cumulative fault frequency plot was created to determine the damage zone of 

fault F3. The cumulative fault frequency plot is presented in the discussion in Figure 5-2. This 

extent of the damage zone is measured where the height of fault F3 is approximately 

11,5km.  

Another observation from figure 4-17 and 4-18 is that the number of faults in general 

decreases with depth, and the decrease is drastic at depths beyond the extent of the major 

faults. Also, the depth at which faults exist increases away from the Selis Ridge. 
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Figure 4-17: Inline 5000 in 3D seismic volume LN17001_Full_Stack in survey LN17001_PSTM_FULLOFFSET with fault 
predictions from a 3D fault volume created by applying the Light UNET with model ID 4852 (Patch size: 320 x 320, Training 
Epochs: 200 and Dropout: 0,3). Scanlines 800ms, 1300ms, 1800ms, 2300ms, 2800ms and 3300ms TWT are highlighted with 
red lines, including the main fault of interest (F3). Other large faults in the seismic section are the Jason FC (Yellow dotted 

line), F1 (Blue) and F2 (Purple). 

 

Figure 4-18: Fault Frequency plots for Inline 5000 in 3D seismic volume LN17001_Full_Stack in survey 
LN17001_PSTM_FULLOFFSET. Plots a-f represent the individual scanlines ranging from 800-3300ms TWT. The Jason FC and 

the other major faults (F1, F2 and F3) are marked whenever they cross the scanline. Minor faults are grey. 
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When observing Inline 5180 (figure 4-19) and the accompanying fault frequency plots (figure 

4-20) some similarities to Inline 5000 are found. The surrounding area of F3 again shows an 

increased fault frequency at shallower depths, especially on the hanging wall side, 

representing splay towards the faults tip (figure 4-19). As in Inline 5000 linkage between the 

splaying faults and F3 may be expected, but it is not visible in the seismic image. F3 cannot 

be traced on the scanline at 1800ms TWT, but a increased population of minor faults exist 

around where the fault is expected to be located. The minor faults are antithetic, 

accommodating strain and linking the two larger fault segments located above and below the 

structure together (figure 4-19).  

On Inline 5180 the other large faults again have an increased population of minor faults in 

their surrounding area, most pronounced around F2 (figure 4-19 and 4-20). Overall, most 

faults are found towards the shallower depths, nearby F2 and F3. A spike in fault occurrence 

is noticed at the scanline at 1800ms TWT. The spike is pronounced on the hanging wall side 

of F2, where part of the fault block between F2 and F3 has collapsed. This collapse is 

characterized by faults with opposite directions of dip on opposing sides of the structure, 

forming its own small graben structure. That collapse is also highly noticeable in seismic 

inline 5000, but faults within the structure are poorly captured by the scanlines. At depths 

exceeding the visible extent of F2, the frequency of minor faults is still quite high, perhaps 

indicating the faults existence at those depths. Additionally, an increased fault frequency is 

noticed on the north-western end of the scanlines, at a significant distance away from any of 

the larger faults, especially visible in the fault frequency plots at 800, 1300 and 1800ms TWT. 

In the location of that fault population (which also contains several antithetic faults), in Inline 

5360 (figure 4-21) an additional larger fault (F5) will appear. At 3300ms TWT, the occurrence 

of faults is sparce. 
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Figure 4-19: Inline 5180 in 3D seismic volume LN17001_Full_Stack in survey LN17001_PSTM_FULLOFFSET with fault 
predictions from a 3D fault volume created by applying the Light UNET with model ID 4852 (Patch size: 320 x 320, Training 
Epochs: 200 and Dropout: 0,3). Scanlines 800ms, 1300ms, 1800ms, 2300ms, 2800ms and 3300ms TWT are highlighted with 

red lines, including the main fault of interest(F3). Other large faults in the seismic section are the Jason FC (Yellow dotted 
line), F1 (Blue) and F2 (Purple). 

 

Figure 4-20: Fault Frequency plots for Inline 5180 in 3D seismic volume LN17001_Full_Stack in survey 
LN17001_PSTM_FULLOFFSET. Plots a-f represent the individual scanlines ranging from 800-3300ms TWT. The Jason FC and 

the other major faults (F1, F2 and F3) are marked whenever they cross the scanline. Minor faults are grey.  
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On Inline 5360 (figure 4-21) some significant changes can be observed. F3 has become less 

extensive (approx. height: 7km) and no longer penetrates through the scanlines at 800, 1300 

and 1800ms TWT. F3 now penetrates deeper, past the scanline at 3300ms TWT. Generally, 

there are very few minor faults located around F3, also in the seismic above it there is an 

absence of faults, reaching all the way to the seabed. As the extent of F3 has decreased, 

especially towards shallower depths, a new larger fault is noticed (F4). A segment of F4 

overlaps with F3. F4 seems to accommodate a significant part of the strain at shallower 

depths, which in the previous inlines was accommodated by F3. In the fault frequency plots 

in figure 4-22 the highest frequencies of minor faults are now located around F4 and F2. The 

fault pattern surrounding the F4 is at shallower depths (600-1300ms TWT) similar to the 

patterns previously observed around F3, with the largest amount of faults occurring on the 

hanging wall side of the fault. No linkage can be observed between minor faults and F3 in 

seismic. The scanline at 800ms TWT in fact registers the highest frequency of faults within 

close distance to the F4. The fault frequency between F2 and the F4 at 800ms TWT is not 

significantly higher than compared to the rest of the scanline, in difference to what was 

previously observed between the F2 and F3.  

A large amount of minor faults still occurs due to the graben structure located at the hanging 

wall of F2 (figure 4-21), especially noticeable on the fault frequency plot from the scanline 

located at 1800ms TWT (figure 4-22). As mentioned in the paragraph about inline 5180, a 

second new larger fault is present on inline 5360 (F5). Towards the north-western end of the 

scanlines the increase in fault frequency occurs around that fault. The number of faults at 

large depths has to some degree increased compared to the pervious inlines, considering 

the fault frequency plot at 3300ms TWT.   
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Figure 4-21: Inline 5360 in 3D seismic volume LN17001_Full_Stack in survey LN17001_PSTM_FULLOFFSET with fault 
predictions from a 3D fault volume created by applying the Light UNET with model ID 4852 (Patch size: 320 x 320, Training 
Epochs: 200 and Dropout: 0,3). Scanlines 800ms, 1300ms, 1800ms, 2300ms, 2800ms and 3300ms TWT are highlighted with 

red lines, including the main fault of interest(F3). Other large faults in the seismic section are the Jason FC (Yellow dotted 
line), F1 (Blue), F2 (Purple), F4 (Orange) and F5 (Brown). 

 

Figure 4-22: Fault Frequency plots for Inline 5360 in 3D seismic volume LN17001_Full_Stack in survey 
LN17001_PSTM_FULLOFFSET. Plots a-f represent the individual scanlines ranging from 800-3300ms TWT. The Jason FC and 

the other major faults (F1, F2, F3, F4 and F5) are marked whenever they cross the scanline. Minor faults are grey.  
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In Inline 5540 (figure 4-23), the absence of faults above F3 remains. F4, as previously, is 

accommodating strain towards the shallower depths in place of F3. Splay towards the tip of 

the orange fault is visible. In contrast to previous observations in the seismic inlines, the 

majority of minor faults in the splay is located on the footwall of F4. Some linkage between 

minor faults and the F4 is visible. Most clearly visible in seismic is the linkage at around 

1200ms TWT between F4 and a minor fault on the hanging wall side (figure 4-23). Another 

example of linkage is observed between the scanlines at 1800ms and 2300ms TWT, where 

two antithetic faults on the footwall of F4 branch of it. Compared to Inline 5360 (figure 4-21), 

the angle of dip of F4 has increased in Inline 5540, also the dip is increasing slightly with 

depth generally forming a steeper angle to the horizontal compared to most of the 

surrounding minor faults. In comparison to F4, the angle of dip of F3 is decreasing with depth 

and forming a pronounced bend at 2500ms TWT.  

In Inline 5540, some of the fault visible in the previous inlines are no longer occurring or are 

just partly visible. For example, F1 is not occurring in Inline 5540 and F2 is only partly visible, 

which to some degree is explained by the gap in seismic coverage. Both the seismic section 

and the fault frequency plots (figure 4-23 and 4-24) show that most faults and the highest 

frequency of faults occur in the range of 800-2300ms TWT and accumulate between F2 and 

F4 or on the hanging wall side of F5. Similar to all previous scanlines, the occurrence of 

faults at large depths (3300ms TWT) is sparce. 
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Figure 4-23: Inline 5540 in 3D seismic volume LN17001_Full_Stack in survey LN17001_PSTM_FULLOFFSET with fault 
predictions from a 3D fault volume created by applying the Light UNET with model ID 4852 (Patch size: 320 x 320, Training 
Epochs: 200 and Dropout: 0,3). Scanlines 800ms, 1300ms, 1800ms, 2300ms, 2800ms and 3300ms TWT are highlighted with 
red lines, including the main fault of interest (F3). Other large faults in the seismic section are the Jason FC (Yellow dotted 

line), F2 (Purple), F4 (Orange) and F5 (Brown). 

 

Figure 4-24: Fault Frequency plots for Inline 5540 in 3D seismic volume LN17001_Full_Stack in survey 
LN17001_PSTM_FULLOFFSET. Plots a-f represent the individual scanlines ranging from 800-3300ms TWT. The Jason FC and 

the other major faults (F2, F3, F4 and F5) are marked whenever they cross the scanline. Minor faults are grey. 
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Due to the sparce coverage of the seismic survey on Inline 5720, it is difficult to analyze 

proper results from the first 10km of the scanlines and seismic image (figure 4-25). The 

absence of seismic is also a continuing issue for Inlines 5900 (figure 4-27) and 6080 (figure 

4-29). Considering F3, the height of the fault is reduced drastically (approx. height: 3,5km) to 

the point where it is only crossing the scanline at 2800ms TWT. The fault frequency around 

the F4 has decreased, especially at shallower depths (figure 4-25 and 4-26). Some minor 

faults are still forming a splay towards the tip of the orange fault in the hanging wall without 

any visible linkage (figure 4-25). 

Generally, most minor faults are located on the hanging wall side of F5. Moving southeast an 

absence of faults is noticed, as in inlines 5360 and 5540. A high frequency of faults is also 

observed around what is interpreted to be F2, but due to poor seismic coverage it is difficult 

to exactly identify the fault or properly interpret the population of faults around it.  

In Inline 5900 in figure 4-27, it is noticeable that F3 slightly has increased in height (approx. 

height: 5km) compared to Inline 5720. F4 is surrounded by significantly more minor faults 

than F3 which is visible on seismic and in the fault frequency plots in figure 4-28, 800-

2300ms TWT. The number of minor faults surrounding the F4 is most significant towards the 

shallower depths, represented by the scanline at 800ms TWT. Also noticeable from the 

800ms TWT scanline is that most fault are located close to F4, splaying towards it (figure 4-

27). No minor faults are within immediate distance of F3. One major difference from Inline 

5720 is that F5 has decreased in height, but still a lot of minor faults exist both above and 

NW of F5.  
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Figure 4-25: Inline 5720 in 3D seismic volume LN17001_Full_Stack in survey LN17001_PSTM_FULLOFFSET with fault 
predictions from a 3D fault volume created by applying the Light UNET with model ID 4852 (Patch size: 320 x 320, Training 
Epochs: 200 and Dropout: 0,3). Scanlines 800ms, 1300ms, 1800ms, 2300ms, 2800ms and 3300ms TWT are highlighted with 

red lines, including the main fault of interest(F3). Other large faults in the seismic section are F2 (Purple dotted line), F4 
(Orange) and F5 (Brown). 

 

Figure 4-26: Fault Frequency plots for Inline 5720 in 3D seismic volume LN17001_Full_Stack in survey 
LN17001_PSTM_FULLOFFSET. Plots a-f represent the individual scanlines ranging from 800-3300ms TWT. The Jason FC and 

the other major faults (F2, F3, F4 and F5) are marked whenever they cross the scanline. Minor faults are grey. 
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Figure 4-27: Inline 5900 in 3D seismic volume LN17001_Full_Stack in survey LN17001_PSTM_FULLOFFSET with fault 
predictions from a 3D fault volume created by applying the Light UNET with model ID 4852 (Patch size: 320 x 320, Training 
Epochs: 200 and Dropout: 0,3). Scanlines 800ms, 1300ms, 1800ms, 2300ms, 2800ms and 3300ms TWT are highlighted with 
red lines, including the main fault of interest(F3). Other large faults in the seismic section are F4 (Orange) and F5 (Brown). 

 

Figure 4-28: Fault Frequency plots for Inline 5900 in 3D seismic volume LN17001_Full_Stack in survey 
LN17001_PSTM_FULLOFFSET. Plots a-f represent the individual scanlines ranging from 800-3300ms TWT. The Jason FC and 

the other major faults (F3, F4 and F5) are marked whenever they cross the scanline. Minor faults are grey. 
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In scanline 6080 (figure 4-29), in general less faults are visible than in the previously 

observed scanlines. F3 (approx. height: 2,7km) and F5 are very short, and there are no 

minor faults surrounding them. F4 is the feature of most significance in these sections of 

scanlines. Both, in terms of height and minor surrounding faults, repeatedly observing that 

the majority of minor faults are found as a splay towards the upper tip of the fault (see 

scanline at 800ms TWT). In the seismic section at 1800ms TWT a population of minor faults 

can be observed without any immediate relation to a larger fault. As there are few faults 

visible in Inline 6080 the fault frequency plot is left out.   

 

Figure 4-29: Inline 6080 in 3D seismic volume LN17001_Full_Stack in survey LN17001_PSTM_FULLOFFSET with fault 
predictions from a 3D fault volume created by applying the Light UNET with model ID 4852 (Patch size: 320 x 320, Training 
Epochs: 200 and Dropout: 0,3). Scanlines 800ms, 1300ms, 1800ms, 2300ms, 2800ms and 3300ms TWT are highlighted with 
red lines, including the main fault of interest(F3). Other large faults in the seismic section are F4 (Orange) and F5 (brown). 
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5 Discussion 

5.1 Fault Interpretation with Deep Learning 

In this part of the discussion, the role of data augmentation and different types of 

augmentation filters will be discussed. Then the affect of network and hyperparameters on 

the quality of the predicted faults will be discussed.  

During the process of finding suiting parameters for grid distortion 1D and elastic 

transformation 1D presented in table 3-1 it became clear that the data augmentation 

parameters need to be chosen carefully to improve fault predictions. The results for the three 

surveys studied in this thesis indicate that small geometric transformations are preferred. The 

changes must be large enough to implement more diversity to the training data. Larger 

changes in the seismic data caused by grid distortion 1D or elastic transformation 1D can 

generate images that have significant differences from the geological setting of the survey 

study area. Heavily exaggerated parameters will cause highly unrealistic geological 

structures. The effect different data augmentation parameters have on the scores of on CNN 

during the process of finding optimal parameters is provided in table 8-1 and 8-2 in the 

Appendix. There is very little published literature about the application of data augmentation 

on seismic interpretation. Wu et al. (2019) applied flipped images to their seismic data when 

training their CNN, but until this point no work on the application of other geometric 

transformation techniques on seismic such as grid distortion or elastic transformation is 

published. Data augmentations that have been applied in other semantic segmentation tasks 

can be adopted for ML seismic interpretation. For example in the field of medical research 

several data augmentation techniques have been applied to semantic segmentation problem 

with success (e.g. Frid-Adar et al., 2018). 

The application of data augmentation in terms of simple geometric transformations, like 

horizontal flip, grid distortion 1D and elastic transform 1D on Efficient UNET compared to the 

exact same networks without data augmentation provide a solid base for discussion. From 

the results, it appears that the model score cannot always be used as a criteria to verify the 

performance of the trained models. In several cases in this study some models achieve lower 

scores compared to certain other models, whilst the geological visual check of the models 

performance would expect the opposite to be true. This observation is linked to models 

trained and tested on non-augmented seismic vs. models trained and tested on data 

augmented cases. In general, models that were trained and tested without any data 

augmentation tend to achieve higher scores than models trained and tested on augmented 

seismic. Although, in visual comparison data augmented CNN usually have the better 

predictions. In seismic volume ST14200Z15_OBN_Full_Stack this observation is very 
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prominent: in figure 4-1, all augmentations (figure 4-1 c, d, e) improve the performance of the 

model significantly compared to figure 4-1 b where data augmentation is not applied, which is 

in clear contrast to what the scores of the respective models in tables 4-2 and 4-3 indicate. 

This observation is also made in the two other seismic volumes although the contrast is not 

that large as in volume ST14200Z15_OBN_Full_Stack, which is plausible as the effect of 

data augmentation on fault predictions on those two volumes initially is less significant. The 

effect of data augmentation is greater when the data quality is better. This observation is 

important and can be used in ML imaging of faults to enhance the trained model 

performance. The generally lower model scores related to data augmentation may be caused 

by the increase of training and testing data, increasing the room for error. The performance 

of data augmented models on seismic despite the lower scores is still better as they 

experienced more diversity during training. As discussed earlier the ML metric (F1 score or 

confusion matrix of test and train data) is not alone the best criteria for model performance 

quality check. In addition, geological sense check on unseen slices have to be used to 

evaluate the quality of trained models.  

In addition to data augmentation the adjustment of hyperparameters in the train and test 

structure of the CNN is important. The results of this study show that changing the values of 

hyperparameters such as number of epochs, patch size and dropout has varying effects on 

CNN, depending on which seismic volume they were utilized on. The three different 3D 

seismic volumes of this study have different characteristics in terms of resolution, quality 

(noise), size, and fault geometries and dimensions. The differences in the 3D seismic 

volumes are reflected in the fault prediction performance of the CNN, revealing different 

limitations or problems for each seismic volume. Such limitations or problems are poor 

continuity or segmentation of fault predictions due to the large size of some faults, and 

sparce coverage of predicted faults caused by noise in the seismic.  

As mentioned earlier in the discussion, data augmentation improved the CNN fault prediction 

more significantly on volume ST14200Z15_OBN_Full_Stack, than on volume 

LN17001_Full_Stack or SG9202_Full_Stack. This can be partly related to the quality of the 

data as the level of noise is quite low. In addition, seismic volume 

ST14200Z15_OBN_Full_Stack contains generally rather small faults (e.g. figure 4-4) 

compared to seismic volume LN17001_Full_Stack comprising larger faults (e.g. figure 4-5). It 

is in general harder to capture the full length of the very large similar to the example in the 

LN17001 survey. These larger faults in volume LN17001_Full_Stack probably cause issues 

to the deep learning architecture, resulting in a lower percentage of faults detected compared 

to volume ST14200Z15_OBN_Full_Stack. As default, the model uses patches of size 192 x 

192 pixels that are fed to the network, which may cause the network to struggle with the 
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identification of larger faults as continuous. The implementation of a larger patch size (320 x 

320 pixels) improved on the performance on the LN17001_Full_Stack, probably because 

larger portions of faults are fitted within the same patch.  

In this comparison, in addition the sampling interval of the seismic volumes should be 

considered. The sampling interval corresponds to the vertical length of pixels in the seismic 

images. Volumes ST14200Z15_OBN_Full_Stack has a 4ms sampling interval (vertical), 

whilst volume LN17001_Full_Stack and SG9202_Full_Stack both have a 2ms sampling 

interval (vertical). Applying the patch size to our sampling intervals for seismic volume 

ST14200Z15_OBN_Full_Stack a 192 x192 pixel patch size and 320 x 320 patch size 

correspond to a 768ms x 192 patch size and 1280ms x 320 patch size, respectively. For the 

two other seismic volumes the same patch sizes correspond to a 384ms x 192 patch size 

and 640ms x 320 patch size, respectively. For better visualization figure 5-1 demonstrates 

the extent of each patch size on the three 3D seismic volumes.     

 

Figure 5-1: Visualization of the how the patch sizes 192 x 192 pixels (blue box) and 320 x 320 pixels (red box) relate to 3D 
seismic volumes ST14200Z15_OBN_Full_Stack, LN17001_Full_Stack and SG9202_Full_Stack, and the size of existing faults.   
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Increasing the training epochs from 50 to 200 in addition to the larger patch size (320 x 320 

pixels, figure 4-5 c) increased the Efficient UNET fault prediction performance on 3D seismic 

volume LN17001_Full_Stack (figure 4-5 d). The Efficient UNET improvement in the 

increased training epoch case, may be a result of reduced overfitting. This is not indicated by 

the difference between loss and validation loss in table 4-3. In contrast increasing the 

number of training epochs had a negative effect on the Efficient UNET fault prediction 

performance on seismic volume ST14200Z15_OBN_Full_Stack (figure 4-4 d). Possibly, the 

Efficient UNET does not require the same duration of training to learn the seismic patterns in 

volume ST14200Z15_OBN_Full_Stack as in volume LN17001_Full_Stack and therefore 

learns irrelevant patterns and thus starts overfitting.  

Generally, in all three models it is noticed that the increase of dropout from 0.3 to 0.4 if any, 

has a negative effect on the Efficient UNET fault prediction performance, indicating that 

randomly zeroing out additional neuron activation values during the training process is not 

beneficial.   

Observations made on seismic volume SG9202_Full_Stack provide contrast to observations 

made in the two other seismic volumes of this study. Whilst data augmentation in some sort 

showed quite noticeable improvement on the fault predictions of CNN on seismic volume 

ST14200Z15_OBN_Full_Stack and LN17001_Full_Stack, data augmentation had only the 

slightest improvements on volume SG9202_Full_Stack. This is also the case for adjustment 

of hyperparameters. This is most likely caused by the poor quality of the seismic images of 

volume SG9202_Full_Stack compared to the two other volumes. The seismic data in volume 

SG9202_Full_Stack is generally noisy making it difficult to detect faults. This may further 

indicate that data augmentation is not suited for improving CNN fault predictions on noisy 

seismic data.  

5.2 Fault Characterization using ML predicted faults 

When detecting, analyzing and characterizing geological features in seismic such as faults, 

the resolution of the seismic data in many cases is a limiting factor. Seismic resolution 

generally limits the level of available details. In contrast, outcrop studies provide the 

possibility of more detailed small-scale analysis (Walsh and Watterson, 1988; Shipton et al., 

2006; Wibberley et al., 2008; Bastesen et al., 2013; Childs et al., 2009). On the other hand, 

the advantage of using 3D seismic data to characterize faults is the ability to provide a better 

overview of the faults as part of a fault system as well as a 3D structure of individual faults at 

seismic scale. In addition, the seismic volume LN17001_Full_Stack in survey LN17001 3D 

survey is collected using TopSeis-technology. This results in higher seismic resolution (8.33 

m inline spacing and 6.25 m crossline spacing) compared to traditional full stack seismic 
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technology such as the two other seismic surveys (12.50 m inline and crossline spacing) 

utilized in this study. TopSeis-technology improves the clarity of seismic images, improving 

the resolution for tasks such as characterizing faults and their damage zone compared to 

previous seismic methods.    

Seismic resolution is not the only factor limiting detail. In addition, the length of the chosen 

scanlines for the task of fault characterization only allows to characterize to a certain amount 

of detail. Due to the extent of the seismic survey and the large dimensions (faults reach 

heights of at least 12 km) of the major faults present (referring to F1, F2, F3, F4 and F5), in 

this area of specific interest, is it making sense to choose scanlines and intervals that match 

these dimensions. For instance, the dimensions of the scanlines (>20 km length) and the 

intervals in the fault frequency plots have to be fitted to the seismic resolution. Meaning that 

the spacing of intervals needs to be appropriate with respect to the spacing between faults 

occurring in the seismic images, thus 1 kilometer fault frequency plot spacing was chosen. 

This spacing limits the level of precision of the fault frequency plots when it comes to 

determining the characteristics such as the extent of the fault damage zone. On the other 

hand, increasing the precision of the fault frequency plots by reducing the interval spacing, 

reduces the number of registered faults and therefore their frequency. The inaccuracy of the 

fault frequency plot is demonstrated in figure 5-2. The damage zone of F3 on Inline 5000 

(800ms TWT) is determined by the use of a cumulative fault frequency plot, visualizing the 

damage zone of the fault with a grey background. The cumulative fault frequency plot is 

suggesting the total width of the damage zone to be 4 km. The damage zone is asymmetric 

and wider on the footwall (FW). We manage to determine the fault damage zone on a km-

scale, but not more precise than that.   

 

Figure 5-2: Diagram from Inline 5000 (800ms TWT) in 3D seismic volume LN17001_Full_Stack. The diagram is combining 
fault a frequency plot (in columns) with a cumulative fault frequency plot (dots). In the cumulative fault frequency plot the 
number of faults increases away from F3 on either side. The black lines indicate the change in slope for the cumulative plot. 

The estimated damage zone of F3 is marked in grey. FW = footwall. HW = hanging wall.  
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6 Conclusions 

This study explores the use of deep learning for identification and characterization of faults 

as a supervised binary segmentation problem on three separate 3D seismic volumes from 

different seismic surveys located on the Norwegian Continental Shelf. The 3D seismic 

volumes cover different characteristics in terms of fault geometries, scales and seismic data 

quality. In this study I utilized Efficient UNET and Light UNET CNN, derived from the UNET 

CNN architecture originally developed for semantic segmentation tasks in the field of medical 

research. Mainly, this study was conducted for the purpose of two things 1) exploring how 

the application of data augmentation to training data and the adjustment of hyperparameter 

values during the learning process of CNN would affect the fault identification performance, 

and 2) Extracting fault statistics from ML predicted fault probability volumes to characterize 

some of the imaged faults and study the link between distribution of smaller faults around 

larger faults. We conclude this study with the following remarks:  

• Appropriate adjustment of parameters controlling the degree of geometric 

transformation applied by the data augmentation techniques to the seismic training 

data, sets a solid base for the CNN fault prediction quality.  

• Data augmentation in general improved the CNN capacity, thus improving fault 

predictions. Improvement was commonly noticed by performing visual checks of the 

fault predictions in seismic, while the model scores generally either indicated worse 

or hardly noticeable improvement when data augmentation was applied to CNN.  

• The quality and characteristics of the seismic data plays a significant role, controlling 

the amount of improvement data augmentation can give the CNN fault predictions. 

The adjustment of hyperparameters can additionally improve the CNN fault 

prediction, although the improvement of fault predictions is significantly limited by 

poor seismic quality.  

• Characterizing faults imaged through deep learning in seismic data provides a data 

driven source of fault distribution.  

• In the specific LN17001_Full_Stack 3D seismic volume characterization of fault 

geometries and the width of fault damage zone was possible while utilizing CNN fault 

predictions. Although, precision was limited by the large scale of faults, scanlines and 

interval spacing of the fault frequency plots.   
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8 Appendix  
Table 8-1: Overview of all CNN models made during this study, including the model ID, model type (architecture), central parameters that were changed, data augmentation parameters, 

validation scores and model scores. TF = True Fault, TB = True Background, FF = False Fault, FB = False Background. 
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Table 8-2: Complimentary table to table 8-1. Presents all test/validation scores for all CNN made during this study. The scores include all metrics, train/test (validation) scores and final model 
train/test scores. TF = True Fault, TB = True Background, FF = False Fault, FB = False Background, Val = Validation.   
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