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Abstract

In natural dialogue between humans, non-sentential utterances (NSUs), also

known as fragments, frequently occur. These utterances do not have the form

of a complete and grammatically correct sentence, but still convey the meaning

of one, when inferred from the previous dialogue context. Due to the frequency

of these utterances in human conversation, dialogue systems such as Question

Answering (QA) systems, needs to be able to infer the meaning of NSUs in order

to converse with humans in a natural and coherent manner.

This thesis presents several experiments that try to analyze neural language

models’ ability to infer NSUs in dialogue, which is an important step towards

creating complete dialogue systems. Language models based on the transformer

architecture (Vaswani et al. 2017), were used to classify NSUs based on

the taxonomy and corpus presented by (R. R. Fernández 2006). Previous

classification methods used automatically extracted features from annotated

data, while the language models only have access to raw text. However, the

language models was not able to achieve the same performance as previous

methods, though the ones used are relatively small, containing “only” 110M-

117M parameters, compared to other existing language models that can contain

several Billion parameters.

This thesis then analyzes the NSU and the contextual information i.e. the

previous utterances of the NSU, using feature attribution. It shows that, in

general, the tokens of the NSU get attributed higher scores than the tokens in

the contextual information.

Finally, the thesis presents a multiple-choice QA benchmark dataset, with

conversations containing one or multiple NSUs. The questions posed in the

context of a conversation have multiple associated choices, where only one

is correct. This dataset was tested on multiple language models trained on

UnifiedQA-v2 (Khashabi, Kordi, and Hajishirzi 2022) format. There were huge

improvements with the increase in numbers of parameters, and the largest model

containing 11B parameters was able to achieve an accuracy of only 6.3% lower

than that of humans.
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Chapter 1

Introduction

In natural dialogue between humans, utterances in form of incomplete sentences

often take place. These utterances, called non-sentential utterances (NSUs), also

known as elliptical utterances or fragments, do not have the form of complete

sentences. However, NSUs can be inferred from the previous dialogue context,

which makes them convey full sentential meaning, often in form of a question,

a proposition, or a request. Hence, when NSUs are used in conversation, the

meaning of such utterances are tightly coupled with its conversational context.

Below we have listed some dialogue transcripts from the British National Corpus

(BNC) (Burnard 2000), where the last utterance (in bold), is a NSU:

(1) A: Are you right or left handed?

B: Right handed. [BNC: G3Y 96 – 97]

(2) A: I wonder if that would be worth getting?

B: Probably not. [BNC: H61 81 – 82]

(3) A: It’s Ruth’s birthday.

B: When? [BNC: KBW 13116 – 13117]

Above (3), we see that "When?" is an utterance to the statement "It’s Ruth’s birth-

day.". By itself it does not convey much meaning, and it would be impossible to

decipher without taking into account the previous statement. The previous utter-

ance(s), called contextual information, needs to be used in order to understand that

person B is asking for further information about the previous statement. The ut-

terance "When?" could be paraphrased to the complete sentence "When is Ruth’s

birthday?", which is called to resolve the NSU. For neural language models the re-

solved sentence is usually easier to interpret than a NSU. Humans, however, use

NSUs all the time without even thinking about them and we do have to resolve
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NSUs in order to comprehend such utterances.

We can consider example (4), which is a multi-turn dialogue containing multiple

NSUs throughout the conversation1.

(4) a. A: When will our party be held?

b. B: Next Wednesday.

c. A: Have you sent out invitations by our party?

d. B: Yes, I have.

e. A: When?

f. B: Ten days ago.

g. A: Would Dr. Cole like to attend the party?

h. B: Yes, he will.

i. A: That’s fine.

In example (4), we can see that there are in total 6 NSUs including 4b, 4d, 4e,

4f, 4h, and 4i. Most NSUs can be inferred using their preceding utterance, such

as 4h, but other would need also consider utterances several turns away from the

NSU. For understanding what the question “When?” (4e) is asking for, we would

need not only to consider its previous turn, but also the turn 4c.

1.1 Motivation

Recently, we have seen significant improvements in natural language processing

(NLP) and natural language understanding (NLU) tasks, with the introduction

of pre-trained language models that creates contextualized word embeddings.

Language models such as ELMo (Peters et al. 2018), BERT (Devlin et al. 2019),

GPT-2 (Radford, Wu, et al. 2019), and others, have replaced feature-based models

and creates word embeddings based on a words position and context in a text.

Especially the models based on the Transformer architecture (Vaswani et al.

2017), e.g. BERT and GPT, have become the state-of-the-art in many tasks. These

models are pre-trained on a large corpora of raw text, like Wikipedia and Book-

Corpus (Y. Zhu et al. 2015), using unsupervised learning and has scored high on

language understanding benchmark such as GLUE (Wang, Singh, et al. 2018) and

SuperGLUE (Wang, Pruksachatkun, et al. 2020).

1example is from the DailyDialog corpus (Y. Li et al. 2017)
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Our main research question is; to what degree are neural language models able

to interpret NSUs in dialogues? As this is an open question we present several

methods to try and answer this. One such method is the classification of NSU.

This gives rise to another question, which is; is the NSU or the contextual

information most important for classifying NSUs in dialogue? We will be using

different language models for different tasks including BERT, DialoGPT (Zhang

et al. 2020), and T5 (Raffel et al. 2019) from Khashabi, Kordi, and Hajishirzi (2022).

Lastly, I think it is important to highlight the use of terms like understanding, or

comprehending. As Bender and Koller (2020) points out, there is a tendency to

use imprecise language when talking about language models. These terms are

what they call “gross overclaims” when they are used to describe understanding

and comprehension in a human-analogous way. Whether language models have

the capability to “understand” meaning of natural language is still an ongoing

debate (Bender and Koller 2020; Merrill et al. 2021; Michael 2020; Potts 2020), but

it will not be discussed further. The term interpret, when used in the context of

language models, will not be in terms of a language models’ “understanding” of

the meaning behind NSUs, but rather to which extent they are able to solve a task

at hand given NSUs in dialogue.

1.2 Results

This thesis presents several methods for testing and evaluating the abilities of

transformer based language models to infer NSUs in dialogue. The results from

the 3 tasks are summarized below.

Classification

We use BERT and DialoGPT for to classify NSUs, using only the raw text

from dialogues. To be able to classify NSUs in dialogue, some linguistic

properties needs to be extracted from the both the NSU and the contextual

information. The empirical results from the classification is lower than

the results achieved by previous methods, however, the classification task

presented is more difficult than previously done. Both language models are

able perform reasonably well, hence, we can expect the contextualized word

embeddings to contain some encoded information allowing the NSUs to be

classified.

Feature Attribution

Extending the work previous task, we calculate feature attribution on
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language models trained on the classifying NSUs. We show that the

individual tokens of the NSUs generally gets higher attribution scores than

the individual tokens of the contextual information. However, the contextual

information as a whole gets slightly higher attribution scores than the NSU.

Question Answering

We present a multiple-choice Question Answering benchmark dataset, which

contains conversations, question posed in context to these, and accompanied

by multiple choices. This dataset will be available for further research

and experimentation. We test 5 different T5 language models, trained on

UnifiedQA-v2, on this dataset in a zero-shot setting, and empirically show a

significant increase in performance as the number of parameters of the model

increases.

1.3 Thesis outline

Chapter 2

This chapter contains background information of concept, resources, and

methods needed in order to get a good understanding for this project. We

will give an overview of NSUs and present their taxonomy, as well as previous

methods that has been used for classifying and resolving these. We explain the

transformer architecture and some of the language models that are using this,

and detail some methods used for interpretability of such models. Finally, we

will introduce several problem and methods in Question Answering.

Chapter 3

This chapter presents the task of classifying NSUs, and apply the transformer

based language models, BERT and DialoGPT, on this task. It provides

empirical results and compares them to a baseline using non-contextualized

word embeddings, and to previous classification methods. Then we use feature

attribution on our models trained on the classification task, to try to compare the

NSU versus the rest of the dialogue, but will also view some attribution scores of

synthetic dialogues.

Chapter 4

This chapter presents a multiple-choice QA benchmarking dataset. The dataset

contains conversations with questions posed in context of these, with multiple

4



associated choices. We test T5 (Raffel et al. 2019) language models, trained on

the UnifiedQA format (Khashabi, Kordi, and Hajishirzi 2022), on this benchmark

dataset. There are 5 models in total with different number of parameters varying

from 60M to 11B.

Chapter 5

This chapter contains the summarization of the outcomes in this thesis, while

describing some directions in which this work can be extended.

5
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Chapter 2

Background and previous work

In this chapter we will introduce the taxonomy of non-sentential utterances that

we will be using forward, and different approaches that has been done for

classifying and resolving these. We will continue by explaining some of the

current language model architectures as well as exploring some of the methods

for interpretability of these models. Finally, we will introduce the Question

Answering problem with different tasks and datasets within this research area.

Though it’s assumed that the reader has some understanding in fields such as

machine learning and natural language processing (NLP), we will explain the

background assumptions required for this project. Since we touch upon several

topics within NLP we will only explain some parts in detail and give an overview

of others. The purpose is to establish a sufficient level of background knowledge

for the coming chapters as well as understanding previous related work in the

field.

2.1 Non-Sentential Utterances

As NSUs do not have the form of a full sentence its semantic meaning must be

inferred from the surrounding context. NSUs do, however, convey the meaning

of a complete sentence, usually in the form of a question or proposition. In

dialogue the most important contextual factor for understanding the meaning

of a NSU is the antecedent of the NSU, i.e. the contextual utterance used for

the resolution of the fragment. Usually the antecedent is adjacent to the NSU,

meaning that it is the immediate preceding utterance in the dialogue history.

However, this is not always the case, especially for NSUs like short answers, the

antecedent can appear several turns away from the NSU. This makes it difficult

for a language model to identify which of the utterances in history that is the

actual antecedent of a NSU.

7



2.1.1 Taxonomy of NSUs

Much work relating to NSUs and their taxonomies has been done by Fernandez

and Ginzburg (2002) and Schlangen (2003), but earlier work of taxonomies does

exist. Carberry (1990) categorizes NSUs based on the speaker’s plan and inten-

tion. Another who also relies heavily on intentions for the classification of NSUs

is Barton (1990) who distinguishes the NSUs based on the inference needed for

their resolution. In Asher (2003), the author presents a dynamic semantic frame-

work called Segmented Discourse Representation Theory (SDRT) where both dis-

course coherence and interpretation is explored in a logical approach. Schlangen

shapes his taxonomy based on SDRT to develop the resolution of NSUs. R. R.

Fernández (2006) has written a more detailed comparison of the classes where

the author also analyzes these taxonomies more closely.

The taxonomy of NSUs we will be using forward is provided by Fernandez

and Ginzburg (2002), and further refined by R. R. Fernández (2006), it contains

a total of 15 classes. There are some fragments that fall outside these classes

like greetings and closings e.g. "Hello" and "Bye". The 15 classes can be further

divided into 5 families as viewed in table 2.1.

2.1.2 The NSU classes

Below are the 15 classes, containing a somewhat informal definition with exam-

ples1. A formal definition of each class with more details is written by R. R.

Fernández (2006).

Plain Acknowledgement: utterances that signal that a previous utterance was

understood or accepted, like "yeah", "mhm", "ok".

A: We should get off and interview Anna.

B: Oh yes. [BNC: KP4 4079 – 4080]

A: Cos you’ve already saved it.

B: Right. [BNC: G4K 206 – 207]

Repeated Acknowledgement: responses that repeat a part of the antecedent and

are used as acknowledgement.

A: She was questioning.

1examples are (mostly) from the British National Corpus (BNC), and are classified by R. R.
Fernández.
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B: Questioning yes. [BNC: JYM 282 – 283]

Clarification Ellipsis (CE): utterances indicate some sort of understanding

problem, and the desire for clarification of the antecedent.

A: Where was this?

B: Oh what we call Waterhall.

A: Waterhall?

B: Yeah, where you come down that

hill from the boy’s grave. [BNC: HDH 46 – 49]

A: What about in days gone by?

B: What?

A: What about in days gone by? [BNC: HDH 350 – 352]

Direct sluice: these utterances do not ask for clarification, like the CE wh-phrases,

they ask for further information that was explicitly or implicitly uttered in the

antecedent.

A: Well you made him sound really, really boring.

B: Why? [JSN 194 – 195]

A: Who did you interview?

B: Benjamin.

A: When?

B: Last night. [BNC: KE0 138 – 141]

Check question: short queries that request explicit feedback from the addressee.

The requested feedback is usually either if the addressee has understood a

previous utterance or agrees with it.

A: So <pause> I’m allowed to record you.

Okay?

B: Yes. [BNC: KSR 5 – 7]

Short Answer: answers or responses to wh-questions.

A: How long would you camp up there?

B: For about a week. [BNC: H5G 39 – 40]

Plain Affirmative Answer: utterances, in the form of yes-words, that are used to

give an affirmative answer to a polar question.

9



A: Have you got a blank on there that’s not written on?

B: Yes. [BNC: J8D 94 – 95]

Repeated Affirmative Answer: these utterances give an affirmative answer to a

polar question, but they contain a response that repeats or reformulates a part of

the query.

A: Did you shout very loud?

B: Very loud, yes. [BNC: JJW 571 – 572]

Propositional Modifier: modal adverbs that act as a response to a contextual

proposition from either an assertion or polar question, which it modifies.

A: I wonder if that would be worth getting?

B: Probably not. [BNC: H61 81 – 82]

A: We could hear it from outside.

B: Oh you could hear it?

A: Occasionally yeah. [BNC: J8D 13 – 15]

Plain Rejection: utterances that are used to give an answer to a polar questions

using rejections like no.

A: Do you want some wine?

B: No.

Helpful Rejection: utterances that are negative answers to polar questions or

assertions, and the rejection is accompanied with a contrasting alternative. They

are used to correct some piece of the antecedent with an alternative.

A: How much do you think?

B: Three hundred pounds.

C: More.

B: A thousand pounds.

A: More. [BNC: G4X 44 – 48]

A: I thought he said fifty.

B: Oh no, fifteen. [BNC: J9A 376 – 377]

Factual Modifier: utterances that add information or modify some contextual

available entity. They act as a response to a contextually presupposed fact, a

factual adjectives, and can be thought of as an extension or continuation of the

dialogue.
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A: There’s your keys.

B: Oh great! [BNC: KSR 137 – 138]

A: He goes here there and everywhere.

B: Marvelous! [BNC: KSR 175 – 176]

Bare Modifier Phrase: utterances that behave like adjuncts, modifying a

contextual utterance, hence add/modify information of antecedent.

A: ... they got men and women in the same dormitory!

B: With the same showers! [BNC: KST 992 – 996]

Conjunct: extend previous utterances by conjunction.

A: Alistair erm he’s, he’s made himself coordinator.

B: And section engineer. [BNC: H48 141 – 142]

Filler: utterances that fill a previous unfinished utterance.

A: [...] would include satellites like erm

B: Northallerton. [BNC: H5D 78 – 79]

2.1.3 Corpus Studies of Fragments

Earlier corpus studies of fragments found that NSUs make up the following rates:

R. R. Fernández (2006) found 9%, Fernandez and Ginzburg (2002) found 11.15%

and Schlangen and Lascarides (2003) found that 10.2% of the studied corpus were

fragments. More recently, Su et al. (2019) found that in 2,000 Chinese multi-turn

conversations, 70% of them had some degree of co-reference and/or omission.

This study was done on 2,000 Chinese multi-turn conversations. Chinese is

a pro-drop language i.e. a language where certain classes of pronouns may

be omitted when they can be inferred grammatically or pragmatically. Hence,

pro-drop languages, like Chinese or Japanese, will contain more omissions than

English. Though co-reference does not imply a NSU, omission predominantly

does. This gives us a sense of the importance of NSUs in our natural language.

R. R. Fernández (2006) also discusses where antecedents usually appear in the

dialogue compared to the NSU and generally it is the immediately preceding

utterance. Nevertheless, there are significant differences between the NSU classes

and also in dialogue (between two parties) and multilogue i.e. dialogue between

multiple parties. Larger distance between the antecedent and the NSU almost

only appear in multilogue for Short Answer.
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Family Class

Acknowledgements • Plain Acknowledgement

• Repeated Acknowledgement

Questions • Clarification Ellipsis

• Direct Sluice

• Check Question

Answers • Short Answer

• Plain Affirmative Answer

• Repeated Affirmative Answer

• Propositional Modifier

• Plain Rejection

• Helpful Rejection

Extensions • Factual Modifier

• Bare Modifier Phrase

• Conjunct

Completions • Filler

Table 2.1: Overview of the NSU taxonomy

2.1.4 NSU Corpus

Little annotated data for NSUs exists, but one corpus study was done by

Fernandez and Ginzburg (2002) and later refined by R. R. Fernández (2006)

and R. Fernández, Ginzburg, and Lappin (2007), where they found NSUs in

conversations and labeled them. This study is composed of an annotated dataset

of 1283 NSU instances from the BNC corpus. The conversations are both between

two people (dialogue) and between more than two people (multilogue). The

sub-corpus of BNC, which was examined, contains a total of 14,315 sentences.

Annotation of the dataset was done by 3 annotators independently, and a

reliability test was performed afterwards. It yielded a kappa score of 76% which

the authors calls “reasonably good results”; we will refer to R. R. Fernández

(2006) for details about this score. The reliability test was carried out by two

non-expert annotators. A total of 50 instances were selected at random from the
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Class Occurrences Fraction

Plain Acknowledgement (Ack) 599 0.467

Short Answer (ShortAns) 188 0.147

Plain Affirmative Answer (AffAns) 105 0.082

Clarification Ellipsis (CE) 92 0.072

Repeated Acknowledgement (RepAck) 86 0.067

Plain Rejection (Reject) 49 0.038

Factual Modifier (FactMod) 27 0.021

Repeated Affirmative Answer (RepAffAns) 26 0.020

Helpful Rejection (HelpReject) 24 0.019

Check Question (CheckQu) 22 0.017

Filler 18 0.014

Bare Modifier Phrase (BareModPh) 15 0.012

Propositional Modifier (PropMod) 11 0.009

Direct Sluice (Sluice) 11 0.009

Conjunct (ConjFrag) 10 0.008

Total 1283

Table 2.2: Occurrences and fraction of the classes in the corpus (class name in

parenthesis).

corpus, containing a minimum of 2 instances of each class. These non-expert

annotators were then asked to label these instances. In table 2.2 we can see

the distribution of the different NSU classes, done through a corpus study of

a portion of BNC.

2.1.5 Conversational datasets

Despite the lack of annotated data for NSUs, some large datasets of multi-turn

dialogues have been constructed. We have the British National Corpus (BNC)

(Burnard 2000), from which the NSU Corpus is made up. BNC contains 100

million words from most written, about 90%, and spoken dialogues (10%) in

English with a wide variety of different genres. The OpenSubtitles corpus by

Tiedemann (2009) and Tiedemann (2012) and was further refined by Lison and

Tiedemann (2016), and contains movie and TV subtitles with the latter corpus
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containing a collection of 2.6 billion sentences from 60 different languages. The

Twitter Dialogue Corpus (Ritter, Cherry, and B. Dolan 2010; Ritter, Cherry, and

W. B. Dolan 2011; Danescu-Niculescu-Mizil, Gamon, and Dumais 2011) contains

roughly 1.3 million conversations from Twitter, but the conversations are chat-

like and rather noisy. Finally, DailyDialog (Y. Li et al. 2017) contains dialogues

from everyday chit-chats, and attempts to reflect the daily communication

between humans.

2.1.6 Resolution of NSUs

The task to rewrite a NSU into a complete sentence based on the surrounding

context is called the resolution of a NSU (Schlangen 2005; R. R. Fernández 2006).

This is according to R. R. Fernández (2006) “one the most important issues in the

analysis of NSUs”. Accordingly, most work in machine learning regarding NSUs

and fragments are their resolution.

Consider the following examples:

(5) A: What do you want to call it?

B: Just career guidance. [BNC: G4X 154 – 155]

(6) A: Well you made him sound really, really boring.

B: Why? [BNC: JSN 194 – 195]

In example 5 the NSU can be resolved to:

Just careers guidance. → I just want to call it career guidance.

In example 6 the NSU can be resolved to:

Why? → Why did I make him sound really boring?

We can clearly see above that NSUs by themselves does not give a lot of informa-

tion, but we can understand the context with only the fully resolved sentence.

Several methods have been presented to rewrite fragments to full sentences.

Ginzburg and Sag (2000) present a grammatical framework, based on Head

Driven Phrase Structure Grammar (HPSG), that models a feature structure

from semantic, syntactic and contextual information. They try to combine

the contribution of the NSU with the contextual information by grammatical

construction to find the resolution of a NSU.

Schlangen (2005) tries to tackle this problem by aligning a NSU with its an-

tecedent, in a multi-party dialogue. This is done using machine learning to iden-

tify fragments, and then find their antecedent. Another approach is to start by
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classifying the NSU, as done by R. Fernández, Ginzburg, and Lappin (2007). They

try to constrain a resolution based on the class of the NSU. In their work, they

present a simple machine learning approach to classify the NSUs, and continue

by finding their resolution. Dragone and Lison (2016) extend this work with de-

tection by active learning techniques, to address the data scarcity of NSUs, as

well as using additional features when classifying NSUs. Though there are many

who tries to find the resolution of NSUs (Schlangen 2005; R. R. Fernández 2006;

Kumar and Joshi 2016; Debnath, Sengupta, and Wabgaonkar 2018; Su et al. 2019),

Jonathan (2012, Chapter 7) argues against a number of existing approaches to

rewrite NSUs into in terms of fully-fledged sentences, where authors have tried

to create a grammatical theory of NSUs.

With the introduction of (large pre-trained) language models with contextualized

word embeddings we could argue that the resolution of NSUs might be less

relevant. This is because these models create contextualized word embeddings

that might be able to contextualize the NSUs based on their antecedent and the

surrounding context. In addition to this, humans generally learn early on to use

and understand NSUs without rewriting a NSU into a grammatically correct

sentence before processing and understanding it. We understand it based on

the previous dialogue. As we get more high-quality multi-turn dialogue datasets

and the architecture of language models improves, we might see a similar pattern

where language models do not need to rewrite a NSU in order to infer the

meaning. In Chapter 4 we will learn how current language models perform,

when inferring the meaning of a NSU based on a question posed in the context

of a conversation.

2.1.7 Classification of NSUs and Feature Engineering

Classification of NSUs is a task that has seen little previous work. We will be

focusing classification of NSU in conversations according to the NSU corpus

explained in section 2.1.4. This is a classification task where the a model, that

can be everything from a simple machine learning decision tree to a complex

pre-trained language model, is supposed to classify the NSU, given the previous

utterances in the conversation.

The conversation can either be in form of extracted features of the dialogue,

as done by R. Fernández, Ginzburg, and Lappin (2007) and Dragone and Lison

(2016), or in the form of raw text, as we will see in Chapter 3. One major assump-

tion here is that only the preceding utterances, from the NSU, until the antecedent,
are needed to classify these NSUs. However, for non-expert humans, it might be
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helpful to get additional dialogue context to classify it i.e. either utterances be-

fore the antecedent, or after the NSU.

R. Fernández, Ginzburg, and Lappin (2007) presents classification of this

taxonomy of NSUs using four machine learning algorithms. Dragone and Lison

(2016) extends the previous work by R. Fernández, Ginzburg, and Lappin (2007)

by adding additional features and performing active learning i.e. the process of

letting machine learning algorithms label data by learning from a few samples of

labeled data, hence increasing the amount of scarce data (Settles 2009).

For the classification task, these algorithms needs features to be preprocessed

to perform better, as it was not a viable option at the time to use raw text. Hence,

they are using feature engineering i.e. the process of using domain knowledge

to select the most appropriate data (features), for a given model, for the current

task (Zheng 2018, Chapter 1). We will go more in detail in Chapter 3, about the

assumptions of what data is used and explain the used features.

2.2 Language models and interpretability

We will in the following section briefly view some language models used in later

experiments, and continue by introducing some methods for interpretability of

these such models. From earlier pre-trained word representations that create

non-contextualized embeddings, such as CBOW and skip-gram (Mikolov et al.

2013), we have seen huge improvements to NLP tasks with the introduction

of contextualized word embeddings, such as ELMo (Peters et al. 2018) and

transformers Vaswani et al. (2017). With the increased complexity of large neural

network models, there is an inflation of interest to understand the decisions and

reasoning behind the produced outputs of these models (Baehrens et al. 2010;

Kokhlikyan et al. 2020).

2.2.1 Transformer architecture

The transformer architecture from Vaswani et al. (2017) has sparked major

improvements in NLP tasks over the last years (T. B. Brown et al. 2020). As

such, we will give an overview of how the transformer architecture works2.

The transformer consists of an encoder and a decoder, where the encoder maps

a sequence of input, represented as x1, ..., xn, to a continuous representation

z = (z1, ..., zn), and the decoder uses this representation to produce a sequence

2For an in depth explanation see the original paper (Vaswani et al. 2017), as well as guides such
as The Annotated Transformer by HarvardNLP
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of output y1, ..., yn. For each produced symbol, the model will consume the

produced symbol when generating the next, and is hence auto-regressive.

Both the encoder and decoder, of this specific implementation, consists of a

stack of N = 6 identical layers, but the layers in the encoder and decoder are

different. The number of stacked layers can vary depending on the size of the

model, and larger models can contain both additional layers and increased em-

bedding size e.g. GPT-3 has 96 layers with embedding size of 12888 (T. B. Brown

et al. 2020). There are three main components in these layers; a multi-head at-
tention layer, a layer normalization, and a feed-forward neural network (FNN).

Each multi-head attention layer, and FNN is follow by a layer normalization,

which takes as input a residual connection. Hence, if a the previous layer l of

the layer normalization norm takes as input a and produces the output l(a) = b,

the layer normalization produces norm(a + b). The size of the produced outputs

are always the same at dmodel = 512. Keeping the same dimension throughout

the connection facilitates the residual connections. When continuing explaining

what the encoder and decoder contains we will omit mentioning the layer nor-

malization, since the output of each layer is sent through this.

We will start the an encoder layer. It consists of a multi-head attention layer, and

this is sent into a FNN layer. A decoder layer is a bit different. It contains first a

masked multi-head attention layer, which is the same as a multi-head attention

layer, but some of the inputs are masked. Then it contains a multi-head attention

layer, but this layer takes as input the first layer, and the output of the encoder.

Finally, we have a FNN layer.

Attention

At the core of this architecture is the self-attention mechanism. Vaswani et al.

(2017) are calling their particular attention for Scaled Dot-Product Attention, and

can be thought of a mapping of a query, key and value to an output. The

following is the formula for calculating this:

Attention(Q, K, V) = softmax(
QKT
√

dk
)V (2.1)

Where dk is the total dimension of the queries and keys. This formula is what

allows for self-attention when an input x is sent in as Q, K, and V.

Finally, we will explain multi-head attention, which is h number of scaled dot-

product attentions in which the queries, keys, and values first goes through a
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through (part of) a linear layer. The goal of multi-head attention is to allow the

different "heads" to capture, or attend, to different representations of subspaces.

So for we get headi = Attention(QWQ
i , KWK

i , VWV
i ), where WQ, WK, and WV , are

the linear layers for Q, K, and V respectively. And we have:

MultiHead(Q, K, V) = Concatenate(head1, ..., headh)WO (2.2)

Where WO is the a linear output layer. In their model they use h = 8 number

of heads.

2.2.2 Transformer Language Models

Two models that have become immensely popular and that are offsprings of the

transformer architecture (explained in 2.2.1) are GPT (Radford, Narasimhan, et

al. 2018) and BERT (Devlin et al. 2019). GPT uses only the decoder in the trans-

former model, with a few modifications. It is trained on a diverse set of corpus

using generative pre-training. The main goal in the pre-training phase is to pre-

dict the current token ui, given the previous tokens ui−k, ..., ui−1, in a unsuper-

vised corpus of tokens U = u1, ..., un. The model can afterwards be fine-tuned

on downstream tasks using supervised tasks. However, such models are usually

used on text generation tasks, but we will see in section 2.2.4 that a multitude of

problems can be expressed as such.

Another model that has derived from the transformer architecture is BERT.

Unlike GPT, that is based on the encoder from the transformers model, BERT is

based on the encoder. It is also trained differently, as Devlin et al. (2019) argue that

when an entire sentence is available one should not mask everything after the

current position, but instead use the entire sentence and not lose any information

when solving NLP tasks, hence becoming fully bidirectional. As BERT is fully

bidirectional, it does not make sense to predict the next token, as done by GPT.

Hence, one of the tasks BERT is pre-trained on is rather to predict masked

tokens in a sentences (specifically 15% of the input tokens are masked at random).

It can then use the surrounding unmasked tokens to predict the masked tokens.

The second task of the pre-training phase, is next sentence prediction (NSP).

BERT is given two sentences, A and B, during training and the objective is to tell

wether B is a plausible sentence that follows A. The sentence B is 50% of the times

the actual sentence that follows A, and 50% a random sentence in the corpus.

Lastly, we have models that follows more close to the original transformer model,
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that uses both an encoder and a decoder, such as T5 (Raffel et al. 2019). For sequence

to sequence tasks the format of encoder-decoder seems to work great (Sutskever,

Vinyals, and Le 2014; Kalchbrenner, Grefenstette, and Blunsom 2014). T5 model

is treating every problem as a text-to-text, i.e. taking text as input and new

generated text is produced as output. Hence, for the different tasks, the input

text will contain the problem to solve, for example a document to be summarized,

and the output text will contain the answer, in this example the summarized text.

For the model to understand the current task, a prefix is added to the original

input text and then the model consumes this in entirety and is trained to produce

an associated output text.

2.2.3 Transfer Learning and Zero-Shot Task Generalization

We will briefly explain some concepts when talking about learning tasks of

language models. We start with transfer learning, which is the ability to transfer

learning from some task to another (Zhuang et al. 2019). The main objective of

transfer learning is to leverage the training a models on some domain so the

knowledge can be used on different, but related tasks.

There are several benefits of this, but in NLP, one major benefit when pre-

training large language models is that they require much less data and comput-

ing power, and can still achieve great performance (Conneau, Kiela, et al. 2017).

One application of transfer learning is when used in data-scarce settings. Here,

we can differentiate between three emerging tasks; zero-shot learning, where at

test time there has been no task specific demonstration during training, one-shot
learning, where there is only one task specific demonstration that the model trains

on, and few-shot learning, where there are a few (where "a few" can vary a bit in

number) demonstrations the model can train on before testing (T. B. Brown et al.

2020; Xian et al. 2017; Ye, Lin, and Ren 2021).

Zero-shot generalization is similar to zero-shot learning, but Sanh et al. (2021)

explains it rather that something that can be achieved when a model is trained

on a subset of tasks and are afterwards able to attain reasonable generalization

on a diverse set of task without having seen a demonstration for these.

We have recently seen language models, such as GPT-3 (T. B. Brown et al.

2020), T5 (Raffel et al. 2019) and T0 (Sanh et al. 2021), that are able to achieve

reasonable zero-shot generalization to new problems. These models have in

common that they are all of type text-to-text. One benefit of treating every

text processing problem as such, is the ability to use the same model, training

procedure, objective, as well as decoding process when training on wide variety
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of NLP tasks (Raffel et al. 2019). Then, when applying the model to a new task,

the task can be created as a text-to-text problem, and the model does not have to

be changed. We will come to this later in section 2.3.3.

2.2.4 Feature Attribution

To try and interpret large models several methods has been proposed and feature
attribution (feature importance and variable importance are other names for this task)

is one such method. This is the task of attributing the outputs predictions of

a (neural network) model to the input features that generated it (Sundararajan,

Taly, and Yan 2017). In image classification networks, such methods can find

the pixels that are most responsible for the classification of a certain image

(Simonyan, Vedaldi, and Zisserman 2013). On the other hand, for a sentiment

analysis task in NLP, such as movie review, we can get a score for each input

token that tells us wether they counted as positive or negative. Hence, if

a language model classified a review as negative, we could then find which

words that was most important for this classification. We will be using feature

importance for a classification task in chapter 3.

There exist also two other attribution techniques called layer attribution and

neuron attribution. With layer attribution we can evaluate the contribution of each

neuron to the output for a specific layer in the model and neuron attribution

analogous to this, but instead evaluates a particular neuron (Sebastian Bach et al.

2015).

A formal definition of feature attribution from Sundararajan, Taly, and Yan

(2017) are written as:

[...] suppose we have a function F : Rn → [0, 1] that represents a

deep network, and an input x = x1, ..., xn ∈ Rn. An attribution of

the prediction at input x is relative to a baseline input x′ is a vector

AF(x, x′) = (a1, ..., an) ∈ Rn where ai is the contribution of xi to the

prediction F(x).

We can see that for finding the feature attribution of an input x, we need to find

the contribution of x relative to a the contribution of baseline input x′.

There exists several algorithms for feature attribution, such as Saliency (Si-

monyan, Vedaldi, and Zisserman 2013), Integrated Gradients (Sundararajan, Taly,

and Yan 2017) and DeepLift (Shrikumar, Greenside, and Kundaje 2017), to men-

tion a few. These are all gradient based approaches, where they calculate the

backward gradient of the output with respect to the input features of a model.
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Perturbation based approaches, on the other hand, are all based on a simple ap-

proach where one add small changes to an input neuron and watch the effect

on output neurons. This can be done through permutation, occlusion or feature

ablation (Wei, Zhenzhou, and Song 2015; Zeiler and Fergus 2013; Breiman 2001).

Captum (Kokhlikyan et al. 2020) is a PyTorch (Paszke et al. 2019) library for in-

terpretability of models that contains generic implementations of several attri-

bution algorithms and methods, both gradient and perturbation-based, included

the ones mentioned above. We will be using this library in later experiments.

Integrated Gradients

As Integrated Gradients is used in later experiments, we will briefly explain how

this works. This attribution method wants to satisfy two axioms, sensitivity and

implementation invariance. When every input x and baseline x′ that only differs

by one feature produces different predictions, then that feature should be given

a non-zero attribution. An attribution method can achieve sensitivity when this

condition is satisfied. For the latter we start by explaining functionally equivalent
which is when two networks that might have very different implementations

have the same output for all (distinct) inputs. When an attribution method does

not give different attributions for networks that are functionally equivalent the at-

tribution method is implementation invariance. Integrated Gradients satisfy these

two axiomatic properties; sensitivity and implementation invariance.

Integrated Gradients, as most other feature attribution algorithms, requires a

baseline input x′ which is usually set to a zero embedding vector for text models,

which we can think of as absence of feature. We want to calculate the gradient for

each dimension (feature) i for both the input x and the baseline x′, and is defined

as follows:

IntegratedGradi(x) ::= (xi − x′i)×
∫ 1

α=0

∂F(x′ + α (x − x′))
∂xi

∂α (2.3)

For each feature i, ∂F(x)
∂xi

is the gradient of F(x) along this dimension. xi − x′i
is the difference between the input and the baseline. The second part of the in-

tegral, accumulates all local gradients and hence attributes a score of how much

is either added or subtracted to the models overall output. This part needs to be

approximated, which can be done with Riemann sums (Sundararajan, Taly, and

Yan 2017). The accumulation of gradients will not suffer from saturation i.e. when

gradients of input features have small magnitude, but the network (as a whole)

relies (heavily) on these features, then these gradients will not reflect the actual
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feature importance (Sundararajan, Taly, and Yan 2016).

Deep neural networks that uses sigmoid, ReLU and pooling operation, will

have a continuous function F : Rn → R everywhere, and the partial derivative of

F will satisfy Lebesgue integrability condition (A. B. Brown 1936; Glorot and Bengio

2010). For such models the integrated gradients can be calculated at each feature

i, hence for all features of the model.

Integrated Gradients is a good methods to develop an intuition for how the

models works for specific examples, but it is hard to provide global feature

importance across an entire dataset. Nor is it capable of explaining interactions

between features.

2.2.5 Probing tasks

Another method for with which we can try to interpret the capabilities of lan-

guage model is with probing tasks. Though not showed in any of the later exper-

iments, we did some experimentation with a probing task for NSUs. Hence, we

will shortly introduce what a probing task is, and introduce this probing task in

section 5.1.

A probing task is usually a simple task, which in NLP can be something like

parts-of-speech, to test the language model on something it has not been trained

on Conneau, Kruszewski, et al. (2018). It is important that the task is something

the language model has not seen during pre-training, as the goal is to assess the

models capability on that task.

To predict some linguistic properties of the probing task, a simple supervised

model, like a linear layer or multilayer perceptron (MLP) is needed. This

supervised model, called probe, is trained on the probing task based on word (or

sentence) embeddings from a pre-trained language model (like BERT) (Rogers,

Kovaleva, and Rumshisky 2020; Hewitt and Liang 2019). If a probe is able to

perform on the probing task, it is an indication that the pre-trained language

model has encoded some linguistic properties in the embeddings that allow the

simple model to extract these and predict correctly.

Probing tasks can also be used in different layers of a language model, to see

where such linguistic features are encoded in the model. Hence, the goal of prob-

ing tasks is mainly to try and see if a model has understood some concepts of

language, and also in which layers of the model these concepts might have been

learned (Alain and Bengio 2018; Jawahar, Sagot, and Seddah 2019).
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Some examples of probing tasks for reference are Conneau, Kruszewski, et al.

(2018) who introduces 10 different probing tasks to test different linguistic fea-

tures of language models, and structural probes for finding syntax in work repre-

sentations (Hewitt and Manning 2019) in such models.

There are, however, different shortcomings when using probing tasks, especially

in the way they are interpreted (Belinkov 2021; Ravichander, Belinkov, and

Hovy 2021). One might conclude that when a probe achieves a high score on

a probing task, the language model has "understood" the linguistic property of

the probing task i.e. the embedding has some encoded linguistic structure, that

can be extracted by the probe (Jawahar, Sagot, and Seddah 2019). However,

both Belinkov (2021) and Hewitt and Liang (2019) are discussing the difficulty

of interpreting the results of probes and try to find methods that give more

confidence in such results.

2.3 Question Answering

The goal of Question Answering (QA) systems is to automatically answer

questions posed by humans in natural language. Ever since the 1960s, the task of

creating a system that is able to provide a precise answer to a user’s question has

been a goal (Green et al. 1961).

As a QA system needs to, not only retrieve information, but also to answer

the question in a natural language, QA is considered a more complicated task

than information retrieval (IR) (Abdi, Idris, and Ahmad 2016; Cao et al. 2010).

In traditional information retrieval a system can return an entire document with

relevant information from a request, but in QA the system would need to find

the specific text, in the document, that is considered relevant (Kolomiyets and

Moens 2011).

In general, the main goal of QA systems is to provide a flexible and easy way for

humans to interact with computers, where they can provide direct answers from

a query. However, a lot of work still remains (especially in multi-turn dialogue).

There exist several problems within QA and we will outline some of them below

while giving a brief explanation for the different tasks. This will help us both

distinguish the tasks from each other, and understand their similarities.

A lot of work has been done in both Open-Domain Question Answering (F. Zhu
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et al. 2021), and Conversational Machine Comprehension (CMC) (Gupta, Rawat,

and Yu 2020), and recently we have seen prompting emerging as an input format

for models (T. B. Brown et al. 2020; Stephen Bach et al. 2022).

2.3.1 Conversational Machine Comprehension

Conversational Machine Comprehension (CMC) is a challenge where a model is

given an open-domain text in natural language, and engages in a multi-turn con-

versation to answer questions posed about this text (Gupta, Rawat, and Yu 2020).

The questions posed in the conversation are often not paraphrased and will have

multiple co-referenced questions i.e. a question can ask for further information

about the previous question. This is very similar to a challenge called Machine

Reading Comprehension (MRC), in which a model is also supposed to answer

questions to an open-domain text, but unlike CMC the dialogue does not have

multiple co-referenced questions.

CMC can be formally defined as: given a context of information, called passage P,

and a current question Qi asking about P, the model should predict the current

answer Ai based on previously posed questions {Qi−1, ..., Qi−k}, and previous

answers {Ai−1, ..., Ai−k}, if any (Gupta, Rawat, and Yu 2020). The answer Ai can

be in the form of a text span, si, ei, where si is beginning and ei end of the current

answer i in P, as done in the QuAC dataset (Choi et al. 2018). However, Ai can

also be in the form of free text, as allowed by the CoQA dataset (Reddy, D. Chen,

and Manning 2019).

A question can ask for further information about a previous question or

answer, and be in the form of a NSU. This is exemplified by the two questions

below, from Reddy, D. Chen, and Manning (2019)3:

Q12: Who went missing?

Q13: Where?

The large-scale datasets mentioned above, QuAC and CoQA, are both improving

the advancement in CMC. A note to keep in mind is that CoQA and QuAC might

not contain much diversity in NSU classes, as they only contain question/answer

pairs.

3The questions are from Reddy, D. Chen, and Manning (2019) with conversation id 3h8dhm-
ccw9bthwa0epswnh4as77kdu
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2.3.2 Open-domain Question Answering

Open-Domain Question Answering (OpenQA) is a challenge where a system is

supposed to answer questions posed by a human, in a natural language, based on

access to unstructured documents, such as Wikipedia (F. Zhu et al. 2021). Unlike

MRC and CMC, OpenQA does not have a specified context from which to answer

the posed question. Hence, usually the system first has to search for a relevant

document, which becomes an information seeking task (Harabagiu, Maiorano,

and Pasca 2003).

This document can either be in the form of a local document, or through a

document available on the Internet. The latter becomes a task similar to how

humans try to find answers. We can consider solving CMC a step in the right

direction for a fully functional OpenQA system. Large datasets, such as WIKIQA

(Yang, Yih, and Meek 2015), SQuAD (Rajpurkar et al. 2016), and others (J. Li et al.

2020; Hermann et al. 2015), have helped the advancement of this process.

QA tends to be given in various formats, UnifiedQA (Khashabi, Min, et al. 2020;

Khashabi, Kordi, and Hajishirzi 2022) tries to create a unified high quality QA for-

mat for multiple variant tasks. These models are based on text-to-text language

models, and are pre-trained on 8 and 20 datasets, for v1 and v2 respectively. One

such format is multiple-choice QA, where a question is posed to a text, and the

language model is supposed to select an answer, from the available answers. The

UnifiedQA-v2 model with multiple-choice format will be used in Chapter 4, on

a benchmark NSU conversation dataset.

Open-domain Dialog Systems differ from OpenQA, since they have the main

goal to chit-chat with humans in a natural and coherent manner. These systems

are trained to produce human-like responses (Huang, X. Zhu, and Gao 2020;

Roller et al. 2021). The responses produced by these agents are not necessarily

factually correct, but rather try to emphasize on other conversational skills such

as maintaining a consistent persona and providing domains to talk about (Roller

et al. 2021).

2.3.3 Prompting and prompt-based learning

Prompt-based learning, or prompting, is a process of creating tasks where some in-

put text in natural language is asking the language model for a response (Liu et

al. 2021; Stephen Bach et al. 2022). This response is a text generated by the lan-

guage model in natural language. A prompt for a summarization task could be
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“summarize: The painter couldn’t even afford a single brush [...]”, where the gen-

erated output of the model is interpreted as the prediction for the current task.

Prompting has seen a recent growth after the introduction of GPT-3 (T. B. Brown

et al. 2020) and also enable models to achieve reasonable zero-shot generalization

on unseen tasks as shown by Raffel et al. (2019) and Sanh et al. (2021).

Usually, in supervised learning, when training a model with parameters θ, the

model is trained on P(y|x; θ) i.e. to produce an output y from the the input x and

the parameters. For newer pre-trained language models, x is usually some text

in a natural language, and the output y could be in a variety forms e.g. text or

label, depending on the task ahead.

For a text classification task, such as in Chapter 3, y indicates the correct class

label, from a fixed set of labels. However, an occurring problem for this training

method is that P(y|x; θ) is restricted by the amount of labeled data available. La-

beling data is time consuming and hence it is usually not found in large amounts,

as with the NSU corpus (2.1.4). Secondly, if we would want to add a new label,

we would have to re-train the entire model so it can produce a new fixed output.

Prompt-based learning helps alleviate these problems by allowing the model

to train on P(x; θ). This means the model trains on the probability of x when

predicting y, which in turn lowers the demand for large domain specific datasets

(Liu et al. 2021) as this tries to bridge the gap between the pre-training and the

downstream task. But there are problems to this as well, namely that during

pre-training, the information encoded in the prompt might not be enough for

the language model, and there might be large discrepancies between the domain

specific data used on a downstream task versus the data used during pre-training

(Y. Chen et al. 2022). Lastly, depending on the task, Le Scao and Rush (2021)

found through experiments that a prompt can encode up to 3500 labels.

Prompt Engineering

Designing a correct prompt has shown to be critical for a successful model

deployment for downstream tasks, especially for zero-shot generalization, but

also for the performance of the current task itself (Stephen Bach et al. 2022; Liu

et al. 2021). Prompt engineering is the process of creating prompts that result in

the best performance on downstream tasks. This requires annotated data for

validating the performance of a prompt (Y. Chen et al. 2022). The public pool of
prompts (Stephen Bach et al. 2022) tries to help this process by focusing on creating

and sharing such prompts, which enables exploring the best ways to design and
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use prompts.

2.4 Summary

In this chapter we started by explaining the notion of NSUs and introduced

some of the existing taxonomies created to categorize them. We detailed the

taxonomy from R. R. Fernández (2006) that we will be using throughout the

coming chapters. We also viewed the fraction of occurrences of NSUs in the

daily dialogues of humans to get a sense of the importance of this topic and

why we should continue to study it in order to create systems that are able to

converse in a natural and coherent manner with humans. We also presented

some of the methods for classifying and resolving NSUs. Then, we explained the

core architecture (transformer) of most of the current state-of-the-art language

models and we presented some of the language models we will be using. Probing

tasks and feature attribution, was introduced and are the most commonly used

methods for interpretability for these models. Finally, we reviewed some of the

tasks and problems in Question Answering. Here, we explained what prompting

is, and how it helps to achieve reasonable zero-shot generalization. We will be

using prompting in a zero-shot setting in Chapter 4.
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Chapter 3

Classification and Feature
Attribution of NSUs

In the previous chapter we detailed what a NSU is and saw an overview of the

taxonomy of NSUs that we will be using throughout this chapter. In the present

chapter we will see, in detail, previous classification methods of NSUs, and we

will continue by presenting our method using pre-trained language models. A

major goal in the following experiments is to check wether current language

models are able to capture linguistic properties to be able to classify NSUs.

In the first section we will present the data that we will be using for

our classification task. This is extracted raw text from the BNC corpus of

the classified labels from We will compare pre-trained language models that

create contextualized word embeddings to a baseline of non-contextualized word

embeddings. Our results will also be compared results of previous methods.

We will be using BERT as our pre-trained language model to examine, but

we will also see how it compares to a GPT-based model, DialoGPT (Zhang et

al. 2020). Since these pretrained language models create contextualized word

embeddings, we will see if they are able to capture some linguistic properties of

the NSUs that allows these to be classified.

We will then analyze the importance of NSU and the contextual information

for the classification task, by using feature attribution. Hopefully, we can find

whether the NSU is more important for the language model than the contextual

information, and we will view some specific examples of synthetic data that has

been feature attributed.
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Class Occurrences d1 d2 d3 d >= 4

Plain Acknowledgement (Ack) 599 582 15 2 0

Short Answer (ShortAns) 188 105 21 16 46

Plain Affirmative Answer (AffAns) 105 100 5 0 0

Clarification Ellipsis (CE) 92 76 13 2 1

Repeated Acknowledgement (RepAck) 86 80 2 4 0

Plain Rejection (Reject) 49 48 1 0 0

Factual Modifier (FactMod) 27 23 2 1 1

Repeated Affirmative Answer (RepAffAns) 26 25 1 0 0

Helpful Rejection (HelpReject) 24 18 5 0 1

Check Question (CheckQu) 22 15 7 0 0

Filler 18 16 1 0 1

Bare Modifier Phrase (BareModPh) 15 10 4 0 1

Propositional Modifier (PropMod) 11 10 1 0 0

Direct Sluice (Sluice) 11 10 1 0 0

Conjunct (ConjFrag) 10 5 4 1 0

Total 1283 1123 82 26 51

Fraction 1 0.875 0.064 0.020 0.040

Table 3.1: Per class occurrences for different distances, between the antecedent

and the NSU, in the corpus.

3.1 Data

For our data we used the annotated corpus from R. R. Fernández (2006),

introduced in Section 2.1.4, containing a total of 1283 samples. Each sample is

a reference to a dialogue in the British National Corpus, containing information

about where to find a NSU in the BNC, as well as the antecedent, and is labeled

by the class the NSU belongs to. Each instance is identified per line where the first

number represents the id of the antecedent and the second number represents the

id of the NSU. Usually the distance d between the NSU and the antecedent is 1,

meaning the antecedent is the immediately preceding utterance in history. In the

NSU corpus a total of 87.5% of the dialogues have a distance of 1. Table 3.1 gives

us an overview of the different distances for each class in the corpus. We can see

that this is a highly imbalanced dataset.
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Some classes like, Short Answer, Check Question and Conjunct have a high

fraction of NSUs that occurs with distance 2 or more from their antecedent. Short

Answer is the only class with a high number of NSUs occurring with distance 4

or more from the antecedent.

British National Corpus

As mention in section 2.1.5, BNC is a large collection of dialogues, mostly

written, from national newspapers, journals, academic books, fiction and so on,

and the spoken part are from informal conversations that has been transcribed

(orthographic transcription). This transcription is done to a XML file. The corpus

has been encoded to include part-of-speech tagging, as well as headings and

paragraphs containing a number of properties, such as the current genre and

details about conversation settings. Every sentence has a unique identifier, which

is a counter starting at 1, and these identifiers is what R. R. Fernández has used in

her text file to identify the conversations. Each raw word in a sentence is marked

with a word tag and contains three properties; a tag following C5 tagset (Leech,

Garside, and Bryant 1994), a simplified wordclass derived from C5 in a POS tag,

and a lemma derived token from the raw word.

3.1.1 Current dataset

For our dataset we extracted the raw text from the conversations of BNC using

the annotated NSU corpus and put it in a json-file; which is an easier format to

work with. The assumptions made when extracting the dialogues was that only

the dialogue containing the antecedent to the NSU was needed when classifying

the NSU. The utterances that were extracted from BNC was from and including

the antecedent to and including the NSU. However, it might have been easier for

humans to classify a NSU by knowing a bit more context, hence to add additional

previous dialogue utterances might have been beneficial for language model as

well. However, some antecedents are quite long so for language models with a

max input size of 512, we needed to truncate it (this was done by the tokenizer).

During the extraction only the plain text was included, and unknown words

(with unknown tag) was skipped. The dataset contains all utterances with an

associated speaker where the speaker name was an alphabetical enumeration i.e.

first speaker was named “A”, second “B”, and so on. Hence, each dialogue turn

with utterances was kept. To easier extract the NSU from the rest of the dialogue,

the conversation was divided into two parts, the contextual information, and the
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NSU, the former contains the antecedent and all the utterances before the NSU,

and the latter contain the NSU. For each conversation the NSU class was added,

but with Short Answers, R. R. Fernández (2006) divided them into two groups,

but these were merged into one.

3.2 Previous Classification Methods

For the classification task both R. Fernández, Ginzburg, and Lappin (2007) and

Dragone and Lison (2016) only used the dialogues where the distance between

NSU and antecedent were 1, which corresponds to column d1 in table 3.1. This

means the antecedent is the preceding utterance of the NSU. This simplified re-

striction facilitates the feature extraction procedure, but reduces the size of the

data with about 12%, which now contains 1123 samples.

R. Fernández, Ginzburg, and Lappin (2007) have two classification experiments,

one where they leave out two classes (Plain Acknowledgements and Fillers) and

the second extending the first, where they use all classes. We are interested

in latter, so when talking about the classification task below, we mean the

classification of all classes. They use four different machine learning algorithms

based on decision tree algorithm, or memory-based learning. We will only

mention the SLIPPER, which is a rule based learner (Cohen and Singer 1999)

and was the one producing best scores of the four. For these algorithms feature

extraction is needed, which was done automatically. They use total of 9 features,

which are all extractable with help from the PoS tag in BNC. The features are

summarized in table 3.2 and described below:

3.2.1 Features

Below we will explain the features used by R. Fernández, Ginzburg, and Lappin

(2007) and (some of) Dragone and Lison (2016) for the classification task. The

first four features nsu_cont, wh_nsu, aff_neg, and lex are relating to the properties

of NSU. The features ant_mod, wh_ant, and finished are related to properties of the

antecedent of the NSU. The last two features, repeat and parallel indicates some

similarity between the NSU and the antecedent.

nsu_cont

It is supposed to distinguish whether a NSU is a question or a proposition.

wh_nsu

Tells whether the NSU is a wh-phrase i.e. what, which, when, who, where.
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Feature Value

nsu_cont p,q

wh_nsu boolean

aff_neg boolean or empty

lex p_mod, f_mod, mod, conj, e

ant_mood decl, n_decl

wh_ant boolean

finished fin, unf

repeat 0 − 3

parallel 0 − 3

Table 3.2: Features used for classification by R. Fernández, Ginzburg, and Lappin

(2007)

Which will help classify CE and Sluices.

aff_neg

Signals if there is an a word in form of an acknowledgement, a yes-word,

or a no-word.

lex

Indicates the appearance of lexical items, which is either in form of

model adverb (p_mod), factual adjectives (f_mod), prepositions (mod) or

conjunctions (conj). These features are expected to be important for the

classification of multiple classes.

ant_mood

Is used to distinguish between declarative and non-declarative antecedent

utterances. This features help signal if the antecedent contain a wh-phrase,

which in turn helps to classify a NSU as a Short Answer.

wh_ant

This is the same as wh_nsu, but denotes instead the presence of a wh-phrase

in the antecedent.

finished

Helps the identification of Fillers, by encoding wether the antecedent has a

full stop in form of punctuation, question mark, or exclamation mark.
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repeat

Counts the occurrences of same words between the antecedent and the

NSU. Can indicate wether the answer is a Repeated Affirmative Answer

or Repeated Acknowledgements.

parallel

Counts the PoS tags in common between the antecedent and the NSU, and

is helpful for classifying Helpful Rejections.

The features described above a feature engineered by R. R. Fernández, hence

are chosen by the author to help the machine learning algorithms perform.

Dragone and Lison (2016) uses the same features as R. Fernández, Ginzburg,

and Lappin (2007), and start by trying to replicate the results of the latter. They

continue their experiments by adding an additional 23 linguistic features. These

features will not be explained in detail, suffice to say that they are divided in 5

categories. These categories of additional features are listed below:

• PoS-level features: 7 additional PoS features that are extractable from BNC.

• Phrase-level features: 7 features that contain different syntactic structures

in the NSU and the antecedent.

• Dependency features: 2 features that contain patterns of dependencies in

the antecedent, which can be words that are negations or wh-words.

• Turn-taking features: 1 features that contains patterns of turn-taking in the

dialogue, e.g. if the antecedent and NSU was uttered by the same speaker.

• Similarity features: 6 features that contain different numeric measures of

similarities between the antecedent and the NSU.

In addition to the extended features set, Dragone and Lison (2016) uses active

learning to gain an additional 100 annotated instances. The active learning

procedure employed was using a pool-based method, which means that samples

where drawn randomly from a set (pool). These unlabeled samples where

classified by the existing classifier, using the extracted features, for each class and

they added a confidence measure associated, in form of a probability distribution.

The supervisor was then prompted to annotate the samples where the classifier

is least confident, and hence the classifier would gain more information by

knowing these samples.
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3.2.2 Results from previous methods

The results for the previous classification methods are shown in table 3.3 1.

Despite the lack of samples in classes like Conjunct, Check Question, and Sluice,

the results from using the selected features very good. However, both fails for

the classification of Helpful Reject, which was the lowest scoring class, only

achieving a f1-score of 0.23 and 0.33 respectively. R. Fernández, Ginzburg, and

Lappin is discussing the poor results of Helpful Reject, with a possibility that

most of the features used to classify Plain Acknowledgement are very similar to

the ones used for Helpful Reject, hence they are difficult to distinguish. Dragone

and Lison (2016) were not able to replicate the previous results of R. Fernández,

Ginzburg, and Lappin (2007) and the results of their replica was not as good

results.

3.3 Experimental setup for classification

In this section we will briefly explain the classification experiment. The classifica-

tion task is a few-shot learning problem (2.2.3) as we only have a few samples for

each class. As opposed to R. R. Fernández (2006) and Dragone and Lison (2016)

we will be using the entire data NSU corpus, with our dataset containing raw

text, explained in section 3.1.1. For the followings tasks we used two different

transformer models; BERT (bert-base-uncased) and DialoGPT (Zhang et al. 2020)

(microsoft/DialoGPT-small). The models used are from the HuggingFace library

(Wolf et al. 2019). The model we will be using of BERT contains 110 million pa-

rameters, while DialoGPT contains a total of 117 million.

We first started by dividing the data into a training and a test data. Due to the im-

balance in the dataset the data was split in a stratified fashion, to keep an equal

proportion of training and testing samples for each class. We used 80% of the

data as training data, and the rest as test. This split was mainly to test different

model architectures and hyperparameters to see if there was significant differ-

ences in performance. Due to the large amount of hyperparameters, we would

not be able to test everything, and we wanted to do quick testing to get some

insight of different hyperparameters and model architecture. The goal, however,

is not to create the best possible model on this classification task, but rather to see

if current language models are able to perform on par with previous techniques.

1The per class results of Dragone and Lison (2016) were only available with two decimals, so
the entire table was adjusted to this.
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SLIPPER SMO

Class Precision Recall f1-score Precision Recall f1-score

Ack 0.97 0.96 0.96 0.97 0.98 0.97

AffAns 0.83 0.87 0.85 0.81 0.90 0.85

BareModPh 0.83 0.69 0.76 0.77 0.75 0.75

CE 0.96 0.94 0.95 0.88 0.92 0.89

CheckQu 0.87 1.00 0.93 1.00 1.00 1.00

ConjFrag 1.00 1.00 1.00 1.00 1.00 1.00

FactMod 1.00 1.00 1.00 1.00 1.00 1.00

Filler 0.70 0.56 0.62 0.82 0.83 0.78

HelpReject 0.30 0.19 0.23 0.31 0.43 0.33

PropMod 1.00 1.00 1.000 0.92 1.00 0.95

Reject 0.78 1.00 0.87 0.90 0.90 0.89

RepAck 0.84 0.92 0.88 0.77 0.77 0.77

RepAffAns 0.68 0.73 0.70 0.72 0.55 0.58

ShortAns 0.85 0.84 0.85 0.92 0.86 0.89

Sluice 0.94 1.00 0.97 0.80 0.84 0.81

Weighted avg. 0.92 0.93 0.92 0.91 0.91 0.91

Table 3.3: Per class performance of the previous results of R. Fernández,

Ginzburg, and Lappin (2007) and Dragone and Lison (2016) respectively, using

10-fold cross-validation.

After some experimentation, we selected the best performing model and used

10-fold cross validation, on the entire dataset, to test the models and gain more

reliable results. Finally, for the model training the criterion used was mostly

cross-entropy loss, but experimentation with Dice Loss (X. Li et al. 2020) was also

done, as this is according to the authors helps narrow the gap between the F1

score in training and evaluation. The optimizer used was AdamW (Loshchilov

and Hutter 2019).

3.3.1 Model architecture

BERT and DialoGPT were used as pre-trained language models for the word

embeddings. Since BERT and DialoGPT differs slightly in architecture a
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comparison between these would be interesting. We might expect BERT to

perform better as it is deep bidirectional, has a classification token, and is an

encoder. However, DialoGPT is trained on conversational-like data, so this might

help it classifying our dataset of conversations. Three different classifiers (heads)

were experimented with for the classification task; a linear, a dense, and a RNN

(with a linear layer). These heads, go on top of the language model to classify the

embeddings. We tested the different heads for each model pre-trained model,

as well as experimentation with pooling of entire input, pooling of contextual

information, c, and NSU u separately (only for linear and dense classifiers). It

was experimented with performing an attention (not multi-head), explain in

section 2.2.1, between c and u, Attention(c, u, u) = softmax(CUT
√

dk
)U. The intuition

for pooling and attend these separately was by trying to capture relationship

between c and u. In the end, the results were slightly worse (about 2-3 percentage

f1-score) than only pooling everything.

DialoGPT

DialoGPT is using the GPT-2 (Radford, Wu, et al. 2019) as basis (see section 2.2.2),

which in turn is based on the generic transformer language model we explained

in section 2.2.1, but has been trained 147 million conversation-like exchanges

which was extracted from Reddit. The reason for choosing this model is because

of its training on conversational data. Our intuition is that this will help when

for this classification task. It is trained on this data to produce conversational

turn generation. DialoGPT is trained on the objective to optimize p(TK, ..., T2|T1),

where the target T is as ground truth response, and T1, ..., TK is a multi-turn

dialogue of K turns. This is the product

3.3.2 Input Text

There was some experimentation with the input text of the models. For BERT

there is a separator token ([SEP]), but it is only used in pre-training between two

sentences. As we had the contextual information c, and the NSU u we put the

separator between these, hence the input X = c[SEP]u. However, each turn

where separated with a newline character. We experimented with using the

current speaker before the utterance, e.g. "A:", for speaker A, and also using a

hyphen character (-).

This was make it a more like a written dialogue, but neither had any

significant impact on the results either way, so these were removed. What was

used in the end was only a newline character, to separated each turn by speaker.
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This means if a speaker uttered multiple utterances after each other, these were

concatenated, but when a new speaker started speaking, a newline character was

added in between. The NSU, however, was always put after a separator token.

For DialoGPT, turns are normally separated between the eos_token (end-of-

string token). Here, we experimented also with adding the current speaker, and

hyphen character, but again there was no significant benefit, hence the eos_token

was kept as the separator token. Again, a separator token was put before the

NSU.

One thing to keep in mind with both the input text for BERT and DialoGPT is; if

a speaker uttered the last utterance in the contextual information, hence it is the

preceding utterance of the NSU, and the same speaker uttered the NSU as well,

the language models would not have any way to tell that these were uttered by

the same person.

3.3.3 Training

During training there was a difference in the number of epochs for each of the two

language models. The models that used BERT converged faster during training

than DialoGPT, and we used 15 epochs for training, while 35 epochs were used

for training the models that used DialoGPT. For each epoch we evaluated on

the validation data using the best macro average (see section 3.3.4) scoring model.

This was with the intuition of achieving a model that could generalize well for

each class, hence classifying each class reasonably well, rather than classifying

the most frequent classes really well.

We then kept the weights a model for each time the current best metric was

beaten, and loaded the weights of the best epoch for the training validation. This

means that the model will be slightly overfitted on the validation data, since we

use the weights of the model were it performs especially good on this data.

3.3.4 Metrics

To give a recap of the metrics used, we will briefly explain them in this section.

Classification of samples can fall into 4 categories:

• True positives (TP), for a class c1, are samples that are classified in c1 and

belongs to c1.

• True negatives (TN), for a class c1, are samples that are classified in another

class c2 and belongs to c2.
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• False positives (FP), for a class c1, are the samples that are classified to c1,

but belongs to another class c2.

• False negative (FN), for a class c1, are the samples that are classified to

another class c2, but belongs to c1.

We are mostly interested true positives, false positives, and false negative for the

coming metrics. We will denote N as all samples in the dataset, and Nc as the

samples of a class c.

Accuracy

Accuracy is the most basic metric in this section. For multiclass classification it

is the ratio of correctly classified to all samples. Below we see the accuracy for a

class c:

Accuracyc =
TPc

Nc

Precision

Precision can be thought of the fraction of relevant instances. For multiclass we

must calculate the precision per class and for a class c is it calculated as:

Precisionc =
TPc

TPc + FPc

Recall

Recall can be thought of the fraction of relevant instances that was acquired. For

multiclass we must calculate the recall per class and for a class c is it calculated

as:

Recallc =
TPc

TPc + FNc

F-score

The F-score takes into account both the precision and the recall. F1 score, which

we will be using, is when precision and recall is given equal weighting is the

harmonic mean of precision and recall (Powers 2019). For a class c it is calculated

as follows:
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F1,c =
2 × Precisionc × Recallc

Precisionc + Recallc

=
TPc

TPc +
1
2 (FPc + FNc)

Average of metric

After calculating a per-class score for a metric, we want to get an average for all

classes. A metric can be the accuracy, precision, recall, or f1-score, and we can

take an average in several ways, but we are interested in the macro average and

the weighted average.

Macro Average

We can take an macro average (Opitz and Burst 2021) for a metric m is the

unweighted mean of each class c, for a total of k classes, where mc is the score

of a metric for a class c:

macroavg =
∑k

c=1 mc

k

Weighted Average

The weighted average, unlike macro average, takes into account the imbalance

of labels in each class when averaging a metric. It is calculated as follows:

weightedavg =
k

∑
c=1

m×Nc

3.4 Results: Classification of NSU

In the following section we will view the empirical results of the classification

task using the two different pre-trained language models with different classifiers

on top. We will compare them to a baseline that is using non-contextualized word

embeddings, as well as to previous classification methods.

3.4.1 Baseline

As a baseline we wanted to use a model that creates non-contextualized word

embeddings and compare it to a model that creates contextualized word em-

beddings. We decided to use skip-gram (Mikolov et al. 2013) from a word2vec

("word2vec-google-news-300"), from the Gensim library (ehek and Sojka 2010).
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Precision Recall f1-score

Ack 0.467 1.000 0.637

AffAns 0.000 0.000 0.000

BareModPh 0.000 0.000 0.000

CE 0.000 0.000 0.000

CheckQu 0.000 0.000 0.000

ConjFrag 0.000 0.000 0.000

FactMod 0.000 0.000 0.000

Filler 0.000 0.000 0.000

HelpReject 0.000 0.000 0.000

PropMod 0.000 0.000 0.000

Reject 0.000 0.000 0.000

RepAck 0.000 0.000 0.000

RepAffAns 0.000 0.000 0.000

ShortAns 0.000 0.000 0.000

Sluice 0.000 0.000 0.000

Weighted avg. 0.218 0.467 0.297

Table 3.4: Results of the baseline model (skip-gram).

This had a vector dimension of 300, and on top of this we max-pooled the em-

beddings and used a linear layer for classification.

The model converged after a couple of epochs to the majority class, and was

unable to extract other details in the embedding. Hence, this baseline is the same

as an majority baseline, and it means that it got a score of zero for every other

class than Plain Acknowledgement. The results are shown in table 3.4.

3.4.2 Experimentation results

The results of experimentation with different heads on top of the pre-trained

language models are listed in table 3.5 for BERT and table 3.6 for DialoGPT. The

listed results are the weighted average of all the classes for precision, recall, and

f1-score.

We are mostly interested in the f1-scores. For both pre-trained models we can
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Classifier (head) Precision Recall f1-score

Linear 0.873 0.875, 0.870

Dense 0.921 0.914 0.914

RNN 0.881 0.875 0.873

Table 3.5: Shows the weighted average scores on the test set for different

classifiers for BERT.

Classifier (head) Precision Recall f1-score

Linear 0.823 0.840 0.825

Dense 0.854 0.840 0.836

RNN 0.770 0.821 0.7921

Table 3.6: Shows the weighted average scores on the test set for different

classifiers for DialoGPT.

see that the best measure was for the dense classifier. However, this model is

likely to be a little overfitted on the validation data, but this can also apply to the

other classifiers. As the dense classifier got the best results, we continued using

this for the 10-fold cross-validation measure in the next task. However, it does

not automatically mean that the dense classifier will the highest score on 10-fold

cross-validation task, so the other classifiers could be tested on this specific task,

in future work.

3.4.3 10-fold cross-validation

After experimenting with different hyperparameters and architecture we decided

to use the best scoring classifier, and perform 10-fold cross validation on this ar-

chitecture. This is in order to lower the variance in the experiments, and was also

done in previous experiments by R. Fernández, Ginzburg, and Lappin (2007) and

Dragone and Lison (2016).

To maintain the same ratio of class instances for each fold we used stratified 10-

fold validation. However, since the test data from the classes with the lowest

frequency, only contains 10-11 samples, stratified 10-fold cross-validation will

only give 1 sample in the test data for these classes, as there are no overlap of the

data for each fold.

As these classes contain 1 or more multi-turn dialogue, the training samples
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is for the model is not always containing these, and also might only confuse the

model when included during training. When an instance of a multi-turn dia-

logue is only available in the test set, and the model only has seen instances of

single-turn conversation of this class, it will be difficult to classify such instance.

The classes that have a very low frequency of samples (11 or less) include Propo-

sitional Modifier (PropMod), Direct Sluice, and Conjunct (ConjFrag). We can see

that both BERT- and DialoGPT-based classifiers are not able to perform well on

these classes, especially in PropMod and ConjFrag. This is probability due to low

frequency of instances in these classes in general. For PropMod and ConjFrag it

might also be that they only contain 1 instance of multi-turn dialogue.

Discussion

In table 3.7 we can see the results of using BERT with a dense classifier, while in

table 3.8 we can see the results of using DialoGPT with a dense classifier. Due

to this very imbalanced dataset, where the about 47% of the samples are in Plain

Acknowledgements (see 2.2), it is difficult for the model to perform well on the

classes with the lowest frequency of samples.

For the NSU class Short Answers, the language models did reasonably well, both

achieving a f1-score well over 80%. The thing to keep in mind with these samples

is that 37% of these are dialogues where the antecedent with a distance of 2 or

more turns away from the NSU and as much as 24% of the total Short Answers

are of distance 4 or more. This means that the language model is able to correctly

classify multiple of these long-distance NSU in Short Answer, which has not been

done in previous experiments.

Compared to our baseline approach using non-contextualized word embeddings,

we can see that both BERT, and DialoGPT, are able to capture some linguistic

properties of the conversation, that enables them to classify other classes than

only the majority class. The baseline was not able to do this, which made it con-

verge towards the majority class.

When comparing BERT (3.7) to DialoGPT (3.8), we can see that the classifier using

BERT got better f1-scores than the classifiers using DialoGPT, in general. This is

true for all classes, except CheckQu, PropMod. It is somewhat to be expected that

BERT performs better than DialoGPT, as BERT is fully bi-directional and usually

a good choice for classification tasks (Devlin et al. 2019).
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Precision Recall f1-score

Ack 0.940 0.958 0.949

AffAns 0.845 0.845 0.831

BareModPh 0.500 0.400 0.433

CE 0.862 0.944 0.900

CheckQu 0.883 0.917 0.873

ConjFrag 0.233 0.300 0.250

FactMod 0.825 0.750 0.776

Filler 0.408 0.400 0.377

HelpReject 0.425 0.417 0.384

PropMod 0.300 0.250 0.267

Reject 0.893 0.880 0.878

RepAck 0.712 0.676 0.683

RepAffAns 0.520 0.617 0.535

ShortAns 0.888 0.847 0.857

Sluice 0.750 0.750 0.733

Weighted avg. 0.857 0.861 0.851

Table 3.7: Per class average results when performing 10-fold cross-validation on

BERT with a dense classifier.

3.4.4 Comparison with previous results

It is important to keep in mind that these results are not directly comparable

to the previous results obtained by R. Fernández, Ginzburg, and Lappin (2007)

and Dragone and Lison (2016). This is because, as mention previously, both are

only using the conversations where the antecedent is the preceding utterance of

the NSU. The classification done by the language models are therefore a more

complicated task than previously done, as about 12% of the total data are multi-

turn dialogue. Another difference is that the previous methods used extracted

features from the text to classify, while our models used only the raw text. Nev-

ertheless, the language models are more complex models, containing hundred

millions of parameters, so we would expect them to perform somewhat compa-

rable. Table 3.9 show the weighted average scores of the previous results, along

with the baseline, and from BERT and DialoGPT.
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Precision Recall f1-score

Ack 0.925 0.948 0.936

AffAns 0.785 0.855 0.808

BareModPh 0.400 0.300 0.333

CE 0.838 0.796 0.809

CheckQu 0.833 0.717 0.740

ConjFrag 0.000 0.000 0.000

FactMod 0.967 0.800 0.860

Filler 0.333 0.300 0.307

HelpReject 0.340 0.383 0.343

PropMod 0.417 0.450 0.395

Reject 0.817 0.910 0.851

RepAck 0.650 0.531 0.538

RepAffAns 0.275 0.250 0.253

ShortAns 0.811 0.857 0.829

Sluice 0.350 0.450 0.383

Weighted avg. 0.814 0.823 0.810

Table 3.8: Per class average results when performing 10-fold cross-validation on

DialoGPT with a dense classifier.

Model Precision Recall f1-score # samples

SLIPPER 0.916 0.927 0.920 1123 (only d1)

SMO (AL + extended features) 0.913 0.907 0.905 1223 (only d1)

Baseline (skip-gram) 0.218 0.467 0.297 1283

BERT 0.857 0.861 0.851 1283

DialoGPT 0.814 0.823 0.810 1283

Table 3.9: The weighted average scores on 10-fold cross validation on NSU data.

It is also important to note that the goal was never to achieve state-of-art

performance on the classification task, but rather to see to which extent current

pre-trained language models were able to perform on this task. That said, our
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models using pre-trained language models were not able to achieve as high score

as the previous methods that are using simple machine learning algorithms.

Though there is some class were both the language models scored higher than

the previous methods. This was for the class Helpful Reject, where BERT and

DialoGPT got a score of 38.4% and 34.3% respectively, compared to the best

previous result from the SMO classifier at 33%. For CE, BERT got a score of 90%,

which was better than the SMO classifier at 89%, but worse than SLIPPER at 95%.

As mentioned above, the poor results in some of the classes are probably due

to the low frequency of samples in these classes. Although pre-trained language

models usually can cope with scarce and imbalanced, Ack contains about 46.7%

the of the samples in the dataset making it very imbalanced. And we would

probably achieve higher performance with larger models i.e. containing even

more parameters. Since, it is generally true, as we can see in the experiment in

chapter 4, that the more parameters a language model has the better it performs

on a challenge.

Fine-tuning larger models were not possible due to computational limitations,

but we might expect to see significant improvements using models with around

1 billion parameters or more (for reference see table 4.3).

3.5 Feature Attribution

We will in this section describe the feature attribution challenge, and the experi-

ments that were done. As we explained in section 2.2.4, the goal of feature attri-

bution is to attribute a score for each input token. This score will be a percentage

score (when normalized), that tells how much the token contributed to the out-

put. Different feature attribution algorithms will give differences in the attribu-

tion for each token, as they calculate these attributions differently. The following

task will be using Integrated Gradients (Sundararajan, Taly, and Yan 2017), which

has been explained in section 2.2.4, as it fulfill sensitivity and implementation in-

variance (Guidotti et al. 2018; Sundararajan, Taly, and Yan 2017).

To exemplify process of feature attributions, we can consider the following

dialogue:

A: I’ll write a letter to Chris

B: And other people.

Using the Integrated gradients algorithm, this conversation will get the

46



following feature attribution scores by BERT (trained on NSU classification task):

contextual information︷ ︸︸ ︷
i︸︷︷︸

0.031

’︸︷︷︸
0.027

ll︸︷︷︸
0.048

write︸ ︷︷ ︸
0.056

a︸︷︷︸
0.027

letter︸ ︷︷ ︸
0.070

to︸︷︷︸
0.033

chris︸ ︷︷ ︸
0.103

[SEP]︸ ︷︷ ︸
0.240

NSU︷ ︸︸ ︷
and︸︷︷︸
0.115

other︸ ︷︷ ︸
0.062

people︸ ︷︷ ︸
0.059

.︸︷︷︸
0.053

[SEP]︸ ︷︷ ︸
0.076

Since BERT divides some words into multiple tokens, each of these tokens are

attributed a score.

3.5.1 Experimental setup

For the feature attribution, we used models trained on the NSU classification task

(see 3.3). These models are the same as explained in 3.3.1, using BERT and Di-

aloGPT as pre-trained language model with a classifier on top. When training

we used training and test datasets described in section 3.1.1. As mentioned ear-

lier the training data contained 80% of the samples, and the test data contained

the rest (20%). We decided to use a dense classifier for both pre-trained language

models, as this was the classifier scoring highest, for both language models, when

experimenting with architectures in the classification task.

There was, however, a difference in the model using BERT. For BERT instead

of including the classification token ([CLS]), this was masked out and excluded

completely (which was done through changing a hyperparameter), hence had

no effect whatsoever on the other tokens, both during training and feature

attribution process. This is due to the difficulty of interpreting the meaning of

an attribution for this token, since it is difficult to know wether the antecedent or

NSU were most important, or how they relate to each other, when this token is

used. When masking out this token, it will get a value of 0, when calculating the

feature attributions. Hence, BERT with a dense classifier was trained again, but

with the CLS token masked out, on the training data, and the results are shown

in table 3.10, along with the previous results of DialoGPT and BERT with CLS

token.

We can see a slight drop in performance of the BERT model, when not using the

CLS token. However, it still gets better f1-score than DialoGPT. These results

are not 10-fold cross-validated, so they are only meant as an indication of the

performance.
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Model Precision Recall f1-score

BERT (without CLS) 0.887 0.895 0.887

BERT (with CLS) 0.921 0.914 0.914

DialoGPT 0.850 0.840 0.835

Table 3.10: Shows the weighted average scores on the test set for the classification

task; all models use a dense classifier.

Technical details for calculating feature attributions

Using a model trained on the classification task, we calculated the attributions for

each sample in the test set for both models. When calculating the feature attribu-

tions, they need to be calculated with respect to a given label. As such we could

either use the label the model predicted, or the true label of the sample. Since we

wanted to see the attributions for different classes, and the scores with respect

to the dialogues of these, we calculated the attribution with respect to true label.

So even if the model actually wrongly predicted a class, we calculate the feature

attribution with respect to the true class label. After feature attributions are cal-

culated, L2-norm is used to retrieve a score for each token, and then the values

are normalized by a division of the sum of the attribution scores. The final scores

are then percentage scores of how much the tokens attributed to the output.

We used Captum library (Kokhlikyan et al. 2020) for calculating the feature

attributions. The feature attribution algorithm used was always Integrated

Gradients. For a language model, such as BERT or DialoGPT, we need to input

the word embeddings of the input text, and not the tokenized ids, to the model.

This is regardless of the selected feature attribution algorithm. Hence, a wrapper

for the classification model was created to handle the input embeddings, and the

wrapper along with the current word embeddings could be passed to the feature

attribution algorithm.

The tasks

We have created two different task for evaluating feature attributions of the

models. The first will be to take the feature attributions over the entire dataset,

and try to interpret some aggregated values. The second will be to look at

the feature attribution for specific examples, and see how they change then we

manipulate either the contextual information, or the NSU, to let the dialogue fall

into another class.
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3.5.2 Feature attribution scores over test data

There is some difficulty when calculating the feature attributions for an entire

dataset, even though, as in our case, the test set used is not very large. This

relates the interpretation the attributions scores across multiple conversations,

which needs to be somewhat categorized. Hence, we want to find differences in

the attributions scores between the contextual information, and the NSU, when

classifying a dialogue.

We will start by some definitions; for a sample in the dataset, with tokens Xi =

xi,1, ..., xi,l and length l, it will contain the contextual information Ci = xi ,1, ..., xi,k,

with length k, and the tokens of the NSU Ui = xi,k+1, ..., xi,l with length j = l − k.

Here, both the contextual information and the NSU is part of the sample; Ci ∈ Xi

and Ui ∈ Xi.

For simplicity we will call the feature attribution function Attr(X) The feature

attributions for Xi will be Attr(Xi) = Ai = ai,1, ..., ai,l , and the feature attributions

for contextual information are Attr(Ci) = Ai,c = ai,1, ..., ai,k and the feature attri-

butions for the NSU are Attr(Ui) = Ai,u = ai,k+1, ..., ai,l .

Since, the length k of the contextual information, is usually much longer than the

length j of the NSU, we would need some way to measure these with respect to

the length of the tokens. The lengths k and j also vary greatly for the different

samples i in the dataset. If we would only sum the feature attributions of Ai,c, we

would be more likely to get a much higher value than the total addition of Ai,u,

given that each value in Ai similar.

To get an indication of how much the language model is dependent on either the

contextual information or the NSU, when classifying, we will take the average

of Ai,c and Ai,u. However, the average alone isn’t a good way for measuring

the importance of the contextual information versus the NSU. This is because is

the contextual information has more token in it, it will automatically get a lower

average, since we are using percentage values.

To try and balance this out, we perform weighting for both the contextual

utterance and the NSU. The weight of the contextual information is the number

of containing tokens divided by the total amount of tokens, hence k
l . The weight

of the NSU would be the same, but using the number of tokens in the NSU, hence
j
l =

l−k
l . We will be using this to try and get some indication of the importance of

the contextual information versus the NSU.

We would expect the NSU in the conversation to be the most important
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utterance to classify the NSU, as this should give the most information about

which class it belongs to.

3.5.3 Results and discussion

We will now see some distributions of the contextual information and the NSU,

for both models used. To get a sense of how many tokens there usually are in the

contextual information compared to the NSU, we can take a look at figure 3.1. It

contains the distribution of number of tokens in the contextual information and

the NSU, when using the BERT tokenizer; using the tokenizer of DialoGPT, we

would get similar results.

In figure 3.2a and 3.2b we see the distribution of attribution scores, for both

BERT and DialoGPT respectively. These are per token attribution scores of the

samples in both the contextual information and the NSU, hence shows us how

high scores the individual tokens in the contextual information gets compared to

the individual tokens in the NSU.

Finally, we can see the results of aggregation of the summation, the average in

figure 3.3 and 3.4 respectively. Below we will explain how the aggregated scores

are calculated.

Distributions of contextual information and NSU

The distributions of the attribution scores of the contextual information and the

NSU were obtained by extracting all attributions of the dataset, individually for

each and then plotted. The count in contextual information are higher than for

NSU, which is simply because there are more tokens in the contextual informa-

tion, than in the NSU. The plot for BERT is shown in figure 3.2a, while for Di-

aloGPT it is shown in figure 3.2b.

We can see that for both BERT, and DialoGPT the attribution scores of the NSU

are generally higher than for the contextual information.

Summation

We can find the summation of the attribution scores for the contextual informa-

tion ΣC = Σc,0, ..., Σc,N , and the NSU ΣU = Σu,0, ..., Σu,N individually, for each

sample, where N is the total length of the dataset. We can calculate Σc,i and Σu,i,
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Figure 3.1: Distribution of the number of tokens in the contextual information

and the NSU, when using BERT tokenizer.

for a sample of attributions Ai = ai,0, ..., ai,l the following:

Σc,i =
k

∑
β=0

ai,β

Σu,i =
l

∑
β=k+1

ai,β

We then plot the values of SC against SU for a specific model as seen in figure

3.3.

Weighted average

Finding the weighted average of the attribution scores for the contextual

information µC = µc,0, ..., µc,N and the NSU µU = µu,0, ..., µu,N , can be found by

calculating µc,i and µu,i for each attribution score Ai:

µc,i =
k
l
× 1

k

k

∑
β=0

ai,β

µu,i =
l − k

l
× 1

l − k

l

∑
β=k+1

ai,β
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(a)

(b)

Figure 3.2: Distributions of the attribution scores of the contextual information

and NSU for both BERT and DialoGPT.

52



Figure 3.3: Histogram of the summation of contextual information, and NSU, for

each sample in test data.

The plot of µC and µU is shown in figure 3.4.

Discussion

Since the contextual information often contains more tokens than the NSU, as

seen in figure 3.1, the summation for each sample is generally higher than the

summation of NSU (3.3). We know from the distributions of the attribution

scores, that the individual tokens in the NSU often has higher values than the

contextual information (figure 3.2a and 3.2b), but for the weighted average we

can see that the contextual information is slightly higher than the NSU, as shown

in figure 3.4.

Though, in general, the attribution scores for the contextual information are

lower than for the NSU, the tokens of the NSU does not have a high enough attri-

bution score to make up for the weighted average difference. This might simply

be that the language models needs to process a lot more tokens in the contextual

information and when it processes each of the tokens, the aggregated attribution

score gets high.
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Figure 3.4: Histogram of the average of contextual information, and NSU, for

each sample in test data.

It would have been interesting to perform a more granular aggregation of the

feature attribution e.g. for multi-dialogues we could find the average feature

attribution per utterance. This might let us see for antecedents that are of

distance 2 or more of the NSU, if the antecedent is more important than the other

utterances in between the antecedent and the NSU, for classifying a NSU.

3.5.4 Feature attribution for synthetic dialogues

In this section we will see some synthetic conversation, and we will see how the

feature attribution changes when there are small changes to the dialogues, which

makes the dialogue fall into another NSU class. We will be using the dialogues

in table 3.11 containing one dialogue per NSU class 2.

For the classification model using BERT, the dialogues from (3.11) gives the

following attribution scores using Integrated Gradients (the scores for DialoGPT

can be viewed in Appendix A):

2These are modified dialogues from Jonathan (2012, Chapter 7).
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NSU Class Example

Ack A: John left. B: Yes.

AffAns A: Did John leave? B: Yes.

BareModPh A: John left? B: Yesterday.

CE A: Did John leave? B: John?

CheckQu A: John left. A: Okay?

ConjFrag A: John left. B: And Mark.

FactMod A: John left. B: Excellent!

Filler A: Did John... B: leave?

HelpReject A: Did John leave? B: No, Mark.

PropMod A: Did John leave? B: Probably.

Reject A: Did John leave? B: No.

RepAck A: John left. B: John left, hmm.

RepAffAns A: Did John leave? B: John, yes.

ShortAns A: Who left? B: John.

Sluice A: John left. B: Why?

Table 3.11: Similar dialogues with small changes to fall in another class.

Ack
contextual information︷ ︸︸ ︷

john︸︷︷︸
0.100

left︸︷︷︸
0.147

.︸︷︷︸
0.115

[SEP]︸ ︷︷ ︸
0.100

NSU︷ ︸︸ ︷
yes︸︷︷︸
0.358

.︸︷︷︸
0.097

[SEP]︸ ︷︷ ︸
0.083

(3.1)

AffAns
contextual information︷ ︸︸ ︷

did︸︷︷︸
0.137

john︸︷︷︸
0.075

leave︸ ︷︷ ︸
0.092

?︸︷︷︸
0.119

[SEP]︸ ︷︷ ︸
0.070

NSU︷ ︸︸ ︷
yes︸︷︷︸
0.295

.︸︷︷︸
0.148

[SEP]︸ ︷︷ ︸
0.064

(3.2)

BareModPh
contextual information︷ ︸︸ ︷

john︸︷︷︸
0.086

left︸︷︷︸
0.112

?︸︷︷︸
0.334

[SEP]︸ ︷︷ ︸
0.069

NSU︷ ︸︸ ︷
yesterday︸ ︷︷ ︸

0.204

.︸︷︷︸
0.127

[SEP]︸ ︷︷ ︸
0.067

(3.3)

CE
contextual information︷ ︸︸ ︷

did︸︷︷︸
0.141

john︸︷︷︸
0.075

leave︸ ︷︷ ︸
0.087

?︸︷︷︸
0.096

[SEP]︸ ︷︷ ︸
0.091

NSU︷ ︸︸ ︷
john︸︷︷︸
0.105

?︸︷︷︸
0.308

[SEP]︸ ︷︷ ︸
0.098

(3.4)
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CheckQu

contextual information︷ ︸︸ ︷
john︸︷︷︸
0.090

left︸︷︷︸
0.116

.︸︷︷︸
0.156

[SEP]︸ ︷︷ ︸
0.113

NSU︷ ︸︸ ︷
okay︸ ︷︷ ︸
0.269

?︸︷︷︸
0.164

[SEP]︸ ︷︷ ︸
0.091

(3.5)

ConjFrag

contextual information︷ ︸︸ ︷
john︸︷︷︸
0.084

left︸︷︷︸
0.125

.︸︷︷︸
0.075

[SEP]︸ ︷︷ ︸
0.193

NSU︷ ︸︸ ︷
and︸︷︷︸
0.159

mark︸ ︷︷ ︸
0.194

.︸︷︷︸
0.080

[SEP]︸ ︷︷ ︸
0.090

(3.6)

FactMod

contextual information︷ ︸︸ ︷
john︸︷︷︸
0.095

left︸︷︷︸
0.133

.︸︷︷︸
0.095

[SEP]︸ ︷︷ ︸
0.120

NSU︷ ︸︸ ︷
excellent︸ ︷︷ ︸

0.261

!︸︷︷︸
0.195

[SEP]︸ ︷︷ ︸
0.100

(3.7)

Filler

contextual information︷ ︸︸ ︷
did︸︷︷︸
0.116

john︸︷︷︸
0.065

.︸︷︷︸
0.088

.︸︷︷︸
0.066

.︸︷︷︸
0.055

[SEP]︸ ︷︷ ︸
0.063

NSU︷ ︸︸ ︷
leave︸ ︷︷ ︸
0.098

?︸︷︷︸
0.347

[SEP]︸ ︷︷ ︸
0.103

(3.8)

HelpReject

contextual information︷ ︸︸ ︷
did︸︷︷︸
0.089

john︸︷︷︸
0.068

leave︸ ︷︷ ︸
0.070

?︸︷︷︸
0.102

[SEP]︸ ︷︷ ︸
0.095

NSU︷ ︸︸ ︷
no︸︷︷︸

0.146

,︸︷︷︸
0.121

mark︸ ︷︷ ︸
0.124

.︸︷︷︸
0.057

[SEP]︸ ︷︷ ︸
0.127

(3.9)

PropMod

contextual information︷ ︸︸ ︷
did︸︷︷︸
0.094

john︸︷︷︸
0.064

leave︸ ︷︷ ︸
0.083

?︸︷︷︸
0.139

[SEP]︸ ︷︷ ︸
0.160

NSU︷ ︸︸ ︷
probably︸ ︷︷ ︸

0.225

.︸︷︷︸
0.088

[SEP]︸ ︷︷ ︸
0.146

(3.10)

Reject

contextual information︷ ︸︸ ︷
did︸︷︷︸
0.124

john︸︷︷︸
0.073

leave︸ ︷︷ ︸
0.087

?︸︷︷︸
0.133

[SEP]︸ ︷︷ ︸
0.072

NSU︷ ︸︸ ︷
no︸︷︷︸

0.327

.︸︷︷︸
0.112

[SEP]︸ ︷︷ ︸
0.073

(3.11)

RepAck

contextual information︷ ︸︸ ︷
john︸︷︷︸
0.053

left︸︷︷︸
0.172

.︸︷︷︸
0.055

[SEP]︸ ︷︷ ︸
0.065

NSU︷ ︸︸ ︷
john︸︷︷︸
0.055

left︸︷︷︸
0.142

,︸︷︷︸
0.038

hmm︸ ︷︷ ︸
0.258

.︸︷︷︸
0.096

[SEP]︸ ︷︷ ︸
0.066

(3.12)

56



RepAffAns

contextual information︷ ︸︸ ︷
did︸︷︷︸
0.092

john︸︷︷︸
0.087

leave︸ ︷︷ ︸
0.066

?︸︷︷︸
0.116

[SEP]︸ ︷︷ ︸
0.074

NSU︷ ︸︸ ︷
john︸︷︷︸
0.157

,︸︷︷︸
0.085

yes︸︷︷︸
0.200

.︸︷︷︸
0.069

[SEP]︸ ︷︷ ︸
0.055

(3.13)

ShortAns

contextual information︷ ︸︸ ︷
who︸︷︷︸
0.135

left︸︷︷︸
0.136

?︸︷︷︸
0.172

[SEP]︸ ︷︷ ︸
0.102

NSU︷ ︸︸ ︷
john︸︷︷︸
0.118

.︸︷︷︸
0.172

[SEP]︸ ︷︷ ︸
0.165

(3.14)

Sluice

contextual information︷ ︸︸ ︷
john︸︷︷︸
0.082

left︸︷︷︸
0.113

.︸︷︷︸
0.098

[SEP]︸ ︷︷ ︸
0.117

NSU︷ ︸︸ ︷
why︸︷︷︸
0.219

?︸︷︷︸
0.215

[SEP]︸ ︷︷ ︸
0.156

(3.15)

Generally, the feature attributions are somewhat evenly distributed for all dia-

logue, and there are not large differences between the scores of the tokens, which

might be somewhat unexpected. Since we are classifying the NSU, it seems plau-

sible that the NSU itself should be significantly more important than the utter-

ance(s) in the contextual information. We can see that, indeed, the tokens in the

NSU are more important for the classification task, than the tokens in the contex-

tual information, but not always by a large margin.

Above, we can see for the dialogue for AffAns (3.2) and Reject (3.11), the polar

answer (yes/no), are given a relatively high value, of around 30%, and are the

most important tokens for these dialogues. The lowest scoring token in AffAns

was the middle separator token, at only 7%, while the lowest scoring token for

the Reject dialogue was both “john”, in the contextual information and the last

separator token, in the NSU, at 7.3%.

In these examples, the highest scoring token was 22.5% and 25.4% more

important than the least important token, for the AffAns and Sluice respectively.

ShortAns, on the other hand, has only a difference of 7% between the highest and

the lowest scoring token. For BareModPh is the only dialogue where a token in

the antecedent is more important than the NSU, for these examples. In general,

we can see that question marks, in both the antecedent and NSU, are usually

given a higher score than the rest of the tokens in the antecedent, which is true

for almost every dialogue.
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Discussion

It is difficult to draw any conclusions for how important, for the model, the

contextual information is versus the importance of the NSU, when classifying

a NSU. However, we have seen that the tokens of the NSU usually get higher

scores than the tokens in the contextual information, and the the highest scoring

token usually lies in the tokens of the NSU.

So we could say that the individual tokens in the NSU seems to be impor-

tant than the individual tokens in the contextual information. But as shown in

the weighted average of attribution scores (3.4) the contextual information seems

to be more slightly important as a whole than the NSU, in general. Though this

could simply be because the contextual information generally contains a lot more

tokens than the NSU (3.1), hence it contains more information for the language

model to process.

For future experiments, it would be interesting to the the feature attributions for

a multi-turn conversation, for a dataset such as that in Chapter 4. Then we could

calculate the importance of each utterance in the dialogue, when the models is

answering a question posed to that dialogue. When questions posed to that

dialogue are asking about something that needs to be inferred from a NSU, we

might be able to capture which aspects of the conversation, specifically which

utterances, that are the most important for the language model to answer that

question.

3.6 Summary

In this chapter we presented two different experiments, the first the task

of classifying NSUs using pre-trained language models with the transformer

architecture. Secondly we calculated feature attribution scores of such models

trained on the classification task to try and interpret the attribution scores of the

contextual information and the NSU.

We started the chapter by introducing the NSU corpus of R. R. Fernández

(2006), based on conversations from BNC, and continued by explaining previous

methods done in the classification of NSUs for the taxonomy introduced in

section 2.1.2. The first work was from R. Fernández, Ginzburg, and Lappin

(2007), where they tested 4 different machine learning algorithms, using a set

of 9 features that could be automatically extracted from BNC. Dragone and Lison

(2016) extended this work by adding additional features to expand the features

set, giving a total of 32 features, and using active learning to increase the amount
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of samples.

We then presented our experimental setup, using all 1283 samples in the NSU

corpus, which contains dialogues where the NSU is of distance more than 1

utterance away from the antecedent. This differs from both previous methods,

as these only used dialogues where the antecedent was the preceding utterance

of the NSU, and all input data is raw text in natural language. Using BERT and

DialoGPT as our pre-trained language models, we experimented with different

hyperparameters and architecture, but settled on a dense classifier after the

language model. Neither BERT or DialoGPT were able to achieve the same

score of previous methods; only achieving weighted f1-scores of 85.1% and 81.0%

respectively, using stratified 10-fold validation on the entire dataset (where R.

Fernández, Ginzburg, and Lappin (2007) got a weighted f1-score of 92.0%). This

is likely due to the scarcity of the available data, and the large class imbalance.

Using model of BERT or DialoGPT with more parameters is also likely to increase

(drastically) the performance, as we can see an inflation in performance when the

number of parameters increases in Chapter 4.

Finally, we used models (BERT based and DialoGPT based) trained on the

classification task, on training data, and calculated feature attributions on the a

test set. We saw that the individual tokens of the NSU gets higher attribution

scores than the tokens for the contextual information, however, the latter gets

a slightly higher weighted average score. We also saw synthetic examples of

how the attribution score changes, when the dialogue changes slightly. For

some classes, individual tokens of the NSU got high attribution scores, where it

seems that the language model have understood some properties of these classes.

However, further experimentation is needed to draw any conclusions.
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Chapter 4

Question Answering Benchmark

In previous chapter we tested pre-trained language models ability to classify

NSUs in conversations based on text in natural language.

We will in the following chapter test the language models “understanding”

of NSUs with a custom benchmark dataset. This will be another task to test the

pre-trained language models ability to do inference on NSUs. Each sample in the

dataset is a conversation containing one or multiple NSUs, where the intention is

that these NSUs needs to be inferred in order to solve the challenge (a question).

Hence, it is a benchmark for testing the ability of language models to infer NSUs.

This dataset is used throughout chapter and is explained in section 4.1.

We decided to use UnifiedQA-v2 (Khashabi, Kordi, and Hajishirzi 2022) as this

language model provides an easy to use format for prompting 1, and is trained on

several QA datasets. This model supports a multiple-choice question-answering

format so we could test a language model on the dataset. Such task will be zero-

shot task, as explained in 2.2.3, since the language model is tested the on data

that it has not seen during training. The only thing that is kept the same is the

same format of the prompt.

4.1 NSU dialogue dataset

We will now introduce the dataset that was constructed for the task. The dataset

contains only multi-turn dialogue and multiple-choice question-answering are

asked to each dialogue. The dataset is not large enough to be used as training

data, and hence should only be used for benchmarking. It was created mostly

based on dialogue data from BNC using the refined annotated dataset by R. R.

1The code for the models are available at their github UnifiedQA-v2 and can be easily loaded
with Transformers python package.

61

https: //github.com/allenai/unifiedqa
https://github.com/huggingface/transformers/


NSU Class Instances

AffAns 32

Reject 13

HelpReject 11

CE 16

BareModPh 11

FactMod 4

ShortAns 29

PropMod 12

Sluice 15

Ack 30

RepAffAns 14

Filler 1

ConjFrag 12

RepAck 5

CheckQu 3

Table 4.1: Distribution of NSU instances for each class in the NSU dialogue

dataset.

Fernández (2006) and DailyDialog dataset (Y. Li et al. 2017). However, it does

also contain constructed dialogues, and finally, two dialogues was used from the

Ubuntu Dialogue Corpus (Lowe et al. 2015). Our dataset only contain two per-

son dialogues, but is constructed in such a way that it can contain multi-party

conversations. This is because each utterance is associated with a name of the

person speaking, hence we could have had dialogues between multiple people.

To cover a wide variety of NSUs, most classes were included in at least 10

different dialogues. Table 4.1 shows the distribution of NSU instances for each

class in the dataset. It is important to keep in mind that a conversation can contain

multiple NSUs.

Some classes, however, were dropped because they do not add a lot of

information to the dialogue, such as Ack, RepAck, CheckQu and Filler. By

“dropped” we don’t necessarily mean that the dataset does not contain them,

as it contains for example a lot of acknowledgement, but it means that questions
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posed about the dialogue are not about these type of NSUs as that these classes

are not the main focus.

For Ack, this is because of the of the difficulty of asking meaningful question

to such dialogues e.g. if a person A has uttered a statement, and another person

B acknowledge that statement by uttering a yes-word, the question posed to the

dialogue would be about that statement, hence not very interesting for the NSU

itself. For RepAck the same argument applies as Ack.

For CheckQu, dialogues are usually in the form of an ‘Okay?’ utterance,

and followed by a ‘yes’ utterance, which would be difficult to ask a meaningful

question about as well.

Lastly, for Filler, it can be discussed if it should have been included, as it was

decided to include ConjFrag (which is a continuation of the antecedent by adding

information). However, they were not included as they only extend the previous

utterance, hence it might be difficult asking meaningful question about them.

They can usually be thought of an utterance that was divided in two, but uttered

by two different people. Though for some fillers where the antecedent is several

turns away from the NSU, it might be interesting to add such dialogues.

Though, the dataset include conversations that have a distance between the

antecedent and the NSU of greater than 1, this was not consistently kept in

mind. So for future improvement, conversations that have NSUs with a distance

of 2 or more to the antecedent, could be labeled. Lastly, in most dialogues we

would have the occurrence of at least one, but often multiple NSUs classes (as

mentioned); these are labeled for the conversation as a whole, but not for the

specific utterances.

4.1.1 Multiple-Choice Question Answering

For each conversation one or multiple questions are asked about it, with associ-

ated possible answers as this is a multiple-choice QA problem. The number of

available choices ranges between 3 and 5, but there are most samples contain-

ing 4 choices, as viewed in table 4.2. There is always a default choice of "Don’t

know", but this will only be correct in the cases where the question posed is not

answerable given the dialogue. The questions posed to the dialogue are (hope-

fully always) asking about some of the NSUs. This means we would have to infer

the meaning of the NSUs given the previous utterances in the dialogue, and the

posed question will ask about these.

The available answers have to be non-ambiguous, in the sense that there should
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# choices # sample

3 15

4 95

5 9

Total 119

Table 4.2: Shows the number of available choices and the associated number of

samples.

always only be one “most correct” answer, even though some of the other choices

might seem correct, to some extent. If there are two (or more) answers that to a

human feels equally likely to be correct, either the conversation, the question

posed or the available answers are bad and should be removed or changed.

Also, the conversation needs to contain enough different information, so it

makes it a bit more difficult to answer the question. For example if the dialogue

only contains one noun and the question posed about the dialogue is asking

about the noun, it would be too easy for a language model to exclude the possible

choices that are mentioning other nouns. This is because they have not occurred

in the conversation at all.

Hence, that dialogue should try to mention other nouns to make it more

difficult and meaningful to answer questions posed to such dialogue. However,

the point of these dialogues is not to ask difficult question or have a very complex

dialogue, but rather to see if a language model is able to infer the meaning of

the NSUs, which to humans should be non-problematic. This is at least the

methodology that was tried to follow when creating this dataset.

4.1.2 Dialogue example

One important thing to be aware of is that this dataset, although dialogues from

the real world have been used, is artificial. This is because a lot of the dialogues

were reused with handcrafted changes to fall within another class of NSUs. This

is done intentionally to test the language models on different types of NSU classes

as the utterances changes slightly, to see if they understand how the meaning of

the utterance when the dialogue changes. If we take a look at the following two

almost identical dialogues:

(7) a. Melissa: Anne said she worked in a factory at one time.

b. Ashley: Popcorn factory?
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c. Melissa: Yes.
d. Ashley: And she drove to work?
e. Melissa: Yes, she owned a car.

(8) a. Melissa: Anne said she worked in a factory at one time.
b. Ashley: Popcorn factory?
c. Melissa: No, car.
d. Ashley: I see.

Above we can see two dialogues that starts the same, and then diverges on the

third utterance (c). We observe how the meaning changes depending on the

answer of Melissa. Ashley wants some clarification about the first utterance (a);

specifically, if the factory actually was a popcorn factory. Hence, the first utterance

of Ashley (b) is a CE, as she wants clarification of the antecedent. In dialogue 7 we

can see that Melissa answers "Yes. " (7c), and we understand that Anne worked at

a popcorn factory. In dialogue 8, however, Melissa answers with "No, car. " (8c).

This is a negative answer question (8b) and is accompanied with a contrasting

alternative, hence it is classified as a Helpful Reject. We can from this utterance

infer that Anne was working at a car factory and not a popcorn factory.

These reason for including the utterances 7d and 7e in dialogue 7, is because

we want the word ‘car’ to be included, as an additional subject to included in the

conversation. This is to make it more difficult for the language model (though

not )

A possible multiple-choice question to these dialogues can be "What type of factory
did Anne work in?" with the associated possible answers:

(a) Don’t know

(b) Popcorn factory

(c) Car factory

(d) Anne worked at a factory

We can also see that the dialogues contain an associated speaker, in form of a real

name. This was chosen instead of using alphabetical names (A, B, C etc.), to try

and help the language models with a conversation from a real world scenario.

Both was tested, and there no difference in the accuracy either way.

4.1.3 Text communication

In our dataset there are only two conversations that are in form of text messaging.

Due to the time consuming task of finding, preparing and classifying these, most
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of the conversations are from the NSU corpus (2.1.4) where dialogues with NSUs

has already been found and classified. However, to further include a wider

variety of dialogues, and especially in the form of text messaging dialogues,

it would have interesting to add more data from corpus like Ubuntu Dialogue

Corpus or from other chatting services like Discord. As we would occasionally

have other types of NSUs in text messages that is will not occur in oral chit-chat.

For some NSU classes there are also NSUs that occur in oral dialogue will not

occur in text message dialogue. As an example we can have a look at a NSU

class that for some NSU will only occur in oral dialogue. If we consider the NSU

class CE we can see that text message we would not ask for the previous message

to be repeated the exact same way, as a person might do when mishearing (or

not completely hear) an utterance. This is, of course, since a person can read

a text message multiple times. A CE in text form can instead be a word that

was misspelled and another person would ask for clarification about that, if not

understood. It can also be that an utterance was written too short and simply

need further clarification. Sometimes it can also be in the same form as in oral

dialogue e.g. when one person asks for further clarification.

4.2 Experimental setup

In order to answer to prompt a model with a dialogue and ask a question to that

dialogue, we will be using the UnifiedQA-v2 model (Khashabi, Kordi, and Ha-

jishirzi 2022). The UnifiedQA-v2 model is using the T5 architecture, but is trained

on datasets in 4 QA formats. It is important to emphasize that this is a model that

has only been pre-trained and has not been fine-tuned on any samples of the

dataset. Hence, for these models this is a zero-shot challenge. To make it easier,

we will often time refer to a model by its size, hence small for the “UnifiedQA-v2-

t5-small” model and base, large, 3B, and 11B for the larger models respectively.

When a data sample is given to the model, it needs to be in a specified format.

First comes the question, then the possible choices, and finally the text, which in

our case is a prefix followed by the conversation. All text have to be lower cased.

The question, choices and text are separated by “\n”; this is not the newline

character, but a backslash followed by the letter n. This is exemplified by the

prompt below:
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who left? \n (a) don’t know (b) john (c) mark (d) rod \n

the following is a dialogue between rod and mark:

rod: did john leave?

mark: yes.

We can see that the the model in this case gets the information of which person

spoke the utterance, unlike in Chapter 3. The model then generates an output

text in natural language, which we match against the possible choices. If the

generated text is equal to the correct answer, the model is considered to have

selected the right choice.

4.2.1 Random baseline

We will compare the performance to a simple randomized baseline, to see the

accuracy of choosing answers at random. The random baseline can be calculated

using the number of available choices Kc = {kc,1, ..., kc,i} = {3, 4, 5}, where

i = 3 is the amount of different available choices. Each choice has an associated

amount of samples Ks = {ks,1, ..., ks,i} = {15, 95, 9}, as seen in table 4.2, where

N = 119 is the total amount of samples. The probability of answering correct

for an amount nc of available choices is P(True) = 1
nc

. We can take the weighted

mean to get the baseline:

Baseline =
k

∑
i=1

1
kc,i

× ks,i

N

≈ 0.257

We can see that the more available choices we have for a question, the harder

it is for a model to answer correctly by chance.

4.2.2 User study

In order to test the understandability of the conversations, with question posed

along with the available answers in the dataset, two persons were told to go

through the entirety of it and answer all questions. The goal was to test wether

the average humans were able to understand the content of the dialogue, and

then answer the question posed about the dialogue, given some choices. These

people are not affiliated to informatics or to NLP so they could represent the av-

erage human. Though none of them were native English speakers, both knew
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English at a relatively high level. The ambition of this conversation benchmark

dataset, is to create it easy enough for the average human to be able to answer all

questions correctly, without needing to be told any specific background informa-

tion.

The users were only told to answer the question posed to a dialogue, and select

the answer they thought were the most correct from the available choices. A

prompt to a human user looked like the following:

The following is a dialogue between Sarah and Lisa:
Sarah : Alistair he ’s, he ’s made himself ehm he has made himself coordinator .
Lisa: And section engineer .
Sarah : And section engineer , yes.

What has Alistair made himself as?
(a) Both coordinator and section engineer
(b) Coordinator
(c) Don ’t know
(d) Section engineer

Input [a/b/c/d]:

To remove possible consistent bias in positioning of the correct answer, the order

of the choices were randomized for each question. The order of the dialogues

were also randomized to remove possible similar dialogues appearing after one

another. This was done so there should be as little as possible bias in the order

of either dialogues and choices. Of course, a seed was used for reproducibility

when randomizing the order. This made it possible to retrieve the correct place

of the predicted choice for the current dialogue. Also, the user were not given

any indication of whether an answer was correct after choosing one.

In DailyDialog, and for some in BNC, there are oral dialogues. Some of these

might be unlikely to happen in written text messages and can occasionally be

confusing. This might be since we are not hearing how a person speak the

utterance i.e. the tone of a speaker. As the person might be unsure about

something, or very confident and so on, which is not reflected in the transcribed

text of the oral dialogue. Some of these might be Helpful Reject, but where the

person is not saying a negation beforehand. If we consider the dialogue below:

A: When we increase the resistance, we make more resistance.

B: Less current.

In an oral conversation B might be denying this while shaking the head
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sideways, which in turn helps A understand that the statement uttered was

wrong. For a conversation in text form, this might be clearer when adding “No”

before; becoming “No, less current”.

User Study Accuracy

Both users were able to answer 111 of 119 correct, which gives an accuracy of

0.937. However, none of the dialogues which the individual users answered

wrong were in common. This mean, if D is the set of all the dialogues in

the dataset, Afalse ⊂ D are the dialogues where user A answered the question

wrong, and Bfalse ⊂ D are the dialogues where user B answered wrong, then

Afalse ∩ Bfalse = ∅. So the errors done by these humans might be related to human

fatigue or drop in the ability to concentrate over time. A month after first going

through the dataset, user A where presented the dialogues Afalse, and were asked

to do the same task. This time the user was able to answer the question posed to

the dialogues correctly.

4.3 Results and Discussion

We will now view the results of the UnifiedQA model with different number

of parameters. Table 4.3 shows the accuracies of the models along with their

number of parameters2 and this is plotted in figure 4.1.

In general we can see that the models containing more parameters are able

to perform reasonably well when taking into account that this is in a zero-shot

setting. However, the small and base models are struggling with accuracies of

only 49.6% and 58.0% respectively. These models might not be able to capture

the meaning of NSUs, especially if they contain more distance between them, but

this needs further experimentation. On the other hand, the accuracy between

the best performing model, 11B, and the human accuracy is only a difference of

6.3%. This means that these larger models are somewhat able infer the meaning

of NSUs, since the conversations are all containing a lot of NSUs and the question

posed to these dialogues are (usually) questioning about something that must be

inferred from a NSU.

We can see the accuracy improves significantly as the number of parameters in-

creases. There is an improvement of 8.4% in accuracy from the small model to

the base model. For comparison of parameters of models, in Chapter 3, we used

2All models are using the checkpoint 1363200.
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Model name # parameters # correct Accuracy

baseline (random) 0.257

unifiedqa-v2-t5-small 6.062 × 107 59 0.496

unifiedqa-v2-t5-base 2.232 × 108 69 0.580

unifiedqa-v2-t5-large 7.384 × 108 93 0.782

unifiedqa-v2-t5-3b 2.854 × 109 100 0.840

unifiedqa-v2-t5-11b 1.131 × 1010 104 0.874

human 111 0.937

Table 4.3: Shows the number of parameters and accuracy for each model on the

benchmark NSU QA dataset, along with the accuracy of the user study.

BERT (base) and DialoGPT (small), only containing containing about 110 mil-

lion and 117 million parameters respectively, versus the base model of T5 that

contains almost twice as much, at about 220 million parameters. However, the

most significant jump in performance is from the base model to the large model;

which is an improvement of 20.2% in accuracy. The large model, however, con-

tains about 740 million parameters.

A notable thing is that a couple of times the models did not answer any of the

available choices. This means that a model generated an answer which was not

among any of the available choices. When this happened, the answer the model

gave was automatically considered false.

However, for one example, in the 11b-model, the generated prediction was

synonym to the correct text. The generated answer was “six and seven oclock”,

where the actual answer was “six and seven o’clock”. The only difference was

an apostrophe, and hence the generated answer was automatically categorized

false (these models can generate apostrophes, as seen when they generate “don’t

know”). If we adjust the performance for this instance the UnifiedQA-v2 model

with 11 Billion parameters for an accuracy of 105
119 ≈ 0.882.

4.3.1 Comparing different model sizes

As we can see from table 4.3 the largest model indeed got the most answers

correct, with a total of 104/119. This is a drastic increase in performance from

the model containing the least amount of parameters, only answering 59/119

correct. We will now see some examples of where the models answered both
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Figure 4.1: Shows the how accuracies improve with the increase in model size

wrongly and correctly.

If we consider a sample from the dataset in example 9 below:

(9) The following is a dialogue between David and Susan:

David: Would you like some more wine?

Susan: Wine?

David: Yes.

Susan: No.

David: Are you sure?

Susan: Yes.

Does Susan want some more wine?

(a) Don’t know (b) Yes (c) No

We can see infer from the conversation (9) that the answer to the question posed

is “No”. Susan want some clarification in the beginning of the first question David
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posed, but then is answering the question by rejecting. The antecedent to the ut-

terance “No”, which is Davids first question, is of distance 3 from the NSU. And

between these utterances, there is and utterance of “Yes”, which might confuse

the language models. In addition to this, the second question of David is an-

swered with “Yes”, which means that the language model cannot use the latest

utterance. However, only the small model answered wrongly with “Yes”, and all

other models were able to answer correctly. This means they must have under-

stood that Susans utterance “No”, was referencing the first question.

There was in total 4 samples that the 11B model answered correctly and where

all of the other models answered wrong. Below in example 10 we show a sample

conversation. We can see that Roberts answer is a Helpful Reject, however, it does

not contain any negation in front, making it more difficult to infer. This type

of conversation is also harder to understand in transcribed format, compared

to an oral conversation where a person might shake the head while answering.

Example 11 show another instance, where the utterance of Teresa is of a Helpful

Reject. Here, the 11B model is again able to infer that the NSU is a correction of

the previous statement.

(10) The following is a dialogue between Rod and Robert:

Rod: Did John leave?

Robert: Mark.

Who left?

(a) Don’t know (b) John (c) Mark (d) Rod

(11) The following is a dialogue between Gerald and Teresa:

Gerald: And it’s called enhanced careers guidance.

Teresa: Individual careers guidance, actually.

Gerald: I see.

What is it called?

(a) Don’t know (b) Enhanced careers guidance (c) Individual careers

guidance (d) I see

There were a couple of instances where none of the models were able to answer

correctly; 6 in total. A sample is viewed in example 12.

(12) The following is a dialogue between Rod and Mark:

Rod: Did John leave?
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Mark: John?

Who left?

(a) Don’t know (b) John (c) Mark (d) Rod

In example 12, all the models answered “John”, even though the conclusion

cannot be drawn the the conversation. Hence, the answer should be “Don’t

know”. Being overly confident of an answer, was usually more apparent with

the models containing less parameters. If we count the instances of where an

answer was “Don’t know”, but a model answered another choice the following

values are counted; 6 for small, 7 for base, 3 for large, 4 for 3B, and 1 for 11B.

However, we number of times “Don’t know” is answered, when it is not the

correct answer, seems to increase with the number of parameters, with the fol-

lowing counts: 0 for small, 0 for base, 1 for large, 1 for 3b, and 5 for 11b. This

means that 5/15 of the answers that the 11B model answer incorrectly was the

choice “Don’t know”. So it seems that in general the models get less confident

with the increase of parameters.

However, in some cases the models with less parameters were able to answer

correct while the 11B-model answer wrong. The instances the the models

with less parameters answered correct and the 11B answered wrong was the

following; 1 for small, 2 for base, 5 for large, and 8 for 3B.

4.4 Summary

In this chapter we have presented a benchmark dataset to test the language

models inference on NSU. We explained the methodology used when creating

the dataset and showed examples of samples containing conversations, questions

posed to the conversation with available associated choices. The dataset was

tested on humans that are not affiliated to informatics or NLP, and both users

achieved an accuracy of 93.7%.

This challenge is a zero-shot challenge, where we used T5 models trained

on the UnifiedQA format to test the performance on conversational data they

had not seen before. We showed that the models with the lowest amount of

parameters, small and base, achieved poor results on the dataset, with accuracies

of only 49.6% and 58.0% respectively. This means that these models do not seem

to be able to infer the meaning of NSUs in, what we can assume are more complex

conversations. However, the largest models achieved impressive results, where

the model containing 11B parameters, got an accuracy of 87.4% which is only
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6.3% lower than the accuracy of the user study. This means that the larger models

are able to understand the meaning of NSUs to a reasonable extent.

While this benchmarking dataset might challenge the models to some certain

extent, we believe it needs a more variety of conversations, especially in text

messaging format, as well as improved labeling that which utterances that are

NSUs, and their associated antecedent. We believe it would also be interesting

to combine this dataset with feature attribution methods as shown in Chapter 3

for further analyzing which utterances are the most important in a conversation

for answering the question at hand. Finally, this benchmarking dataset will be

available for further research and experimentation, and can be used to test a

language models ability to infer NSUs in conversations.
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Chapter 5

Conclusion

In this thesis we have performed experiments with non-sentential utterances

to try and analyze a language model’s ability to infer such utterances in

conversations. We started by presenting what NSUs are; utterances in the form

of incomplete sentences, which convey the full meaning of a full grammatically

correct sentence, when inferred from the surrounding context.

Classification of NSUs using transformer language models

We presented in Chapter 2 the frequent occurrences of NSUs in dialogue and why

this motivates research of these utterances. As for any dialogue system, such

utterances need to be understood for natural and coherent conversations with

humans. We continued by explaining the architecture of pre-trained transformer

language models, such as BERT and GPT, that were used for experimentation

in later chapters. As the transformer architecture has become state-of-the-art in

most NLP tasks we want to test their ability to interpret NSUs in conversations.

We also introduced some methods for interpreting language models, such as

feature attribution and probing tasks.

A natural task for testing how well different NSUs can be distinguished from

each other is by classifying NSUs, which was done in Chapter 3. We used the

taxonomy of NSUs created by R. R. Fernández (2006), which contains a total of

15 classes. Prior to this work, and helping to form this taxonomy, a corpus study

of fragments done by Fernandez and Ginzburg (2002) and later extended by R. R.

Fernández (2006), created the corpus we used in the classification task, containing

1283 labeled NSUs samples from the British National Corpus (BNC).

Unlike previous classification methods (R. Fernández, Ginzburg, and Lappin

2007; Dragone and Lison 2016), we used raw text as input for our models, instead

of extracted features from the dialogue. We also used dialogues from the corpus
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where the antecedent was more than 1 turn away from the NSU, which differs

from previous methods and makes this classification of NSUs more complicated.

Our experiment showed that language models are indeed able to capture

linguistic properties of the contextual information and the NSU, allowing them

to classify NSUs to some extent. We showed that a simple baseline model, using

non-contextualized word embeddings, was not able to classify NSUs, and only

converged to the majority class. Using stratified 10-fold cross validation, the

classification model using BERT as its pre-trained language model, we were able

to get a weighted f1-score of 85.1%, and for DialoGPT the f1-score was 81.0%.

These results are both worse than previous methods, which were able to reach f1-

scores of 92.0% (R. Fernández, Ginzburg, and Lappin 2007) and 90.5% (Dragone

and Lison 2016). However, the pre-trained models used contain “only” around

110-117 Million parameters. We can expect a jump in performance when using

larger language models i.e. around 1 Billion parameters, or more, as we saw a

significant jump in performance when increasing the size of the model in Chapter

4.

Feature attribution

Chapter 3 also used feature attribution to analyze contribution of the contextual

information and the NSU, when classifying NSU in dialogues. We used models

trained on the classification task, on a training set, and calculated the attribution

scores for the test set. All feature attributions were calculated with respect to

the true class label. We then found that in general the individual tokens in the

NSU got higher scores than the individual tokens in the contextual information,

which was true for both BERT and DialoGPT. However, the weighted average

of the attribution scores for the contextual information was slightly higher than

for the NSU. This is probably a consequence of the contextual information often

containing a (much) higher number of tokens than the NSU, hence contributing

more as a whole to the output, than the NSU.

We then saw examples of synthetic dialogues with small changes, to see how

the feature attribution changes to small changes in dialogue. It seems like the

language models have picked some specific words and symbols, and give these

a higher attribution score when classifying them. However, these examples need

to be studied in more detail e.g. by using additional examples for each class.
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Question Answering NSU dataset

In Chapter 4, we introduced a benchmark dataset to test language models

inference of NSUs in conversations. The dataset is a multiple-choice Question

Answering dataset, where question posed in the context of a conversation has

multiple associated answers, and the task is to select the correct one. The

presented dataset will be available for further research and experimentation. This

dataset was mostly based on conversations from the NSU corpus (BNC) (R. R.

Fernández 2006), but also the DailyDialog corpus (Y. Li et al. 2017), as well two

text conversation from the Ubuntu Dialogue Corpus (Lowe et al. 2015). Most

of the conversations have been modified to some extent, and reused so they fall

within another class of NSUs. The dataset hence contains a wide variety of NSUs,

but can also be extended to contain more text messaging dialogues in the future.

In order to test how well the it is understood by humans, a user study was

performed on the dataset. The user study resulted in an accuracy of 93.7% was

achieved.

We tested the dataset using T5 language models of different sizes, trained on

datasets on the UnifiedQA format. There were 5 models of different sizes ranging

from about 60 Million to 11 Billion parameters. We saw a drastic increase in

performance as the number of parameters increased, where the smallest model

achieved an accuracy of 49.6% and the largest model got an accuracy of 87.4%,

which is only 6.3% lower than the accuracy achieved by humans in the user study.

These results suggest that the large models are able to infer the meaning of NSUs

in conversations to some extent.

5.1 Future work

The experiments presented in this thesis can be extended in multiple directions.

For the classification task, it would be interesting to see how larger language

models perform, in order to see how much improvement we could get when

increasing the number of parameters. A text-to-text language model trained on

prompts, such as T5, can also be used to see if there is an increase in performance

compared to the language models used in this thesis.

In this thesis we only scratched the surface of what could be done using

feature attribution for explaining the models. In multi-turn conversation we

could find the attribution scores for each turn when classifying a NSU, to see

if some utterances get higher scores than others. Then, we might be able to see if

the language model can capture some relationship between the antecedent and

the NSU in conversations. This is especially interesting for conversations where
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the antecedent is more than 1 distance away from the NSU. However, one could

also include previous dialogue utterance before the antecedent and compare the

attribution scores of these to the antecedent.

Feature attribution could also be used on the UnifiedQA models for the

benchmark NSU dataset created in this thesis. When a question posed in the

context of a conversation requires the NSU to be inferred (for answering the

question correct), one could analyze the attribution scores from the model to

see if it is attributing high scores to the NSU and the antecedent. If the model

yields high attribution scores to the NSU and antecedent, it might mean that it

is inferring the NSU from the given context. However, if there are some other

utterances getting high attribution scores, it might mean that it is able to answer

the question without inferring the NSU.

Another method for analyzing language models is to create a probing task.

This probing task could simply be the classification of NSUs as performed in

Chapter 3. However, we could analyze individual layers of a language model,

by freezing the model and use the embeddings from intermediate layers when

the probe is classifying NSUs. By doing this we might be able to find which

layers that encodes most of the information needed in order to classify NSUs.

Finally, the benchmark NSU dataset presented in Chapter 4 can be extended

by adding additional labels for which utterances contain NSUs, as well as their

associated antecedent. It could also be interesting to include more conversation

in the form of text messaging, as these are likely to give rise to other forms of

NSUs.
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Appendix A

Classification and Feature
Attribution

This appendix shows additional results from the classification task and feature

attribution task in 3.

Feature Attribution

The following shows the attribution scores for DialoGPT with a dense classifier,

using Integrated Gradients. It was trained on the NSU training data (3.1.1). A

separation character, “Ġ”, which is put in front of a words separated with spaces,

has been removed for easier readability.

Ack

contextual information︷ ︸︸ ︷
John︸︷︷︸
0.232

left︸︷︷︸
0.142

.︸︷︷︸
0.090

<|endoftext|>︸ ︷︷ ︸
0.168

NSU︷ ︸︸ ︷
Yes︸︷︷︸
0.313

.︸︷︷︸
0.037

<|endoftext|>︸ ︷︷ ︸
0.018

(A.1)

Ack

contextual information︷ ︸︸ ︷
Did︸︷︷︸
0.140

John︸︷︷︸
0.102

leave︸ ︷︷ ︸
0.105

?︸︷︷︸
0.163

<|endoftext|>︸ ︷︷ ︸
0.150

NSU︷ ︸︸ ︷
Yes︸︷︷︸
0.288

.︸︷︷︸
0.030

<|endoftext|>︸ ︷︷ ︸
0.022

(A.2)

BareModPh

contextual information︷ ︸︸ ︷
John︸︷︷︸
0.217

left︸︷︷︸
0.171

?︸︷︷︸
0.169

<|endoftext|>︸ ︷︷ ︸
0.079

NSU︷ ︸︸ ︷
Yesterday︸ ︷︷ ︸

0.256

.︸︷︷︸
0.042

<|endoftext|>︸ ︷︷ ︸
0.066

(A.3)
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CE

contextual information︷ ︸︸ ︷
Did︸︷︷︸
0.179

John︸︷︷︸
0.110

leave︸ ︷︷ ︸
0.080

?︸︷︷︸
0.103

<|endoftext|>︸ ︷︷ ︸
0.122

NSU︷ ︸︸ ︷
John︸︷︷︸
0.110

?︸︷︷︸
0.275

<|endoftext|>︸ ︷︷ ︸
0.021

(A.4)

CheckQu

contextual information︷ ︸︸ ︷
John︸︷︷︸
0.195

left︸︷︷︸
0.131

.︸︷︷︸
0.089

<|endoftext|>︸ ︷︷ ︸
0.121

NSU︷ ︸︸ ︷
Okay︸ ︷︷ ︸

0.307

?︸︷︷︸
0.116

<|endoftext|>︸ ︷︷ ︸
0.040

(A.5)

ConjFrag

contextual information︷ ︸︸ ︷
John︸︷︷︸
0.229

left︸︷︷︸
0.181

.︸︷︷︸
0.106

<|endoftext|>︸ ︷︷ ︸
0.145

NSU︷ ︸︸ ︷
And︸︷︷︸
0.077

Mark︸ ︷︷ ︸
0.146

.︸︷︷︸
0.050

<|endoftext|>︸ ︷︷ ︸
0.066

(A.6)

FactMod

contextual information︷ ︸︸ ︷
John︸︷︷︸
0.141

left︸︷︷︸
0.106

.︸︷︷︸
0.086

<|endoftext|>︸ ︷︷ ︸
0.191

NSU︷ ︸︸ ︷
Excellent︸ ︷︷ ︸

0.370

!︸︷︷︸
0.086

<|endoftext|>︸ ︷︷ ︸
0.021

(A.7)

Filler

contextual information︷ ︸︸ ︷
Did︸︷︷︸
0.232

John︸︷︷︸
0.217

...︸︷︷︸
0.111

<|endoftext|>︸ ︷︷ ︸
0.130

NSU︷ ︸︸ ︷
leave︸ ︷︷ ︸
0.192

?︸︷︷︸
0.104

<|endoftext|>︸ ︷︷ ︸
0.015

(A.8)

HelpReject

contextual information︷ ︸︸ ︷
Did︸︷︷︸
0.131

John︸︷︷︸
0.107

leave︸ ︷︷ ︸
0.095

?︸︷︷︸
0.096

<|endoftext|>︸ ︷︷ ︸
0.172

NSU︷ ︸︸ ︷
No︸︷︷︸
0.084

,︸︷︷︸
0.116

Mark︸ ︷︷ ︸
0.094

.︸︷︷︸
0.071

<|endoftext|>︸ ︷︷ ︸
0.035

(A.9)

PropMod

contextual information︷ ︸︸ ︷
Did︸︷︷︸
0.167

John︸︷︷︸
0.157

leave︸ ︷︷ ︸
0.116

?︸︷︷︸
0.153

<|endoftext|>︸ ︷︷ ︸
0.143

NSU︷ ︸︸ ︷
Probably︸ ︷︷ ︸

0.151

.︸︷︷︸
0.076

<|endoftext|>︸ ︷︷ ︸
0.038

(A.10)
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Reject

contextual information︷ ︸︸ ︷
Did︸︷︷︸
0.158

John︸︷︷︸
0.131

leave︸ ︷︷ ︸
0.110

?︸︷︷︸
0.122

<|endoftext|>︸ ︷︷ ︸
0.081

NSU︷ ︸︸ ︷
No︸︷︷︸
0.285

.︸︷︷︸
0.069

<|endoftext|>︸ ︷︷ ︸
0.043

(A.11)

RepAck

contextual information︷ ︸︸ ︷
John︸︷︷︸
0.161

left︸︷︷︸
0.132

.︸︷︷︸
0.114

<|endoftext|>︸ ︷︷ ︸
0.122

NSU︷ ︸︸ ︷
John︸︷︷︸
0.124

left︸︷︷︸
0.113

,︸︷︷︸
0.079

h︸︷︷︸
0.037

mm︸︷︷︸
0.057

.︸︷︷︸
0.021

<|endoftext|>︸ ︷︷ ︸
0.041

(A.12)

RepAffAns

contextual information︷ ︸︸ ︷
Did︸︷︷︸
0.149

John︸︷︷︸
0.128

leave︸ ︷︷ ︸
0.112

?︸︷︷︸
0.050

<|endoftext|>︸ ︷︷ ︸
0.100

NSU︷ ︸︸ ︷
John︸︷︷︸
0.114

,︸︷︷︸
0.182

yes︸︷︷︸
0.091

.︸︷︷︸
0.045

<|endoftext|>︸ ︷︷ ︸
0.029

(A.13)

ShortAns

contextual information︷ ︸︸ ︷
Who︸ ︷︷ ︸
0.305

left︸︷︷︸
0.298

?︸︷︷︸
0.176

<|endoftext|>︸ ︷︷ ︸
0.049

NSU︷ ︸︸ ︷
John︸︷︷︸
0.100

.︸︷︷︸
0.043

<|endoftext|>︸ ︷︷ ︸
0.029

(A.14)

Sluice

contextual information︷ ︸︸ ︷
John︸︷︷︸
0.146

left︸︷︷︸
0.087

.︸︷︷︸
0.073

<|endoftext|>︸ ︷︷ ︸
0.189

NSU︷ ︸︸ ︷
Why︸ ︷︷ ︸
0.363

?︸︷︷︸
0.130

<|endoftext|>︸ ︷︷ ︸
0.011

(A.15)
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