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Preface

This doctoral thesis is submitted in partial fulfilment of the requirements for the degree of
doctor philosophiae (dr. philos.) at University of Oslo (UIO). The work has been carried
out at Narvik University College (NUC) in the R&D Simulations group. The main goal
of this work has firstly been to clarify a theoretical fundament for a new type of splines,
Expo-Rational B-splines, secondly, to develop algorithms to use as tools, thirdly to show
results from test applications and generally enable an overall preparation for presenting
this new type of splines for public use.

In the report there are a lot of figures and examples. There are, of cause, several reasons
for this, for instance to show the potential of Expo-Rational B-splines, and how they can
be used. For me, another reason has also been important. The figures have acted as a kind
of quality control. This is because the equations and the algorithm in this report are the
basis for the implementation of the test programmes used for making the figures.

This report concentrates on the practical use of Expo-Rational B-splines in geometric de-
sign, simulations and sophisticated shaping. This is very much affected by my experience
in practical use of splines in industrial applications and in computer programming.

Expo-Rational B-splines have a lot of similarities with polynomial B-splines. I do not ex-
pect Expo-Rational B-splines to replace polynomial B-splines, but rather to complement
them. B-splines/NURBS are today the, de facto, industry standard for the representation,
design, computations etc. of curves and surfaces. They have been attracting my attention
for the last 20 years. Therefore, a short résumé of me experience follows.

In the early 1980s I was engaged in ship construction as a mechanical engineer and con-
structor, and from that I got an interest for free-form geometry. Then I went back to
university, this time to the University of Oslo, where I was introduced to splines in 1985,
as a student of Tom Lyche. At the end of the 1980s and at the beginning of the 1990s
I was the main contributor to the programming library “SISL”, now SINTEF’s spline li-
brary (see [38]). In the first half of the 1990s I was, in cooperation with the research
center of “Norsk Hydro”, an oil company in Norway, implementing a system for geolog-
ical modeling using B-splines (see [28]). In the period 1990-95 I had contact with several
companies, helping them to improve product design and production, using splines. From
1995 T was involved in developing a master program in Engineering Design at Narvik
University College, where geometric modeling and splines were one of the main parts of
the program. Later, from 1998, I have been responsible for establishing a master pro-
gram in Computer Simulations and Game Programming, where geometric modeling and
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especially splines have been an important part. During this last period I have also been
the main contributor in the development of “GM_lib” (see [37]), an in-house geometric
modeling programming library developed at Narvik University College.

November 2006 Arne Laksa
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Chapter 1

Introduction

“Expo-Rational B-splines” is an entirely new topic in the spline world. Both the analysis
of the new spline (which is not the main topic of this work) and the practical use of them,
has up to now not been explored in a greater extent. The purpose of this report is to
improve this, and to show that Expo-Rational B-splines offer a lot of possibilities.

Perhaps the most promising possibilities is the surface approximation on triangulations
(section 6.7), which is opening for the construction of a smooth surface (or a surface
with a controlled smoothness), that is built up by a connected set of triangular surfaces.
In Figure 1.1 an example is given. The example is a surface made by a connected set
of 8 triangular surfaces (the properties and the construction of these triangular surfaces
are described further in section 6.7). The surface is first made as an approximation of a
sphere, and then edited to the present geometric shape.

Another new and promising feature is “the affine transformation of local functions” (see
section 4.5 and 5.4 and several other places). This is opening for creative “geometric
editing” and simulations, of which there are a lot of examples in several of the following
chapters. The properties and the process is described further in section 5.4. In Figure
1.2 there is an example of the “geometric editing”. The surface is a tensor product Expo-
Rational B-spline surface, made by first interpolating a torus. Then the surface is edited
to its present geometric shape. The blue cubes, which can be seen in the figure, are the
editing points which are used when the “geometric editing” is done (this is described
further in sections 1.3 and 5.4).

A third feature that is worth mentioning is the strong Hermite interpolation property (de-
scribed in section 2.3 and in several examples all over). This makes Expo-Rational B-
splines very easy to use in modeling. In Figure 1.3 there is an example. The surface in the
figure is Hermite interpolating a surface called “Trianguloid Trefoil” (see [1]). at 5 x 5
points. At each point the position and a total of 8 partial derivatives are used.

Obviously, this report does not complete the work on Expo-Rational B-splines, it is hope-
fully only initiating it and, thus, there are many possibilities for further development of
this new type of splines. There are a lot of “loose ends” in this report, and several of them
are mentioned in the different chapters. It is hoped that these and other topics will be

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: The surface is a connected set of eight triangular Expo-Rational B-spline
surfaces. This surface is made by first approximating a sphere. Then the surface is de-
formed by an editing process.

taken up by other researchers. It is our sincere wish to develop a growing interest for the
Expo-Rational B-spline, because it is our firm belief that Expo-Rational B-splines have a
great potential.

The name “Expo-Rational B-splines” refers to the derivative of the Expo-Rational B-
spline basis function in the construction (equation 2.4), which is (in most cases) an ex-
ponential function with a rational exponent, and which in addition also has a connection
to polynomial B-splines. In Expo-Rational B-splines there are several characteristics that
we also will find in linear polynomial B-splines. This will clearly be demonstrated later
in this report.

In the remaining part of this introduction there will be a review of the development of
the Expo-Rational B-splines so far. Then challenges in implementation will be described.
There will also be a description of the algorithmic language used in this report. Then
there will be a short review of the benefit of using Expo-Rational B-splines in possible
new applications, and finally there will be a short overview of the rest of the report.

1.1 Historical notes

The development of Expo-Rational B-splines has been one of the main working areas of
the R&D group for Mathematical Modeling, Numerical Simulation and Computer Visual-
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Figure 1.2: This tensor product Expo-Rational B-spline surface is made by first Hermite-
interpolating a torus at 5 x 5 points. The positions of the interpolating points are seen
as cubes. The surface is then edited by moving the blue cubes, so the surface finally is

getting into its present shape.

Figure 1.3: This tensor product Expo-Rational B-spline surface is made by Hermite
interpolating a “Trianguloid Trefoil” (see [1]) at 5 X 5 points. The positions of the inter-

polating points are seen as blue cubes.
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ization (shortly the Simulations R&D group) at Narvik University College. The research
topic began in the summer of 2003 when the leader of the Simulation R&D group pro-
fessor Lubomir Dechevsky gave a definition of the new B-splines, suggested the name
“Expo-Rational” for it, and proposed that the development of the theory and applications
of this new B-splines become a strategic priority of the Simulations R&D group.

Lubomir Dechevsky refers to the definition of the Expo-Rational B-splines as a process
of “gradual ripening of the concept” which has continued for more than 10 years, since
the beginning of the 1990s till the actual process. Dechevsky has been inspired by a num-
ber of heuristic predecessors of the ERBS constructions arising in approximation theory,
functional analysis, differential geometry and operator theory, which are all described in
Section 3 of [18]. As described in [16] an important step has been also the meeting of
Dechevsky with Charles Micchelli at a conference in 1997 and the continuing discussion
between them after this meeting, which lasted from 1997 to 1999.

The theoretical fundament, and an overview of relevant research topic and applications
of the Expo-Rational B-splines, are given in the main theoretical paper [16]. This pa-
per was written by Lubomir Dechevsky, with a major contribution by this author (Arne
Laksad), especially in the triangular (simplex) case, and graphic visualization provided by
Bgrre Bang. This theoretical paper were preceded by [36] which gave the first practical
orientation into the design and use of splines. This paper was written by this author, with
contribution from Bgrre Bang and Lubomir Dechevesky. Together with [19], these were
the three initial paper which introduced Expo-Rational B-splines to the public.

The story began at the 6th International Conference on Mathematical Methods for Curves
and Surfaces in Tromsg, on 5th July 2004. Three talks were given;

e “Expo-Rational B-splines” by Lubomir Dechevesky,
e “Exploring Expo-Rational B-splines for Curves and Surfaces” by Arne Laksa,
e “Expo-Rational Spline Multiwavelets” by Niklas Grip.

The first published article is in the proceedings of the conference [36]. The main article
on Expo-Rational B-splines was first a preprint [18], but can now be found as a published
article in [16].

Then on 12th October 2004 at the “eVITA” workshop in Oslo another talk was given,
e The “NUERBS form of Expo-Rational B-splines”, by Arne Laksa.

This talk also resulted first in a preprint [19], and later in a published article [17] (see also
section 7.1 about NUERBS). All published articles and preprints so far are the result of
joint work by Lubomir Dechevsky, Bgrre Bang and Arne Laksa (this author).

The R&D group for Mathematical Modeling, Numerical Simulation and Computer Vi-
sualization (shortly The R&D “Simulations” group) at Narvik University College col-
laborates closely with “SINTEF Applied Mathematics” in Oslo, where Tor Dokken, is a
part-time member of the group. The group is also an associated member of the “Center of
Mathematics for Applications”, CMA, at the University of Oslo, and has, therefore, dis-
cussed the explorations of “Expo-Rational B-splines” with Tom Lyche and Knut Mgrken.
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1.2 Motivation and possible applications

The purpose of Expo-Rational B-splines is to use them as basis functions in a compound
spline function. Therefore, in Expo-Rational B-splines we have, analogous to polynomial
B-splines, introduced knot vectors in the definition of the basis functions. The main
difference is that, instead of an ordinary coefficient vector, there is a vector of coefficient
functions also called local functions (see chapter 2 for definitions). There are, of course,
many other differences between Expo-Rational B-splines and polynomial B-splines which
are further discussed in the next chapter. These differences and the properties they give are
of course the motivation for introducing this new type of B-spline. Some of the reasons
for introducing Expo-Rational B-splines are, thus:

e The C*-smoothness on R property of the Expo-Rational B-splines and the implied
property for a compound spline function.

e The special Hermite interpolation property that makes it very easy to approximate
a geometric object.

e The minimal local support of the basis functions, over two knot-intervals as in linear
polynomial B-splines.

e The easy and flexible “geometric editing” possibilities.

e The possibilities for dynamic shape transformation by simple affine transformations
(rotation, scaling, translating) of local functions.

e The great potential for creating triangular surfaces with arbitrary smoothness.

The shapes one can construct using Expo-Rational B-splines are much more “sophisti-
cated” than what it is currently possible to do with B-splines, NURBS or other spline
types. Some examples of this can be seen in the chapters 4, 5 and 6.

“Advanced shape modeling” is defined to be complex curve/surface/object modeling us-
ing essentially combinations and compositions of free-form geometry, and where one
might request control of smoothness, fast changing directions, topological consistence,
etc. (for example, class A curves and surfaces, see [24]).

Using this definition, it is clear that advanced shape modeling using the modeling tools
that are available today is not at all easy. In modeling for the virtual world (computer
games, movies etc.), there is a desire to get more useful tools. Product design is also
drawn towards more sophisticated shapes.

Therefore, there are two types of applications that were in mind for use in the future, and
also for use in the present implementation and testing of Expo-Rational B-splines,

1. Shape modeling tools according to the description given above.

2. Simulation tools for interactive moving geometry. Examples are given in figures
4.23 and 4.24, and in section 7.2.
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1.3 Challenges regarding implementation

Many theoretical and practical problems arise when implementing Expo-Rational B-splines.
The following is a list of some of them:

e Simplifying the complexities regarding the basis functions and their derivatives.

Making a reliable, precise and fast evaluator.

Simplifying the complexity regarding a complete evaluator.
e Speeding up the algorithm by using pre-evaluated basis functions.
e Implementing the Hermite interpolation of local functions,

There are of course several other challenges in the implementation work. First there is
a need in the implementation environment for an API to simplify the user-interface, a
graphic environment (OpenGL and GUI), tools for linear algebra (matrix computations
etc.). In some test examples there might be a need for a FFT routine (example in [6]),
simple ODE/PDE solvers (example in [46]). For speeding up the computations it could
also be useful to exploit GPGPU programming (see [21]). This is only a short list gathered
from our experience.

During the development of a test environment we have extended the inhouse C++ pro-
gramming libraries “GM_lib” (described in [37]) and “GM_wave” (described in [45]),
developed at Narvik University College, to also include state-of-the-art classes for Expo-
Rational B-splines. We have also introduced a mechanism for geometric editing and
simulations. In addition we have made a special class for the fast evaluation of Expo-
Rational B-spline basis functions (see section 3.4). This class is independent of other
libraries. The source code for this evaluation class can be found at the project homepage:
“http://www.hin.no/simulations/ERBS”.

We have also developed a test program for constructing Expo-Rational B-splines by Her-
mite interpolation of given curves/surfaces at sets of given points. Because of this it
has been necessary to introduce several types of local curves and surfaces. In addition
we have implemented an editing functionality by introducing a “representative” (a cube
which visually replaces a local curve/surface/etc. on the screen), on which one can inter-
actively do local affine operations like rotations, translations and scalings. In the examples
(figures), the “representatives” can, be seen as blue cubes. We have also introduced “se-
lector” (a visual cube representing a control point in the control polygon for a local Bézier
curve/surface on the screen). Selectors can only be translated interactively. In the figures,
“selectors” can be seen as green cubes.

The “selector” and an appurtenant “selectorgrid” represents the control polygon of a B-
spline/Bezier curve/surface, and the “selector” thus makes it possible to edit the control
polygon. The “representative” is the Expo-Rational B-spline analogy of the control poly-
gon, and can be seen in a lot of examples. It is important that the “representative” is a
cube so that the orientation and not only the position can be seen.
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Algorithmic language

By “algorithmic language” we mean the language used to describe the algorithms that are
developed in this report. All programming is done in C++. This is naturally also reflected
in the algorithmic language. One important factor in the definition of the syntax is that
it should be compact and at the same time clear and easy to understand. The aim of an
algorithmic description is, therefore, to be a recipe for an implementation, and to explain
and make it easier to understand how the algorithm works.

The items that describe the algorithmic language are

The notation in the algorithm is a simplification and essentially a mix of C++ and a
mathematical notation.

C++ template notation is used. There are also types from the C++ standard template
library - stl (example, vector<double>, a vector of numbers in double precision).

To make the notation more compact, begin “{” and end “}” are only marked by
indentation.

A routine might only be notated as a set, as example vector(T) C = {D/ c(t)};?zo.
But it will always be followed by an explaining comment.

Ordinary C++ standard is used for comments.

Below is an example, an implementation of a function f>(r) defined in equation (2.38).
The C++ code will first be shown, then the description by the algorithmic language.

double f2 (double t)

{

if (t==lambda || t<2.3e—308 || t==1.0) return 0.0;

double h = (t—1/(1+gamma))x* abs (t—lambda)/(tx(1—t));
if (t<lambda) h —= 1.0;
else h += 1.0;
h *= —_skxalphaxbetax
(1+gamma)/pow (t*pow(l—t ,gamma),alpha);

if ((1+gamma)= alpha < 1)
{
double g = pow(abs(t—lambda),l —(1+gamma)= alpha)/h;
if (g < 2.3e—308) return 0.0;
else return 1/g;
}
else if ((l+gamma)xalpha > 1)
return h x pow(abs(t—lambda),(l+gamma)=*alpha —1);
else
return h;
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double f, (double t)
if(t<23e—308||t==A||t==1)  //See (2.38), upper part.
return 0.0;

__
double h= "kt —

; // First part of the second factor from (3.3).

if(t<A) h—=1; // Last part of second factor (3.3).
else h+=1;
hx*x= %; // Inserting Sy, and the first factor of (3.3).
F((l+ya<l) /I Asymptote at t = A is present.
double g = 7‘,,;\‘1;1+v)u; // The inverse of (3.3).
if (g # normal value ) return 0,
else return é;
else if ((1+7)o0>1) // Ordinary solution.
return  h |t — M<1+Y)a_1;
else /I Discontinuity at f = A.
return  h;

This example can be found in section 3.2, algorithm 3. The C++ code in this example can
be found in the evaluator class used in our test program (see section 1.3). The function
is a member function of this evaluator class, the variables; _sk, alpha, beta, gamma and
lambda are all members of the class, and thus initiated and ready for use.

The differences between the C++ code and the algorithm are not very big. We can see that
the main difference is that the formula and the comments and especially the references to
the equations in the report, make the algorithm easier to understand. It is actually only a
formalization of the text in the report.

1.5 Overview of the report

There are a total of 7 chapters in this report, and their purpose is to introduce the Expo-
Rational B-spline and to show that these new splines can be used in geometric modeling,
design and simulation. Here is a short summary of the remaining chapters.

Chapter 2 defines the Expo-Rational B-spline, “ERBS” . The basic properties are stated
and proved. A subset called the scalable subset of ERBS, and the so-called default set
are also introduced. These sets are introduced because they are more convenient to use
in geometric design. In addition to introducing the basis function, the composite ERBS
function, including knot vectors and interpolation properties, is also introduced.

Chapter 3 concentrates on the ERBS evaluator. This is essentially used to develop a
reliable, precise and efficient evaluator for the ERBS basis function. The chapter discusses
reliability with regards to the IEEE standard for binary floating-point arithmetic. It also
introduces algorithms for evaluation of ERBS, including their derivatives. Tests are made
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with respect to both precision and efficiency. At the end of the chapter a special reliable
and fast evaluator, wrapped into a C++ class, is introduced.

ERBS curves are the topic of chapter 4. The definition is given and practical aspects con-
cerning implementation are discussed. A complete curve evaluator including derivatives
is developed, and two different types of local curves are introduced. The construction,
and the use of ERBS curves are discussed, and a lot of examples are given.

Chapter 5 introduces tensor product ERBS surfaces. Both definitions and aspects con-
cerning implementations are discussed. In addition complete evaluators are introduced,
as are Bézier patches as local patches. Hermite interpolation is discussed, and free form
sculpturing using affine transformation of local patches is also considered.

Chapter 6 deals with triangular surfaces. First there is a short repetition/definition of
homogeneous barycentric coordinates and Bézier triangles. Then Expo-Rational B-spline
basis functions in homogeneous barycentric coordinates are introduced, and the basic
properties are discussed. Then the ERBS-triangle is introduced, including two types of
local triangles, the Bézier triangle and the sub-triangle in general parameterized surfaces.
The last one leads to surface approximations on triangulations. Both chapter 5 and 6
contain many examples.

The last chapter, 7, sums up the report, as well as it includes two additional sections.
These sections briefly summarize two subjects, namely NUERBS and three-variate tensor
product ERBS. The first of these refers to an earlier published article, and the second one
partly discusses the Master thesis of a student at Narvik University College (NUC).
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Chapter 2

“ERBS” — definitions and basic
properties

The purpose of this chapter is to introduce the new type of B-splines, Expo-Rational B-
splines (abbreviated ERBS), to give the definitions, show the basic properties, to explore
some of these properties, to study some of the possibilities for applications of these prop-
erties, and to give some examples. The chapter has the following organization,

e A simple version of the Expo-Rational B-splines will first be introduced, followed
by a short description of their basic properties (section 2.1).

e Next there follows a general definition of Expo-Rational B-splines (section 2.2).
Compared to the simple version in section 2.1, this definition introduces higher
degrees of freedom as it involves 5 intrinsic parameters. The reason for this is
to raise the possibilities for use in applications, such as approximating solution
spaces for PDE/ODE’s, modeling complex phenomena in nature and experimental
simulations.

e In section 2.3 are presented the basic properties of the general definition of Expo-
Rational B-splines. We also give the range of the parameters in which these prop-
erties hold.

e The “scalable subset” is defined in section 2.4. It defines a limited subrange of the
intrinsic parameters of Expo-Rational B-splines better fitted for use in interactive
visualization, modeling and simulation. Within the range of the scalable subset it is
possible to speed up the computations tremendously.

e In section 2.5 particular attention is given to the default intrinsic set and a study of
the derivatives of the ERBS for these intrinsic parameters. The default set of Expo-
Rational B-splines is within the scalable subset, and is used in most of the examples
in this report.

e In section 2.6 we define a general ERBS-based function as a linear combination of
Expo-Rational B-splines, with coefficients which may be functions (not necessarily
scalars/points). These “coefficient functions” will be called “local functions”.

11
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e In section 2.7 we discuss the multiplicities in a knot vector and the continuity prop-
erties of a compound spline function which these multiplicities generate.

e The Hermite interpolation property of fitting the “global” function to the “local”
functions in the knots is investigated and discussed in section 2.8. A short recipe of
how to make an Expo-Rational B-spline function interpolating a known function is
given.

o In the last section of this chapter, 2.9, examples are given of the effect of separately
varying each of the intrinsic parameters. The section will give some ideas about the
diversity of possible shapes of the Expo-Rational B-splines.

Remark 1. The simple version described in section 2.1, is actually the same as the default
set described in section 2.5, but the default set is, according to the computation, further
simplified.

2.1 A simple version

Letfy e Rand ; < f341 for k=0,1,2,...,n, i.e. we consider a strictly increasing knot
vector {tk}ZI(l). A simple version of an Expo-Rational B-spline (which is the same as the

“default set” in section 2.5) is then defined by the following.

Definition 2.1. The simple version of an Expo-Rational B-splines (ERBS) associated with
the (strictly increasing) knots ty_1, ty and ty1 is as follows:

b fna<i<i

Bi(r) =4 " @2.1)

Tt ’

/ Yi(s)ds

if <t <t

0, otherwise
with
P S0/ 20 2
2 )
yi(t) =e Wl 2.2)

This means that B (¢) is defined on R, and its support is [tz_1,#+1], which is the minimal
possible support for continuous B-splines to satisfy partition of unity (see basic property
P2 below, section 2.3 and the text about the partition of unity in e.g [13], [48] and [23]).
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Figure 2.1: A graph of Bi(t) (solid red) and its first derivative (dotted blue). The knots
tk—1,tx and tyy1 are also marked on the plot.

An example of the plot of By(), Wi_;(¢) and —y,(¢) is illustrated in Figure 2.1. In this
figure ;1 (¢) and —y(7) are scaled so that the integral on their respective knot interval

is 1 for each of them.

A list of the basic properties of B () follows. The three first properties are also properties
of linear B-splines. The two last properties are unique among spline basis functions, and
are influencing very much the way we can use Expo-Rational B-splines.

P1. Every basis functions By (¢) is positive on (fx_1,%+1) and zero otherwise.

P2. The set of basis functions By (z) for k = 1,2,...,n form a partition of unity on (71,1,
It follows that if #; <t <ty then Bk(t) + Byt 1 (l‘) =1.

P3. For k= 1,2,...,n Bi(t;) = 1 holds, which is also a property of the Lagrange form of
polynomials.

P4. Every basis function By (r) is C*-smooth on R.

PS. All derivatives of all basis functions are zero at their interior knot #;. In fact they are
zero at every knots.

In section 2.3 there is a more general version of these properties and the proof of the
properties are given for this more general version. Property P4 is in section 2.3 divided
into 2 properties, 4 and 5. It, thus, follows that PS5 goes to property 6 in section 2.3.
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2.2 Generalized definition

Letfy e Rand t; <t441 for k=0,1,2,...,n, ie., we consider an increasing knot vector
{tk}Z:é. The generalized definition of an Expo-Rational B-spline (ERBS) is based on an
increasing knot vector, and for each knot interval, a set of 5 different intrinsic parameters
(see [36], [18] and [19]). The definition is according these previous articles (and was first
proposed by Lubomir Dechevsky).

Definition 2.2. An Expo-Rational B-spline, associated with three increasing knots t,_1,
ti and ti 1, Bi(t) = Bi(Ok—1, Br—1,Ye—1, M1, Ok—1, Ok, B, Yie» iy Ok ) is defined by

S if nei<t<n,

Bur) =4 " (23)
Vi(s)ds
fkﬂi , if t <t <ti,
Vi(s)ds
i
0, otherwise,
with
PN (TS0 i
yi(t)=e (=) (g1 1) %) % s 24)
where

(Xk>0, Bk>07 ’Yk>07 OSXkSL GkZO-

Remark 2. Equation (2.3) allows the use of multiple knots. As with polynomial splines,
here multiple knots are also a tool for making discontinuities.

Multiple knots are discussed further in the sections 2.3 and 2.7.

To simplify the equations and to prepare for their practical use, we make here some pre-
liminary preparations. First a scaling factor is introduced according to the normalizing
factors in definition 2.2.

Definition 2.3. An ERBS scaling factor is a constant defined as follows,

S =—"—"— when ty <tyy1.
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To study the derivatives of the ERBS defined in definition 2.2 we need some additional
notations. If the respective limits exist, the right derivative will be,
Jfx+h) - f(x)

Do f(x) = lim o
—U4

and the left derivative

If both right and left derivatives exist and are equal, there is

Df(x) =D f(x) =D_f(x).
If only one of them exists, we denote

[ Dif(x), if D_f(x) do not exist,
Df(x) = { D_f(x), if Dyf(x) do not exist.

We now introduce a more detailed version of equation 2.3, also including the derivatives,

t
Sk—1 /\Vk—l(s)d& if o <t<y,
-1
By(t) = 3 (2.5)
Sk / i (s)ds, if 1 <t <tpyn,

t
0, otherwise,

and where the derivative of an Expo-Rational B-spline is

Sk—1 Wr—1(1), if o <t<ty,
DBy(t) = § =Sk Wi(1), if 1<t <t (2.6)
0, otherwise.

For all derivatives (j > 0) we get the following general equation,

Fio—1(O) w1 (r), if <t <t
D/Bi(t) =< —fix(t) wi(t), if 5 <t<tiyr, 2.7
0, otherwise,

where f1 x(¢) = Si. In Figure 2.1, there is an example of an Expo-Rational B-spline basis
and its first derivative. The next derivatives involve fj, j=2,3,... that are functions
computed recursively, as follows below.

Due to the complementary integration limits [fx_1,%] and [f,#+1], the equation (2.5-2.7)
reflect the symmetry around the interior knot #;. It can clearly be seen that, because of the
scaling on [f;_1,%] and [t fx+ 1], Bi() in (2.5) is continuous on (fx_1, 1 1)-
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The structure of the equation 2.7 for the derivatives of higher order is simplified by using
a factor f;(¢). This factor will be discussed below, and in section 2.5 will be given the
seven first factors for the default set of intrinsic parameters. These factors will be plotted
in Figure 2.8 (separated in numerator and denominator). One important property of the
derivatives is that all derivatives for all ERBS basis functions, under some constraints on
the intrinsic parameters, are zero at all knots. The proof of this is given in Theorem 2.1.
The consequences of this are very important for the use of ERBS.

To take a closer look at the derivatives, and thus f j_yk(t), we need some definitions and
simplifications. First we consider the linear function in the numerator in the exponent of
Y (1) in equation 2.4, which will be denoted by

c(t) =t = ((1 =Mt + g tygn) - (2.8)

Using (2.8), we define g (¢) to be the derivative with respect to ¢ of the exponent in (2.4).
Thus the extra factor generated when computing Dy (¢) is

1 (1)) %!
gulr) = P (ock (1—Yk> ck(r)—zck) (( OO )

F—t  fep1—t t— 1) (e —1)™)

Computing the first derivative of gi(¢) according to ¢, we get

8 (1) = Br (ZGk (Otk (W — ,) cx(t) — 1) Ol ((t 1tk>2 - (tkf t)z) cx(t)*+

1 g~ e | (@)™
(ZGk_OCk (W_ thr1 I) (t)) ( : kHt tk)(zklz.l ];)k ‘ )) ((,,tk)(,kﬂ,,)“fk)ak
(2.10)

We now investigate the formulas for f;(t), j = 1,2,3,.... Using the general rules for
derivations of products we get, after computations, the following recursive definition

Fik() = fio O + fi1x(t) &), j>1, (2.11)

where f;(t), j > 1, are rational functions at least when 0, ¥, and % are nonnegative in-
tegers. Starting with fj x(¢) = S we can expand definition (2.11) to get the next functions.
For j =2,3,4,5 we get

Jrx(t) = Sk,

Soi(t) = Sk gi(t),

Fax(t) = Sk (g1(1) +&2(0)) (2.12)
fa, k(t) ( (t )+3gk(t)gk( )+gk(t)) )

Fsut) = Se (' (1) + 3812 (1) +4g(1)g] (1) + 687 ()8} (1) + 85 (1)) -

where g}/ and g} are computed recursively from 2.10.

The question if D/By(t) is continuous or at least is defined everywhere on the two open
intervals (fx_y,#) and (x,#;+1) is being investigated in Theorem 2.1, and in the proof on
page 23 and in section 2.4.
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2.3 Basic properties

In this section, six basic properties for the Expo-Rational B-splines (ERBS) will be pre-
sented. For the last three properties which concern the value of derivatives at the knots
and the continuity of all derivatives in the case of simple knots, there are some restrictions
on the intrinsic parameters.

Theorem 2.1. There are six basic properties of the basis function Bi(t), k= 1,...,n.
These six properties are:

Properties P1-P3 are shared by both ERBS and linear B-splines.

P1 is the nonnegativity and the local support, i.e.,

B (I) >0, lf f—1 <t <Iit1,
k =0, otherwise.

P2 is that the set of basis functions forms a partition of unity (an affine combination), i.e.,
Yi_Bu(t) =1, forevery 1€ (t1,t),
it follows that By (t) + By 1(t) =1 if t € (tg,t541].
P3 is about the value at the interior knot t;, and the continuity at the interior knot t;. for
simple knots, i.e.,

Bi(ty) =1 if tr_y <tx, and
lim Bk(l‘): 1 if tp <ty
=ty

The next three important properties P4-P6 holds only for ERBS but depend on the fol-
lowing three additional restrictions on the intrinsic parameters,

1. 6 € {0}UN, for property P4 below (at both intervals k — 1 and k),

2. either A >0, or A=0and 26 <o, for property P4 (at interval k) and P5 (at
interval k— 1) below,

3. either A< 1, or A=1and 20 <vyo, for property P4 (at interval k — 1), P5 (at
interval k) and P6 (at interval k — 1) below.

P4 is that every basis function is in C™(ty_1,tx11)-

PS5 is that in the case of simple knots, the basis functions are C*-smooth at the respective
exterior knot, ty_1 or tyy 1, i.e.,
lim D/Bk(t) =0 forj=0,1,2,..., if tr_1 <ty and

=h-1+
, I}m DJBk(I) =0 forj=0,1,2,..., if tx <tgy1-
11—
P6 is that all derivatives are zero at their interior knot, i.e.,
DJBk(l‘k) =0 for j=1,2,..,
and they are actually zero at every knot.

Before the proof follows there will first be two remarks and a list of consequences of
the properties. Besides this list, consequences from the properties will be illustrated with
examples in the Following sections and chapters.
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Remark 3. The name Expo-Rational B-splines refers to that the exponent of Yy in (2.4),
is a rational function. Because the intrinsic parameters ©, . and 'y are not only positive
integers, the exponent in Yy are actually extended to general functions. The exponent of
Vi will not be a true rational polynomial function if 6 = 7, for n =1,2,... and o and
Y are positive integers. This is because of the absolute value used in the numerator of
the exponent. This function can also create discontinuities in the derivatives of the ERBS
(in the interior of knot intervals). A true Rational polynomial function where ©, o and
Y all are positive integers is entirely inside the restrictions on the intrinsic parameters in
Theorem 2.1, and they will ensure that the ERBS will have all properties from Theorem
2.1.

Remark 4. From Theorem 2.1, it is clear that By(t), under the three additional restric-
tions, is C™-smooth at the three knots ty._1, ty and ty1 without being an analytic function
in these knots. Since all derivatives of By at any of these knots are zero (Property P6),
the Taylor series around these knots will converges to the constant 0 at ty_ and tyy1, and
the constant 1 at ty, (which obviously diverges from By(t) when t € (ty_1,tkv1). As for
the open intervals (ty_1,t;) and (ty,txt1), we can see that By is analytic there, at least
when the fraction in the exponent in (2.4) is a true rational polynomial function (see the
previous remark). For all other cases inside the restrictions of the intrinsic parameters
of ERBS , a separate investigation is needed to study the analyticity in the open intervals
between the knots. This will not be done here.

Here we provide a brief summary of consequences from the properties.

e Property P1 shows that the local support is two knot interval, the same as linear
B-splines.

e Property P2 implies that Expo-Rational B-splines are invariant under affine maps,
which also is the case for B-splines/Bernstein polynomials (explained in [23]).

e Properties P1 and P2 imply that the ERBS set forms not only an affine combination,
but a convex combination (that is, forms a positive partition of unity).

e Property P3 implies strong interpolation. It is interpolation of the Lagrange type.

o Properties P3, P4 and PS5 together imply that the basis functions are C* on R when
the knots are simple.

e Property P6 extends the interpolation property to Hermite interpolation.

Proof. The proof (of Theorem 2.1) is first dealing with the three first properties P1, P2
and P3 in a numbered list.

1. Property P1 follows directly from definition 2.2. Since ¢~ > 0 for all x, it is certain
that W_1(¢) > 0 when ¢ € (f;_1,#) and W(¢) > 0 when ¢ € (f,1;11). The fact
that Bi() is an integral of a strictly positive function when ¢ € (f;_1,%), and also
when ¢ € (f;,#+1) because we then integrate from ¢ to 41, means that Bi(t) is
strictly positive on the open interval (fx_y,#1). It also follows that By (¢) is strictly
increasing on (#;_1,1], and strictly decreasing on (fx,fx11).
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2. There are only two ERBS basis functions different from zero on a knot interval
(tx,tk+1], S0 proving the last part of property P2 also proves the first part. Suppose
that #; < #;4+1. On the knot interval (#,#41] only Bi(r) and By (¢) are different
from zero (equation (2.5)). So we have

lk+1 1 Tk+1
Bu(t) + Bisa (1) = i [Wiels)ds+Sk [Wels)ds =Sk [wel)ds, 1€ (t ]
t Iy I

From definition 2.3 we know that S is the inverse of the integral and therefore

Bi(t) +Bis1(t) =1, if 1 € (tr,tx1].

3. Both parts of property P3 follow directly from the fact that the numerator and the
denominator, in both parts of (2.3) become equal when ¢ = #;.

We organize the proof of properties P4, P5 and P6 by giving a list of items investigating
the properties of D’/By(r) and D’/By.(t) for j =0,1,2,... on the knot interval, [f,#x11],
where #; < #;1. Afterwards, we will connect this list of items to the properties P4, PS
and P6.

Several places below we have to use a well known fact (proved among others in [47]),

_a
x

lim =0, forany n, andany a >0 and b # 0, (2.13)
x—0+ bx"

i.e. e~ ¥ tends to zero “faster” than any polynomial of x (in the denominator) when x tends
to zero. Notice the range of constants a and b, which will be used below.

(a) lim By(t) =0. This follows directly from definition 2.2.

=1 —

(b) tli?lJr Bi+1(f) =0. This also follows directly from definition 2.2.
—lk

(¢) DBy+1(tx+1) =0. The proof follows.

We start by investigating Wy (7x11). We shall see that under the additional restriction
3 in Theorem 2.1, we will have (1) = 0. Here we look at the right hand side of
the knot interval.

If A < 1, it is obvious that W (14 1) = 0, because the exponent in (2.4) (named (7))
goes towards —oo when 7 — ;1 —. If A; = 1, the exponent is,

i |t — 1]
C(r) = —B« :
=

It then follows that

0, if  206; > YOk,
ST B . _
tl},gll— S = (trg1—10) % Tf 20k = Vi1
—oo, if 20 < YOk-
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Therefore, we might use (additional restriction 3) either the constraint

20, <oy if A =1, (2.14)
or the constraint

M < 1, (2.15)
to secure that limHtM,Z(t) = —oo and thus DBy (tr+1) = Wi (tr+1) = 0.
(d) t1i£n+ DBy(t) =0. The proof follows.

—lk
We shall see that under the additional restriction 2 in Theorem 2.1, we will have

Y (1) = 0. This question is analogous to the proof of the previous item, only that
this time we look at the left hand side of the knot interval.

If Ay > 0, it is obvious that Wi (#;) = 0, because the exponent in (2.4) (named E(t))
goes toward —oo when 7 — f;+. If A, = 0, the exponent is,
= It — 1|
)= — .
C( ) Bk ([ _[k)(xk (tk+l _ t)ykock

It thus follows that

0, if 26, > oy,
Jim 80 = § e i 200=ap
—oo, if 20; < 0.

Therefore, we might use (additional restriction 2) either the constraint
oy > 20, if }Lk =0,
or the constraint
}\.k >0

to secure that limHthrE(t) = —oo and thus tli§n+DBk(t) =y (%) = 0.
—lk

(e) tli?l+DBk+l(t) = 0. The proof is the same as for (d) because tli§n+DBk+1(t) =
—lk —lk
Wi (k)

) , ltim DBy (t)=0. The proof is the same as for (c) becauset ltim DB (t) =i (ter1)-
—lk+1— 11—

(2) D/Byi1(tey1) =0 for j=2,3,.... The proof follows.
We have to show that . ltim fix(t) wi(t) = 0. The question is, therefore, whether
1= 7

Wi (1) goes faster towards O than the denominator in f;(¢) for j =2,3,... whent —
tx+1—. Here we look at the right hand side of the knot interval.

In the following, we shall see that this will only be the case under the additional
restriction 3 on the intrinsic parameters (in Theorem 2.1). Suppose first that A; < 1,
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the limit when 7 — #;,1— of the exponent in (2.4) (named {(¢)) can in this case be
reformulated to
lim {(f)= lim [(“} , (2.16)

=1 — =l — ter1 — I)Ykak

where
a =Bl =M (g1 — 1)

We can easily see that a > 0 because > 0, # < #;4 and A < 1.

Studying (2.9), (2.10) and (2.11), we observe that the contributing factors in the de-
nominator are (t —f;) and (tx+; — ). When ¢t — #; 1 —, all factors (both in the numer-
ator and the denominator) except (1 —t) will tend to a real number different from
zero. It follows that for all j > 1 then,

1
lim fix(t)= lim |—— |, 2.17
fﬂtk+1*f]’k( ) 1=l — [b(tkﬂ f)”} @17

where b # 0 and n > 0.
If we combine (2.16) with (2.17) we get

_ a

lim  f()wi(t) = li e (0%

im fi(y(t)= lm ———-.

1=t =" v t—=tep1— bty —1)"

where Y0 > 0 (initial constraints). This expression is of the same type as (2.13) and,
therefore, tends to zero when t — f;,.1—.

If alternatively A = 1 and 20;, < YxO, the limit when ¢ — f;, | — of the exponent in
(2.4) can in this case be reformulated to

lim {(f)= lim {(“] (2.18)

t—=lg1— t—tps | — fep1 — I)Ykotr%k

where
—Q
a=PB(trer — 1)
We can easily see that a > 0 because B > 0 and 7 < fg.

If we now combine (2.18) with (2.17) we get

- a
e (it )Tk~ 2%%

lim fi(z t)= lim ———
l—’lk+|—fj’k( )Wk( ) =l — b(tk-‘rl _t)n
where ;0 — 26 > 0. This is of course the same as 26, < Y0 (additional restriction
3). This expression is also of the same type as (2.13) and therefor tends to zero when
I — fep1—-

This shows that if we use the additional restriction 3 in Theorem 2.1, then
lim D]Bk+1 (t) :t ltlm fJ"k(t)lllk(t) =0, for j=2,3,...
—lk+1—

=l —
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(h) rli§n+DjBk(t) =0 for j=2,3,.... The proof follows.
—lk

We have to show that tli¥n+ Fik(®)Wi(t) = 0. The question is if Wy (r) goes “faster”

towards O than the denominator in f; ;(¢), for j =2,3,... when t — tz+. This question
is analogous to the proof of the previous item, only that this time we look at the left
hand side of the knot interval.

In the following, we shall see that this will only be the case under the additional
restriction 2 on the intrinsic parameters (in Theorem 2.1). Suppose first that A; > 0,
the limit when # — 5+ of the exponent in (2.4) (named {(z)) can be reformulated to

lim {(¢) = lim

_ 2.1
[+ tﬂlk+|: ([_tk)o‘k}’ (2.19)

where
a= Bk)\,iok (tk+l — [k)26k7Yk(xk .

We can easily see that a > 0 because B > 0, # < ;1 and A; > 0.

Studying (2.9), (2.10) and (2.11), we can clearly see that the contributing factors in
the denominator are (t —f;) and (fr+; — ). When t — #+, all factors (both in the
numerator and the denominator) except (¢ — ;) will tend to a real number different
from zero. It follows that for all j > 1, the limit when r — -+, of fj(f) can be
reformulated to,

. . 1
i 100 =, |5 e
where b 7 0 and n > 0.
If we combine (2.19) with (2.20) we get
o W%

A S Owdt) = lim Gy

where oy > 0 (initial constraint). The expression is of the same type as (2.13), and

therefore tends to zero when t — 1;+.

If alternatively Ay = 1 and 26} < Y;04, the limit when t — #;+ of the exponent in
(2.4) (named {(z)) can be reformulated to,

. . a
tkgl+t"(t) TEZL [W} ’ 221

where
a=PB(trer — 1)~ *.

We can easily see that a > 0 because B > 0 and 7 < fg.

If we now combine (2.21) with (2.20) we get

Jm fri(OW(r) = lim — =1
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where o — 26 > 0 is a requirement. This is of course the same as 26; < o (addi-
tional restriction 2). The expression is also of the same type as (2.13) and, therefore,
tends to zero when t — f;,+.

This shqws that if we use the additional restriction 2 in Theorem 2.1, then
lim D/By(t) = tli¥n+fj,k(t)\|fk(t) =0, for j=2,3,....
—lk

t—l+

(i) Lim D/Biy (t) =0 for j=2,3,...
t—t+

The proof is the same as for (h) because . lign+ D/Bi (1) = ) li¥n+ FiaOwe(t), for j=
— i — g h
2.3,....
(G) lim D/Bi(t)=0 for j=2,3,....
1= lg1—

The proof is the same as for (g) becauset lim DB () =, ltim FiOwe(t) for j=
—lk+1—

—l1—
2,3,....
(k) D/B(t) for j=2,3,... isin C*(ty,tys1).

The proof is discussing two problems, I: The numerator of f; x(r) and the asymptotic
problem it can cause inside the open segments (#,#.1). II: The numerator of f;(z)
and the sign problem (because of the absolute value) and the discontinuity it can cause
inside the open segments (fy,f;+1)-

I The general idea of how to avoid the numerator creating asymptotes, is that the
derivation of a polynomial reduces the degree of the polynomial with 1. If the
initial degree is in N, the polynomial will terminate as a zero after a certain
number of differentiations. If the degree is not in N, it will, after a certain number
of differentiations, become negative and then create an asymptote. Thus from
(2.8) it follows that

Ck(/t)zo7 if ?Z(l—?uk)tk+7uktk+1.

This value, 7, is in the closed interval [tk ter1], and if O < Ay < 1, it is clearly
inside the open interval (f,#,1). Notice that 7 is the position for a possible
asymptote.

Inspecting (2.12) (remembering that Sy is a constant) we see that for the five
examples considered, f; (), for all j > 1, will be a sum of polynomials where
the most “critical” element consists of a (j —2)-nd derivative of g (). This also
follows from the recursive definition fj.1x(t) = £} (¢) + fj (t)gk(t), defined in
(2.11), because the derivative of the previous f;_1  is one of the elements in the
next fj .

Studying gx (), see (2.9), we can observe that it consists of a sum of two rational
polynomials. Skipping sign and constant factors, we can see that the numerator
of the rational function on the left hand side can be written |c;(7)|*°*, and on the
right hand side |c;(£)[*° . If o = 5. n € N, then the element on the right will
first terminate at given points, otherwise it will create an asymptote.
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IT Inspecting g(z), and its two parts, we can see that the numerator on left hand

side is always positive, but the element on the right hand side has sign depending
on ¢. If we skip the constant factors (they are clearly not zero) the numerator on
the right hand side will be

sign (ex(1)) lex(t)**"

Recall that when computing a derivative of an absolute value of the polygon, a
sign (ci(t)) is generated every time. The first derivative of this will cancel the
sign which is already there, the next will introduce it again, and so on. This
shows us that only the odd number of derivatives will be without sign (c(t)).
It follows that, when the exponent is zero, then |c(1)|° = 1. If sign (ck(1)) is
present on this level (when the exponent is zero), there will be a discontinuity at
t = (1 —Ng) tx + Ag fr11, because the sign then change, but the value is not zero.
To avoid this, 6 = %, %, %, ... can not be used.

The conclusion is as follows:

to guarantee D’By(t), for j = 2,3, ..., is in C*(fy,#11) the additional restriction 1 in
Theorem 2.1 must be fulfilled (in addition to restriction 2 and 3 shown by the other
items).

(1) D/By1(t) forj=2,3,... isin C*(ty,tx41). The proof is the same as for (k).

Summing up:

If the restrictions 1, 2 and 3 in Theorem 2.1 are all fulfilled, then P4 is a property of ERBS
because of:

item (d), item (c), item (h), item (g), item (k), item (1), and property P3.

If the restrictions 2 and 3 in Theorem 2.1 are both fulfilled, then PS5 is a property of ERBS
because of:

item (a), item (b), item (e), item (f), item (i) and item (j).

If the restriction 3 in Theorem 2.1 is fulfilled, then P6 is a property of ERBS because of:

item (c), item (d), item (g) and item (h).

That D/By(t) is zero at every knot follows from PS5 and P6.

This completes the proof of Theorem 2.1. U

2.4 The Scalable subset

If we add one more new restriction on the constraints on the intrinsic parameters, there
appears one new important specific property connected to y(z) defined in definition 2.2,
expression (2.4).
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Theorem 2.2. Let the intrinsic values be restricted according to definition 2.2, and let an
additional restriction be 26y = (1 + )0, then ,generally,

t 7r7rfl -B “‘*xk‘%k
Yi(s)ds = (tk41 *tk)/tk+l Lo U0 ds, i <t <. (2.22)
17% 0

and, particularly, when t = ty11, it has the simpler form

Ji—4 2%

- AL
Wi (t)dt = (ti1 —tk)/ ¢ U gy, (2.23)
0

Tit1
T
Proof. Relation (2.23) follows directly from (2.22). To prove (2.22) it is only nessesary
to prove that the exponent from (2.4),
— (1= Mt + Mty ) [P
((t =t (e — 1))

is preserved during translation and scaling of the domain and thus ¢, f;, ;4. Translation
with —#;, changes (2.24) to

gt , 2.24)

B 7= Mltis — 1)
(t (1 —tr— f)Yk)ak ’

where =t — 1, and where the value of the expression remains unchanged. If we mul-
tiply both the numerator and the denominator in the fraction with the same constant,

(m)(”w)“k, (2.25) remains unchanged, and we get,

(2.25)

() W% |7 g (11 — 1) [P

1] —Iy
—Bx (t::},t:)(l+Yk)ak (f (ts1 — I _;)Yk)ka . (2.26)
It follows that if 26 = (14 vx) 0y then (2.26) is the same as
B }?7 M |26k
‘ (Fo-9")"
where 7= ——%_ which completes the proof. U

1=’

The property in Theorem 2.2 leads us to a new definition. Assume the additional restric-
tion in Theorem 2.2. If we reduce the number of intrinsic parameters from 5 to 4, we can
define a subset of Expo-Rational B-splines where the integrals are independent of the knot
vector itself, depending only on the intrinsic parameters in the knot-interval. Recall from
Theorem 2.2 that both the “general” integral (2.22) and the “particular” integral (2.23) is
scaled by the constant (f;4+ — ). In the definition below this scaling is initially in both
the numerator ¢ and the denominator of S and is therefore canceled.
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Definition 2.4. The scalable subset B of Expo-Rational B-splines contains elements de-
fined by By(t) = Bi(0t—1,Br—1,Yk—1, M1, 0k, By Yie i3 7), as follows,

wi—1(t)
S(0t—1, Br—1,Ye—1,Me—1) /¢(ak717kalv'kahkkfl;S)dSa if i <t <ty
0
By (1) = 1 .
S0, Bres Vi M) /¢(ak»Bk7Yk»7¥k23)dsv if t <t <tg,
wi (1)
0, otherwise
2.27)
where e
wel(t) = ——, (2.28)
Ter1 — I
and
_ ‘,,M(Hy)oc
oo, B,y Asr) =e - (00N (2.29)
and the scaling factor is
1
S(o By h) =", (2.30)
/ oo, By, Ast)dt
0

where
a>0, >0, y>0, 0<A<I.

In the following, Sk := S(0, Bk, Yk, Ak ). This notation using an index k will be also applied
for other dependencies on the k-th set of intrinsic parameter. It follows that the first
derivative for the scalable subset is

Se .
i Gow (1), if ey <t <,

DBy (t) = Si O 0wy (1), if f <t<tyyr, (2.31)

Ter1— 1k

0, otherwise.

For all derivatives of order j > 0, we get the following general equations,

J .
(ﬁ) Fid—1(t) e—rowr_1(t), if n1 <t <,

D/Bi(t) =< _ <#)jf,-7k(z) dr owr(t), if 4<t<tg, (2.32)

Ty~
0, otherwise,
where fj () = Sk, and where f; (), for j > 1, is a rational (or more general) function.

To fulfill all the properties in Theorem 2.1 for the scalable subset (and thus also that
(2.31) and (2.32) is in C*(#;_1,%+1)), We have to look at the additional restrictions on
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(x,» .

125

0+ = 1>

0 2.5 5 y

Figure 2.2: The graph shows the equation (1+7Y)ou=2n, forn=1{1,2,...,20}. Bi(r)
is C*(tx—1,tk+1) when using the intrinsic parameters (Y,0) describing the curves in the
plot, if 0 <A< 1.

the constraints on the intrinsic parameters. If, according to the restriction on the intrinsic
parameters in Theorem 2.2, we replace ¢ with %, the three additional constraints in
Theorem 2.1 will also have to be changed. It follows that if we do this replacement, the

first additional restriction in Theorem 2.1 will be,
(I+7)o
2

In Figure 2.2 there are 20 graphs of the equation (1+Y)ou=2n, forn=1,2,...,20. What
we can see is the o and 7y values for which By(r) is C*-smooth on R. For the second

>0 if y>0 and a>0.

additional restriction, when we plug ¢ = %, we get that
vy<0 if A=0.

This is a contradiction to the initial constraint, Y > 0. For the same value of ¢ we get for
the third additional restriction

1<0 if A=1.

This is of course a contradiction. To fulfill all the properties in Theorem 2.1 we, therefore,
get the following set of restrictions on the intrinsic parameters replacing the three items
in Theorem 2.1 for the scalable subset.

1. % e N, for property 4 in Theorem 2.1,
2. >0, for property 4 and 5 in Theorem 2.1,
3. A< 1, forproperty 4,5 and 6 in Theorem 2.1,

Now follows a closer investigation of f(¢), for j =2,3. Item 1 above will be inves-
tigated further studying also discontinuities and asymptotes, while item 2 and 3 will be
fulfilled (0 < A < 1). This will give us some practical experience to be used later in
implementation.
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>)_

t.=0

-5+

Figure 2.3: The second derivative D*By(t) where the intrinsic parameters are o, = 0.5,
B=1,vy=1,A=0.5. Notice the discontinuity att = \.

We first consider the exponent in (2.29)

| t—A| (1+y)o
(o, By, Ast) = —Bma (2.33)
so that (2.29) can be rewritten as
0(0, B, ¥, A1) = eHOPAA,
The derivative of ¢ is thus
0k(1) = G (1) 9 (0). (2.34)
Computing (1), reordering and factorizing the result, we get
C(t) = x4 (1) Ci(2), (2.35)
where
xox(t) = o <’(1t(+17k)t)‘1 + I +7»;1< ) (2.36)

We can see that x; x(¢) in (2.36), and thus {} (r) in (2.35), is well defined on the two open
segments (0,A;) and (A, 1). We can also see that x () is a sum of two different parts. If
we multiply the first part by i(7), it will obviously be 0 at # = A;. But if we multiply the
second part by {;(¢), rearrange the result, and then study its behavior when ¢ — #; from
both left and right, we will see that

. T Y+ 1 (1+y) o —1
t_l}g(lixz_,k(l) 103) —t_I}g(li sign(Ag —1)ouPr (W) |t — hye| I TWI%—T

which, if (1+7)oy = 1, obviously is not the same from below (—) and above (+),
because the sign is changing at ¢ = Ay, but the value is obviously not 0 (illustrated in
Figure 2.3). If (1+41v;)oy < 1 there is an asymptotic behavior at r = Ay (illustrated in
Figure 2.4). But if we restrict the intrinsic parameters o and 7y to

(I+y)a>1, (2.37)
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Figure 2.4: The second derivative D*By(t) where the intrinsic parameters are o. = 0.4,

B=1,vy=1,A=0.5. Notice the asymptotic behavior att = \.

we get a continuous function

o, if =M,
Jak(t) = { Sk x2x(t) Gk(r), otherwise.

Computing the derivative of x; x(¢) (2.36) we get

(t(1—-1))? (1=
Computing the second derivative of ¢, and thus the derivative of (2.34), we get
(1) = (va(1) Gult) 0x(0))’
= x5 4.(1) Ca(r) Ox(r) + 224 (2) Gp(r) Ok (2) + 224 (2) Ci(2) W1 ()
= (V1) +224(0)* (1 +8(0))) Ce(e) 0r(0).

This can be reorganized into the following formula,

OF (1) = x3.4 Ce(r) k1),

P2(14y)+1-2t +1
xlzyk(t):(xk< ( Yk) _ Y )

where

(Pt D120 p+
x”(t)“( (-0 (M)

Ol <(t(Yk}”k7”kYk) +7»k)2> (1 - BkM(Mk)W)) .
(t(1=1) (=) (((1—1)%)™

(2.38)

(2.39)

Looking at x3 4 (¢) (2.39), one can see that it is divided into a sum of four parts. The first
part will obviously be 0 at 7 = A, when multiplied by {;(¢), and also the last part will be
0 at r = A if, in addition, restriction (2.37) is fulfilled. Multiplying the rest by {i(¢) gives

11— (O = M= M) 2\ o [t — Ay IHH2
Y k t(1—1t) (t(l—t)y")oc" ’

(2.40)
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1007

’ tk—lz 0\/ﬁ}\‘r\/ tkl= 1

Figure 2.5: The third derivative DBy (t) where the intrinsic parameters are o = 0.9,
B=1,v=1 A=0.5. At t = A there is a very steep asymptote (here truncated).

which, if (1 +7)a < 2, is obviously not defined at t = 4. Two figures shows examples
of asymptotes. In Figure 2.5 o = 0.9 and thus (1+v)o = 1.8, and in Figure 2.6 y= 0.8
and thus also (1 +7) o = 1.8. In both cases the asymptotic behavior is clearly illustrated.
If we now use r = Ay, in (2.40) (except for |t — Az|), we can see that

. . Brou (v + 1) (o (1+w) — 1) (1+y) oy —2
1 = lim — — AW 241
talg}ix&k (1) Gl tji?i (7\,/( (1—- }\,k)Yk) O £ =l ( )

If we then restrict the intrinsic parameters o and 7y to

(I+y0=>2, (2.42)
we get a continuous function
0, if t=% end (147v)oy>2,
farlt) = Wf% if r=2N end (1470 =2, (2.43)

Sk x3 (1) Ci(t), otherwise.

In section 2.9 below there is a study of the variation of intrinsic parameter values, provid-
ing examples of basis functions B(¢) where the intrinsic parameters are being modified
one by one.

2.5 The default set of intrinsic parameters

The default values of the intrinsic parameters for the scalable subset are

a=Pf=y=1 and l:%.
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Figure 2.6: The third derivative D*By(t) where the intrinsic parameters are o = 1,
B=1,v=0.8 A=0.5. Azt = A there is a very steep asymptote (here truncated).

5

This corresponds to 6 = 1 in the general case. This set of values for the intrinsic pa-
rameters obviously meets all restrictions to fulfill all the basic properties including being
C>-smooyh. Using these intrinsic values, we get a simpler version of ¢(¢),

2
1

ot)=e i . (2.44)

In Figure 2.1, there is a graph of By(f) (2.27) and its first derivative (2.31), where the
default values of the intrinsic parameters are used. The form is bell-shaped, and it spans
over two knot intervals. The scaling of the first derivative is, as we can see in equation
(2.31), dependent on the size of the knot intervals because the integral of the first deriva-
tive over the whole knot interval must be 1. In Figure 2.1 the two knot intervals have both
length 1.

The scaling factor (definition 2.3) for the default set is the constant
Sqa =1.6571376797382103. (2.45)

The rational function f; () is now independent of the knot k, because the intrinsic pa-
rameters are the same on all knot intervals. It will, therefore, be denoted by fj4(). The
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DBk(t) 11
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Figure 2.7: A graph of the first, second, third, fourth and fifth derivatives of By(t) when
the default values of the intrinsic parameters are used. The knots ty_1,t; and tyy are
also given on the graph, and the function values in this example correspond to ty | —ty =
ty —tr—1 = 1. Notice the symmetry/antisymmetry, and the fast growing absolute value of
the extreme values, as well as the concentration of the rapid changes of the graph towards
the knots.
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default set has the following functions fy (¢) for the first seven derivatives (j =1,2,...,7),
f1a(t) = Sa,

alt) = Sl

4
3(1-20)*-1

f3a(t) :SdW7

3(1-20)04-3 (1-20)*=5(1-21)>+3 ) (1-2)
f4d(t)=5d( BT M,

B2 45 (1218 33(1-20)°+- 2 (1-20)*+ 3 (1-21)* -2
(21(1-1))®

85 (1-20) 124135 (1 —2) 10165 (1—27)8 175 (1—21) 8+ 66 (1—21)* = & (1-20) 2+ 13 ) (1-21)

foa) = s, U2 U B0 80 e,

(
4 2 1 4 2
2P (1-20)"04 5 ()85 ()24 43 ()10 90 ()3 () IR () 4 1P ()

Fralt) = Sa=t 2(1-1)2 ' =

f5a(t) = Sa

3

(2.46)

The expressions in (2.46) show us that fj4(t) is “symmetric” around ¢ = 0.5 when j is
an odd number. This happens because the polynomial exponents in all factors are even
numbers. On the other hand, fj,() is antisymmetric when j is an even number. This is
because there is a linear factor in the numerator, (1 —2¢), without an exponent, and thus
itis changing the sign att = % and is ensuring that the value is zero when the sign changes.
All factors in the numerator are expansions in powers of (1 —2¢)%. This coincides with
the constraint 6 € N in Theorem 2.1, and fits with the proof of the same theorem, and thus
guarantees that the continuity is not destroyed by a change of sign.

In Figure 2.7, the first, second, third, fourth and fifth derivatives of By(¢) are plotted
using the default values of the intrinsic parameters. The graph is spanning over two knot
intervals [t;_1,#] and [t,f;+1]. The right hand side [f;_y,#] is mirroring the left hand
side [tg,#;+1] alternated around the t-axis at (y = 0) and y-axis at (t =#). The graph
confirms the conclusion of Theorem 2.1, showing us that all derivatives are zero at all
knots. In addition, it shows us that the extreme values are increasing very fast. For the
fifth derivative, the extreme value (for this derivative it is a global maximum with positive
value) is actually more than 500000. The occurrence of “roots” is: at % for the
second derivative (for the part on the left hand side), and then for increasing order of the
derivatives, the positions of the roots tend to go towards the knots #;_; and #;. For the
part on the right hand side, we see the same behavior, the position of a root is starting at
%, and then tends to go towards the knots #; and ;1| when the order of the derivatives
increases.

In Figure 2.8, the numerators and the denominators in fjq(t), j = 2,3,4,5 are plotted
separately. The extreme value of the denominator is a positive value rapidly decreasing
towards zero, and for j = 5 the maximum value is (%) 8 ~0.0039. For j <5, the numerator
is bounded within [—1,1]. This is in general not a rule for higher derivatives, but it is a
rule that it starts in 1 and ends in —1 for even j values, and that it start in 1 and ends in 1
for odd j values (provided that the denominator is expanded in the same way as in Figure
2.8 and in expression (2.46)).
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Figure 2.8: A graph of the numerator (on the left hand side) and the denominator (on
the right hand side) of the fraction in fj(t), j =2,3,4,5 (in the second, third, fourth
and fifth derivatives of Bi(t)). The default set of the intrinsic parameters is used. The
expressions for the four graphs on the left hand side are

a (1-2r),

b

¢ (3(1—20°+3(1—20)* —5(1—26)2+3) (1-21),

d Ba-20"04501 2083301200+ 2(1—20)* + 3(1 - 21)2 3.

Notice that on [0, 1], the four numerators are bounded within [—1,1], and the extreme val-
ues of the denominators are getting progresively smaller. The numerator is alternatingly
symmetric and antisymmetric. The number of roots for the numerators is 1 for j =2 and
2 for j = 3. It is then increasing by 4 from one even j to the next, and from one odd j to
the next.
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t, t, t, t,

Figure 2.9: A “global” Expo-Rational B-spline function f(t) (blue) with four scalar
coefficients {c,-}?: | (green). The global function is a blending of the coefficients, with
the Expo-Rational B-splines {B;(t)}}_, (red) being the blending functions. The global
Sfunction interpolates the coefficients, and all derivatives are zero at all knots. The knot
vector {ti}?:o is also marked, and there are multiple knots at both ends (discontinuity

showed in section 2.7).
2.6 Expo-Rational B-spline functions

The reason for developing the Expo-Rational B-splines is to use them as basis functions
(blending functions) in a compound function, as usual in polynomial B-spline functions.
In a polynomial B-spline function there is, between two knots, a polynomial of degree d
composed by a barycentric combination of d + 1 coefficients, weighted by d + 1 B-spline
basis functions. In an ERBS function there are, inside one knot segment, only 2 basis
functions that are different from zero. We shall consider first separately the case when
all coefficients in the linear combination of the ERBS are constants (scalars, vectors or
points) and we shall see that in this case some particular results are obtained. Recall
from Theorem 2.1 that ERBS are interpolating all coefficients in the knots, and that all
derivatives are zero in the knots. A scalar ERBS function will in each segment (between
two knots) be a scaled and translated version (an affine mapping) of the ERBS basis
function. It will interpolate the coefficients, and all derivatives will be zero at all knots.
This behavior is illustrated in Figure 2.9, and in function (2.48) below. We, therefor, will
have the following function inside a knot interval,

f(t) =ci Bi(t) +ciy1 Bix1(t), if <t <tip1. (2.47)
Recall the basic property 2 in Theorem 2.1. It follows that (2.47) can be reformulated to

f(t) =ciz1+ (ci—ciy1)Bit), if t; <t <fiy1. (2.48)

Secondly, we shall consider the general case of non-constant (scalars, vectors or points)
local functions as coefficients (illustrated in Figure 2.10). The domain of these functions
has to be the same as the domain of the respective ERBS basis function. It means that the
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Figure 2.10: A “global” Expo-Rational B-spline function f(t) (blue) with four local
functions {1;(t)}}_, (green). The global function is a blending of its local functions, with
the Expo-Rational B-splines {B;(t)}}_, (red) being the blending functions. The global
Sfunction also completely interpolates all existing derivatives of each of the adjacent local
functions at the respective knots. The knot vector {ti}?:() is also marked, and there are

multiple knots at both ends (discontinuity showed in section 2.7).

local function with index k is defined (and usually bounded) on the domain (fx_1,f41).
A practical solution is to map the domains from the basis functions to the local functions
(see definition 2.7 later in this section). Now follows a definition of a set of function
spaces, defining functions that are proper to use as local functions because they ensure
the fulfillment of the basic property 5 of the ERBS basis functions described in Theorem
2.1.

Definition 2.5. To classify local functions 1i(t), we define a set of function spaces,
FB) ={1:D/(1(t)By(t)) =0 for j=0,1,... and t=t,_; or t=1tys},

where the intrinsic parameters on the segments (ty_1,t;) and (t,t;11) support property 5
described in Theorem 2.1.

This is a very weak restriction, and in normal practical use it is difficult to find a local
function that is not in these sets of function spaces. Now the definition of an Expo-
Rational B-spline function follows.

Definition 2.6. An Expo-Rational B-spline (ERBS) function f(t) (scalar or vector-valued
or point-valued) is defined on the domain (t1,t,] by

™=

F@) =) L(t)Br(t) if 11 <t<ty,

k

where Ii(t) are local (scalar or vector-valued) functions defined on (ty_i,tr+1), k =
l,...,n, and Bi(t), k=1,...,n is defined in definition 2.2. It is assumed that I;(r) €
§(Bx).

Just like Polynomial B-spline functions, Expo-Rational B-spline functions: have basis
functions defined by a knot vector, they form a nonnegative partition of unity (which
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also means that they are invariant under affine transformations), the basis functions have
minimal local support (the same as 1st degree B-splines). In addition, for the typical
case of simple knots f; < #;4| properties 2-6, together with /x(¢) € F(B), imply Hermite
interpolation (discussed in section 2.8). Figure 2.10 illustrates this clearly. In every knot
the “global” function interpolates the local functions, not only the functional value, but
also the derivatives. The figure also shows that the “global” function passes through
all intersections between two neighboring local functions. This is because the “global”
function is an affine combination of two and only two local functions for every value of
the argument.

Using local functions offers a new possibility (or challenge, in practical implementation),
namely, a domain mapping from segments in the “global” domain onto the “local” do-
mains. It, therefore, follows that local functions must be split up into a function on the
local domain and what we define to be the affine global/local mapping.

Definition 2.7. We denote the local domain for the local function I to be,
I, = (Sk(),skl) CR  where spy < s,

and where sy is the start parameter value, end sy is the end parameter value of the
local function Ii. The global/local mapping o is said to be the mapping of a segment
(tr—1,tx+1) in the “global” domain of the Expo-Rational B-spline function onto the do-
main I,

o : (t1,t11) CR — I

Wy, is, therefore, the affine mapping

=1t

(1) = sp0 + (Sk1 — Sk0)- (2.49)

et — -1
The inverse mapping from I to (ty_1,ti41) is

S — Sko

22 (g ). (2.50)
Sk1 — Sk0

o' (s) =1+

The possibilities in constructing a great diversity of functions depending of the variety of
local functions gives ERBS a new “dimension”, because by this one can customize the
typical properties of the function. Some brief examples are that one can use trigonometric
functions or circular arcs (in R2 or ]R3), Bézier functions, rational functions, special func-
tions etc. The local function can even be an ERBS function itself, raising the possibilities
for multilevel ERBS. There is nothing which says that all local functions must be of the
same type, and there is a great potential of undetected possibilities and properties waiting
to be descovered.

2.7 Knot vectors and continuity

In polynomial B-splines the knot vector is determining the parametrization and the conti-
nuity over knots by the multiplicity of the knots. The same is the case for Expo-Rational
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Figure 2.11: Four versions of a curve. In the left figure the knots are uniformly dis-
tributed except for the multiple knots at each end. In curve two from the left, the distance
between the two middle simple knots are half of the original size. In the next curve the
size is halved once more, and in the figure on the right hand side the two middle simple
knots merge into one multiple knot. As a result, the latter curve is being split into two
curves. The curves are drawn with points, to illustrate the speed of the parametrization
(denser means slower).

B-spline functions, but here the knot vector of ERBS is only determining if the function
is C™ or if it is discontinuous at a knot. When the knot is multiple (fx = #;11), it can be
seen that Definition 2.2 and Figure 2.1 shows that By and By have discontinuity at #.
In this case, the continuity of the global B-spline function f in definition 2.6 depends on
the local curve, as shown in the following Theorem.

Theorem 2.3. Provided that the intrinsic parameters are restricted so that all properties
in Theorem 2.1 are fulfilled, an Expo-Rational B-spline function f belongs to C*(t1,ty]
if, fork=1,....n— 1, the knots is simple, i.e., t; < ty, and the local functions l;(t)
are in C*(ty_1,tx+1) and i (t) € F(By). If ty = try1, then f is only continuous if Iy (ty) =
liv1(tgs1 ). Otherwise, f is discontinuous at t = ty.

Proof. If ty <tyy1, k=1,...,n—1, then f is C*-smooth because of properties 3,4,5
and definition 2.6. If #; = #;4| then because of property 3

() = h(t),

and

IJ}g+f(t) = b1 (et 1)

which shows that in the case of multiple knots, f(z) is only continuous if /(f;) =
lt+1(fx+1). This completes the proof. O

Figure 2.11, where a curve in R? is used as an example, illustrates the effect of moving two
knots towards each other. One can see that the speed of the curve is increasing towards
infinity until the curve suddenly (when the knots coincide) breaks into two parts.
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2.8 Hermite Interpolation properties

Here we shall see that, under the general assumptions that the intrinsic parameters fulfill
all properties in Theorem 2.1 and that for the local functions, /;(t) € F(By) holds, Expo-
Rational B-spline functions have an Hermite interpolation property; we also discuss how
this can be used. The important underlying fact here is that

D/Bi() =0, if k=1,...,n and j=1,2,..,

which is property 6 in Theorem 2.1. Let us now increase the generalization to a higher
dimensional value of the function,

It — R4, where 1<d < oo,

and let us also consider the definition of the affine global/local mapping ®; from definition
2.7, where sjg is the start parameter of the domain of the local function with index i and
si1 is the end parameter value. We then have the following Hermite interpolation property
for an Expo-Rational B-spline function.

Theorem 2.4. Let the sequense of functions ¢;: [si,si1] C R — R? where 1 <d < o, be
ey (Bk). Let

f)= iciomi(I)Bi(t) (2.51)
i=1

be the general “ERBS” d-dimensional vector function, defined by the knot vector {ti}:.’iol
and the local vector functions c¢;(s),i = 1,...,n. Denote the global/local “scaling” factors
by
5 — Sil = Si0
lit1 —ti-1
If the properties in Theorem 2.1 are fulfilled, then

, for i=12 .. n

Dif(t) =8 Diciowi(t;), for j=0,1,2,... and i=1,..,n. (2.52)

Proof. Deriving (2.51) according to t we get
n

Df(1) =Y (D(ciow;)(t)B;(t) +cjo w;(t)DB;(1)).

i=1

Recalling that B;(f;) = 1 (property 3 in Theorem 2.1), B;(t;) = 0 when j # i (property 1)
and DB;(t;) = 0 for all j (property 6), it follows that

Df(t;) = D(cioo;)(t)
= &; Dcjow;(t).
Since ) )
D(DJC,' o (D,')(l) =9 D]+lci O(Di(t)v

expression (2.52) follows. Which completes the proof. O
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Remark 5. One typical situation is when the domain of the local function is scaled to the
standard “unit” domain. For example, Bézier curves have a domain where s;j — sjo = 1.
Combined with a uniform knot vector where ti11 —ti—1 = 1 for i = 1,...,n, the scaling
factor 5{ fori=1,...,nandfor j=1,2,... can be eliminated from consideration, which is
very convenient practically. In all other cases it is important to remember these important
scalings!

The fact that an ERBS function completely interpolates the values and all existing deriva-
tives of its local functions in their respective knots, raises the possibilities to approximate
a function/curve/surface/ etc. by using local functions/... etc., respectively, which pro-
vides Hermite interpolates of the original function in the respective interior knot. There-
fore, the Hermite interpolation property gives the following possibilities to construct an
Expo-Rational B-spline function:

e Given a function g(x) and a strictly increasing vector {x;}?_, of parameter values,
indicating the interpolation knots.

e We can now construct a knot vector {t, ! where ti=x;, i=1,...,nand fg = x;
and 11 = x,, (if g(¢) is cyclic then tp = x| — (xn —Xp—1) and fy41 = X, + X1 — X0).

e The next step is to decide the type of local functions, including the local domain,
and the number of derivatives d; to use.

o Finally we can generate the local functions ¢; by Hermite interpolation,

i lit1 —li-1
D]CiO(,l)i(ti) = <[+ !
Sil — Si0

J
) ng(x,'), for j:0,17...,di.
In the following, a short investigation of the convergence of an ERBS function towards an
original function will be given, when the number of knots or/and the number of derivatives
used in the Hermite interpolation increases. As a test function and, thus, an original
function, we use
sin(t), for 0<r<2m,

and we use monomial basis functions in the Taylor series,

/! i
) = £ + 1))+ A0 e B0y sy
for i =1,2,...,n, as local functions. The index j is denoting the number of derivatives
used, i.e. the number of terms in the equation (2.53) is j+ 1. It follows that the global/lo-

cal scaling factors, connected to the respective local functions, are &; = 1.

Table 2.1 illustrates the convergence of the approximation of the sine function by the
ERBS function using Hermite interpolation. For a number 7, denoting the number of
interior knots in an ERBS function (the total number of knots is thus n+2), and a number
J, denoting the number of derivatives in the Hermite interpolation used, we denote the
error between the ERBS function and the sine function by

€, i = max i(t) —sin(t
i = max Ui (0) = sin(0)].
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number number of derivatives used
of knots || 1 2 3 4

5(129—01]7.8¢—02|1.6e—02|2.4¢—03

10 || 6.1e—02 | 7.0e — 03 | 6.1e — 04 | 4.3¢ — 05

20 1.4e—02 | 7.5¢—04|3.1e—05| 1.0e — 06

40| 3.2¢—03 | 8.7¢—05| 1.8¢—06 | 2.8¢ — 08

80| 7.9e—04|1.1e—05| 1.0e—07 | 8.2¢— 10

160 || 1.9¢ —04 | 1.3 —06 | 6.3¢ —09 | 2.5¢— 11

Table 2.1: The table shows the connection between the error (maximum deviation be-
tween the ERBS function and the sine function), the number of knots and the number of
derivatives used in the Hermite interpolation.

where

fu(0) = icj,xr)&(r).

are the ERBS functions. In Table 2.1 we can see €, ;, for n = 5,10,20,40, 80,160 and
j=123.4

In Figure 2.12 the “errors” shown in Table 2.1 are plotted as a surface. The vertical axis
uses a logarithmic scale, and one of the horizontal axes (the one showing the number of
knots) has a logarithmic scale with base 2. The surface is plotted with different colors,
where each color represents one unit on the error axis. In the figure the minimal error (at
n =160 and j =4)is 2.5¢ — 11. Outside the range of the figure, the surface continues in
the same way, and at n = 320 and j = 5, the error is 1.5¢ — 15. Observing the surface,
we can see that a curve along a constant number of knots is getting steeper when the
number of knots increases. The same is also the case in the other direction, we can see
that a curve along a constant number of derivatives is getting steeper when the number
of derivatives increases (provided that the function approximated by this interpolation is
sufficiently smooth).

Practical examples of how to use the Hermite interpolation properties to construct “ERBS”
curves and surfaces will be given later in this report.

2.9 Influence of the intrinsic parameters

In this section we will see examples of the intrinsic parameters” influence one by one, but
restricted to the scalable subset B (definition 2.4). The basis function By(¢) (see (2.27),
(2.28), (2.29) and (2.30)) spans 3 knots, #;_1,#,#+1, and thus 2 intervals, and the shape
depends on the intrinsic parameters on each interval. We will, only consider examples
where the intrinsic parameters are equal on both intervals. The domain of Bi(¢) in the
examples will be [0, 1], and the knots will be uniformly distributed. Therefore, for the rest
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Error

0.1

0.01
le-3
le-4
le-5
le-6
le-7
le-8
le-9
le-10

le-11

Figure 2.12: The surface shows the error (maximum deviation between the ERBS func-
tion and the sine function). Notice that the vertical axis uses a logarithmic scale. The
horizontal axes show the number of derivatives and the number of knots, where the scale

of the number of knots is logarithmic with 2 as the base. The numbers used to construct
the surface can be found in table 2.1.
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of this section the basis function will be denoted

B(%Bﬂa}%t)-

We will see four figures (2.13, 2.14, 2.15, 2.16), each with five plots of B(a,B,Y, A1),
t € [0, 1], and where only one of the intrinsic parameters vary, and the other parameters
have default values. In the table below we can, for each of the four figures, see the intrinsic
parameters that are not default, and the five different values they have.

‘ Figure ‘ parameter ‘ value 1 ‘ value 2 ‘ value 3 ‘ value 4 ‘ value 5 ‘

2.13 o 0.01 0.2 1 2 6
2.14 B 0.01 0.2 1 6 100
2.15 Y 0.001 0.1 1 2 10
2.16 A 0.01 0.3 0.5 0.7 0.99

In Figure 2.13, all intrinsic parameters have the default values except for a.. One can see
that the shape of the basis function is close to a piecewise linear B-spline when o0 = 0.01,
and then getting smoother when o = 0.2, but with a rather sharp top. Then it is rapidly
getting smoother until oo = 1 (default value). It is then getting sharper when o0 = 2 and
until it looks more like piecewise linear trapezoid when oo = 6. This indicates that the
shape of
lim B(a,1,1,0.5;¢)
o—0+

is a 1st degree B-spline basis. It also indicate that

0%im B(a,1,1,0.5;¢).
converges towards a piecewise linear function with breaks at approximately {0.075, 0.425,
0.575, 0.925} (recalling that the domain of B(¢) is [0, 1]). Notice that the two functions
on the left hand side in Figure 2.13 are not in C*(0, 1).

In Figure 2.14, all intrinsic parameters have the default values except for . One can also
see here that the shape of the basis function is close to a piecewise linear B-spline when
B =0.01, and now it is gradually getting smoother when 3 = 0.2 and B = 1. This also
indicates that the shape of
lim B(1,B,1,0.5;1)
B—0+

is converging towards a linear polynomial B-spline basis. When [} increases further to 6
and then to 100, one can clearly see that

B1im B(1,B,1,0.5;1)

is converging towards a step function, which will approximate a zero degree B-spline
basis. Notice that B(1,,1,0.5;7) is in C*(0, 1) when P obeys the restriction in definition
2.2 which, of course, is the case for all functions in Figure 2.14. Notice also that variation
of these two parameters, o and B preserves the symmetry, while varying of the other two
parameters y and A does not preserve the symmetry.
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Figure 2.13: Five versions of B(a.,B,Y,A;t) where all intrinsic parameters have the
default values, except for o. The domains for each of the five functions is [0,1]. From left
to right oo = {0.01, 0.2, 1 (default value), 2, 6}.
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Figure 2.14: Five versions of B(a.,B,Y,\;t) where all intrinsic parameters have the
default values, except for . The domains for each of the five functions is [0,1]. From left
to right B = {0.01, 0.2, 1 (default value), 6, 100}.
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Figure 2.15: Five versions of B(q.,B,Y,\;t) where all intrinsic parameters have the
default values, except for Y. The domains for each of the five functions is [0, 1]. From left
to right y={0.001, 0.1, 1 (default value), 2, 10}. Notice that the difference between
Y=0.1 and y=0.001 is small

o, " P P

}“« J " 4 % Ry . o
i s s e st pp——

Figure 2.16: Five versions of B(a,B,Y,A;t) where all intrinsic parameters have the
default values, except for h. The domains for each of the five functions is [0,1]. From left
to right L= {0.01, 0.2, 0.5 (default value), 0.7, 0.99}. One can clearly see that the two
Sfunctions on the left hand side is mirroring the two functions on the right hand side, i.e.,
mirror around h = 0.5.
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In Figure 2.15, all intrinsic parameters have the default values, except for y. One can
clearly see that on the left hand side the two functions are close to equal, which indicates
very fast convergence. The “breakpoint™ at the top of these functions is at the interior
knot (midpoint). The two halves are turned compared to each other (because they sum up
to one). On the right hand side one can clearly see that

lim B(1,1,y,0.5;¢)
'Y*)DO

is converging towards a piecewise linear function with breaks at approximately {0.38, 0.5,
0.88} (the domain of B(z) is [0, 1]). Notice that the two functions on the left hand side, in
Figure 2.15, are not in C*(0, 1).

In Figure 2.16, all intrinsic parameters have the default values, except for A. This param-
eter, restricted to [0, 1], is moving the “center of mass” towards the left hand side or the
right hand side. The function on the left hand side is weighing the local function on the
right hand side more than the local function on the left hand side. We can also see that
B(1,1,1,A;t) is in C*(0,1) when 0 < A < 1, which is the case for all functions in Figure
2.16.

Remark 6. Note that the four figures (2.13, 2.14, 2.15, 2.16) represent only a small part of
the diversity of possible shapes of the Expo-Rational bell-function. By tuning the intrinsic
parameters of the B-spline not only separately, but altogether or in groups, one can obtain
fine control over an Expo-Rational B-spline curve/surface.
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Chapter 3

ERBS-evaluators, reliability, precision
and efficiency

An Expo-Rational B-spline “evaluator” is a computation of By(z) (and thus the integrals
in definition 2.2 and the computation of the exponential function W (¢) in expression
(2.4)). In addition, the computation of D/By(t) in (2.7) for j = 1,2,...,d for some d is
required, which includes computation of f;(¢). (In practical computations, d ranges
between 0 and 7). All this involves handling overflow and underflow and thus division by
zero in the fractions, stable and precise numerical integrations and methods for speeding
up the computations.

This chapter will only consider the scalable subset B (see definition 2.4), where By (t) is
defined in (2.27), and DjBk(t), j=1,2,... is defined in (2.32). We consider the scalable
subset, and in most cases the default set, the most natural to use in geometric design. The
scalability makes it possible to speed up the algorithm tremendously, and it makes the
algorithms more stable. All algorithms in this chapter are either based on the scalable or
the default set, and we will see that for the scalable subset ‘B, there exist a reliable, precise
and efficient evaluator for the basis function and some of the derivatives (for the default
set, it should be possible to compute up to 49 derivatives).

This chapter considers the implementation, programming, and problems related to the
number system of the computer. In the first section (section 3.1) we will investigate
the requirements for a reliable algorithm. The questions here are overflow, underflow
and division by zero, and we will investigate these using “IEEE binary floating point”
standardized devices. The second section is treating algorithms for the derivatives. Then
in the next section (section 3.3), we will investigate an algorithm for numerical integration
of the expression in (2.27) and (2.28), namely the integral

w(t)

/q)(ak:Bk»ka)\fk;S)dS, where 0 < wy(t) <1,
s=0

because
t—1

wi(t) = and f <t <fpyg.

Ty — I

47
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In [16], section 6, a sequence of numerical methods for computing ERBS were consid-
ered. In this report we study only the simplest of them, because we will use an algorithm
with fine control of the precision and a simple implementation.

In the fourth section we will show an implementation and a test of a precise (with con-
trollable precision) and extremely fast evaluator for practical use. The evaluator is based
on preevaluation and Hermite interpolation.

3.1 Reliability in evaluations

Reliability of the algorithm depends on possibilities for overflow, underflow and division
by zero. We, therefore, start by looking at what these three phenomena are, and when
they occur. The IEEE standard for Binary Floating-Point Arithmetic [52] describes the
formats of floating-point numbers (there is an ongoing revision called IEEE 754R [60]).
According to the present standard, binary floating point numbers shall be of the form

(=1)* 28 (bo.b1by ... bp1), (3.1)
where p is the precision and,
s €{0,1} (binary),
E € {Enin,-..,Emax} (signed integer),
b; €{0,1} (binaries).
The following table describes how the bits in the numbers are distributed.
type sign | significant bits (precision) | bits for exponent | sum bits
single precision | 1 23 8 32
double precision | 1 52 11 64

The form defined in (3.1) is defining the so-called normal values. In addition, the IEEE
standard specifies the following special values for numbers; +0 (signed zero), denormal-
ized values (in 745R changed to subnormal), e and signaled and quiet NaN (Not a
Number). Usually the first significant bit by is 1, because if it is not, one can always, for
normal values, obtain it by reducing the exponent E. For subnormal values, this is not the
case, because we are now already using E,;;;, — 1. Therefore, for numbers with subnormal
values, the first significant bit is always 0. This fact makes it possible to skip this first bit,
and thus raise the precision (number of significant bits), because the separation between
normal and subnormal values is well defined without the first significant bit (see the table
below). The following table (see [31]) shows us how the 5 different types of values can
be separated.

Type values implemented exponent | implemented precicion
Special values +0 E=E,,—1 b=0
Subnormal values | £0.5 x 2Emin E=E,,—1 b#0

Normal values +1.bx2F Epin <E < Epux

Special values Foo E=FE,;+1 b=0

Special values s/q NaN E=E;;+1 b#0
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Using this improved precision (skipping the first bit), we get the following number of
significant digits in the decimal number system. For normal values, the biggest value for
single precision (float) is 22* — 1 = 16777215, i.e. more than 7 significant digits, and for
double precision it is 23 — 1 = 9007199254740991, i.e. close to 16 significant digits. For
subnormal values the number of significant digits is reduced, and is gradually decreasing
until there is only 1 binary digit (case discussed further below).

To describe overflow, and how it occurs, we first look at the maximum normal value. For
single precision it is

LT 1 x 22 = (227292177~ 3.4028237 e 4 38.

For double precision it is
111, 11 x22' = (2 - 2*52) 21023 1 .7976931348623159 ¢ + 308.

Numbers that becomes larger than this will be set to =e0 depending on the sign bit (over-
flow is actually assigning the special values +oo to a number).

To describe underflow, and how it occurs, we first look at the minimum normal value. For
single precision it is !

1.00...00 x 22721 = 27126 1, 1 1754944 ¢ — 38.

For double precision it is

1.00...00 x 227271 = 271022 . 5 795(07385850720138 ¢ — 308.

Values smaller than this are subnormal values with lower precision. Notice that the sig-
nificant bit will be 0.11...11 (in binary representation) for the first subnormal value, and
0.00...01 for the last subnormal value. Therefore, the minimum (unsigned) subnormal
value is, for single precision,

2277 £ 1.4012984 ¢ — 45,

and, for double precision,

2—1022-52

2 ~ 4.9406564584124654 ¢ — 324.

Numbers smaller than this will be set to £0 depending on the sign bit. Looking at the
numbers above we can see that for both single and double precision then

1

—— < max normal value.
min normal value

It follows from this that if the denominator in a fraction has a normal value, and the
numerator is < 1 then the fraction will not produce an overflow.

For a closer study of how the number system affects algorithms, we recommend [31]. An
edited reprint can be found at “http://docs.sun.com/source/806-3568/ncg_goldberg.html”.

Summing up:

I'The reason for using a total of 3 less numbers in the exponent than available is that one is used for zero
and 2 are used for special and subnormal values as showed in the previous table.
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e Overflow produces a signal and +oo, which cannot be legally used further in most
computations.

e Underflow first produces subnormal values and then +0.
e Fractions might produce a signaled overflow.
— Division by zero clearly produces a signaled overflow.

— If the numerator in a fraction is < 1 there will never be an overflow if the
denominator is a normal value.

Now let us go back to the search of a reliable algorithm for an ERBS evaluator. The first
critical part is the computation of the fraction in the expression (2.29), namely,

|[_7\'|(1+Y)Oc
(t(1—1)")™

and later also the fraction f;(¢), j=2,3,..., described in (2.32). When we look at the
numerator of the fraction in (3.2), we can see that

[t—Al <1, if 0<A<I and t€]0,1],

—B where >0, >0, y>0, 0<A<1 and r€[0,1], (3.2)

and thus that
=A% <1 if >0, y>0, 0<A<1 and r€[0,1].
We, therefore, get the following remark and, thus, reliable algorithm.

Remark 7. It follows that it is not possible to get overflow even if the denominator is as
small as possible, but still a normal number. The only critical part in the algorithm for
computing 0(t) (expression (3.2), (2.29) and (2.44)) is the underflow of the denominator,
i.e., that the number in the denominator is not a normal value.

In the following we give an algorithm first for the general scalable set B, and then for the
default set.

Algorithm 1. (For notation, see section “Algorithmic Language”, page 7.)

The algorithm computes §(o, B,7Y,A;t) from expression (2.29), where a, B, Y and . are
present and, thus, states, and t € [0, 1] is the input parameter. First follows a general
function, then there is an optimized function for the default set of intrinsic parameters,
(expression (2.44)).

double ¢ ( double ¢)
double d = (1(1—-1)")%
if ( d # normal value ) return 0.0; // Test if underflow

B = (11
else return e a

double ¢ ( double ¢)
t—=0.5;
t*x= 1
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Figure 3.1: The numerator for f; 4(t). On the left hand side is a graph from O to 1, on the
right hand side a “zoomed version” from 0 to 0.1. One can clearly see that | f; 4(t)| < 1,
1 €[0,0.1].

double d =0.25—1;
if ( d # normal value ) return 0.0; // Test if underflow
else return e%;

Computing the second derivative and higher, we shall first look at the default set of intrin-
sic parameters. The exponential function ¢(¢), described in (2.44), and plotted in Figure
2.1, is symmetric about ¢t = 0.5, and rapidly goes towards O when t goes towards O or 1.
The number system on the computer, however, is, as we could see, only approximating
real numbers, and it is ,therefore, necessary to clarify: when do we actually get underflow
computing ¢(¢), and when do we get underflow computing the denominator in fj4().
Computing on an Intel (Pentium 4 or Pentium Mobile) based computer and using double
precision we find that for

t=0.0003525365489384924,

we get
O(1) = ¢ 108:39641833223657 _ 5 995073858568479 ¢ — 308,

which is the lowest value before underflow and thus giving a subnormal value. Recall that
¢(r) is symmetric around ¢ = 0.5 when using the default intrinsic parameters, and that
1 —7 is the limit on the right hand side.

In expression (2.46) and in Figure 2.8, one can see the expression of the numerators
and the expression of denominators of f; 4(¢), j = 2,3,4,5,6,7, and a plot of the same
numerators and denominators for j = 2,3,4,5. From this it is clear that the denominator
for fj 4(¢) for all j can be expressed in the following way

(2r(1 =)V,

and that the absolute value of the numerator in f; 4(¢) for the first 5 derivatives is less or
equal to 1, and close to O or 1, all numerators go from 0 towards £1. In Figure 3.1 one
can clearly see that the numerator is less or equal to 1, in the area near the knots, also for
the seventh derivative. Computing on an Intel-based computer using double precision and
t=1we get

(211 —1))2#=1) = 2.,60482 ¢ — 303.
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For j =50 we get underflow and thus a subnormal value.

Remark 8. This shows that at least for the default set of intrinsic parameters, we can
compute the seven first derivatives, and it indicates that we can compute 49 derivatives
and only do a test if 0(t) is underflowing, and thus deliver zero, otherwise we can just
compute and assemble the parts, always getting a valid and reliable result.

3.2 ERBS-evaluator and derivatives

We are now ready to introduce a reliable algorithm for computing the derivatives for the
Expo-Rational B-Spline using the default set of intrinsic parameters.

Algorithm 2. (For notation, see section “Algorithmic Language”, page 7.)

The algorithm computes D'By(t), j = 0,1,...,d, for the default set of intrinsic param-
eters. It is, thus, an implementation of (2.44-2.46). The algorithm assumes that there
are algorithms to compute both ¢(t), and [I_,¢(s)ds, t € [0,1]. The knot vector {lz},"iol
is supposed to be present and, thus, a state. The input variables are: % t € [t1,t4], k for
which ty <t < fyy1, and d € {0,1,...,6,7} (the number of derivatives to compute). The
algorithm depends on k being consistent according to t and the knot vector. The return is
a “vector(double)”, where the first element contains By(t), and then DB(t),...,D*B(t).

vector{double) B ( double s intk, intd )
I . // Mapping from the global domain [t1,t,] to the local domain [0, 1].

1) —t;’
Vect(,;zd(fubk:) R(d+1)=0.0; //Make a vector for return, size d+1, all elements 0.
double p=¢(t); // See algorithm 1, part 2.
if (p # normal value) return R; // Test if underflow.
R =354 // Each of the d + 1 elements equal to S.
double 7= (1—2¢)%
switch (d)
case 7: Ry« = (((((((Z7+132)7—805) 74 483) 7+ 96§45) I+ ...see (2.46)
case 6: Rg * = (((((‘%?Jr %5)7 765 )t+75)t+66)t7 75)t+ 145,
case 5: Rs % = (((ﬁ%t‘l‘ﬂ% 3)i+2)r+3)i-3;
case 4: Ry x = ((3t+% t—5)t+%
case 3. tR3 * = %?2 — %
Ry * = » (s)ds; // See algorithm 6 in the next section.

ok — P .
for ( int l I;i<d;i++) Rix= o B (L) D
for (int i=2;i<d;i+=2) R;x=(1—2t);
return R;

21t is preferable that the value of k for which # < ¢ < ;. 1, see (2.27), is computed separately from the
evaluation of the basis function, because this knowledge is also needed for the local functions, see (2.49).
The question as to whether the local mapping, see (2.28), and scaling of the derivatives, see (2.32), should
be done inside the evaluator (as in the first and third last line in Algorithm 2) might be an open question.
The question is really if the evaluator should be independent of the knot vector, or be complete.
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The algorithm for the scalable subset B will in general be the same as for the default set
of intrinsic parameters. The differences are mostly limited to computing f;(¢) (2.11).
Because of the complexity of the algorithms, f;(¢) will be implemented in separate al-
gorithms. The choice is that the algorithm should be able to deal with asymptotes, both
for fo(¢) in (2.36), (when (1+7y)a < 1, see (2.37)), and for f34(r) in (2.39) (when
(I+7vy)a < 2, see (2.42)). This is done under the additional restriction 0 < A < 1. The
implementation of f> () in (2.38) leads to implementation of {j(r) in (2.35). Because
x2(¢) in (2.36) consists of two parts where one might have an asymptote, we start by
multiplying and factorizing, and we get

xaa0) () = 2RO L) tiﬁh—k\—i—si n(e =M1 | jr—AHeT 33
P = (1 —1) £ -

Now it is time to look at an algorithm computing f5 ¢ (¢).

Algorithm 3. (For notation, see section “Algorithmic Language”, page 7.)

The algorithm computes f5(t) for the scalable subset B of the intrinsic parameters,
where 0, By, Vi and Ay are supposed to be present and thus are states, Sy = S(04, Bx, Yk, Ak)
is supposed to be pre-evaluated and, thus, a state. The algorithm is the implementation of
(2.38) and, thus, uses (3.3). The input variable is supposed to be t € [0, 1], and it is such
that the second line in the algorithm shall guarantee that t in the computation of (3.3) has
a normal value on the open segment (0,1).

double f> (double ¢)

if(1<23e—308||t==A||t==1) //See(2.38), upper part.
return 0.0;

1
double /= 7 E[r— 2

; // First part of the second factor from (3.3).

if(t<A) h—=1; // Last part of second factor (3.3).
else h+=1;
* = Zfé‘?i(%i) ; // Inserting Sy, and the first factor of (3.3).
if((1+ya<l) // Asymprote at t = A is present.
double g = w; // The inverse of (3.3).
if ( g # normal value )
return 0.0;
else
return  1;
elseif ((1+y)oa>1) // Ordinary solution.
return  f |t —AJ0FVOT;
else // Discontinuity at t = \.
return  h;

A comment to the foregoing algorithm; it is, as said abow, treating the have of possible
asymptote (147vy)a < 1, see (2.37), for all ¢ values. The convention of what to do atz = A
when there is no value is that it returns 0, as it will do for all cases when there is a value.

3The guarantee is that we have to introduce practical restrictions on the intrinsic parameters because of
the binary number system. See Table 3.1 and the following comments to that table.
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The implementation of f3 () (2.43) leads to implementation of x3 ¢ (#){x(r) from (2.43).
Because x34(r) (2.39) consists of four parts where two of the parts have an asymptote
when (1+7Y)a < 2, and one of the parts in addition also has an asymptote when (1+7Y)o <
1, we start by multiplying and factorizing, and we then get

X34 ()G (1) =

—op (,_Mﬂz(y"'l)%_(y_i_l)_i_

(t(1=1))" (r(r—1))?
Ble — ATV (y—A—Ay)+2)\ > w
oc(l— (t(l—t)Y)a ) < (=1 ) \t—k|(1+~/) 2

We will now look at an algorithm computing f3 (7).

(3.4)

Algorithm 4. (For notation, see section “Algorithmic Language”, page 7.)

The algorithm computes f3x(t) for the scalable subset B of the intrinsic parameters,
where Oy, By, Yk and Ay are supposed to be present and, thus, states, Sy = S(O, Br, Yk, Ak)
is supposed to be pre-evaluated and thus a state. The algorithm is the implementation of
(2.43) and, thus, uses (3.4). The input variable is supposed to be t € [0, 1], and it is such
that the second line in the algorithm shall guarantee that t in the computation of (3.4) has
a normal value on the open segment (0, 1).

double f; (double ¢)

if(t==XL) // See (2.43), upper part.
if((1+y)o>2) return 0.0; // “Ordinary” continuity.
elseif ( (1+y)oo ==2) return 7»“(1727»[3)2“ // “Standard” continuity.
elseif ((1+7y)ou>1) return -“max normal value”; // Negative asymptote.
else if ( (1+y)ou==1) return 0.0; // Continuity.*
elseif ((1+y)u<1) return “max normal value”;  // Positive asymptote.

if (t<23e—308 || t==1)return 0.0;

double h = |t —AJ? % (y+1); // First part of the second factor of (3.4).

(1 2
h+=0o <1 _ B ) ( (Y_}”_M)””) ; // Second part of the second factor.

(110" t(1-1)
hx= % // Inserting Sy and the first factor.
if((l+ya<2) // Asymptote at t = \ might be present.
2—(1
double g = =AM // The inverse of (3.4).

if ( g # normal value )
return  “signed max normal value”;

else
return l;
else if ( (1+7y)o > 2) // “Ordinary” solution.
return A | —A|1FVO2;
else // “Standard” solution (e.g. default set).

return Ay
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A comment to the foregoing algorithm; it is as said above, treating the asymptotic case
(I+7v)a < 2, see (2.37), for all ¢ values. The convention of what to do at + = A, when
a function value does not exist, is that it returns an approximation of lim,_, f3(¢) = Froo
by “Normal values”, where the sign is negative for 1 < (1+7y)a < 2, and positive for
0 < (147v)a < 1. The reason for the sign can clearly be seen in expression (2.41) , where
the only factor that is not necessarily positive is o (1 +7;) — 1. This also shows that when
o (1 +7) = 1, the function becomes continuous.

There is one question in a footnote connected to Algorithm 3, and also connected to
Algorithm 4: what are the practical restrictions on the intrinsic parameters that guarantee
no underflow and, thus, no overflow by division? The question is then: what is the range of
the intrinsic parameters that guarantee a reliable algorithm for computing the derivatives
(for all ¢ in the open segment (0, 1)) which have a normal value? (Note that subnormal
values shall not be considered). It follows that what actually has to be investigated is the
range of the intrinsic parameters to guarantee that:

1
I£3(0)]

In the following, we will only consider changes of the intrinsic parameters one by one. In a
finite binary number system, the range of an intrinsic parameter can actually be computed
“exactly”. Recall from section 3.1 that the maximum negative binary exponent in double
precision is 1022 and that the number of significant bits is 52. The sum of this is 1074. A
number between 0 and 1 can, therefore, be found “exactly” by binary search with depth
1074. If the range is bigger than this, we also have to consider the maximum positive
binary exponent, and then the depth is 10744+1023=2097. The algorithm is a two-level
binary search, the outer level being to find the intrinsic parameter, the inner level being to
find the first 7 where ¢(¢) does not have a normal value in order to see if m has still a
normal value (e.g. > ¢(¢)). The result of a search for all intrinsic parameters separately,
for upper and lower bounds, for both when t — 0+ and t — 1—, and for second and third
derivatives, can be seen in Table 3.1.

for j=2,3 when t - 04 or t— 1—, and wheret is a normal value.

o(r) <

From Table 3.1 we can draw the following conclusion of the range of the intrinsic param-
eters which guarantees reliable algorithms for computing second and third derivatives:

0.1857 <a< 1075
3146 x 107 <B< oo
0201 <y< 534.37
6.72x 1077 <A< 0.999999
0.1857 <a< 465.97
3.146 x 1078 <B< 1.436x10%
0201 <y< 496
1.337x10°7° <A< 0.999999

Lower and upper bounds of the intrinsic
parameters which guarantee reliability
when computing the second derivative.

Lower and upper bounds of the intrinsic
parameters which guarantee reliability
when computing the third derivative.

Let us recall that reliability means that we do not get overflow and, thus, we do not get
numbers that are not usable for further computations. We can see from the range of the

“When (1 +7v)a = 1, all even derivatives will only be discontinuous, and all odd derivatives will be
continuous (see proof of Theorem 2.1, item k-1I on page 24).
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| par. | der. | bound | t—0 ‘ t—1 |

> lower | 9.294556548602447 x 103 0.1856551589777102

o upper 1075 1075
3 lower 0.01864443248188489 0.1856551589777102

upper 466.889890736804 465.9770256841861

5 | lower | 4.466312333786737 x 1073021 3.145912057383679 x 10~ 13

B upper max normal value max normal value

lower | 1.124974606116484 x 10~ 1% [ 3.145912057383679 x 10~ 13

3 upper | 5.747194528456591 x 10°* | 1.436798632114148 x 10**
, | lower 0 0.2013156366896773
upper 1002.994782602334 534.3735944906107
v 5 | lower 0 0.2013156366896773
upper 496.0047816968047 534.3735944906107
, | lower 6.713476659990283 x 10~ 122 0
N upper 1 0.9999997195578465
3 lower | 1.336727340482124 x 10~ 7° 0
upper 1 0.9999997195578465

Table 3.1: The table shows the result of the computation (binary search) to find the
bounds on the intrinsic parameters to ensure reliable algorithms for computing second
and third derivatives. For each of the four intrinsic parameters there are 4 numbers for
computing second derivatives and 4 numbers for computing third derivatives. Because
the formulas are not symmetric, and the number system is not symmetric, the numbers
are computed both for when t — 0+ and when t — 1—. To compute the lower bounds,
the depth used in the binary search is 1074, and for the upper bounds, the depth used
in the binary search is 2097. The number of digits used is 16, and the decimal numbers
represent binary numbers that are the exact bounds.
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parameters that o and y are the most “influential” parameters, which is natural, because
they are exponents. It is also remarkable that the range of B is so large that we can, by only
varying [3, almost get a piecewise linear, or a step function, and still be able to evaluate
second and third derivatives for all t values.

We have previously been able to see that for the default set of intrinsic parameters, we can
compute at least 7, and probably up to 49, derivatives without overflow trouble. Now it is
time to introduce an algorithm for an “evaluator” for the scalable subset 8 computing up
to 3 derivatives.

Algorithm 5. (For notation, see section “Algorithmic Language”, page 7.)

The algorithm computes D/Bi(t), j=0,1,...,d for the scalable set of intrinsic parameters
B. The algorithm assumes that there are algorithms present for computing both ¢(t), and
[0 0(s)ds for 0 <t < 1. The knot vector {t; f’;rol is supposed to be present and, thus, a
state. The input variables are: t € [t1,1,], k for which t;, <t < ty41, and d € {0,1,2,3}
(the number of derivatives to compute). The algorithm depends on k being consistent with
the choice of t within the knot vector. The return of the function is a “vector(double)”,
where the first element is By (t), and the next elements are DB(t), ..., D*B(t).

vector{double) B ( double s intk, intd)
. // Mapping from the global domain [t1,t,] to the local domain [0, 1].

o1 —11
Vectcﬁ;(d(fuble> R(d+1)=0.0; // Make a vector for return, size d+1, all elements 0.
double p=¢(t); // See algorithm 1, part 2.
if (p # normal value) return R; // Test if underflow.
switch (d)

case 3: Rz = fa(1);
case 2: Ry = fa(t);
case I: Ry = S;

t
Ry = Sk / oO(s)ds; // See algorithm 6 in the next section.
s=0
PN =P .
for(int i=1;i<d;i++) R;*x= A
return R;

3.3 ERBS-evaluator based on Romberg-integration

The principal part of the ERBS-evaluator By () defined in Definition 2.2 is the integration
of Y (¢) defined in (2.4) or ¢(¢) defined in (2.29). In this section, only one of the possible
reliable and controllable numerical integration will be investigated. The choice fell on
Romberg integrations (see [9]), which is based on repeated Richardson extrapolation to
eliminate error terms (see [34]). The background for the algorithm is the Euler-MacLaurin
integration formula (see [54]). Given a function f that is C*[a,b], then the error from a
trapezoidal approximation T;,(f) according to the integral I(f) is

| & 1 1 1
I(f) - 772 —=—A"+ A”+$A§°>+..., (3.5)
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where AS-O) are constants. For example, the error formula for the Trapezoidal and Simpson

method gives
0 —(b—a)®
Ay = o2 ) =)
A =g (fO ) = fO)a)).
Richardson extrapolation can now be used in conjunction with (3.5) to iteratively elimi-
nate terms in the error formula. Richardson extrapolation is in general a method to im-
prove an approximation by combining two equations using different step sizes. If we

make two simplified versions of (3.5), using step size h instead of the number of steps n,
and using half step size (h/2) on the second one, we get

1(f) = Tu(f) +Aoh* + O(R*/T1),
I(f) = Tyja(f) + Ao ()7 + O(h27+1),

If we put this into order and subtract the second from the first equation we get

_ 25T, 5 (f) — Tu(f)

B(h) 2271 ;

(3.6)

where
I(f) = B(h) + O(h¥ ™).

If we also compute B(h/2) we can use B(h) and B(h/2) in a next step (in (3.6)) to reduce
the error terms. This can be repeated in an iterative process until the “removed error term”
is smaller than a given tolerance.

There are three questions appearing when using Romberg integration to integrate (numer-
ically) ¢(¢) defined in (2.29),

1. reliability,
2. efficiency,
3. precision.

What follows there will not be any attempt to compare Romberg integration with other
methods, but there will be an investigation of how suitable Romberg integration is for
integrations of ¢(¢). There following some tests done for several sub-domains (integra-
tion intervals), to find out how fast the quadrature process is converging, the number of
computations of ¢(z) and the remaining errors. The result can be seen in both a table and
a figure.

First the reliability depends not only on the fact that ¢(¢) is bounded on [0, 1], but also on
the fact that we do not get an overflow when actually computing ¢(¢) using algorithm 1.
(Remark 7 state this). Since also the range of the integration interval is within [0, 1), the
computation of the integral will always give normal value, and is in this sense reliable.
The degree of reliability, the error, will be discussed below.

In Table 3.2 and in Figure 3.2 one can see the connection between the number of steps
(and evaluations) in the Romberg-integration and the “last removed error term”. Six eval-
uations (and integrations) are computed. In the computation, the default set of intrinsic
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le-1 1
le-2 A
le-3
le-4
le-5 4
le-6
le-7 A
le-8 4
le-9+
le-10-
le-11-
le-12+
le-13 1
le-14 4
le-15 4 : ; ; : : : : :
L e S EUS SR S UL X SRR LI N R
le-17

———— ———
1 2 3 4 5 6 7 8 9 10 11
1 2 4 8 16 32 64 128 256 512 1024
Figure 3.2: The figure shows the relationship between the precision and the number
of iterations in the Romberg-integration algorithm for ERBS-evaluation when using the
default intrinsic set of parameters. The upper scale on the horizontal axis is the number
of iterations, and the lower scale is the new number of evaluations (i.e. at step 11 there
are 1024 new computations of O(t) and a total of 1+1+2+...+1024=2048 computations).
The scale on the vertical axis is the difference in value between a step and the previous
step in the iteration. Five graphs (a,b,c,d,e,f) are plotted from smoothed data in Table 3.2.
Each graph represents an evaluation of a given t, i.e. f;:O f(s)ds. For graphf, t = &,
for graph e, t = %,for graphd, t = %, for graph e, t = %,for graphb, t = %, and for
graph a, t = % One can clearly see that the number of iterations is related to the size of
the integration interval (domain).
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curve name | a b c d e f
upper limit | 0.5 0.25 0.125 0.0625 0.03125 | 0.015625
1 1|/72e—2 |14e—2 |83¢e—3 |7 7¢e—4 |73e—6 |1.2¢—9
2 212.0e—2 |26e—3 |79¢e—4 |1.le—5 |1l.4e—6 |3.2¢e—10
3 4113¢e—3 |93¢—4 |7.0e—5 |1.6e—6 |1.8¢—8 |84e—11
4 8(19.5¢—4 |85¢—5 |29¢—6 [69e—8 |1.6e—9 |4.0e—12
5 16 |89¢—5 [33¢—6 [80e—8 |[1.7¢—9 |1.9e—11|1.6e— 14
6 32134e—6 [83¢—8 |1.8¢—9 [2.0e—11|4.8e—14|22e¢e—17
7 64|84e—8 |1.8¢—9 [2.0e—11|53¢—14|2.8¢e—17
8 128 | 1.9¢—9 [2.0e—11|54e—14|2.4e—17
9 256 |2.0e — 11 |5.5¢e— 14| 1.9¢ —17
10 512 | 55¢—14|2.8¢—17
11 1024 | 1.7e — 16

Table 3.2: The table shows the connection between the number of steps/evaluations and
the precision in the Romberg-integration algorithm. There are 6 “graphs” computed.
Each graph is an integration from 0 to upper limit (second row). The column on the left
hand side is showing the number of steps in the integration (up to 11), the next column is
showing the new number of computations of §(t) that have to be done on the current step.
All the other numbers are the last correction, indicating the level of tolerance (remaining
errors).

parameters is used, and six different values are computed. The computations are of

6

4 1
/S:Oq)(s)ds, for t= {Zk}k—l .

Each computation is named by a letter, “a)” means that the integration interval is [0, %}
This is the computation over the biggest interval. The interval is then halved from compu-
tation to computation until the last computation, named “f)”, where the integration interval
is [O, 6%] . In Table 3.2 we will find the value of all “remaining errors” until they are “out
of significant bits”. The values are actually the differences between the result from this
step in the iteration and the result from the previous step. As we can see in Table 3.2, a
value in the table is clearly bigger than the sum of all values below in the same column.
So the values are actually better than the “remaining errors”. We can also see that the
last values (on the bottom of the table) are numbers “outside the edge of significant bits”,
when the results are close to 1. In Figure 3.2 is the values from Table 3.2 plotted as 6
smooth graphs. On the horizontal axes is the number of new computations of 0(¢) on a
logarithmic scale. This tells us that the computational costs are doubled for each mark on
the horizontal axes.

The depth of the iteration depends on the size of the integration interval. Evaluating an
interval of 0.5 requires up to 11 iterations, which is the same as 2 x 1024 = 2048 com-
putations of ¢(¢). This is indeed a time consuming process. In this case it is important to
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be careful; one should not use higher tolerance than necessary. When evaluating numbers
bigger than 0.5, one should use mirroring and then instead integrate on a subinterval of
the right part of the domain, [%7 1] .

The following algorithm is only for integrating from O to #. To make an algorithm for the
general case, integrating from a to b, the change is to be done only in the third line where
it must be w, and in line 9 where it must be s += ¢(a+ j*¢). In addition a new
declaration introducing ’double ¢ = b — a;” must of course be included. The algorithm is
optimal in the way that the evaluation of ¢(¢) is minimized. In some cases the evaluation
on the boundaries are already known, in these cases the algorithm can easily be adapted

either by using state variables or by using parameters.

Algorithm 6. (For notation, see section “Algorithmic Language”, page 7.)

The algorithm computes the integral B = ['_,0(s)ds, t € (0,1], where B is inside the
given tolerance €. The value of the input “tolerance” variable € is recommended to be in
[le —2,1e— 15] (according to Table 3.2).

double integrate ( double ¢, double €)
double M[16][16];

double sum = @

Moo =t *sum;
for (int i=1;i<16; i++)

double s =0;
int k=1<1i; // N.B, using C++ bit shift operator <
t/=2;

for (int j=1I; j <k, j+=2) s+=¢(jx*1);
Mo =1t (sum +=s);
for (int j=1; j <i; j++)
double ¢ =4/; // C++ implementation: 1< (j < 1)
M = kM1 jr1—Mj-1i—j .
Ji=i = —1 )
if (|Mio—M,_10| <€) return M;o;
return Myso;

// Richardson extrapolation scheme

3.4 Practical ERBS-evaluator using preevaluation and in-
terpolation

To implement “ERBS” for use in geometric modeling and design, graphic computation,
simulations and others, it is extremely important to have a precise and fast evaluator. In
this section, we shall take a closer look at a method using preevaluation and Hermite
interpolation.

In practical implementation the whole evaluation system should be wrapped in an “object”
(C++ class or equivalent). The advantage of this is that it takes care of all states such as
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the intrinsic parameters o, P, v, A, the scaling factor S(a,B,v,A) (see (2.30)), and, of
course, the number of samples (below denoted by m) and all sampled values (more than
6m in total, as will be described below). Therefore, in the following, an evaluation object
type will be defined, (it will be called the “ERBS-evaluator”) containing the following:

“ERBS-evaluator”

The following state variables are present:

o, B,y A // Intrinsic parameters (the state identifiers, together with m).
m // The number of sample intervals, number of samples is m + 1
At = % // The interval between each sample (also the scaling factor),

/1 the sampling vector {#;}?" , defined via #; = i * Ar.
S=S5(a,B,v,A) /I Scaling factor (see (2.30)).
b= {fé’ ¢(s)ds}:n:0 /I Vector storing of the integral [; ¢(s)ds in the sample points.
a /I A matrix with dimension m x 5 (actually m vectors).
/1 Each of the vectors{a, } , stores the Hermite coefficients
/I ay, ay, az, a3 and a4 for each sample interval (see 3.12).
It will, of course, be necessary to have functions for construction, destruction, settings
etc. They will not be handled here, but the important “public” functions are:
initiate(a, B,v,A,m) // Changing states and thus computing S, b, a and Ar.
B(t,k,d) // For a given ¢ € [0, 1], k - knot interval, d - nr. of derivatives,
// analogous to Algorithm 5, computing D/B(t), j=0,...,d.
For “internal” use (used only by initiate( )) we need the following functions (the three
last functions are defined in previous sections):
interpolate(i, 9o, 91,4(,9}) // Computing a;¢, a; 1, a;2, a;3 and a;4 (using (3.12)).
o(1) // Defined in Algorithm 1.
f2(1) // Defined in Algorithm 3.
integrate(to,t1,00,01,€) /I Modified version of Algorithm 6. This version uses
// both the start and end value of the interval, and ¢(szart)

// and ¢(end), to minimize the number of evaluations.

The question is, how can we use the “ERBS-evaluator”? A possible set of answers to this
is listed below.

1. For a given set of intrinsic parameters and a given “acceptable tolerance”, make an
instance of an “ERBS-evaluator”. All curves and surfaces using this set of parame-
ters can now use this object for evaluation.

2. The parameters or the “acceptable tolerance” can, at any time, be changed for one
or more specific curves/surfaces by making and using a new “ERBS-evaluator”, or
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by resetting the parameters in the “old” one.
3. Itis possible to have more than one “ERBS-evaluator” available at the same time.

4. Tt is possible to have several instances of a curve/surface, the “ERBS-evaluator”
needs only to be altered.

There is an obvious cost of using “ERBS-evaluators”, related to the use of memory. This
concerns, however, small numbers, from approximately 1.8 to 48 kbytes for each instance
of an object, depending on the number of samples, and thus the required guarantee for the
errors (the tolerance). The sample data consist of the vector b storing the incrementing
integral samples, and the matrix a storing, in each line, the Hermite interpolation coef-
ficients at each sampling interval. Only the first four values in each line, a; 0, a; 1, a; 2,
a; 3, are actually the Hermite interpolation coefficients. The last one a; 4 is the integral
from O to 1 of the Hermite interpolant. The reason for having this last element is to either
integrate from 0 to < 0.5 or from > 0.5 to 1, so as to reduce the error. The equations for
Hermite interpolation between 0 and 1 will now briefly be discussed (we will later look at
the problems of the scaling of the derivatives because of domain scaling). We start with a
general 3th degree polynomial equation,

f(x) = ap+a1x+ arx* + azx>, 3.7
and its first derivative,
fx)=a +2ax+ 3azx>. 3.8)

Integrating (3.7) from 0 to a given value 7 € (0, 1) gives the following result

[ or=i(arsi(§+(3+(2))))
x=0
and evaluating (3.7) at 7 yields

£ :ao+tA(a1 +?(a2 +?(a3))). (3.10)
Then evaluating (3.8) gives
(@) =a1+7(2a2+1(3a3)) . (3.11)
If we introduce f(0), f/(0), £(1) and f'(1) as known, we can solve the system according
to {ai}?zo. If we, in addition, also include a4 (the integral on the whole interval, i.e.
fol f(x)dx), the solution is

Cl():f(o)7
al:f/(0)7
ay =3 (f(1) - f(0)) = f'(1) = 2f'(0), (3.12)

—2(f(1) = f(O))+f( )+ 1'(0),
fOLA) 4 FO-F()

as =

The question now is: how do we use these four expressions (3.9), (3.10), (3.11) and
(3.12) in the evaluator? Recall that scaling of the domain influences the derivatives and
the antiderivatives (integrals). Suppose the real interval is Az (not 1). Because of the
general rule about scaling of the domain the derivatives / antiderivatives must be scaled /
inversely scaled respectively, and do to definition 2.7 (also discussed in [20]), we have to
do the following three adjustments:
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e The input derivatives f'(0) and f’(1) have both to be scaled by At,
e The output integral, B(¢), has to be scaled by At.

e The output derivative (actual second derivative D?B(t)) has to be inversely scaled
by At.

To complete the description of the “ERBS-evaluator” there are still three algorithms that
have to be described. The first algorithm is initialization.

Algorithm 7. (For notation, see section “Algorithmic Language”, page 7.)

The algorithm computes the internal state variables At, S = S(o,B,v,A), b= {B(t;)}1,
and the matrix a (by using an interpolating function). The algorithm assumes that there
are algorithms present to compute O(t), ¢/ (t) (can use f>(t) if S=1)and [I_,0(s)ds, 0<
t < 1. The input variables are: The intrinsic parameters o, B, v, A, and m (the number of
sample intervals). There are no return values.

void initiate ( double a, double B, double 7y, double A, int m )

double ¢g, ¢1; // Value at the start and end of each interval
double fo, fi; // Derivative at start and end of each interval
set(a, B,y,A,m); // Store intrinsic parameters and m in object
Allocate memory for b, a; // Set size = m+1 for b, and m x 4 for a
At = %; // Set interval size
S=1; // Temporary, to use O (t) = f>(t)
bo = ¢po = fo =0.0; // Defined to be zero (basic properties)
for (int i=1;i<m; i++) // For each sampling interval
double t = ix At; // The sampling vector marked t; in definition
o1 =0(1); // Algorithm 1
fi=01 f2(0); // Algorithm 3

b; = integrate(t — At,t,00,01,1 x 10719); // Algorithm 6 (using max tolerance)
interpolate(i — 1,00, 01, At fo,At f1); // Updating Hermite coefficients {aifl,k}i:o

0o =01, // Preparing for the next step

fo=fi;
b, = integrate(At(m—1),1,¢0,0,1 x 1071); // Algorithm 6 (using max tolerance)
interpolate(m — 1,90, 0, At fy,0); // Updating Hermite coefficients {am—l,k }2:0
for (int i=1;i<m; i<=1) // These three following lines are introduced

for (int j=m; j>i; j—=1) // because there in line 13/17 is not used + =
oo .bj +=b; // See below for explanation

=5

In line 13 and 17 b += integrate(...), incremental adding, should have been used. But
then there will have been loss of at least one significant bit because of adding a small
number to a bigger (and growing) number. To avoid this, the next three last lines are
summing up in a binary way. The algorithm is summing neighbors that are nearly equal.
The algorithm is, therefore, constructed to optimize the precision. In the algorithm one
can see that both integrate() and interpolate() are called twice. The reason for this, is to
avoid calling ¢(¢) and f>(¢) for r = 0 and ¢ = 1, because then they are defined to be 0. In
addition, let us recall the scaling of the derivatives: they are all, according to the scaling
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rules, scaled by At in the input of the interpolate() function in lines 14 and 18.

The second algorithm, the interpolation, is a very simple algorithm implementing com-
putation of the Hermite interpolation coefficients (see (3.12)).

Algorithm 8. (For notation, see section “Algorithmic Language”, page 7.)
The algorithm computes the Hermite interpolation coefficients a; o, a; 1, a;2, ;3 and a; 4,
and is an implementation of (3.12).

void interpolate ( int i, double fy, double fi, double f{, double f] )
a;o = fo,
a1 = fy
a2 =3(fi— fo) = fi —2fp

a;3=—-2(f1— f0)+f1+fo,
a4 — f()+f()+f() YMQ)

3

The third and last function is the main “evaluation function” B(), analogous to Algorithm
5. The knot vector is generally not a part of the object, because the object is then as-
sociated with a curve/surface. The knot vector is, however, necessary for computing the
complete values. The solution is to give a temporary reference to the knot vector before
the computation.

Algorithm 9. (For notation, see section “Algorithmic Language”, page 7.)

The algorithm computes D'B(t), j = 0,1,2 for the set of intrinsic parameters that are
initialized in the object. The algorithm assumes that initializing is done. The knot vec-
tor {t;}!" "H is also supposed to be present. The input variables are: t € [t1,t,], k|ty <
t < fk+1y ana’ d € {0,1,2} (the number of derivatives to compute). The algorithm
depends on k being consistent with respect to t and the knot vector. The return is a
“vector(double)”, where the first element contains By(t), and then ,optional by, DBy(t)
and D*By(t).

vector(double) B ( double ¢, intk, intd )

t=-1 lfftk ; // Mapping from [t1,t,] to the local domain [0, 1]
Vector(double> R(d+1)=S; // Make a vector for return, size d+1, all elements S
int j = min(int(t «m),m—1);  // j not equal m, due to the “mirroring” around 0.5
double dt = %; // Mapping from total [0,1] to [0, 1] on sample

switch (d)

aj +dt(2a;0+dt 3a;3)

case 2: Ry x = // Using (3.11), scaled by ﬁ
case I: R * = a,o—l—dtfaj | +dt (aj 2+dta;3))); // Using (3.10), no scaling
if (dr > 0.5) // Integrating: dt - 1 (3.12)
Rox=bj1 — At (aj4—dt (ajo+dt (35 +dt (22 +dt™2)))); //Scaled by At
else // Integrating: 1 -dt (3.12)
Ro+=b;+At dt (ajo+dt (35 +dt (22 +dt*))); // Scaled by At
for(int i=1;i<d;i++) Ri|= (fes1—1)'; // Due to (2.32)
return R;

The next question is the “evaluation” of the “ERBS-evaluator” itself. There are two dif-
ferent evaluations to be done: evaluation of the efficiency, and evaluation of the precision.
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Figure 3.3: The relationship between the precision (tolerance) and the speed of the
evaluation compared between the use of the B() function in the “ERBE-evaluator” and
the use of the B() function in Algorithm 2 from section 3.2. For a sample rate of 1024,
which gives a precision of 3.3e-13, the “ERBE-evaluator” is 766 times faster than the old
one (computing function value and two derivatives).

The efficiency is clearly the reason for making the whole system. Due to the Hermite
interpolation and the integration, with regarding to time consumption, the whole system is
identical to evaluating a 4th degree polynomial function, including the derivatives. This is
in some sense a kind of optimal solution. In Figure 3.3 there is a graph of the relationship
between the use of Algorithm 2 (with two derivatives) and Algorithm 9, the “ERBS-
evaluator”. Algorithm 2 uses the default set of intrinsic parameters, and is, therefore,
relatively fast. The speed of the B() in the “ERBS-evaluator” is itself independent of the
sample rate, but the precision is highly dependent on the sample rate. The evaluator B()
in Algorithm 2 is very dependent on the precision, especially the integration part using
Romberg integration. This can clearly be seen in Figure 3.3. On the horizontal axis you
can see the precision (tolerance) of the function value, B(z). On the vertical axis you
can see the relation between the speed of the “ERBE-evaluator” B() and the “old” B().
One can clearly see that the difference in speed is tremendous, i.e. it takes up to 766
times longer to use B() in Algorithm 2 than B() in the “ERBS-evaluator”. The figure also
indicates that as we pass the tolerance 10~'3 we approach the maximum of the possible
acceleration of the algorithm by replacing with Algorithm 9.

The precision is a more complex problem to deal with, especially since the precision is
getting worse with the increase of the order of derivatives. The reason for this is actually
easy to see because B(t) is the integral of DB(r), and also because DB(t) is the integral
of D?B(t). Observe that a simplified computation of a maximal error of an integral of a
function in a sample interval, is approximately: % x max error of the function x % (the
sample interval). The difference in error between an approximation of a function and an
approximation of the derivative of the function is, therefor, close to 10° for number of
samples m=1024. There are, of course, methods to improve this, but they might decrease
the speed or the flexibility (this will be discussed further later).
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Figure 3.4: The relationship between the number of samples and the precision (max
norm) of B(t) (function value) using the “ERBS-evaluator”. For a sample rate of 32, the
precision is 6.4 e-6. For a sample rate of 1024, the precision is 3.3 e-13.
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Figure 3.5: The relationship between the number of samples and the precision (max
norm) of DB(t) (first derivatives) using the “ERBS-evaluator”. For a sample rate of 32,
the precision is 8.8 e-4. For a sample rate of 1024, the precision is 1.4 e-9.
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Figure 3.6: The relationship between the number of samples and the precision (max
norm) of DZB(I) (second derivatives) using the “ERBS-evaluator”. For a sample rate of
32, the precision is 8.9 e-2. For a sample rate of 1024, the precision is 4.5 e-6.
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| samples interval [ 1024 | 512 256 128 | 64 32 \

L'0,1] [7.6e—15]2.4e—13[7.6¢—12]7.7¢e—10]85¢—9[2.7¢—7
B(t) L%[0,1] [2.9¢—14]9.5¢—13 |3.0e— 11 [9.6e —10[3.3¢—8[9.7¢ —7
L7[0,1] | 3.3¢—13 | 1.0e — 11 | 3.2¢—10 | 8.6 —9 |2.9¢—7 | 6.4 —6

L'0,1] [49¢—11][7.8¢—10|1.3¢—8 [2.0e—7 [3.5¢—6]5.6e—5

DB(t) [ L*[0,1] [ 1.7e—10[2.7¢—9 [4.3¢—8 [6.7¢—7 [1.2¢e—5][1.7¢e—4
L*[0,1] | 1.4e—9 [22¢—8 |[3.5¢—7 |4.5¢—6 |7.9¢—5|8.8¢—4
L'0,1] [1.9¢e—7 |15¢—6 |12¢—5 |97¢—5 |84e—4|65¢—3

D*B(1)[ L%[0,1] [5.9¢—7 |47¢—6 |3.8¢—5 |2.9¢—4 |2.60—3|19¢—2
L~[0,1] | 4.5¢—6 |3.6e—5 |2.8¢—4 |1.8¢—3 |1.6e—2|8.9¢e—2

Table 3.3: The table shows the connection between the number of sample intervals and
the error for the three functions B(t), DB(t) and D?*B(t), using three different norms,
L'0,1], L?[0,1] and L™[0, 1].

Looking at the precision of the “ERBS-evaluator”, Table 3.3 shows the connection be-
tween the number of sample intervals and the error for the ERBS basis function B(z), and
its derivatives DB(t) and D*B(t), using three different norms. These norms are L![0, 1]
representing an arithmetic mean value, L?[0, 1] representing a geometric mean value, and
L[0,1], a max norm, giving us the guaranteed tolerance. The three figures 3.4, 3.5 and
3.6, show graphs of the maximum error of the “ERBS-evaluator” produced according to
the number of samples. In Figure 3.4 the error for the function value B(t), are plotted.
It ranges from 6.4 x 10~ for 32 samples, to 3.3 x 10~!3 for 1024 samples. This can be
regarded as quite a good result. In Figure 3.5 the error for the first derivative DB(t) is
plotted. It ranges from 8.8 x 10~ for 32 samples, to 1.4 x 10~ for 1024 samples. This
can in many cases still be regarded as an acceptable result. In Figure 3.6 the errors for
the second derivative D?B(t) are plotted. It ranges from 8.9 x 1072 for 32 samples, to
4.5 x 1079 for 1024 samples. This result is clearly on the edge of what is acceptable.

The conclusion is, therefore, that for the value B(t), and the first derivative DB(t) the
tolerances are acceptable. But the tolerance for the second derivative can be improved by
an enhancement. This will bring us to an implementation of B() in the “ERBS-evaluator”
using parts of Algorithm 2 or Algorithm 5. All derivatives will then get the same error
level as DB(t). In this case it is obvious that we have to split the algorithm into two
different functions/algorithms:

1. For the default set of intrinsic parameters,

i) Remove the components of B() that treat the 2nd derivative.

ii) Insert components of all elements treating D’B(t), j = 2,3,...,7 from algorithm 2.
The advantages: This will not effect the speed of computing up to 2 derivatives at all, and
we can in addition compute up to 7 derivatives.

The disadvantages: The flexibility is suffering because, if we want to change the intrinsic
parameters, we have to change the function, or make a new object.



3.4. PRACTICAL ERBS-EVALUATOR USING PREEVALUATION AND
INTERPOLATION 69

2. For the scalable set of intrinsic parameters,

i) Remove the components of B() that treat the 2nd derivative.
ii) Insert components of all elements treating D’/B(t) for j = 2,3 from algorithm 5.

The advantages: The flexibility is kept, and we can in addition compute up to 3 deriva-
tives.

The disadvantages: This will result in approximately twice the time needed to compute
up to 2 derivatives compared to using only the “ERBS-evaluator”.

Using C++, the natural choice is to use inheritance and polymorphism:

The base class “ERBS-evaluator” clean Algorithm 9.
Inherited class 1 “ERBS-default” combine Algorithm 9 and 2.
Inherited class 2 “ERBS-scalable”  combine Algorithm 9 and 5.

In this case all three alternatives are available, and the flexibility is still present.
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Chapter 4

Curves

The general formula of an Expo-Rational B-spline curve is,

f)= ici(t)B,-(t), 4.1

i=1

where ¢;(t), i =1,...,n, are local curves and B;(t), i = 1,...,n, are the ERBS basis func-
tions. As can be seen, the formula resembles the usual polynomial B-spline curve formula,
except that ¢;(r) are not points, but curves. The Expo-Rational B-splines can, therefore,
be viewed as a blending of local curves. Figure 4.1 shows an example of a curve and its
local blending curves. The curve has 4 local curves (green). The knot vector is {ti}?zo,
where 7y = t; and t4 = t5 are the multiple start and end knots, and where t, and t3 are
simple (non multiple) inner knots. Each basis function and, thus, local curve, spans a two
knot interval, and the local curve interpolates the global curve at the middle knot of its
span. This is the reason why the first local curve, spanning [to, 7], interpolates at the start
of the global curve, because the middle knot of this interval, #; is at the start. This is,
of course, also the reason why the last curve interpolates at the end of the global curve.
The curve in Figure 4.1 can be divided into three parts, and the “dividing points” are the

//,

Figure 4.1: A (global) Expo-Rational B-spline curve (red) with four local curves (green).
The global curve is a blending of its local curves, with the Expo-Rational B-splines be-
ing the blending functions. The global curve also completely interpolates all existing
derivatives of each of the adjacent local curves at the “middle” knot.
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Figure 4.2: The local curves are replaced by points. The complete curve is on the right
hand side. The curve is drawn with points to illustrate the “speed” (denser is slower).
The star, on the left hand side, is the plot of the derivative centered at the origin.

ones where the local curves touch the global curve, i.e. the inner knots #, and #3. Each
part of the curve is a blending of parts of two local curves. The first part is a blending
of the whole first local curve and the first half (until knot #,) of the second local curve.
The second part is a blending of the second part (from knot #,) of the second local curve
and the first part (until knot #3) of the third local curve. The third part is a blending of the
second part (from knot #3) of the third local curve and the whole fourth local curve. This
shows the extreme local support, i.e. if we change the first local curve, only the first third
of the global curve will be changed.

Before we investigate different types of local curves, a comment is required on what it
will look like using points as coefficients, as in ordinary B-splines.

Remark 9. If we replace the local curves with points, the complete curve will geometri-
cally be a piecewise linear curve with an infinitely smooth parametrization (on a strictly
increasing knot vector) and DjBk(ti) = 0 (basic property 6, see Theorem 2.1) implies that
all derivatives of f must be zero at every knot: Djf(ti) =0, j=12,....,i=1,....n (this
is illustrated on the right hand side in Figure 4.2). It follows that all higher derivatives
(vectors) must be parallel to the curve (line) and, thus, to the first derivative. Thus, every
derivative of f will geometrically form a ’star’ concentrated at the origin (see the left
hand side of Figure 4.2).

In definition 2.5 the classification of local function to support the basic properties, i.e. the
C* property, is given. For a vector-valued function (parametrized curve), the constraints
on the local function can be summed up in the following remark.

Remark 10. In principle, the only constraint on the choice of the local curve ¢;(t) is that
lci(t)| € §(Bi) (definition 2.5).

Important instances of admissible local curves are curves based on algebraic and trigono-
metric polynomials, rational functions, circular arcs, etc. It is possible to use curves of
different types as local functions, and it is of particular interest to consider “multilevel”
Expo-Rational B-splines. In Figure 4.3, there is an example where two parameterized
circles are local curves. The example shows that two closed curves can act as local curves
for an open curve. The definition and structures of open/closed curves are perhaps not
obvious, and will, therefore, be discussed in the first of the following sections.



4.1. DEFINITION/IMPLEMENTATION OF “OPEN/CLOSED” CURVES 73

Figure 4.3: Two circles as local curves. The complete curve is the dotted curve. At the
ends, the global curve interpolates the local curves with the derivatives of every order.

In the remainder of this chapter the following subjects will be discussed. In section 4.2,
the ERBS curve evaluation, including derivatives, will be discussed. Then, in section
4.3 Bézier curves as local curves will be investigated, including Hermite interpolation,
and numerous examples. In section 4.4 circular arcs as local curves will be discussed.
In this case it is necessary to use a modified Hermite interpolation. In the following
reparametrization using approximative curve length parametrization will be discussed,
and lot of examples connected to this will be given, including the general circular arc‘s
case. Then in the last section in this chapter affine transformation on local curves will be
discussed. Examples of this will be shown although the examples really should have been
animations. Also computational aspects concerning both Bézier curves and Arc curves
will be discussed in the chapter.

4.1 Definition/implementation of ‘““open/closed” curves

We regard an ERBS curve to be a “1-dimensional object”, i.e., a parametrized differen-
tiable curve, allowing self intersection, singularities and other irregularities. Although an
ERBS curve almost always can be regarded as a differentiable manifold, we will never-
theless keep to the concept of non-manifold geometry.

Therefor, the definition of a curve is as following:

Definition 4.1. A parametrized differentiable curve is a differentiable map o.: [ — R" of
an open interval I = (s,e) C R into R" forn=2,3,....

With this as a background the next definitions are introduced:
Definition 4.2. A “standard”, “open” and “closed” ERBS curve is defined as:

i) A “standard” ERBS curve is defined on a half open interval (a,b), which is a restric-
tion of a differentiable function on an open interval containing the half open interval
(a,b).

ii) By exclusively adding B\ (t1) = 1 to definition 2.2, an “open” ERBS curve o. can be
defined on a closed interval [a,b], which is a restriction of a differentiable function
on an open interval containing the closed interval [a, b).

iii) A “closed” ERBS curve o.is apparently also defined on the half open interval (a,b).
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But because a and b are defined to be identical, and lim, ., D/o(t) = D/o(b),
Jj=0,1,2,... it, therefore, follows that the domain is actually open.

A “standard” ERBS curve is defined following the definition for an ERBS function given
in definition 2.6, and is very suitable for spliced curves. An ERBS curve with multiple
knots at the start and end, and defined to be an “open” curve, is defined on a closed domain
because the multiple knots are actually closing the interval/domain. A circle, an ellipse
are examples of “closed” curves (which also are called cyclic). The only special feature
of “closed” curves is that the open domain implies that there is no start and end.

An ERBS curve is, in addition to the intrinsic parameters, determined by a knot vector,
defining the basis functions, and the local curves. Since a basis function is defined over
two knot intervals, and there must be at least two basis functions to fulfill partition of
unity, the minimum number of knots for a “standard” and an “open” ERBS curve must
be 4. In practical implementations, local curves are usually implemented as objects (C++
instance of a class), and there are references (or pointers) to these objects. In general a
“standard/open” ERBS curve should have the following relationship between the number
of knots, local curves, and also references to local curves, and the indexing. The number
of ERBS basis functions and thus local curves are denoted # in the following.

Minimum number of local curves is: n =2 | “standard/open” ERBS curves
References to basis-curves/local-functions: | n indexing from: 1ton
‘ Number of knots: ‘ n+2 ‘ indexing from: Oton+1 ‘

Using this convention, the indexing of the knots and the functions is actually connected
and makes implementation easy.

For a “closed” ERBS curve, it is basically only necessary to have the same number of
knots as the number of knot intervals and the number of basis functions/local curves. But
practically, to describe n knot intervals we usually need at least n+ 1 knots. A suggestion
for a practical set is to increase both the number of knots and basis functions/local curves.
The suggestion is not to increase the actual number of local curves, but to introduce an
extra reference. The result is that we get the following numbers of references to local
curves, and numbers of knots, for “closed” ERBS curves. Note that this time the number
of ERBS basis functions and, thus, references to local functions, is denoted n.

Minimum number of real local curves is: n—1=1| for “closed” ERBS curves
References to basis-functions/local-curves: | n indexing from: 1ton
| Number of knots: [n+2 | indexing from: Oton+1 |

Note that even if the main cycle of the domain is (¢1,7,], the real number of local curves
is n— 1. There are two invariants connected to this implementation of “closed” curves:

i) The knot intervals between {f9,#1,t,} are just a reflection of the knot intervals be-
tween {fy—1,tn,tn+1}, i€ fo=1 — (ty —ty—1) and tyy1 =t, + (L —11) . It is an
invariant that the two first and the two last knot intervals have to be equal, and that
this must be kept up if a knot value is changed.

ii) For the local curves, the reference with index »n is the same as the reference with
index 1. This is to be seen as an invariant: if one of the references is changed, then



4.2. EVALUATION, VALUE AND DERIVATIVES 75

the other has to be changed in the same way.

For a “closed” ERBS curve, the basis functions just have to be computed in the same way
as for open curves, with the same indices as for the references to the local curves. As one
can see from the table, it is actually possible to use only 1 local curve because we then
only get 1 knot interval, and the first half of the local curves is blended with the second
half. The reason for using multiple representations is that, in the global/local mapping at
both ends, we will need the access of the two knot intervals, and in the evaluator (see the
next sections) we will need the access of the two local curves in the computations. By
introducing this multiplicity in the structure, there will be no need for testing and special
computations at the start and end of the main cycle of the domain.

4.2 Evaluation, value and derivatives

The general equation for an ERBS curve (4.1) and its derivatives are straightforward to
compute,

D) = Y. (Des(t)Bie) + ()DB(1)
D*f(t) = Z (D*c;(t)Bi(t) +2Dc;(t)DB;(t) + ci(t)D*Bi(t)) ,

Df(1) = i (D3ci(t)Bj(t) 4+ 3D%ci(t)DB;(t) + 3Dc;(t)D*Bi(1) + () D*B;(1)) .

4.2)
The equation shows that the constants resemble “Pascals triangle” as expected, and that
the equations in a way have the same template as a general sum of the Bernstein poly-
nomials in Bézier curves, where the polynomial degrees are substituted by derivational
order.

I
-

There are, however, possibilities for simplifications. Remember that there are only two
basis functions different from zero in the interior of a knot interval, and that they sum up
to 1. Ataknot value there is actually only 1 basis function different from zero. Analogical
to equation (2.48) we can simplify the first part of (4.2) to

(1) = ek (1), if t=x 43)
6= 1 (1) + (ex(t) = et (1) Bie(r),  if 1k <1 <l '

Computing the derivatives of (4.3) we can see that at r =1, k = 1, ...,n, all derivatives of
the ERBS curve are equal to the respective derivatives of the local curve, i.e.

Dif(t) = Dicy(ty), for k=1,..,n and j=0,1,2,... (4.4)
To simplify the equations for all other 7 values in [t;,#,+1], we first define

c(t) = clt) — e (1), if 1 <t <tipa, 4.5)
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then for f; <t < tx| we get the following equation for the function value and the deriva-
tives

Ck(t)Br(),

+ () DBy (1) + Dy (t)Bi (1),

1)+ Ci(t)D?By(t) +2DC () DBy (t) + D¢ (¢) By (1),

1)+ 2'\1(([)D3Bk(l‘) + 3D€k([)DZBk(l‘) + 3D22‘\k(l‘)DBk(l) +D3E‘\k(l‘)Bk(l‘)
(4.6)

These expressions are similar to (4.2), but there is an extra term D/c;(t) for j =

0,1,2,3,..., and there is ¢(¢) instead of c(¢). The biggest difference is, that the sum
is removed and there is only a single line to compute for each of the derivatives.

f(t) = crpr(t) +
Df(t) = Degyi (1)
D*f(t) = Dy
Df(1) = Dexy

—~

There is, however, one important fact to be aware of. The algorithms made for comput-
ing the function value By(t) and the derivatives D/By(t), j = 1,2,..., i.e. algorithm 2,
algorithm 5 and algorithm 9, are actually computing the values for the next basis function
By11(¢) on the current interval [t;,f]; this means that they are computing the left side
of the basis functions. Taking this into consideration, we have to decide whether to use an
“overloaded ERBS evaluator”, to adjust the evaluators to treat the right side of the basis
functions By (f).

Remark 11. A postprocessing of the ERBS evaluator cannot just shift the index value (k),
because algorithm 2, algorithm 5 and algorithm 9 can only compute the basis function
By11(t) on the interval [ty,ty+1]. Therefore, another “shift” has to be taken into consider-
ation, and executed in the following way:

i) Bk'(z) =1 —Bk'ﬂ(t) for 4 <t <tpy.

ii) D/Bi(t) = —D'Byy1(t) for t<t<ty; and j=1,2,...

Both i) and ii) follow directly from property 2 in Theorem 2.1.

We, therefore, introduce the following postprocessing “overloaded” algorithm for ERBS
evaluation to be used in a curve evaluator.

Algorithm 10. (For notation, see section “Algorithmic Language”, page 7.)

The algorithm computes D/By(t), for j =0,1,....d. It is assumed that either algorithm
2, algorithm 5 or algorithm 9 is used as the basic algorithm. The input variables are:
t € [t1,tn), kltr <t <try1, and d € {0,1,2,...} (the number of derivatives to compute).
The algorithm depends on k being consistent according to t and the knot vector. The
return is a “vector(double)”, where the first element contains By(t) , and then D'By(t)
and where the last element is DBy (t).

vector(double) B ( double ¢, int k, int d )

vector(double) B = B(t,k,d); // Result evaluating ERBS-basis, (Alg. 9).
§0 =1 7§0,‘ // Remark 11, point i.
for (int j=1; j <d; j++)

§j = 7,ij; // Remark 11, point ii.

return B;
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To make the finite algorithm for an ERBS curve evaluator we have to recall the equations
in (4.3-4.6). We first notice the special case where ¢ is equal to a knot value. We then
notice that, for the elements in each line, the order of the derivative of ¢ (¢) is “turned”
compared with the order of the derivative of Bi(f). In the computation of (4.6), we,
therefore, must turn the vector from the evaluator of the basis function, algorithm 10. We
also have to insert “Pascals triangle numbers” ay ; = (‘/i.), where d is the line number
and j is the element number. Following this, the algorithm will be simple to implement,
and reliable. The reliability, however, will not only depend on a reliable ERBS evaluator
(algorithm 10), but also on reliable evaluators for the local curves. Evaluators for Bézier
curves and Arc curves will be discussed later in this chapter.

We assume that the curves are embedded in an Euclidian space, but where the dimension
might differ. So to make it more general, the vector type is denoted T (template type in
C++), usually T will be vector(double)(3), a vector with dimension 3. The global/local
affine mapping, definition 2.7, is not considered in the following algorithm, but it must be
inserted in the local curve evaluators.

Algorithm 11. (For notation, see section “Algorithmic Language”, page 7.)

The algorithm computes {D/ f (t)}‘}:O for an ERBS curve. The algorithm assumes that
evaluators for the local curves and the ERBS basis function are present. The knot vec-
tor {t; l"jol is also supposed to be present. The input variables are: t € [t,t,] and
d €{0,1,2,...,p} (the number of derivatives to compute, where p depends on the ERBS
evaluator). The return is a “vector(T)”, where T is a n-dimensional vector matching f(t),
and where the first element contains f(t), and then Df(t),...,DYf(t).

vector(T) eval ( doublez?, intd )

int k=k:\;t; <t <try1; // Index for the current knot-interval.
vector(T) ¢o = {D/ Ck(l)}?:(); // Result evaluating local curve - index k.
if (==1;) return cp, // Return only local curve - k, see (4.3).
vector(T) ¢; = {DJci1 (t)}?:of // Result evaluating local curve - k+1.
vector{double) a(d+1); // Vector to store “Pascals triangles nr”.
vector(double) B = B(t,k,d); // Result evaluating ERBS-basis, (Alg. 10).
co — =c1; // cq is now ¢y, see (4.4).
for (int i=0;i<d; i++)
a; = 1,'
for (int j=i-1; j>0; j——)
aj+=aj_1, // Computing “Pascals triangle”-numbers.
for (int j=0; j <i; j++)
c1i+=1(ajBj)coi-j; // Computing (4.6), “T += scalar*T".
return ¢y,

The computational cost of computing the function value and d derivatives is (computing
the value and d derivatives for 1 ERBS basis function B;(¢) and 2 local curves, ¢;(¢) and
ciy1(2)) a total of 3(d + 1) values and derivatives, and ~ d* extra multiplications.

Remark 12. In total the computational cost is less than 3 times the “low degree” Bézier
Curve, but the design possibilities and properties are much better than a higher degree
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Bézier/B-spline which has a computational cost that is higher then the ERBS curve.

4.3 Bézier curves as local curves

In general, Bézier curves are very convenient to use as local curves. Recall that Bézier
curves are defined by

d
c(t) =Y cibgi(t), if 0<r<1, 4.7
i=0

where the basis functions are the Bernstein polynomials

paitt) = ()1 =0,

and where ¢; € R", i =0,1,...d, are the coefficients and, thus, the control polygon, d is
the polynomial degree and where n usually is 2 or 3 (but can be any positive integer).

There are three different types of evaluators (computations of (4.7) used for Bézier curves,

i) de Casteljau algorithm,
ii) a Cox/de‘Boor type algorithm,
iii) computing the Bernstein polynomials directly.

Hard-coded Bernstein polynomial gives the fastest algorithm for specific degrees, but for
general degrees a Cox/de Boor version of an algorithm is the most flexible and also quite
a fast algorithm. We will not, however, be focused on a general evaluator for Bézier
curves, because this is well known and discussed in many places. We shall, on the other
hand, look in sufficient detail at a specific evaluator for use in both preevaluations and in
the Hermite interpolation for generating local curves, when the local curves are Bézier
curves.

The Generalized Bernstein/Hermite matrix will be introduced (interpolation matrices are
discussed amongst others in [48]) for use in both Hermite interpolation and in preevalua-
tion (both will be discussed later)

bao(t) ba (1) e baa (1)
B, (l‘, 8) _ o Dbfi"o (t) ) Dbij’l (l‘) ) Dbfi"d (l‘) 4.8)
D0 (1) $Day (1) - 3D4byy ()

The special issue about this matrix (4.8) is the scaling 8/, where j, the power exponent,
is the row number (the first row is numbered 0). The reason for this scaling will be
explained later. However, in general Hermite interpolation 8 = 1. in the following, we
shall introduce an algorithm to compute this generalized version of the matrix. Later, we
shall see how to use this matrix.

First we have to look at another matrix; T() : RF — RK1 defining the de Casteljau al-
gorithm. This matrix is a band-limited matrix with bandwidth two, and with the elements
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1 —t and ¢ on the nonzero band. We can now look at a matrix version of a Bézier curve.
In the following equations we will see a 3rd degree Bézier curve and its three derivatives
in matrix form,
C(f) Ti(1)To(1)T: ()C
d(t)=3Ti()»(t) T3
(1) =6Ti(1) T3 C
") =6T/T,T; C,

4.9)

where the indices denotes the number of rows in the matrix. The derivative of the matrix
T(t), denoted T’ is a matrix independent of #, a band-limited matrix with bandwidth two,
and with the elements —1 and 1 on the band. If we expand (4.9), we get the following
equations,

-t ¢t 0 b=t 1 0 El
c(t)_(l—tt)< 0 1—tt> 0 1-¢r +t 0 02 ,
0 0 1—r ¢ 3
c4
c
1 1 00
c/(t)—3(l—tt)<1at 1;?) 0 -1 10 22 ,
0 0 —1 1 3
Cq
c
1 1 00
(1) 6(1—”)((1) _i?) 0 -1 10 |||,
0 0 —1 1 e
c4
Cl
-1 1 00
(1) =6( 11)(‘5 7} (1)) 0 -1 10 e
0 0 —1 1 €3
C4

(4.10)

Now we can clearly see that:

i) If we compute from the right hand side (skipping the zeros), we get the de Casteljau
algorithm.
ii) If we compute from the left hand side, we get an algorithm of Cox/de Boor type.
iii) If we multiply the matrices from the left hand side, without the coefficient vector on
the right hand side, we will get the Bernstein polynomials and their derivatives. !

In section 2.8, the Hermite interpolation properties are discussed. (On page 63 there is
also a comment on Hermite interpolation and derivatives). If the domain of the Bézier
curve is scaled, as is the norm, because of the global/local affine mapping (see (2.49) in
definition 2.7), then in order to compute, for instance, the local Bézier curve c;(t), the jth

'As a digression, one can use the same matrix notation on B-splines. This easily gives us both the
Cox/de Boor algorithm, a geometric de Casteljau version for B-splines, and if we multiply the matrices, a
fast expanded version of an evaluator. Matrix notation on B-splines is discussed in [41].
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derivatives actually have to be scaled by the global/local “scaling factor” 6{ where

=

=) “4.11)
tip1 —ti—1

as described in Theorem 2.4. The numerator in the fraction is 1 because the domain of
Bézier curves is [0, 1]. Because the matrix (4.8) is supposed to be used both in Hermite
interpolation and in the evaluation of local curves, this matrix has to include the scaling,
as described earlier. It now follows that we get the following algorithm to make the matrix
B,(¢,d) described in (4.8).

Algorithm 12. (For notation, see section “Algorithmic Language”, page 7.)

The algorithm computes the extended square matrix By(t,8) € R4+ contained in
the first row, the values of the d + 1 Bernstein polynomials {bq ;(t)}%_,, and, in the fol-
lowing rows values for each of the d derivatives, {Djbd’i(t)}?zo, j=1,2,....d, respec-
tively, in each of the j following rows. In addition, all rows where the number is j > 0 (the
rows are numbered from 0 to d), are multiplied by 8. If the matrix is supposed to be used
in a general evaluator, then & = 1, and if the matrix is supposed to be used in Hermite
interpolation and evaluation of local curves, then we have to use d;, see (4.11), where
i is the index of the local curve. The input variables are: the degree d of the Bernstein
polynomials, the parameter value t € [0,1], and the scaling factor 9.

Matrix(double) mat ( int d, double 7, double & )

Matrix(double) B(d+1,d+1); // The return matrix, dimension (d+1) x (d+1).

By 10=1-1

Bi-11=1; // The general Cox/deBoor like algorithm for

for (int i=d-2;i>0;i——) // - Bézier/Bernstein computing the triangle
Bio=(1—1)Bit10; // - of all values from “Bernstein” polynomial

for (int j=1; j<d—i; j++) // - of degree I to d, respectively in each row.
Bijy=tBiy1j-1+(1—1)Biy1;
Bigi=tBiy1a-i-1;

Bd70 = 78,’
By1=29; // Multiply all rows except the upper one
for (int k=2; k <d; k++) // - with the derivative matrices in the
double s = k §; // - expression (4.10), and the scalings,
for(int i=d;i>d—k;i——) //- soeveryrow extends the number
Bix=sBji1; // - of elements to d.

for(int j=k—1;,j>0;,j——)
Bij=s(Bij-1—Bij);
Bio = —s Bio;
return B;

The order of this algorithm can clearly be seen to be an improved O(n?) , and the follow-
ing table shows the number of multiplications depending on d, for d up to 10.

d 112131415 6 7 8 9 | 10
multiplications | 0 | 11 | 30 | 59 | 100 | 155 | 226 | 315 | 424 | 555
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The speed of the algorithm is not assential because the algorithm is only supposed to be
executed when the curves are made, or when the sampling is changed (preevaluation).
But for small d values (d < 4) the algorithm is fairly fast.

In the next three subsections we will see how to make local curves using Hermite-interpo-
lation, how to use sampling and preevaluations in dynamically deforming curves and,
finally, a lot of examples will be given.

4.3.1 Local Bézier curves and Hermite interpolation

We start by recalling the settings from section 2.8, and adapting them to ERBS curves.
e Givenis a curve g(t), g : [f;,7.] C R — R", where we might have n =1,2,3, ...,

e given is a number of samples m > 1, and the number of derivatives {d;}" | > 0 in
each of the sampling points, to be used in the interpolation.

e Generate a knot vector by:
— first set ] =1,
— then set t,, =1,.
— Then fori=2,3,...,m—1 generate #; sothat #;_; <t;, and where t,_1 < fy,.
— Finally, #p and t,+; must be set according to the rules for “open/closed” curves.

e Make an ERBS curve using the knot vector {ti};":{)l, and generate local curves, in
such a way that the ERBS curve is interpolating {Dsg(t,-)}ffzo, for i=1,...,m.

This looks like an adjustment of a general Hermite interpolation method used for gener-
ating an approximation of a curve. What is specific is the generation of the local curves.
First recall that the domain of a Bézier curve is [0, 1]. Then note from Theorem 2.4 that
(adjusted with the local domain for Bézier curves)

Dif(t) =8 Diciowi(t;), for j=0,1,2,... and i=1,..,m,
where f(¢) is the ERBS curve, ¢;(t) now are Bézier curves, and

wi(t;) = li—ti-1
s liv1 — i1

is the affine global/local mapping from definition 2.7, and

Si=

=——— for i=12,...m,
tit1 — i1

is the global/local scaling factor of the domain defined in Theorem 2.4. It shows that the
ERBS curve is, adjusted by the domain scaling factor, interpolating the local curve ¢;(t)
for all derivatives at the knot #; for i = 1,...,m. We now get the equation for the Hermite
interpolations for a local Bézier curve with index i,

di
D'Yg(t,') = Dsf(t,‘) = 6; Dsc‘,‘ O(Di(l‘i) = 6; Z Ci.jDde,-,j O(&)i(l‘i), for s = 0, ...,di
j=0
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This can be formulated in a vector/matrix form,
By, (0i(1;),8;) ¢ = & 4.12)

where By, (0;(#;), 8;) is the Bernstein/Hermite matrix described in equation (4.8) and com-
puted in algorithm 12, and where

are the coefficients of the local Bézier curve with index i, and where

D%(t;)
g = :
Dig(t;)

is a vector that is a typical result of an evaluator for a general parametrized curve.

The final step in the generation of the local Bézier curves is thus solving equation (4.12)
according to the Bézier coefficients ¢;,

¢; =By, (w;(1:),8) " & (4.13)

The conclusion is that, in order to compute the coefficient to the local Bézier curves (4.13),
one has to compute the expanded Bernstein/Hermite matrix using algorithm 12, and then
invert this matrix, and multiply the inverted matrix with the “evaluation”-vector from the
original curve. The matrix inversion will not be discussed further here, but there are many
programming libraries available, including optimized algorithms for matrix inversions,
see, e.g., [59].

For several reasons, it is advantageous to translate all coefficients after computing (4.13),
so that the interpolation point is “in the local origin”. It follows then that we have to sub-
tract g(#;) from all the coefficients in the control polygon ¢; of the local Bézier curve, and
that we have to cancel this by inserting the opposite movement to the graphical homoge-
neous matrix system?. The premise is, of course, that this homogeneous matrix system is
involved in the total evaluator. This is discussed further in section 4.5.

4.3.2 Sampling and preevaluation

Sampling, and piecewise linear approximation of a curve is the most common method
used in graphic display. If the curve is dynamic deforming like a “moving” rope, then
preevaluation of the basis functions is a very useful method for speeding up the computa-
tions.

Preevaluation can of course be used both on the the global ERBS curve and on the local
curves. In principle there are two different ways of sampling.

By “homogeneous matrix” we understand that the coordinates given in the matrix are homogeneous
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i) Non uniform sampling based on a given tolerance €, and where the curvature or
constant linear deviation is used to minimize the number of samples.
ii) Uniform sampling based on a given number of samples, usually called m.

Uniform sampling is the natural choice for use in dynamic deformation, especially if pree-
valuation is an option. In the following, the uniform sampling including preevaluation,
will be discussed further.

Given is a number of samples m, and an ERBS curve
n
f(6) =Y ci(1)Bi(r)
i=1

where ¢;(t), i=1,2,...,n are local Bézier curves, and {r;}'"} is the ERBS knot vector.
To make a uniform sampling vector, we first define the uniform sample step based on a
given number of samples m,

!

S om—1’
so that we can make a total sampling vector for the ERBS curve, based on the uniform
sampling,

xj=t+jAx, for j=0,1,2,...,m—1. (4.14)

To distribute this sampling vector (4.14) to the local curves, we have to define the index
of the first sample position touching the local domain of a local curve

si=min{j:x;>ti_1,}, for i=1,2,..,n,
and the last sample position touching the local domain of a local curve
ei=max{j:x; <tiy1,}, for i=1,2,...,n.

Now we have the following three parameters to distribute to each of the local curves for
local sampling and preevaluations (®; defined in definition 2.7):

1) The number of local sample interval, e; —s;.
2) The local parameter value for the first sample, ;(xs;).
3) The local parameter value for the last sample,  ;(x,).

The purpose of introducing preevaluations is to implement dynamic shape varying. There
are, of course, several possible levels in this change. The two most obvious ways of doing
this are

i) affine transformations of local curves,
ii) affine transformations of individual coefficient points of local curves.

Taking this into consideration, there are two levels of possible local preevaluations.

i) In each local curve, store the values of the curve in each of the local sample points.
These can be stored in the graphical system of the local curve, using, i.e., vertex
arrays in OpenGL, or their equivalent in other systems. These methods are only
possible to use for affine transformations of local curves, and it is a requirement
that the affine transformation is done by homogeneous matrices, typically used in
graphical systems.
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ii) In each local curve, store the values of all basis functions (Bernstein polynomials) in
each of the local sample points. The most complete local sampling is: for each of
the local sample points, store not only the values, but all derivatives, i.e., the Bern-
stein/Hermite matrix described in equation (4.8) and in algorithm 12. This means that
for a local curve, indexed by i, the total local preevaluation is computing a vector of
the matrices,

{By;(@i(x)), 8) .-

4.3.3 Examples

In this subsection we will see examples of Hermite-interpolation using three different
original curves. These three curves are approximated by ERBS curves using local Bézier
curves of different degrees. The purpose is to show some of the properties and possibilities
of ERBS curves using local Bézier curves. Most of the examples are “closed” curves, but
there is also one example of an “open” curve. The examples clearly show that Hermite-
interpolation is not an “optimal” approximation (a well known fact), and that it is possible
to improve the solution by scaling the local curves, or by scaling the local domain in the
input of the interpolation process.

The first example is a so called “Rose-curve” described in [58], and defined by the for-
mula,
costcos (51)

7
7
g(t)=| sintcos () for t € [0,8m). 4.15)
0

A plot of this formula will look like a rose with 14 petals. The number of petals is actually
2 times the numerator in the fraction in the cosine in equation (4.15). The speed of the
“Rose-curve” is oscillating between 1 and 1.75, with the slowest speed at the center of the
rose and the fastest speed at the tip of each petal.

In Figure 4.4, the “Rose-curve” is interpolated by an ERBS curve using 4 interpolation
points on each petal. There are a total of 4*14=56 interpolation points uniformly dis-
tributed on the used parameter interval. The position and the first derivative in each of the
interpolation points are used, and one can easily see the effect of using only one deriva-
tive. In this case the approximation regards the second derivatives and, thus, the curvature,
to be zero at all intersection points. Since the curvature always is positive (greater than
zero), the result is that the curve is getting too long. This can clearly be seen in Figure 4.4
where, compared to the original curve, the approximating curve is buckling between two
intersection points. In Figure 4.5, the local curves are plotted. Because all local curves are
of degree 1, they are straight lines. The length of the lines, and the fact that they intersect
each other, also indicates that the resulting curve is going to be too long and thus will
buckle.

In Figure 4.6, the same interpolation as in the previous example (Figure 4.4) is done, but
the resulting local curves are now scaled by 0.5, as one can see in Figure 4.7. When scal-
ing, it is important that the interpolation point is the origin of the local coordinate system
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Figure 4.4: An ERBS curve (blue) approximating a “Rose-curve” (red) by using 56
interpolation points, only the position and the first derivative in each point are used. This
approximation seems to make the curve too long, so that the curve is buckling between

the interpolation points.

Figure 4.5: The 56 local Bézier curves (lines) of the ERBS curve from Figure 4.4, plotted
in different colors (all 1st degree). Because the “Rose-curve” has 14 petals, and there are
14*#4=56 interpolation points, the local curves (lines) are “symmetrical around the rose
center”. In addition, every pair of subsequent lines intersect.
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Figure 4.6: An ERBS curve (blue) approximating a “Rose-curve” (red) by using 56
interpolation points; only the position and the first derivative in each point are used, but
the local curves are scaled by 0.5 after the interpolation. This approximation seems to be,
geometrically, very close to the original curve.

Figure 4.7: The 56 local Bézier curves (lines) of the ERBS curve (all 1st degree) from
Figure 4.6 plotted in different colors. Because the “Rose-curve” has 14 petals, and there
are 14*4=56 interpolation points, the local lines are “symmetrical around the rose cen-
ter”. In addition, each line does not intersect with the previous and next line in the

sequence.
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of each local curve, so that the interpolation points are not moving. The resulting curve is
geometrically very similar to the original “Rose-curve”. The speed however will oscillate
at a greater rate. It is possible to get the same result using another method. One can scale
the input derivative in the interpolation process instead of scaling the resulting curve, and
still get the same result. As can be seen in this example, the result is geometrically very
good, but there is still a potential for improving the result further by changing the scaling
factor. The next level, however, which has an even greater potential for improving the
result, is if the scaling factor differs from local curve to local curve.

In Figure 4.8, the “Rose-curve” is, as in the two previous examples, interpolated by an
ERBS curve using a total of 56 interpolation points, but now the position and two deriva-
tives in each interpolating point are used. The result is quite good, but not as geometrically
good as in the previous example. The speed however is quite equal to the original curve,
and is thus much better than in the last example (where the local curves are scaled). In
Figure 4.5, the local curves are plotted. They are all of degree 2, and “symmetrical”, in
the sense that on every petal there is a set of local curves that have the same form on
each petal. One can also noticeably improve the result by changing the local curves in
this example, using a similar argument as in the previous example. To make changes in
this example, however, is more complex, but the possibilities are even bigger than in the
previous example. Besides scaling, there are a lot of other “editing” possibilities on the
local curves.

In Table 4.1 and Table 4.2 can be found two different “evaluation methods” of the quality
of the approximation in the three previous examples: one using a “mathematical devia-
tion”, and another using “geometrical deviation” as a measure.

The next curve example is a so called “Cardioid curve” described in [32], and defined by
the formula,
2cost (1+cost)
g(t)= 2sint(l+4cost) |, for re[0,2m). (4.16)
0

A plot of (4.16) will look like an apple, with a cusp at the top. In Figure 4.10, the “Car-
dioid curve” is interpolated by an ERBS curve using a total of 7 interpolating points
uniformly distributed on the parameter interval. In each of the interpolating points are
the positions, the first derivatives, and the second derivatives used in the Hermite interpo-
lation process. No special effort is done to reshape the cusp. There is one interpolation
point at the bottom, and three on each side, where the distance (in the plane) is getting
shorter on the way up from the bottom intersection point. The third point on each side is
relatively close to the cusp.

In Figure 4.11, all seven local curves are plotted in different colors. They are all 3rd degree
Bézier curves, modeling the shape of the original curve quite well, but they seem to be
too long because not only do they overlap half of the next curve, but they also overlap
some of the following curve. The logical reason for this is, of course, the same as for the
previous example, that the algorithm in this case assumes that the fourth derivatives are
Zero.
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Figure 4.8: Two curves partly covering each other. The red curve is the original “Rose-
curve”, the blue curve is the approximating ERBS curve. The approximation is made by
56 interpolation points, the position and the first and second derivatives in each point are

used.

Figure 4.9: The 56 local Bézier curves of the ERBS curve from Figure 4.8 plotted grad-
ually from green to red. They are all 2nd degree Bézier curves, forming the original curve
around each interpolating point. Because the “Rose-curve” has 14 petals, and we are
using 14*4=>56 interpolation points, the local curves are “symmetrical around the rose

center”.
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Figure 4.10: Two curves partly covering each other. The red curve is the original
“Cardioid curve” . The blue curve is the approximating ERBS curve. The approximation
is made by 7 interpolation points; the position and the three first derivatives in each point

are used.

Figure 4.11: The seven local Bézier curves of the ERBS curve, from Figure 4.10, plotted
in different colors. All seven curves are 3rd degree Bézier curves with 4 control points.

Figure 4.12: A zoomed picture of both the original “Cardioid curve” (red), the approxi-
mating ERBS curve (blue), and four of the local Bézier curves (green). The picture shows
how the cusp is approximated (even when using uniform sampling).



920 CHAPTER 4. CURVES

N

Figure 4.13: Three examples of approximations of circles/circular arcs by ERBS curves
using local Bézier curves. The original curves are red, the ERBS curves are blue, and the
local Bézier curves are green. On the left hand side only one local curve is used. In the
middle, two local curves of Ist degree (lines) are used. On the right hand side there is
a circular arc approximated by an ERBS curve using two 2nd degrees Bézier-curves as
local curves.

In Figure 4.12, the area around the cusp is plotted separately, including the original curve
in red, the ERBS curve in blue, and 4 of the local Bézier curves in green. The result is
close to being a cusp, but not an exact one. If the local curves are slightly changed, the
result can be more accurate, and it is actually possible to get a real cusp.

The last example shows three different approximations of circles/circular-arcs. On the left
hand side of Figure 4.13 there is an approximation of a circle using only one interpolating
point, with the position and the first and second derivatives. The local curve is, therefore,
only one 2nd degree Bézier curve. In the figure the original circle is red, the approximat-
ing ERBS curve is blue, and the local Bézier curve is green. The result can be improved
by scaling or editing the local curve. This type of curve was also mentioned on page 75.

In the middle of Figure 4.13, a circle is approximated by only two interpolating points,
using only the position and the first derivatives in each of the two points. The local lines
are scaled by 0.92 after the interpolation. The result is visually quite good.

On the right hand side of Figure 4.13, an arc slightly smaller than a half circle is approx-
imated by an ERBS curve using two interpolating points including the position, first and
second derivatives. In this case, another type of correction is showed, the domain interval
is scaled by 0.635. The result is very accurate. One can see almost only the blue ERBS
curve which is covering the red original circular arc.

In any of these examples, the results are not “optimal” with respect to any kind of optimal
criterion, and one can only see that there are possibilities for improvements, using simple
scaling, or more complex editing of the local curves.
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4.4 Circular arcs as local curves

Beside B-splines and NURBS, Arc-splines have been one of the successful spline types in
practical use (see [8], or [44]). The arc-splines are in general not C2 (or even G?), because
the curvature is typically piecewise constant (has the staircase form). Using circular arcs
as local curves in an ERBS curve, however, gives an C* curve, because it is a blending
of arcs, using the ERBS basis function as the blending factor. In this section we will,
therefore, look at circular arcs as local curves. Another motive for investigating circular
arcs as local curves is the possible relationship to nonlinear splines described by Even
Mehlum in [42] and [43].?

An applicable function for a circular arc is ¢ : [0, 0] C R — R? with the expression

~ 1 ( sin(>c00.) ) .
(o) =— , if »2>0. (4.17)

»x \ 1 —cos(sxda)
Equation (4.17) has the following fine properties for the use as local curves:

i) ¢(0) is in the local origin.
ii) ¢’(0) is parallel with the x-axis, and the length (speed) is 9.
iii) ¢”(0) is parallel with the y-axis, and the length is equal to the curvature s.

Recall that a straight line is also an arc, with infinite radius (or curvature s = 0). A general
formula for an arc must take this into consideration. We therefor get the following general
formula for an arc-curve to use as local curves,

oo .
<0 >, if =0,

(o) = (4.18)

1 ( sin(sda) .
”( 1 —cos(sda) )’ it 22> 0.

This function (4.18) still has kept all the properties mentioned above. The function is also
easy to expand to R? (or a higher dimension), by just regarding it to be in the xy-plane,
i.e. all other coordinates are zero. All derivatives are also straight forward to compute,
but this will not be done here. Note that if the curve has a curve length parametrization,
then the factor (and, thus, speed) is 6 = 1.

4.4.1 Local Arc curves and modified Hermite interpolation

It is, of course, not possible to make a general Hermite interpolation of just any curve
by arc-curves. It is, however, possible to interpolate position, first derivative and the
curvature at given points, and this is the intention of the modified Hermite interpolation.

For local Arc curves we get the following settings:

3 A relationship to nonlinear splines will not be discussed further here, but it is a topic for later inves-
tigations, especially because Even Mehlum, in the late nineties, asked if I could look at nonlinear splines.
Unfortunately other things prevented me from doing so.
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e Givenis a curve g(t), g : [fs,7.] C R — R", where we might have n =1,2,3, ...,
e given is the number of samples, m > 1.

e Generate a knot vector by:
- first set 1 =1t,,
- then set 1, =t,.
- Then fori = 2,3,...,m— 1, generate t; sothat #; >t,_j, butwhere t,_1 <t,.
- Finally, tp and 7,41 must be set according to the rules for “open/closed” curves.

e Make an ERBS curve using the knot vector {; ;’:61, and generate local curves, in

such a way that the ERBS curve is interpolating the position g(;), the first derivative
Dg(t;), and the curvature »(t;), for i=1,...,m.

This is not an approximation using a general Hermite interpolation method. Note that the
approximation is only using the curvatures, and it does not consider the change of speed.
Later on in section 4.4.3, we will arrive at a better approximation method, a method which
also makes a reparametrization of the curve to approximate curve length parametrization.

A modification of Theorem 2.4 implies that we have the following requirements for the
interpolations. For all interior knots ¢;, i =1,..,m,

8(t) = f(t) = ciowi(ti),
Dg(t;) = Df(t;) = 8; Dciowi(ti),
%g(ti) = %f(ti) = %Ci(ti)’
where g(t) is the original curve, f(¢) is the ERBS curve, and ¢;(t), i = 1, ..,m are the local
arc-curves. Because we choose the arc-curves, ¢;(t), to have a curve length parametriza-

tion, and we want the interpolation point to be in the local origin, it follows that o;(z)
from definition 2.7 is the mapping

o;(2) : [ti1, tia] = [(ti1 — 1) D (6)], (i1 — 1) | Dg (1) (4.19)
defined by the affine mapping
;(t) = (t —1;) |Dg(1;)]. (4.20)

From this it follows that
0),‘(1‘,‘) =0,
which fulfills the request for the interpolation points to be in the local origins. The first
derivative of ;(¢) gives us the domain scaling factor defined in Theorem 2.4, which is
then
5 = |Dg (1), @21)

The curvature is, however, unchanged by the affine domain mapping, because it is an
intrinsic (geometric) property.

The recipe for the interpolation is now quite simple, and a short description follows. For
each interior knot #;, i € {1,2,...,m} itis given

DJg(1;), for j=0,1,2, and the knot value f;.
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By (4.21), the scaling factor J; follows directly from the input. The knot value ¢;, together
with §;, is needed to determine ;(¢). What remains is to compute the curvature 5¢;, and
the position/orientation based on the Frenet frame. We start by computing the vectors

Dg(t;)
X —
d;
then,
- D%(n)— (x,D?g(1;))x
y= )
1
and it follows now that
» =yl

We now have two possibilities concerning equation 4.18, namely that s5; > 0 or »; = 0.

e If 55 >0 we can normalize y, and then we get the vector

y
y=—.
i
In the general case of R*, n = 2,3,..., we have to make the rest of the orthogonal
vectors match the axis in the coordinate system. E.g., if n = 3, and we use a left

hand coordinate system (as in OpenGL) we get,
Z=YyAX.
The homogeneous matrix for adjusting the position and orientation is then
Xx Yx Zx g(ti)x

M=| % Y B 8 e 4.22)
X, y: z; g(ti):
0 0 O 1
where the first three columns are the three orthogonal vectors defining the orien-
tation, using 0 as the homogeneous coordinate, and the last column is the position
using 1 as the homogeneous coordinate.

‘We now have to insert homogeneous coordinates to the result of the evaluator and
its equivalent derivatives, 1 to the value, and O to all derivatives. The final result of
the evaluation is the primary evaluation multiplied by the homogeneous matrix M.

e if »; =0 we do not get any vector y. It is, of course, possible to generate a set
of orthonormal vectors, but it might not be necessary, as in this case only the first
coordinate is different from zero, and the homogeneous matrix can, therefor, be

simplified
x, 00 g([,')x
x, 0 0 g(t,') ) .
M=|" Y if 22=0.
x. 00 gt): ”
0 00 1

If, however, the matrix is supposed to be used in a graphical system, we have to be
sure that the matrix is invertible, and that the column vectors are linearly indepen-
dent, and thus generate vectors different from zero.
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Figure 4.14: Two examples of approximations of the “Rose-curve” by ERBS curves
using Circular arcs as local curves. On the left hand side only seven local curves are
used. The “Rose-curve” is not completely reconstructed, only half of the “petals” are
present. On the right hand side is an ERBS curve approximating the “Rose-curve” using
14 circular arcs as local curves.

4.4.2 Examples

In this subsection, we will consider four examples. The two first examples show modeling
subsets, i.e. using a subset of the available information and, thus, getting a result reflecting
this. The next example is an approximation of a helical curve over a logarithmic spiral.
This curve has two different (“opposite”) properties, and is not easy to approximate. The
last example is the “Rose-curve” interpolated at 56 points. This is a comparison between
using local Bézier curves or local Arc curves, and it leads us into another approximation
method (next subsection).

The first example is another approximation of the “Rose-curve”. The same ‘“Rose-curve”
is used in several examples with ERBS curves using local Bézier curves, see Figure 4.4,
Figure 4.6, and Figure 4.8. But now the approximation is different from the previous
ones. In Figure 4.14, there are two plots. On the left hand side there is a plot of an
ERBS curve interpolating a “Rose-curve” at only 7 points, using the positions, the first
derivatives, and the curvatures. All interpolation points are at the tip of the “petals”, and
the local curves are circular arcs. Remember that there are a total of 14 “petals”, so we
are only reconstructing half of them, using only the information at one point for each of
the 7 “petals”. On the right hand side there is a plot of an ERBS curve interpolating the
“Rose-curve” at 14 points, using the positions, the first derivatives, and the curvatures.
Also in this case there are only interpolation points at the tip of the “petals” used, and the
local curves are circular arcs. These examples show us that it is possible to make quite a
good reconstructions of a curve based on incomplete information.
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Figure 4.15: An example of approximation of a Helical curve over a logarithmic spiral
by an “ERBS” curve using local Arc curves. The original curve is red, the “ERBS” curve
is blue and they are both plotted on the left hand side. The local Arc curves are plotted on
the right hand side, and are colored green. The number of interpolation points and, thus,
local Arc curves, is 20.

The second example is a Helical curve over a logarithmic spiral. In Figure 4.15, there is
a plot of a Helical curve over a logarithmic spiral, and an approximation of this Helical
curve by an ERBS curve using local Arc curves. The original curve is described in [32],
and the formula is

e cost
c(t)=| emsint for 1€ [0,12m).
3

2

In the figure the original Helical curve is plotted in red on the left hand side, and the
approximating ERBS curve is plotted together with the original curve, but in blue. The
plot is done in 3D, using depth buffer. The result is that we can see which curve is closest
to the “camera” by its color. As one can see, the two curves are very close to being
equal. 20 interpolation points are used, where the position, the first derivatives, and the
curvatures are used in each point. The interpolation points are equally distributed along
the parameter interval. The local curves are circular arc-curves, and on the right hand side
it is these 20 local curves which are plotted in green. The length of these local curves
indicates the “speed” of the “global” curve, and it is easy to see that the speed is highest
at the bottom. Another observation one can do when studying the local curves in Figure
4.15, is that they fit very well, in the sense that the end of one local curve is very close
to the start of the one after the next local curve. This indicates that the approximation is
rather good.
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Figure 4.16: Two curves partly covering each other. The red curve is the original “Rose-
curve”, the blue curve is the approximating ERBS curve using local Arc curves. The
approximation is made by 56 interpolation points, using the position, the first derivative

and the curvature at each of the points.

Figure 4.17: The 56 local Arc curves of the ERBS curve from Figure 4.16 plotted in
colors gradually changing from green to red. They are forming the original curve locally
around the interpolating points. One can see that they are quite similar to the Bézier

curves at figure 4.9.
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[ Local Curves | degree | scaling/interval [ L*(f—g) | L*(f—3)]
deg. 1 parameter-interval 0.091 0.053
Bezier-curves ' 0.5 x parameter-interval 0.049 0.028
deg. 2 parameter-interval 0.0092 0.0065
Arc curves Circular arc speed X parameter-interval 0.021 0.012
curve length 0.0110 0.0060

Table 4.1: The table shows the result of measuring the deviation of the approximation of
the “Rose-curve” using the L (f — g) and the Lz(f — g) norms (see (4.23) and (4.24)).
The computations are done by using numerical integration (algorithm 6) when necessary.
The table shows the result of 5 different approximation curves, 3 using local Bézier curves,
and 2 using local Arc curves. All examples are shown in this and the previous section.
Recall that the diameter of the “Rose-curve” in the examples is 2.

The last example is the by now well known “Rose-curve”. The reason for using this ex-
ample once more is to compare the result with the previous example shown in Figure 4.8
and Figure 4.9. The two figures, 4.16 and 4.17, show us the same type of approximation
as in figures 4.8 and 4.9. On the two figures is the “Rose-curve”, an approximation of
the “Rose-curve” and its local curves, which are here circular arcs. The approximation
is made by using 56 interpolation points, where the position, the first derivative, and the
curvature at each point are used as in the Bézier example, except that in the Bézier exam-
ple the second derivative is used instead of the curvature. The result is clearly comparable
to the result using 2nd degree Bézier curves as local curves. It is of special interest to
compare the local curves in this example (Figure 4.17) with the previous example (Figure
4.9). An observation is that the local Arc curves in this example are closer to the total
curve than the local Bézier curves in the previous example.

It is, of course, of interest to compare the result of the approximation by a measure. We
can measure the deviation using norms. We, therefore, first define a max norm

L™(f—g) =l€[§?3x+l]|f(t) —g(1)l, (4.23)

to investigate the guarantied maximum deviation, and then an L% norm,

Iyl
X(f-g)= \/ [l - gto)Pa, 424)
Int1 — I Ji=n
to investigate the “quadratic” mean deviation. Note that these two norms also take the
parametrization into consideration, and that they are measuring the “mathematical” devi-
ation and not the “purely geometric” deviation. In Table 4.1 we can see the approximate
result of the computation of the examples from this and the previous section. Recall that
the diameter of the “Rose-curve” is 2.0, and the numbers in Table 4.1 are computed from
this diameter. One can clearly see that using 2nd degree local Bézier curves gives the
best result, according to the L™ norm, and is almost best for the L? norm. The reason for
this is the parametrization, because one can clearly see that some of the other examples
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fit better geometrically. The local Arc curves are however parametrized with a constant
speed, while for the local Bézier curves there is a smooth change of speed. If we take this
into consideration and make a modification of the scaling factor, we can see some new
results and possibilities.

The last approximation type in Table 4.1 is a modification of the affine mapping ;, de-
fined in (4.20). The modification is
t—t tit1
o) = ——1— [ |Dg(r)ar.
tiy1 —ti—1 Ji=t,

We actually scale by using the curve length of the original curve g(¢) at the respective knot
intervals instead of using the speed of the curve. Notice that in this example the scaling
factor §;, defined in (4.21) is not changed. The result is noticeably improved, and is
nearly equal to the result for the local Bézier curves. In the next subsection, we will study
reparametrization further, concentrated on approximative curve length parametrization.

4.4.3 Reparametrization and using an approximative curve length
parametrization

Circular Arc curves as described in equation (4.18) have curve length parametrization if
O = 1. If we regenerate the knot vector to reflect the length of the curve intervals, we
might get an approximative “curve length” parametrization of a parametrized curve by an
ERBS curve using local “Arc curves”. This is described in the following sequence.

e Given a curve g(r) € R", where we might have n =1,2,3, ...,
e and given a sample number m > 1.

e Generate a knot vector by first setting #; equal to the start of the domain of g which
is going to be interpolated, and then by setting

Xi
L=ti_1+ |Dg(t)|dt, for i=2,3,...,m,

1=xi—1

and finally by setting ¢y and #,,+1 according to the rules for “open/closed” curves.

e Make an ERBS curve by using the knot vector {ti};":'gl, and by generating local

curves in such a way that the ERBS curve is interpolating the positions g(#;), the
Dg(ti)
[Dg(t)]
The consequences are that we have to change (4.19), (4.20), and (4.21). Since the knot
vector already represents the curve length, ®; must not scale the domain, but only translate
it. Thus we get

normalized derivatives

, and the curvatures s(t;), all fori = 1,...,m.

;(t) : [tim1,tiv1] — [(tim1 — 1), (ti1 — 13)]
defined by the affine mapping
o;(1) = (1 —1).
It also follows that,
o =1.
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Figure 4.18: The blue curve is the plot of the function describing the speed of the orig-
inal “Rose-curve”, but for only one of the fourteen petals. The value at the start and
end is 1.0, and the top value in the middle is at 1.75. The red curve is the plot of the
Jfunction describing the speed of the approximating ERBS curve. The value is close to 1.0
throughout.

Doing this we get an approximative curve length parametrization of a curve. If we look at
the previous “Rose-curve” example, and use this new method, we get a curve very close to
being curve length parametrized. In Figure 4.18, there is a plot of the speed of the original
“Rose-curve”, and the new ERBS curve. The plot is only done for one petal, i.e. ﬁ of
the curves. The speed of the original curve, plotted in blue, is deviating between 1 and
1.75. The speed of the new ERBS curve, plotted in red, is very close to 1.0 throughout.
The maximum deviation is actually 0.01. The table below shows us the deviations of the
speed to the new curve measured in three different norms.

| Norm type L*(|Df| — 1) | Norm type L*(|Df| — 1) [ Norm type L' ([Df| - 1) |
‘ 0.01 ‘ 0.003 ‘ 0.002 |

To see how well the new curve approximates the curve length parametrization we can
actually look at the curve length of the original and the ERBS curves. The curve length
of the original “Rose-curve”, and the new ERBS curve are,

The original “Rose-curve” curve length:  35.20
The new “regular ERBS curve” | curve length:  35.15

The reparametrization is not an affine mapping. We, therefore need a new error measure
which only refers to the geometric shape, and not to the speed of the parametrization. A
typical such measure is the Hausdorff distance between the two curves. We, therefore,
start by defining the closest point from a point to a curve. (Efficient algorithm for closest
points can be found in [35].)

Definition 4.3. Given is a point p € R", and a curve f CR", withamapf:I1 CR — f.
We define

Cr(p):R" — f,
to be the closest point on a curve f from a point p. By closest point we mean that the
distance (metric)

d(p,Cr(p)) <d(p,q), forall q€ O(Cr(p))

where O(py) is a neighborhood, on the curve f, around the point py € f.
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Figure 4.19: Two curves partly covering each other. The red curve is the original
“Rose-curve”, the blue curve is the approximating ERBS curve using local Arc curves.
The approximation is a reparametrization to curve length parametrization.

Figure 4.20: The 56 local Arc curves of the ERBS curve from Figure 4.19 plotted in
colors gradually changing from green to red. They are forming the original curve locally
around the interpolating points. One can see that the curves on the sides of each petal
are shorter than the ones in Figure 4.17, and the curves at the tip of the petals are longer
than the ones in Figure 4.17.



4.4. CIRCULAR ARCS AS LOCAL CURVES 101

‘Local Curves ‘ degree/parametriztion ‘ scaling/interval ‘ LE(f,8) ‘ LZ(f.g) ‘
parameter-interval 0.089 0.049
0.5 x par.-interval | 0.0030 | 0.0016
deg. 2/unchanged par. | parameter-interval | 0.0089 | 0.0059
speed X par.-interval | 0.0086 | 0.0037

curve length 0.0067 | 0.0032
Curve length param. curve length 0.0078 | 0.0036

Bezier-curves deg. 1/unchanged par.

Arc curves Unchanged param.

Table 4.2: The table shows the result of measuring the geometric deviation of the ap-
proximation of the “Rose-curve” using the LG(f,g) in (4.25) and the Lé(f,g) in (4.26)
metrics. The computations are done by using numerical integration (algorithm 6). The
table shows the result of 6 different approximation curves, 3 using local Bézier curves,
and 3 using local Arc curves (all examples showed in this and the previous section). Only
the last example uses reparametrization to curve length parametrization, all the others
have the original parametrization. Reall that the diameter of the “Rose-curve” is 2.0,
and the numbers in the table correspond to this diameter.

When comparing a curve and an approximating curve, we can assume that the two curves
are “close” and in a way have the same shape. We can, therefore, propose a non-symmetric
version of the Hausdorff distance for measuring the result, using a geometric version of a
metric related to a max norm ,

Lg(f,8) = max |f(1) —Cg(f(r))]. (4.25)
telty ty+1]

Notice that, although this metric is not “symmetric” in the sense that LZ(f,g) is not

necessarily equal to Lg(g, f), it gives useful information for investigating the maximum

geometric deviation. To construct a metric related to the L2 norm, we can do the following,

/ "0 —Co () 21D ()] dr

L%;(f,g) = Tor 1
[ s ar

, (4.26)

which actually is not so far away from being the area of the square of the distance between
the two curves divided by the curve length. Note that the two curves are supposed to have
the same curve length, and are supposed to be “close to equal”.

In Table 4.2 we can see the result of using these measuring methods in the 6 different
examples of approximating the “Rose-curve”. The best result actually uses the 1st degree
local Bézier curves, where the parameter interval is scaled by % This could also be
observed in Figure 4.6. The scaling factor % is, however, not a computed optimized value,
but rather a “shot in the dark”.

We can also clearly see that geometrically the local arc-curves are better than the 2nd
degree local Bézier curves, and that using reparametrization to approximative curve length
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parametrization actually gives a good result. To confirm the measuring method we can
look at the result for the 2nd degree local Bézier curve, and we will see that it is only
slightly improved compared to the previous mathematical measurement (from Table 4.1
we get L”(f — g) ~ 0.0092 and from Table 4.2, LZ(f,g) ~ 0.0089). This is a very likely
result because the local Bézier curves are also approximating the parametrization.

In Figure 4.19 we can see the original “Rose-curve” (red) and the new “curve length
parametrizised” ERBS curve (in blue), and in Figure 4.20 the belonging arc-curves are
plotted in colors gradually changing from green to red.

4.5 Affine transformation on local curves

At the end of subsection 4.3.1 there is a suggestion of translating the coefficients of the
local Bézier curve to ensure that the interpolation point is in the “local origin”, and in
section 4.4 a homogeneous matrix is introduced for positioning and orienting the local
curves. The suggestion for the implementation of ERBS curves is as follows.

e The most important local variables for an ERBS curve are:

i) A state telling if the curve is “open/closed”, definition 4.2.
ii) A vector of references to n local curves.
iii) A knot vector of size n+ 2.
iv) An “ERBS-evaluator” object, defined on page 62.

e For each of the local curves in the ERBS curve there are:

i) The local data describing the curve; coefficient vector for Bézier curves, or
velocity, curvature and domain mapping for Arc curves.

ii) The local data must be translated and rotated so that the interpolation point is in
the local origin, the first derivative is on the local x-axis, the second derivative
is in the local xy-plane etc.

iii) An homogeneous matrix M € R41*4+1 myst be present (where d is the di-
mension of the space where the ERBS curve is imbedded). This matrix M
must initially reflect the translation and the rotation (positioning) based on the
method used in (4.22). This matrix M must then be used in the evaluator, mul-
tiplying the value (point) and the derivatives (vectors), where the value point
must have the homogeneous coordinate 1, and all derivative vectors must have
the homogeneous coordinate 0.

This way of implementing the ERBS curves will allow us to do affine transformations on
the local curves, just by updating the homogeneous matrix M. We shall now see some
examples of how to use this feature, and see some of the possibilities this gives.

The first example is based on the previous example of the “Rose-curve” approximation,
where 56 interpolation points and, thus, as many local Arc curves, are used. After the
approximation, all local arc curves are rotated 90° around their local x-axis, which are
actually the first derivatives of the original “Rose-curve” at the interpolation points. The
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Figure 4.21: The “Rose-curve” is approximated by an ERBS curve using 56 interpola-
tion points and local arc-curves, as in the previous examples. But in this case all local
Arc curves are rotated 90° around their local x-axis, which are the first derivatives at the
interpolation points. In the figure, the “rotated Rose-curve” are shown from two different
angles. On the right hand side we can see the curve from the side, showing a kind of
depth. One can clearly see that the curve has become 3D, it is no longer flat.

= AV

Figure 4.22: The local curves of the ERBS curve from Figure 4.21 can be seen from the
same angles as in Figure 4.21. They are plotted in colors gradually changing from green
to red so they can be separated.
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Figure 4.23: An example of a dynamical moving rope. The initial curve is a 4th degree
Bézier curve, and the approximating ERBS curve uses 6 local Arc curves. First the curve
is at the initial state, then the local curves start to rotating around their local z-axis. the
second and the last plot shows snapshots after the rotation has started.

result can be seen in Figure 4.21. The ERBS curve has now really become a 3D-curve, it
is no longer flat. The curve has still kept the “symmetrical” property, in the way that all
petals are equal. In Figure 4.22, the local Arc curves can be seen.

The obvious field where there is an opportunity to use the affine transformation of local
curves, is to simulate curves that change the form dynamically, like ropes, webs, beams,
etc. In the following examples we will see “snapshots” from two different examples.
The first example starts with a 4th degree Bézier curve, approximated by an ERBS curve
using 6 Arc curves as local curves. In Figure 4.23, there are 3 plots of this curve changing
shape. Each plot includes the ERBS curve in blue, and the 6 local Arc curves with colors
gradually changing from red to green. The upper plot shows the initial ERBS curve, and
the next two curves show two snapshots after the rotation has started. In this example the
local curves are rotating around the local z-axis (the axis “out of the paper” located at the
interior knot of the ERBS associated to the local Arc curve). This example is taken from
some testing done for making special effects for use in game programming.
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The last example is the, by now well known, “Rose-curve” example, where the “Rose-
curve” is interpolated by an ERBS curve using 56 local Arc curves as earlier. Only one
of the local curves at each petal is rotating in this example, namely the one at the tip of
each petal. In Figure 4.24, there are 7 plots showing how the curve changes during this
rotation. From one plot until the next, the local curves have rotated 22.5° around their
local y-axis (the axis going through the center of the rose and the interior knot of the
ERBS associated to the local Arc curve that is going to be rotated). The fourth plot also
shows the curve, as seen from the side.

This is only a short description of some of the possibilities in interactive dynamic chang-
ing curves. There are examples using scaling of local curves, translations of the local
curves, and combinations of two or three of the types of affine transformations.



Chapter 5

Tensor Product Surfaces

For tensor product surfaces we have the following general formula using Expo-Rational
B-splines (ERBS),

My 1y

S(u,v) = Z ZSU u,v)Bi(u)B;(v), (5.1)

i=1j=

where s;;(u,v), i=1,..,n,, j=1,..n,, aren, x n, local patches, and B;(u), B;(v) are
the respective ERBS basis functions. As can be seen, the formula resembles the usual B-
spline tensor product surface, except that s;;(u,v) are not points, but surfaces. An ERBS
tensor product surface can therefor be regarded as a blending of local patches. An ERBS
surface with n, X n, local patches can be divided into (n, — 1) x (n, — 1) “quadrilateral”
parts, where each of them is a blending of parts of 4 local patches.

On the left hand side in Figure 5.1, there is a plot of a tensor product ERBS-surface with
9 local 2nd degree Bézier patches. The interpolation points, the points where the ERBS
surface (later also called the global surface) completely interpolates (with all derivatives)
the local patches, are marked as blue cubes. All local patches are planar and parallel,
and on the right hand side in Figure 5.1, three of the local patches are plotted. The red

®

s *

Figure 5.1: A global tensor product ERBS-surface with 9 local surfaces (interpolation
points marked with blue cubes). All local surfaces are 2nd degree Bézier patches that are
planar, some of them are viewed on the left hand side (the red cubes are control points).
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1

Figure 5.2: A global tensor product ERBS-surface with four local surfaces (interpola-
tion points marked with blue cubes). All local surfaces are planar Bézier patches which
are equal and also parallel. The surface is viewed from three different angles, and on the
left hand side of each view, there is an RGB-frame showing the orientations.

cubes represent the control points of the Bézier patches. The knot vector in u direction is
{u,-}?:(), where 1y = u; and u3 = uy4 are the multiple start and end knots, and where u, is
the non multiple inner knot. The knot vector in v direction is {vi}?zo, where vo = vy and
v3 = 14 are the multiple start and end knots, and where v; is the non multiple inner knot.
As can be seen on the left hand side in Figure 5.1, the local Bézier patches in the corner
are only covering % of the global surface. One can also see that, for this example, the
local Bézier patches connected to the points on the sides are covering half of the global
surface, and one can clearly see that the Bézier patch connected to the point in the middle
of the global surface is covering the whole global surface. In Figure 5.2 there is an ERBS
surface with only 4 local surfaces. It follows that all local surfaces are covering the whole
global ERBS surface. In the figure, the surface is viewed from three different angles. Note
that in this case all the local patches are planar and parallel.

In definition 2.5 the classification of local function supporting the basic properties, i.e.
the C* property, is done. For a tensor product surface we can sum up the following.

Remark 13. In principle, the only constraint on the choice of the local surfaces s; j(u,v)
is that |s; j(u,v)| € F(Bi(u)) for all v € [vi,v,,], and that |s; j(@,v)| € F(Bi(v)) for all
U E [uy,up,].

Important instances of admissible local surfaces are surfaces based on algebraic and
trigonometric polynomials, rational functions, parts of a torus, etc. It is possible to use
local surfaces of different types as local surfaces, and it is of particular interest to consider
“multilevel” Expo-Rational B-splines. (For more information see [18]).

In the remainder of this chapter the following subjects will be discussed. In section 5.1,
there are definitions of “open/closed” surfaces. Then, in section 5.2, surface evaluation
including derivatives is discussed, and the section shows some algorithms for use in im-
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plementations. In section 5.3 Bézier patches are discussed as local surfaces. This incudes
Hermite interpolation of a given surface by a tensor product ERBS-surface using Bézier
patches as local surfaces. Many examples are given. In the next section, 5.4, affine
transformations on local surfaces are discussed, and how this affects the tensor product
ERBS-surface. Some examples are quite spectacular. In the last section, 5.5, computa-
tional aspects concerning ERBS tensor product surfaces are discussed.

5.1 Definition/implementation of ‘“‘open/closed” Surfaces

We regard a tensor product ERBS surface to be a “2-dimensional object”, i.e. a parametrized
differentiable surface, allowing self intersection, singularities and other irregularities. Al-
though a tensor product ERBS surface almost always can be regarded as a differentiable
manifold, we will nevertheless keep to the concept of non-manifold geometry.

Therefor, the definition of a surface is as following:

Definition 5.1. A parametrized differentiable surface is a differentiable map S : Q — R"
of an open set Q C R? into R" forn=2,3,....

With this as a background the next definitions are introduced:

Definition 5.2. “Standard”, “open” and “closed” are regarded as states for the two
parameters for a tensor product surface. A “Standard”, “open”, or a “closed” state for
a parameter for a tensor product surface is defined by the following restrictions:

i) A “standard” parameter for a tensor product surface is defined on a half open in-
terval (a,b), which is a restriction of a differentiable function on an open interval
containing the half open interval (a,b).

ii) Exclusively adding B(t;) = 1 to definition 2.2, an “open” parameter for a tensor
product surface is a restriction of a differentiable function on an open interval con-
taining the closed interval [a, D).

iii) A “closed” parameter is apparently also defined on the half open interval (a,b). But
because a and b are defined to be identical, then

lim DIS(t,v) = DiS(b,v), for j=0,1,2,... and vE€ [vi,v,]

t—a+
or

lim DIS(u,t) = DiS(u,b), for j=0,1,2,... and u€ [uy,up,]

t—a+

follows, and the current parameter interval is actually open.

with “standard” parameters, tensor product ERBS surfaces will be suitable as spliced
surfaces. A tensor product ERBS surface with multiple knots at the start and end is an
“open” surface in the appurtenant parameter direction, because the multiple knots at the
start and at the end are, as for curves, closing the interval. A torus is an example of a
surface where both parameters are “closed”, while a cylinder is an example of a surface
with only one “closed” parameter.
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A special example is a sphere. A sphere is actually a cylinder with a contraction in both
of the “open” ends, and it is, therefore, degenerated at the poles. It is actually possible
to introduce “contraction” as a fourth state, to handle degenerated poles, prevent holes
and secure a kind of “continuous” unit normal (a single map for a sphere is, as known,
not possible without degenerations). “Contraction” is actually not a state for a parameter
direction, but a “contraction” of all function values, including derivatives, along a straight
line in the parameter plane. The straight line is restricted to be parallel with one of the
coordinate axes in the parameter plane. For a sphere there typically is a “contraction” at
the start value and end value of one of the parameters (u or v), while the other parameter
is “closed”.

A tensor product ERBS surface is, in addition to the ERBS intrinsic parameters, de-
termined by two knot vectors defining the two sets of basis functions, and a matrix (a
2D grid) of local surfaces. Implementing “standard/open/closed” parameters for tensor
product ERBS surface is essentially the same as the implementation proposed for ERBS
curves. A short repetition of the rules: if the surface has an “open” parameter, then, since
a basis function is defined over two knot intervals, and there must be at least two basis
functions to fulfill “the partition of unity”, the minimum number of knots must be 4. Re-
call that in practice local patches are usually implemented as objects (C++ instance of a
class), and there are references (or pointers) to these objects. In general an “open” param-
eter on a tensor product ERBS surface should have the following relationship between the
number of knots, knot intervals, local patches, and the indexing (the proposal is identical
to the one proposed for curves). The number of local patches and thus local patches in one
of the parameter directions is n (actually n, or n, depending on the parameter direction),
and the total number of local patches is n, X n,.

Minimum number of local surfaces is: n =2 | “standard/open” parameters
References to basis-functions/local-surfaces: | n indexing from: 1ton
‘ Number of knots: ‘ n+2 ‘ indexing from: Oton+1 ‘

Using this convention, the indexing of the knots and the functions are connected, which
makes it easier to implement.

For a “closed” parameter in an ERBS surface, it is basically only necessary to have the
same number of knots as the number of knot intervals, which equals the number of basis
functions/local patches. But practically, to describe n knot interval we need at least n+ 1
knots. A suggestion for a practical set is to increase both the number of knots and basis
functions/local patches. The suggestion is not to increase the actual number of local
patches, but to introduce an extra set of references (an extra row or column in the matrix
depending on the direction). The result is that we get the following number of references
(rows or columns) to local patches, and numbers of knots for a “closed” parameter for
an ERBS surface. Note that this time, the number of ERBS basis functions and thus
references to local patches in the current direction is denoted by n (actually it is n, or n,).

Minimum number of real local surfaces is: n—1=1| for “closed” parameters
References to basis-functions/local-surfaces: | n indexing from: 1ton

| Number of knots: n+2 | indexing from: Oton+1 |
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Note that even if the main cycle of the parameter domain is [u1, uy, ], alternatively, [vi,vy, ],
the real number of local surfaces is (n, — 1) x (n, — 1).

There are two invariants connected to this implementation of*‘closed” parameters:

i) If u is “closed”, the knot intervals between {ug,u1,u2} is just a reflection of the
knot intervals between {u,,—1,un,,Un,+1}, i.e. uo =1 — (up, — p,—1) and up, 11 =
up, + (w2 — uy). It is an invariant that the two first knot intervals have to be equal to
the two last knot intervals, and that this must be kept up if a knot value is changed.
This is alternatively also valid for the v knot vector.

ii) For the local patches, the reference with index »n is the same as the reference with
index 1. This is to be seen as an invariant, if one of the references is changed then
the other has to be changed in the same way.

For a “closed” parameter, the basis functions just have to be computed in the same way as
“open” parameters, with the same indices as the respective references to the local patches.
As one can see from the table, it is actually possible to use only 1 local patch because we
then only need 1 knot interval in both directions. Then, in both directions, the first half of
the local function is blended with the second half.

5.2 Evaluation, value and derivatives

The general expression for a tensor product “ERBS surface” (5.1) and some of its partial
derivatives can be computed as follows,

ny Ny

S(u ZZs,luv)B u)Bj(v),

j=li=
ny nu

D,S(u,v) = Z'l Z{ Dysi j(u,v)Bi(u)B;(v) —|—s,-’j(u,v)DB,-(u)Bj(v)) ,
j=li=

ZZ Dysij(,v)Bi()B(v) + 51, (1, ) Bi(u) DB, (v)) 5-2)
j=1li=1

D,D,S(u,v) 2“12‘1 D uDysi j(u,v)Bi(u)Bj(v) + Dysi j(u,v)Bi(u)DB;(v)+
j=1i

Dsi j(u,v)DB;(u)B;(v) +si j(u, v)DBi(u)DBj(v)) ,

where the notation, according to the usual notation for partial derivatives, is; D, = %

2 . o .
D, = %, and D,D, = ﬁ Note that s; j(u7 v), and all respective derivative vectors have in
expression (5.2) a dimension equal to the space in which the surface is embedded, while
B;(u) and B(v) and all their derivatives are scalars.

To make a generalized algorithm, however, we have to simplify. Because of the double
sum, the natural choice is first to split the function into an inner and an outer loop. The
inner loop is

Ny
v) = Zs,'vj(u,v)B,-(u), for j=1,2,...,n,. (5.3)
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It now follows that the first line of equation (5.2) can be reformulated by using (5.3). We
therefor get a new version of the first line of (5.2),

S(u,v) = z‘: cj(u,v)B;(v). (5.4)
=1

Both equations, (5.3) and (5.4) are comparable with the curve formula (4.2). When devel-
oping an algorithm, we can develop, with some modifications, similar techniques to the
one used for curves.

As in the curve example there are possibilities for simplifications. Recall that there are
only two basis functions that are different from zero in the interior of a knot interval, and
that these two basis functions sum up to 1. At a knot value there is actually only 1 basis
function which is different from zero. Therefore, analogically to formula 2.48 we can
simplify the first part of formula (5.3). For all knot intervals j =1,2,...,n, — 1,

cj(u,y) = { sij{i:v). = (5.5)

Si1,j(u,v) + (s,‘,j(u,v) —s,-+11j(u7v))B,-(u), if w <u<ujg

Computing the partial derivatives of (5.5) only according to u, we can see that for u =
u;, i =1,...,ny, all partial derivatives with respect to u are equal to the respective deriva-
tives of the local surface, i.e.

D%c;(u,v) = D%s; j(u,v), forj=1,...,n,, and d,=0,1,2,.... (5.6)
To simplify for all other u € [uy,u,,], we first define
3\,'71‘(14,1/) = s,-L/(u,v) —s,-+1,j(u,v), if u <u<ujy, (5.7)

then for u; < u < u;1, we get the following equation for the function value and the two
first partial derivatives in the u direction,

Cj(uvv) = Si+17j(uvv) —0—3}7]'(1/{,\/)3,'(14),
Dycj(u,v) = Dysiy1,j(u,v) + Dy5; j(u,v)Bi(u) +5; j(u,v)DB;(u),

D2c;(u,v) = D2si1 j(u,v) + D2s; j(u,v)Bi(u) +2D,5; j(u,v)DB;(u) +5; j (u,v)D*B;(u).
(5.8)
The expressions are close to being the same as what we used in the curve case (4.6). But
we note that this is only a part of the computation of the inner loop. We also have to
compute all the partial derivatives/mixed derivatives for c;(u,v) in the v direction. But the
derivatives in the v direction are actually straightforward to compute, because the ERBS
basis function in (5.8) is independent of v, and therefore, only one of the factors in all
terms is dependent on v. The derivatives of the total lines are thus only the derivatives
of each term. This can, as we will see, be used to expand formula (5.8) to a vector of
vectors instead of only vectors. To expand formula (5.8) to also include derivatives in the
v direction we have to first look at the first line of (5.8). It follows that

Dlej(u,v) = Dsity j(u,v) + D75 j(u,v)Bi(u), for d=1,2,...,
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and that in general for computing
DD c;i(u,v), for d,=1,2,... and d,=1,2,...,
on the right hand side in expression 5.8, we just have to replace

D‘uil’si+17j(u,v) with Dg"Df"siH,j(u,v) and

DGy ) with DD ().

Actually, the total result of the inner loop must be a matrix of vectors, where both the
matrix and the vectors must have the same dimension as the evaluators from the local
surfaces returns, and the matrix must contain the value and all partial derivatives. We,
therefore, clarify this by introducing the notation of the inner loop matrix,

Cj;dusdv(u7v)7 (59)

where each element of the matrix is a vector € R", where n is the dimension of the Eu-
clidian space the surface is imbedded in. The index j is related to the knot interval, and d,,
denotes the number of derivatives there are in the u direction, and d, denotes the number
of derivatives there are in the v direction. An example of this matrix, where d,, = 2 and
d,=2,1is

cj(u,v) Dycj(u,v) D2c;(u,v)

Cjaa(uv) = | Ducj(u,v) DuDycj(u,v) DuDjcj(u,v) | (5.10)
D2cj(u,v) D2Dycj(u,v) D2D2c;j(u,v)

The notation of the equivalent matrix from the local patches is

Si.j.dud, (1,V), (5.11)

where i and j are in the indices of the local patch, and d,, and d, denote the number of
derivatives there are in the respective u and v directions. These matrices are also organized
as (5.10). An example of this matrix, where d,, =2 and d, = 2, is

sij(u,v) Dysi j(u,v) D%s,-J(u,v)

Sijdya, (1,v) = Dysi j(u,v) DyDys; j(u,v) D,,D%s,‘J(u,v) ] (5.12)
Dﬁs,-,j(u,v) DzDvsijj(u,v) DiD%si,j(u,v)

To sum up before constructing an algorithm: The first column in (5.9-5.10) is equal to the
left hand side of (5.8), and only elements from the first column in (5.11-5.12) are used on
the right hand side of (5.8). To compute the other columns we have to replace elements
from the first column in (5.11) with respective elements from the other columns. The
conclusion is, therefore, that we only have to replace individual elements from the first
column of (5.11), that is, on right hand side of (5.8), with the respective rows of (5.11), to
expand (5.8) to return (5.9).
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Remark 14. It is, of course, possible and usual, to construct an evaluator which only
returns the upper left half of the matrix (5.9). The advantage of a construction like this
is to optimize speed, because one often only needs the upper left part of the matrix. The
algorithm in this section, however, will focus on computing the whole matrix, but it is
fairly simple to modify the algorithm to only compute the upper left part of the matrix.

The algorithm now becomes quite similar to algorithm 11 used for curves. It depends
on the ERBS evaluator and on reliable evaluators for local surfaces (evaluator for Bezier
surfaces will be discussed later in this chapter). As for curves, we assume that the surfaces
are embedded in an Euclidian space, where the dimension normally is 3, but it could also
be something else, so the vector type is, therefore, denoted T (typical template type in C++
). The global/local affine mapping, definition 2.7, is not used in the following algorithm,
but it must be used in the local patch evaluators (see algorithm 9). The big difference from
curves is that the algorithm returns a matrix (of vectors) instead of a vector (of vectors),
and that the evaluator for local surfaces also returns matrices.

See remark 11 in connection with the ERBS-curve evaluator. This remark is, of course,
also valid for a tensor product ERBS-surface evaluator. It follows that algorithm 10 also
has to be used in the tensor product ERBS-surface evaluator. We can now introduce an
algorithm for the inner loop of the tensor product surface evaluator:

Algorithm 13. (For notation, see section “Algorithmic Language”, page 7.)

The algorithm computes the matrix C; 4, q,(u,v) defined in (5.10). It is assumed that
evaluators for the ERBS basis function, and the local paiches are present, and that these
evaluators return a matrix S; j 4, a,(u,v) defined in (5.11) and analogous to (5.10). The
knot vectors {ui};’;gl and {vi}?;gl are also supposed to be present. The input variables
are: u € [uy,uy,], v € [vi,vn), and ky :\; ug, <u < ug, 11, ky :\; vk, <V < Vg1, and
dy, €{0,1,2,...,p} (the number of derivatives in u direction) and d, € {0,1,2,...,p} (the
number of derivatives in v direction), where p depends on the ERBS-evaluator. The return
is a “Matrix(T)”, where T is a n-dimensional vector matching c;(u,v) (see 5.8).

Matrix(T) C ( double u, double v, int k,, int k,, int dy,, intd, )

Matrix(T) Co = Sk, k,.d,.4,(#,V); // Result evaluating local patch - (ky, k)
if (u==1uy,) returnCp; // Return only local patch, see (5.5)
Matrix(T) C| = gku-s-l,kv,du,dv(“7"); // Result evaluating local patch - (k, + 1,k,)
vector{double) a(d,+1); // For numbers - “Pascals triangle”
vector(double) B = B(u,k,,d,); // Result evaluating ERBS-basis, (Alg. 10)
Co—=Cy; // The matrix cq is now ¢y, expanded (5.7)
for (int i=0;i<d; i++)
a; = 1;
for (int j=i-1; j>0; j——)
aj+=aj_1, // Computing “Pascals triangle”-numbers
for (int j=0; j <i; j++)
Ci,i +=(a; Bj)Co,—js // “row += scalar*row”, (5.8)
return Cj;

Note that the algorithm is updating whole rows of the matrix C; by summing up a row
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with scaled rows of matrix 60. This is directly followed by the fact that equation (5.8)
is expanded to compute not only the first column of (5.10), but all columns, and that the
ERBS basis function is only dependent on u.

We can now look at the outer loop. The main tensor product surface evaluator is, as we
can see, an expanded version of equation (5.4). This equation is equivalent to equation
(5.3), therefore, analogical to formula 2.48. We can simplify the first part of formula (5.4).
It follows that for all knot intervals j =1,2,...,n, — 1,

S(u) cj(u,v), if v=v;j, (5.13)
u,v) = . :
i1 (u,v) + (cj(u,v) —cjpr(u,v)) Bj(v), if v;<v<vji.

Computing the partial derivatives of (5.13) only according to v, we can see that for v =
vj, j=1,...,n,, all partial derivatives of the ERBS-surface with respect to v are equal to
the respective derivatives from the inner loop, i.e.

Di{"S(u,v) = D‘f”’cj(um), forj=1,...,n,, and d,=0,1,2,....
To simplify for all other v values in [vy,v,,], we first define
Ci(uv)=cj(u,v) —cjr1(u,v), if vj<v<vji,

then for v; <v <v;; we get the following equation for the function value and the deriva-
tives in the v direction,
S(u,v) = cjp1(u,v)+cj(u,v)Bi(v)
D,S(u,v) = Dycjy1(u,v)+c¢j(u,v)DB;(v) +D,cj(u,v)B;(v)
D2S(u,v) = D2cjy1(u,v) +¢j(u,v)D*B;(v) +2D,¢j(u,v)DB;(v) + D3¢;(u,v)B;(v).
(5.14)

Studying (5.14) we can see that it has the same structure as (5.8). But as for the inner loop,
the total result of the outer loop must be a matrix of vectors, where both the matrix and
the vectors must have the same dimension as the algorithm for computing the inner loop
returns, and the matrix must contain the value and all partial derivatives. We, therefore,
clarify this by introducing the notation of the matrix of the surface evaluator,

Sd,a,(,v), (5.15)

where each element of the matrix is a vector € R", where n is the dimension of the Eu-
clidian space the surface is imbedded in. The index d, denotes the number of derivatives
there are in u direction, and d,, denotes the number of derivatives there are in v direction.
An example of this matrix, where d, =2 and d, = 2, is:
S(u,v) DyS(u,v) D2S(u,v)
Soo(u,v) = DyS(u,v) DuDyS(u,v) DuDyS(u,v) | . (5.16)
D2S(u,v) D2D,S(u,v) D2D2S(u,v)
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Finally, when preparing for the main algorithm of the tensor product ERBS surface evalu-
ation, and thus the outer loop, note first that on the left hand side of (5.14) we do not have
the first column in the resulting matrix (5.15-5.16), but we have the first row. In addition,
on the right hand side of (5.14) we only find elements from the first row of the matrix
Cjdy.dv(u,v) (5.9-5.10). The algorithm becomes quite similar to algorithm 11 used for
curves, and to algorithm 13 for the inner loop. It depends on the ERBS evaluator and on
the inner loop. As it was for the inner loop algorithm, we assume that the surfaces are
embedded in an Euclidian space, where the dimension normally is 3, but it could also be
something else, so the vector type is, therefore, denoted T (typical template type in C++
). The big difference from the inner loop algorithm is that we, in the next to the last line
of the algorithm, have to sum up matrix columns instead of rows.

Algorithm 14. (For notation, see section “Algorithmic Language”, page 7.)

The algorithm computes the matrix S(u,v) equivalent to (5.10) and described in (5.2).
The algorithm assumes that evaluators for the local patches and the ERBS basis function
are present, The evaluators for the local patches must return a matrix S; j(u,v) described
in (5.11). The knot vectors {u,-}l'.ligl and {vi}:.l;'gl are supposed to be present. The input
variables are: u € [ur,u,,), v € [vi,v,], and d, € {0,1,2,...,p} (the number of deriva-
tives in u direction), and d, € {0,1,2,...,p} (the number of derivatives in v direction),
where p depends on the ERBS-evaluator. The return is a “Matrix(T)”, where T is an n-
dimensional vector matching S(u,v), and where the elements in the matrix are matching
the elements in the matrix Cj g, 4,(u,v) described in (5.10).

Matrix(T) eval ( double u, double v, int d,,, int d, )

int ky, =ky :\; g, <u<wug,41; // Index for the current knot-interval for u.
int ky =ky :\; v, <v<vgi1; // Index for the current knot-interval for v.
Matrix(T) So = Ci, k,.d,.d,(,V); // Result from inner loop - k,.
if (v==v,) return Sp; // Return only inner loop, see (5.13).
Matrix(T) Si = Cg, k,+1,d,.4, (4, V); // Result from inner loop - k, + 1.
vector(double) a(d+1); // For numbers - “Pascals triangle”.
vector(double) B = B(t,k,d); // Result evaluating ERBS-basis, (Alg. 10).
So—=3S1; // Cy is now 60, the whole matrix, see (5.6).
for (int i=0; i <d; i++)
a; = 1,‘
for (int j=i-1; j>0;, j——)
aj+=aj1; // Computing “Pascals triangle” -numbers.
for (int j=0; j <i; j++)
(ST)i + = (a; B))(SE)i—j; // “column += scalarx column”, (5.14).
return Sy ;

The computational cost of evaluating a tensor product ERBS-surface is as we can see,
evaluating two ERBS basis functions, four local surfaces, and passing a total of three
times through the summing loop in the last half of both the inner and outer loop. The
most expensive computational part is to evaluate the four local surfaces. This can take
more than % of the time, depending on the type of local surface.
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5.3 Bézier patches as local patches

In general, Bézier patches are very convenient to use as local patches. Recall that Bézier
patches are defined by
dy dy

su,v) =YY cijba,i(u)bg,;j(v) for 0<u<1 and 0<v<I, (5.17)
i=0 j=0

where the basis functions are the Bernstein polynomials
baix) = ( a ) X (1—x),

and where c; ; € R”", are the coefficients where n > 0 usually is 3.

All types of evaluators used for Bézier curves are of course also available for Bézier
tensor product surfaces. In equation (4.8) the generalized Bernstein/Hermite matrix was
introduced, and in algorithm 12 an algorithm to make the same matrix is developed and
described. In the generalized Bernstein/Hermite matrix, each row is scaled by &/, where
J is the row number (starting with 0). The matrix looks like this:
60D0bd‘0 (l‘) . SODObd’d (t)
By(1,8) = : : (5.18)
SdDdbd’() (I) s SdDdbd,d (l‘)

In the curve case, the matrix was used both for evaluation (preevaluation) and Hermite
interpolation. It is also natural to do this for tensor product ERBS surfaces.

Remark 15. There is now (year 2006) a new “reality” appearing when it comes to effi-
cient programming codes, because of the introduction of dual/quatro/... cores processors,
streaming technology, and general new processor architectures. Parallelizing/streaming
is particularly easy and natural to do in Matrix computation, and thus, the optimization
follows. Therefore, using Matrix computations in evaluators might seem to be a “slow
overkill”, but in reality, with the new architecture, it absolutely is not.

Hence, using the matrix, (5.18), we can first make an expanded matrix version of equation
(5.17), not only returning the value, but also all the derivatives. We now get:

FSVdu,dv(u,v) =By, (4,5,) CBy, (v, 8,)7 for 0<u<1 and 0<v<I, (5.19)

where C is the control polygon (matrix), and §, and 8, are the scaling as a result of the
affine global/local mapping (definition 2.7). If d,, = d,, = 2 the matrix Sq, 4, (u,v) will be

s(u,v) Dys(u,v) D2s(u,v)
Soo(u,v) = | Dus(u,v) DuDys(u,v) DuDis(u,v) | . (5.20)
D2s(u,v) D2Dys(u,v) D2D2s(u,v)
As one can see, this matrix (5.20) contains the position and all derivatives that are not 0

at the parameter value (u,v) on the surface. It follows that this matrix, together with the
scaling factors 8, and 8,, completely describes the patch.
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5.3.1 Local Bézier patches and Hermite interpolation

We start by recalling the settings from section 2.8, and adapting them to tensor product
ERBS surfaces.

e Given is a surface g(u,v), g:Q C R? = R", where Q = [ug, u,] x [vs, ], and where
we might have n =1,2,3,...,

e given is the numbers of samples m,, > 1 and m, > 1 and the number of derivatives
{dy;}i™ >0, and {d,;}}", > 0 in each of the sampling points, to be used in the
interpolation.

e Generate a knot vector by:
—first setting u; = u; and v| = vy, i.e. the start of the domain of g in both u and
v direction,
—then setting u,,, = u. and v,, = V., i.e. the end of the domain of g in both u
and v direction.
—Thenfori=2,3,...,m,—1, generate u; sothat u;_1 <u; and where iy, —1 < up,,
and for j=1,...,m,, generate v; sothat v; | <v; and where v;;, 1 <vp,.
—Finally, ug and u,,,+1 and also vy and v,, 11 must be set according to the rules for
“open/closed” parameters for tensor product surfaces.
e Make an ERBS-surface S(u,v) using the knot vectors {u;}7" and {v;}7;", and
generate local patches, in such a way that the ERBS-surface is interpolating the
local patches, so that, for i=1,...,m, and j=1,...,m,,

DDy S(ui,vj) = DDy g(u;,vj), fors,=0,...,dy;and s, =0,...,d, ;.

This looks like a general Hermite interpolation method used for generating an approxi-
mation of a parametric surface. The specific thing is the generation of the local patches.
First recall that the domain of a Bézier patch is [0, 1] x [0, 1]. Then invoke Theorem 2.4,
but adjust it with the local domain for Bézier patches. We now get, for i =1,...,m, and
j: 17 ceey My,

D‘;“D“Y,VS(MI', Vj) =5%.8%. D‘;“Df,"s,"j o ((,l)i(l/ti)7 u)j(v,-)), fors, =0, ~--adu,i ands, =0, ...,dvyj,

i, j

where S(u,v) is the tensor product ERBS-surface, s; j(1,v) now are Bézier patches, and

Ui — Uj—1
o0;(u;) = ———,
Uit — Uj—|

and

Vi—Vi

_ VTV
W;(vj) = ————
Vi+1 = Vj-1

are the affine global/local mappings from definition 2.7, and

for i=1,2,...,my,
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and |
8, j=——— for j=1,2,...,m,,
Vi1 —Vj-1
are the domain scaling factors defined in Theorem 2.4. All this shows that the tensor
product ERBS-surface is adjusted by the domain scaling factor, interpolating the local
patches s; j(u,v) for all derivatives at the knot nodes (u;,v;) for i =1,...,m, and j =
1,...,m,. We look at the equation for the Hermite interpolations for a local Bézier patch

with the pair of indices (i,j),
DDy g(uiyv;) = DytDyyS(ui,v))
= 88, DD, o () 050)

u,i v, j
dy dy ‘

=YY cijns 8 Dba, r 0 @i(ui)8); Dby, 50 (v))
r=0s5=0

for 5,=0,....d,, and s, =0, ...,d,.

This is nearly the same as the formulation in (5.19), but we now have included the glob-
al/local mapping. The matrix form now is, fori =1,...,m,,and j=1,...,m,,

84,4, (i) = By, (0i(ui), 841) Ci.j Ba, (0;(v;),8,,))". (5.21)
where
g(uivi) ... Dirg(uiv;)
8d.d, (Uis Vj) = E :
Diig(ui,vy) - DiDyrg(ui,v))
Then the final step to generate the local Bézier patches is to solve equation 5.21 according
to the Bézier coefficients (control polygon) C; ;,

Ci,j = Ba, (0;(u;),80) " 8aya, (i, v;) Ba, (@;(v;),8,;) 7.
The conclusion is that, in order to compute the coefficient to the local Bézier-patches,
one has to compute the expanded Bernstein/Hermite matrix using algorithm 12, and then
invert this matrix and multiply the inverted matrix with the “evaluation”-matrix from the
original surface. The matrix inversion will not be dealt with futher here, but there are a lot
of available programming libraries including optimized algorithms for matrix inversions,
see, e.g., [59].

Remark 16. Note that the three matrices on the left hand side in 5.21 are not of the
same “type”. The middle one, C;; is a matrix of points in R", where n usually is 3.
The Bernstein/Hermite matrix is a standard matrix where each element is a scalar. For
both a surface evaluator and the Hermite interpolation, it is ,therefore, of great interest
to implement a matrix template type that has overloaded matrix multiplication including
multiplication between a matrix of scalars and a matrix of vectors.

As in the curve case, there are several reasons why it is advantageous to translate all
coefficients so that the interpolation point is in the local origin. Then it follows that we
have to subtract the point g(u;,v;) from all the coefficient vectors in the control polygon
C;,j of the local Bézier-patches, and that we have to cancel this by inserting the opposite
movement to the graphical homogeneous matrix system. The premise is, of course, that
this homogeneous matrix system is involved in the total evaluator.
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5.3.2 Examples of Hermite interpolations

The purpose of this subsection is to give an idea as to how this unique Hermite interpola-
tion property works, and some of the possibilities it gives. It is not possible to give a very
comprehensive view of this, because the possibilities are not really explored in the depth
yet, but the following examples will hopefully give some ideas.

In this subsection we will see examples of Hermite interpolation of well-known paramet-
ric surfaces by tensor product ERBS surfaces with local Bézier patches. In some of the
examples we will see some of the local Bézier patches, and take a closer look at how they
are constructed by the Hermite interpolation.

The first example is based on a surface called “Trianguloid Trefoil”. This surface was
constructed by Roger Bagula and can be found at [1]. The formula is

2;in(3u)
+cosv
sinu+2sin(2u) for ue (—TE,TC},
S(M,V) = 2+cos(v+%n) and ve (—TC TI:] (5.22)

(cosu—2cos(2u))(2+cosv) (2+cos(v+%n) )
i

In Figure 5.3 there is a plot of a tensor product ERBS surface interpolating a “Trianguloid
Trefoil” surface (5.22) at 5 x 5 points. At each point the position and a total of 8 partial
derivatives are used, i.e. the matrix g4, 4, (ui,v;) defined in (5.18) has the dimension
3 x 3. In the Figure 5.3 the interpolation points are marked as blue cubes, and most of
them can be clearly seen. The surface is “closed” in both parameters, and it is quite
complex in shape, but the reconstruction has kept the structure and form faerly well. It is
quite remarkable to reconstruct a complex surface as this one by only using 25 positions
(including derivatives)!

The second example is based on a surface called “Bent Horns”, also constructed by Roger
Bagula and can be found at [2]. The formula for this surface is

(2+cosu) (5 —sinv)
for ue€ (—m,m,
s(u,v) = | (2+cos (u—3m)) (cosv—1) (5.23)

and v € (—2m,2mw|.
(24 cos (u+3m)) (cosv—1) ( ]

In Figure 5.4 there is a plot of a tensor product ERBS surface interpolating a ‘Bent Horns”
surface (5.23) at 5 x 5 points. Also in this example, the position and a total of 8 partial
derivatives are used at each point, i.e. the matrix gy, 4,(1;,v;) defined in (5.18) has the
dimension 3 x 3. In the Figure 5.4 the interpolation points are marked as blue cubes,
and some of them can be clearly seen. The surface is “closed” in one parameter, but
“open” in the other parameter. This cannot actually be seen, because the two “open” ends
are squeezed into two separate edges. They can be seen at the front on either side, and
are each marked by three blue cubes. These cubes are, in fact 5 cubes (one on the tip
towards the center, and two coincident cubes on each of the other two). The surface is
also irregular in the center, where it collapses to a point. The ERBS surface has managed
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Figure 5.3: This Expo-Rational B-spline tensor product surface is made by Hermite
interpolation of a “Trianguloid Trefoil” surface [1] at 5 X 5 points. The positions of the
interpolating points are seen as cubes.

Figure 5.4: This Expo-Rational B-spline tensor product surface is made by interpolating
(position, first and second derivative) a “Bent Horns” surface [2] at 5 x 5 points. The
positions of the interpolating points are seen as cubes.
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to keep this irregularity intact because there is an interpolation point (actually, 5 points)
at this point.

The third example is based on a sphere, where the formula is as follows,

FCoSiL COSV
. for u e (0,2m|,
s(u,v) = rsinu cosv (5.24)
and ve (3,7
rsiny

In the equation r is the radius of the sphere. Figure 5.5 is a plot of a tensor product ERBS
surface interpolating a sphere (5.24) at 4 x 4 points. Also in this example, the position and
a total of 8 partial derivatives are used at each point, i.e., the matrix g4, 4, (u;,v;) defined
in (5.18) has the dimension 3 x 3. In Figure 5.5 the interpolation points are marked as
blue cubes. At the top we can see one cube, but there are actually 4 cubes in the same
position. The surface is, therefore, irregular, and actually collapses to a point at both
poles. In Figure 5.6 there is a plot of the same tensor product ERBS surface as in Figure
5.5, but now the plot includes one of the local Bézier surfaces located at the “north pole”.
There is one shaded picture on the left hand side, and one wireframe picture on the right
hand side. As we can see, especially in the wireframe picture, the local surface only has
two corners. The other two corners have collapsed to one point, and are lying on the
apparently “smooth” edge at the “north pole”. Also the edge between the two corners has
completely collapsed to the same point. The ERBS surface has 8 local Bézier patches,
which can be found at the two poles. They are all equal in form compared to the Bézier
patch shown in the figure (but rotated and/or translated). In Figure 5.7 there is another
plot of the same tensor product ERBS surface as in the figures 5.5 and 5.6, this time
including one of the local Bézier surfaces that is not located at the poles. The figure is
rotated to the left, so that the “north pole” is on the left hand side. The local surface looks
quite complex, and probably unlike what can be expected. There are a total of 8 local
Bézier surfaces at the tensor product ERBS surface which have the same shape as this
local surface.

The fourth example is based on a Torus, where the equation is

cosu(R+rcosv)
) for u e (0,2n],
s(u,v) =] sinu(R+rcosv) 4 ve (021 (5.25)
and v ,2m|.
rsinvy

Here r is the small radius, the radius in the tube, and R is the big radius, the radius of
the tube. In Figure 5.8 there is a plot of a tensor product ERBS surface interpolating a
torus (5.25) at 5 x 5 points. As in the earlier examples, the position and a total of 8 partial
derivatives are used at each point, i.e. the matrix g4, 4,(1;,v;) defined in (5.18) has the
dimension 3 x 3. In Figure 5.8 the interpolation points are marked as blue cubes, and
some of them can clearly be seen. In Figure 5.9, one of the local Bézier surfaces is also
plotted together with the ERBS surface. This surface models a part of a torus quite well.
In Figure 5.9 the local Bézier patch is moved slightly upwards, so we can see it more
clearly. In the figure the surfaces are plotted in two positions, so it is possible for us to
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Figure 5.5: This Expo-Rational B-spline tensor product surface is made by interpolat-
ing a sphere at 4 x 4 points (position, first and second derivative). The positions of the
interpolating points are seen as blue cubes.
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Figure 5.6: A plot of the approximated sphere from Figure 5.5, with one of the local
Bézier patches located at the “north pole”. The control polygon of the Bézier patch is
marked in green, and the nodes in the polygon are marked as red cubes. On the right
hand side there is a wireframe version of the figures that we can see on the left hand side.
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Figure 5.7: A plot of the approximated sphere from Figure 5.5, where one of the local
Berzier patches is shown. The control polygon of the Bezier patch is marked in green, and
the nodes in the polygon are marked as red cubes. Note that the figures are rotated, as
can be seen on the RGB-frame in the bottom left hand corner. The “north pole”, in both
this figure and the previous figures, is in the direction of the color blue (B).
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Figure 5.8: This Expo-Rational B-spline tensor product surface is made by interpolat-
ing a torus at 5 X 5 points (position, first and second derivative). The positions of the
interpolating points are seen as blue cubes.

see this local surface better. As we can see in the figure on the left hand side, the ERBS
surface is actually following the local surface when it is moved, and thus changing shape.
This will be discussed further in the next section.

In the last example, we can see a surface called “Sea Shell”, described in several places,
amongst other also described by Paul Bourke at [5]. The formula for this surface is

cos v+ g (cosucosv+acosusiny)
) . for u € (0,2n],
s(u,v) = | sinv+ g5 (cosusinv —acosucosv) (5.26)
and v e (§,5m].
(bsinu—i—%)v

In Figure 5.11 there is a plot of an tensor product ERBS surface interpolating the “Sea
Shell” surface (5.26) at 4 x 8 points. In this example, the position and a total of 8 partial
derivatives are also used at each point, i.e. the matrix g4, 4, (u;,v;) defined in (5.18) has
the dimension 3 x 3. In Figure 5.11 the interpolation points are also marked as blue cubes,
and most of them are visible. As can be seen, the surface is quite complex. It is “closed”
in one parameter, but “open” in the other parameter. In the figure the surface can be seen
from two different angles. In the view on the right hand side the blue cubes are hidden.

In the next figure, Figure 5.12, there are two plots of the tensor product ERBS surface
from Figure 5.11, seen from two different angles. In both plots one of the local Bézier
patches is also plotted, and it can be seen colored with violet. The control polygons of
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Figure 5.9: A plot of the approximated torus from Figure 5.8, where one of the local
Bézier patches is also plotted. Also the control polygon of the local Bézier patch is plotted
in green, while the nodes are plotted as red cubes.

Figure 5.10: Two plots of the approximated torus from Figure 5.8, where one of the local
Bézier patches is also plotted. In these plots the local patch is moved slightly upwards. In
the plot on the left hand side one can clearly see that the ERBS surface has followed the
movement. One can clearly see what the local Bézier patch looks like.
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the Bézier patches are also plotted. They can be seen in green and their nodes are marked
with red cubes.

Interpolations does not generally preserve smoothness well. To see how well Hermite
interpolation of a surface by ERBS tensor product surfaces preserve smoothness, we have
computed the color of the ERBS surfaces using curvature. There are two figures (set
of plots) of ERBS surfaces interpolating a “Sea Shell” surface. The first figure, 5.13, is
using Gaussian curvature as the basis for the surface color. Here red represents the biggest
positive value while blue represents the biggest negative value. All the colors in between
are computed using linear interpolation in the HSV color system. The surface is shown
from four different angles. The next figure, 5.14, uses the mean curvature as basis for the
surface color. Also here red represents the biggest positive value while blue represents the
biggest negative value, and the colors in-between are computed using linear interpolation
in the HSV color system. The two plots show that the smoothness is very well preserved
by the ERBS surface.

In all these examples “errors” have not been considered in the approximation. This is
because numbers on their own make no sense if they cannot be compared with numbers
from comparable methods from other geometry representations.

Remark 17. Higher order Hermite interpolation for tensor product surfaces using B-
splines or NURBS is not straightforward. It initially implies multiple knots and that the
degree of the result is consistent with the number of partial derivatives in the interpola-
tion. There are currently (year 2006) no available implementations of this among any of
the “best known” products.

Therefor, at the moment we have not been able to find available implementations of higher
order Hermite interpolation for B-splines to use in comparing polynomial B-splines with
ERBS. The comparison must, therefore, be the object of later explorations.

5.4 Free form sculpturing using tensor product ERBS
surfaces

In a Computer Aided Geometric Design surface/object sculpturing is, of course, a big
issue both for constructions for the real world (products for material productions), and
for constructions for virtual worlds (virtual products: movies, computer games etc.). This
has, thus, been one of the main goals for the research in Computer Aided Design. B-
splines and NURBS are today the de facto standard for the surface representations in
sculpturing tools, even though there is a series of other spline types (and other representa-
tions) with other nice properties available. As regards sculpturing, Barr [3] introduced, as
early as in 1984, operations for twisting, stretching, bending, and tapering surfaces around
a central axis. This was followed by Sederberg and Perry who in 1996 [51] introduced a
more general technique, called the Free Form deformation method (FFD). This method
embeds objects to be deformed in the 3D lattice of control points that define a trivariate
Bézier volume. Deformations can, thus, be done by deforming this 3D control polygon
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Figure 5.11: This Expo-Rational B-spline tensor product surface is made by interpolat-
ing (position, first and second derivative) a “Sea Shell” surface [5] at 4 x 8 points. The
positions of the interpolating points are seen as cubes. The surface is plotted from two
different angles. On the right hand side the interpolation points are hidden.
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Figure 5.12: Two plots of the Expo-Rational B-Spline tensor product surface made by
interpolating a “Sea Shell” surface plotted in Figure 5.11. The two plots are seen from
different angles. In each of the two plots one of the local Bézier patches is also plotted. In
the upper plot one of the bigger local patches is plotted. In the lower one a smaller patch
is plotted. We can also see the control polygon for each of the local Bézier surfaces. The
local patches model the global ERBS surface quite well locally.
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Figure 5.13: This Expo-Rational B-spline tensor product surface is made by interpolat-
ing (position, first and second derivative) a “Sea Shell” surface [S5] at 5 x 12 points. The
positions of the interpolating points are seen as blue cubes. The surface is plotted from
Sfour different angles. The color is based on the Gaussian curvature of the plotted ERBS
tensor product surface.
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Figure 5.14: This Expo-Rational B-spline tensor product surface is made by interpo-
lating (position, first and second derivative) a “Sea Shell” surface [5] at 5 x 12 points.
The positions of the interpolating points are seen as blue cubes. The surface is plotted
Jfrom four different angles. The color is based on the Mean curvature of the plotted ERBS
tensor product surface.
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and evaluating the Bézier volume to find the new position for the embedded objects. In
the following years a tremendous amount of work has been done in this area, using me-
chanical technics, multilevel representations etc. (Examples of articles are [10] [4] [33]
[61]). Generally, all works so far have struggled with the geometric representation. What
we will see in this section is what ERBS, and its representation, can offer. The general
idea of this section is, therefor, that computer aided free-form sculpturing can be done in
an equivalent way to how a sculptor works. The procedure is:

1) We start with an object “copied” from a well known surface/object.
ii) We then sculpture by editing the tensor product ERBS surface copy.

This is because the properties of tensor product ERBS surfaces are actually very conve-
nient for surface design, especially as a sculpturing tool for free form deformations. For
tensor product ERBS surfaces with local Bézier patches there are two notable types of
editing possibilities in surface design:

i) The affine transformation of local surfaces, which is also possible to use for all kind
of local surfaces.
ii) The editing of the control polygons of the local Bézier patches.

There are also, of course, other editing possibilities, such as changing intrinsic parameters
or changing the knot vector. This will not be dealt with in this section.

In the following there are 6 examples of edited tensor product Expo-Rational B-spline
surfaces where the editing is done only by affine transformations of local Bézier patches.
In one additional example the control polygon of the local Bézier patches is also edited.
Scaling of local patches will not be shown in these examples, but it is also an important
editing tool.

The first three examples are based on a torus as the original surface. The first of these
examples is a very simple surface editing example. It is a tensor product ERBS “torus”
interpolating a torus at 5 x 5 points. The position and a total of 8 partial derivatives are
used at each of the points, i.e., the matrix g4, 4, (4;,v;) defined in (5.18) has the dimension
3 x 3. After the interpolation, two of the points marked as yellow cubes in Figure 5.15 are
moved upwards.

The next example is also a tensor product ERBS “torus” interpolating a torus with the
same number of points, and respective derivatives, as in the previous example. After the
interpolation, the upper five points on the “inside” of the ERBS torus are moved upwards,
while the five lower points on the “inside” of the ERBS torus are moved downwards. In
Figure 5.16 the result can be seen from two different angles. The result is a surface which
looks like a ““flange”.

The third torus example also starts with a tensor product ERBS “torus” interpolating a
torus, this time at 8 x 4 points. As in the previous examples, the position and a total of
8 partial derivatives are used at each point, i.e., the matrix g4, 4, (u;,v;) defined in (5.18)
has the dimension 3 x 3. After the interpolation, half of the interpolating points at the top,
every second one are slightly rotated around the “blue” axis (see the RGB frame down on
left side of the figure). The result can be seen in Figure 5.17 as a deformed donut.
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The next two examples are based on interpolating a sphere. The first example is based
on constructing an ERBS surface by Hermite interpolation of a sphere at 4 x 4 points.
The number of partial derivatives used results in the matrix g4, 4, (#;,v;) defined in (5.18)
which has the dimension 3 x 3 at each point. After the interpolation, the points at the
north pole are moved towards the south pole together with the four points at the polar
circle in the southern hemisphere. Remember that the north (and also south) pole actually
consist of four points, and thus four local patches, even if it looks like it is only one point.
The four points at the polar circle at the northern hemisphere are then moved upwards and
also away from each other. Note that all partial derivatives, and thus the curvature, are
kept at all interpolation points. This can clearly be seen in the bottom of the “mortar” on
the right hand side in Figure 5.18.

The second sphere example can be seen in Figure 5.19. This example is based on con-
structing an ERBS surface by Hermit interpolation of a sphere at 6 x 6 points. Also this
time the number of partial derivatives used results in the matrix g4, 4, (1;,v;) defined in
(5.18) which has the dimension 3 x 3 at each point. After the interpolation, three of the
points are moved slightly downwards, the one on the “forehead”, the one on the “nose”,
and the one on the “chin”. The points at the “nose” and the points at the “chin” are
also moved forwards. Then the point on the “forehead” is rotated forwards (around the
green-axis in the RGB frame), and the points on the “eyes” are rotated towards the “nose”
(around the blue-axis). Note that the surface is actually C* (but the normal is not defined
at the poles, even if it is also “geometrically infinitely smooth” there).

The last two examples are based on an ERBS surface interpolating a planar surface. In
Figure 5.20 we can see one of the special editing possibilities that ERBS surfaces offer.
The surface started as an ERBS surface interpolating a planar rectangle with 3 x 3 inter-
polation points and where position and one partial derivative in each direction and the
twist derivative are used at each point, i.e. the matrix gg, 4, (u;,v j) defined in (5.18) has
the dimension 2 x 2. In this example the result would have been the same even if the
number of derivatives used in the Hermit interpolation was greater. As we can see, the
central interpolation point is first moved upwards and is then rotated approximately 140°
around the blue axis of the RGB frame. The result can be seen in Figure 5.20, a kind of a
twisted surface.

The last example is the “airplane”. This example can be seen in Figure 5.21. The “air-
plane” construction also starts as an Hermite interpolation of a planar rectangle with 3 x 3
interpolation points, where position and two derivatives in each direction plus all the twist
derivatives are used at each point, i.e., the matrix gg, 4, (4, j) defined in (5.18) has the
dimension 3 x 3. In the figure, 7 of the total 9 control polygons of the local Bézier patches
are clearly visible. As we can see, they are not planar any more, because the local control
points have been moved in an editing process. The interpolation points are actually moved
and rotated first, and only some of the local control points are moved. The “airplane” was
made by Bgrre Bang, who used less than 2 minutes on the process.

In connection with sculptured surfaces, it is of interest to look at the amount of data that
is required. In 1987 knot removal for B-splines was introduced by Tom Lyche and Knut
Mgrken [40]. One of the motives for the knot removal was to reduce the amount of data.
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Figure 5.15: The approximated ERBS torus from Figure 5.8 is edited by moving two of
the local Bézier patches upwards. The two Bézier patches are marked by yellow cubes (in
red circles) at the interpolation points, while the other interpolation points are marked by
blue cubes.

Figure 5.16: The approximated ERBS torus from Figure 5.8 is edited by moving five
Bézier patches (interpolation points) on either side of the ERBS torus in opposite direc-
tions. In the figure there are two plots of the same object shown from different angles.
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Figure 5.17: The approximated ERBS torus from Figure 5.8 is edited by rotating half of
the interpolation points at the top around the z-axis. Note that none of the interpolation
points are actually translated (only rotated).

Figure 5.18: The approximated ERBS sphere from Figure 5.5 is edited by moving four
interpolation points upwards and apart, and four points downwards. The four top points
that coincide are also moved downwards. The result is a “mortar”, seen from two angles.
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Figure 5.19: The figure, “head”, shows one Expo-Rational B-spline tensor product
surface made by first interpolating (position, first and second derivative) a sphere at 6 X 6
points. Then some of the interpolation points (five of the blue cubes) are moved, and some
of them, three points at the eyes and nose, are also rotated.
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Figure 5.20: This Expo-Rational B-spline tensor product surface is first made by inter-
polating (position, first and second derivative) a plane at 3 x 3 points. The positions of
the interpolating points are seen as cubes. The interpolation point in the center is moved
upwards. Finally the center point is twisted, i.e. rotated approximately 140° around the
Z-axis.
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Figure 5.21: This Expo-Rational B-spline tensor product surface is made by first inter-
polating (position, first and second derivative) a plane at 3 x 3 points. Then the interpola-
tion points are moved, and finally the control polygon on all of the local Bézier patches is
edited. In the figure, some of the control polygons for the local Bézier patches are shown.
(The surface is designed by Borre Bang.)

One problem, however, was that local details in a small area made it impossible to reduce
data, not only in the current area, but in a “big” area that incudes one of the parameter
values that defined the current area. Later, some attentions were made to solve this prob-
lem by using (partial) hierarchical B-splines [39]. Even later, T-splines were introduced
by Thomas Sederberg et all. [50], and a conversion from NURBS to T-spline was pre-
sented in [49]. Recently, a conversion between hierarchical B-splines and T-splines has
also been introduced [56]. ERBS can already offer one solution to this problem, because
it is possible to use local patches of different degrees or types and, thus, different detailing
levels. The local surfaces can even be tensor product ERBS surfaces themselves (multi-
level ERBS). But it is of course of great interest to look at ERBS with T-junctions. This
will, however, not be discussed here, but left as a possible topic for investigation.

5.5 Computational and implementational aspects for ten-
sor product ERBS surfaces

One small problem in the process of “editing” tensor product Expo Rational B-spline
surfaces is the evaluation algorithm, which is computationally more expensive than the
available algorithms used for B-splines/NURBS. Evaluating an ERBS surface S(u,v) in-
volves, u; < u < ujy1, vj <v < vjiq, computations of the basis functions Bj1(u) and
Bj+1(v), and the local patches s;;(u,v), sit1,j(u,v), sij+1(u,v) and sitqj+1(u,v).
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Summing up, to evaluate a tensor product Expo Rational B-spline surface we have to
compute:

e 2 basis functions and 4 local (Bézier) patches.

This is of course about 4 times more expensive than the available algorithms used for B-
splines/NURBS. To compensate for the greater computational complexity, pre-evaluation
on a given sampling grid can be used. This means that the basis function and the respective
derivatives can be pre-evaluated in the sampling grid. From the point of view of object-
oriented programming, all local patches ’can pre-evaluate’ in their part of the sampling
grid. This is, as we will see below, possible to do at two levels. It is also possible to
only compute the sample points are be changed because of the editing process. This, of
course, requires a more sophisticated organization in the programs. Implementing all this
will result in editing programs running smoothly even on small laptops. Summing up the
overview of the pre-evaluations we get the following:

1. We first decide the sampling number in both directions, m,, and m,,. It is possible to
resample whenever it is desirable. But then everything has to be recomputed.

2. We now pre-evaluate the basis functions and their respective derivatives in both
parameter directions at all sampling points. The upper limit of the derivational
degree of the derivatives is equal the maximum degree of one of the two local
Bézier patches in the appurtenant parameter direction.

3. For each local Bézier patch, we compute, at every sampling point in its part, the
matrix S, 4, 4, (1i,v;) defined in (5.19), where (r,s) is the index of the local patch,
dy,d, is the number of derivatives in the respective u and v directions, and (i, j) is
the index of the sampling point.

4. For each local Bézier patch, we compute, at every sampling point in its part, the
two matrices By, (1,0, ) and By, (v;,8,) defined in (5.18), where (r,s) is the in-
dex of the local patch, d,,d, is the number of derivatives in the respective u and v
directions, and (i, j) is the index of the sampling point.

It follows that, if the sampling grid is changed, all pre-evaluations have to be recomputed,
and if the evaluation is done outside the sampling grid, all parts of the evaluator have to
be computed. If, however, the editing is using only affine transformation of local patches,
then points 1, 2 and 3 in the previous list ensure that we do the minimal calculations to
update the necessary sampling points. If we, however, also edit the control polygon of the
local Bézier patches, we need all of the above-said 4 points to do the minimal calculations
when updating the sampling points that will be changed.

In most of the figures of tensor product ERBS surfaces, we can see blue or green cubes. In
our test program, these cubes are “selectors” or “representatives” implemented for editing
purposes. The blue cubes represent a local Bézier patch and can be translated, rotated and
scaled (scaling is not used in the previous examples). The green cubes represent control
points for the local Bézier patch, and can, therefore, only be translated.
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Chapter 6

Triangular Surfaces

Triangular surfaces (an example can be seen in Figure 6.1) have long been a focus of at-
tention in Computer Aided Geometric Design and in particular for the Computer Graphics
community. The reasons for this are that, tessellations of geometric faces of 3D objects
are usually done by triangulations, and that triangular representation is more flexible than
tensor product surfaces, especially because local refinements are easy to do. In addi-
tion the surface (boundary) of a 3D object can always be triangulated. These surfaces
are bounded compact and connected surfaces of different possible topological genus g
(number of wholes/handles). A short investigation of the triangulation of these surfaces
gives us the following connections. The Euler-Poincaré characteristic for a compact and
connected surface S is the well known

#(S)=F—E+V,

where F is the number of triangles, E is the number of edges, and V is the number of
vertices of a triangulation of the surface S. It is actually a number independent of a
particular triangulation, and will be the same for all triangulations of the given surface S.
It is also connected to the genus g of the surface in the following way,

#(S)=2(1—g).

A closer study of this can be found in connection with a study of the Gauss-Bonnet The-
orem in [20].
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Figure 6.1: A smooth, but non-planar triangular surface in R3.
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The first part of this chapter will concentrate on basic properties of the simplex, single
triangular surfaces, and then we introduce the Expo-Rational B-spline triangle. Finally,
at the end of this chapter, ERBS partition of unity over triangulations will be introduced.

The best known curved triangular surface is the Bézier triangle. Bézier triangles were
(according to Farin [23]) first introduced early in the 1960s by de Casteljau in two internal
Citroén technical reports [14] and [15]. The basic constructions of the Bézier triangle will
shortly be repeated in section 6.2.

However, the main goal of the first part of this chapter is the introduction, and a closer
investigation of an ERBS analog to the Bézier triangle, also defined on a domain described
by homogeneous barycentric coordinates. Therefor, the definition of the homogeneous
barycentric coordinates will now shortly be presented.

6.1 Homogenous barycentric coordinates for simplices

Barycentric coordinates were introduced by Mobius as early as in 1827, see [25]. These
coordinates can be used both to express a point inside a simplex (line segment, triangle,
tetrahedron, etc.) as a convex combination of the n vertices in the simplex, and to linearly
interpolate data given at the vertices. A lot of work has been done to investigate these
coordinates and their use. Amongst others is Warrens, in [57] and in later publications,
and Michael Floater and his colleagues investigating mean value/barycentric coordinates
in [27] and [26].

In this section we will only repeat some main facts about homogeneous barycentric co-
ordinates (contrary to barycentric coordinates, homogeneous barycentric coordinates are
normalized and thus unique). We start first by looking at the triangle case (a surface).
Consider an ordinary surface domain Q C R? with an ordinary orthogonal coordinate
system u and v. Consider that this is the unit square, as in the tensor product Bézier sur-
face case. In Figure 6.2 this unit square is expanded to a unit cube using a coordinate w
orthogonal to the other coordinates. If we intersect this cube with a plane that intersects
the three corners where only one of the coordinates is 1 (and all the other coordinates are
0), we will get what we can call the “main diagonal” in the unit cube. In Figure 6.2 this
intersection (main diagonal) can be seen as a triangle marked with thicker lines. This tri-
angle is actually a domain described in homogeneous barycentric coordinates. Remember
that the surface intersecting the cube has the following implicit formula,

ut+v+w=1.

If we in addition want to restrict the domain to be in the interior or boundary of the triangle
in Figure 6.2, the restriction on the parameters is,

u,v,w > 0.
The name “barycenter” is the Latin word for for the center of gravity. In fact it is refereing

to the coordinates of the “mass center” which is always decided via a convex combination
of the extreme points of a material system of points.
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V;
R4
0 i@ 1

Figure 6.2: A parametric unit cube described by the coordinates u, v and w. The “main
diagonal” is marked with thicker lines, and can be seen as a triangle in the figure.

Now follows definition of homogeneous barycentric coordinates of a point.

Definition 6.1. We first denote the convex set of points on the “main diagonal” of a unit
(n+1)-dimensional hypercube as E,. The definition of points in homogeneous barycentric

coordinates p € &, is
n+1

p={u}t!, where Z wi=1,
i=1
fulfilling a convexity property when

u >0 for i=12,...,n+1.

A point p € E; (a point on the triangle in Figure 6.2) is defined in the following way,

p = (u,v,w), where u+v+w=1 and u,v,w>0.

We now extend the definition of homogeneous barycentric coordinates to also including
vectors. We look at the plane in Figure 6.2, which intersects the unit cube and creates the
triangle on the “main diagonal”. We insert a new plane, which is parallel to this plane,
but which now intersects the origin. This new plane can be seen as a 2D vector space in
barycentric coordinates. The implicit formula for this plane is

u+v+w=0.

Now follows the definition of homogeneous barycentric coordinates of a vector.

Definition 6.2. We first denote the n-dimensional vectors space parallel to the “main
diagonal” of an unit (n+1)-dimensional hypercube as Y,. The definition of a vector in
homogeneous barycentric coordinates d € Y, is

n+1
d=p—p1={n ?ill, where Zri:0 and p1,p2 € By

i=1
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For a triangle (2-dimensional simplex), we then see that a vector d € Y is defined in the
following way,
d=(r,s,t), where r+s+t=0.

6.2 Bézier triangles

A convex set defined by homogeneous barycentric coordinates defines the domain for
the Bézier triangle, where we can construct basis functions of arbitrary degrees in the
following way,

(u+v+w)d =1, where u,vyw>0 and d>0.
The expression of these basis functions for Bézier triangles are thus the Bernstein poly-
nomials of degree d, where foru+v+w=1,

AN
bd‘,,-_j_k(u,v,w)z(ijk>u’vfwk, where i+ j+k=d and i, jk>0.

For Bézier triangular surfaces we, therefor, have the following general formula,

S(u,v,w) = ch"k bajji(u,v,w) for u+v+w=1,
i+ jrh=d,
i.j k>0

where ¢; j € R", are the coefficients where n is usually 2 or 3.

In homogeneous barycentric coordinates, we have both partial and directional derivatives.
The appropriate derivatives are direction derivatives, where the vector d = p; — p» (the
distance vector between two points) is defined by a vector in homogeneous barycentric
coordinates d = (r,s,t), where r+s+¢=0.

The directional derivative is thus,
DqgS(u,v,w) = Zci,j,k Daba ji(u,v,w) for u+v+w=1, 6.1)

i+j+k=d,
i,j,k>0

where
Dabg ; j (0, v,w) = rDybga i j 1(u,v,w) +sDybg ; j k(u,v,w) +1Dyba ; i i (u,v,w). (6.2)

Cross derivatives are defined in the same way,
Dq,Da,S(u,v,w) = Zci‘,jﬁk Da,Dq,ba; ji(u,v,w) for u+v+w=1,
i+j+k=d,
i,j k>0
where
Da,Da,ba i jk(u,v,w) =ry DyDa,bq  j i (u,v,w) + 52 DD, b ; j x(u,v,w)+
t2 DywDq, b ji(u,v,w).
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More about the general theory of Bernstein-Bézier triangles, including the algorithm for
evaluation and derivations, can be found in [22] or [23].

In the rest of this chapter we shall look at ERBS basis function in homogeneous coordi-
nates, the definition of an ERBS triangle, Hermite interpolation by ERBS triangles, after
which ERBS over triangulations are introduced, and several examples are given.

6.3 The general set of Expo-Rational B-spline basis-func-
tion in homogeneous barycentric coordinates

In this section we will introduce the definition of the basis function for Expo-Rational
B-spline triangles. The definition will, however, be expanded and generalized so that it
will be valid for simplices of any dimention. The properties will be stated, and will of
course also be generally valid. The examples, however, will only show triangles.

The definition is divided into two parts.

1. The first part is an introduction of an underlying basic ERBS basis function, B(u).
This univariate ERBS basis function is, unlike the general ERBS in Definition 2.2, not
defined on a general knot vector. It is only defined on the (knot) interval [0, 1]. It thus is
combining the properties, and the intrinsic parameters, of the general set, definition (2.2),
and the functionality of the scalable set, definition (2.4).

We, therefore, first introduce the underlying basic ERBS basis function B(u) for homoge-
neous barycentric coordinates.

Definition 6.3. The underlying basic Expo-Rational B-splines for homogeneous barycen-
tric coordinates is defined by B(t) = B(o., B,7, A, ;1) as follows,

t
S(@.B1.10) [dleprhois)ds, if 0<t<L.
0

B(t) =
0, otherwise
where
_p e
O(, B, YA, 0:1) = - (-0
and the scaling factor
1
S(a7 B:’Y7}\‘36) = 1 ,
/q)((xﬂBaYa 7"7G;I)dt
0

where
a>0, >0, v>0, 0<A<LI1, 6>0.
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Figure 6.3: The Expo-Rational B-spline basis functions By ;(u) in homogeneous
barycentric coordinates for triangles shown from two different angles.

2. The second part is the introduction and thus definition of the sets of Expo-Rational
B-spline basis functions in homogeneous barycentric coordinates for general degrees.
Definition 6.4. Given is a point w = (uj,uy,...,ux) € Ex_1 (in homogeneous barycentric
coordinates, fulfilling the convexity property, see Definition 6.1). The definition of a set
of Expo-Rational B-spline basis function in homogeneous barycentric coordinates is then
defined by By ;(w) = By ;(a, B, Y, A, 0;0) as follows,
B .
z;k_j(u):k(iu’) for k>1 and i=1,2,...k (6.3)
Y1 B(u))

and where B(u;), i = 1,2,...,k, is defined in definition 6.3.
For k = 3, i.e. Expo-Rational B-spline triangles, the basis functions will be,
_ B(ui)

B(u1) + B(uz) + B(u3)
The basic properties of this set of Expo-Rational B-spline basis functions will be further
investigated at the end of this section. To get a better overview of B ;(u) there is, in
Figure 6.3, a plot of one of three basis functions for triangular surfaces, plotted over a
equilateral triangle, and seen from two different angles. The other two basis functions

have the same shape, but they are rotated so that their “top-points” are in the other two
corners.

Bsi(u)

for i=1,2,3.

As for the Bézier triangle, the derivatives have to be defined for specific directions d €
Yi_1. Thus, the partial derivatives are necessary to compute as components. Therefore,
for k> 1, and for i = 1,2, ...,k we have for the following six equations, first for the first-
order partial derivatives, where

L1 Bluj) — B(u;)
(Z?:lB(”j))z

Du,- Q?kﬂ'(u) = DB(M,) 5 (64)
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and, for j = 1,2,...,k, but where j # i,

Dy, B i(u) = DB(u;) —B(u) . (6.5)
(Z/](:IB(“/'))
For second order partial derivatives we have,
N2\ XX, B(u;) — B(u;
D2 B, (w) = (DZB(u,-) B 2(kDB(u,)) ) X1 B(u)) (;4 )’ ©6.6)
Ej-1B(uy) (lele(uj))
and for j = 1,2,...,k but where j # i for both
2
D7 B i) = (Dsz»— 2(D5(;) ) ) ©7)
EeiB) ) (54 sluy)
and .
2B(ui) —Y"_, B(u;
D, Dy, B i(w) = DB(u;) DB(u;) () =Xy Bluy) (6.8)

. 3
(Zj:lB(uj))
And finally, for j =1,2,...,k, but where j # i, and for h = 1,2,...,k, but where h # i, j,

we have
2B(u;)

DuhDuj Q?k’,-(u) = DB(uh) DB(uj)
(ZI;:I B(”j))

5 (6.9)

Given is a vectord € Y1, i.e.,
d=u;—uy=(d1,da,...,d;), where wujanduy€ E;_;.

We can now define the directional derivatives for the ERBS basis function in homoge-
neous barycentric coordinates. We now get

k
DaByi(u) = Y dj Dy B i(w). (6.10)
j=1

In Figure 6.4 there is a plot of a shaded ERBS basis function for homogeneous barycentric
coordinates for triangles. The basis functions are not vector valued functions, but scalar
functions. The normal used in the shading is, therefore, computed by a cross product of
two “tangent vectors”, where the derivatives of an ERBS basis function in the directions,
(—1,1,0) and (—1,0,1) is used as a z-value for these tangent vectors, and where the
x-values and y-values appear by computing the barycentric coordinates of the direction
vectors with the respective points in the plane (i.e., 2 coordinates) and summing them up.

For practical use it is convenient to define some main directions for derivatives. For
triangles we might use the following choice,
dl = (71: 170):

dy = (—1,0,1). ©.11)
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Figure 6.4: A shaded version of the Expo-Rational B-spline basis functions By ;(u) in
homogeneous barycentric coordinates for triangles.

In these main directions, for the ERBS basis functions in homogeneous barycentric coor-
dinates for triangles, are B, ;(u,v,w) for i = 1,2,3, the derivatives up to second order as
follows,

Dq, B> i(u,v,w) = Dy'By i(u,v,w) — D, Bs i (u, v, w),
Dq,B> i(u,v,w) = DyBs i(u,v,w) — DBy i (u,v,w),
Dﬁ] By i(u,v,w) = D2B, ;(u,v,w) — DyDyBs i (1, v,w) + D2 By i(u, v, w),
Dﬁz By i(u,v,w) = D2By ;(u,v,w) — DyD,y By i(,v,w) + D2 By i (u, v, w),
Dq,Da, B i(u,v,w) = D,D\,B, (u,v,w) — DD, By ;(u,v,w)
—DyD\,By i(u,v,w) +D3827,-(u,v, w).

It is clear that the properties for the generalized ERBS defined in Theorem 2.1 is also valid
for the underlying basic ERBS for homogeneous barycentric coordinates in (def. 6.3).

Before looking at the properties of the sets of ERBS basis functions in homogeneous
barycentric coordinates (def. 6.4), we will look at the following definition of corner points
and points on an “edge”, in homogeneous barycentric coordinates.

Definition 6.5. The corner points, denoted ;, for i = 1,2,...,k, are defined as follows,
U, € Z4_, where the coordinate u; =1,
and it follows that the rest of the coordinates u; =0, j=1,2,...,k but where j#i.
The edge points , denoted ;, fori=1,2,...,k, are defined as follows,
W; € Ey_1, where the coordinate u; = 0.

The edge points are the points on the opposite edge/triangle/... of a corner point.
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We shall now look at the most important properties of the sets of ERBS basis functions
in homogeneous barycentric coordinates, By ;(u), definition 6.4. The properties will be
described in the following Theorem.

Theorem 6.1. There are five important properties for the sets of the k ERBS basis-func-
tions, By ;(w), i = 1,2,....k, in homogeneous barycentric coordinates, where k =2,3, ...
For these properties it is assumed that u € Zy_1 (def. 6.1), and w;, for i =1,2,...,k are
corner points, and W;, fori = 1,2, ...,k are edge points (def. 6.5). These properties are:

P1.

P2.

P3.

P4.

pPs.

>0, if ui>0,
ngﬂ(“){ =0, otherwise,

k
Z ﬂk,,’(u) = ]7
i=1
Bri(u;) =1,
DcrllD(Sizﬂk,i(ﬁj) =0 for j=1,2,....,k, where dj,d, € Y;_1, and r+s>0,

D31D32$k7i(ﬁ;) =0 where dy,dr € Yy_1, and r+s>0.

Proof. The proof is organized in a numbered list, where each number matches the number
of the respective property.

1.

Property 1 follows from definition 6.4. Because of property 1 in Theorem 2.1, the
denominator will always be > 0. The numerator however is > 0 when u; > 0, and
0, if u; = 0.

. Property 2 means, fulfilling the partition of unity, and it follows from

k k

*  Blu; .
Zﬁki(u) = M =1, if wuek ;.
i=1 ,/:13(”1')

. Property 3 defines the “top” corner, and it follows from Theorem 2.1, property 2,

because the denominator in equation (6.3) also becomes B(u;).

. This property says that all derivatives in all directions are zero at all corners. This

follows from the fact that all partial derivatives are zero at the corners because all
basic functions (definition 6.3) are zero at u = 0 (which follows from property 1 in
Theorem 2.1), and all their derivatives are zero at u = 0 and u = 1 (which follows
from property 6 in Theorem 2.1). This can clearly be seen in the equations from
(6.4) to (6.9). And it is also clear that this will be the case for higher derivatives.

. Property 5 says that both the value and all derivatives in all directions are zero at the

edge/triangle/etc., opposite to the “top” corner (where the value is 1). This follows
from the fact that all partial derivatives are zero at that edge/triangle/etc., because,
as we can see, the equations from (6.4) to (6.9) all have either a factor B(u;) or
D/B(u;) that is zero because u; = 0 when u = u; . It is also clear that this will be
the case also for higher derivatives.

O
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Figure 6.5: An Expo-Rational B-spline triangle surface with its three local triangles.
The boundary of the local triangles are marked with green lines. As can be seen, the local
triangles are all 1st degree Bézier triangular patches, and they are parallel to each other.

6.4 ERBS triangles, definition and evaluators
The general formula for the ERBS triangle is,

3
S(u,v,w) = Zsi(u,v,w) B3 i(u,v,w), where u+v+w=1 and u,y,w>0, (6.12)
i=1

where s;(u,v,w), i = 1,2,3 are the local triangles. The construction is quite simple
and unlike the other ERBS constructions earlier in this report, the knot vector is only
the interval [0, 1] deduced from the homogeneous barycentric coordinates. We do not
have to consider the usual global/local affine mapping (definition 2.7). In figures 6.5,
6.6 and 6.7 there are three plots of ERBS triangles and their 3 local triangles. All the
local triangles are actually planar in all the figures, and we can see their boundary/control
polygon marked as green lines. In the first figure we can see that they are also parallel.
We can also see that the global ERBS triangle patches are interpolating each of the local
triangle patches in the corners, and we know from the ERBS properties (Theorem 6.1)
that the interpolation not only involves the position, it actually includes interpolation of
all available derivatives.

It is preferable for several reasons that the local surfaces are oriented in such a way that
the full support of the first parameter (i.e. u = 1) is in the interpolation point to the
global ERBS triangle patch. This simplifies the construction and organization of the local
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W/

Figure 6.6: An Expo-Rational B-spline triangular surface where the local triangles
initially were the same as in Figure 6.5, but are now translated and rotated. The blue
cube shows us the interpolation point of the first local triangle.

triangle patches, but it introduces the need for a new type of global/local mapping of the
parameters between the global triangle patch and the local triangle patches for each of
the vertices. This mapping is actually only a cyclic use of the parameters. This cyclic
mapping is implemented in the following example,
S(u,v,w) =51(u,v,w) B3 1(u,v,w)+
S2(v,w,u) B3 o (u,v,w)+ (6.13)
53(W7M7V) %73(1'{7‘}’ W)a

where u+v+w=1and u,v,w >0, and where s;, i =1,2,3 are the local triangles,
and are orientated (as described above) in such a way that the full support of the first
parameter (i.e. the “local u = 17) is in the interpolation point to the global ERBS triangle.
This expression is straightforward to implement.

The general computation of a directional derivative for a given d € Y3 is,
Dq S(u,v,w) = Dq 51(u,v,w) B3 1(u,v,w)+51(u,v,w) Dg B3 1(u,v,w)+
Dq 52 (v,w,u) B3 2(u,v,w) +52(v,w,u) Da B3 2(u,v,w)+ (6.14)
Dq 53(w,u,v) B3 3(u,v,w) +53(w,u,v) Dg B3 3(u,v,w),

where Dgq B3 ;(u,v,w), i = 1,2,3 is described in (6.10). If the local triangles 5;(u,v,w),
i=1,2,3 are Bézier triangles, then the directional derivatives can be found in (6.1).
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Figure 6.7: An Expo-Rational B-spline triangular surface where also the local triangles
are all 1st degree Bézier triangular patches as in Figure 6.5 and in Figure 6.6. The shape
can vary tremendous only by affine transformations of the local patches.

Recall the definition of the two main directions for derivatives in (6.11), d; = (—1,1,0)
and dp = (—1,0,1). These main directions can be used for computing normals or gaus-
sian/mean/principal curvatures. Because of the cycling of the parameters the partial
derivatives for the local triangles in the following equations will be denoted; D, for the
partial derivatives as regards the first parameter, D; for the partial derivatives as regards
the second parameter and D3 for the partial derivatives as regards the third and last pa-
rameters. The formula for the derivatives in the first main direction is then,

Dq, S(u,v,w) = (D3 51(u,v,w) — D1 51(u,v,w)) B3 1 (u,v,w)
+51(u,v,w) (Dy B3 1 (u,v,w) — Dy, B3 1(u,v,w))
+ (D2 s2(v,w,u) — D3 52(v,w,ut)) B3 2 (u, v, w)
+52(v,w,u) (Dy, B3 2(u,v,w) — Dy, Bz 2(u,v,w))
+ (D3 53(w,u,v) — D1 53(w,u,v)) B3 3(u,v,w)
+53(w,u,v) (Dy B3 3(u,v,w) — Dy B3 3(u,v,w)).

(6.15)

For the derivatives in the second main direction the formula is,

Dq, S(u,v,w) = (D3 51(u,v,w) — D2 51 (u,v,w)) B3 1 (u, v, w)
+51(u,v,w) (Dy, B3,1(ut,v,w) — Dy, B3 1 (u,v,w))
+ (D1 52(v,w,u) — D3 52(v,w,ut)) B3 2 (u, v, w)
+52(v,w,u) (Dyy B3 2(u,v,w) — Dy B3 2 (u,v,w))
+ (D2 53(w,u,v) — Dy 53(w,u,v)) B3 3(u, v, w)
+53(w,u,v) (Dy B3 3(u,v,w) — Dy, B3 3(u,v,w)).

(6.16)
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Figure 6.8: An Expo-Rational B-spline triangular surface is plotted. The local triangles
are 2nd degree Bézier triangles (blue), but still planar. The control polygons of the Bézier
triangles are shown as green lines, and the control points as red cubes.

For the second order derivatives, the process has to be repeated ones more. We then get,

D(zll S(u,v,w) = (D% 51(u,v,w) — 2D Dy 5 (u,v,w) + D3} 51 (u,v,w)) Bs 1 (u,v,w)
+2 (D 51(u,v,w) — Dy 51(u,v,w)) (D, B3 1(u,v,w) — Dy B3 1 (u,v,w))
+51 (u, v, w) (D% Bs.1(u,v,w) —2DyD, B3 1 (u,v,w) +D5 %71(u,v,w))
+ (D% S2(v,w,u) —2D2D3 55 (v, w, 1) +D§ s2(v,w, u)) B3 o (u,v,w)
+2(D; 52 (v,w,u) — D1 S2(v,w,u)) (Dy B3 2(u,v,w) — Dy, B3 2(u,v,w))
+52(v, w,u) (D% B3 2 (u,v,w) —2DyD,, B3 (u,v, w)+D B3 2 (u,v,w) )
+ (D% 53(w,u,v) — 2D D3 53(w,u,v) 4+ D? 53(w,u,v)) B3 3(u, v, w)
+2 (D3 53(w,u,v) — Dy 53(w,u,v)) (Dy Bs3(u,v,w) — Dy B3 3(u,v,w))

+53(w,u,v)) (D% B3 3(u,v,w) —2D,D,, B3 3(u,v,w) +Di B3 3(u,v, w)) .
6.17)

The other second order derivatives, Dﬁz S(u,v,w) and Dg,Dq, S(u,v,w) can be computed
in the same way, using the same template. They will however not be computed here, but
it is easy to compute them when this is required.

In Figure 6.8 there is an Expo-Rational B-spline triangular surface using 2nd degree
Bézier triangles as local triangles. One can see that the local triangles are still planar.
This means that the number of coefficients (red cubes in the figures) is six for each local
triangular Bézier patch. This six cubes are now in such a position that the respective local
Bézier triangular patch is linear (compare with the previous figures 6.5, 6.6 and 6.7, where
the local patches were 1st degree triangular Bézier patches (linear by default), only with
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three coefficients each (red cubes in the figures)). The difference now is that by clicking
on one of the respective six cubes in Figure 6.8, it is possible to edit the local Bezier
triangle into a “true” quadratic patch, which was impossible to do in the case of figures
6.5, 6.6 and 6.7. This is, actually what we have done in the next figure.

In Figure 6.9 there are three different ERBS triangular surfaces, where the local triangles
are not planar. These figures give a small insight into the possibilities of designing by
using ERBS triangular surfaces.

6.5 Local Bézier triangles and Hermite interpolation

We start by recalling the settings from section 2.8, and adapting parts of these to ERBS
triangles. At first, we will only interpolate a triangular part of a given surface with one
ERBS triangle. The setting is:

e Given is a surface g: Q, C R? — R”, where we might have n =1,2,3,...,

e Given are three points in the domain of g i.e. Q. These points are denoted by py,
k =1,2,3 (they can be defined by either ordinary coordinates (u,v) or by barycen-
tric coordinates (u,v,w)). Together with each of these points, a respective number
dy for k = 1,2,3, must be given. This numbers, di, gives us the degree of the local
Bézier triangles associated with the respective point p; defining a triangle in the
domain €,

e Make an ERBS triangle S(u,v,w) by using the three points p; € Q, and their
respective degrees di. This must be done by generating the three local triangles
5i(u,vw), i=1,2,3 (see equation 6.13 and the description below 6.13) in such
a way that the ERBS triangle is Hermite interpolating the local triangles in each
corner, so that: at the first corner

Dl(fl,LO)fo],o,l)El (1,0,0) = Dl(fhl.,o)D{f],o,])S(]’070) = DlprmD;)rplg(m%
(6.18)

at the second corner:
. ; B . ; . ;
Di_y1,0)D(_10,1y52(1,0,0) = Doy Dy 1 )5(0,1,0) = D)y, Dy, ,8(p2),

(6.19)
and at the third corner:

i J < _n J _n J
Dl(fl,l,O)D(fl,O,l)s3(1’070) = Dl(l,O,fl)D(OJ,fl)S(O’O’ 1) =Dy p D, ,8(P3),
(6.20)
is fulfilled, where for the respective three equations, it holds

0< (i+j)<d, for k=1,273. 6.21)

The right hand side of (6.18-6.20) looks like the ordinary Hermite interpolation method
used for generating an approximation of a triangular part of a parametric surface. The
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Figure 6.9: Three different Expo-Rational B-spline triangular surfaces are plotted. The
local triangles are 2nd degree Bézier triangles (not planar any more), and we can see
them as blue triangles, the control polygons of the local Bézier triangles as green lines,
and their control points as red cubes.



156 CHAPTER 6. TRIANGULAR SURFACES

specific part is, however, the generation of the local triangles on the left hand side of
(6.18-6.20), and thus the rotational global/local mapping. Remember from Theorem 6.1
that an ERBS triangular surface completely interpolates (position and all derivatives) its
local triangles at the corners because of the properties P3 and P4 in Theorem 6.1. This is,
of course, the basis for the equations (6.18-6.21), and it can also clearly be seen in figures
6.5-6.9. The consequence of this is that the Hermite interpolation by the local surfaces
must only be done at one point for each local triangular surface, where the position and
the derivatives from the original surface g uniquely determine the local surface.

Using Bézier triangles as local triangles will imply that we have to look at Hermite inter-
polation by Bézier triangles. Let us start by making a generalized version of the leftmost
side of the equations (6.18-6.20), together with the rightmost side of the equations (6.18—
6.20). We then get,

Dy 10D

(_1’0’1)s(1,070):Dfilbgzg(p), where 0< (i+j)<d, (6.22)

where d is the degree of the Bézier triangle, p is a point in Qg, and d;,d; are vectors € R?
at the point p. Recall that the number of equations in (6.22) is

d+1

npy = Z i,
i=1

which follows from the fact that the sum of the possible variants, for i+ j =d is d + 1
when i, j > 0. For d =1, we get n, = 3, for d = 2, we get n, = 6, and for d = 3, we get
np = 10. As we can see, this matches the relationship between the degree and the number
of coefficients/basis functions of a Bézier triangle. Equation (6.22) is, therefore, uniquely
determining the Bézier triangle from the position and derivatives of an original surface.

To compute the equations for the Hermite interpolation we need the formula for the di-
rectional derivatives for the Bézier triangle. The first (directional) derivatives are given in
(6.1) and (6.2). In the following three formulas there are equations for one, two and three
directional derivatives. They are general, so that they can be used for second, third, or
various cross derivatives,

Dps(u) =P DMS(U) +p2 Dvs(u) +Dp3 DWS(IJ), (623)

DgDps(u) = qlplDﬁs(u) +q1p2 D,Dys(u) + g1 p3 DyD,s(u)
+vg2p1 DuDys(w) +q2p2 Dys(u) + q2p3 DyDyys(u) (6.24)
+q3p1 DuDys(0) + g3p2 DyDys(u) +q3p3 D2s(u),
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DwDyDps(u) = hiq1p1 Dgs(u)
+(hq1p2+hqap1 +hagi p1) DaDys(u)
+(hq2p2+h2qip2 + haqap1) DuDis(u)
+(h1q1p3+hig3p1 +h3qip1) DaDys(u)
+(hg3p3 +h3q1ps + hagsp1) DuDys(u) (6.25)
+hagap2 Dys(u)
+(h2q2p3 + hag3pa + h3gapa) DiDyys(u)
+(h2g3p3 + h3q2p3 + haqsp2) DyDys(u)
+h3q3ps vas(u).

We will now look at Hermite interpolation by a 1st degree Bézier triangle. For the 1st
degree Bézier triangle,

s(u,v,w) = uey +vey + wes.

The partial derivatives are

DMS(M7 v? W) = cl)
Dys(u,v,w) = ¢y,

DWS(M,V,W) = €3,
and using the equation and the partial derivatives together with equation (6.23), we get
5(1,0,0) =Cy,
D(_1,1,0)5(1,0,0) = ¢ — ¢y,

D(,]}O.’])S(l,o,o) =C3—C1.

Reorganizing this, the formula for the Hermite interpolation of a parametric surface by
the 1st degree Bézier triangle becomes

¢ =g(p),
¢ = ¢ +Dq,g(p),
c3 =c¢; +Dq,g(p).

The Hermite interpolation of a 2nd degree Bézier triangle is a little bit more complex. We
start with the equation for the 2nd degree Bézier triangle

s(u,v,w) = u?ey + 2uvey + 2uwes +v2es + 2vwes 4+ wlce.



158 CHAPTER 6. TRIANGULAR SURFACES

The partial derivatives are

Dys(u,v,w) = 2uc; + 2vey + 2wes,
Dys(u,v,w) = 2ucy + 2veq + 2wes,
Dyys(u,v,w) = 2ucs + 2ves + 2weg,
D2s(u,v,w) = 2¢y,
D2s(u,v,w) = 2¢q,
D2s(u,v,w) = 2¢g,
DyD,s(u,v,w) = 2c¢,
DyDys(u,v,w) = 2¢3,
DyDy,s(u,v,w) = 2cs,

and using the equation and the partial derivatives together with equation (6.24), we get

S(l 00)—01,
D(_1,10)5(1,0,0) =2(c2 —¢1),
D(_1,0,1)5(1,0,0) =2(c3 —¢1),

D} 1 105(1,0,0) =2
D} 1 0.ys8(1,0,0) =2
D(_101)D(-1,1,05(1,0,0) =

c; —2¢c2+c¢4q),

2(
(
(e; —2¢3+c¢q),

2(c; —c2 —c¢3 +¢s).

Reorganizing this, the formula for the Hermite interpolation of a parametric surface by
the 2nd degree Bézier triangle becomes

¢ =g(p),
1
C)=¢]+ EDdlg(p)7
1
c3=c¢C+ EDdzg(p)7
1
¢4 =—¢;+2¢+ EDﬁlg(PL
1
Cs = —Cp +cy+c3+ EDdlDdzg(p)v
1
€6 = —C1 +2¢3+ *Dﬁzg(l’)-

2

The Hermite interpolation of a 3rd degree Bézier triangle is, without a doubt, even more
complex. We start with the equation for the 3rd degree Bézier triangle

s(u,v,w) = u3c1 + 3u2vcz + 3M2WC3 + 3141/204 + 6uvwes

+3uw2c6 + v3C7 + 3v2WCg + 3VW2C9 + w3c10.



6.5. LOCAL BEZIER TRIANGLES AND HERMITE INTERPOLATION 159

The partial derivatives are

Dys(u,v,w) = 3(uPe; + 2uvey + 2uwes +vZeq 4+ 2vwes + weg),
Dys(u,v,w) = 3(u €2 + 2uves + 2uwes + vier + 2vweg +w 09)
Dyys(u,v,w) = 3(u*e3 + 2uves + 2uweg + v eg + 2vweg +weyg),

D2s(u,v,w) = 6(ucy +vey +wes),
D2s(u,v,w) = 6(ucq +vey + weg),
D2,s(u,v,w) = 6(uce + veg +weyp),
DyD,s(u,v,w) = 6(ucy + veq + wes),
DyD,ys(u,v,w) = 6(uc3 + ves + weg),
DyD,,s(u,v,w) = 6(ucs +veg +wey),
us(u w) = 6¢y,
D3s(u,v,w) = 6¢7,
D3s(u ) = 60107
D, D s(u,v,w) = 6¢2,
D,,D s(u w) = 6¢3,
D,D s(u w) = 6¢q,

vs(uyv,w) =

ws(u,v,w) =

ws(u,v,w) =

(v, w) =

and using the equation and the partial derivatives together with equation (6.25), we get

5(1,0,0
~1,1,0) 5(1,0,0
~101)5(1,0,0) =
1 10)5(1,0,0
_1.0)8(1,0,0
D(—1,01 110S(1700
5(1,0,0
(
(
(

101sl,00
D(71710 1OIS 1,00

D 101D

NN s s N

1,0)
—~1,1,0)
110sl,OO

=Cy,
=3(c2—c1),
3(e3—ei),
=6(c; —2¢c2+c¢4),
=6(c; —2¢3+c¢q),
=6(c; —cy—c3+cs),
=6(—c;+3¢;—3cs+¢7),
=6(—c; +3¢3—3cs+c¢10),
=6(—c;+¢3+2¢3—2¢5 —C5+¢9),
=6(—c;+2¢c2+c3—c4—2¢5+¢3).
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Reorganizing this, the formula for the Hermite interpolation of a parametric surface by
the 3rd degree Bézier triangle becomes

¢ = g(p)v
1
cp=c|+ §Ddlg(p)v
1
c3=¢C+ ngzg(p)7
1
¢4 = —c¢1+2¢c+ Ethilg(p)a
1
c;=—Cl+Cr+cC3+ nglDdzg(p)7
1
cg = —C| +2¢3+ 8D¢212g(p)7

1
¢7=c¢; =3¢+ 3¢5+ nglg(P)’

1
gD(zilDdzg(p)v

1
nglDﬁlg(p)v

1
cjo=c¢; —3¢c3+ 3¢5+ gD(Slzg(p).

cg=c¢C| —2¢p—¢c3+cs4+2¢5+

co=c; —C—2¢c3+2¢c5+¢+

As we can see above, to compute the coefficients for the Bézier triangles, we need to
compute directional derivatives of the original surface g, both first, second, third, and the
cross derivatives between two directions and so on, for higher-order Hermite interpola-
tion. We must have a position p and two directions, d; = (u1,v) and da = (u2,v2), in the
parameter plane of the original surface g. The first order derivatives in the two directions
are then

Dq, g(p) = u1D,g(p) +viDyg(p),
Dy, g(p) = u2D,g(p) +v2D,g(p).

To compute the second order derivative we need to use two steps. The first step is

u8(P) = u1DyDyg(p) +viDyDug(p),
Ddz g(p) = uyDyDug(p) +v2DyDug(p),
Ddl (p) = u1DyDyg(p) +v1DyDyg(p),
Dyg(p) = u2DuD\g(p) +v2DyDyg(p),

and the second step gives us the second order derivatives in the two directions and the
cross derivative, as follows:

Dy, g(p) = u1D,Da,8(p) +v1D,Da,g(p),
Dg, g(p) = w2DuDa,g(p) + v2DvDa,8(p),
Dq,Daq, g(p) = ”lDuDdzg(p) + V1Dde2g(p).
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To compute the third order derivative we need to use three steps. The first step is

Dd1 28(p) = w1 Dg(p) +viDDyg(p),
28(p) = u2D;g(p) +v2DuDig(p),
22(p) = mDuDyg(p) +viDyg(p),
Ddz v2(p) = w2DuDyg(p) +v2Dyg(p),
Dd1 D,Dyg(p) = u1D;D,g(p) +viDuD}g(p),
d, DuDyg(p) = u2D Dvg(P) +V2DuD3g(P)~
The second step is
Dg, Dug(p) = u1Da, D;g(p) + viDa, DuD,g(p),
Dd2 u&(p) = u2Da, D8 (p) + v2Da, DD g(p),
D,g(p) = u1Da,DyD,g(p) +viDa,D (p)»
Ddz v8(p) = 2Dd2DuDvg(p)+V2Dd2D 8(p),
Da, Dy, Dyg(p) = u1Da, D ug(p) +v1Da,DuDyg(p),
Da, Da,Dyg(p) = uzDa, DuDyg(p) +v2Da, D3¢ (p),

and the third step gives us the third order derivatives in the two directions, and the two
cross derivatives, as follows:

Dy, g(p) = u1Dg, Dug(p) +viDg Dyg(p),
Dy, g(p) = w2Dg,Dug(p) +v2Dg,Dyg(p),
Dq, D, g(p) = u1Dg,Dug(p) +viDg,Dyg(p),
D, Da, g(p) = u2D, Dyg(p) +v2Dg, Dyg(p).

Using these equations, we can interpolate parts of tensor product surfaces and other sur-
faces by ERBS triangles. In Figure 6.10, one ERBS triangle is made by interpolating a
sphere at three points, using the position, two directional derivatives, two second order
directional derivatives and a cross derivative, and two third order directional derivatives
and two third order cross derivatives, at each of the points. In the figure, the ERBS trian-
gle is slightly removed from the sphere so that we can see it better, otherwise we would
not be able to see details because the ERBS triangle is “locally equal” to the sphere in the
corners, and else also quite close. We can also see the three control polygons for the local
Bézier triangles as green lines, and the control points as red cubes. The three interpola-
tion points are all in the parameter plane of the sphere, and the directional derivatives are
decided by straight lines in the parameter plane, between these points. The parametriza-
tion of the sphere affects the shape of the triangle. It can clearly be seen that two of the
edges form a “slight S”. One other comment is that the center points of the three control
polygons almost coincides, and the three control polygons are quite equal.

The next example is based on a torus, equation (5.25). In Figure 6.11, we can see three
different views of four ERBS triangles computed by Hermite interpolation of a torus,
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Figure 6.10: Two views of a sphere and one Expo-Rational B-spline triangular surface
interpolating a part of the sphere. The ERBS triangle is slightly translated away from the
sphere. The local triangles are 3rd degree Bézier triangles, and we can see all the control
polygons of the local Bézier triangles as green lines, and the control points as red cubes.
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Figure 6.11: Three different views of a surface that is composed by four ERBS triangles
Hermite interpolating a part of a torus, equation (5.25), at 5 points. The 4 x 3 local
triangles are 3rd degree Bézier triangles; we can see their control polygons as green
lines, and the control points as red cubes. The blue cube is the center of the original
torus.
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Figure 6.12: On the left hand side there is a plot of a Seashell, equation (5.26), and on
the right hand side there is a plot of a set of 80 ERBS triangles, Hermite interpolating a
Seashell at 44 different points. The 80 ERBS triangles are all independent of each other,
but are “continuously connected”; this means that there are no holes in the composite
surface after the interpolation.
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Figure 6.13: The parameter plane Q of a surface S(u) : @ C R> — R, n > 0. The three
points p1,p2,P3 € Q describe a triangle in the parameter plane.

(5.25), at totally 5 different points. The composition of the four ERBS triangles is clearly
continuous. Although this cannot be easely seen, the composition is actually based on four
different triangles. But even if they together look as being G™ (geometrically infinitely
smooth), they are not. This can clearly be seen in the next example, which is a “Hermite”
interpolation of a “Sea Shell” surface, equation (5.26). On the left hand side of Figure
6.12 there is a plot of a “Sea Shell” surface, (5.26), and on the right hand side there is
a plot of 80 ERBS triangles interpolating the whole of the “Sea Shell” surface. One can
clearly see that the composition is continuous, but it does not seem to be G*. It is actually
G at all 44 interpolation points, but at the 124 edges it seems to be only continuous,
GY, although the result is quite good (more comments on the continuity can be found in
section 6.8).

6.6 Sub-triangles from general parametrized surfaces as
local triangles

It is possible to extract a triangular surface S(u,v,w) from a general parametrized surface
§:Q C R? = R”, where n usually is 3, but can actually be any positive integer. S(u,v,w)
can, thus, be defined by the three points p;,p2,p3 € Q (in the parameter plane of the
general parametric surface S, see Figure 6.13).

To clarify the notation, we have the surface,
E(u) = §(u17u2) eR",
and the differential, B B B
dSu = [Dy,S(u) D,,S(u)] €R™2

A triangular surface is then defined by,

S(u,v,w) = S(up1 +vp2 +wps).
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Figure 6.14: The grey surface is a B-spline tensor product surface. The triangular green
surface is defined by three points in the parameter plane of the B-spline tensor product
surface, and its domain is the minimum convex set including these three points (that is, a
triangle in the parametric domain).

If we denote
u = up +vp2+wps,

where the three points are
pil .
| = for i=1,2,3.
pi < pPi2 )

We then get the first order partial derivatives,
DMS(M,V,W) = dgﬁ (pl) = Du|§(ﬁ) P11 +Du2§(ﬁ) P12,
DVS(M,V, W) = dgﬁ (pZ) = Du|§(ﬁ) P21 +Du2§(ﬁ) P22,
DWS(M,V, W) = dgﬁ (p3) = Du|§(ﬁ) P31 +Du2§(ﬁ) P32,

and the second order partial derivatives,

2 2 o
D, S(u,v,w) = D, S(u
D2S(u,v,w) = Dilg(ﬁ
D;,S(u,v,w) = D;, S(u
D.D,S(u,v,w) =Dj, S(u
DyD,S(u,v,w) = Dy, S(u
D,D,,S(u,v,w) =D} S(u

P +2Dy, Dy, S(8) pripiz+ Dy, S(W) py,
P31 42Dy, Dy, S(0) pa1 2z + Dy, S(u) P
P31 +2Dy, D, S(R) p31p32+ Dy, S(W) p3,,
p11P21 + Dy Dy, S@) (p11p22 + prapa) + Dﬁzg(ﬁ) P12D22,
p11p31 + Dy Dy, S(8) (p11p32 + praps1) + Do, S(W) prapsa,
p21p31 +Duy Dy, S() (p21p32 + p22p31) +Dﬁ2§(ﬁ) P2P32.

= o o O O
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Notice that when using the two last sets of formulas, all formulas in section 6.4, the
formulas (6.12) to (6.17), are valid.

In Figure 6.14 we can see a triangular surface extracted from a B-spline tensor product
surface. The domain of the triangular surface is the triangle shown in Figure 6.13.

Remark 18. Note that doing Hermite interpolation using sub-triangles in general parametrized
surfaces as local triangles is just like doing Hermite interpolation using a general parametrized
surface, for example, a tensor product Bézier surface, a torus, etc., and then calculating

the three points in the local parameter plane.

6.7 Surface approximation by triangulations.

In this section there is a brief description of an approximation of a surface by a set of
ERBS triangles that are constructed to be continuous in the joints. This description con-
centrates on surfaces imbedded in R3.

Given is a compact continuous surface of any genus. The description of the approximation
of this surface by a continuous and “editable” surface consisting of a set of ERBS triangles
is, as follows:

e Given is a regular surface G C R?, where for each p € G, there is a neighborhood
V in R3, and amap x: U — VNG of an open set U C RZonto VNG CR3. xis
assumed to be a diffeomorphism. A local parametrization thus exists around any
point p € G.

e Assume that the surface G is triangulated (see the beginning of this chapter, page
141, besides discussing triangulations is not among the purposes of this work).
The triangulation introduces vertices, edges and triangles, and it is restricted by the
requirement that in each vertex, there is a local map x; : U; C R2 — R3, where all the
neighboring vertices also are in U. (Neighboring vertices are all vertices sharing an
edge with the current vertex. Also, without loss of generality we assume that here
U can be taken to be a rectangle.)

e Compute the coordinates in U; for the vertex p; and its neighboring vertices.

e For each vertex p;, make a tensor product Bézier surface G; by Hermite interpola-
tions in the current vertex using the respective local map x;.

e For each vertex p;, organize all local triangles obtained in G; according to the coor-
dinates (in the domain of G;, that is U;) for the vertex p; and the neighboring vertices
(see section 6.6, and Figure 6.15). Recall that by definition of Uj;, all neighboring
vertices of p; are contained in U;.

e For each triangle in the triangulation, make an ERBS triangle S(u,v,w) by using,
as local triangle in each of its vertices p;, the sub-triangles at G; that is “covering”
the current triangle (the definition of a sub-triangle on a surface is given in Section
6.6).



168 CHAPTER 6. TRIANGULAR SURFACES

Figure 6.15: The blue surface is a Bézier tensor product surface. The different colored
triangular surfaces are defined by a point (vertex) and 6 neighboring points (vertices)
in the parameter plane of the Bézier tensor product surface. All triangular surfaces are,
therefore, just sub-surfaces of the Bézier tensor product patch.

The following example illustrates this procedure.

e We use a sphere with radius 1 as the surface G. This will clearly fulfill the first
point in the previous description.

e We consider a triangulation of the sphere using 6 vertices, one vertex at each of
the poles, and four vertices equally distributed along the equator line. This gives 8
equilateral triangles.

e We consider a local map at each vertex p;

COSUCOSV
x;(u,v) = | sinucosv |, (6.26)
siny

such that the current vertex is in the local origin, i.e., x;(0,0) = p;.

e Now, we make a tensor product Bézier patch by Hermite interpolation as it is de-
scribed in section 5.3.1. In addition, to evaluate in the vertices, using the local map,
to get position and the partial derivatives, we need some more information about
the position and mappings. We stated that the current vertex should be in the center
of the Bézier patch. This implies that ®, = ®, = % (mw, and w, are described in
section 5.3.1). To ensure that the four neighboring vertices are inside the domain
of the Bézier patch we have to set the affine global/local mapping to 7 (in the local
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Figure 6.16: The parameter plane of a Bézier tensor product patch connected to one of
the vertices in the triangulation of a sphere. The coordinates of the current vertex py, and
the four neighboring vertices pa,p3,P4,Ps are all marked in the figure. This parameter
plane looks in the same way for each of the vertices.

map the distance from a pole to equator is 7). This implies that §, =8, =m (3,
and 9, is described in section 5.3.1).

e The construction of the local triangles (sub-triangles of the Bézier patch) in the
ERBS triangle is straightforward. The coordinates in the parameter plane of the
Bézier patch can be seen in Figure 6.16. The “current vertex” in the center has the
coordinates p; = (0.5,0.5). The neighboring vertices are ordered clockwise, and
their coordinates are p, = (0.5,1), p3 = (1,0.5), ps = (0.5,0) and ps = (0,0.5).
The result is the four triangles we can see in Figure 6.16, the first (numbered as 1
in the figure) is defined by the three points p;, p2, p3, the second (numbered as 2 in
the figure) is defined by the three points pi,p3,p4, and the third (numbered as 3 in
the figure) is defined by the three points py,p4,Pps, and the last triangle (numbered
as 4 in the figure) is defined by the three points p1, ps, p2.

e The construction of the 8 ERBS triangles is a question of putting everything into
order. In Figure 6.16 the local sub-triangles are numbered from 1 to 4. Take first
this patch to be the patch at the north pole. If we then rotate a copy of this patch
90° around a horizontal axis going through the sphere center and, from our view in
Figure 6.16), passing through the vertices ps and p3, we get the patch of one of the
vertices on the equator line. The other three patches on the equator can be produced
by rotating a copy of the previous patch 90° around the vertical axis going through
the sphere center and the poles. The last patch is the result of rotating a copy of
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the first patch 180° around the horizontal axis going through the sphere center (like
the first rotation). If we use Figure 6.16 to keep track of positions assuming we are
above the north pole, then up means at vertex p; in the figure, left means at vertex
ps and so on. We can start ordering. We number the patches with no. 1 at the
north pole, no. 2 the “upper” equator, no. 3 the “left” equator, no. 4 the “lower”
equator, no. 5 at the “right” equator, and nr. 6 at the south pole. We also denote and
number the local sub-triangles f;;, where i is the patch number and j is the triangle
number in the patch. We now get 8 ERBS triangles consisting of the following local
sub-triangles:

Ist ERBS triangle with the local triangles t11, 22, ts3,
2nd ERBS triangle with the local triangles t1, ts57, 143,
3rd ERBS triangle with the local triangles 73, t42, f33,
4th ERBS triangle with the local triangles t14, 132, 23,
S5th  ERBS triangle with the local triangles f¢;, f44, 51,
6th ERBS triangle with the local triangles g2, fs4, 21,
7th ERBS triangle with the local triangles 43, f24, 131,

8th ERBS triangle with the local triangles fe4, 134, t41.

In Figure 6.17 we can see parts of some of the Bézier patches and the local sub-triangles
from the sphere example. In Figure 6.18 we can see both the original sphere (in brass on
the right hand side), and the approximation (in silver on the left hand side). Remember
that the approximation is only done with 8 triangles. The result is quite good, and we can
see that it is geometrically smooth at the vertices, but it is clearly not smooth over the
edges although it is continuous (more comments on the continuity and smoothness will
be given in section 6.8).

A general algorithm for surface approximation by triangulation using ERBS consists of
three main parts:

1. The algorithm for triangulation is separated for surfaces of different genus and for

simply connected surfaces (genus 0), and must generate a local map around each
vertex containing all of its neighboring vertices. The first part of the algorithm
concerns the generation of the vertices. The second part of the algorithm concerns
appropriate version of the Delaunay (or other) triangulations (see [12]). The trian-
gulation algorithm itself can, of course, be tricky, but in itself it is not a part of the
ERBS algorithm.

. The local mapping must be automated, together with finding the coordinates for the

neighboring vertices.

. The local sub-triangles for use in the generation of the ERBS triangles must be au-

tomatically ordered, so that the right sub triangle is associated to the right triangle,
and this sub triangle must be correctly orientated.
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Figure 6.17: All 24 local triangles in the sphere example described in section 6.6 are
displayed in the figure. We can clearly see some of them, and we can also see trimmed
parts of the 6 Bézier patches connected to each of the 6 vertices. The center of each Bézier
patch actually interpolates the original sphere in each of the vertices.
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Figure 6.18: The brass sphere on the right hand side is the original sphere. The silver
sphere on the left hand side is an ERBS approximation by triangulation. The approxi-
mation is done with only 8 triangles, and all the triangles are “equilateral”, symmetric
according to all three vertices in each triangle.

One important feasible feature in surface approximation by triangulation using ERBS is
the object editation feature. This feature is used in figures 6.19, 6.20, 6.21 and 6.22. In
Figure 6.19 the Bézier patch connected to the vertex at the north pole is translated 1%
to the north. The result is an object shaped like an egg. In Figure 6.20 the Bézier patch
connected to the vertex at the north pole is translated % to the south. The result is an object
shaped more like a hazelnut. The third example of using the editing feature is shown in
Figure 6.21. In this example all the Bézier patches (connected to all of the vertices) are
translated away from the center of the sphere. The result is an eight sided cube where all
the edges and corners are rounded off. All these examples only use translation of the local
Bézier patches.

In the next examples, rotation is also used. In Figure 6.22 there are four objects in the
same figure, and they are all a result of rotation of local Bézier patches. The object in the
upper left hand corner was at first the same object as in Figure 6.20, but the Bézier patch at
the top has been rotated by an additional 70° clockwise around a vertical axis. The object
in the upper right hand corner was also at first the same as in Figure 6.20, but the Bézier
patch at the top has been rotated by an additional 70° clockwise around a horizontal axis.
The object in the lower left hand corner was also at first the same object as in Figure 6.20,
but the Bézier patch on one of the sides (the one pointed towards us) has been rotated
by an additional 70° clockwise around a vertical axis. The object in the lower right hand
corner was also at first the same as in Figure 6.20, but two opposite Bézier patches at the
side have been rotated by an additional 70° clockwise around a horizontal axis. These
two vertices, which are connected to the patches that have been rotated, are the ones we
see on either side of the object.

In the last figure, 6.23, there is one object plotted from four different angles. All local
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Figure 6.19: The brass sphere on the right hand side is the original sphere. The silver
object on the left hand side is the ERBS approximation by triangulation, after the Bézier
patch associated to the vertex at the north pole has been translated 1% to the north. The
total length of the object (from south to north) is 3% (the diameter of the sphere is 2).

Bézier patches in this object, except for the one at the south pole, are rotated 70° clockwise
around a horizontal axis. The horizontal axis actually has the same direction as the one at
the upper and right hand side in Figure 6.22. The red marks in the figure mark the position
of four of the six vertices in the object. One can clearly see the smoothness in the vertices,
G*, which follows from using local triangles (which are sub-triangles on a common local
smooth surface at each of the vertices) and from property 4 in Theorem 6.1. Notice also
that the “edge” of the “bill” is not an edge between the ERBS triangles, but it is actually
smooth. This is because the “edge” of the “bill” is in the interior of an ERBS triangle.
This can clearly be seen on the two lower plots in Figure 6.23, where we also clearly can
see where the real edges are located.

These examples only give a small insight into the possibilities of surface approximation
by triangulation using ERBS. The problem is, of course, the continuity, which will be
briefly discussed further in the next section.
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Figure 6.20: The brass sphere on the right hand side is the original unit sphere. The
silver object on the left hand side is the ERBS approximation by triangulation, after the
Bézier patch associated to the vertex at the north pole has been translated % to the south.
The total length of the object (from south to north) is 1% (the diameter of the sphere is 2).

’o

Figure 6.21: The brass sphere on the right hand side is the original unit sphere. The
silver object on the left hand side is the ERBS approximation by triangulation, after the
Bézier patch associated to each vertex has been translated 1% out from the center of the
sphere. The total length of the object, from one vertex to the opposite vertex is 5 (the
diameter of the sphere is 2).
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Figure 6.22: In this figure there are four objects obtained as a result of rotating local
Bézier patches. All objects were initially the same object as the “silver object” in Figure
6.20. The object in the upper left hand corner has been further edited in a way that the
Bézier patch at the top has been rotated an additional 70° clockwise around a vertical
axis going through the center of the original sphere approximation. The object in the
upper right hand corner has been further edited in a way that the Bézier patch at the top
has been rotated an additional 70° clockwise around a horizontal axis. The object in the
lower left hand corner has been further edited in a way that the Bézier patch on one of
the sides has been rotated an additional 70° clockwise around a vertical axis. The object
in the lower right hand corner has been further edited in a way that two opposite Bézier
patches on the sides have been rotated an additional 70° clockwise around a horizontal
axis.
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Figure 6.23: The four objects in this figure are actually four plots of the same object,
only seen from a different angle. In this object all local Bézier patches, except for the
one at the south pole, are rotated 70° clockwise around the same horizontal axis. The
horizontal axis has the same direction as the one in the upper right hand corner in Figure
6.22. The red marks on the figure mark the position of four of the six vertices in the figure.
One can clearly see the smoothness in the vertices.
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Figure 6.24: The figure shows a set of ERBS triangles where each is plotted with con-
stant parameter lines: line(v,w), where u is a constant, line(w,u), where v is a con-
stant and line(u,v), where w is a constant (recall that the parameters are homogeneous
barycentric coordinates also for the curves).

6.8 Epilogue

ERBS have the potential to make most impact as a new approach in the case of surfaces
on triangulations. It is clear from the properties defined in Theorem 6.1 that the continuity
at the vertices of an ERBS triangulated surface is G (actually also C*). The continuity
at the edges are clearly only continuous, although the parametrization seems to be smooth
(see article [16]). One observation which was already made in the case of curves (see
Remark 9) is that the Lagrange interpolation of curves (and surfaces) using ERBS, leads
to the piecewise-linear (G%) curve obtained when using linear B-splines, but with a C*
parametrization on it. Recall that this is possible because this parametrization is not reg-
ular at the knots. When the constant values in the Lagrange interpolation are replaced by
polynomial curves, we can see that they are already G* where k was the degree of the local
polynomial curves used. Similar is the situation in the case of surfaces on triangulations.
On Figure 6.24 is given an example of a Lagrange interpolant over a triangulation (the
coefficients are numbers not local functions). The plot is that of the Lagrange interpolant
by linear B-splines over the triangulation, but it can be shown that the parametrization
induced by the use of ERBS leads to possible C* smoothness also on the edges of the tri-
angles (where linear B-splines are only continuous but not smooth). The reason is again
the absence of regularity of the surface on the edges. (although in the vertices the surface
is also G-smooth). This can be judged from the fact that the constant parameter lines:
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line(v,w), where u is a constant, line(w,u), where v is a constant and line(u,v), where
w is a constant (recall that the parameters are homogeneous barycentric coordinates also
for the curves) are actually tangential to the respective edge which they are supposed to
intersect. So this intersection happens in a smooth way, with the visual effect that each
lines smoothly continuous into the neighboring triangle. This behavior is due to Property
PS5 in Theorem 6.1. The continuity will, however, not be discussed further here, but is an
important topic for further investigations, on which we already have started.

For practical use in CAGD it will be necessary to develop a complete/controllable ge-
ometrically smooth version of the surface approximation by triangulation using ERBS.
This might, however, not be very difficult because the critical part, the continuity over
the vertices, is already a property in the approximation. This is, however, also a topic for
further investigation although some tests have already been done. One alternative imple-
mentation is to introduce smoothness as a property for the edges, so one can choose if an
edge shall be smooth or not.



Chapter 7

Summary and some other topics

Expo-Rational B-splines are slightly more computationally expensive than the present
industrial standard NURBS/B-splines. But they have a lot of advantages compared to
their counterparts. The following can be mentioned.

e They have a much better ability for modeling complex geometry.

e The Hermite interpolation property is much simpler to use and better in quality than
what we find for other types of splines.

e The editing possibility is much better than for its competitors, due to the affine
transformations of the local functions.

e The dynamic “simulation” possibilities are also much better, also due to the affine
transformations of the local functions.

e The future perspectives are much greater, especially in the case of surface interpo-
lation and approximation over a triangulation.

The previous chapters have shown us that this list is not an exaggeration. Especially all
the examples in the figures show us that there are really a lot of possibilities.

Expo-Rational B-splines are just in the initial phase with regards to both development and
practical use. So far, the most work has been done at Narvik University College (NUC),
but there is hope that this will now change. Together with the people at the Simulations
R&D group, who have designed and developed ERBS, a number of students have also
been working with ERBS in their Master theses. Several students have used ERBS as a
partial topic in their theses. The students who have been mainly studying ERBS in their
theses are:

e Andreas Bredesen: Parameter study of ERBS curves with regard to data reduction
and approximation/interpolation problems [6].

e Yan Wang: Parameter study of ERBS surfaces with regard to data reduction and
approximation/interpolation problems [55].

e Einar Rasmussen: Improved visualization of scalar data using interpolation [46].

179



180 CHAPTER 7. SUMMARY AND SOME OTHER TOPICS

e Bjgrn Anders Ulsund: Expo-Rational B-spline evaluator on GPU [53].

e Richard Dahl: Realistic simulation using Expo-Rational B-splines and GPU pro-
gramming [11].

e Jie Gao: Expo-Rational B-splines to/from NURBS [29].

To have been the supervisor of these students has, for me, been very useful, and some of
the results they have produced might also be of general interest. At the end of section 7.2,
“Three-variate tensor product Expo-Rational B-spline”, there is a short summary of one
of these theses, namely “Improved visualization of scalar data using interpolation”. This
work was initiated by an industrial partner, “ComputIT”, located in Trondheim, Norway.
(The company is a specialist in fire simulations.)

There is also another section in this chapter, namely “NUERBS Form of Expo-Rational
B-splines”, section 7.1. The reason for having this section in the summary chapter is that
it is just a short summary of an earlier publication [17], which was a common work of
Lubomir Dechevsky, Bgrre Bang and me. Although NUERBS has a bigger potential, it
has been necessary to concentrate on more basic aspect of ERBS needed earlier in the
theory and application. Of course, we intend to return on the topic about NUERBS later.

7.1 NUERBS Form of Expo-Rational B-splines

This section contains a description of the rational forms of Expo-Rational B-splines. We
shall call these "Non-Uniform Expo-Rational B-splines” (NUERBS), because of the close
analogy with NURBS. This description will only be a short summary, but you can find a
more complete description in [17]. In the following we will mainly concentrate on curves.
The figures used in this section are made in cooperation with Bgrre Bang.

The general NUERBS form is:

n

;Ci(’)WiBi(T)

ft)=—F—— (7.1)
Y WiBi(1)
i=1

where ¢;(t), i=1,...,n arelocal curves, scalar or vector-valued. The formula resem-
bles a usual rational Bezier/NURBS. The effect of the weights is also similar to what we
expect from rational Bezier/NURBS, except that ¢;(¢) is not a point but a curve. In Figure
7.1 the effect of increase of one weight is displayed: the global curve approximates better
the corresponding local curve.

If we replace the local curves with points, which correspond to Lagrange interpolation
by B; at the simple knot #;, the total curve will geometrically be a piecewise linear curve.
Since the curve is infinitely smooth, all derivatives must be zero at each knot. This can
be seen in Figure 7.2 because the points are very dense at the knots (dense means slow
speed). The effect of changing the weight is that the dense area is moving. The dense
area is getting smaller at the knot with a small weight and bigger at a knot with a bigger
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Figure 7.1: The two curves are equal except that all weights in the curve on the left hand
side are 1, while the middle weight in the curve on the right hand side is 5. Observe that
this causes the curve to be pulled towards the middle local curve.

weight. In Figure 7.2 this can be seen on curves b and c. This phenomenon will be dis-
cussed in more detail in section 7.1.3.

Remark 19. The general NUERBS form has variation-diminishing properties for a very
broad range of classes of local curves. However, since these properties are a consequence
of the variation-diminishing properties of the underlying Expo-Rational B-splines, it is
more appropriate to consider variation diminishing as part of the theory of Expo-Rational
B-splines (see [16] for a discussion of this topic).

7.1.1 Hermite interpolation property of the general NUERBS form

Here we shall see that, under very general assumptions about the class of local curves in
(7.1), the general NUERBS form, just like ERBS, has an Hermite interpolation property
(regarding ERBS and Hermite interpolation property, see section 2.8 and Theorem 2.4).
The important underlying fact here is property 4 in Theorem 2.1, that

D/ Bi(t) =0, i=1,..n, k=0,..n+1, j=12 . (7.2)

Theorem 7.1. Let ¢;: [t;_1,t;:1] CR - R4 0<d < oo, i =1,2,...,n, be a sequence of
C™i-smooth local functions on [ti_1,ti+1], where |c;| € §(B;) (see definition 2.5), where
m; > 0 is an integer (in the case of m; = oo we assume that c; is an entire analytic function
on [ti—1,tiy1]). Let the weights W; € (0,00), i = 1,...,n be a sequence of scalars. Let

Y-eie) Wi Bi()
fy=—— (13)

YW Bi(1)
i=1
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Figure 7.2: Three piecewise linear curves a, b and c. All weights for curve a are equal
to 1, curve b has weight 0.5 in the middle and curve c¢ has weight 5 in the middle. The
curves are plotted with points, where the density of the points indicate the speed, and
where dense means slow speed.
be the general NUERBS form (7.1) for ¢i(t), i = 1,...,n. Then,

f‘(liJH—l) € Cmin(mi’miﬂ)((ti’tﬂr] )’Rd)v i=0,.,n (7.4

and . .
D’ f(l‘i) =D’ Ci(t,'), j: O,..7ni, i=1,..,n. (7.5)

Proof. First (7.4) follows immediately from (7.3), in view of the properties of B; (Theo-
rem 2.1) and the assumptions about c;. To prove (7.5), we first write (7.3) in the form

cx(t) Wi Bi(t). (7.6)

-

(VWi Bile)) £0) =

i=1 i=1

From property 2 and 3, Theorem 2.1, it follows that at the knot #; there is only one basis
function B, (z) that is # 0. It follows that for 7 = ;, (7.6) is reduced to

Wi f(t) = ci(t) Wi.

Since 0 < W; < o holds, we get (7.5) for j = 0. Next, we differentiate (7.6) in ¢ and
apply (7.2) for j = 1. From here it is easy to obtain (7.5) for j = 1 by using the already
established result (7.5) for j = 0. The general case of (7.5) is now obtained by induction,
using (7.5) as induction hypothesis for every j = 0,...,v < m; — 1, and then also using
(7.2) on the induction step j =V + 1. Ol

We will now investigate in more detail the particular case of local polynomial-based
curves.



7.1. NUERBS FORM OF EXPO-RATIONAL B-SPLINES 183

7.1.2 The Hierarchy of general NUERBS forms of Bernstein-Bézier
type

We shall consider polynomial-based local curves of Bernstein-Bézier type, where the
general NUERBS form is:

Z ch,bk, S WiBi(r)

i=1j=0

flo)= ; (1.7
ZWiB,-(t)
i=1
where
by j(x) = < ’; )xf(l —x)ki, (7.8)

It W,=1,i=1,2,...,n, thisis identical to ERBS curves with local Bézier curves, as we
can see in section 4.3. It is thus possible to use the Hermite interpolation as described for
ERBS curves also to generate NUERBS curves.

When using polynomial-based local curves, it is possible, of course, to also use the ra-
tional form of these curves. In this case we have several alternative ways of expanding
the Expo-Rational B-splines into NUERBS. We will now compare 3 different forms of
NUERBS based on local rational Bézier curves (first proposed by Lubomir Dechevsky).

First we look at what we call the local NUERBS form:

\ /|
Z cijwiibi, i (o)
Jj= O
! ZM///bk,j ,jrlt' !
floy=—"" : (7.9)
Zvv,-B,-(t)
i=1

This form is identical with the general NUERBS form where the local curve is a rational
Bezier curve.

M=

WiBi(f)

I

The second one is the global NUERBS form:

chlﬂszlbk, ](lz:l t’tl ) )‘/VlBl(t)

i=1j=0

Z Zﬁijbkivj t,i] tlt : 1 )WB ( )

i=1j=0

£l = (7.10)

The main difference between this and the local form is that we relate the denominators of
the local and global parts, in other words, we consider the two-index basis {bkl._“,'B,'} asa
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Figure 7.3: Two global curves based on the same local curves with all respective weights
being the same. The black/outer one is defined via the global NUERBS form, the inner
one is defined via the local NUERBS form (see section 7.1.2).

global basis. The effect of this can be seen in Figure 7.3. In Figure 7.3 we have changed
the weight on the right end point of the second curve to 4, all the other weights, both local
and global, are 1. As seen, the global form is responding more to the increase in weight
than the local form. If we change some of the global weights then both forms will respond
equally.

Finally, we take a look at what we call the full NUERBS form:

k.
Zt’ w0 ib =t
n 4 OLL/,UU ij ki=j<m)
j=
Y WiBi(t)
i=1 t—t;_
b ()
=0
fle)=—-2 (7.11)
ki
1—t;_|
0 4 Oﬂijﬁijbk,u/(m)
j=
Z ki WiBi(t)
i=1 t—t;_
b ()
j=0

It can be seen that both the local and the global form are particular cases of the full form.
Namely, the full form reduces to the local form when y;; = 1, and to the global form when
9;; = 1; If y;; = 0;; = 1, we get a particular instance of the general form.
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Remark 20. Ifin (7.9-7.11) we choose

J J

cii=P((1—=)ti-1 + =

ij (( ki)l 1 ki

for some CO-regular function ® defined on [t1,t,], we obtain Expo-Rational B-spline and
NUERBS forms of all considered types for the classical Bernstein polynomial operator.
Notice that this is also a first, particularly simple, instance of a variation diminishing

operator in terms of Expo-Rational B-spline and NUERBS form (see also [17] and [16]).

fir1) (7.12)

7.1.3 Basic differential geometry of NUERBS

Studying the intrinsic geometry (curvature and torsion) of parametric regular Bézier curves
is particularly simple at the end points (see [30]). For intermediate values of the Bézier
curve parameter, the intrinsic geometry of the curve can be considered as an interpolation
of the geometry at the end points which depend on the control polygon. The situation is
the same with the rational Bézier form (see [30]) where the weights of the rational form
add additional fine control over the interpolation of the geometry between the end points.
In the case of B-splines and NURBS, the situation is the same between each two (differ-
ent) neighbouring knots; thus, the enhancement in the control of the intrinsic geometry of
the B-spline and the NURBS curve compared to the Bézier and rational Bézier curve is
due to the increase in the number of knots and the control of their position and multiplic-
ity. This is an essential improvement in the control over the curve geometry, in view of
the simple dependence of the curvature and torsion on the NURBS weights in the knots
(see [30]).

As with B-splines and NURBS, the intrinsic geometry of Expo-Rational B-splines and
NUERBS curves is simplest in the study of the knots (see [16]).

The first important new observation for regular NUERBS curves is that the intrinsic ge-
ometry of the global curve depends only on the intrinsic geometry of the local curve in the
knots, i.e., it depends neither on the intrinsic parameters of the Expo-Rational B-spline
basis function, nor on the global weights W; in (7.3). More precisely, the following result
is true.

Theorem 7.2. Let t; be one of the knots in (7.3) and assume that the respective local curve
cit[tio1,tiv1] — RY satisfies the following:

(i) eitherd =1,2 and ¢; € C*[t;_1,ti11), ord =3 and ¢; € C*[t;_1,ti11);

(ii) c;is regular at t;, i.e., ¢;(t;) # 0.
Then, for the curvature > of the (global) NUERBS curve (7.3),
iti) N Cilti
%(ti) — ‘C ( ) /\Cl3( )|
|¢i(i)]
holds, and for the torsion < of the (global) NUERBS curve

(7.13)

0, d=1,2
) = lawaEw) 54 (7.14)

léi(t)né ()]
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is fulfilled, where @ A b is the vector cross product of @, ? and [d, Z), ] is the
—
scalar triple product of @, b ,c. In particular, »(t;) and (t;) depend neither on

the weight W;, nor on the intrinsic parameters of B; in (7.3).

Proof. Follows from Theorem 7.1. O

Remark 21. In the particular case of (7.11), »(t;) in (7.13) and ©(t;) in (7.14) essentially
depend, and can be controlled, by the weights §;; of the local rational Bezier curve.

The second important observation about the geometry of NUERBS is that the much faster
speeds and accelerations of the parametrization of NUERBS, and the fact that the Expo-
Rational B-Splines are not regular curves at the knots, bring about new qualitative phe-
nomena, as far as geometric continuity is concerned. A most conspicuous (and practically
important) example in this respect is the case of Lagrange interpolation by B; in (7.1)
and(7.3). This corresponds to ¢;(t) = ¢; = const, t € [t;_1,t;i+1]. In this case, |¢;(t)] # 0
for every i, condition (ii) is violated and Theorem 7.2 does not hold. The effect is that
here (7.1),(7.3) provide the geometry of a piecewise linear B-spline curve (see Figure 7.3)
while retaining C”-smooth parametrization. In this case, the NUERBS weights W; in (7.3)
do not influence the geometric form but provide control over the speed of parametrization
(see Figure 7.2).

7.2 Three-variate tensor product ERBS

In this section we will mainly look at the background, and a short summary of the result
of the work done by Einar Rasmussen in his master theses [46]. He has also made all the
three figures used in this section.

Often, the problem is too much data. The data comes from some kind of scanning, and the
datasets becomes huge. Data reduction is then essential. This is the goal of Trond Brenna
in [7]. If instead, the dataset comes from a computer simulation, the opposite problem
appears. The dataset gives a coarse grid, and this is a problem in the visualization. To
solve this, the ideas was to use the Hermite interpolation property of Expo-Rational B-
splines to model 3D scalar data, and by this resample by evaluating the 3D model. In
many cases is it possible to get additional information (partial derivatives) in the nodes.
Using this will give a much better visual expression of the result of a simulation.

The general formula for a three-variate tensor product ERBS function, f : R3-SR n>0
is,
Ny Ny Ny
flu,v,w) = Z Z Z piji(u,v,w) Bi(u) Bj(v) Br(w), (7.15)

i=1j=1k=1

where p;ji(u,v,w) are the n, x n, x n,, local functions, and where the three sets of ERBS

basis functions B;(u), B;(v) and Bx(w) are defined by the three knot vectors, {u,-}?g)rl,

(v Y325 and {widpeg!.
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Figure 7.4: The figure shows a 3D “volume” object displayed as a wireframe. The
object is a three-variate tensor product Expo Rational B-spline, where the local volumes
are three-variate tensor product Bézier volumes. The local volume at one of the corners
is shown in green, all the others are marked with blue cubes.

Suppose that n = 1, i.e. we have a scalar field. This can be modeled by a three-tensor
ERBS volume. In Figure 7.4, there is a plot of a wireframe volume object, where we have
n, = n, =n,, = 5. We can see that the total volume (cube) is divided in 4 x 4 x 4 = 64
small cubes. The local volume in the right hand corner (the upper one) is marked with
green, and is filling one of the small cubes. If a local volume is on an edge but not in a
corner it will fill two small cubes. If a local volume is on a side but not on an edge or in
a corner it will fill four small cubes. And if a local volume is in the interior of the big
volume it will fill eight small cubes.

We now assume that the local functions are three-variate tensor product Bézier functions,
The formula for the three-variate tensor product Bézier functions p : R3S R, n>0,is:

Ny Ny Ny

plu,v,w) = Z Z Z c;jkbi(u)bi(v)br(w), (7.16)

i=1j=1k=1
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Figure 7.5: The figure shows the 3D flame data as a particle system. The points are the
data given by ComputlT as the result from their simulation program “Kameleon FireEx”.

Figure 7.6: The figure shows a view of a 3D flame object. The object is a three-tensor
Expo Rational B-spline volume, where the local volumes are three-tensor Bézier volumes.
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The Hermite interpolation is analogous to the process described in section 5.3.1. Thus we
have to introduce 3D-matrices. We can now write (7.16) on the matrix format,

p(u,v,w) =CBy, (w,1) By, (v,1) By, (u,1). (7.17)

where C is the 3D coefficient matrix, and By, («, 1), B4, (v, 1) and B4, (w, 1) are the Bern-
stein/Hermite matrices defined in 4.8. The turning of the sequence of the Bernstein/Her-
mite matrices is due to the nature of the 3D-matrix (see [46]).

We now get the following formula for the Hermite interpolation in the knot u;, v; and wy,
8d,.dv.dy, WiV, wi) = Cijx By, (0;(wi),8yk) By, (@;(v;),8y,;) By, (0;(u4;),8,,), (7.18)

where g4, 4.4, (4i,vj, wk) is thus a 3D analog to 5.18, d, is the number of partial deriva-
tives in u, where d, is the number of partial derivatives in v and where d,, is the number
of partial derivatives in w that are known in the respective point. We also have,

oi(u;) =
Vi—vi_

wJ(VJ) = v_,‘ilfi)jil’

Oulw) = s

the affine global/local mappings from definition 2.7, and

P - 1
W8T upp —uiy?
8, = 2
viJ Vit1—Vj-1’
B = — L —
w.k Wip1—Wi_1’

the domain scaling factors defined in Theorem 2.4.

Now the final step for generating the local Bézier volumes is to solve equation 7.18 ac-
cording to the Bézier coefficients (3D control polygon) C; ; x,

Ciji=

(((8ddyaty, (Ui v s Wie) By, (@ (W), 8yk) ™1 ) By, (0;(v}),8,,1) 1) By, (0i(u;), 8,5) 7).
(7.19)

The following example is to build a 3D flame object using data from “ComputIT” (see
www.computit.no), a company specialized on fire simulations. The data is generated in
their own developed simulator program called “Kameleon FireEx”, and is a 25 x 17 x 18
grid, which make a total of 7650 points. In Figure 7.5 the data from “ComputIT” is
plotted as a discrete particle system. In this example there is no information about partial
derivatives, so divided differences are used to generate this information. In Figure 7.6
we can see a view of the 3D object that is built from the initial data, using Hermite
interpolation and a three-variate tensor product ERBS volume with three-variate tensor
product Bézier volume as local volumes. More details about the example can be found
in [46]. One of the most promising features in the previous example is the possibility to
make a dynamic flame by rotating and/or scaling the local Bézier volumes. Studies of
the behavior compared to simulation data are, therefore, also a possible topic for further
explorations.
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List of Acronyms

Acronyms

3D

API

C++
CAGD
CMA
ComputIT

ERBS
eVITA

FFD
GM_Lib

GM_Wave

GPU

GPGPU

GUI

IEEE

Kameleon FireEx

NaN
NUC
NURBS
NUERBS
ODE
OpenGL
PDE

Describes objects imbedded in R3

Application Programming Interface

Object oriented programming language

Computer Aided Geometric Design

Center of Mathematics for Applications, University of Oslo
Computational Industry Technologies AS — Norwegian fire-
simulation company

Expo-Rational B-splines

e-Science, includes material from both Computational Sci-
ence and Software Engineering as well as other topics such
as graphics, virtual reality, general computer science

Free Form deformation method

C++ library for geometric modeling and simulations, devel-
oped by the R&D Simulation Group at Narvik University
College

C++ wavelet library, developed by the R&D Simulation
Group at Narvik University College

Graphic Processor Unit

GPU programming for General Purpose

Graphical User Interface

The Institute of Electrical and Electronics Engineers, Inc.
A simulation program for fire simulation, developed by
ComputIT

Not a number

Narvik University College

Non-uniform rational B-splines

The ERBS analog to NURBS

Ordinary Differential Equation

Software interface to graphics hardware

Partial Differential Equation
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SINTEF - The Foundation for Scientific and Industrial Research at the
Norwegian Institute of Technology
SISL — SINTEFs spline library

[8) (6} — University of Oslo
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3D-curve, 104

acceptable result, 68
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affine global/local mapping, 37
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This Expo-Rational B-spline tensor product surface is made by interpo-
lating (position, first and second derivative) a “Bent Horns” surface [2] at
5 x 5 points. The positions of the interpolating points are seen as cubes.
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Bézier patch is marked in green, and the nodes in the polygon are marked
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figures that we can see on the lefthand side. . . . . . .. ... ... ...

A plot of the approximated sphere from Figure 5.5, where one of the
local Bezier patches is shown. The control polygon of the Bezier patch is
marked in green, and the nodes in the polygon are marked as red cubes.
Note that the figures are rotated, as can be seen on the RGB-frame in the
bottom left hand corner. The “north pole”, in both this figure and the
previous figures, is in the direction of the color blue (B). . . .. ... ..

This Expo-Rational B-spline tensor product surface is made by interpo-
lating a torus at 5 x 5 points (position, first and second derivative). The
positions of the interpolating points are seen as blue cubes. . . . . . . . .

A plot of the approximated torus from Figure 5.8, where one of the local
Bézier patches is also plotted. Also the control polygon of the local Bézier
patch is plotted in green, while the nodes are plotted as red cubes.

Two plots of the approximated torus from Figure 5.8, where one of the
local Bézier patches is also plotted. In these plots the local patch is moved
slightly upwards. In the plot on the left hand side one can clearly see that
the ERBS surface has followed the movement. One can clearly see what
the local Bézier patch looks like. . . . . . ... ... ... ........

This Expo-Rational B-spline tensor product surface is made by interpo-
lating (position, first and second derivative) a “Sea Shell” surface [5] at
4 x 8 points. The positions of the interpolating points are seen as cubes.
The surface is plotted from two different angles. On the right hand side
the interpolation points are hidden. . . . . . . .. ... ... L. L.

Two plots of the Expo-Rational B-Spline tensor product surface made by
interpolating a “Sea Shell” surface plotted in Figure 5.11. The two plots
are seen from different angles. In each of the two plots one of the local
Bézier patches is also plotted. In the upper plot one of the bigger local
patches is plotted. In the lower one a smaller patch is plotted. We can also
see the control polygon for each of the local Bézier surfaces. The local
patches model the global ERBS surface quite well locally. . . . . .. ..

This Expo-Rational B-spline tensor product surface is made by interpo-
lating (position, first and second derivative) a “Sea Shell” surface [5] at
5 x 12 points. The positions of the interpolating points are seen as blue
cubes. The surface is plotted from four different angles. The color is
based on the Gaussian curvature of the plotted ERBS tensor product sur-
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This Expo-Rational B-spline tensor product surface is made by interpo-
lating (position, first and second derivative) a “Sea Shell” surface [5] at
5 x 12 points. The positions of the interpolating points are seen as blue
cubes. The surface is plotted from four different angles. The color is
based on the Mean curvature of the plotted ERBS tensor product surface. 131
The approximated ERBS torus from Figure 5.8 is edited by moving two
of the local Bézier patches upwards. The two Bézier patches are marked
by yellow cubes (in red circles) at the interpolation points, while the other
interpolation points are marked by blue cubes. . . . . . . . ... ... .. 134
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face made by first interpolating (position, first and second derivative) a
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This Expo-Rational B-spline tensor product surface is first made by inter-
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i.e. rotated approximately 140° around the z-axis. . . . . . .. ... ... 137
This Expo-Rational B-spline tensor product surface is made by first in-
terpolating (position, first and second derivative) a plane at 3 x 3 points.
Then the interpolation points are moved, and finally the control polygon
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An Expo-Rational B-spline triangle surface with its three local triangles.
The boundary of the local triangles are marked with green lines. As can
be seen, the local triangles are all 1st degree Bézier triangular patches,
and they are parallel toeachother. . . . . . ... ... ... ... ... 150
An Expo-Rational B-spline triangular surface where the local triangles
initially were the same as in Figure 6.5, but are now translated and rotated.
The blue cube shows us the interpolation point of the first local triangle. . 151
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gles are all 1st degree Bézier triangular patches as in Figure 6.5 and in
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tions of the local patches. . . . . . . ... ... ... .. ... .. ... 152
An Expo-Rational B-spline triangular surface is plotted. The local trian-
gles are 2nd degree Bézier triangles (blue), but still planar. The control
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pointsasredcubes. . . . . .. ... 153
Three different Expo-Rational B-spline triangular surfaces are plotted.
The local triangles are 2nd degree Bézier triangles (not planar any more),
and we can see them as blue triangles, the control polygons of the local
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Two views of a sphere and one Expo-Rational B-spline triangular surface
interpolating a part of the sphere. The ERBS triangle is slightly translated
away from the sphere. The local triangles are 3rd degree Bézier triangles,
and we can see all the control polygons of the local Bézier triangles as
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Three different views of a surface that is composed by four ERBS trian-
gles Hermite interpolating a part of a torus, equation (5.25), at 5 points.
The 4 x 3 local triangles are 3rd degree Bézier triangles; we can see their
control polygons as green lines, and the control points as red cubes. The
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On the left hand side there is a plot of a Seashell, equation (5.26), and on
the right hand side there is a plot of a set of 80 ERBS triangles, Hermite
interpolating a Seashell at 44 different points. The 80 ERBS triangles
are all independent of each other, but are “continuously connected”; this
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The parameter plane of a Bézier tensor product patch connected to one of
the vertices in the triangulation of a sphere. The coordinates of the current
vertex pi, and the four neighboring vertices pa, p3,p4,Ps are all marked
in the figure. This parameter plane looks in the same way for each of the
VEITICES. . . . . . . . o e e e e e e e

All 24 local triangles in the sphere example described in section 6.6 are
displayed in the figure. We can clearly see some of them, and we can
also see trimmed parts of the 6 Bézier patches connected to each of the 6
vertices. The center of each Bézier patch actually interpolates the original
sphere in each of the vertices. . . . . ... ... ... ... ... ...,

The brass sphere on the right hand side is the original sphere. The silver
sphere on the left hand side is an ERBS approximation by triangulation.
The approximation is done with only 8 triangles, and all the triangles are
“equilateral”, symmetric according to all three vertices in each triangle.

The brass sphere on the right hand side is the original sphere. The silver
object on the left hand side is the ERBS approximation by triangulation,
after the Bézier patch associated to the vertex at the north pole has been
translated 1% to the north. The total length of the object (from south to
north) is 3% (the diameter of the sphereis2). . .. .. ... ... ....

The brass sphere on the right hand side is the original unit sphere. The
silver object on the left hand side is the ERBS approximation by triangu-
lation, after the Bézier patch associated to the vertex at the north pole has
been translated % to the south. The total length of the object (from south
to north) is 1% (the diameter of the sphereis2). . ... ... ... ....

The brass sphere on the right hand side is the original unit sphere. The
silver object on the left hand side is the ERBS approximation by triangu-
lation, after the Bézier patch associated to each vertex has been translated
1% out from the center of the sphere. The total length of the object, from
one vertex to the opposite vertex is 5 (the diameter of the sphere is 2).

In this figure there are four objects obtained as a result of rotating local
Bézier patches. All objects were initially the same object as the “silver
object” in Figure 6.20. The object in the upper left hand corner has been
further edited in a way that the Bézier patch at the top has been rotated an
additional 70° clockwise around a vertical axis going through the center
of the original sphere approximation. The object in the upper right hand
corner has been further edited in a way that the Bézier patch at the top
has been rotated an additional 70° clockwise around a horizontal axis.
The object in the lower left hand corner has been further edited in a way
that the Bézier patch on one of the sides has been rotated an additional 70°
clockwise around a vertical axis. The object in the lower right hand corner
has been further edited in a way that two opposite Bézier patches on the
sides have been rotated an additional 70° clockwise around a horizontal
AXIS. v v e e e e e e e e e
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The four objects in this figure are actually four plots of the same object,
only seen from a different angle. In this object all local Bézier patches,
except for the one at the south pole, are rotated 70° clockwise around the
same horizontal axis. The horizontal axis has the same direction as the
one in the upper right hand corner in Figure 6.22. The red marks on the
figure mark the position of four of the six vertices in the figure. One can
clearly see the smoothness in the vertices. . . . . ... ... .......
The figure shows a set of ERBS triangles where each is plotted with con-
stant parameter lines: line(v,w), where u is a constant, line(w,u), where
v is a constant and /ine(u,v), where w is a constant (recall that the param-
eters are homogeneous barycentric coordinates also for the curves). . . . .

The two curves are equal except that all weights in the curve on the left
hand side are 1, while the middle weight in the curve on the right hand
side is 5. Observe that this causes the curve to be pulled towards the
middle local curve. . . . . .. ... oo
Three piecewise linear curves a, b and c. All weights for curve a are equal
to 1, curve b has weight 0.5 in the middle and curve ¢ has weight 5 in
the middle. The curves are plotted with points, where the density of the
points indicate the speed, and where dense means slow speed. . . . . . .
Two global curves based on the same local curves with all respective
weights being the same. The black/outer one is defined via the global
NUERBS form, the inner one is defined via the local NUERBS form (see
section 7.1.2). . . ... e
The figure shows a 3D “volume” object displayed as a wireframe. The
object is a three-variate tensor product Expo Rational B-spline, where the
local volumes are three-variate tensor product Bézier volumes. The local
volume at one of the corners is shown in green, all the others are marked
withbluecubes. . . . ... ... .
The figure shows the 3D flame data as a particle system. The points are
the data given by ComputIT as the result from their simulation program
“Kameleon FireEx”. . . . . . ... ... . ... ... ...
The figure shows a view of a 3D flame object. The object is a three-tensor
Expo Rational B-spline volume, where the local volumes are three-tensor
Bézier volumes. . . . . . . ...
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The table shows the connection between the error (maximum deviation
between the ERBS function and the sine function), the number of knots
and the number of derivatives used in the Hermite interpolation. . . . . .

The table shows the result of the computation (binary search) to find the
bounds on the intrinsic parameters to ensure reliable algorithms for com-
puting second and third derivatives. For each of the four intrinsic parame-
ters there are 4 numbers for computing second derivatives and 4 numbers
for computing third derivatives. Because the formulas are not symmetric,
and the number system is not symmetric, the numbers are computed both
for when + — 0+ and when ¢ — 1—. To compute the lower bounds, the
depth used in the binary search is 1074, and for the upper bounds, the
depth used in the binary search is 2097. The number of digits used is
16, and the decimal numbers represent binary numbers that are the exact
bounds. . . . ...

The table shows the connection between the number of steps/evaluations
and the precision in the Romberg-integration algorithm. There are 6
“graphs” computed. Each graph is an integration from 0 to upper limit
(second row). The column on the left hand side is showing the number
of steps in the integration (up to 11), the next column is showing the new
number of computations of ¢(z) that have to be done on the current step.
All the other numbers are the last correction, indicating the level of toler-
ance (remaining errors). . . . . . . . . e e e e e e e
The table shows the connection between the number of sample intervals
and the error for the three functions B(¢), DB(t) and D*B(t), using three
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The table shows the result of measuring the deviation of the approxima-
tion of the “Rose-curve” using the L”(f — g) and the L?(f — g) norms
(see (4.23) and (4.24)). The computations are done by using numerical
integration (algorithm 6) when necessary. The table shows the result of 5
different approximation curves, 3 using local Bézier curves, and 2 using
local Arc curves. All examples are shown in this and the previous section.
Recall that the diameter of the “Rose-curve” in the examples is 2.
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4.2 The table shows the result of measuring the geometric deviation of the
approximation of the “Rose-curve” using the L% (f,g) in (4.25) and the
Lé( f,&) in (4.26) metrics. The computations are done by using numer-
ical integration (algorithm 6). The table shows the result of 6 different
approximation curves, 3 using local Bézier curves, and 3 using local Arc
curves (all examples showed in this and the previous section). Only the
last example uses reparametrization to curve length parametrization, all
the others have the original parametrization. Reall that the diameter of
the “Rose-curve” is 2.0, and the numbers in the table correspond to this
diameter. . . . . . ... 101
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