

UNIVERSITY OF OSLO
Department of informatics

Mobile, flexible user interfaces

Master thesis
60 credits

Tommy Jansson

1. may 2007

 Mobile, Flexible user interfaces

 Page 2 of 102

 Mobile, Flexible user interfaces

 Page 3 of 102

I. ABSTRACT
This master thesis provides a set of principles, or guidelines, which aim to give

practical and useful information in the process of developing user interfaces on

mobile devices.

When talking about mobile devices the main focus is on PDAs and Smartphones, but

it also incorporates portable PCs (including ultra portable PCs), tablet PCs and other

mobile phones. The commonly used platforms, or operating systems, on these devices

are Windows Mobile, Palm, Symbian, Linux and the new mobile adapted OS X. The

guidelines aim to be platform independent, but most of the examples and illustrations

are from the Windows Mobile environment.

The problem scope is found in the space between three main axes: user interface

categories, user interface challenges and design approaches. The first two have been

emphasized more than the latter.

Five user interface categories have been defined: form based, icon based, document

based, graphic based and repetition based user interfaces. These categories are on an

abstraction level above simple components and mechanisms but within the graphical

user interface paradigm.

As user interface challenges go, a selection of six relatively common and often

encountered challenges has been selected: switching between portrait and landscape

screen orientation, software keyboard showing/hidden, content larger than its display

container, finger optimized user interface, switching between stylus and finger

optimized user interface and user interface able to run on equipment with different

screen size. These challenges are found within the problems of utilizing screen space,

flexible layout at run-time and flexible layout at design-time.

For designing and developing user interface four design approaches has been

selected: programming, drawing, modeling and marking up a user interface. Each of

these has differing pros and cons, which are dependent on the task at hand and where

in the development process one might be.

Current mobile device applications have been examined. These were grouped under

user interface categories and paired up against one or two selected challenges. The

challenges where in most case handled in a relatively basic way. In some cases these

solutions maintained usability, but far from always. Some challenges were rarely

handled at all.

The guidelines found and presented conform to some main principles, which are:

Facilitating scrolling functionality in one form or another (e.g. Panning and Borders

Facilitate Scrolling), adjust or adapt components which the user interface consists

of (e.g. Struts and Straps and Simple Adaptation of Existing Components), group

content differently (e.g. Group Similar Components in Tab Folders and Partial Tab

Folders) and do nothing, or lock the user interface (e.g. Lock User Interface in One

Orientation).

 Mobile, Flexible user interfaces

 Page 4 of 102

 Mobile, Flexible user interfaces

 Page 5 of 102

II. PREFACE
This thesis is done as the final assignment of a master’s degree in informatics at The

Department of Informatics at the University of Oslo, Norway.

The master thesis was presented by SINTEF ICT and is a part of the FLAMINCO

(FLexible Applications exploiting Multi modal INteraction and COntext) project. This

project focuses on development of user friendly solutions on mobile devices and will

run from September 2006 until December 2008.

The FLAMINCO project is a user-driven innovation project which is supported by the

VERDIKT program
1
, and participants in the project are Captura, IT liberator, Locus,

Teleplan and SINTEF ICT.

The main goal of the FLAMINCO project is to support and guide Norwegian service

and applications developers, as well as tool vendors, in meeting the challenges they

face when developing user interfaces on mobile devices. This is to be achieved

through finding solutions and presenting guidelines to some of the major problems

facing developers of future mobile solutions. The project will focus on user interface

design within these fields, but it will also address challenges with regards to

evaluation of mobile user interfaces. (SINTEF, 2007)

Many thanks go to those who contribute to this work in some form or another, both at

the University of Oslo and SINTEF. Special thanks go to my main teaching

supervisor Erik Gøsta Nilsson, senior scientist in Cooperative and Trusted Systems at

SINTEF ICT, which made all this possible. First and foremost by contributing with

invaluable knowledge and insight of this particular problem domain, but also for

providing me with various resources, equipment and material which were necessary

during the work with and completion of this master thesis.

University of Oslo, 16.05.2007

 Tommy Jansson

1
 The VERDIKT program has been imitated by the Research Council of Norway as a process to

strengthen and reorganize its ICT activities. (The Research Council of Norway, 2005)

 Mobile, Flexible user interfaces

 Page 6 of 102

 Mobile, Flexible user interfaces

 Page 7 of 102

III. TABLE OF CONTENTS
I. Abstract .. 3

II. Preface .. 5
III. Table of Contents .. 7
1 Introduction .. 11

1.1 Central Words and Conceptions .. 13
1.1.1 Usability .. 13

1.1.2 Plasticity .. 13
2 Mobile Device Context .. 15

2.1 Types of Devices .. 15
2.1.1 Portable PC (including ultra portable PCs) ... 15
2.1.2 Tablet PC .. 15

2.1.3 Ultra Mobile PC (UMPC) ... 16

2.1.4 Personal Digital Assistant (PDA) ... 16

2.1.5 Smartphone ... 17
2.1.6 Other Mobile Phone .. 17

2.2 Device Platforms .. 18
2.2.1 Linux ... 18

2.2.2 Palm .. 18
2.2.3 Windows Mobile (PocketPC/Windows CE) ... 19

2.2.4 Symbian .. 19
2.2.5 Mac OS X ... 20

3 Problem Scope ... 21

4 User Interface Categories ... 23
4.1 Form Based .. 24

4.2 Icon Based .. 25
4.3 Document Based .. 26

4.4 Graphics Based .. 27
4.5 Repetition Based .. 28

5 User Interface Challenges .. 29

5.1 Main Problem Area .. 29
5.1.1 Utilizing Screen Space .. 29

5.1.2 Flexible Layout at Run-Time .. 29
5.1.3 Flexible Layout at Design-Time ... 30

5.2 The Concrete Challenges ... 31
5.2.1 Switching Between Portrait and Landscape Screen Orientation 31

5.2.2 Software Keyboard Showing/Hidden ... 31

5.2.3 Content Larger Than its Display Container .. 33

5.2.4 Finger Optimized User Interface .. 33
5.2.5 Switching Between Stylus and Finger Optimized User Interface 34
5.2.6 User Interface Able To Run on Equipment with Different Screen Size 34

6 Current Solutions ... 35
6.1 Form Based Applications ... 36

6.1.1 Cash Organizer 2007 Premium ... 36
6.1.2 Pocket Informant 2007 .. 38

6.2 Icon based applications .. 41
6.2.1 Total Commander/CE ... 41
6.2.2 Pocket File Explorer ... 42

6.3 Document based applications .. 45

6.3.1 Pocket Word .. 45

 Mobile, Flexible user interfaces

 Page 8 of 102

6.3.2 Pocket Internet Explorer ... 47

6.4 Graphics based applications ... 49
6.4.1 Pocket Earth 3.4 .. 49
6.4.2 SimCity 2000 .. 49
6.4.3 TomTom NAVIGATOR ... 51

6.5 Repetition based applications .. 53
6.5.1 Pocket Messaging ... 53
6.5.2 Cash Organizer 2007 Premium ... 54

6.6 Summary .. 56
7 Guidelines .. 59

7.1 Guideline and Category Matrix ... 60
7.2 Switching Between Portrait and Landscape Screen Orientation 62

7.2.1 Have Two Versions of the User Interface ... 62

7.2.2 Dynamically Resizing Components .. 64
7.2.3 Lock User Interface in One Orientation .. 64
7.2.4 Add or Adjust Scroll Bars ... 65

7.3 Software Keyboard Showing/Hidden .. 67
7.3.1 Display on Top of User Interface .. 67

7.3.2 Use One Large Component as a Buffer .. 67
7.3.3 Having Two Versions of the User Interface ... 68
7.3.4 Add or Adjust Scroll Bars ... 68

7.4 Content Larger Than its Display Container ... 69

7.4.1 Struts and Straps ... 69
7.4.2 Conceal Non-Vital Elements .. 69

7.4.3 Group Similar Components in Tab Folders .. 70
7.4.4 Partial Tab Folders .. 71

7.4.5 Wizard Based User Interface .. 72
7.4.6 Collapsible Blocks of Information .. 72

7.4.7 Add or Adjust Scroll Bars ... 73
7.4.8 Alter Icon Representation ... 73
7.4.9 Panning ... 74

7.4.10 Borders Facilitate Scrolling .. 75
7.4.11 Point and Center .. 77

7.4.12 Offer Zooming Functionality .. 78
7.4.13 Navigational Buttons .. 80

7.4.14 Manipulate Document Layout and Content .. 81
7.4.15 Restrict Number of Attributes ... 81
7.4.16 Optimize the Sequence and Size ... 82

7.4.17 More Than One Row Per Item .. 82
7.4.18 Show Additional Information When Item is Selected 83

7.5 Finger Optimized User Interface ... 84
7.5.1 Simple Adaptation of Existing Components ... 84

7.5.2 Advanced Adaptation of Existing Components .. 86
7.5.3 Developing Custom Components ... 87
7.5.4 Change Scrolling Mechanism ... 87
7.5.5 Manipulate Content ... 88

7.6 Switching Between Stylus and Finger Optimized User Interface 90

7.6.1 Have Two Versions of the User Interface ... 90
7.6.2 Facilitate Switching Between Projections .. 90
7.6.3 Have a Set of Mapping Rules ... 91

7.7 User Interface Able To Run on Equipment with Different Screen Size 92

 Mobile, Flexible user interfaces

 Page 9 of 102

7.7.1 Create Several Versions of the User Interface .. 92

7.7.2 Change Between Alternative Controls .. 92
7.7.3 Use a Model Based Approach ... 94

8 Conclusions and Future Research .. 97
9 References .. 101

 Mobile, Flexible user interfaces

 Page 10 of 102

 Mobile, Flexible user interfaces

 Page 11 of 102

1 INTRODUCTION
The need and demand for solutions that offer mobility and interactivity is increasing

in today’s society. This can be seen amongst both the everyday people and within the

industry and commerce. To meet this demand, mobile devices such as PDAs and

Smartphones have come forth. These mobile devices have dramatically expanded the

versatility of computers, by bringing them off the desktop and into new and unique

environments.

Contrary to what many may believe, mobile devices are not merely a special case of a

distributed system. Mobile computing poses a series of unique challenges for user

interface design and development (Satyanarayanan, 1996). As mobile devices open a

new horizon for computing it also brings with it several new, unique and conceptually

different challenges, hereunder the challenge of building and maintaining flexible,

mobile user interfaces. The need for user friendly, efficient and reliable mobile

applications is pressing

The aim of this master thesis is to systematize and evaluate alternative principles, or

guidelines, which can be used to design and realize flexible, mobile user interfaces –

i.e. user interfaces that are able to adapt and conform to varying form and size of the

available screen area. The alternative guidelines will be mapped with regard to how

realistically they can be implemented and their key advantages and disadvantages.

Then the alternatives are recommended according to under which context they are

best suited.

Firstly a relatively brief summary of the mobile device context, which this thesis

operates within, is presented. Hereunder the most common variations of mobile

device types are listed. Then an overview of the most used and known device

platforms is given.

The problem scope of this thesis is set by the space between three defined axes; user

interface categories, user interface challenges and design approaches. The first two of

these axes emphasized and discussed more in-depth, respectively under User Interface

Categories (chapter 4 – page 23) and User Interface Challenges (chapter 5 – page 29).

Under user interface categories the following have been define:

These categories are used as a means of grouping the varying types of user interfaces

and examine complexity and general guidelines.

 Form Based

 Icon Based

 Document Based

 Graphics Based

 Repetition Based

 Mobile, Flexible user interfaces

 Page 12 of 102

Further the following common challenges, which one can encounter in a mobile

context, are used:

Each challenge is studied, and thereafter various guidelines are proposed.

The guidelines themselves are presented through the following structure with the user

interface challenges as the top caption. Under these, appurtenant guidelines are listed.

Each guideline has box at the top which informs about which user interface categories

the current guideline most often applies for.

At the end all is summed up in a conclusion with main principles and key guidelines.

Finally possible future work is also discussed and commented.

7.X – User Interface Challenge (no. 1 – 6)
 7.X.X – Guideline (no. 1 – n)
 Relevant for user interface categories: X, Y and Z based
 Various information (e.g. description, pros and cons and recommended
 design approach)

 Switching Between Portrait and Landscape Screen Orientation

 Software Keyboard Showing/Hidden

 Content Larger Than its Display Container

 Finger Optimized User Interface

 Switching Between Stylus and Finger Optimized User Interface

 User Interface Able To Run on Equipment with Different Screen Size

 Mobile, Flexible user interfaces

 Page 13 of 102

1.1 CENTRAL WORDS AND CONCEPTIONS

1.1.1 USABILITY
Usability if often described as one of the two parts in usefulness, where the second

part is utility (Grudin, 1992). Usefulness is the issue of whether a system can be used

to achieve some desired goal, and utility is the question of whether the functionality of

the system in principle facilitates what is needed.

Usability is not a single, one dimensional property of a user interface, but rather a

collection of characteristics which together embodies the concept of usability. It is

traditionally associated with these five usability attributes (Nielsen, 1994):

1.1.2 PLASTICITY
Plasticity is a term with roots from the property of materials that are able to expand

and contract without breaking and thus preserving continuous usage.

Applied to user interface design, plasticity is the capacity of a user interface to

withstand variations of both the system’s physical characteristics and the environment

while preserving usability. In addition, a plastic user interface is specified once to

serve multiple sources of physical variations, thus minimizing development and

maintenance costs. Plasticity may be static and/or dynamic. It may be achieved

automatically and/or manually. (Thevenin, et al., 1999; Calvary, et al., 2002)

1. Learnability  This determines how easy the system is to learn – in other
words, higher learnability means that the user more rapidly can start
getting some work done.

2. Efficiency  This describes how efficient the system is to use for the user
once learned. A high level of efficiency facilitates a high level of
productivity.

3. Memorability This tells how easy it is to remember the system and how
to operate it. Good memorability allows the user be away from the
system, come back after some period and still remember how to use it.

4. Errors  The system should have a low error-rate and prevent the user
from using the system incorrectly. If an error does occur it should be
concrete, easy to understand and recover from.

5. Satisfaction  Describes how subjectively satisfying the system is to use.
In short terms: the user should like it.

 Mobile, Flexible user interfaces

 Page 14 of 102

 Mobile, Flexible user interfaces

 Page 15 of 102

2 MOBILE DEVICE CONTEXT

2.1 TYPES OF DEVICES
There is a distinction between users moving between devices and user moving with

devices. Although both may be considered being mobile, only the latter is considered

and discussed here. A user bringing with him a device may use any computer that is

possible to carry (we also exclude use of stationary computers in cars etc.).

In this master thesis, we focus mainly on PDAs and Smartphones, but many of the

challenges and how they can be handled may also be relevant when designing user

interfaces for other mobile phones and tablet PCs, in some cases even for Portable

PCs. (Nilsson, 2005)

A rough categorization of relevant computers or devices with computing abilities is

presented below.

2.1.1 PORTABLE PC (INCLUDING ULTRA PORTABLE PCS)
By a portable PC (including ultra portable

PCs) we mean a PC running a standard

version of the operating system (usually

Windows XP or the newer Windows Vista or

a Linux distribution).

These devices have a full size keyboard and

support mouse as a pointing device. Some

portable PCs have touch screens that may be

operated by a stylus, but this is a supplement

to the mouse, keeping the characteristics of a

mouse operated environment (e.g. having a

mouse pointer, supporting double click and

supporting tool tips in a “normal” way).

2.1.2 TABLET PC
By a tablet PC we mean a PC running a

version of the operating system tailored for

tablet PCs (usually Windows XP Tablet

Edition or the newer Windows Vista).

These devices may or may not have a

keyboard (the keyboard may often be

“hidden” when the user is walking around),

but are tailored for usage without a

keyboard. Modus operandi for these devices

is operating through a “pure” screen based

dialog where text is entered through some

on-screen text entry mechanism(s), and

controlled by a stylus. The Tablet Edition of Windows uses the “mouse” model of

interaction with a visual pointer. Compared to a PDA, these devices share most of the

Example 2 - LG C1 Express Dual.

Example 1 - Lenovo 3000 V100.

 Mobile, Flexible user interfaces

 Page 16 of 102

characteristics regarding interaction mechanisms, although the tablet PCs focus more

on handwriting. Thus, most of the material handling this in this document also applies

to tablet PCs. As the screen size is larger on a tablet PC, the material on screen size

are less relevant.

2.1.3 ULTRA MOBILE PC (UMPC)
By UMPC we mean a PC which is a specification

for a small form factor tablet PC. It was developed

as a joint development exercise by Microsoft, Intel

and Samsung, among others. Current UMPCs

feature the Windows XP Tablet PC Edition 2005,

Windows Vista Home Premium Edition or Linux

operating system. UMPCs will be able to run any

software that has been written for the Windows XP

platform, though the small form factor will mandate

some changes to the interface.

Due to the small size, most UMPCs do not feature a

physical keyboard, but a virtual keyboard, known as

DialKeys
2
, is provided in the Touch Pack Interface. Also, since the device has

standard USB 2.0 connectivity, external keyboards and mice can be attached.

(Wikimedia Foundation, Inc., 2007)

2.1.4 PERSONAL DIGITAL ASSISTANT (PDA)
By PDA we mean a small size computer

whose main function is to support mobile

tasks. The main common functions of these

devices are Personal Information

Management (PIM) applications (calendar,

tasks, notes, email, etc.). It has become

increasingly common that these devices also

include camera and phone.

Most devices have touch screen (operated by

a stylus), and no or limited keyboard. If a

keyboard is available, it is either a telephone

type keyboard or a keyboard with very small

keys. The screen resolution is usually in area of ¼ VGA, but recently, devices with

VGA (640x480) resolution have become available. The most common pointing model

is that there is no visual mouse pointer on the screen, and that there is no distinction

between click and double click (i.e. click (called tap) means double click). Also, as

there is no mouse pointer on the screen, there is no mouse move event, which is a

severe hindrance for utilizing tool tips in a natural way. In addition to tap, the gesture

“tap and hold” is supported, which in most cases plays the same role as right click on

a mouse.

2
 A new text input method was implemented for the Ultra-Mobile PC. Consisting of two rings of keys

around the lower corners of the screen, DialKeys is intended for use with the thumbs.

Example 3 - Samsung NP-Q1B.

Example 4 - HTC TyTn.

 Mobile, Flexible user interfaces

 Page 17 of 102

2.1.5 SMARTPHONE
By Smartphone we mean a high end phone with PDA

functionality. These devices share most characteristics with

PDAs, and as the devices evolve, the distinction becomes

increasingly superficial. Usually, Smartphones are

considered to be less powerful, often smaller with less

memory and weaker processor (and thus often longer battery

life). As there are two versions of the Pocket PC/Windows

Mobile operating system, one for Smartphones and one for

PDAs (with the main difference being screen size

requirements and requirements for using stylus), we have

kept the distinction.

Most Smartphones lack a touch screen and thereby does not

support stylus based interaction. In addition to normal hard keys (hard coded key such

as the number key pad), Smartphones normally have context-sensitive soft keys

(Kiljander, 2004; Lindholm, et al., 2003) located along the display device, which

various functions can be mapped to. This mapping is usually visualized by showing

appurtenant function, on the display, near to the soft key. As a rule of thumb, a

Smartphone is a phone with PDA functionality, while a PDA with phone is, well, a

PDA with phoning capabilities. Although we have made a distinction here, the

material in presented below applies both to PDAs and Smartphones.

2.1.6 OTHER MOBILE PHONE
By Other Mobile Phones we mean low end phones with no or

limited PDA functionality. Again, the distinction is not very clear

as almost all phones have some PIM support, but these devices

have smaller screens, seldom touch screens, have telephone

keyboard, and are less powerful. As they are seldom a target

platform for professional applications, this type of devices is not

focused in the material below. Despite this, many of the problems

described also apply for these devices, in many cases even to a

larger degree. The solutions, though, may not.

Example 5 - HTC S310.

Example 6 - Nokia 6300.

 Mobile, Flexible user interfaces

 Page 18 of 102

2.2 DEVICE PLATFORMS
There are different device platforms out there. The diversity is large, but here we have

listed the five that are the most used and known.

The experience and guidelines/best practices formed in this thesis are base mainly on

devices which run under Windows Mobile OS, more specific Windows Mobile 2003

SE. Even though this is the case, most of the content here should be of general interest

and independent of preferred platform. Should there be some material which is

operating system dependent then it will be noted. Nor do we find it appropriate to

recommend a specific platform for developing applications and their user interfaces.

2.2.1 LINUX
In the past several years, there have

been numerous announcements of

Linux-based handheld computers

and PDAs for both general purpose

and specialized mobile computing

applications, that are either newly

released or in various stages of

development. There is a rapid

emergence of Embedded Linux as a

major "third alternative" (Ziff Davis

Publishing Holdings Inc., 2001) to

Palm OS and Microsoft's PocketPC

(and Windows CE) for handheld

personal computing devices.

LinuxDevices.com has created a guide to Linux-based PDAs, which provides a

continually updated overview of available and developing Linux-based PDA support.

This list can be found at: http://www.linuxdevices.com/articles/AT8728350077.html.

(Ziff Davis Publishing Holdings Inc., 2006)

For additional information about Linux on mobile devices, visit:

http://www.linuxdevices.com/

2.2.2 PALM
Palm OS is a compact operating system developed and

licensed by PalmSource, Inc. for personal digital

assistants, such as Handspring Treo and Visor, Palm Zire

and Tungsten and Sony CLIÉ (Wikimedia Foundation,

Inc., 2007), manufactured by various licensees. It is

designed to be easy-to-use and similar to desktop

operating systems such as Microsoft Windows. Palm OS

is combined with a suite of basic applications including

an address book, clock, note pad, sync, memo viewer

and security software. Palm OS was originally released in

1996. (Wikimedia Foundation, Inc., 2007)

Screen shot 2.1 - The Linux based Internet Tablet OS

2007 edition from a Nokia N800.

Screen shot 2.2 - The

applications tool running in

Icon view on Palm OS 5.3.

http://www.linuxdevices.com/news/NS3569993078.html
http://www.linuxdevices.com/articles/AT8728350077.html
http://www.linuxdevices.com/

 Mobile, Flexible user interfaces

 Page 19 of 102

For additional information about Palm OS, visit:

http://www.palm.com/

2.2.3 WINDOWS MOBILE (POCKETPC/WINDOWS CE)
 Windows Mobile is a compact operating system

combined with a suite of basic applications for

mobile devices based on the Microsoft Win32

API. Devices which run Windows Mobile include

Pocket PCs, Smartphones and Portable Media

Centers. It is designed to be somewhat similar to

desktop versions of Windows.

As version history goes, the newest addition to the

Windows Mobile OS is Windows Mobile 6, which

was released in February 2007. Predecessors to

this are Windows Mobile 5.0 (released May,

2005), Windows Mobile 2003 and Windows

Mobile 2003 SE (released June, 2003).

Pocket PC 2002 was powered by Windows CE

3.0. Targeted specifically at 240 × 320 (QVGA)

Pocket PC (keyboardless) devices, PocketPC 2002

was, like the original PocketPC 2000 release, a stand-alone entity in the Microsoft

Embedded device range. (Wikimedia Foundation, Inc., 2007)

For additional information about Windows Mobile, visit:

http://www.microsoft.com/windowsmobile/default.mspx

2.2.4 SYMBIAN
 Symbian OS is an operating system, designed for

mobile devices, with associated libraries, user interface

frameworks and reference implementations of common

tools, produced by Symbian Ltd. It is a descendant of

Psion's EPOC and runs exclusively on ARM

processors.

Symbian is as of 4
th

 of March 2007 owned by Nokia

(47.9%), Ericsson (15.6%), Sony Ericsson (13.1%),

Panasonic (10.5%), Siemens AG (8.4%) and Samsung

(4.5%). Whilst BenQ has acquired the mobile phone

subsidiary of Siemens AG the Siemens AG stake in

Symbian does not automatically pass to BenQ - this

will need the approval of the Symbian Supervisory

Board.

Symbian OS, with its roots in Psion Software's EPOC,

is structured like many desktop operating systems with pre-emptive multitasking,

multithreading, and memory protection. (Wikimedia Foundation, Inc., 2007)

Screen shot 2.3 - The "Today

Screen" in Windows Mobile 6

Professional.

Screen shot 2.4 - UIQ3 Pen

Style with default theme used

on e.g. Motorola's RIZR Z8.

http://www.palm.com/
http://www.microsoft.com/windowsmobile/default.mspx

 Mobile, Flexible user interfaces

 Page 20 of 102

The Symbian OS is in many instances used as a basis for further adaption and

specialization of an operating platform targeted a particular mobile devices. There are

multiple platforms, based upon Symbian OS, which provide an SDK for application

developers wishing to target a Symbian OS device – the main ones being S60 (used

on devices like Nokia E90 Communicator, N95 and E61i, and Samsung SGH-i520

and SGH-i400) and UIQ (used on devices like Sony Ericsson M600, P990 and W900,

and Motorola Motorizr Z8). (S60, 2007)

For additional information about Symbian, visit:

http://www.symbian.com/

2.2.5 MAC OS X

A new consumer PDA coming later this year

(scheduled US release date of June 2007, later

outside the US) is the Apple iPhone. Even though

this is not release as of this date, we believe that it

is necessary to mention this PDA and its new PDA

operations system.

Apple has confirmed an optimized, full version of

the Mac OS X operating system (without

unnecessary components) will run on the iPhone,

although differences between the operating system

(OS X) running on Macs and the iPhone have not

been officially explained. It is expected to take up

"considerably less" than 500MB. It will be capable

of supporting as-yet undetermined bundled and

future 1st and 3rd-party applications, which are

currently limited to a "controlled environment".

Apple intends to offer a smooth method for

updating the iPhone's operating system, in a similar

fashion to the way that Mac OS X and iPods are updated, and touts this as an

advantage compared to other cell phones.

The iPhone has a (3.5 inch, 320×480 pixels) touch screen which is specifically created

for use with a finger, or multiple fingers for multi-touch sensing. No stylus is needed,

nor can one be used, as the touch screen requires bare skin to operate. For text input,

the device implements a virtual keyboard on the touch screen. The iPhone interface

enables the user to move the content itself up or down by a simple and natural touch-

drag-lift motion, much as one would slide a playing card across a table. Additionally,

the speed desired for scrolling is computed based on the speed and acceleration with

which the drag motion is performed. It is possible to zoom in and out of objects such

as web pages and photos by respectively placing two fingers (usually thumb and

forefinger) on the screen and moving them farther apart or closer together as if

stretching or squeezing the image.

The iPhone's version of OS X includes the software component "Core Animation"

which is responsible for the smooth animations used in its user interface. (Wikimedia

Foundation, Inc., 2007; Apple Inc., 2007)

Screen shot 2.5 - A prototype of the

Mac OS X used in the iPhone.

http://www.symbian.com/

 Mobile, Flexible user interfaces

 Page 21 of 102

3 PROBLEM SCOPE
The problem scope of this master thesis is given by three different axes. Each axis

denotes a category to be examined. Within this these axes a space emerges, and it is

this space that defines the problem scope.

Illustration 3.1 - Visualization of how the problem scope is defined within three axes.

The first axis denotes a set of User Interface Categories (chapter 4 – page 23). These

are categories representing a set or a composition of user interface properties or

mechanisms which makes it distinct. The user interface categories selected here are

abstracted above simple user interface controls and mechanisms but still operate

within the concept of graphical user interfaces.

The following five user interface categories have been selected:

Axis number two represents a set of User Interface Challenges (chapter 5 – page 29)

one might need to take into account when designing and implementing a user

interface on a mobile device. These challenges are of different sort and may occur in

Form

Icon

Document
Graphic

Repetition

 Form Based

 Icon Based

 Document Based

 Graphics Based

 Repetition Based

Programming

Drawing

 Modeling

 Marking up

 Mobile, Flexible user interfaces

 Page 22 of 102

connection with for instance changing interaction styles and varying user interface

space.

Six commonly faced challenged are selected for in-depth inspection:

The third and last axis denotes different existing and/or emerging design approaches

used for designing and constructing user interfaces. These design approaches gives

different advantages and disadvantages depending on what type of task at hand or

where in the development process one might be.

There are primarily four approaches to designing user interfaces
3
 (Nilsson, 2004):

Each axis, user interface categories, user interface challenges and design approaches,

will be paired up against each other, though the main focus is on the plan that emerges

between user interface categories and user interface challenges. If a design approach

has an advantage over the others, for a specific category handling a challenge, this

will be commented.

3
 Mark that a given development tool may use a combination of these four approaches

 Programming the user interface  This involves using a programming
library (or application programming interface – API) that facilitates
implementation of a user interface using components, classes, methods,
functions etc.

 Drawing the user interface  This involves using a screen painter to
make a “painting” of the intended user interface, combined with a
programming facility (textual or graphical) to specify the behavior of the
UI.

 Model the user interface  This involves using a modeling language
(graphically and/or textual) for specifying the UI on some level of
abstraction, and applying a mapping process (automatic, semiautomatic,
or manual) transforming the UI model to a running user interface
(generated code or by interpreting the model by a run-time system).

 Mark up the UI This involves using a mark-up language (HTML, WML,
XML, etc.) to specify the contents and to a varying degree the appearance
of a UI. This specification is interpreted by a generic client (browser).

 Switching Between Portrait and Landscape Screen Orientation

 Software Keyboard Showing/Hidden

 Content Larger Than its Display Container

 Finger Optimized User Interface

 Switching Between Stylus and Finger Optimized User Interface

 User Interface Able To Run on Equipment with Different Screen Size

 Mobile, Flexible user interfaces

 Page 23 of 102

4 USER INTERFACE CATEGORIES
In the world of user interfaces there exist different categories or types. Each of these

has a distinct set of properties which set them apart from each other and give them

their unique form and/or appearance. Here we have chosen to divide the various user

interfaces into five categories.

The five user interface categories are:

It is rare that an application’s user interface only concur with one of the user interface

categories mentioned below. Most consist of a combination of two or more, which

together make up the complete user interface. But then again, there is regularly one

dominant user interface style or type in use which binds it all together.

When discussing complexity in a user interface category, complexity is here used in

the context of how difficult it is to have good user interface plasticity – i.e. the

capacity of a user interface to withstand variations of both the system’s physical

characteristics and the environment while preserving usability (Thevenin, et al., 1999;

Calvary, et al., 2002).

The different user interface categories are presented in the following form:

4.X – User Interface Category (no. 1 – 5)
 Complexity
 Exemplifying screenshot
 Various information (e.g. general description, most common application
 types, etc)

 Form Based

 Icon Based

 Document Based

 Graphics Based

 Repetition Based

 Mobile, Flexible user interfaces

 Page 24 of 102

4.1 FORM BASED

Form based UIs, often referred to as form

fill-in, are one of the most common user

interface types in use on present software

solutions today. It may not always be the

dominant part of a software solution’s user

interface, but if one e.g. wants to input data

or change some settings, the interaction is

in most instances done via a form based

user interface instance.

The form based user interface is constructed

with paper based forms as the guiding

interface metaphor, forms like those you

might use when filling out your tax return

or applying for a loan. Typical elements

which are found in these paper based forms

like text labels, text entry fields and check

boxes, also have their counterpart in the

form based user interfaces. In addition, as

computer based user interface can be seen as

more dynamic, there exists other more

loosely inspired components.

This user interface type can be quite complex. The form based user interface can

consist of many and multifaceted components which in themselves can be difficult to

handle. When these in addition require interaction, not only from the user but from

other components, maintain functionality and usability can be challenging. Hereby it

is often vital that all components are preserved usable throughout the various context

changes.

Complexity: High to medium

Example 7 - A typical form based user

interface. This screenshot is from Cash

Organizer 2007 Premium.

 Mobile, Flexible user interfaces

 Page 25 of 102

4.2 ICON BASED

This is a fairly straight forward, but none

the less, widely used user interface

category. The icon based user interface has

a main panel for showing icons which

governs the major portion of the user

interface. These icons may be automatically

organized in different patterns, or in some

cases customarily arranged only by the user

of the system.

The icons themselves may represent

instances like a file, folder, application or

device on a computer operating system. In

modern usage today, the icon can represent

anything that the users want it to: any

macro command or process, mood-

signaling, or any other indicator.

Within this main panel the icons are in most

instances presented or projected in three

different ways. Large icons, with a typical

icon size of 32x32 pixels, sorted from left to

right and shifting down a step when full width is used. Icon list, smaller icons, often

with size 16x16 pixels, listed downwards and when total height is used the list

continues in a new column to the right. Detail list, much like the icon list with similar-

sized icons, but this list not only shows an icon representing the file or directory, it

also shows appurtenant information like e.g. size and date/time. The view is divided

into columns and rows, where each row represents a file or directory and each column

show distinct file or directory information.

As for the icons, they can have varying sizes, but normally within a range from 48x48

pixels, through 32x32 and 24x24, down to 16x16, sometimes even the size might be

higher or lower. 32x32 and 16x16 are the dimensions most frequently used. For

instance, 32x32 is often used in connection with a large icons view 16x16 used in an

icon list or detailed list projection. The icons are almost always accompanied by

explanatory or descriptive text, most commonly place under or to the right of the icon

it belongs to.

Icon based user interface are usually relatively easy to handle in terms of complexity.

It is mainly a case of adjusting the main panel where the icons are shown, or adjusting

how the icons themselves are represented.

Complexity: Low

Example 8 - A typical icon based user

interface. This screenshot is from Total

Commander /CE.

 Mobile, Flexible user interfaces

 Page 26 of 102

4.3 DOCUMENT BASED

This is a user interface category where the

main portion of the screen is dominated by

a panel presenting some form of document.

By document we’re talking about a large

surface used for displaying, and maybe

editing, mainly textual and numerical

content. In many instances these document

based user interfaces are modeled on typical

physical documents one will encounter in

working-day life.

There is large variety between how the

documents themselves are designed and

presented. Well know application types

which often belong in the document based

user interface category are word editors,

web browsers and spread sheet applications.

A document user based user interface

generally stays within medium to low

complexity in terms of being plastic. The

main challenge is to conform the document

itself to the changing context without losing the semantics and continuity.

Complexity: Medium to low

Example 9 - A typical document based user

interface. This screenshot is from Microsoft

Pocket Word.

 Mobile, Flexible user interfaces

 Page 27 of 102

4.4 GRAPHICS BASED

The graphics based user interface category

is a quite wide category, and we are here

talking about applications where the main

portion of the user interface, often the

whole screen, is governed by a panel

dedicated to show a graphical content.

One of the most fitting application types in

this category is graphical information

system (GIS) software, where most of the

application user interface is used for a map

with additional information placed upon.

Other typical graphic based software types

are games. Games often have an original

and unusual user interface and frequently

use the whole available screen.

User interfaces in this category often stray

away from the conventional instructing

WIMP (windows, icons, menus and pointers)

(Preece, et al., 2002) model used in other

applications. More often the conceptual

model behind is the manipulating and navigating or conversing (Preece, et al., 2002),

which effects both how interaction is carried out and the visual appearance of the user

interface.

In terms of how complex it is to keep usability in a changing context, this user

interface category varies between high and medium. Some user interface instances

can be very complex with an unorthodox layout and many custom components, while

other instances can be much simpler.

Complexity: High to medium

Example 10 - A typical graphic based user

interface. This screenshot is from Pocket

Earth 3.4.

 Mobile, Flexible user interfaces

 Page 28 of 102

4.5 REPETITION BASED

The repetition based user interface category

is a fairly diverse category when

considering application domain. As the

name says, it covers user interface where

one or a few user interface elements or

mechanisms are used repetitively as the

main feature. Applications hereunder are

typically lists, but also grids, with similar

content being shown and arranged in some

form or matter. The lists are generally

shown with (columns as) attributes arranged

besides each other horizontally and (rows

as) items placed on top of each other. In

some case this can be switched around with

columns as elements and row as attributes.

An attribute represents a data or

information type and an item has instances

of each of the data or information types.

The items, which a repetition based consists

of can represent various things, among

others various textual or numerical data,

functions, files and directories, etc.

Applications with a dominant repetition based user interface are sometimes fairly

simple and/or one-purposed applications. Many applications have a section where the

user interface is repetition based. A good example of this is the typical file browser

tree (dialog) that is used in many applications, e.g. to open files, select save directory,

etc. This file browser tree (dialog) has properties which place it under the repetition

based category - i.a. items consisting of a icon and appurtenant text repeated and/or

nested under each other.

The complexity of having good plasticity in repetition based user interface ranges

from medium to low, and is mainly dependent on how intricate the individual

repeated items are. Should the items be simple text based component it will probably

be relatively simple. On the other hand, with items contain many and/or varying

element the situation can be more intricate.

Complexity: Medium to low

Example 11 - A typical repetition based user

interface. This screenshot is from Cash

Organizer 2007 Premium.

 Mobile, Flexible user interfaces

 Page 29 of 102

5 USER INTERFACE CHALLENGES

5.1 MAIN PROBLEM AREA
User interface challenges can be grouped under three main problem areas.

5.1.1 UTILIZING SCREEN SPACE
When talking about screen space this is defined by two different, but often

codependent, factors. Firstly one has the physical size of the screen, often measured

in inches from a corner to the diagonally opposite corner. Secondly we have the

resolution used on the screen, normally given in number of pixel, width by height.

One of the most apparent problems with mobile devices is the available screen space,

or more accurately put, the lack of screen space. This gives a series of challenges or

problems which needs to be handled in order to optimize the user efficiency and

experience, and ultimately make an application more usable. Utilizing screen space is

not just about cramming as much as possible into a small area, but rather a concept of

adapting the user interface to a specific task or challenge at hand. In one instance it

can be about having lots of functions available inside a small space which is

controlled via a stylus, but in another instance the goal can be to create a user

interface suited for finger based interaction which demands very different means.

The screen resolution also varies greatly between existing mobile devices. The screen

resolution might be as low as 128x128 pixels on some mobile phones and up to a

typical 1024x768 (or widescreen 1280x800) on portable and tablet PCs. On a typical

PDA the screen resolution usually is in area of ¼ VGA (320x240), but recently,

devices with VGA (640x480) (e.g. Qtek 9000 and HTC X7500) resolution have

become available.

5.1.2 FLEXIBLE LAYOUT AT RUN-TIME
This is user interface changes that should be handled at run-time, and we are talking

about context changes around and within one specific mobile device.

The context, in which a user operates on a mobile device, changes much more rapidly

than for a user operating stationary equipment. An important challenge when

designing mobile user interfaces is to exploit knowledge about these changes to

enhance the user experience. The context changes are multidimensional – and

sometimes rapid – comprising location, light, sound, task, network connectivity, and

possibly biometrics.(Herstad, 1998)

As a mobile device is used in these different and changing contexts, there is often a

need to adapt the user interface at run-time, without the user needing to restart or

change the application. The user might go from interaction via a stylus to fingertip, or

the available area where the application user interface can unfold itself might be

changing frequently (e.g. due to a software keyboard popping up or dropping down,

or screen orientation change from portrait to landscape). Restarting or changing

application can seriously interrupt the work-flow and already input data can be lost.

This can be both inefficient and frustrating for the user.

 Mobile, Flexible user interfaces

 Page 30 of 102

5.1.3 FLEXIBLE LAYOUT AT DESIGN-TIME
In contrast to changing the user interface at run-time, one might have the need to

change or adapt at design-time. Here the context change is not within or surrounding

one specific device. The different context for a user interface is given by for instance

the fact that an application will be installed and used on many different mobile

devices. As the user interface may be run on different mobile devices, which often

have differences in screen size, interaction possibilities, etc, it is often the easiest to

handle this when in the design and development phase.

 Mobile, Flexible user interfaces

 Page 31 of 102

5.2 THE CONCRETE CHALLENGES

5.2.1 SWITCHING BETWEEN PORTRAIT AND LANDSCAPE SCREEN

ORIENTATION

Switching between a portrait and landscape screen orientating is something which

nowadays is supported by many mobile devices. This support is either on application

level, for example games might often use the screen in a landscape orientation even

though the rest of the operations system is portrait oriented, or as a feature in the

mobile device operations system, forcing (if possible) all subordinate applications to

follow its configured orientations. Windows Mobile (now in version 6, and also with

its predecessors down to PocketPC 2003 SE) supports it, and Palm OS does as well.

Currently Symbian does not, although an application called RotateMe is under

development for this platform (Symbian-Guru, 2007). In recent Symbian OS

platforms rotation is supported at applications level. An example is the Nokia N95,

which can be used in both portrait and landscape mode, where most of the standard

applications can be rotated.

When changing between these two viewing modes the user interface display area

changes and it might be necessary to handle this change in order to maintain usability.

Whether or not the change is severe enough, is dependent on many factors from user

interface type to available screen space and resolution.

This challenge can in most ways be compared to the challenge of having user

interfaces run on equipment with different screen size. For instance, on a typical

Windows Mobile device the screen has a resolution of 240x320 pixels (width by

height) when used in portrait mode. When a user interface then is to be run on the

same device in landscape mode, it is simply put a change from a resolution of 240 x

320 to 320x240. I could as well have been two different devices with respectively 240

x 320 and 320x240.

The main difference is that while a user interface quite possibly will be designed to

support these two screen resolutions at design-time, the screen resolutions change

here is within one device and the change needs to be handled at run-time. It is the

latter that will be reviewed here.

5.2.2 SOFTWARE KEYBOARD SHOWING/HIDDEN

As many mobile devices strive to be as compact and small as possible to maintain a

high degree of mobility, they often come without at physical keyboard. This makes

entering text at the best different, and usually much more difficult than using a

keyboard on a stationary PC.

Main problem area: Utilizing screen area

Main problem area: Utilizing screen area

 Mobile, Flexible user interfaces

 Page 32 of 102

If a mobile device has a physical keyboard it is seldom a full size Qwerty-keyboard.

In many instances the keyboard is reduced in either:

 Size – In example the keyboard size might be down-scaled to fit and/or slide

under the mobile device front (like on HTC - TyTN (Qtek 9600) and i-mate

JASJAR) or to stay within the width of the mobile device placed under the

screen (as with HTC S620, Palm Tungsten C and PalmOne Treo 650).

 Number of buttons - E.g. mobile devices where the keyboard is set-up with

each button representing three characters (as on HTC - MTeoR Smartphone

(Qtek 8600) or i-mate SPL).

 A combination of both.

This lack of normal and maybe more user efficient physical keyboards has created a

need for other input solutions, and here the software keyboard is one of them. In most

cases this is shown, when in use, on-screen and anchored to the bottom part. When the

software keyboard is shown it occupies a considerable portion of the screen which

again gives the application less space to utilize.

Screen shot 5.1 - A software keyboard, here the default from Windows Mobile 2003 SE.

It is worth mentioning that there also exist other software solutions for textual and

numerical input. The most common ones are letter recognizers and transcribers, were

the software recognizes or transcribes close to normal handwriting written on a

designated are on touch screen. But usually these also occupy the same space as a

normal software keyboard and will therefore not be commented as separate

challenges.

Screen shot 5.2 - A letter recognizer, here default from Windows Mobile 2003 SE.

There also exist some software keyboards which utilize the whole screen as a virtual

keyboard, leaving only a small field showing the entered/edited text. Spb Full Screen

Keyboard (http://www.spbsoftwarehouse.com/products/fsk/?en) from Spb Software

House is such a quite popular solution on the Windows Mobile platform. But this is a

special case, and stands out as an independent application more than an accompanying

utility used for textual and numerical input. It will as a result of the above mentioned

not be commented here.

http://www.spbsoftwarehouse.com/products/fsk/?en

 Mobile, Flexible user interfaces

 Page 33 of 102

Another solution is where the whole touch screen is used for letter recognition or

transcribing on top of the user interface without visually occupying any space. This

has both its pros and cons, but will not be commented further.

5.2.3 CONTENT LARGER THAN ITS DISPLAY CONTAINER

As mentioned earlier, the screen space on a mobile device is limited as a result of

mobile devices having to be just that, mobile. And it is fairly common that

applications have a user interface which at some time or another use more space than

what is available screen space. When the content is larger than its display container

this will result in some part(s) of the user interface been partially or wholly hidden.

This should in most cases be handled in order not to lose valuable information and/or

application usability.

Many of the challenges listed here will in some form or another touch this challenge

of content being larger than its display container. As a matter of fact, some challenges

will in certain case, when it boils down to it, become a “simple” content larger than its

display container challenge.

5.2.4 FINGER OPTIMIZED USER INTERFACE

Many mobile devices have the possibility to interact with the device tangibly via a

touch screen, either by using a stylus (a dedicated pen-like pointing device) or

something else, normally a finger. Although these two touching methods might seem

the same or at least quite similar, there are some acute differences. These differences

are largely due to the fact that the pointing accuracy of a stylus is much more accurate

than that of a finger – we should specify that when talking about using a finger as

pointing device, one can use both the fingertip and the finger nail. Here we assume,

what in most instances is worst scenario, i.e. using the fingertip.

The most apparent problem when using your finger, instead of a stylus, is the lack of

precision when touching the screen. Then taking into account that the finger also

conceals a much larger portion of the screen when it is positioned over the screen, it is

even more protruding. To even make matters even worse, the user might be wearing

equipment like gloves and thereby further reduction accuracy. In order not to have a

completely useless user interface adjustments will likely be necessary in order to

handle these challenges and maintain usability.

Main problem area: Utilizing screen space

Main problem area: Flexible layout at run-time

 Mobile, Flexible user interfaces

 Page 34 of 102

5.2.5 SWITCHING BETWEEN STYLUS AND FINGER OPTIMIZED USER

INTERFACE

Switching between a stylus and finger optimized user interface also incorporates the

challenges (with using a finger as a pointing device) as mentioned above. But as

creating a finger optimized user interface is handled at design-time, the ability to

switch between a stylus and finger optimized user interface is something which

should be handled at run-time. It might not be acceptable or even possible for the user

if it is necessary to restart the application when changing from using stylus to finger

or vice versa.

As a stylus is both more accurate and less concealing, the user interface with its

components and mechanisms can be of different form the event where a finger is the

main pointing device. If there is a possibility that an application will be used with

both a stylus and a finger as a pointing device, this is something which might need to

be handled if one wants to preserve usability.

5.2.6 USER INTERFACE ABLE TO RUN ON EQUIPMENT WITH DIFFERENT

SCREEN SIZE

As stated under Types of Devices (chapter 2.1 – page 15) there exist a vast number of

mobile devices, from portable and tablet PCs down to PDAs, Smartphones and mobile

phones in general. When designing and developing software, one have to decide

whether it is suppose to be used on a wide variety of devices. If this is the case, the

probability that these devices have varying screen sizes is quite high.

For instance, within the PDA and Smartphone market alone the screen size, resolution

wise, can go as low 176x220 pixels on a 2.2 inch screen (like on the HTC S310) up to

VGA (640x480) on 4.0 inch screen (e.g. HP iPaq hx4700).

This great variation, both in screen size and resolution, gives several challenges when

one is designing a user interface to be used across these different mobile devices. It

can be challenges surrounding how to create a user interface which is usable on

“small” Smartphone resolutions and still utilizes what a larger PDA resolution has to

offer. Or if the different Smartphones and PDAs support tangible interaction, how to

accommodate this when the user interface might have as little as 2.2 inches to unfold

itself over and up to 4.0 inches.

Main problem area: Flexible layout at design-time

Main problem area: Flexible layout at run-time

 Mobile, Flexible user interfaces

 Page 35 of 102

6 CURRENT SOLUTIONS
There exist a number of solutions or applications which is some way or another

encounter the user interface challenges listed in User Interface Challenges (chapter 5

– page 29). A set of applications have been selected in order to illustrate existing

solutions and how they handle the challenges. We will not pair up all applications

against all challenges, but rather show an exemplifying selection.

This section is structured in the following way:

The main sorting category is the five user interface categories (form, icon, document,

graphic and repetition based). Under each of these, two different and currently

available applications have been selected. For each of these applications one or two

challenges (from the total six challenges) have been explored to see how they are

handled.

In the studies of how the user interface challenges were being handled by existing

software, some challenges were easy to find and test while other were less easy to

find, and some was not found at. This is natural since some challenges occur more

frequently than other. Some of the challenges were also difficult to test due to the lack

of mobile devices where the support of functions was limited. These were limitations

which made it impossible to provoke one or more of the challenges. All this is

commented further in Summary (chapter 6.6 – page 56).

6.X – User Interface Category (no. 1 – 5)
 6.X.X – Application (no. 1 – n)
 6.X.X.X – Challenge (no. 1 – n)

 Mobile, Flexible user interfaces

 Page 36 of 102

6.1 FORM BASED APPLICATIONS

6.1.1 CASH ORGANIZER 2007 PREMIUM
Cash Organizer (http://www.inesoft.com/eng/index.php?in=premium.htm) can keep

track of your accounts, watches the budget and remind of the planned payments. It is

distributed by Inesoft. It has a variety of functions and user interface mechanisms, but

a substantial part of it has a form based characteristics. The application user interface

often takes on a form based structure when one inputs data.

6.1.1.1 HANDLING: SWITCHING BETWEEN PORTRAIT AND LANDSCAPE SCREEN

ORIENTATION
The Cash Organizer user interface is primarily set up for use in a portrait oriented

way. In this application, registering a new transaction for instance has a typical form

based user interface, with text labels, text entry fields, pull-down menus, etc.

In portrait orientation the registering a new transaction user interface has two main

panels. The upper panel, occupying two thirds of the available screen, is used for

entering transaction data. The lower panel, taking up the remaining one third, shows

already registered transactions.

Screen shot 6.1 - Registering a new transaction in portrait orientation.

When the screen orientation has changed from portrait to landscape, the register new

transaction user interface consists of one panel (in contrast to two when in portrait

mode). This panel is the part used for registering transaction data.

http://www.inesoft.com/eng/index.php?in=premium.htm

 Mobile, Flexible user interfaces

 Page 37 of 102

Screen shot 6.2 - Registering a new transaction in landscape orientation.

The solution used in Cash Organizer’s register new transaction user interface for

handling switching between portrait and landscape screen orientation is by using one

large component as a buffer (as described in Use One Large Component as a Buffer –

chapter 7.3.2 – page 67). In this case a panel containing already registered

transactions. This information was in this instance deemed insignificant enough to be

removed in order to sustain usability after screen orientation.

6.1.1.2 HANDLING: SOFTWARE KEYBOARD SHOWING/HIDDEN
Again, when registering a new transaction, the user interface is built up of two main

panels as described above. This is the case when no software keyboard is shown.

Screen shot 6.3 - Registering a new transaction user interface without software keyboard showing.

 Mobile, Flexible user interfaces

 Page 38 of 102

When activating the software keyboard, this slides up from the bottom part of the

screen and occupies about one third of the available user interface area. This software

keyboard slides above the bottom main panel, hiding this.

Screen shot 6.4 - Registering new transaction user interface with software keyboard showing.

Here again the lower panel, which has information purpose, is used as a buffer (as

described in Use One Large Component as a Buffer – chapter 7.3.2 – page 67). This

is done to not compromise the panel for entering transaction data and still show a full

software keyboard.

6.1.2 POCKET INFORMANT 2007
Pocket Informant 2007 is a classical and all-embracing PIM (personal information

manager) system. Among the functions are appointments, tasks, notes, contacts, and

search views. Pocket Informant is developed and distributed by Web Information

Solutions, Inc. (http://www.pocketinformant.com/). The user interfaces in this PIM

can’t be placed under just one user interface category (as what is the case with many

applications), but one of the protruding categories in use is the form based one.

The edit contact user interface is a typical form based instance, although we could

also argue that it has characteristics which could place it under the repetition based

category. The contact information available for editing are listed in one main panel,

with a title bar placed above and a tabs and toolbar under.

6.1.2.1 HANDLING: SWITCHING BETWEEN PORTRAIT AND LANDSCAPE ORIENTATION
In portrait orientation, the panel show all information about selected contact, just as

show below in Screen shot 6.5.

http://www.pocketinformant.com/

 Mobile, Flexible user interfaces

 Page 39 of 102

Screen shot 6.5 – Editing contact data in Pocket Informant 2007 with screen used in portrait

orientation.

When the screen is oriented in the landscape manner, the information is still listed as

when in portrait mode, with the same sized fields and components. In this example,

the information overflows available screen space (and concur with the challenge

Content Larger Than its Display Container – chapter 5.2.3 – page 33), and to handle

this a ordinary scroll bar is added to the right side in order to make the information

outside the projection accessible.

Screen shot 6.6 - Editing contact data in Pocket Informant 2007 with screen used in landscape

orientation.

Adding a scroll bar when a projection is unable incorporate all content is a quite

common, well-known and extensively used method (as described in Add or Adjust

Scroll Bars – chapter 7.2.4 – page 65). It is also quite common solution to a projection

constriction problem.

 Mobile, Flexible user interfaces

 Page 40 of 102

6.1.2.2 HANDLING: FINGER OPTIMIZED USER INTERFACE
As purely finger optimized user interfaces go, this is not present in Pocket Informant

2007. The user interface is constructed with a stylus based interaction in mind, which

supports a greater precision and less screen obstruction.

It this case when editing a contact, it is quite difficult to both see (because of the size

of the finger and fingertip) and hit specific fields, tabs and buttons, especially when

using your fingertip (and not the nail). The components are either not large enough or

the spacing in-between is not sufficient.

Screen shot 6.7 - Editing contact data in Pocket Informant 2007.

 Mobile, Flexible user interfaces

 Page 41 of 102

6.2 ICON BASED APPLICATIONS

6.2.1 TOTAL COMMANDER/CE
Total Commander/CE (http://www.ghisler.com/ce.htm) is a functionally rich file

browser and managing utility. The application is developed and distributed by

Christian Ghisler, C. Ghisler & Co.

A key part of the application is where the files and directories are shown and can be

handled and navigated through. The user interface here is dominated by a large main

panel for the files and directories projection, paired together with an address bar

placed above and a menu below. These files and directories in the main panel can be

viewed with three different projections; as large icons (typically 32x32 pixels), an

icon list (with icons of size 16x16 pixels) or a detailed list (16x16 sized icons with

appurtenant information). This user interface is a typical icon based one.

6.2.1.1 HANDLING: CONTENT LARGER THAN ITS DISPLAY CONTAINER
It is often that the number of directories and/or files fills up and exceeds the available

screen. The solution used in Total Commander/CE is fairly simple and common for

this category of user interfaces; a vertical scroll bar is added, making content outside

the current view reachable (as described in Add or Adjust Scroll Bars – chapter 7.2.4 –

page 65).

Screen shot 6.8 - Example of how a view container overflow is handled in Total Commander/CE by

adding vertical scroll bars.

It is also possible to change the font of the text which accompanies the icons. To

accommodate more icons within current screen space this font size can be decreased.

http://www.ghisler.com/ce.htm

 Mobile, Flexible user interfaces

 Page 42 of 102

6.2.1.2 HANDLING: SWITCHING BETWEEN STYLUS AND FINGER OPTIMIZED USER

INTERFACE
There is little dedicated support in Total Commander/CE for switching between a

stylus and finger optimized user interface, and the address bar and menu is static. But

as it is possible to switch between different files and directories projections, some of

these projections are more suited for stylus based interaction and others for finger

based.

For instance the large icons projection, with 32x32 pixels sized icons, is quite fitting

for finger based interaction due to the larger sized icons (as shown in Screen shot 6.9).

If one then wants to use a stylus instead and do not need the larger sized icons it is

possible to change to an icon listed projection (as exemplified by Screen shot 6.10).

Screen shot 6.9 - Example of how the files and directories projection can be more suited for stylus use

in Total Commander/CE.

6.2.2 POCKET FILE EXPLORER
Bundled together with Windows Mobile 2003 SE, Pocket File Explorer is here the

default file and directory browser. The functionality consists of basic and essential

functions.

In the main panel showing directories and files, directories are show as 16x16 pixel

icons with directory name following and files are show as 16x16 icons accompanied

by filename, date and size. One line is used for each separate directory or file. This is

a variation of a detailed list.

6.2.2.1 HANDLING: SWITCHING BETWEEN PORTRAIT AND LANDSCAPE SCREEN

ORIENTATION
When switching between portrait and landscape screen orientation there is little done

in Pocket File Explorer to optimize the view to the new context. Should the content

 Mobile, Flexible user interfaces

 Page 43 of 102

surpass available displaying area after a change from one orientation to another,

vertical scroll bar will be added in order to keep all content accessible.

Screen shot 6.10 – A typical view in Pocket File Explorer in a portrait orientation.

Screen shot 6.11 - A files and directories view in landscape orientation.

6.2.2.2 HANDLING: SOFTWARE KEYBOARD SHOWING/HIDDEN
Pocket File Explorer handles the showing and hiding of a software keyboard in much

the same way as when switching between portrait and landscape screen orientation

and when the content exceeds available displaying area. If the software keyboard is

showing the panel used for viewing files and directories in effect decreases in size,

losing space to the software keyboard, and should the content exceed its offered area

scroll bars are added or adjusted rendering vertical scrolling possible.

 Mobile, Flexible user interfaces

 Page 44 of 102

Screen shot 6.12 - Pocket File Explorer with the software keyboard showing.

 Mobile, Flexible user interfaces

 Page 45 of 102

6.3 DOCUMENT BASED APPLICATIONS

6.3.1 POCKET WORD
Pocket Work is one of the features in the Microsoft Office bundle for pocket PCs. It is

a stripped down and adapted version of its bigger brother, Microsoft Word for the

Windows desktop environment. At the core is the ability to read and edit textual

documents. The user interface mainly shows current document which may be

accompanied by various tool bars and such.

6.3.1.1 HANDLING: CONTENT LARGER THAN ITS DISPLAY CONTAINER
A common challenge when using software with a document based user interface is

when the content is larger than its display container, something which often is the

case. For instance, when editing a textual document in Pocket Word the content will

often not be small enough to fit within the panel area used for drawing the document.

When the shown document is larger than is display container this is, in Pocket Word,

handle by quite simply adding a vertical scroll bar docked to the left side.

Screen shot 6.13 - A document that is larger than its display container in Pocket Word.

It is also possible to adjust the content by changing the zooming level, but this is

something which has to be done manually. By using zoom it is possible to adapt or

optimize the content some degree. But if zoom level is too high it becomes difficult to

read the text and should the zoom level be too low it can be difficult to see the words

context and thereby read it.

 Mobile, Flexible user interfaces

 Page 46 of 102

Screen shot 6.14 - Pocket Word at the highest zooming level. Zoom level can be selected in the menu.

6.3.1.2 HANDLING: SOFTWARE KEYBOARD SHOWING/HIDDEN
When using Pocket Word one will quite often use a software keyboard to write or edit

a document, especially if there is no type of hardware keyboard present. This software

keyboard does, as specified earlier, occupy about one third of the bottom part of the

screen. When this is shown, the panel for document projection is reduce and if this

panel then is smaller than the document a vertical scroll bar appears docket to the left,

render it possible to show the various parts of the document outside of the new

projection.

Screen shot 6.15 - Pocket Word with a software keyboard showing.

 Mobile, Flexible user interfaces

 Page 47 of 102

6.3.2 POCKET INTERNET EXPLORER
As with Pocket Word, this is also a modified version of the richer Internet Explorer

found on you average Windows desktop. It is purposed for show web related

documents, typically HTML based web pages. At the center of attention is a large

panel for view web document.

There are three different ways of laying out web documents in Pocket Internet

Explorer:

 Default – Narrows content width to reduce horizontal scrolls.

 One Column – Forces all content to fit in a single column with no horizontal

scrolling.

 Desktop – Makes no change to the content. Rendering for Internet Explorer

Mobile is as close as possible to the rendering for Windows Internet Explorer

on a Windows-based desktop platform.

(Microsoft Corporation, 2006)

I will for these examples use the default layout viewing property.

6.3.2.1 HANDLING: CONTENT LARGER THAN ITS DISPLAY CONTAINER
It is not uncommon that web pages viewed in Pocket Internet Explorer are larger that

the available screen space. Experience shows that this is more the rule than the

exception. Almost only paged specially designed for mobile devices fit their smaller

screens.

In default layout mode, web documents that are larger than the viewing panel, is

mainly handled by adding scroll bars, both horizontal and vertical ones. There is also

some form of size reduction done on images in these web documents, to make the

content fit more properly, but that is for the most part it.

Screen shot 6.16 - A web document shown in Pocket Internet Explorer that is larger than its display

container.

 Mobile, Flexible user interfaces

 Page 48 of 102

6.3.2.2 HANDLING: SWITCHING BETWEEN PORTRAIT AND LANDSCAPE SCREEN

ORIENTATION
Switching between portrait and landscape screen orientation is handled in a

straightforward way. If the content in some way exceeds the available display panel,

when switching between the two orientations scroll bars are added or adjusted, either

horizontally, vertically or both.

Screen shot 6.17 – A web document showed in a portrait orientation.

Screen shot 6.18 - A web document showed in a landscape orientation.

 Mobile, Flexible user interfaces

 Page 49 of 102

6.4 GRAPHICS BASED APPLICATIONS

6.4.1 POCKET EARTH 3.4
Pocket Earth (http://www.bluepointstudios.com/www/?fuseaction=product.poe) is a

GIS application aimed at giving and displaying different information about the earth.

The information is on fairly a abstracted level and the purpose is to get a overview of

the earth with its major cities, time zones, sunrise and sunset, sun and moon azimuth

and elevation, etc. It is developed by Blue Point Studios.

The dominating part of the user interface shows a graphical map normally

accompanied by information of some sort. The tool bar at the bottom can be hidden so

that the whole screen is used for a map projection.

6.4.1.1 HANDLING: SWITCHING BETWEEN PORTRAIT AND LANDSCAPE SCREEN

ORIENTATION
Pocket Earth has no way of dealing with switching between portrait and landscape

screen orientation. The application user interface is drawn the same way with the

same orientation (portrait wise) independent of what screen orientation is set as the

preferred one in the operating system.

Screen shot 6.19 – Example of how the Pocket Earth user interface is drawn both in a portrait and

landscape orientation (no difference).

6.4.2 SIMCITY 2000
This is primarily a "building" game, where you create and try to increase the size of

your cities, and rescue it from earthquakes and other natural disasters. The main goal

of SimCity 2000 for the Pocket PC is to design, manage, and maintain the city of your

dreams. Here the rules to learn are based on city planning, resource management,

factors influencing land value, human factors, strategies for dealing with disasters,

unemployment, crime and pollution, and the quality of life in a city.

http://www.bluepointstudios.com/www/?fuseaction=product.poe

 Mobile, Flexible user interfaces

 Page 50 of 102

SimCity 2000 (for PC) was originally developed by Maxis, and was licensed to ZIO

Interactive, Inc. who ported it to the Pocket PC platform. It is distributed by ZIOSoft,

Inc.

The user interface is build around a main panel, where one can view the city and

surrounding area. This panel occupies almost all of the available screen space. On top

of this main panel is a tool bar and at the bottom a menu.

6.4.2.1 HANDLING: FINGER OPTIMIZED USER INTERFACE
The user interface is not especially optimized for finger based touch interaction. In

spite of this, it is relatively usable. Then interaction is mainly done by selecting

function and touching where to operate. The buttons, with the key functions, in the top

tool bar are relatively large, and they are not that difficult to hit with a fingertip. It is

also possible to navigate around in the main panel showing the city, but the precision

is coarse. This can be a problem when one for instance wants to select a specific

number of squares and alter these. Furthermore the bottom menu is quite undersized

for fingertip-use. It is usable, but just.

.
Screen shot 6.20 – An example of a SimCity 2000 game in action.

6.4.2.2 HANDLING: CONTENT LARGER THAN ITS DISPLAY CONTAINER
This is solved in a relatively straightforward and anticipated manner. In SimCity 2000

the map is always larger than the available screen space, independent of zoom level.

And because of this, horizontal and vertical scroll bars have been added in order to

render it possible to see every part of the map. It is simply a case of adjusting these

scroll bars.

 Mobile, Flexible user interfaces

 Page 51 of 102

Screen shot 6.21 - SImCity 2000 zoomed out as far as possible, with scroll bars.

6.4.3 TOMTOM NAVIGATOR
TomTom (http://www.tomtom.com/) is a Netherlands-based maker of navigation

systems for automobiles, motorcycles, personal digital assistants, and mobile phones.

TomTom delivers both various portable mobile device models for automobile

navigation (e.g. TomTom GO and ONE), and software for users with their own PDA

or Smartphone (TomTom NAVIGATOR, which will be commented here).

The main feature of the TomTom applications – i.e. guiding the driver from current

position to a predefined destination – has a user interface which is graphic based. It

consists of a map, shown in a top-down or 3D projection, and information like current

speed, distance to destination, etc, shown in a separate panel docked to the bottom of

the display. Though, when defining destination, requesting alternative route, ergo

selecting a function or accessing a feature, the user interface conforms to an icon

based user interface category.

6.4.3.1 HANDLING: FINGER OPTIMIZED USER INTERFACE
As with all TomTom solutions, TomTom NAVIGATOR is built to support finger

based interaction. Interaction supportive objects, like icons, list items, buttons and

keys in the software keyboard, are large, with well-sized fonts, roomy spaced and

easy to hit with a fingertip. When entering a destination with the software keyboard,

an auto-completion function is activated, and fitting destinations are shown as items in

a list (as shown in Screen shot 6.24).

http://www.tomtom.com/

 Mobile, Flexible user interfaces

 Page 52 of 102

Screen shot 6.22 - Selection a function,

represented by an icon, in TomTom

NAVIGATOR.

Screen shot 6.23 - Following a driving route

with a 3D map projection in TomTom

NAVIGATOR.

Screen shot 6.24 - Entering and finding a

destination in TomTom NAVIGATOR.

 Mobile, Flexible user interfaces

 Page 53 of 102

6.5 REPETITION BASED APPLICATIONS

6.5.1 POCKET MESSAGING
This application is developed by Microsoft and distributed together with the Windows

Mobile 2003 Second Edition. The main feature of this software is handling; receiving,

reading, sending, etc., various types of messages such as e-mails, mms and text

messages. A repetition based user interface can be found when accessing a set of

messages, for instance e-mails. All messages are organized as a list with the elements

listed downwards. One element represents an individual message and by default

display information like recipient, received date, message size and title.

6.5.1.1 HANDLING: SWITCHING BETWEEN PORTRAIT AND LANDSCAPE SCREEN

ORIENTATION
When switching form a portrait to a landscape orientation the available width

increases and the height decreases. This means that there is less room for stacking the

list items but more space widthwise for textual information. This extra width is not

taken advantage of. The only measure that is taken is adding or adjusting the vertical

scroll bar if the list height exceeds the available displaying area.

Screen shot 6.24 - A synopsis of unfinished drafts in Messaging showed in portrait orientation.

 Mobile, Flexible user interfaces

 Page 54 of 102

Screen shot 6.25 - The same synopsis shown in a landscape orientation.

6.5.1.2 HANDLING: CONTENT LARGER THAN ITS DISPLAY CONTAINER
When the list of messages exceeds available screen space – the same thing is done as

mentioned above in landscape orientation when display container gets to small –

vertical scroll bars are added or adjusted. It is not possible to make the content exceed

the available width. If for instance a title is longer than the width the title projection is

just shortened down.

6.5.2 CASH ORGANIZER 2007 PREMIUM
Cash Organizer 2007 Premium also has user interface instances that are of a repetition

based nature (together with form based). This is due to the fact that, when showing

different summaries or overviews, the user interface shifts into a repetition based

appearance. For instance, the user interface take on properties which are typical

repetition based when viewing registered transactions. Each registered transaction is

shown as a line or item in a list. The information in each element consists of the date

registered, payee and category and amount and balance. On top of this list is a series

of tabs for different areas or functions in Cash Organizer. In the bottom part one finds

a summary field and below that a menu.

6.5.2.1 HANDLING: SOFTWARE KEYBOARD SHOWING/HIDDEN
When the software keyboard is activated it pops up between the bottom menu and the

summary line, separating these two. The panel where the registered transactions are

shown is shrunken. If the panel with the list of items then fills up more than the

available displaying area, a vertical scroll bar is added to the left side of this panel.

 Mobile, Flexible user interfaces

 Page 55 of 102

Screen shot 6.26 – Registered transactions in Cash Organizer without the software keyboard showing.

Screen shot 6.27 - Registered transaction with software keyboard activated.

6.5.2.2 HANDLING: SWITCHING BETWEEN PORTRAIT AND LANDSCAPE SCREEN

ORIENTATION
When the registered transaction user interface is ported from a portrait to a landscape

orientations several things are done to adapt. Firstly, the panel showing the list of

registered transaction increases in width and in decrease in height, this in order to fill

out the differently shaped area. Secondly, the tab control which in portrait mode was

placed above the registered transaction panel is now moved to the right side. By doing

this the registered transactions panel get more height to unfold itself in. Thirdly and if

 Mobile, Flexible user interfaces

 Page 56 of 102

necessary, a vertical scroll bar is added if the list exceeds the total height of the panels

it is placed in.

Screen shot 6.28 - Registered transaction in landscape orientation.

6.6 SUMMARY
For the Switching between portrait and landscape screen orientation challenge the

most regularly way or handling this was by adding letting the affected content stay the

same but add scroll bars (mostly vertically, but also horizontally) to make the content

accessible. In some cases certain components or elements were temporarily removed

from the user interface. The components temporarily removed were typically ones

showing information which was not crucial when in the current application state.

In case of the challenge Software keyboard showing/hidden the solutions were much

the same as with Switching between portrait and landscape screen orientation. Scroll

bars were in most case added to maintain accessibility when the content needed more

space than what was is available in its viewing panel. In some occurrences

components or elements were also temporarily removed to make room for the

software keyboard. Some of the applications simply did nothing, and just let the

software keyboard slid on top of the user interface.

Content larger than its display container was a challenge that occurred frequently in

most of the tested applications. It was often a challenge which materialized as a result

of the other challenges like for instance Switching between portrait and landscape

screen orientation or Software keyboard showing/hidden arising. The definitely most

used way of handling this was by adding or adjusting scroll bars. In some instance

nothing was done, like with the Pocket Earth applications, where content always is

larger than its display container and accessing content outside of the current

projection is done by Panning (chapter 7.4.9 – page 74).

As for Finger optimized user interface challenges, only TomTom NAVIGATOR of

the application tested where specially optimized for fingertip touch interaction. Some

of the other applications were more usable than others, mainly due to the fact that the

interactions mechanisms where larger in size. It was clear that all other the tested

 Mobile, Flexible user interfaces

 Page 57 of 102

applications were constructed mainly for interaction via a stylus and other accurate

pointing devices.

The possibility of Switching between stylus and finger optimized user interface were,

as with the Finger optimized user interface challenges, not present. Nowhere could

we find a way to switch between these two. Most of the applications did not even

have the possibility of increasing and reducing the used user interface font sizes,

which could at least been an ad-hoc way of toggling between a stylus and finger

optimized user interface.

In the case of the User interface able to run on equipment with different screen size

challenge, we were not able to test this because we did not have access to mobile

devices with varying screen sizes and resolutions.

In general the solutions found for handling the different challenges were fairly basic.

Most of the solutions for handling the various challenges examined were the same as

the ones one would find on normal desktop computer applications, just scaled down to

the context of a mobile device. The plasticity, the capacity of a user interface to

withstand variations of both the system physical characteristics and the environment

while preserving usability (Thevenin, et al., 1999), was for the most part reduced. Not

all challenges encountering the different user interface categories need an advanced

solution in order to keep usability, but when it was needed it was for the most part not

dealt with accordingly.

 Mobile, Flexible user interfaces

 Page 58 of 102

 Mobile, Flexible user interfaces

 Page 59 of 102

7 GUIDELINES
The guidelines presented here follow a given structure. On the top level they are

grouped under the six common user interface challenges:

Under each challenge suited guidelines are presented. Again, under each guideline,

relevant user interface category or categories are commented. Hereafter, various

information is listed which aim to give insight into the pros and cons of possible

solutions, practical advice when designing user interfaces and having to handle the

various challenges, and eventually, recommended design approach.

There is normally more than one way to handle a challenge, and this is reflected in the

guidelines presented here. The different solutions are served together with their key

advantages and disadvantages. The guidelines are not absolute and the solutions

presented can in many instances be used across the various user interface challenges

and categories, and also for handling challenges outside what is commented here.

Some solutions might use techniques, components or component properties which are

not supported on the various mobile devices, development platforms, operations

systems, design approach, etc. This is commented when necessary.

The guidelines or solutions presented vary in degree of difficulty, require various

amount of work and the cost of implementing them thereby differ. As the different

design approaches has various pros and cons, some can be more suited for handling

one solution or guideline than others. If a specific design approach has advantages

over the other (see Problem Scope – chapter 3 – page 21 – for more information) this

will be discussed and commented under how a challenge should be handled.

7.X – User Interface Challenge (no. 1 - 6)
 7.X.X – Guideline (no. 1 - n)
 Relevant for user interface categories: X, Y and Z based
 Various information (e.g. description, pros and cons and recommended
 design approach if any)

 Mobile, Flexible user interfaces

 Page 60 of 102

7.1 GUIDELINE AND CATEGORY MATRIX
The matrix presented below gives an overview of which challenges that are relevant

for which user interface categories. The leftmost column refers to The Concrete

Challenges (chapter 5.2 – page 31) by using the chapter number (5.2.1 to 5.2.6). The

column placed to the right of this are the provided guidelines. The header row is each

of the five user interface categories.

 Form Icon Document Graphic Repetition

5
.2

.1

Switching Between Portrait and Landscape Screen Orientation
Have Two Versions of the User Interface √ √
Dynamically Resizing Components √
Lock User Interface in One Orientation √
Add or Adjust Scroll Bars √ √ √ √

5
.2

.2

Software Keyboard Showing/Hidden
Display on Top of User Interface √ √ √
Use One Large Component as a Buffer √ √ √
Having Two Versions of the User Interface √
Add or Adjust Scroll Bars √ √ √ √

5
.2

.3

Content Larger Than its Display Container
Struts and Straps √ √ √
Conceal Non-Vital Elements √
Group Similar Content in Tab Folders √
Partial Tab Folders √
Wizard Based User Interface √
Collapsible Blocks of Information √
Add or Adjust Scroll Bars √ √ √ √
Alter Icon Representation √
Panning √ √ √ √
Borders Facilitate Scrolling √ √ √ √
Point and Center √ √ √
Offer Zooming Functionality √ √ √
Navigational Buttons √
Manipulate Document Layout and Content √
Restrict Number of Attributes √
Optimize the Sequence and Size √
More Than One Row Per Item √
Show Additional Information When Item is
Selected

 √

 Mobile, Flexible user interfaces

 Page 61 of 102

5
.2

.4

Finger Optimized User Interface
Simple Adaptation of Existing Components √ √ √
Advanced Adaptation of Existing Components √
Develop Custom Components √ √

Change Scrolling Mechanism √ √ √ √
Manipulate Content √

5
.2

.5

Switching Between Stylus and Finger Optimized User Interface
Have Two Versions of the User Interface √ √ √
Facilitate Switching Between Projections √ √
Have a Set of Mapping Rules √ √ √

5
.2

.6

User Interface Able To Run on Equipment with Different Screen Size
Create Several Versions of the User Interface √ √
Change Between Alternative Controls √

 Use a Model Based Approach √ √ √ √ √

 Mobile, Flexible user interfaces

 Page 62 of 102

7.2 SWITCHING BETWEEN PORTRAIT AND LANDSCAPE

SCREEN ORIENTATION

7.2.1 HAVE TWO VERSIONS OF THE USER INTERFACE

A solution is to have two specialized versions of the user interface (Nilsson, 2005),

one adapted for a portrait orientation and another for landscape orientation. These two

predefined user interfaces will be created at design-time for a specific application on a

particular mobile device. Switching between the user interfaces is done at run-time

and might be triggered manually by the user or by the operating system when an

orientation switch is activated.

The main advantage of this approach is the possibility of tailoring the portrait and

landscape user interfaces to maximize the usability in the two variants. There are

some disadvantages that are worth mentioning; firstly, the added development work

when constructing two separate user interface versions for one single use and,

secondly, making sure to keep the two user interface versions consistent with each

other so that the user do not get confused when switching from one to another.

Switching between the various user interface instances can be an event triggered by

different occurrences. It might be the user who triggers the change by manually

changing the setting in the operating system (as on the Qtek 9090) or the can be

sensors in the mobile device which detects how the device is oriented and the

automatically executing the change (a feature on for instance the Qtek 9000). It is also

a possibility to have to facilitate the change by manually changing a property within

the application. This can for example be done via a pull-down menu, a dedicated

checkable button or a check box.

To illustrate, we may have an application, with form based user interface, where one

window consists of a simple input form (type of application or input data is

irrelevant). In portrait mode the user interface is designed, as shown in Illustration

7.1, with three single lined text input fields with appurtenant text labels, one multiline

text field with text label, an options field with four options to choose from and a

“submit” and “cancel” button. All controls are drawn within one guiding column.

Relevant categories: Form and Graphic based

 Mobile, Flexible user interfaces

 Page 63 of 102

Illustration 7.1 - Example of how an input form in an application might look designed with portrait

orientated layout; with all controls drawn within one guiding column.

When changing to landscape orientation, simply put, the width increases and the

height decreases. And just rotating the layout designed for portrait mode, would result

in several (key) controls being partially or fully placed outside the available screen

area, making them difficult or impossible to use. To utilize the new context, one can

place the controls using two guiding columns instead of just one, hereby taking

advantage of the extra with.

Illustration 7.2 - The same input form, now with a layout taking advantage of a landscape oriented

context with increased width.

Having two versions of the user interface is something which a drawing based design

approach can be suited for. It can be quite easy and fast two draw up two consistent

user interface instances and then simply connect them to the same lower-level

 Mobile, Flexible user interfaces

 Page 64 of 102

services. A model based approach could also, in an ideal situation, automatically

create these two user interface instances from user interface model.

7.2.2 DYNAMICALLY RESIZING COMPONENTS

Another way of handling the different contexts, when changing between portrait and

landscape orientation, is to dynamically resize (Nilsson, 2005) the components in the

user interface. This can be implemented using two approaches.

One solution is to predefine resizing rules for each separate window stating how the

switch is to be handled, and then apply that as custom-made code for each window.

This is quite simple to implement, but it must be done for each instance where it is

deemed necessary and thereby it enforces the same or similar work to be done

repeatedly.

A second solution is having a general layout adjustment algorithm which handles the

changes for all windows, much in the same way as one would implement Struts and

Straps (chapter 7.4.1 – page 69). This will most likely initially require much more

work than the first solution, and developing the layout adjustment algorithms can be

quite complex. But once this platform is built, the workload when designing new user

interfaces, even new applications, is significantly reduced. Still, the investment

needed for adding a layout adjustment algorithm will seldom be viable just for

handling switching between portrait and landscape screen orientation in a form based

user interface.

7.2.3 LOCK USER INTERFACE IN ONE ORIENTATION

A substantial segment of applications with graphics based user interfaces, especially

games, are designed and locked to one orientation only and does not support

switching between a portrait and landscape orientation (e.g. Anthelion by PDAMill,

see Screen shots 7.1 and 7.2).

When the user interface is built up with and around complex and non-standard

component, and the layout also diverges from what is regular, the most reasonable

solution is often to not support an orientation switch. The work involved in

developing these types of user interface with their custom components and layout

often implies lots of graphical work, advanced programming and customization. The

extra work that is needed to adapt these element to another screen orientation is in

many cases not feasible when consider what is gained.

Relevant categories: Graphic based

Relevant categories: Form based

 Mobile, Flexible user interfaces

 Page 65 of 102

Screen shots 7.1 and 7.2 - Two screen shots from the game Anthelion from PDAMill demonstrates how

a complex, custom graphics based user interface can look. Anthelion does not support swithing

between portrait and landscape orientation.

7.2.4 ADD OR ADJUST SCROLL BARS

It is by far the most commonly used mechanism for handling situations where the

number of icons presented exceeds the available screen area. It is a mechanism which

is quite simple to implement, in many instances it is built into relevant components,

and it is supported by most PDA development platform.

A benefit of using scroll bars is that it is a well-established mechanism which the user

probably is familiar with. Scroll bars also facilitates the possibility of scrolling at

various speeds, and the in addition the elevator in a scroll bar gives information about

which part of the total area is shown in the current projection and in what scale.

On the other side scrolling is something that should generally be avoided on mobile

devices, particularly horizontal scrolling. As Erik G. Nilsson states it in (Nilsson,

2005):

“The main goal is often to avoid scrolling the data to find the desired

information. If the projection is wrong (compared to the user’s need), the user

will not find the desired information, or horizontal scrolling is needed to

locate it. If the selection is wrong, the user will not find the desired

instance(s), or vertical scrolling is needed to identify it/them. As a rule of

thumb, horizontal scrolling is worse than vertical, but both should be avoided

– i.a. because operating a scroll bar using a stylus is difficult. The main

reason why horizontal scrolling is “worse” than vertical is that the

Relevant categories: Icon, Document, Graphic and Repetition based

 Mobile, Flexible user interfaces

 Page 66 of 102

information on the same line usually has a closer connection than information

on different lines.”

Another con with scroll bars is when the user has to go to the scroll bar to shift the

user interface, even by just one line; it takes the perceptual, cognitive and motor

resources away from the target which the user focuses attention on, thereby breaking

the work flow (Zhai, et al., 1997).

 Mobile, Flexible user interfaces

 Page 67 of 102

7.3 SOFTWARE KEYBOARD SHOWING/HIDDEN

7.3.1 DISPLAY ON TOP OF USER INTERFACE

This may be the simplest way of handling the showing and hiding of a software

keyboard, and normally requires little or no customization of the user interface. The

software keyboard will for example be used when the user is entering data into,

typically, a text entry field. So, for instance, the software keyboard might only pop up,

covering the lower part of the screen, when an input field is selected for input.

The solution of displaying the software keyboard on top of the user interface will

work adequately as long as the software keyboard don’t conceal the current input field

you are entering data into or any other vital user interface components. This will in

effect say that the lower part of the screen, which the software keyboard occasionally

occupies, should not contain any components that might require the software

keyboard. It can also be very frustrating for the user if he or she has to manually hide

the software keyboard repeatedly because it is concealing components.

A way to solve this problem – with the software keyboard covering vital components

on the bottom third of the screen – can be to have the software keyboard slide down

from the top part of the screen when a conflict is detected. There are two problems

with this approach though. Firstly, the method of having the software keyboard pop

up from the bottom part is a well-established concept and breaking with this can

confuse the user. Secondly, this is a feature which is not presently supported in

current PDA development platform, and therefore some custom programming is

required.

7.3.2 USE ONE LARGE COMPONENT AS A BUFFER

Another way of addressing the challenge of a software keyboard shown and hidden is

to let the software keyboard us one large control as a buffer(Nilsson, 2005). Examples

of controls that primarily can be used in this way, in a form based user interface, are

list boxes, multiline text boxes and tree views. These can be large enough to give way

for a software keyboard without totally disappearing. When the software keyboard is

shown a selected control will shrink vertically to accommodate the new element. For

this solution to be feasible, the user interface needs to contain such a large control.

In the case of an icon or document based user interface, it is the main panel itself

(used for showing icons or a document) that naturally can be used as a buffer.

Relevant categories: Form, Graphic and Document based

Relevant categories: Form, Graphic and Repetition based

 Mobile, Flexible user interfaces

 Page 68 of 102

7.3.3 HAVING TWO VERSIONS OF THE USER INTERFACE

See Have Two Versions of the User Interface (chapter 7.2.1 – page 62) for guidelines

and more information.

7.3.4 ADD OR ADJUST SCROLL BARS

See Add or Adjust Scroll Bars (chapter 7.2.4 – page 65) for guidelines and more

information.

Relevant categories: Graphic, Icon, Document and Repetition based

Relevant categories: Form based

 Mobile, Flexible user interfaces

 Page 69 of 102

7.4 CONTENT LARGER THAN ITS DISPLAY CONTAINER

7.4.1 STRUTS AND STRAPS

The concepts and model presented here is inspired by the available layout

mechanisms in the Java Swing set (Sun Microsystems, Inc., 2006) user interface

components.

Struts and straps (Nilsson, 2005) refers to the concept of having a set of constraints, or

rules, which administrate how controls should act and adapt when the user interface

environment changes. These constraints may govern various concepts within a user

interface, e.g. the min and max size of controls, min and max space between controls,

min and max font size, which side the user interface the controls should align to, and

so on.

In the Windows .NET framework, one can find related but less advanced mechanisms

in use, i.e. the controls may be either anchored to their parent component in any

combination of their four sides or they can be docked to one side (or filling from the

centre) of the parent. These features are unfortunately not available on the equivalent

PDA development platforms of Swing and .NET Framework. This then imply that

until such mechanisms will become available, developers can use them only as an

inspiration for self-made layout mechanisms.

7.4.2 CONCEAL NON-VITAL ELEMENTS

This guideline is based on concealing or removing non-vital element or elements from

the screen. In a user interface some elements might be there just to inform or support

the main features. Elements of this type may for instance be informative or

explanatory text, redundant components (e.g. multiple navigation possibilities), etc.

Implementing this solution is fairly simple and is an easy way of adapting a user

interface to available screen space. But it requires that the desired user interface have

elements which can be sacrificed, something which is not a matter of course. One

should also be careful when concealing or removing elements, also which only has an

informative of explanatory purpose, as it might compromise the usability of user

interface. Therefore one should consider if the usability gained by not exceeding the

available displaying is larger than the usability lost when concealing selected

element(s).

Relevant categories: Form and Graphic based

Relevant categories: Form, Graphic and Repetition based

 Mobile, Flexible user interfaces

 Page 70 of 102

7.4.3 GROUP SIMILAR COMPONENTS IN TAB FOLDERS

Instead of forcing too many elements into a limited screen space, a common way of

dividing up a user interface into smaller more manageable chunks is by using tab

folders. It can be difficult to provide absolute rules for when to use tab folders and

when to instead use separate windows, but (Nilsson, 2005) purposes as follows:

“… as a rule of thumb separate windows should be used to split between

different main concepts/classes while tab folders should be used to separate

between different aspects of a single concept/class.”

To give an example, say we have an application used for organizing various

transactions. To simplify it even more, say the functionality consists of two concepts:

one, inputting new transactions and, two, providing an overview of multiple registered

transactions. If there is sufficient screen space to use it might be viable to have these

two concepts within one window; the top half might be for used as for entering new

transaction and the remaining bottom half for showing the transactions overview. But

as we here are talking about the challenge of handling content larger than its display

container, this is not practical.

Following the rule of thumb given in (Nilsson, 2005), it would be natural to divide the

two main functions – input and overview – into different windows, not tab folders, as

we are handling two different concepts. However, should the input functionality alone

exceed available screen space and it could naturally be divided into different aspects

(like for instance personal information connected to a transaction on one side and

date, type and value on the other), it would then be natural to divide this into separate

tabs within the same window.

Be careful not to split or mix elements in such a way that the user has to navigate

unnecessary back and forth between the tabs. This can confuse the user and decrease

or even cripple application usability. Also important, when using tab folders, is to

consider which elements that will be used more frequently than others, and let this

direct how the tabs are arranged, for example with the most commonly used elements

in the first tab and the least used last.

It should be pointed out that the tab folders themselves take up screen space, and on a

small screen there is room only for a limited number of tabs. How many tabs is

dependent of the text labels set in each tab. Should these tabs exceed available width

or height (depending on where the tabs are docked: top, bottom, left or right) scrolling

mechanisms are usually added, something which should be avoided. An alternative

solution is to have more than one row of tabs, something one can find on normal

desktop computers, but this is not supported on PDAs, at least not on the Windows

Mobile platform.

Relevant categories: Form based

 Mobile, Flexible user interfaces

 Page 71 of 102

7.4.4 PARTIAL TAB FOLDERS

An application can have vital components or elements that need to be visible at all

times in order to keep the application usable. One solution, which is a specialization

of Group Similar Components in Tab Folders (chapter 7.4.3 – page 70), is to have

partial tab folders. The vital components are here always shown, preferably grouped

together in a unifying panel, and occupying one portion of the available screen. The

remaining screen area, which is not used by the vital components, contains a tab

folders control which can be used to alternate between the different aspects.

Firstly, it is important to recognize whether there are components or elements in the

user interface which should or must be visible at all times. If there is more than one

component or element which qualifies, it might be natural to group these together.

Check if the remaining space if sufficient enough to hold a tab folders control. Should

this space be too small one will once again end up with a new display container

smaller than its content problem within an even smaller container, and the problem is

not really solved.

Otherwise, take into account information and follow guidelines given for the idea

presented in Group Similar Components in Tab Folders (chapter 7.4.3 – page 70).

Illustration 7.3 - Example of how a user interface utilizing partial tab folders can be materialized.

Relevant categories: Form based

 Mobile, Flexible user interfaces

 Page 72 of 102

7.4.5 WIZARD BASED USER INTERFACE

Using a wizard based user interface is a solution which can be appropriate for types of

user interfaces that are primarily process oriented (Nilsson, 2005), with just one (or a

few) predefined paths leading from start till finish. This implies that a wizard based

user interface is highly task oriented, something that makes it vital that the match

between how the wizard progresses and the task at hand correspond naturally and

fittingly.

A wizard based user interface is very step-by-step-oriented, as the current step must

be filled out (correctly) before one can advance to the next step. This is normally used

to either avoid certain errors or to avoid a lot input control. Thus this mechanism can

often be best fitted for inexperienced users with limited or no knowledge of the

application domain. But for some tasks, a wizard based user interface may be the best

solution for all users.

When using a wizard based approach it is imperative to divide the underlying process

into steps which corresponds with both the eventual natural process steps and the

user’s mental model of how this process works. Provide some form of indication to

the user of where he or she is in the course of completing the wizard. Make it easy to

navigate back and forth, without losing data. And finally, provide a clear indication of

when the user is completing and submitting all entered data (maybe without the

possibility of return).

Wizards are often offered as an alternative to a conventional instruction oriented user

interface within a WIMP interaction paradigm.

7.4.6 COLLAPSIBLE BLOCKS OF INFORMATION

Another variant of tab folders is to have blocks of components or elements that may

be collapsed and expanded, a mechanism that can be found in most tree view controls.

This is a mechanism primarily used on quite simple text nodes, in some specialized

case accompanied by for example check boxes and/or icons. If one is to use this

technique with more advanced controls like text fields, button, etc., this is something

that most likely will require some form of custom development to create a component

or mechanism adaptation, or tailor to this specific need, as neither the PDA

development platforms of Swing nor the .NET Compact Framework currently

supports this.

A benefit of being able to collapse and expand components, or components groups, is

that it empowers the user to customize the user interface by choosing which elements

that should be shown together.

Relevant categories: Form based

Relevant categories: Form based

 Mobile, Flexible user interfaces

 Page 73 of 102

If implementing such a solution it is necessary to consider and decide on how some

properties should be. Should the user interface have a default appearance which is

loaded each time the application started, or is more convenient to have to user

interface remember the expand and collapse settings from when it was last run? What

is considered right here, is dependent on several factors. The probably weightiest

aspect here is whether the same instance of the application, on one mobile device is to

be used but several different users, as they might prefer to customize the user interface

differently, something which may favor a default appearance. Another solution to this

challenge with multiple users can be to have users log in and out each with their own

version of the user interface, but this is outside the context of this current challenge.

7.4.7 ADD OR ADJUST SCROLL BARS

See Add or Adjust Scroll Bars (chapter 7.2.4 – page 65) for guidelines and more

information.

7.4.8 ALTER ICON REPRESENTATION

A way to increase the efficiency and make the most of a (too) small displaying

container, is to trim or reduce the how the icons are represented. There are two main

ways of doing this: firstly, follow use a default way of displaying and arranging the

icons (typically separate large icons, icon list and detailed list), and secondly, alter the

icons themselves independent of icon display pattern.

In the case of choosing an icon display pattern, it is normally a case of choosing form

a default set provided by the programming platform, e.g. within an icon-displaying

container. An icon list is probably the icon display form which crams the largest

number of icon instances into a display container. At the other end of the scale is the

separate icons view with larger icons and therefore fewer icons inside the display

container.

Altering the icons themselves can also be fairly simple task, as it is often just a case of

altering the icon properties, something that is supported in most PDA programming

platforms. There are several ways of achieving a more trimmed and space effective

icon representation.

The most obvious is to change icon size. One can follow the most commonly used

icon dimensions (see Icon Based – chapter 4.2 – page 25) or define custom

proportions which fit your current context. The smaller the icon size the more can be

shown in a display.

Relevant categories: Icon based

Relevant categories: Icon, Document, Graphic and Repetition based

 Mobile, Flexible user interfaces

 Page 74 of 102

Icons are in most case shown together with text, normally the application name or

filename of the file the icon fronts. This text is displayed connected to the icon in

various ways, in example placed under, to the left or sometimes to the right or over.

The latter two are rarely used. This icon text can also be adjusted in order to increase

the efficiency of how the icons are shown. It is possible to decrease the font size, but

be careful not to make the text too small and thereby rendering it difficult to read.

Furthermore the text can be shifted to another related position to the icons. Often it

can be more space efficient to have the text placed to the right instead of under the

icons. When the text is placed to the right of the icons each icon occupy less height

making it possible to have more icons arranged vertically. If the text is placed under

the icon will use less width, but only the width of the icon itself and the text is

normally the dominant factor in contributing to the total width. Hereby the height is

increased without a significant gain in width.

It can in some case be viable to remove the text. But then each icon in the user

interface must have a unique graphical representation or another mechanism for

separating and identifying icons must be used (e.g. tool tip or a text field at the bottom

showing the text of a selected icon).

Lastly it is possible to reduce the white space between each icon. But reducing this

white space should be done with moderation. If the white space between the icons

gets to small it can be difficult to separate the icons and select and interact with one

specific instance.

7.4.9 PANNING

This is a solution which is widely used on various graphical information systems, both

on the net – e.g. Google Maps (Google, Inc., 2007) and Map Quest (MapQuest, Inc.,

2007) – and in desktop applications – e.g. NASA: World Wind (NASA, 2007) and

Google Earth (Google, Inc., 2007) – but also in games – e.g. Worms World Party for

Pocket PC by JAMDAT Mobile ULC. Panning is quite similar to the concept of drag

and drop (Wikimedia Foundation, Inc., 2007), but here the user selects (by clicking or

tapping and holding) at a point in the user interface or within a container, then drags

in a direction until the wanted projection is shown and releases stopping the panning.

The idea of panning is something which is quite intuitive for most users (Nilsson,

2005) as it is based on a common interface metaphor of sliding something around in

order to bring parts of something large into focus, for instance having a large news

paper on a table, leaning over reading and sliding (or panning) this newspaper around

depending on which article is interesting.

Another pro with using panning is that it does not require very precise pointing as

long as the user hits within the panning-enabled component, thus making it usable for

both stylus and finger based interactions. This prospect of just hitting within the

Relevant categories: Graphic, Icon, Document and Repetition based

 Mobile, Flexible user interfaces

 Page 75 of 102

container also eludes the problem of having to shift focus from the current work task,

as mentioned for Add or Adjust Scroll Bars (chapter 7.4.7 – page 73).

It is worth noting that a problem can arise when a user interface has panning-ability. It

is often necessary to interact with objects, and how do you alternate between being

able to organize and handle objects and panning inside the same user interface? A

solution to this can be to have some sort of way changing between these two modes,

e.g. by having a checkable button or check box. The problem with this solution is that

it, one, interrupts the work flow (as with scroll bars (Zhai, et al., 1997)) because the

user has to shift focus and hit a button or check/uncheck a field, and two, the

components facilitating the switching functionality itself occupies space leaving less

room for the other elements to use.

A drawback is that this mechanism does not support faster scrolling than what is

predefined. Nor does it provide the additional information the elevator in a scroll bar

gives about which part of the available area is shown the current projection and in

what scale. Though Apple has demonstrated an improved panning function in its Mac

OS X on the new iPhone (Apple Inc., 2007; Wikimedia Foundation, Inc., 2007). Here

it is possible to grab a hold of the user interface, accelerate it down- or upwards and

have it scroll in that direction before it comes to a halt (referred to as a touch-drag-lift

motion(Wikimedia Foundation, Inc., 2007)). How fast and for how long it scrolls is

computed based on the speed and acceleration with which the drag motion is

performed.

7.4.10 BORDERS FACILITATE SCROLLING

This is a specialization of the typical scrolling functionality, but here only a

predefined invisible or lightly shaded or lightened border or area close to the edges

activates scrolling. When the user moves the pointing device close to an edge, the

projection starts scrolling in the direction of that edge (e.g. moving the stylus down

close to the bottom edge of the container starts a scrolling motion downwards).

One can find a variety of this solution in use on most normal desktop computers. It

comes into action if the screen resolution is set higher than what the monitor supports.

Then a “virtual desktop” is offered which is larger than the maximum screen

resolution, and reaching the various sections of the desktop is done by moving the

pointer to the edges. Another similar mechanism can be found in common document

applications on desktop computers. If the mouse has a scroll wheel, this can be

pressed changing the pointer function. You can then move the mouse up and down

and the application automatically scrolls up or down. The scrolling speed will vary

depending on how far up or down from the vertical center of the document projection

you move the pointer. The longer away the faster the scrolling speed.

If implemented, as purposed with invisible or lightly shaded or lightened area, this

will not reduce the size of what can be shown within a display container.

Relevant categories: Graphic, Icon, Document and Repetition based

 Mobile, Flexible user interfaces

 Page 76 of 102

Illustration 7.4 - Example of how a user interface can look when using edges facilitating scrolling.

There are several things that need to be thought through when using such a

mechanism.

Firstly, how large or thick these scrolling edges or boarders should be. If they are too

small it can be difficult to stay within one scrolling edge area to continue scrolling,

and if they are excessively thick this it will render the area for handling content too

small. Secondly, this is a mechanism which is not widely used and therefore unknown

for most users. A challenge is consequently: how to let the user know that this type of

functionality is present and how it should be used. By having a subtle marking of the

scrolling edge – by shading of lighting the area – can be a solution. There can also be

a small or faint arrow inside the area, informing the user of which direction scrolling

will go.

As with panning it is a drawback that this mechanism does not support faster scrolling

than what is predefined. Nor does it provide the additional information the elevator in

a scroll bar gives about which part of the available area is shown the current

projection and in what scale. Though it could be feasible to have the scrolling edges

be graded, i.e. the closer to the edge you touch the faster the scrolling will progress.

This will probably require thicker scrolling edges in order to control the speed

properly. The shading can also be graphically graded to visualize this, e.g. darker

shading implies faster the scrolling.

This mechanism of edges facilitate scrolling is not present in current PDA

development environments and thus it will require customization of current

components or development from scratch.

For icon, document and repetition based user interface some adaption of the main idea

should be done.

 Mobile, Flexible user interfaces

 Page 77 of 102

For icon based user interfaces, if there are a large number of icons, meaning that the

available displaying are is widely exceeded, it can be very confusing to get an

overview of where current projection are in this mass. Especially so if the scrolling

goes both vertically and horizontally, as this makes it difficult to follow how the icons

are arranged and find a specific instance. But if the scrolling goes either up or down or

sideways, not all four directions at the same time, it can be easier to orientate and

follow how the icons are arranged.

Illustration 7.5 - Example of how a icon based user interface might look when using egdes facilitating

scrolling up and down.

With document based user interface the case is similar to scrolling edges in icon

based user interfaces. Having to scroll both horizontally and vertically is will make

reading the document very difficult. As text is structured in with words in lines,

arranged either from left to right or vice versa, with the next consecutive line under,

only vertical scrolling can be recommended in order to maintain reading consistency

for the user.

A repetition based user interface is normally arranged in such a way that is natural

to support scrolling either up and down or from left to right.

7.4.11 POINT AND CENTER

As with panning, a point and center mechanism is fairly common within mainly

graphic based applications, mainly GIS application, but it can also be used in for

example games (as done in for instance Warlords II for Pocket PC by Infinite

Interactive PTY, Inc.), icon and document based applications. The idea is to point at

Relevant categories: Graphic, Icon and Document based

 Mobile, Flexible user interfaces

 Page 78 of 102

or select a specific point in the user interface, for instance a place on map, and then

use this new point as a center for a new projection. This is relatively intuitive for most

users which are somewhat familiar with computers in general.

A problem with this approach occurs when there is a need to interact with object in

the graphical user interface where the point and center function is in use. This can be

solved in various ways.

For instance in a game, where you have objects to interact with and some form of

background, the point and center mechanism can act only when the user taps at a

point in the background. And when the user select an object of interests this objects

properties are editable. By doing this the user can keep his or her attention on the task

at hand without been interrupted. A problem can arise if there are too many objects in

the current projection making it difficult to hit the background and set the desired new

center point.

Another way of handling this problem is to have the possibility of changing between

functionalities, for example by have a tool bar, where one is the point and center

functionality. This latter solution is widely used in GIS applications. A con with

having a tool bar, checkable button, etc, is that these take up often precious screen

space.

As with panning, it is a drawback that this mechanism does not support faster

scrolling than what is predefined. Nor does it provide the additional information the

elevator in a scroll bar gives about which part of the available area is shown the

current projection and in what scale.

7.4.12 OFFER ZOOMING FUNCTIONALITY

This is a feature most commonly used on both graphical and document based content,

but it can also be implemented on an icon based user interfaces. The possibility of

zooming is widely used, i.a. in GIS applications and word editors. The common way

of using zoom is to center on a designated point and then zoom in and out depending

on the detail level you desire. The zooming can be facilitated in various ways. One

way is by having onscreen buttons, with a minimum of one control for zooming in

and another for zooming out. Another way is to zoom in around a point where the user

double-clicks. There is often a zoom scale showing the min and maximum zoom level

and at what level you are currently on.

Relevant categories: Graphic, Icon and Document based

 Mobile, Flexible user interfaces

 Page 79 of 102

Illustration 7.6 - Tube 2 for Pocket PC (v. 2.11) by Visual IT with zoom functionality.represented by a

plus (zoom inn) and a minus (zoom out) button at the bottom part of the screen.

Zooming is often used in combination with for example scroll bars, panning, click and

center or a combination of these. To make user interface using zooming more

practical, an overview of the total area is provided shown as a small projection in a

separate little window. This gives insight into what zoom-level and where in the total

context the current projection is. Another quite common way of facilitating zooming

is by marking a selection which then sets this selection as the new projection.

Google maps (Google, Inc., 2007) is a live example of a GIS solution combining

zooming, panning, a zoom scale, (double) click and center and navigational buttons

into one user interface. In the bottom left part one can also find a small window which

informs about the bigger context of the current projection. This window can be hidden

and shown.

 Mobile, Flexible user interfaces

 Page 80 of 102

Illustration 7.7 - Google Maps combining zooming, panning, click and center and navigational buttons,

together with an overview map, in on user interface.

7.4.13 NAVIGATIONAL BUTTONS

A way to have the ability to move the projection around, but without the scroll bars, is

to have navigational buttons. This is also a relatively common feature in both GIS and

gaming applications. These navigational buttons are often formed arranged in a

button-cross on-screen (as shown in the upper left corner of Illustration 7.7). Hitting

one of the buttons will make the projection shift a predefined step in that direction. It

is also often possible to hold a button down to continually scroll.

As with panning it is a drawback that this mechanism does not support faster scrolling

than what is predefined. Nor does it provide the additional information the elevator in

a scroll bar gives about which part of the available area is shown the current

projection and in what scale. Some application do support accelerated scrolling when

holding down a directional button longer than a set time span.

If the mobile device has a hardware directional pad (or similar physical directional

button support), this is normally connected to how the on-screen directional pad

operates or vice versa.

Relevant categories: Graphic based

 Mobile, Flexible user interfaces

 Page 81 of 102

7.4.14 MANIPULATE DOCUMENT LAYOUT AND CONTENT

Manipulating the document itself in a document based user interface is probably

where there is most to be gained, as this is the dominant element of a document based

user interface. But this should be done with caution as changing the document layout

and altering elements within a document can make it difficult to read and interpret for

the user. How the document is presented visually if often very important to the

semantics. A document manipulating mechanism will normally be implemented in

coherence with other solutions (e.g. scroll bars or edges facilitating scrolling) as it

alone hardly ever solves the problem of content being larger than its display container

without seriously compromising usability.

The techniques presented are often available features or properties in many of the

documents based applications, e.g. editable via for example tool bars or pull-down

menu options. The solutions presented are closely related to a normal zooming

functionality, but here it is not a case of magnifying or shrinking the document as

whole but distinct elements.

One solution is to have the text font size used in the document be proportional to the

size of the available display area (resolution, size and width-height proportion). This

can be done by reducing (and increasing) the font size and/or change to a more

compact font. It is important to define upper and lower limits which specify when the

font size cannot be lowered or raised any more, as without these limits the font size

can become too small or large and thereby difficult to read. It is also vital to get the

relation between available display area and fonts correct something which both screen

resolution and size will influence.

Many documents consist of other elements than just text (e.g. images, animations and

tables) and these can in some cases also be adjusted proportionally as purposed with

text. Pushed to the extreme these non-textual elements can also be removed or hidden.

This should be done with caution as removing such elements might take away vital

information.

Another way to optimize how the documents appear is to reduce the whitespace

between text lines (often referred to as line space). Reducing this space will make it

possible to show more text in a limited area, but if the lines are set to close together it

can compromise readability.

7.4.15 RESTRICT NUMBER OF ATTRIBUTES

This is a solution used to avoid horizontal scroll bars. As purposed in (Nilsson, 2005)

for lists, this can normally be applied to many repetition based under interfaces as

well. It is an idea which is quite obvious as it is just a case of reducing the number of

Relevant categories: Repetition based

Relevant categories: Document based

 Mobile, Flexible user interfaces

 Page 82 of 102

element to a number which does not exceed the available display container. But in

many case this solution is not realistic, mainly because the user may need more

information than there is room for in order to perform the task the applications is

supporting. Another problem with this approach is that it prerequisite that all user of

that current application require exactly the same elements.

One solution, which follows the principle of restriction the number of attributes, is to

let the user configure which attributes to be displayed at run-time. It the application

facilitates multiple users; it is also possible to have some form of login system

administrating this. This though requires additional work, and whether the benefit is

greater than the extra work-load and cost must be considered for each unique case.

7.4.16 OPTIMIZE THE SEQUENCE AND SIZE

Erik G. Nilsson (Nilsson, 2005) also purposes a similar solution to the concept of

restricting the number of attributes which is optimizing the sequence and size of

attributes. Here attributes are removed or hidden, but the sequence is so that the most

important attributes are placed within the visible area and the least important are

placed furthest away. This can reduce the frequency of how often horizontal scrolling

is used.

Here, as with restricting the number of attributes, it can be feasible to let the user

configure how the attributes should be arranged.

7.4.17 MORE THAN ONE ROW PER ITEM

This is also a way of avoiding, or restricting the use of, horizontal scrolling. The

solution is to have one item use more than one row for its attribute instances. As is

pointed out in (Nilsson, 2005) this is will visually work relatively well and it is

normally not a problem to distinguish between the separate items. It can also make an

item easier to select when using finger based interaction.

An obvious con with using more than one row for each item is that there is room for

fewer items within the display area which can enforce more vertical scrolling.

Another drawback is the problem of visually connecting the attribute headers, it there

are any, with the corresponding attribute instances within each item. The normal way

of having one top header row with the attribute header will most likely not be usable.

One way to solve this is to have the attribute header places in front of each attribute

instance, but this again can clutter up the visually and even more space is needed for

each item. Icons and/or abbreviations, representing each attribute header, can also be

used, but this presupposes that the user understands or knows what these mean.

Relevant categories: Repetition based

Relevant categories: Repetition based

 Mobile, Flexible user interfaces

 Page 83 of 102

7.4.18 SHOW ADDITIONAL INFORMATION WHEN ITEM IS SELECTED

A fourth way of avoiding horizontal scrolling is by showing one or a few vital

attributes like an item title, and when an item is selected the additional attributes

instance can be shown. This can be done in different ways.

One is by following how a tree view works, and show the additional information as

branches under the item title. Though this can be problematic as it might not fully

utilize the screen width and if there are many attribute instances it can used much

space vertically.

Another way is to show the additional information in a panel which slides out from

the bottom part of the item row. Within this panel the information can be arranged in a

way that is both space-efficient and visually usable.

A third way is to show the attribute instances as an appurtenant floating dialog box.

This will require no rearranging of the original compacted items. A challenge can

however arise if there is a need to show the detailed information of more than one

item at the same time. A minimum requirement to support this is by using non-modal

or modeless dialog boxes.

Relevant categories: Repetition based

 Mobile, Flexible user interfaces

 Page 84 of 102

7.5 FINGER OPTIMIZED USER INTERFACE

7.5.1 SIMPLE ADAPTATION OF EXISTING COMPONENTS

This is a quite relatively cost efficient solution to facilitate a finger optimized user

interface, though it can in some situations be somewhat limited. I order to make the

user interface (more) “finger friendly” existing components are used, but appurtenant

properties are adjusted. Exactly which components that works best, or is more

adaptable, for finger based interaction can be vary from PDA platform to PDA

platform.

Erik G. Nilsson in (Nilsson, 2005) presents, for the Windows Mobile platform, the

following table which gives some characteristics of the standard components (i.e. the

components that are designed for user interaction) with respect to what can be “finger

friendly”:

Component Appropriateness for finger navigation

Button Standard Button size is a bit small, but given a bigger size, Buttons

are OK for finger use.

Text Box For entering text, it is sufficient to click on a Text Box – the rest of

the interaction is done through some kind of text entry mechanism

(see above). The latter may be far from trivial using the fingers, but

this is outside the scope of this problem. Clicking on a Text Box is

feasible using the finger when it has standard size, increasing the

size will make it easier. Increasing the height may only be done by

increasing the font size (unless it is multiline). If the Text Box has a

value already, selecting this value when the Text Box gets the focus

will ease finger use. Changing the text in the Text Box – e.g. by

selecting and changing three characters in the middle of the text – is

not trivial using just the fingers. How difficult it is depends on the

font size used, but increasing the font size too much may easily

result in a number of other usability problems.

Check Box Check Boxes are not too difficult to operate with fingers, depending

on the distance to other Check Boxes (and other UI controls). To

trigger a Check Box, not only the tick box, but the whole control

(including the text and any additional space around the text) may be

clicked. Increasing the size and/or the font size will not increase the

size of the tick box. Thus, given large enough size and distance to

other components, Check Boxes are easy to control using fingers.

Radio Button Radio Buttons have the same characteristics with regards to finger

friendliness as Check Boxes. As Radio Buttons always appear in

groups, the distance/size requirements are especially important.

Data Grid The finger friendliness of the control has not been investigated in

depth, but the standard size of cells in the grid is fairly small, and it

does not seem to be an easy way of making the cells larger.

Relevant categories: Form, Icon and Repetition based

 Mobile, Flexible user interfaces

 Page 85 of 102

List Box A standard size List Box is only partly suited for finger use, as both

the elements in the list and possible scroll bars are fairly small.

Increasing the font size will make the elements in the list larger, but

also makes it more likely that there is a need for using scroll bars

(that do not increase in size).

Combo Box Combo Boxes have approximately the same characteristics with

regards to finger friendliness as List Box.

List View Using icons and Large Icons as View, List View may be

appropriate to control with fingers (even though the control as such

probably has limited applicability in many applications).

Tree View A Tree View is difficult to control using fingers, and it does not

seem like it is possible to make it more appropriate by adjusting its

properties.

Tab Control The tabs in a Tab Control are not too difficult to operate with

fingers, depending a bit on the size. The size of each tab is partly

dependent on the length of the text on the tab, and partly on the font

size. But all tabs should fit on the screen to avoid having to use the

scrolling features of the Tab Control (which is not easy to operate

using fingers). So there is a clear trade-off that need to be balanced.

Scroll Bar Scroll Bars are notoriously difficult to use on a PDA, even with

stylus. The Scroll Bars size may be increased to enhance their

suitability – but then of course leaving less space for other

components. Using alternative scrolling mechanisms should be

considered as an alternative.

Up Down There are two types of Up Down controls, one that can adjust

numbers (spinner) and one that can adjust an arbitrary domain.

These controls are identical with regards to finger friendliness. In

their default size, they are almost impossible to operate using

fingers, and there is no apparent way of adjusting their size or font

size.

Track Bar Track Bar is not specifically easy to operate using fingers, and there

are no obvious ways of adjusting their properties to make them

more suited. If there is a choice of direction, horizontal Track Bars

are slightly easier to operate using fingers.

Menu Item Menu Items (i.e. members of the pull-up menu on the bottom of the

screen) are not too difficult to operate using the finger although the

choices are fairly small. There are no ways for the application to

change the size of its Menu Items.

Context Menu Items in a Context Menu are the same UI controls as Menu Items in

a main menu, and are used in the same way – but triggering a

Context Menu is more difficult than a main menu using the finger,

as the user must hit the control to which the Context Menu is

connected.

When finger optimizing a repetition based user interface it is normally a case of

enlarging the items. If it merely is a case of facilitating selection of items, something

as simple as increasing row height can solve the problem. If you, in addition to have a

finger optimized user interface, want to avoid horizontal scrolling both of these

 Mobile, Flexible user interfaces

 Page 86 of 102

challenges can be solved by using more than one row for an item representation as

presented in More Than One Row Per Item (chapter 7.4.17 – page 82).

In some application it is possible, and even necessary, to edit attribute instances for an

item. Then it is sometimes not sufficient to just increase the height of an item, the

width might also have to be increased. A con with this is that it will make the total

width larger, something which might trigger the need for or increase horizontal

scrolling.

For icon based user interfaces the possibilities of altering an icon representation are

the same as presented in Alter Icon Representation (chapter 7.4.8 - page 73). But here

the main challenge is to facilitate finger based interaction, and not to utilize a display

container which is smaller than the content of what is presenting. In general the

objective is to make the icons large enough making the hittable by a fingertip. When

using any of the default way of displaying and arranging the icons, the large icon

projection is probably the best. Here the icons are larger and the whitespace between

each icon is quite acceptable. All in all this projection is relatively “finger friendly”.

Furthermore, one can alter icon properties such as size, text font size, text position,

remove text and increase whitespace. See Alter Icon Representation (chapter 7.4.8 –

page 73) for more information.

7.5.2 ADVANCED ADAPTATION OF EXISTING COMPONENTS

By this we mean work that requires some form adaptation or programming beyond

what the available component properties permit. Typically, in an object oriented

programming environment, this would be to subclass exiting component and adding

desired appearance and/or functionality.

This might initially be more labor-intensive, but once in place, and if done properly

and maybe stored in some form of component repository, the components can be

reused in other situations. The possibility of further specializing components is

present.

Advanced adaptation of existing components is something which is typically done by

a programming approach. This normally provides access to the finer details of how

a user interface and its components are coded and constructed. For instance, in an

object oriented development environment, one can inherit from a component and use

this as a base for fine-tuning how you adapted component should look and behave.

Relevant categories: Form based

 Mobile, Flexible user interfaces

 Page 87 of 102

7.5.3 DEVELOPING CUSTOM COMPONENTS

The most extreme way of adapting a user interface to finger optimized interaction is

by developing custom components from scratch. The initial work, with creating these

components, can be quite time-consuming and require a special insight into both what

makes a usable control and how to implement it.

Using specially tailored components can be quite confusing for the user, if not build

around or on well-known and accepted conceptual models or interface metaphors

within the current interaction paradigms. This is due to the fact that if the component

greatly differs from existing solutions, the user might not know how to operate or use

the component. Hereby it can be necessary to inform the user of how a new or

unrecognizable component or control is to be operated. This is often done in games by

having a beginners-tutorial.

As commented before it is common to develop custom components for graphic based

user interfaces, something which requires additional programming. Whether or not it

is feasible to also develop components adapted for finger based interaction must be

weigh up against the need for it and the additional cost.

Creating a custom component is something which normally is done by a

programming approach. This normally provides access to the finer details of how a

user interface and its components are coded and constructed.

7.5.4 CHANGE SCROLLING MECHANISM

Many user interface categories regularly exceed the available display area, something

which gives rise to the need for functionality that facilitates selection of which part

that should be shown. And as commented earlier, it is difficult to hand a normal scroll

bar with a fingertip due to the small size of the scroll bar and inaccuracy of the

fingertip.

Panning is relatively “finger friendly” as it requires little accuracy. A problem with

panning is how to enable editing and interaction with the user interface, because if

interaction with the user interface will trigger panning functionality. This problem is

discussed further in Panning (chapter 7.4.9 – page 74).

Another way of facilitating scroll-like functionality, which to some extent allows both

scrolling and interaction with the document itself, is the concept of borders facilitating

scrolling. See Borders Facilitate Scrolling (chapter 7.4.10 – page 75) for more

information.

Relevant categories: Document, Icon, Graphic and Repetition based

Relevant categories: Form and Graphic based

 Mobile, Flexible user interfaces

 Page 88 of 102

7.5.5 MANIPULATE CONTENT

There are not that many component in a document based user interface that can be

adjusted to become more suitable for finger based interaction. There are usually three

types of components, the main panel showing the document, a tool bar and a pull-

down menu. What can be done with the document will be commented here. For the

latter two see guidelines for Simple Adaptation of Existing Components (chapter 7.5.1

– page 84).

In document based applications there is often situations where it is natural to interact

with the opened document, e.g. edit text in a text document or click on links in a web

document.

In the case of wanting to edit a text document this is quite difficult because of the lack

in precision with finger based interaction and the size of the components (mainly text)

in the document. It can be hard to select a specific character, word or sentence or even

select were to new write text. This can be somewhat resolved by manipulating the

document (as purposed in Manipulate Document Layout and Content – chapter 7.4.14

– page 81) with the intent of increasing “finger friendliness”. Normally it will be

things like increasing font size, other elements and line spacing.

In the case of interaction with links in a web document the above mentioned actions

can be performed. But another solution, that might not alter or compromise the

appearance too much, can be to interpret the web document, detect objects which can

be interacted with (usually links) and then emphasize these instances. These objects

can be emphasized and rendered more “finger friendly” by for example making the

text bold, increasing font size, drawing a (fat and/or colorful) border around,

increasing whitespace before and after or a combination of some or all of these.

Relevant categories: Document based

 Mobile, Flexible user interfaces

 Page 89 of 102

Illustration 7.8 - How links in a web document can be adjusted to make the easier to hit with a

fingertip.

This concept of interpreting and emphasizing can be quite effective without

compromising too much of the visual layout and appearance. But it requires that an

interpreter is implemented into the application, something which will require work

beyond just designing the user interface.

 Mobile, Flexible user interfaces

 Page 90 of 102

7.6 SWITCHING BETWEEN STYLUS AND FINGER OPTIMIZED

USER INTERFACE

7.6.1 HAVE TWO VERSIONS OF THE USER INTERFACE

Have one user interface instance with a “normal” user interface aimed at styles based

interaction. The second instance can be design guided by for instance Simple

Adaptation of Existing Components (chapter 7.5.1 – page 84), Advanced Adaptation

of Existing Components (chapter 7.5.1 – page 86) and Developing Custom

Components (chapter 7.5.3 – page 87) hereby achieving a more “finger friendly” user

interface.

See Have Two Versions of the User Interface (chapter 7.2.1 – page 62) for guidelines

and more information.

7.6.2 FACILITATE SWITCHING BETWEEN PROJECTIONS

This is very similar the solution of Have Two Versions of the User Interface (chapter

7.6.1 – page 90). It is also something which is facilitated by most icon based user

interfaces, the possibility switching between large icons, icon list and detailed list

projections. Several word editors also support this – e.g. Pocket Word has four

different projections to choose from, called Writing, Drawing, Typing and Recording.

The idea is simply to have two or more projections where each of them is aimed at

handling various challenges. Here the solution is to have one projection for stylus

based interaction and another for finger based. The guidelines given for Finger

Optimized User Interface (chapter 7.5 – page 84) presents some factors that should be

taken into account when designing a “finger friendly” user interface projection.

The switching between the projections is normally done via the main pull-down

menu, something which is alright when using a stylus, but not well-suited for finger

based interaction. So when wanting to switch to a “finger friendly” projection is vital

that this can be by using a fingertip. There can for instance be facilitated by a large

button or large check box. The con with having a visible control is that this control

will occupy screen space.

Relevant categories: Icon and Document based

Relevant categories: Form, Graphic and Repetition based

 Mobile, Flexible user interfaces

 Page 91 of 102

7.6.3 HAVE A SET OF MAPPING RULES

Using a set of mapping rules is something which stems from the world of model based

development, and here the mappings, defining the transformations between different

components, is at a horizontal level (mapping between different components within

the same abstraction level) and not vertical (from e.g. a higher abstraction lever to a

lower). This solution is quite similar to Change Between Alternative Controls (chapter

7.7.2 - page 92), where the goals is to have the user interface adapt to varying

equipment with different screen size. What separates these guidelines form the above

mentioned, is that here the objective is to make the user interface facilitate switching

between stylus and finger based interaction.

The solution is to have, on one side, a set of components fit for stylus based

interaction, and on the other side, a set of components which are fit for finger based

interaction. One must then set up mapping rules between these components, defining

which “stylus friendly” component that can be transformed into equivalent “finger

friendly” component. It is vital that the mapping rules do not lose information or

fundamental functionality when it is transformed. It can therefore in some instances

be necessary to transform one component into two or more on the other side.

It can be a fair-sized task initially to get these mapping rules right, but once in place

they can handle the change between a stylus and a finger optimized user interface

quite elegantly. The mapping rules can most likely also be reused in other situations

where the need for the ability to switch between a stylus and finger based interaction

is present. Because of the relatively large work-load, creating mapping rules to handle

this is something which normally will not be viable for just one instance, but rather

when several applications or software solutions demands it.

Relevant categories: Form, Icon and Graphic based

 Mobile, Flexible user interfaces

 Page 92 of 102

7.7 USER INTERFACE ABLE TO RUN ON EQUIPMENT WITH

DIFFERENT SCREEN SIZE

7.7.1 CREATE SEVERAL VERSIONS OF THE USER INTERFACE

This builds on the same concept as presented in Have Two Versions of the User

Interface (chapter 7.2.1 – page 62). But here it is vital to first get an overview of

which mobile devices with their appurtenant screen resolutions the application is

meant to support. Hereafter a separate user interface is designed specifically for each

of the screen resolution variations.

As with Have Two Versions of the User Interface (chapter 7.2.1 – page 62) an

advantage with this solution is that the designer has the possibility of specifically

tailoring a version of the application user interface to each screen variation. But the

con, of having the added development work when constructing many separate user

interface versions for one single, use can be quite time consuming if there are many

different screen resolution. It can also be a challenge to maintain these user interface

instances consistent with each other so that the usability is kept throughout.

To minimize the work here, it can be smart to use a tool that supports drawing the

user interface. Here the designer can focus on adapting each user interface instance

to the varying screen sizes and not the underlying code. Hereby the developer can

handle more complex tasks and be more efficient – i.e. create faster and more

complex user interfaces and avoiding usability hindrances. It is also natural to create

and work on something graphical by visually drawing it, as opposed to for instance

using a textual tool.

7.7.2 CHANGE BETWEEN ALTERNATIVE CONTROLS

This alternative is in some ways similar to Struts and Straps (presented in chapter

7.4.1 - page 69), but instead of having a set of constraints or rules which manage how

controls should adapt (size wise, whitespace between, etc.) when the user interface

environment changes, the rules define which controls that can be replaced with which

alternative, equivalent controls.

There are two ways of attacking this approach, one is only using components which

are available in your current development environment, for example controls provided

by the .NET Compact Framework. Another is to develop custom controls, either

based on existing or from scratch. The latter can be much more complex and labor

intensive (as a starting point) but provides the user interface designer with the ability

to custom tailor the controls in the user interface to the exact application domain.

Relevant categories: Form based

Relevant categories: Form and Graphic based

 Mobile, Flexible user interfaces

 Page 93 of 102

As an example for using already existing controls, we may have a user interface that

consists of two main components, one, a list box with alternatives (here showing three

alternatives simultaneously) and, two, a calendar control used for picking a date. The

purpose and functionality of this example application is irrelevant.

Illustration 7.9 - Example of how a user interface could look before controls are replaced to minimize

space use.

Now, the space being used can be minimized a great deal and the same functionality

can be achieved by, in this instance, respectively replacing then list box with a combo

box and the full calendar with a simple date chooser. The space now utilized is

roughly one half of that of the original.

Illustration 7.10 - Example of how the user interface from Illustration 7.9 can look when controls have

been replaced in order to reduce area usage.

Which controls that can be replaced by others depends on the functionality and use,

both for the user interface as a whole, but maybe more importantly for each separate

control. When opting for a replacement strategy, it is important to consider thoroughly

which controls to replace and with what. If the changes are many and alter the

appearance significantly, the user can become disorientated and lose track of the task

at hand, and thereby the usability can be greatly reduced. To avoid this confusion a

 Mobile, Flexible user interfaces

 Page 94 of 102

rule of thumb is to keep the same labels, which are appurtenant to each control, when

doing necessary replacement.

Examples of controls that can be replaced by other are: list box  combo box, multi

lined text box  single lined text field, check list box  horizontally arranged check

boxes and month calendar  date time picker.

This is an approach which a model based approach would be suited for. The main

work would be in finding an appropriate user interface model to design in and

thereafter defining the mapping between components telling how a user interface

model can be transformed to the various screen sizes. Ideally a tool provides and

supports all this, and you as a user interface designer can focus on modeling the user

interface. Thereafter it should just be a case of hitting a button and the transformation

the user interface model to concrete implementations adapted to the varying screen

sizes.

7.7.3 USE A MODEL BASED APPROACH

Having the possibility of designing one user interface model, and then automatically –

provided that the tool support, models and transformations are adequate – transform

this to various context and devices, is one of the key advantages of the model based

approach. It is also this advantage which makes it a fitting way of resolving the

challenge of having a user interface which is able to run on equipment with different

screen size.

The model based approach provides the user interface designer with the possibility of

focusing on the challenges of developing an efficient UI and not on the underlying

code. The concept of working on a fairly high abstraction level without losing

usability can most likely be accomplished though model based development. This

high abstraction level makes it easier to handle more complex tasks, because it is

possible to see and comprehend more at once. And this high abstraction level

combined with a visual way of describing/programming is for many a more natural

and efficient way of working.

With the ability to relatively fast model a concept or application domain, one can

more easily detect potentially wrong perceptions, and the correction of these at the

earliest possible stage means a more time- and cost-efficient development process.

When working with models, it is vital to have a suitable meta-model. One problem is

if it has not covered the right concepts, which may be difficult enough, but another

and maybe more pressing challenge is how to stay at the right abstraction level. If the

meta-model elements should be too general, it will quickly become very difficult to

model anything specific. Should, on the other hand, the elements be too detailed this

will render it overly complex to model anything concrete, and the advantage over

lower lever approaches disappears.

Relevant categories: Form, Icon, Document, Graphic and Repetition based

 Mobile, Flexible user interfaces

 Page 95 of 102

In an user interface development process it is often vital that available building blocks

works the way they are suppose to – this in context of functionality and visual details

(which often go hand in hand). This is also connected to the abstraction level which is

discussed above. But a challenge maybe how to give the user interface designer the

power to change and tweak visual details, e.g. for a company which wants their

software to have a certain look and feel that corresponds to other products they might

have.

 Mobile, Flexible user interfaces

 Page 96 of 102

 Mobile, Flexible user interfaces

 Page 97 of 102

8 CONCLUSIONS AND FUTURE RESEARCH
The main purpose of this master thesis has been to provide an overview of what is out

there in terms of mobile, flexible user interfaces, and hereunder give concrete

guidelines and principles of how one can create and sustain flexible user interfaces

on mobile devices through varying contexts. Naturally there does not exist one, single

and all-powerful solution which solves all problems, but rather a set of guidelines and

principles that when applied on the right user interface type and for the right challenge

will improve and maintain user interface usability. And it is often not just a case of

how to avoid or handling certain problems, but maybe more taking advantage of and

utilizing the potential and possibilities provided by, with and within mobile devices.

The term mobile device summarizes a very diverse and large group of computing

devices. It consists of devices from the larger portable and tablet PCs, with the new

UMPCs, through PDAs and down to the smaller Smartphones and other mobile

phones. And the diversity between these – i.e. the varying screen sizes, facilitated

input mechanisms, how they are used, etc. – together with their appurtenant operating

systems (e.g. Linux, Palm OS, Windows Mobile, Symbian and Mac OS X) give many

and varying possibilities and challenges in the context of designing user interfaces.

When examining existing solutions it was discovered that most of the solutions, for

the various challenges, were of a quite simple and basic character – e.g. to preserve a

flexible layout at run-time it was mostly either a case of adding or adjusting

traditional scroll bars or doing nothing. Many of the applications were quite difficult

to use with the fingertip and none of the application had any dedicated support for

shifting between stylus and finger based interaction.

The context of this thesis is defined within space that emerges between three axes;

user interface categories, user interface challenges and design approaches. This

provides a relatively well-defined and easy-to-follow structure.

Under the first axis, user interface categories, five different categories were chosen;

form, icon, document, graphic and repetition based, which then provides a base for

categorizing both application user interfaces and guidelines. These categories aim to

be abstracted above simple mechanisms and components and at the same time

embrace application user interfaces independent of the wide range of application

domains. The user interface categories are all within the graphical user interface

paradigm.

When working with the five user interface categories, it quickly became apparent that

some where more complex to handle than others. Complexity is here used in the

context of the user interface plasticity – i.e. preserving usability despite a changing

environment both internally and externally. The list below positions the categories by

complexity, with the most complex first and the least complex at the end:

1. Form based

2. Graphic based

3. Repetition based

4. Document based

5. Icon based

 Mobile, Flexible user interfaces

 Page 98 of 102

As listed above, the most complex category was probably the form based one. The

nature of this user interface type; with many components, with varying complexity

and functionality, which need to interact with each other and the user on so many

levels, can be very challenging to handle appropriately. The graphics based category

is maybe the category with most internal variation between the user interface

instances, some of which can be very complex to handle while others are relatively

simple. At the other end of the scale – i.e. fairly simple to handle in most cases – we

find the icon and document based categories. The repetition based user interface type

can be placed somewhere in between, but for the most part more towards the simpler

end of the scale.

The user interface challenges, and second axis, are a selection of the most common

challenges which one might encounter on mobile devices. They are created with

foundation in the three main problem areas: utilizing screen space, flexible layout at

run-time and flexible layout at design-time. Hereunder six different challenges have

been defined: switching between portrait and landscape screen orientation, software

keyboard showing/hidden, content larger than its display container, finger optimized

user interface, switching between stylus and finger optimized user interface and user

interface able to run on equipment with different screen size. These challenges where

used in both testing how existing applications handled them and, maybe more

importantly, as sources for the guidelines.

The guidelines provided are diverse; some handle unique situations, some overlap

with others (with reference to e.g. principles, mechanisms and/or techniques) and

some can even contradict each other – in other words, what is a good solution in one

situation can in another make matters worse. This is because they handle varying

challenges within different categories and in changing contexts.

Many of the challenges had a tendency, when it boiled down to the essentials, to

become a challenge of handling content larger than its display container. Especially

the challenges of switching between portrait and landscape orientation and software

keyboard showing/hidden.

For the presented guidelines one can find some main principles which they in

different ways conform to:

 Facilitating scrolling functionality in one form or another. One of the most

promising here is the notion of Borders Facilitate Scrolling (chapter 7.4.10 –

page 75). By using this, as purposed, it is possible to provide scrolling

functionality, regulate scrolling speed (with graded edges) and at the same

time not loose vital screen space. Another good solution is to use Panning

(chapter 7.4.9 – page 74). This is intuitive for the user and does not occupy

unnecessary screen space. It can also support varying scrolling speed by

implementing support for a touch-drag-lift motion, where the speed desired for

scrolling is computed based on the speed and acceleration with which the drag

motion is performed.

 Adjust or adapt components which the user interface consists of. This is

something which is recommended both when having to optimize how the

screen space is being used and when needing to support finger based

interaction. One good idea for optimizing screen usage is to follow the

 Mobile, Flexible user interfaces

 Page 99 of 102

guidelines of Struts and Straps (chapter 7.4.1 – page 69). With this, the user

interface can follow changes (at run-time) within certain limits, and once in

place it can be reused for other user interface instances. For a more finger

friendly” user interface, the notion of Simple Adaptation of Existing

Components (chapter 7.5.1 – page 84) should be considered. This can be done

quite easily, as it is simply a case of using altering already existing and

changeable component properties (though it is worth noting that this also is its

Achilles heel).

 Group content differently is a regularly followed principle, and is often used

to optimize how the available screen area is used. This is something which is

relevant mostly in form based user interfaces. One of the most common and

usable techniques is to Group Similar Components in Tab Folders (chapter

7.4.3 – page 70). Its “brother”, Partial Tab Folders (chapter 7.4.4 – page 71)

should also be mentioned here. When used correctly, these solutions can make

a complex and multifaceted user interface usable.

 Do nothing, or lock the user interface, is something that under certain

circumstances can be used with success. It can often be better to keep a user

interface the way it is and not conform to the changing contexts. This is

particularly relevant for advanced graphic based user interface, where

conforming or have to construct extra user interface will result in much extra

work and therefore non-profitable solutions. Lock User Interface in One

Orientation (chapter 7.2.3 – page 64) proposes just such a solution – i.e. have

the user interface adapted to one orientation and ignore screen orientation

changes.

The third axis, design approaches, is founded on the four main ways of designing

and implementing a user interface. These are: programming, drawing, modeling and

marking up the user interface. The approaches all have different pros and cons for

different challenges and in various contexts, and are recommended for relevant

challenges and within related guidelines.

The most well-established design approach is programming the user interface. Due

to the fairly low abstraction level this provides the user interface designer with the

power to control every part of the user interface (assuming the programming

paradigm and libraries are well-known). But this control of details comes at a cost,

and maintaining an overview can become very difficult if the programming

assignment becomes large and complex.

Drawing the user interface is something which also has been available for some time

now – e.g. Microsoft Visual Studio 97 facilitated drawing the user interface. As with

other WYSIWYG (What You See Is What You Get) the user interface designer can

focus on visually designing the user interface and not underlying code. A problem

though can appear if the tool does not support exactly what you want to do, thereby

forcing manually coding which in turn can make create problems, for instance with

further usage of the “drawing tool” on the current instance.

An up and coming approach is the concept of modeling the user interface. It has been

an established research area for more than ten years (Nilsson, 2004). But the modeling

 Mobile, Flexible user interfaces

 Page 100 of 102

languages and tools have only to a limited extent made their ways out of research,

something which is the modeling approach’s main drawback. A model based

approach provides the user interface developer with the possibility to focus on the

challenge of developing an efficient and usable user interface. When a user interface

is modeled the process of creating the concrete user interface, or even multiple

instance for several contexts, can be automated (provided that the mappings are

supported). With the ability to relatively fast model a concept or application domain,

one can more easily detect potentially wrong perceptions, and correction of this at the

earliest possible stage means a more efficient development process. The model based

approach is something which is almost custom made for the challenge User Interface

Able To Run on Equipment with Different Screen Size (chapter 5.2.6 – page 34).

Marking up the user interface is something which grew in use parallel with the

popularity of the Internet, where it still has its main use. The main advantage is that it

is quite easy to use and structure a user interface and it is also available though any

generic client. But mark-up languages (like HTML, XML, etc) are intended for

semantically structuring and not visually designing content, this is something that

should be done by using for example CSS (Cascading Style Sheets). Marking up a

user interface is not commonly used in existing stand-alone applications.

Advantages and disadvantages of the different design approaches is something which

should be investigated further. Here it would be natural to go deeper into each of the

approaches and thereby map them more extensively. The three design approaches,

programming, drawing and marking up, are fairly well-established, have a quite large

user base and operating domain. The model based is in a different category. This

approach, fully realized from A to Z, is an approach with potential to really affect how

user interface designer work, the efficiency of how they work and the effectiveness of

this work. A natural step would be to study the model based approach further. What

is state of the art in designing mobile user interface, which current modeling

environments and tools are available, what are their pros and cons and what can be

done to make these better?

Thereafter it would be interesting to see how the model based can be used, both in

theory and in practice (with current tools), to handle and resolve the challenges and

guidelines presented in this master thesis. Is the model based approach better suited

for some type of challenges or for certain guidelines, and if so why is this? This would

also reveal situations and/or challenges which are not ideal for a model based

approach and which approaches that are appropriate, something that could highlight

weaknesses with the model based approach and thereby what to improve.

And as the world of mobile computing continues to progress and grow – i.a. new

mobile devices, screen variations, input mechanisms, operating systems, development

environments, design approaches, etc – both new challenges and solutions will see the

light of day. At present time it is natural to draw attention to one of the most talked

about, “soon to come” mobile device at present day, the Apple iPhone, which is

scheduled to be released by the summer of 2007. This is said to, with its Mac OS X,

improve how mobile user interface handle, look and feel. It would for example be

interesting to examining what this device does differently in terms of usability; which

new mechanisms it uses, if they increase usability and why they do or do not work

better.

 Mobile, Flexible user interfaces

 Page 101 of 102

9 REFERENCES
The Research Council of Norway ICT - Core Competence and Growth (VERDIKT)

[Online] // The Research Council of Norway. - Integrate AS, 2005. - April 23, 2007. -

http://www.forskningsradet.no/servlet/Satellite?cid=1092128011679&pagename=ver

dikt%2FPage%2FHovedSideEng.

Apple Inc. Introducing iPhone [Online] // Apple. - Apple Inc., 2007. - April 18,

2007. - http://www.apple.com/iphone/.

Calvary Gaëlle [et al.] Plasticity of User Interfaces: A Revised Reference

Framework [Conference] // 1st International Work shop on Task Models and

Diagrams for User Interface Design TAMODIA. - Bucharest : INFOREC Printing,

2002. - pp. 127–134.

Google, Inc. Google Earth [Online] // Google Earth. - Google, Inc., 2007. - April 14,

2007. - http://earth.google.com/.

Google, Inc. Google Maps [Online] // Google Maps. - Google, Inc., 2007. - April 14,

2007. - http://www.google.com/maps.

Grudin Jonathan Utility and Usability: Research issues and development contexts.

[Journal]. - [s.l.] : Interacting with computers, 1992. - 4(2):209-217.

Herstad J., Thanh, D. v., & Audestad, J. A. Mobile communication and interaction

in context [Conference] // International conference on intelligent user interfaces. -

New York : ACM Press, 1998. - p. 198.

Kiljander Harri Evolution and Usability of Mobile Phone Interaction Styles

[Book]. - Helsinki : Helsinki University of Technology, 2004. - ISBN 9512273209.

Lindholm Christian, Keinonen Turkka and Kiljander Harri Mobile Usability:

How Nokia Changed the Face of the Mobile Phone [Book]. - New York : The

McGraw-Hill Companies, Inc., 2003. - ISBN 0-07-138514-2.

MapQuest, Inc. MapQuest [Online] // MapQuest. - America Online, Inc., 2007. -

April 14, 2007. - http://www.mapquest.com.

Microsoft Corporation Layout Meta Tag [Online] // Microsoft Developer Network. -

September 14, 2006. - March 2007, 20. -

http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/mobilesdk5/html/wce51conLayoutMetaTag.asp.

NASA World Wind [Online] // World Wind. - NASA, 2007. - April 14, 2007. -

http://worldwind.arc.nasa.gov/.

Nielsen Jakob Usability Engineering [Book]. - Fremont, California : Morgan

Kaufmann, 1994. - ISBN 0-12-518406-9.

Nilsson Erik G. [et al.] Model-based user interface adaptation [Conference] / ed.

Davies Nigel, Kirste Thomas and Schumann Heidrun. - Schloss Dagstuhl, Germany :

Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI), 2005. -

Seminar: 05181 - Mobile Computing and Ambient Intelligence: The Challenge of

Multimedia. - ISSN 1862-4405.

Nilsson Erik G. Design guidelines for mobile applications [Report] : SINTEF Report

STF90 A06003. - Oslo : SINTEF Telecom and Informatics, 2005. - ISBN 82-14-

03820-0.

Nilsson Erik G. Design patterns for user interface for mobile applications [Report]. -

Oslo : SINTEF Telecom and Informatics, 2005.

Nilsson Erik G. Modelling user interfaces – challenges, requirements and solutions

[Report]. - Oslo : SINTEF Telecom and Informatics, 2004.

Preece Jenny, Rogers Yvonne and Sharp Helen Interaction Design, Beyond

human-computer interaction [Book Section] // Interaction Design, Beyond human-

 Mobile, Flexible user interfaces

 Page 102 of 102

computer interaction. - New York : John Wiley & Sons, Inc., 2002. - ISBN 0-471-

49278-7.

S60 S60 Phones [Online] // S60. - Nokia Corporation, 2007. - April 30, 2007. -

http://www.s60.com/life/s60phones/browseDevices.do.

Satyanarayanan M. Fundamental Challenges in Mobile Computing [Conference] //

Annual ACM Symposium on Principles of Distributed Computing. - Philadelphia :

ACM Press, 1996. - pp. 1-7.

SINTEF FLAMINCO – FLexible Applications exploiting Multi modal INteraction

and COntext [Online] // SINTEF. - March 20, 2007. - March 27, 2007. -

http://www.sintef.no/content/page1____13988.aspx?epslanguage=EN.

Sun Microsystems, Inc. Trail: Creating a GUI with JFC/Swing: Table of Contents

[Online] // The Java(tm) Tutorials. - Sun Microsystems, Inc., 2006. - April 10, 2007. -

http://java.sun.com/docs/books/tutorial/uiswing/TOC.html.

Symbian-Guru New Freeware, RotateMe, Portrait or Landscape on S60v3 [Online] //

Symbian-Guru. - February 7, 2007. - March 14, 2007. -

http://symbianguru.typepad.com/welcome/2007/02/new_freeware_ro.html.

Szekely Pedro Retrospective and Challenges for Model-Based Interface

Development [Conference] // CADUI '96. - Namur, Belgium : [s.n.], 1996.

Thevenin D and Coutaz J Plasticity of User Interfaces: [Conference] // IFIP TC 13

Int. Conf. on Human-Computer Interaction. - Edinburgh : IOS Press, 1999. - p. 1.

Wikimedia Foundation, Inc. Drag and drop [Online] // Wikipedia. - Wikimedia

Foundation, Inc., April 3, 2007. - April 14, 2007. -

http://en.wikipedia.org/wiki/Drag_and_drop.

Wikimedia Foundation, Inc. iPhone [Online] // Wikipedia. - March 14, 2007. -

March 14, 2007. - http://en.wikipedia.org/wiki/IPhone#_note-MP3_Newswire.

Wikimedia Foundation, Inc. List of Palm OS devices [Online] // Wikipedia. -

February 23, 2007. - March 9, 2007. -

http://en.wikipedia.org/wiki/List_of_PalmOS_devices.

Wikimedia Foundation, Inc. Palm OS [Online] // Wikipedia. - March 7, 2007. -

March 9, 2007. - http://en.wikipedia.org/wiki/Palm_OS.

Wikimedia Foundation, Inc. Symbian [Online] // Wikipedia. - March 4, 2007. -

March 12, 2007. - http://en.wikipedia.org/wiki/Symbian.

Wikimedia Foundation, Inc. Ultra-Mobile PC [Online] // Wikipedia. - Wikimedia

Foundation, Inc., April 17, 2007. - April 27, 2007. -

http://en.wikipedia.org/wiki/Ultra-Mobile_PC.

Wikimedia Foundation, Inc. Windows Mobile [Online] // Wikipedia. - March 8,

2007. - March 12, 2007. - http://en.wikipedia.org/wiki/Windows_mobile.

Zhai Shumin, Barton Smith A. and Selker Ted Improving Browsing Performance:

A study of four input devices for scrolling and pointing tasks [Conference] //

INTERACT97: The sixth IFIP Conference on Human-Computer Interaction, Sydney,

Australia. - San Jose, California : [s.n.], 1997. - pp. 286-292.

Ziff Davis Publishing Holdings Inc. 3rd way: Sharp pits Linux+Java against

Palm/PocketPC [Online] // Linux Devices. - November 5, 2001. - March 9, 2007. -

http://www.linuxdevices.com/news/NS3569993078.html.

Ziff Davis Publishing Holdings Inc. The Linux PDA Showcase [Online] // Linux

Devices. - December 22, 2006. - March 9, 2007. -

http://www.linuxdevices.com/articles/AT8728350077.html.

	Abstract
	Preface
	Table of Contents
	Introduction
	Central Words and Conceptions
	Usability
	Plasticity

	Mobile Device Context
	Types of Devices
	Portable PC (including ultra portable PCs)
	Tablet PC
	Ultra Mobile PC (UMPC)
	Personal Digital Assistant (PDA)
	Smartphone
	Other Mobile Phone

	Device Platforms
	Linux
	Palm
	Windows Mobile (PocketPC/Windows CE)
	Symbian
	/Mac OS X

	Problem Scope
	User Interface Categories
	Form Based
	Icon Based
	Document Based
	Graphics Based
	Repetition Based

	User Interface Challenges
	Main Problem Area
	Utilizing Screen Space
	Flexible Layout at Run-Time
	Flexible Layout at Design-Time

	The Concrete Challenges
	Switching Between Portrait and Landscape Screen Orientation
	Software Keyboard Showing/Hidden
	Content Larger Than its Display Container
	Finger Optimized User Interface
	Switching Between Stylus and Finger Optimized User Interface
	User Interface Able To Run on Equipment with Different Screen Size

	Current Solutions
	Form Based Applications
	Cash Organizer 2007 Premium
	Handling: Switching Between Portrait and Landscape Screen Orientation
	Handling: Software Keyboard Showing/Hidden

	Pocket Informant 2007
	Handling: Switching between portrait and landscape orientation
	Handling: Finger Optimized User Interface

	Icon based applications
	Total Commander/CE
	Handling: Content Larger Than its Display Container
	Handling: Switching Between Stylus and Finger Optimized User Interface

	Pocket File Explorer
	Handling: Switching Between Portrait and Landscape Screen Orientation
	Handling: Software Keyboard Showing/Hidden

	Document based applications
	Pocket Word
	Handling: Content Larger Than its Display Container
	Handling: Software Keyboard Showing/Hidden

	Pocket Internet Explorer
	Handling: Content Larger Than its Display Container
	Handling: Switching Between Portrait and Landscape Screen Orientation

	Graphics based applications
	Pocket Earth 3.4
	Handling: Switching Between Portrait and Landscape Screen Orientation

	SimCity 2000
	Handling: Finger Optimized User Interface
	Handling: Content Larger Than its Display Container

	TomTom NAVIGATOR
	Handling: Finger Optimized User Interface

	Repetition based applications
	Pocket Messaging
	Handling: Switching Between Portrait and Landscape Screen Orientation
	Handling: Content Larger Than its Display Container

	Cash Organizer 2007 Premium
	Handling: Software Keyboard Showing/Hidden
	Handling: Switching Between Portrait and Landscape Screen Orientation

	Summary

	Guidelines
	Guideline and Category Matrix
	Switching Between Portrait and Landscape Screen Orientation
	Have Two Versions of the User Interface
	Dynamically Resizing Components
	Lock User Interface in One Orientation
	Add or Adjust Scroll Bars

	Software Keyboard Showing/Hidden
	Display on Top of User Interface
	Use One Large Component as a Buffer
	Having Two Versions of the User Interface
	Add or Adjust Scroll Bars

	Content Larger Than its Display Container
	Struts and Straps
	Conceal Non-Vital Elements
	Group Similar Components in Tab Folders
	Partial Tab Folders
	Wizard Based User Interface
	Collapsible Blocks of Information
	Add or Adjust Scroll Bars
	Alter Icon Representation
	Panning
	Borders Facilitate Scrolling
	Point and Center
	Offer Zooming Functionality
	Navigational Buttons
	Manipulate Document Layout and Content
	Restrict Number of Attributes
	Optimize the Sequence and Size
	More Than One Row Per Item
	Show Additional Information When Item is Selected

	Finger Optimized User Interface
	Simple Adaptation of Existing Components
	Advanced Adaptation of Existing Components
	Developing Custom Components
	Change Scrolling Mechanism
	Manipulate Content

	Switching Between Stylus and Finger Optimized User Interface
	Have Two Versions of the User Interface
	Facilitate Switching Between Projections
	Have a Set of Mapping Rules

	User Interface Able To Run on Equipment with Different Screen Size
	Create Several Versions of the User Interface
	Change Between Alternative Controls
	Use a Model Based Approach

	Conclusions and Future Research
	References

