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Abstract

Three-dimensional radiative transfer calculations involve extensive amounts of compu-
tation. These calculations are done on three-dimensional model atmospheres where
the MHD equations are solved. Typically, model atmospheres are run on a discret-
ised Cartesian grid, which is often not ideal for detailed calculation of spectral lines.
This thesis investigates radiative transfer on irregular grids to improve spectral line
calculations.

In one-dimensional radiative transfer, optimised grids lead to an accelerated conver-
gence in solving the radiative transfer equation iteratively. These optimised grids are
partitioned unevenly, and extending such grids to three dimensions requires different
ray tracing methods than the traditional long and short characteristics. In this thesis,
I develop a ray tracing algorithm on irregular grids. I construct a Voronoi diagram
on the irregular grid and trace rays along its Delaunay lines. This ray tracing method
gives good results in the searchlight beam test, producing similar amounts of diffusion
as the short characteristics method with a piecewise linear interpolation.

The irregular grid framework is extended to a two-level atom problem in a quiet Sun
MHD simulation. On a reduced resolution of the atmospheric model, the quality
of synthesised spectra calculated with irregular grids is not as good as that of the
Cartesian grid. However, optimised irregular grids converge nearly twice as fast as
regular Cartesian grids. Although these calculations are modest with grid points, I also
expect an accelerated convergence for higher resolution calculations.

This work establishes irregular grids’ capability to calculate three-dimensional radiative
transfer in the solar atmosphere. Further improvement to the methods can make NLTE
calculations on irregular grids more fitting than on Cartesian grids.
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Chapter 1

Introduction

Throughout the last centuries, great attention has been given to studying the light that
comes from the Sun. Physical processes within the Sun imprint small clues on the solar
radiation that we observe at Earth. The spectrum spanned by this radiation holds the
key to our life-giving star’s inner mechanics.

Within large parts of the Sun, the matter is in thermal equilibrium. In 1900, Ger-
man physicist Max Planck derived a formula describing how black bodies in thermal
equilibrium emit radiation. This formula depends on temperature only; therefore, the
radiation emitted from perfect black bodies sheds little light on the physical processes
inside the body. Observing radiation from black bodies solely provides insight into the
temperature where radiation is formed. Fortunately, the Sun is not a perfect black
body. While observations of the Sun mimic Planck’s distribution, essential deviations
are imprinted in the spectrum. Understanding these deviations unlocks the secrets of
the Sun.

At the beginning of the 19th century, a deviation from the black body spectrum coming
from the Sun was observed for the first time.1 The deviation came from atoms in the
solar atmosphere absorbing and emitting photons. This kind of deviation—arguably
the most important kind of deviation from the black body spectrum—is called a spectral
line. Plenty spectral lines exists, either in emission or absorption from the black body
continuum depending on the physical conditions where they form.

A thin envelope of gas surrounding the dense interior of the Sun forms the spectral
lines in the solar spectrum. This low-density region extends millions of metres above
the solar surface. It is the solar atmosphere. Coupling the physical conditions in the
solar atmosphere to the spectral lines that we observe is not an easy task—it requires
extensive computational resources. Only in later years technology has made it viable
to model the atmospheric conditions of the Sun realistically.

1William Wollaston observed absorption lines from the solar spectrum in 1802. These were the Ca II
h & k and Na I D lines.
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Introduction

Even though fluid simulations of the Sun have been fruitful, a detailed three-dimensional
description of radiative transfer in the solar atmosphere is still lacking for many spectral
lines. Until recently, detailed spectral synthesis has been available in one dimension
only. Three-dimensional calculations have been restricted by the intricacy of modelling
radiation in dynamic conditions where mass density varies over orders of magnitude.

Classically, well established numerical schemes in one dimension have been used to
synthesise spectral lines.2 The numerical scheme in question is an implicit solver that
iterates towards the correct solution of the radiation field. These one-dimensional radi-
ative transfer solvers have accurately reproduced spectral lines from the Sun. However,
there are observations that one-dimensional calculations fail to synthesise. Several
physical processes important for line formation are impossible to model in 1D. Three-
dimensional effects such as macroscopic Doppler shifting due to a moving fluid is one
quantity that cannot be treated correctly in 1D. The Magnetic field is another inherently
three-dimensional quantity important for line formation. For example, the important
spectral diagnostic Hα needs a three-dimensional treatment because “the presence of
magnetic fields leads to structures that cannot be reproduced in one-dimensional (1D)
or two-dimensional (2D) modeling” (Leenaarts et al., 2012).

The requirement for three-dimensional radiative transfer calculation is apparent. How-
ever, there are several inhibiting factors in existing methods. Olson et al. (1986) note
that spectral synthesis on fine grids converges slower in one dimension; the extension to
3D is worse. The computational complexity of calculating multilevel atoms with high
spatial resolution is not feasible. Alas, high resolution radiative transfer is necessary to
compare synthesised lines with observations from the next-generation solar telescopes,
like the recently operational DKIST or the planned EST.3

While efforts have been made to optimise grids for better convergence in one-dimensional
radiative transfer calculations of the solar atmosphere, a three-dimensional counter-
part is lacking. This absence comes partly because ray tracing algorithms for three-
dimensional irregular grids are slower than their Cartesian counterparts. Still, such
algorithms have been developed for studies of astrophysical systems other than the
Sun. An example of this is Camps et al. (2013), who use a Voronoi tessellation to
calculate radiation in galactic structures. They conclude that “the benefits of using a
Voronoi grid in radiative transfer simulation codes will often outweigh the somewhat
slower performance”. Making an irregular grid enables a finer resolution in areas more
sensitive to radiation, while simultaneously having a coarser resolution in less important
areas. The irregular grid could bring two large benefits: the first coming as a quicker
convergence of the Λ-iteration; the second being increased spatial resolution of sensitive

2The traditional method is called Λ-iteration. With the combination of a technique called operator
splitting technique, this method has proven an effective tool in one-dimensional radiative transfer.

3DKIST (short for Daniel K. Inouye Solar Telescope), is a four-meter telescope capable of studying
“features as small as 35 kilometres across” (Witze, 2020). The EST (shorthand for European Solar
Telescope) is a project that has been long in the planning. While its primary mirror is not planned
to be larger than DKIST’s, the EST would provide diagnostics to understand the magnetic fields and
plasmas in the solar atmosphere.
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regions without using more grid points in calculations.

Considering the potential benefits an optimised grid can have for three-dimensional
radiative transfer calculations, I realised the importance of an investigation into the
subject. Improving three-dimensional radiative transfer is crucial for two reasons: the
next generation of solar telescopes will reveal small scale details in the spectra of the
Sun, requiring higher resolution spectral synthesis comparison; and, several spectral
lines are not yet viable to model in 3D due to computational limitations imposed by
physical complexity.

The transition from regular to non-regular grids introduces several obstacles. Ad-
ditional book-keeping and slower performance are expected. However, finding proper
solutions to these challenges can stake the direction toward improved three-dimensional
radiative transfer calculations.
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Chapter 2

Background

2.1 The radiative transfer equation

The radiative transfer equation (RTE) describes intensity along a ray in a medium. It
is dependent of the path s light travels, time t, and expressed at a wavelength λ as

[
1

c

∂

∂t
+

∂

∂s

]
Iλ(s, t) = −αλ(s, t)Iλ(s, t) + jλ(s, t) . (2.1)

Here, αλ(s, t) is the extinction coefficient, jλ(s, t) is the emissivity, and c is the speed
of light.

The extinction coefficient αλ accounts for the removal of energy—or the number of
photons—from the ray, either through absorption or scattering processes. Extinction
is defined per unit path length.

Emissivity is the addition of energy or photons to the ray from emission processes. It
has the same units as intensity, divided by unit length.

In the solar atmosphere, the photon free flight time is much smaller than any timescale
in the variation of the fluid. It is “of the order of seconds” (Stein & Nordlund, 1998),
resulting in a rapid stabilisation of the radiation field after any change in the fluid.
Consequently, the intensity Iλ has no time-dependence that is not introduced by the
fluid. Given that we know how the atmosphere looks like at a time t, the partial
derivative of Iλ with respect to time in Equation (2.1) can be neglected.

Instead of using the physical length unit s, it is common to use optical depth. This
refers to the path light experiences. The monochromatic optical depth increment dτλ
is given by the extinction coefficient and path length as

dτλ(s) ≡ −αλds . (2.2)
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The optical depth can then be found by integrating Equation (2.2):

τλ(s) =

∫ 0

s
αλ(s)ds . (2.3)

While a single photon can travel any distance in optical depth before interacting with
the medium, an ensemble of photons obey statistical laws. The mean path length a
photon travels is

⟨τλ⟩ = 1 . (2.4)

Another useful quantity for radiative transfer is the source function Sλ. The source
function describes the ratio of emission to extinction, and is defined as

Sλ ≡ jλ
αλ

. (2.5)

The source function can be a brilliant quantity to introduce. Major benefits of this
quantity come from its compactness and utilisation in an algorithm called Lambda
iterations that is introduced and used later in this thesis. It should, however, be
treated with care. Behind this seemingly simple term lies a great deal of complicated
physics requiring advanced comprehension of the microscopic processes taking place in
the fluid of the Sun.

Using the quantities described above, dropping the time-dependence, and recasting the
transport equation in terms of optical depth, the Equation (2.1) transforms to

dIλ
dτλ

= Sλ − Iλ . (2.6)

This is the simplest form of the transport equation, although it carries a manifold of
details.

2.1.1 The formal solution

Integrating the time-independent transport equation in Eq. (2.6) by the integrating
factor exp (τλ), one obtains the formal solution to the Radiative Transfer Equation:

Iλ(τλ) = Iλ(0)e
−τλ +

∫ τλ

0
Sλ(τ

′
λ)e

−(τλ−τ ′λ) dτ ′λ . (2.7)

The advantage of the formal solution is that it “lives” in one dimension, making it simple
to calculate radiation when the source function is known. The drawback is that the
source function is known only a priori in constructed problems. The source function
is elusive in physical media, mainly due to scattering processes. Finding the source
function is the essence of numerical radiative transfer calculations of the Sun.
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2.2 From 1D to 3D radiative transfer

2.2 From 1D to 3D radiative transfer

In three dimensions, the radiative transfer equation depends on the direction of the
beam under consideration. The angular integration of the intensity field gives rise to
the quantity called angle-averaged (or mean) intensity. Denoted Jλ and dependent on
wavelength and position, we calculate it as the integral of intensities over solid angle
at optical depth τλ,

Jλ(τλ) =
1

4π

∫ 2π

0

∫ π

0
Iλ(τλ) sin(θ) dθdϕ . (2.8)

In many models, atmospheric variables depend solely on height—a semi-infinite plane-
parallel atmosphere. These problems reduce to one dimension, but the mean intensity
is still an important quantity. For the sake of completeness, I include methods for
1D radiative transfer. These methods are highly developed and provide the basis for
expanding to 3D. In 1D, we find the mean intensity by integrating specific intensity
over the inclination of the ray,

Jλ(τλ) =
1

2

∫ 1

−1
Iλ(τλ, µ)dµ , (2.9)

where the inclination is defined as

µ = cos θ . (2.10)

The continuous integral calculating mean intensity can be solved as a quadrature over
rays,

Jλ(τλ) ≈
∑

i

ωiIλ,i(τλ,i) , (2.11)

making the problem discrete. To obtain an accurate result, we should sample rays
carefully over the unit sphere. Since the problem is solved over rays, parts of the
problem are effectively reduced to one dimension. For each ray, the formal solution is
used to calculate intensity.

The approach of discretising rays over several solid angles is called the method of
characteristics. Originally named the Sn-method, the method of characteristics was first
devised at Los Alamos (e.g. Carlson, 1955), and later developed by Keller & Wendroff
(1957).

In 1D radiative transfer, the discretised rays will strike the same cell centres for every
inclination. This property of one-dimensional radiative transfer makes it very accessible
to distribute grid points beneficially for calculations, optimising the grid for radiative
transfer. For example, Carlsson (1986) optimises the computational grid by placing
depth points such that the maximum difference in optical depth is constant for each
column of a model atmosphere, i.e. max (∆ log10 τ) ≡ constant.1 Later, Carlsson &

1The depth optimisation found in MULTI is provided by Jaime de la Cruz Rodriguez as open-source
software in the GitHub repository https://github.com/jaimedelacruz/depthOptimizer, with some
extension to the original algorithms.
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Stein (1992) use an adaptive mesh for 1D radiative transfer calculations to “resolve
the regions where the atomic level populations are changing rapidly”. The scheme was
inspired by Dorfi & Drury (1987), who find that “Simple Adaptive Grid Equations
[...] constitutes a valuable technique for the numerical solution”. Although Dorfi &
Drury (1987) test these techniques on hydrodynamic equations, the argument is that
an adaptive mesh gives better results for all systems varying over orders of magnitude—
as is the case for radiative transfer calculations in the solar atmosphere.

While depth optimisation works well for one-dimensional radiative transfer, the story is
different when we take the step to three dimensions. In this higher-dimensional space,
the discretised rays in the method of characteristics will traverse the grid in different
arrangements for every solid angle. Accordingly, depth optimisation breaks down in
three dimensions. To understand why it is difficult to optimise a three-dimensional
grid for radiative transfer, I introduce the standard methods for traversing rays in the
characteristic methods in 3D.

2.2.1 Long characteristics

Much work on the method of characteristics was done in simplified two- and three-
dimensional geometries (see review by Crosbie & Linsenbardt, 1978), however the
formal definition of the long characteristics method (also denoted LC), was presented
in a series of papers by Jones and Skumanich, (see Jones, 1973; Jones & Skumanich,
1973).

The long characteristics method starts at a grid point, and traces a ray backwards
through the entire medium under consideration, until one of the boundaries is reached.
Thus the incident intensity I0 of Equation (2.7) is always equal to one of the boundary
conditions. Along the ray, we solve the integral of the formal solution sequentially. The
ray will (in general) not strike the grid points in each layer, involving interpolation of
the source function and extinction coefficient.

The rays in the LC have to propagate backwards through N − l layers of the model,
where l is the layer the ray is intersecting. This way of propagating rays until the
border for every grid point, gives the LC method O(N) calculations per grid point. In
a three-dimensional grid with N3 grid points, the computational complexity of the LC
method is O(N4)—a high price to pay.

2.2.2 Short characteristics

Even though the LC method gives good accuracy, it is not a good choice for large
simulations due to its high computational complexity. The short characteristics (SC)
method, developed by Kunasz & Auer (1988), amends this problem. Short character-
istics traces rays between neighbouring grid points only. It propagates rays starting
from a boundary of the domain to the next immediate layer, from this layer to the
next one, and so on. The calculation of the formal solution uses two values per grid
point, making the method scale with the total number of grid points. The SC method,

8



2.2 From 1D to 3D radiative transfer

Figure 2.1: Two-dimensional comparison between long and short characteristics, show-
ing “propagation strategy to compute the radiation emerging at the top plane with
the SC and the LC methods”. Locations where interpolation of I0 in Equation (2.7) is
necessary are marked with “Int”. Figure adapted from de Vicente et al. (2021), repro-
duced with permission of the authors.

therefore, has a computational complexity following O(N3), where N is the number of
grid points per axis.

Although the SC method is much better than LC in terms of computational intensity,
this improvement comes with a sacrifice. Where the LC method only needs to inter-
polate I0 at the boundaries, the SC method has to interpolate I0 at every grid layer.
Interpolations make the SC method more diffusive, and the diffusion increases for every
layer away from the boundary.

The difference between the LC and SC methods is epitomised in figure 2 of de Vicente
et al. (2021), that is repeated here in Figure 2.1.

Both the LC and SC methods require a regular grid, making it challenging to optimise
depth points consistently for every solid angle ray in the angular quadrature (2.11). This
obstruction advocates a new method to trace rays through a three-dimensional domain,
that can consider an optimisation of grid points for every solid angle. Understanding
how the RTE is solved makes it possible to guess how grid points should be distributed
to optimise the grid for radiative transfer. The subsequent section discusses the solution
scheme.

2.2.3 Λ-iterations

In stellar atmospheres, a process complicates any direct solution of the radiative transfer
equation and promotes implicit solution techniques. This process is scattering.

Scattering occurs when a radiatively excited atom deexcites through a spontaneous

9
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or induced deexcitation. If the mass density in a medium is low, collisions between
particles are relatively rare. Here, natural (induced or spontaneous) deexcitation is
far more likely to occur in an excited ion. Photons are absorbed and re-emitted by
the medium—they are scattered. Scattering can occur several times before a photon
is destructed. In the thin parts of the solar atmosphere, scattering dominates atomic
transitions.

In optically thin regions, photons can travel very far before being destructed. Con-
sequently, the energy photons carry is deposited very far from where the photon was
created. Photons transport energy over long distances, couple distant locations in the
medium to each other, and make the source function dependent on both the local con-
ditions and the global radiation field. In scattering regions, an approximation of the
source function is the combination of a scattering term and a thermal term:

Sλ(Jλ, T ) = (1− ελ)Jλ + ελBλ(T ) . (2.12)

Here ελ is the photon destruction probability, Jλ is the mean radiation field, and Bλ is
the thermal radiation. If the photon destruction probability is equal to one, then there
is no scattering, and we can see that the source function reduces to the thermal term,
which is the Planck function. In this case, the system is said to be in local thermal
equilibrium (LTE). For all other cases, there is scattering present, and the system is in
non-LTE (NLTE).

The source function in Equation (2.12) depends on the mean intensity field Jλ, which
in turn depends on Sλ through Equation (2.8). This implicit relation prohibits any
analytic solution of the radiative transfer equation. Instead, the RTE is solved by
introducing the Lambda operator. The Lambda operator is defined as

Jλ = Λ [Sλ] , (2.13)

and introduced to Equation (2.12), altering the source function to look like

Sλ = (1− ελ)Λ [Sλ] + ελBλ . (2.14)

This expression gives the basis for the Λ-iteration algorithm. The source function can
be solved by inverting the problem, giving the direct solution

Sλ = (1− (1− ελ) Λ)
−1 [ελBλ] . (2.15)

While this solution is mathematically simple to construct, the matrix inversion can be
non-viable to compute. The solution is non-local, meaning that the Λ-matrix contains
many elements far from the diagonal (similar to saying that the matrix has a large
bandwidth). Non-locality in the system makes the full Λ-matrix very hard to invert.
In 3D on a grid with N3 grid points the computation scales as N9 (Rutten, 2003). A
Λ-matrix with diagonal elements only, is similar to the physical system being in LTE,
where the solution is trivial. In our case however, this non-locality means that we are
in NLTE and should try different schemes to solve the source function.

10



2.2 From 1D to 3D radiative transfer

Instead of inverting the matrix in (2.15), the system can be solved iteratively with
Equation (2.14). Iterating betters the prospects in terms of computational intensity.
Since computing the source function in the latter equation requires O(N3) calculations
only, the iteration scheme scales as nit.N

3, where nit. is the number of iterations the
solution requires to converge.

The Λ iteration starts with an initial guess of the source function. One possibility is to
start in LTE, i.e.

S
(0)
λ = Bλ .

The simplest Λ scheme advances by

S
(n+1)
λ = (1− ελ) Λ

[
S
(n)
λ

]
+ ελBλ , (2.16)

and the iterations are performed until the criterion

max
λ

[
abs

(
1− Sn+1

λ

Sn
λ

)]
< ϵ , (2.17)

is fulfilled (typically ϵ ≤ 10−3), or a number of max iterations is reached where it is
said that the solution did not converge.

In complex model atmospheres that contain regions with high optical depth and strong
scattering, this naive iteration scheme fails. The source function will instead stabilise
at the wrong solution, an artefact brought by the destruction factor ελ being small
when there is strong scattering. We can see from Equation (2.14) that the correction of
the source function is minimal per iteration in this scenario. This fact is reinforced in
Rybicki & Hummer (1991): “each cycle of the iteration corresponds to photons moving
about one free path of the medium” (the mean free path is closely related to the inverse
square root of ελ). Per Rutten (2003, p. 124), the solution converges in “1/ε for a
Gaussian line and of order 1/ε2 for a Lorentzian”.

It is common to employ operator splitting to solve the convergence problem of Λ-
iterations. First introduced in stellar context by Cannon (1973)—who separate an
approximate operator Λ∗ from the exact Λ operator—the operator splitting technique
significantly speeds up convergence in scattering media. For one-dimensional radiative
transfer codes, several operator splitting techniques have been successful in solving
multilevel NLTE problems.2

Extending Λ-iterations to 3D, it is natural to apply the local operator (Olson et al.,
1986) to accelerate convergence. However, expecting similar convergence properties
as 1D multilevel NLTE problems will lead to disappointment. In three dimensions,
radiative transfer codes tend to suffer from slow convergence (e.g. a hydrogen atom
model that uses more than 800 iterations to converge in Bjørgen & Leenaarts, 2017,
fig. 12).

2E.g. the core saturation approximation defined by Scharmer (1981), or the local operator from
Olson et al. (1986), which is easy to extend to higher dimensions.
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2.3 Extinction and emission

Extinction and emission are already defined as αλ and jλ, but not much attention has
been given to the microscopic processes encompassed within these quantities. These
processes occur due to interactions between photons and particles.

Both processes are wavelength dependent: interactions with particles depend on the
energy the photons carry. This dependence comes from atoms comprising different
energy levels and wavelength-dependent scattering processes stemming from the wave-
particle duality of ions.

The processes are split into two principal groups: continuum and line processes. The
continuum processes are interactions that happen for a broad range of wavelengths,
encompassing bound-free and free-free interactions between photons and particles, and
elastic scattering processes. The line processes involve the discrete energy levels of
atoms. Also called bound-bound processes, line processes are discrete and occur only
for specific wavelengths.

2.3.1 Bound-bound transitions

An atomic bound-bound transition happens when an electron transitions between two
different energy levels within an atom. The transition between an upper level u and a
lower level l of an atom with energy difference χ may occur in five ways.

Radiative excitation takes place when a photon excites the atom from a lower level l
to an upper level u. The rate of this transition is BluJ̄

φ
λ0

, given in “number of radiative
excitations from state l to state u per sec per particle in state l” (Rutten, 2003, p. 21).
Blu is the Einstein coefficient for the transition, and J̄φ

λ0
is the mean intensity field

weighted over the extinction profile φ(λ− λ0).

Induced deexcitation is also a bound-bound transition involving photons. Also referred
to as stimulated emission, this process occurs when a photon is in the vicinity of an
excited atom. This “disturbance” from the photon can make the atom deexcite and emit
a photon. The transition rate BulJ̄

χ
λ0

is the “number of induced radiative deexcitations
from state u to state l per sec per particle in state u” (Rutten, 2003, p. 22). Bul is the
Einstein coefficient for the transition, and J̄χ

λ0
is the mean intensity field weighted over

the stimulated emission profile χ(λ− λ0).

Spontaneous deexcitation happens when the atom naturally deexcites from an excited
state without any external stimulus. Due to the instability (finite lifetime) of excited
states, the atom may at any time spontaneously deexcite from the upper level u to the
lower level l, emitting a photon. This process happens independently of any radiation
field, with the rate Aul (per sec per particle in state u).

Collisional excitation. In a populated medium, collisions between the atom and other
particles are frequent. During collisions, kinetic energy can be converted to the potential
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energy of the atom, exciting it to level u. The Einstein collisional coefficient is Cul,
number of collisional excitations from state l to state u per sec per particle in state l.

Collisional deexcitation is the opposite process of collisional excitation. An atom col-
liding with another particle can deexcite the atom from state u to l, transferring the
energy difference to kinetic energy. The rate for this transition is Clu.

These processes contribute to the spectrum around the wavelength λ0 = hc/χ, creating
a spectral line. Again, χ is the energy difference between two distinct and discrete
energy levels in an atom.

2.3.2 Bound-free transitions

Bound-free transitions involve either ionisation or recombination of an ion with an
electron. The electron transitions from a bound to a free state, or inversely from
a free to a bound state. Just like a bound-bound transition, bound-free transitions
can happen in five ways. These five ways are included in collisional, radiative, and
spontaneous processes. The difference between these transitions and the bound-bound
transitions, is that the upper level u of the transition is the ionised stage. This stage
is also called the continuum. Bound-free processes can be split into two cases.

The first case is the ionisation of an atom. When an atom is ionised, it can happen
in two ways. It is either ionised from a collision with a high kinetic energy particle
or a high energy photon. If a collision is to ionise an atom, the kinetic energy of the
particle it collides with needs to be higher than the ionisation potential of the atom, χ∞.
The same applies to ionisation by a photon with wavelength λ. The atom’s ionisation
energy can be converted to wavelength, imposing an upper wavelength boundary for
ionisation. Thus photons need a wavelength that satisfies λ < hc/χ∞ to ionise the
atom. Collisional ionisation happens with a rate Clu, similar to the bound-bound
collisional excitation; however, the radiative ionisation’s rate is slightly different. It is
not integrated over the line profile, but rather the ionisation profile, BluJ̄

φ
λ0

.

In the second case, a free electron recombines with an atom. This process has three
variations, which can happen either through spontaneous, induced, or collisional re-
combination. Spontaneous recombination can take place in an ion-electron collision.
Induced recombination happens in a collision between an ion, electron and a photon,
while collisional recombination happens in a collision between an ion, electron, and a
third particle.

2.3.3 Free-free transitions

The free-free processes are better known by the German name Bremsstrahlung, trans-
lated to breaking radiation. Bremsstrahlung is produced when an electron (or another
charged particle) decelerates. This is why the term free-free is used for the process: the
particle is in a free state both before and after radiation is emitted.
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2.3.4 Elastic processes

The last processes outlined here are processes in which photons scatter directly with
electrons. These scattering processes are coherent and change the direction of the
photon only. The energy of the incoming photon is the same as that which is emitted;
hence the term elastic—energy is conserved. A well-known elastic scattering process is
Rayleigh scattering. This process scatters photons by bound electrons when the photon
wavelength is much longer than the characteristic wavelength of the electrons’ binding
energy. Another scattering process is significant for stellar atmospheres abundant with
ionised hydrogen. Here, a major source of continuous extinction is Thomson scattering.
This scattering mechanism of photons by free electrons is independent of wavelength,
with extinction coefficient

αT = σTNe , (2.18)

where Ne is the electron density, and σT
ν = 6.65·10−25 cm2 is the extinction cross-section

per electron.

2.3.5 Extinction and emission profiles

Extinction and emission profiles describe how radiation is absorbed or emitted from
atoms. For a stationary atom with an infinite lifetime of the atomic levels, the profile
will be a delta function centred at the energy difference between the levels. There are,
however, no spectral lines shaped like this; spectral lines are smeared out over a range
of wavelengths. This smearing is caused by several processes associated with the term
broadening.

One of the main processes responsible for line broadening is temperature. Microscopic
particles’ motions in a fluid create small Doppler shifts with respect to the rest frame.
The result is a broadening to the wavelength distribution of absorbed and emitted
photons. This kind of broadening is called thermal broadening. In a Maxwellian velocity
distribution, the thermal broadening can be quantified. It assumes the shape of a
Gaussian profile. The extinction profile given by pure thermal broadening is

φ(λ− λ0) =
1√

π∆λD
exp

[
− (∆λ/∆λD)

2
]
, (2.19)

where

∆λD ≡ λ0

c

√
2kBT

m
, (2.20)

is the Doppler width.

Another important broadening process stems from the finite lifetimes of the excited
states in atoms. Heisenberg’s uncertainty principle explains this broadening: a finite
lifetime limits the accuracy of sharp atomic levels. This phenomenon is called natural
broadening and gives the extinction profile a Lorentzian shape (similar to the Cauchy
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distribution) with sharper a peak and wider wings than a Gaussian profile. The Lorent-
zian extinction profile per frequency looks like

φ(ν − ν0) =
(γ/4π)2

(ν − ν0)
2 + (γ/4π)2

,

with the extinction coefficient per wavelength derived in Gray (2005, p. 234) as

αλ =
e2

mc

λ2

c

γλ2/ (4πc)

(λ− λ0)
2 + [γλ2/ (4πc)]2

,

in CGS units.

In these equations, γ is the damping constant. This term comes from modelling an
atom as a damped harmonic oscillator with a driving force (this is the photon). The
damping term for natural broadening is denoted γrad.

The last microscopic broadening effect discussed here is collisional broadening. Colli-
sional broadening comes from small-scale perturbations in the electric field caused by
nearby particles. Such perturbations affect the energy levels of an atom through Cou-
lomb interactions and consequently change the extinction or emission profile of said
atom. Using the impact approximation, the broadening profile from collisional pro-
cesses has a Lorentzian shape, just like natural broadening. The damping parameter
of collisional broadening is called γcol.

The total extinction profile is found by convoluting all the individual profiles. Consider-
ing the natural and collisional broadening, convolving the two Lorentz profiles simplifies
to summing the damping parameters from the driven oscillators, γ = γrad + γcol. In
addition, we have to convolve the Gaussian profile stemming from thermal broadening
to receive the total extinction profile. The result of this convolution produces the Voigt
profile, given as

φ(λ− λ0) =
1√

π∆λD
H(a, v) , (2.21)

with H(a, v) the Voigt function. Following Rutten (2003, p. 59),

H(a, v) =
a

π

∫ +∞

−∞

e−y2

(v − y2) + a2
dy , (2.22)

where

v ≡ λ− λ0

∆λ0
,

a ≡ λ2

4πc

γ

∆λD
.
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2.4 Atomic populations

All processes that were described in the previous section are dependent on the pop-
ulation density of each energy level of atomic species in the atmosphere. In return,
radiative processes alter the atomic populations: populations are coupled with the ra-
diation field. Moving onward, the population density of an atomic species is denoted
ni for all discrete energy levels i the atom can assume.

2.4.1 Statistical equilibrium

When calculating the atomic populations, it is normal to assume a static situation
where the atomic populations do not change with time. Atomic populations are de-
termined solely from the atmospheric conditions present at any given time. Under this
assumption, the rate of transitions away from level i is equal to the rate of transitions
to the same level. The static assumption gives the equation

N∑

j ̸=i

njPji − ni

N∑

j ̸=i

Pij = 0 , (2.23)

where Pij is the probability for a transition between level i and j, given in units s−1.
When Pij is multiplied with the number density of the atomic populations, we get the
total rate of transitions per second per volume.

Because the rate Pij includes both transitions from a lower to an upper level and
transitions from an upper to a lower level, it is a conditional expression. Including all
transitions mentioned in the previous sections, it is linked to the Einstein coefficients
and the radiation field accordingly:

Pij =

{
Bij J̄

φ
λ0

+ Cij if i < j

Aij +Bij J̄
χ
λ0

+ Cij if i > i
. (2.24)

2.4.2 LTE

In optically thick media (high mass density), the collisional rates are much higher
than the radiative rates. Here, collisions dominate atomic transitions. Collisional rates
depend solely on temperature and electron density, and consequently, the radiation
field reflects the temperature in the media. This radiation is called thermal radiation
and means that the “temperature” of radiation and the fluid are the same: the system
is in LTE. In LTE, the source function is determined by temperature only and is equal
to the Planck function: Sλ = Bλ(T ). The Planck function is given per wavelength as

Bλ(T ) =
2hc2

λ5

[
exp

(
hc

λkBT

)
− 1

]−1

. (2.25)

Under the assumption of LTE, it is also possible to derive an analytical expression for
the atomic populations. The distribution of atomic levels on a given ionisation stage r
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is found from the Boltzmann distribution. It describes the ratio of populations between
two levels s and t as

nr,s

nr,t
=

gr,s
gr,t

exp

(
−χr,s − χr,t

kBT

)
, (2.26)

where χr,s and χr,t are the energy levels measured from the ground level, respectively.
The statistical weights gr,s and gr,t of level s and t counts the number of different
electron configurations for the given level.

We also need the atoms’ distribution over different ionisation stages to get the atomic
populations. This distribution is also possible to derive in LTE and was done by the
Indian physicist Meghnad Saha in 1920, whose name labels this distribution for different
ionisation stages. The Saha distribution relates the populations of successive ionisation
stages to each other. For the total population density of ionisation stages Nr+1 and
Nr, the distribution takes the form

Nr+1

Nr
=

1

Ne

Ur+1

Ur

(
2πmekBT

h2

)3/2

exp

(
− χr

kBT

)
. (2.27)

Here Ne is the electron density, and χr is the ionisation energy for stage r. The partition
function Ur for a stage r is calculated as a weighted sum over the statistical weights,
specifically

Ur ≡
∑

s

gr,s exp

(
− χr,s

kBT

)
.

The combination of the Boltzmann and Saha Equations (2.26) and (2.27) produces
a distribution that describes the ratio between the populations of a stage i and an
ionisation state c that the atom ionises to. This distribution combines both in name,
to the Saha-Boltzmann distribution, and mathematically, to

nc

ni
=

1

Ne

2gc
gi

(
2πmekBT

h2

)3/2

exp

(
− χci

kBT

)
. (2.28)

Here, χci is the energy difference between level i and ion state c, i.e.

χci = χr − χr,i + χr+1,c .

2.5 Voronoi diagram

The Voronoi diagram is used to calculate radiative transfer throughout this work. This
section presents a quick overview of the diagram’s definition and a recipe explaining
how to sample points from which I construct the Voronoi diagram.
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2.5.1 Definiton

A Voronoi diagram is calculated from a set of control points, also called sites. These
sites are the counterpart to the grid points in radiative transfer calculations on a regular
grid. Every quantity regarding radiative transfer is defined at these sites.

The Voronoi Diagram is characterised by the set of Voronoi cells spanned by the control
points. Studied as early as 1644 by Rene Descartes, the Voronoi Diagram was defined
for 2 and 3 dimensions by Peter Gustav Lejeune (Dirichlet, 1850), and generalised to
n dimensions by Georgy Voronoi (Voronoi, 1908).

A formal definition can be phrased as follows: Let X be a metric space with distance
function d. Let {p⃗i}i=1,...,n be the sites in the space X. The Voronoi cell, or Voronoi
region, Rk, associated with the site p⃗k is the set of all points in X who are closer to pk
than every other site p⃗j in X, where j ̸= k.

In simpler terms, the Voronoi cell associated with a control point is defined as every
point closer to that control point than to every other control point.

To calculate the Voronoi cell, we insert planes between a control point and the other
sites in the grid. Neighbouring points are found by eliminating planes. The boundary
between two neighbouring control points is a plane extending from the mid-point of
the vector between the control points. This plane has to be perpendicular to the vector
between the control points.

Lines between the control points are referred to as the Delaunay lines, after mathem-
atician Boris Delaunay for his work on the Delaunay triangulation (Delaunay, 1934).
For radiative transfer calculations, rays can be propagated along these lines, follow-
ing the work of e.g. the SIMPLEX2 (Paardekooper et al., 2010) or LIME (Brinch &
Hogerheijde, 2010) radiative transfer codes.

2.5.2 Sampling an irregular grid for radiative transfer

To obtain a grid better suited for radiative transfer, more points should be placed in
regions where the radiation field sustains large variations. To emphasise these regions,
we need a sampling method that gives a higher density of control points at these
locations—but we cannot neglect the rest of the atmosphere. In my work, I have used
a Monte Carlo based technique to construct the control points for the radiative transfer
simulation, namely rejection sampling.

Rejection sampling uses a reference distribution to draw points. The reference distri-
bution acts as a probability distribution, determining how likely it is to find a control
point in a given area. The benefit of rejection sampling is that the reference distribu-
tion can assume any form, as long as it is finite—the reference distribution does not
have to follow any of the well-known probability density functions.

The rejection sampling method is advantageous in the following situation. Assume
we have a target distribution f(x⃗) from which we want to sample control points and
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a proposal distribution g(x⃗) from which we can easily sample random numbers. The
function f(x⃗) can, for example, take the shape of the neutral hydrogen density in the
solar atmosphere, while the proposal distribution can be the uniform distribution U.
Because the hydrogen density does not look like a standard probability function—it is
also impossible to invert—we can use rejection sampling to generate samples (sites).
This method works as follows:

1. A proposal position x⃗proposal is drawn from the proposal distribution, and gives
the proposal density pproposal = f(x⃗proposal).

2. A random rejection density prejection, is drawn from the uniform distribution U .

3. The proposal density is compared with the rejection density. If pproposal ≥
prejection, then the proposal position is accepted as a control point. Else, the
proposal position is rejected, and the method is repeated.

4. Go back to 1. until the required number of samples are drawn.
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3.1 Code

The code used for calculations in this work was developed in the programming lan-
guage Julia (Bezanson et al., 2017), using its native thread parallelism to speed up
computations. All source code related to this project is open source and available on
GitHub (Udnæs, 2022).

3.2 Model atmosphere

A solar atmospheric model has traditionally been a semi-empirical model. The semi-
empirical model is derived under certain assumptions, e.g. a plane parallel atmosphere
or a hydrostatic equilibrium. The above assumptions are used in the well-known FALC
model, a one-dimensional solar atmosphere derived by Fontenla et al. (1993). While
these models helped progress the understanding of radiative transfer, they lack realistic
details present in the solar atmosphere. An example is the three-dimensional velocity
field that accounts for important processes in spectral line formation, such as macro-
scopic Doppler shifting.

The later years’ evolution of computers has realised three-dimensional magnetohydro-
dynamic (MHD) simulations, capable of describing more complex and realistic struc-
tures in the solar atmosphere. In my work, I solve the RTE in a three-dimensional
model atmosphere produced by the stellar atmosphere code Bifrost (Gudiksen et al.,
2011).

The model in question is a quiet Sun simulation. It is a snapshot with 256× 256× 430
grid points, extending 6.0 Mm in both horizontal directions of the plane, and 8.7 Mm
in the vertical direction. The horizontal resolution is constant at 23.4 km×23.4 km per
pixel, while the vertical resolution varies slightly through the atmosphere: it is finer at
the bottom of the model, and a little coarser at the top. The mean vertical resolution
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Figure 3.1: Temperature and z-component of the magnetic field in the model atmo-
sphere. These data are taken at vertical location z = 6.8 km—the surface in the model.

is 20.3 km. Each point holds information for magnetic field (Bx, By, Bz), hydrogen
density NH , electron density Ne, temperature T , and velocity field (vx, vy, vz). All
these quantities are used for this thesis’s radiative transfer calculations, except the
magnetic field, which is not needed for unpolarised radiative transfer.

Since the model is meant to reproduce the quiet Sun, there is little activity on the
surface. The mean unsigned magnetic field at the surface is 0.50 mT. Figure 3.1 displays
physical conditions at the surface in terms of temperature and vertical magnetic field.
The temperature image shows features from granules on the surface. The magnetic
field image shows little activity except for a magnetic brightening near the lower left
corner of the image.

3.2.1 Boundary conditions

The method of characteristics always starts at either the upper or lower boundary of a
given problem. Therefore it is necessary to fix these boundaries.

At the bottom boundary of the solar atmosphere, the density is thick, and the radi-
ation is assumed to be thermalised.1 I use the Planck function to determine the lower
boundary.

At the upper boundary, the mass density is very low. We imagine this region to border
empty space. Therefore, a reasonable upper boundary condition is to set the incoming
radiation to zero.

1Collisions between atoms and other particles dominate atomic transitions in optically thick me-
dia. Collisions come from microscopic motions in the media that are determined by temperature.
Consequently, the radiation field follows temperature, which is LTE described in Section 2.4.2.
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3.3 Constructing an irregular grid

An irregular grid is the most general grid we can work with. The only condition I impose
is constraining the grid points to lie within the borders of the original atmospheric
parameters. It follows that for a site p⃗i = (xi, yi, zi), these demands must be fulfilled:

xi ∈ [xmin, xmax] ,

yi ∈ [ymin, ymax] ,

zi ∈ [zmin, zmax] .

With just this restriction on where grid points can lie, it is impossible to assume any
structure in the grid. Therefore, we cannot exploit properties of the grid to make
calculations efficient.

By making the grid better suited to perform radiative transfer calculations, we can
justify the drawback in efficiency an irregular grid brings. Thus, we can sacrifice per-
formance for better results. One approach to optimise the grid for radiative transfer is
to sample the grid such that the density of grid points follow the extinction coefficient
αλ. This approach is analogous to minimising the difference in optical depth between
grid points (as done in 1D by Carlsson, 1986, see Section 2.2), because the extinction
coefficient acts as a probability density for optical depth τ .2 Sampling grid points from
such a distribution is not straightforward. The extinction coefficient will certainly not
look like one of the standard empirical probability distributions. Therefore, I obtain
the grid points with a Monte Carlo technique. This method is called rejection sampling,
and is already described in Section 2.5.2. Although the extinction coefficient is not the
only quantity I sample grids points from, I always use the rejection sampling technique.

In radiative transfer, we need nearby locations to simulate the radiation field, e.g.
calculating the formal solution. Due to this fact, we need information on grid points
in the vicinity of each other. To fulfil this demand, I construct a Voronoi diagram of
the entire grid and store information about the neighbours associated with each grid
point. An example of such a Voronoi diagram is presented in Figure 3.2.

The Voronoi diagram is calculated with the open-source library voro++ (Rycroft, 2009).
The only statistics from the Voronoi diagram that is relevant for the RT simulation, is
a list of neighbours for every site in the irregular grid. For efficient calculations, the
lists of neighbours are stored in a matrix. In this matrix, every grid point corresponds
to a row. The first column in this matrix tells how many neighbours Ni a site i has,
and the next Ni entries hold the indices of the neighbours. The number of columns
in the matrix is max(Ni) + 1 (meaning that several rows in the matrix contain some
“empty” entries).

2Optical depth can be thought of as the unnormalised cumulative distributive function of αλ. It
is indeed calculated as an integral of the extinction coefficient over the entire domain. The extinction
coefficient is an exclusively positive value, fulfilling an important demand of a probability density
function.

23



Methods

Figure 3.2: Example Voronoi grid
adapted from a Bifrost atmospheric
model and downsampled to fewer
points to clarify the features of the grid.
This particular grid is constructed by
sampling grid points according to hy-
drogen density. In the figure, white
points represent sites, and red lines in-
dicate the edges between cell borders in
the Voronoi diagram.

I propagate intensity in the ray direction, similar to the LC and SC methods. Radiation
is calculated layer by layer through the domain, making it necessary to keep track of
the layers in the grid. Layer order is not the same when we work our way downwards
from the top to the bottom of the atmosphere or upwards from the bottom to the
top. Therefore, two arrays are required to store information of layers: one for rays
propagating upwards and one for rays propagating downwards. I calculate the layers
of the grid in the following manner:

if Characteristic rays move upwards then
Find all grid points that neighbour the bottom border of grid, assign to layer 1
Find all grid points that neighbour layer 1, assign to layer 2
Continue until all sites are placed in a layer

else if Characteristic rays move downwards then
Find all grid points that neighbour the top border of grid, assign to layer 1
Find all grid points that neighbour layer 1, assign to layer 2
Continue until all sites are placed in a layer

end if

Figure 3.3 illustrates the layers for a grid drawn from a uniform distribution with 213

sites. Here, we can see sites marked by layer. The layering is different for the two cases
where radiation moves upwards or downwards through the domain.

3.3.1 Interpolating from a regular to a Voronoi grid

In general, sites will not be sampled at locations where physical quantities were previ-
ously defined. Having knowledge of the atmospheric parameters from the regular grid
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Figure 3.3: Example grid constructed by drawing sites from a uniform distribution.
This grid—which is a 1× 1× 1 box in dimensionless units with 213 Voronoi sites—has
no intrinsic physical meaning, and is only meant to conceptualise the algorithm. In the
plots, we see colour graded layers sorted from the bottom and up (left plot), or from the
top and down (right plot). The ray tracing algorithm starts at one of the boundaries,
and works it way sequentially through the layers.

makes it possible to estimate values on the new sites through interpolation.

One simple interpolation method is linear interpolation, dubbed trilinear interpolation
in three dimensions. Trilinear interpolation uses two points per axis, similar to linear
interpolation in one dimension. With three axes, we need eight values for one estimate.
The points used to interpolate to a new site are the eight grid points closest to the new
site. These eight grid points are the corners of the box enclosing the site.

The interpolation is performed as follows. First, find the relative difference between
the interpolation points and the site in each direction:

xd =
x− x0
x1 − x0

,

yd =
y − y0
y1 − y0

,

zd =
z − z0
z1 − z0

.

Then, we interpolate in the x direction accordingly:

c00 = c000(1− xd) + c100xd ,

c01 = c001(1− xd) + c101xd ,

c10 = c010(1− xd) + c110xd ,

c11 = c011(1− xd) + c111xd .
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Having interpolated in the x direction, we interpolate along y, giving

c0 = c00(1− yd) + c10yd ,

c1 = c01(1− yd) + c11yd .

Finally, we get the estimate c by “pushing” along the z-axis,

c = c0(1− zd) + c1zd . (3.1)

The choice of linear interpolation can negatively impact the accuracy of the result. Lin-
ear interpolation is a weighted average of the interpolation points, effectively smoothing
the interpolated quantities. Thus, the linear method will never introduce new maxima
or minima. Lacking the ability to yield new extreme values can also be a strength of
the linear method. Due to its simplicity, it is not subject to oscillations or over-fitting,
to which higher-order methods are prone.

3.3.2 Interpolating back to a regular grid

After the radiative transfer simulation with the Voronoi grid is finished, it is beneficial
to convert all atmospheric variables—including source function and level populations—
back to a regular grid. Model atmospheres with a corona, such as the Bifrost atmo-
sphere used in this thesis, will often give irregular grids with a coarse resolution at
the top of the atmosphere (if the grid is sampled to reflect mass density or continuum
extinction). A coarse resolution in the top layers loses spatial resolution when calcu-
lating outgoing intensity. Therefore, I interpolate the atmospheric variables from the
irregular grid back to a Cartesian grid with the original domain boundaries. This grid
can have a higher resolution (i.e. more grid points) than the irregular grid to ensure
that variations from regions with a high density of sites in the irregular grid are cap-
tured onto the regular grid. I use the irregular grid to converge the source function
and populations better; I interpolate back to a regular grid for accurate calculations of
outgoing intensity.

Interpolation on an irregular grid is more challenging than interpolation on a regular
grid because the irregular grid lacks regularity. The nearest neighbour interpolation
is the simplest interpolation method. This interpolation method sets a point’s value
equal to the value at the nearest site. Given that the irregular grid is constructed as a
Voronoi tessellation, this is the same as saying that quantities are constant within the
Voronoi cell.

Another simple method of interpolation on an irregular grid is the inverse distance
interpolation, also known as inverse distance weighting. This method gives the inter-
polant as a weighted sum of the k nearest sites where the weights are given as the
inverse distance to the respective sites. The interpolant is calculated as

u(x⃗) =

∑k
i=1 ωi(x⃗)ui∑k
i=1 ωi(x⃗)

, (3.2)
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where ui are the quantities at a site, and the weights

ωi(x⃗) =
1

d(x⃗, x⃗)p

are the inverse distances to the power of p. For p → ∞ or k = 1, this method reduces
to the nearest neighbour interpolation.

3.4 Ray tracing

Before the radiative transfer simulation on irregular grids was developed, I created a 3D
short characteristics framework. This framework is used to compare radiative transfer
methods on irregular grids with the standard methods.

Both the irregular and regular grid methods have common ground. The formal solution
is calculated in the same manner, meaning that I apply the same approximation of the
continuous integral in Equation (2.7). In this work, the formal solution is approximated
by piecewise linear integration. Only needing two values for the source function, this
approach makes the intensity along each characteristic quick to compute.

The naive nature of piecewise linear integration can result in decreased accuracy of the
solution. Higher-order methods can be used to improve accuracy, but most of these
methods are not reliable in the presence of discontinuities or even in high gradient re-
gions (as discussed in Janett, 2019). Due to oscillations, they can be prone to spurious
solutions and may even introduce negative solutions in the source function. Never-
theless, higher-order methods that tolerate sharp gradients or discontinuities do exist.
In particular, there are higher-order methods of the Diagonal Element Lambda Oper-
ator family (proposed by Rees et al., 1989, abbreviated DELO) able to handle sharp
gradients. For polarised radiative transfer, the DELO-Bezier interpolants presented
in de la Cruz Rodríguez & Piskunov (2013) improved the DELO’s ability to handle
sharp gradients. A new concept dealing with discontinuities, as opposed to the DELO
methods, was presented in Steiner et al. (2016). In the paper, “piecewise continuous
reconstruction and slope limiters is applied to the source function” to solve the po-
larised RTE. This evolution of higher-order methods has seen better convergence on
simplified atmospheric models. However, Janett et al. (2018) suggests that “the high
intermittency of 3D R-MHD models might thwart high-order convergence even in fine
numerical grids” and higher order DELO methods. For simplicity and the purposes
of this thesis, the simple linear approach is justifiable. In the following paragraph, I
outline a more detailed description of the numerical formal solution with the piecewise
linear approach.

3.4.1 Linear interpolation of the formal solution

On the discretised grid, the source function Sλ and extinction coefficient αλ are only
known in the cell centres, making it necessary to interpolate these quantities to calculate
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the formal solution. If we use the cell centre i and the upwind position of the ray i− 1
to approximate the integral from Equation (2.7), the formal solution takes the form

Ii = exp (−∆τi−1)Ii−1 + aiSi−1 + biSi . (3.3)

The linear coefficients in this equation are given by

ai = [1− exp (−∆τi−1)] /∆τi−1 − exp (−∆τi−1) , (3.4)
bi = 1− ai − exp (−∆τi−1) . (3.5)

In the limit ∆τ → 0, the calculations of the linear weights in Equations (3.4) and (3.5)
fail on computers due to the finite accuracy of floating-point numbers. Double precision
floating point numbers produce noticeable errors in the calculation of the coefficients
already at ∆τ ∼ 10−14, and at smaller optical depths, the error becomes adverse.

A Taylor expansion of the coefficients around ∆τ = 0 fixes the lower limit of optical
depth. Including second order terms in the expansion, the negative exponential is

exp (−∆τi−1) = 1−∆τi−1 +
1

2
∆τ2i−1 ,

and the coefficients become

ai =
1

2
∆τi−1 −

1

3
∆τ2i−1 ,

bi =
1

2
∆τi−1 −

1

6
∆τ2i−1 ,

when ∆τi−1 ≪ 1. Expanding the coefficients ensures that the limit of the expressions
are correct,

lim
∆τ→0

ai = lim
∆τ→0

bi = 0 ,

even with computer arithmetic. Since the medium does not add radiation to the beam
when the optical depth goes to zero, this is the intuitive value of the coefficients in the
lower limit.

It is also possible to approximate the coefficients in the high limit ∆τi−1 ≫ 1, because
the term exp (−∆τi−1) vanishes quickly at high optical depths. Expanding the coef-
ficients in this region is not done to improve the accuracy of the result but rather to
avoid evaluating the costly exponential functions in Equations (3.4) and (3.5). The
negative exponential is approximated as

exp (∆τi−1) = 0

in this limit, and the coefficients become

ai = 1/∆τi−1 ,

bi = 1− ai .
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3.4 Ray tracing

Using a linear interpolation of the extinction coefficient makes a very simple expression
for the optical depth increment ∆τi−1. The resulting integral in Equation (2.3) is easily
solved with the trapezoidal rule as

∆τi−1 =
1

2
∆zi−1 (αi − αi−1) . (3.6)

3.4.2 Tracing rays through a regular grid

I use a linear interpolation of the source function for the short characteristics method.
With a linear interpolation, the formal solution is calculated by Equation (3.3). We
need two spatial points to perform this calculation. One of the points is the grid point i
where we wish to find the intensity Ii, while the other point i−1 is the upwind position.
This position is dependent on the ray’s direction and is found by tracing the ray from
the grid point i and backwards until the ray intersects one of the planes extended
by the computational grid. The upwind point exists on one of the faces of the voxel
spanned by the neighbouring grid points. The face where the upwind point resides is
determined by the ray’s direction and the grid’s spacing. Because the upwind point
is located between grid points, interpolation is required. I interpolate the following
quantities at the upwind location: extinction coefficient, source function, and intensity.
These values are found through bilinear interpolation.

If the upwind point lies on one of the faces extending vertically, the incident intensity I0
in Equation (2.7) is not straightforward to compute. Only incident intensities at layers
below the ray are known in the method of characteristics. At the beginning of a sweep,
the intensities at the current layer are unknown, and it is impossible to interpolate the
value of I0 using the same current layer. I0 can be found by extending the ray until
it reaches the below layer (as done in e.g. Hayek et al., 2010; de Vicente et al., 2021).
Another method I found easier to implement is to start by assuming all intensities at the
current layer to be zero. Although it is not accurately computed in the beginning, the
upwind intensity can be interpolated from the current and lower layers. As the current
layer is swept through, grid points are populated with non-zero intensities. When the
entire layer is calculated, the process is repeated with the updated intensities, this time
getting more accurate values for I0. Several passes can be performed for each layer,
in principle saturating the layer with every sweep. Passes are repeated until incident
intensities obtain desired accuracy. This method is easy to implement and requires
immediate neighbours of a current grid point only, as opposed to extending the ray
across several cells to find the upwind intensity. I found that the layers saturated after
three passes, effectively finding the correct solution.

An advantage of the short characteristics method is that one sweep through the entire
domain calculates intensities for every grid point. After a sweep is performed, the
contribution to the mean intensity Jλ is added with Equation (2.11).
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Figure 3.4: Two-dimensional rep-
resentation of ray tracing in an ir-
regular grid. The red point is the
site where radiation is calculated,
and the thick black ray is the dir-
ection of the ray. The incom-
ing radiation comes from the sites
with the smallest angles between
the Delaunay lines and the direc-
tion of the beam. These angles
are marked in the figure as θ1
and θ2. The incoming radiation
comes from the two sites span-
ning these angles, giving I0,1 and
I0,2 as incident intensities.

3.4.3 Tracing rays through a Voronoi grid

Ray tracing through the irregular grid is inspired by the short characteristics method,
and the radiative transfer codes LIME (Brinch & Hogerheijde, 2010) and Simplex2
(Paardekooper et al., 2010). The similarity with the LIME and Simplex2 codes is
tracing rays along the Delaunay lines in the Voronoi tessellation. Similarly to the SC
method, I calculate intensity layer by layer with a piecewise linear interpolation of
the source function. The upwind intensity is found from the immediate layer below.
Then, the formal solution is solved with a linear approximation of the source function,
per Equation (3.3). Since intensity is calculated layer by layer, the computational
complexity of this method scales as O(nsites), equivalent to SC’s O(N3) cost.

A sketch of the Delaunay ray tracing method is shown in Figure 3.4. The incoming ray
to a site is split into two parts, and the formal solution is calculated as a weighted sum
of rays along two Delaunay lines. These two Delaunay lines are the ones with the orient-
ation that make the smallest angles with the direction of the ray under consideration.
By weighting the formal solution over two rays, I mitigate some of the error originating
from the difference in direction between the Delaunay lines and the direction of the ray.

The formal solution that is calculated along the two Delaunay lines is weighted by
the dot product between the Delaunay lines and the ray’s direction. This weighting
emphasises the Delaunay line closest to the ray. When computing the dot product, the
ray’s direction is normalised to the unit vector k⃗, and the orientations of the Delaunay
lines are denoted D⃗j . For a site p⃗i and its neighbours p⃗j , the Delaunay lines’ orientations
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3.4 Ray tracing

are calculated as
D⃗j =

p⃗i − p⃗j
∥p⃗i − p⃗j∥

.

The dot product between the ray and the Delaunay lines are then found by

vj = k⃗ · D⃗j .

To clarify, the Delaunay lines that are used to calculate intensity are the two lines
spanning the smallest angle from the ray. These are also the lines giving the two
largest dot products, called vk1 and vk2 . These products are expected to be close to
one.3 Intensity at the cell centre is calculated as a weighted sum of the formal solution
over these two Delaunay lines. With the linear interpolation of the formal solution,
Equation (3.3) is transformed into

Ii =
∑

j=k1,k2

[exp (−τj) Ij + ajSj + bjSi]wj , (3.7)

where wj are the weights for the Delaunay lines that produce the smallest angle with
the ray (k1 and k2). The weights have to be normalised, and favour a smaller angle—or
a larger dot product. Therefore, they are calculated as

wj = vrj

/ ∑

j=k1,k2

vrj . (3.8)

The parameter r is introduced to give more weight to the neighbour closest to the ray,
thus r > 1. A suitable value was found experimentally as r = 7; however, further
experimentation with this value is needed.

In Equation (3.7), the linear coefficients for the formal solution are calculated from
the site p⃗i and the neighbours p⃗k1 and p⃗k2 . These are locations where values for the
extinction coefficient, source function, and upwind intensity were previously defined.
Therefore, there is no requirement for interpolation to get the upwind values with the
Delaunay ray tracing method.

The weighting method to calculate incident intensity is different from the LIME (Brinch
& Hogerheijde, 2010) or the Simplex2 (Paardekooper et al., 2010) RT codes. These
codes use a Monte Carlo walk to trace rays through the grid. When I tried the same
random method to trace rays, the grid was traversed differently in every Λ-iteration.
The randomness of this traversing introduced some noise to the mean intensity. This,
in turn, hampered convergence of the Λ- iterations. In principle, a solution could be to
use the same random seed for every iteration, making the radiation travel a consistent
path for every iteration; however, this would introduce bias to the method. Through

3In an irregular grid with sites drawn from a 3D Poisson distribution, a site has on average 15.54
neighbours (van de Weygaert, 1994). With ∼ 300 000 sites drawn according to the hydrogen density,
the average number of neighbours was 15.44. Consequently, every site should have some neighbours
whose Delaunay line only differs by a small angle from the characteristic ray.
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the dependence on the random seed, the point of using the Monte Carlo method would
disappear. Therefore, I used the weighting method.

Similarly to the SC method, the Delaunay ray tracing method performs multiple passes
through each layer. When the rays are shallow, there is a big chance that the Delaunay
lines we trace downwards are in the same layer as the current site. In this layer, all sites
are initialised with zero radiation. Consequently, information will be lost if the incident
intensity stems from the same layer. With multiple passes through a layer, intensity
saturates a layer similarly to the SC method. I found that three passes saturated the
layers. Thus, information is recovered for shallow rays, yielding a correct propagation
through the medium.

3.5 The two-level atom

To test the implementation of the irregular grid, I constructed a two-level atom model,
using elements of code developed by Ida Hansen in her master thesis (Hansen, 2021)
and functions from the Julia package Transparency.jl (Pereira, 2021).

The two-level atom simplifies the hydrogen atom, but there are significant differences
from the physical atom. Similarly to the real hydrogen atom, the model has one proton
in the nucleus and one orbiting electron; however, the model electron can only assume
two energy levels—a ground state and a first excited state. It is also possible for the
electron to be ionised, technically making it a 2+1 level model: two bound-bound states
plus continuum. Another major difference from the real hydrogen atom is artificially
increased collision rates to decrease the amount of scattering. The reasoning behind
this modification is explained later in Section 3.5.1. Nonetheless, the same artificially
increased collision rates are used for calculations on both grids, enabling comparison
between the regular and irregular grids’ results.

Following atomic data based on a real hydrogen atom, I construct the atomic model
according to Table 3.1. The atom’s energy levels give the spectral line corresponding
to Lyman-alpha (Ly-α), but the line is not realistic because the model is simplified and
has artificially increased collision rates.

For the two-level atom model, I assume complete redistribution (CRD). This means
that the extinction profile and emission profile are identical:

φ(λ− λ0) = χ(λ− λ0) . (3.9)

CRD is valid when all deexcitation processes from u to l are independent of the exciting
processes that put the atom in state u. In reality, this assumption is not valid for the
Ly-α line, but the assumption is kept to keep the coding simple. The Voigt profile
gives the line profile for the two-level atom in Equation (2.21). The monochromatic
line extinction coefficient in CRD is expressed per wavelength as

αl
λ =

hc0
4πλ0

φ(λ− λ0) [niBij − njBji] . (3.10)
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Table 3.1: Atomic data for the two-level atom. First column shows energy of the level
given in cm−1, second column is the statistical weight g for each level, and third column
labels the electron configuration. Data obtained from NIST (Kramida et al., 2021).

E
[
cm−1

]
g label

0.000 2 H I 1S 2SE

82, 258.211 8 H I 2P 2PO

109, 677.617 1 H II continuum

Because the model atmosphere has a three-dimensional velocity field, there are mac-
roscopic Doppler shifts of the line profile in every location of the atmosphere. The
Doppler shifts are produced by the line of sight velocity vlos of the fluid with respect
to a beam with direction k⃗. The line of sight velocity is calculated as the dot product
between the direction vector k⃗ of the beam and the velocity v⃗ of the fluid. If λ0 is the
line centre in the rest frame and λ′

0 is the line centre in the observer’s frame, then the
resulting shift of the line centre in the observer’s frame is

λ′
0 = λ0

(
1 +

vlos

c

)
. (3.11)

To obtain the total extinction coefficient, I sum the line extinction with the continuum
extinction. The continuum extinction is split into absorption processes and scattering
processes, where absorption extinction comprises:

• Free-free extinction from the H− ion calculated with the recipe from Stilley &
Callaway (1970).

• Bound-free extinction from H− found by Geltman (1962).

• Free-free extinction for hydrogen following Mihalas (1978, p. 101) and Rutten
(2019, p. 68).

• Free-free extinction from H ii+ according to the recipe from, Bates (1952).

• Bound-free extinction from H ii+ molecules also with Bates (1952).

The scattering processes contributing to the extinction are Thomson scattering from
Equation 2.18 and Rayleigh scattering following Dalgarno (1962). The continuum ex-
tinction varies marginally over the line wavelengths. Therefore, the continuum ex-
tinction is calculated only at the line centre of the rest frame. The total extinction
coefficient becomes

αλ = αl
λ + αc

λ0
. (3.12)
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After calculating the extinction coefficient, we can compute the radiation field. The
radiation field is found on the regular grid by the short characteristics method or
the irregular grid with the Delaunay ray tracing method. We need an appropriate
quadrature to compute the mean intensity. Popular choices of quadratures are the ones
defined in Methods in Computational Physics (Carlson, 1963); however, more recent
studies on quadratures are more suited for 3D. These are given in the series of papers by
Štěpán et al. (2020) and Jaume Bestard et al. (2021), which will be used in this work.
In particular, I use their twelve ray quadrature for unpolarised radiative transfer. The
quadrature gives the angles and weights for each ray, from where the radiation field is
found by Equation (2.11).

Calculating the mean radiation field is the first step of a Λ-iteration. The next step I do
is updating the source function with Equation (2.14). This equation also holds for the
two-level atom. However, the photon destruction probability ελ must be calculated to
find the source function. This quantity is found as the absorption extinction divided by
the total extinction. From Rutten (2003, p. 68), we can see that the photon destruction
probability can be coined in terms of the collisional and natural rates—

ελ =
C21

C21 +A21 +B21Bλ0

(3.13)

—that is the same over the entire line (ελ = ε).

The mean intensity field is not only used to calculate the source function—but also
provides information to calculate the atomic populations. To calculate the popula-
tions, I need both the radiative and collisional rates. The collisional rates are purely
temperature dependent and calculated once only; however, the radiative rates have to
be calculated in every iteration due to their dependence on the mean radiation field.
The total rate for every transition within the two-level atom is then found by summing
radiative and collisional rates.

Calculations must be performed for an appropriate number of wavelength points for
every atomic transition to get accurate results. For the bound-bound transition, I
sample the wavelength grid logarithmically (similar to Uitenbroek, 2001; Hansen, 2021).
This grid is symmetric around the line centre, with a higher density of points in the
core and a lower density in the wings. For the bound-free transitions, I sample the
wavelength grid linearly. The points are sampled from the ionisation edge λmax,1 to the
minimum wavelength defined by λmin,1 = λmax,n (n/2)

2 (Hansen, 2021). Here, λmax,1
is the ionisation wavelength edge from the ground level, and n is the level number.

Now, we have everything needed to solve the statistical equilibrium Equation (2.23),
subsequently finding the atomic populations. The statistical equilibrium equation gives
us nlevels + 1 = 3 equations with the same number of unknown populations. Because
the total hydrogen density ntot = NH is known from the model atmosphere, we can

34



3.5 The two-level atom

constraint the solution by

N∑

i=1

ni = ntot ⇒ n1 = ntot −
N∑

i=2

ni .

Substituting the ground level population with the above expression, the populations
are obtained through the following steps:

ni

N∑

j ̸=i

Pij −


ntot −

N∑

j ̸=1


P1i −

N∑

j ̸=i,1

njPji = 0 ,

ni

N∑

j ̸=i

Pij +
N∑

j ̸=i,1

njP1i + niP1i −
N∑

j ̸=i,1

njPji = ntotP1i ,

ni


P1i +

N∑

j ̸=i

Pij


+

N∑

j ̸=i,1

nj (P1i − Pji) = ntotP1i ,

where we end up with a solution that can be recognised as a matrix equation. The
populations are written as a vector n⃗ solved as n⃗ = A−1⃗b. For this equation to hold,
then the matrix A = (aij) ∈ R(N−1)×(N−1) is on the form

aij = P1i +
N∑

j ̸=i

Pij for i = j ,

aij = P1i − Pji for i ̸= j ,

and the vector b⃗ has the elements

bj = ntotP1i .

Calculating populations is the last step in one single iteration. After the populations
are calculated, I write intermediate results to file. Then I check for convergence or go
on to the next iteration.

3.5.1 Convergence

The Λ-iterations are performed until the solution converges. In this context, conver-
gence is understood as a stabilisation of the source function. For every wavelength, I
calculate the relative change of the source function in two subsequent iterations. An in-
dicator for convergence is the maximal absolute value of this relative change. I demand
the indicative value to be smaller than the convergence criterion ϵ, per Equation (2.17).
When this criterion is met, the solution is said to converge. In this work, I use the
convergence criterion ϵ = 10−3.
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The simple iterative scheme outlined in Section 2.2.3 struggles to converge for realistic
atmospheres with scattering. In the Bifrost model atmosphere, the smallest photon
destruction probability is on the order 10−12: the two-level atom will never converge
in practice.

Instead of developing a more advanced Λ-iteration scheme with operator splitting to
solve this problem, I modify the model atom to reduce the amount of scattering—the
naive Λ-iteration algorithm is kept for simplicity. Scattering is reduced by multiplying
the collisional rates C by a large factor, increasing the photon destruction probabilities
ελ. This factor is sufficiently large to modify the smallest photon destruction prob-
abilities up to the order 10−1. In my calculations, the smallest photon destruction
probabilities were between 0.08 and 0.1.
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Chapter 4

Results

To build confidence in the irregular grid radiative transfer, I performed simple tests—
before calculating the two-level atom. The irregular ray tracing algorithm was tested
with the searchlight beam test and compared with the standard short characteristics
ray tracing. Additionally, I tested the interpolation and sampling methods that con-
structed the irregular Voronoi grids. This last test was performed in LTE by comparing
continuum calculations in an irregular grid with the Cartesian counterpart.

These tests validate all the algorithms involved in the irregular grid, ensuring the
viability of simulating radiative on irregular grids. Passing the tests proves the ability
to correctly propagate intensity through a medium and conserve information when
mapping quantities to and from an irregular grid. After these tests, the main challenge
in this thesis was to synthesise a spectral line in NLTE from the irregular grid.

4.1 Searchlight beam test

The first test I implemented is a straightforward experiment to validate ray tracing
methods. The searchlight beam test establishes the ability to propagate radiation in
an empty medium, similarly to pointing a flashlight through an empty box. In this test,
we place an ingoing beam at one of the domain boundaries and measure the outgoing
beam at the other boundary.

I set up a box with dimensions 1 × 1 × 1 m3 and populated it with 513 grid points.
The irregular grid was constructed with sites drawn at random to ensure a similar
density of sites throughout the box. If the sites were drawn from, e.g. the mass
density in the Bifrost atmosphere, the grid would be much coarser on the top, making
it poorly adapted for the searchlight beam test. The box’s interior was assumed to be
a perfect vacuum, making it completely transparent to radiation and not contributing
any intensity to the beam. Thus, the source function and extinction coefficient were
zero—Sλ = 0 kWm−2 nm−1 sr−1 and αλ = 0 m−1. The ingoing intensity was set to be
Ibeam = 1 kWm−2 nm−1 sr−1, constituting a beam with a radius of 0.2 m.
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(a) Heatmaps of the searchlight beam test, performed in a regular geometry on the left side,
and an irregular geometry on the right side.
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(b) Surface plots of the searchlight beam test, performed in a regular geometry on the left side,
and an irregular geometry on the right side.

Figure 4.1: Searchlight beam test in a 1 m × 1 m × 1 m box with 513 grid points for
regular and irregular ray tracing methods. The irregular grid was constructed with
sites drawn from a uniform distribution. The beam was sent in with a radius of 0.2 m,
and slanted at θ = 20°, giving an inclination at approximately µ ≈ 0.94. In the Top
panel we can see a comparison between the two methods displayed in heatmaps, while
the bottom panel shows the comparison as surface plots.
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4.2 Radiative transfer on irregular grids in LTE

The beam was directed from either the top or the bottom of the domain for several
angles of incidence. For shallow rays—here taken as rays with an angle far away
from the z-axis—the short characteristics method suffered from diffusion. While short
characteristics on the regular grid managed to conserve the total flux to the other side
of the domain, the intensity was spread from the original beam. The irregular grid
ray tracing also handled shallow rays poorly, losing some flux through the box for rays
>≈ 45 °. For less inclined rays with θ < 45° away from the z-axis, the Delaunay ray
tracing delivered results comparable to the short characteristics method on the regular
grid.

The searchlight beam behaved as expected on the regular grid. For very inclined rays,
the beam showed ample amounts of diffusion, but for more horizontal rays, the beam
held together. The left plots of Figures 4.1a and 4.1b show the outgoing intensity of
a beam slanted 20° away from the horizontal axis (inclination of µ = 0.94). The left
surface plot in Figure 4.1b compares well with figure 3 in Hayek et al. (2010). The
ray tracing algorithm on the irregular grid also produced good results at the same
inclination, as shown in the right parts of Figures 4.1a and 4.1b. Here, the outgoing
intensity is comparable to the beam calculated on the regular grid. Both methods have
outgoing intensities peak at approximately the same value. The Delaunay ray tracing
method did not produce more diffusion than the short characteristics with a linear
interpolation.

Using the searchlight beam test on the twelve ray quadrature (given in Štěpán et al.,
2020; Jaume Bestard et al., 2021), I tracked the time usage in both ray tracing methods.
For the same 513 grid, the Delaunay ray tracing method used 22.60 seconds, averaging
at 1.88 seconds per solid angle. The short characteristics method was faster, using 2.31
seconds in total and averaging at 0.19 seconds per solid angle. This is almost a factor
ten faster than the irregular grid ray tracing. However, when synthesising spectral
lines, the ray tracing only constitutes a part of the actual time usage. The total time
to synthesise spectral lines depends on multiple factors, including convergence.

4.2 Radiative transfer on irregular grids in LTE

Moving on, I used the Bifrost atmosphere to calculate radiative transfer. My first
approach was to test the irregular grid algorithms in LTE, where the source function
and populations were known everywhere. There was no need to find the source func-
tion iteratively, meaning that this test was quick to complete. The test consists of
constructing an irregular grid, interpolating quantities to this grid, and then convert
all quantities back to a regular grid to calculate the outgoing intensity. This test tells
us whether the construction of the irregular grid conserves quantities important for
radiative transfer. By sampling irregular grids according to different quantities, we will
also get indications of regions important for the formation of radiation.

In this investigation, the source function was initialised by Equation (2.25). Since
I calculated the continuum extinction of the hydrogen atom, I needed the atomic
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Figure 4.2: Disk-centre continuum intensity calculated from LTE in a regular geometry.
Atmospheric parameters are that of the Bifrost atmosphere. The plots display the
influence different resolutions of the atmosphere file have on the disk-centre intensity
at 500 nm.

populations (a major contributor to the continuum extinction is the H− ion). The
atomic populations of hydrogen were computed with the Saha-Boltzmann statistics
given in Equations (2.26)-(2.28). The continuum extinction coefficient was calculated
with the Transparency.jl package, using the continuum processes described before
Equation (3.12).

When the irregular grids were constructed, the extinction coefficient and source func-
tion were calculated for all sites in LTE. Then, the grids were converted back to a
regular geometry by interpolating the source function and extinction coefficient onto
a Cartesian grid. It is on these regular grids that the final radiation field was calcu-
lated. I computed the outgoing intensity at the wavelength 500 nm (dubbed λ500) with
zero inclination (we observe the atmosphere at disk-centre). I also calculated the LTE
intensity on the original Bifrost atmospheric model to compare the results from the ir-
regular grid construction. The outgoing intensity from the regular grid was calculated
at three different resolutions of the model atmosphere: full resolution, half resolution,
and one-third resolution. The full resolution model had 28 million grid points; the
half resolution used every second point along each axis and had 3.5 million grid points;
the one-third resolution model used every third point along each axis and had approx-
imately one million grid points. Figure 4.2 shows intensity maps calculated from the
regular grids. Here, we can see how higher resolutions reveal more resolved details. An
interesting feature that we can observe is the magnetic brightening in the intergranular
lane above the lower left corner. This feature coincides with the magnetic field at the
surface, seen in Figure 3.1.

I used multiple sampling methods to construct the irregular grids. In this test, three
are given special attention: drawing sites from the uniform distribution U , the ver-
tical temperature gradient dT/dz, and the extinction coefficient α500. I used trilinear
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(a) Disk-centre intensity calculated from irregular grids with 500 000 sites sampled according
to different distributions.
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(b) Disk-centre intensity calculated from irregular grids constructed from continuum extinction
α500 with different resolutions.

Figure 4.3: Disk-centre continuum intensity calculated from LTE in an irregular geo-
metry. Atmospheric parameters are those of the Bifrost atmosphere. The top panel
shows intensities calculated with 500 000 sites drawn from different sampling methods
to construct the irregular grid. Finally, the bottom panel shows how different resolutions
in the irregular grid influence the outgoing intensity. All irregular grids are constructed
by drawing sites from the distribution reflecting the continuum extinction at 500 nm.
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interpolation to adapt the Bifrost model atmosphere to irregular grids. Converting
back to a regular grid, I used nearest neighbour interpolation. Although this is the
simplest interpolation method, it reproduced the same results as the inverse distance
weighting. The converted grid was given twice the resolution of the original grid—
(nx = 512, ny = 512, nz = 860)—to capture regions with a high density of sites.

I investigated how different sampling methods and number of sites in the irregular grids
affected results. Grid points sampled from the extinction coefficient gave the best results
for a low number of sites. Both the grids sampled from the uniform distribution and
dT/dz showed significant amounts of noise and failed to describe small-scale features
of the outgoing intensity. A comparison of the outgoing intensity at disk-centre is
presented in Figure 4.3a. For these calculations, I sampled one million sites to the
irregular grid, a number much smaller than the number of grid points of the original
atmosphere file (which is 28 million). Nonetheless, the grid sampled from extinction
displayed similarities to the regular grids Figure 4.2.

The low resolution calculations were strongly affected by noise. By increasing the num-
ber of sites, this effect dissipated. As exemplified in Figure 4.3b, the noise dissipation
becomes apparent. Here we can see that an increase in the number of sites produces
results closer to those given with the full resolution grid in Figure 4.2. 250, 000 sites
was not enough grid points to give good results. With 2.5 million sites, the outgoing
intensity still looks grainy, but the magnetic brightening is clearly seen. The bright-
ening is better resolved than in the quarter resolution results from the regular grid in
Figure 4.2. For ten million sites, disk-centre intensity results were accurately repro-
duced compared to the full resolution regular grid. These results were calculated from
a grid with only about a third of the grid points compared to the full resolution model.
However, the differences with the full resolution regular grid are minor.

This analysis emphasises three points that are vital for this project. Firstly, the con-
struction of the irregular grid works; the interpolations to an irregular grid and back
to a regular grid did not lose vital information for radiative transfer. Secondly, I have
found that the sampling method has a large impact on the results. It is important
to construct a grid that highlights the important regions in the atmosphere. The last
point—the most promising for this project—is that it is possible to reproduce intensity
from irregular grids with fewer grid points accurately.

4.3 Radiative transfer on irregular grids in NLTE

Finally, I synthesised the two-level atom’s spectral line in NLTE with the Λ-iteration
algorithm. The spectral line was calculated from the Bifrost model atmosphere, that
is adapted to irregular grids. The two-level atomic line is equivalent to the Ly-α line,
but the model atom had artificially increased collisional rates to facilitate convergence.

The spectral line was calculated with 90 wavelength points distributed over the bound-
bound and two bound-free processes. With 50 wavelength points, the bound-bound
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transition was calculated assuming CRD. Both ionisation stages were calculated with 20
wavelength points each. Iterating over many wavelength points with the full resolution
of the MHD simulation involved extensive computation, which was not viable for the
analyses in this thesis. In order to reduce computation time, I did not use the full
resolution. Instead, I used lower resolutions to synthesise the line.

I started by modelling the atom on three different resolutions of the regular grid: every
second point (half resolution with 3.5 million grid points), every third point (one-third
resolution with one million grid points), and every fourth point (quarter resolution with
500,000 grid points) of the original Bifrost atmosphere. Across the resolutions, the
results varied significantly. I calculated the disk-centre intensity and found that lower
resolution simulations gave stronger lines. This is presented in Figure 4.4. Here, we see
that the line core is stronger in almost every pixel for lower resolution simulations. It
is also apparent that small-scale features get smeared out or disappear in the coarser
grids.
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Figure 4.4: Disk-centre intensity at line centre calculated on regular grids with different
resolutions. Atmospheric parameters are that of the Bifrost atmosphere.

With higher resolution, the source function required more iterations to converge, con-
sistent with Štěpán et al. (2022) who note that convergence speed is proportional to N4.
The quarter, one-third, and half resolution grids converged in 78, 87, and 92 iterations.

Moving onward, I wished to reproduce results similar to the regular grid by solving
the NLTE two-level atom problem on irregular grids. To find an optimised grid for the
problem, I constructed multiple grids sampled from different distributions. The grids
were constructed to reflect the density of the following quantities:

1. The continuum extinction at line centre, αc
0.

2. Ionised hydrogen density in LTE, NLTE
H II .

3. The photon destruction probability, ε.

4. Total hydrogen density, NH.
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Figure 4.5: Λ iteration convergence for a selection of simulations. Here, all simulations
on the regular grid are plotted with black lines, while irregular grid simulations are
plotted in color lines. Results are grouped together by resolution: for the regular grids
the half resolution grid has approximately 3 · 106 points, one-third has ∼ 106 points,
while the quarter grid has around 5 · 105 points.

5. A uniform distribution, U .

For the purpose of comparing results at different resolutions, grids were constructed
with a varying number of sites. Due to the time consumption of the calculations, I used
a maximum of three million sites in the irregular grids. This number is comparable
to sampling half of the points in every direction of the original atmosphere; the half
resolution atmosphere had 3.5 million grid points.

I found an accelerated convergence on several of the irregular grids. This speedup was
found in the grids constructed according to continuum extinction, ionised hydrogen
density, and photon destruction probability. Grids that were sampled according to the
total hydrogen density and uniform distribution needed many iterations to converge,
performing similarly to the regular grids. Figure 4.5 displays the convergence for these
simulations. In the figure, all relative changes start at one due to the initialisation of the
source function. In the first iteration, Snew = Bλ(T ) and Sold = 0 kWm−2 nm−1 sr−1.
The figure displays many irregular grids converging faster at all resolutions. The total
time usage of the calculations did not see the same improvement: with the current
implementation, the irregular grids were six times slower than the regular grids per
iteration.

To observe which grids gave better results, I constructed grids with one million sites
from the different sampling methods. These results are presented in Figure 4.6. No grid
gave results as good as the quarter resolution regular grid with one million grid points
in Figure 4.4. Nevertheless, we can see differences in the plots indicating that some
sampling methods gave better results than others. For instance, the grids sampled from
the photon destruction probability and ionised hydrogen density are lighter, making
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the total flux smaller. They are more similar to the quarter resolution result from the
regular grid.
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Figure 4.6: Disk-centre intensity at line centre computed with several irregular grids.
The irregular grids were sampled from different distributions with one million sites
each.
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Figure 4.7: Disk-centre intensity at line centre computed with an irregular grid at dif-
ferent resolutions. Here, the irregular grids are sampled from the continuum extinction.

The results showed a large amount of noise in the irregular grids with one million sites.
This noise hampers details in the outgoing intensity. To find out why there is noise
in the results, we can consider the sampling method of the irregular grids. Since the
sampling is done with a stochastic method, it produces noise when the number of sites
is low. We expect noise to decrease when we sample more sites on the grids. To see why
we need more points in the irregular grids, we can compare the quarter resolution results
from Figure 4.4 with the irregular grids’ results. The quarter resolution intensity shares
more similarities with the irregular grids than the one-third and half resolution grids.
High resolution is needed to produce accurate results for both regular and irregular
grids.

While the convergence speed of the two-level atom improved in the irregular grids, the
results contained noise, apparent when the outgoing intensity was calculated. This
noise was a remnant of the stochastic sampling of the grid. By sampling more sites in
the irregular grids, I expected better results. In Figure 4.7, I calculated the line with
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Figure 4.8: Disk-centre intensity for three different wavelengths calculated with the
half-resolution regular grid (top panels), and with an irregular grid with three million
sites sampled from the ionised hydrogen density (bottom panels). The Blue wing is
Doppler shifted −27 km s−1 from the line centre.

different resolutions in the irregular grids. The irregular grids were sampled from the
continuum extinction coefficient, a distribution that favours grid points in the lower
parts of the atmosphere. Here, we can see how the outgoing intensity at the line core
varies when the resolution in the grid increases. These plots show an improvement
with higher resolution. For grids with more sites, we can recognise smaller features in
the outgoing intensity. With three million sites, the outgoing intensity shares many
similarities with the one-third resolution regular grid in Figure 4.7.

Differences in the line core at disk-centre have been investigated; the whole line is yet
to be discussed. Figure 4.8 compares the spectral line synthesised from an irregular
grid (constructed with 3 million sites sampled from the LTE ionised hydrogen density)
with the regular method at the line centre, in the blue wing, and the continuum. It is
possible to recognise features in the line centre across the different methods. The line
wing compares better than the line centre, being more similar across the irregular and
regular grid. The continuum intensities are almost identical. There are merely a few
bright spots in the intensity from the irregular grid, which are not reproduced from the
regular grid. The intensity contains noise (seen as dark spots on the intensity map),
which makes it apparent that the irregular grid needs more sites.

A more representative figure of the spectral line is presented in Figure 4.9, where the
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Figure 4.9: Individual line profiles for disk-centre intensity calculated from the half
resolution regular grid and an irregular grid with three million sites sampled from the
ionised hydrogen density. Intensity is converted to brightness temperature, by inverting
the Planck function. Every black line corresponds to the brightness temperature from
a column in the atmosphere. The spatial average over all columns is represented by the
red line. Dashed blue lines indicate wavelength positions of the blue wing at 121.558 nm
(or −27 km s−1) and line centre λ0 at 121.568 nm.

intensity is converted to brightness temperature. This figure displays the spectral line
versus wavelength for the columns in the atmosphere, making it easier to see how the
methods differ over wavelength. Differences are more extensive in the line core but
small in the wings. The spatial averages plotted in the figure emphasise this. While
the irregular grid produced some outlying lines in the wings, the bulk of the lines lies
close to the regular grid spectral lines. The spatial average from the irregular grid is
significantly stronger in the line core.

A pertinent question to ask now is: can we construct a grid with few sites and at
the same time produce accurate results? This is a matter of finding locations in the
atmosphere that require a high density of sites—i.e. regions sensitive to line formation.
We can see where the density of sites should be high by investigating where the line
forms. Since most radiation forms at optical depth τλ = 1—per Eq. (2.4)—this region
is important to emphasise in the grid. The height of formation is found as h(τ = 1). I
calculate the height of formation for disk-centre intensity and a location in the line wing,
and compare these heights with the density of grid points versus height in the regular
and irregular grids with three million sites. Histograms showing these statistics are
seen in Figure 4.10. We can see that the line centre is formed higher in the atmosphere,
with the line wing formation taking place deeper down in the atmosphere. The mean
height of formation is 2.7Mm in the line centre and 2.3Mm in the blue wing. The
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Figure 4.10: Histograms comparing
features of irregular grids, and height
of formation in the line. The black
and blue lines (left axis) portray the
density of sites versus height for the
half resolution regular grid and ir-
regular grids constructed from three
different sampling methods. These
grids are sampled with three million
sites. The red histograms (right axis)
show the density of line formation
per height for the line centre and line
wing (where τ = 1). Line wing is at
−27 km s−1.
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grid construction methods used in this thesis do not emphasise these high regions of
the atmosphere. This issue became apparent later when there was not enough time to
conduct new analyses with more apt sampling methods capturing these regions.

The histograms in Figure 4.10 depict the heights that deserve a higher density of grid
points to synthesise vertical radiation. In three dimensions, the vertical direction is
“half the truth”—we should consider every direction to identify regions that need extra
attention. Inclined rays travel farther through the atmosphere per height gain, and
consequently, this radiation forms higher. For rays with an inclination of µ = 0.7, the
mean height of formation was 3.0Mm in the line core, and 2.6Mm in the blue wing.
This reasoning builds under the assumption that an ideal grid should emphasise even
higher regions than those accentuated with the line formation regions in Figure 4.10.

Expanding the analysis of which regions need better resolution, I compared the con-
verged source functions of the regular and irregular grids. By calculating the source
functions’ relative difference between the two methods, we can observe where the source
functions converged towards the same value and where they differed. A small relative
difference should indicate that the relevant region had sufficient resolution. A high re-
lative difference is indicative of the opposite. The source functions’ maximum relative
difference over wavelength is presented in Figure 4.11. Here, every column of the atmo-
sphere is compared and plotted per height. The figure shows that the very bottom and
top regions of the atmosphere have a small relative difference. In the middle regions
(from the surface at 0Mm until around 3.5Mm), the relative difference is high. Some
of this difference came from interpolating to and from the irregular grid; however, this
does not explain the sharp variations through the atmosphere. The irregular grids need
more sites in the middle regions to mitigate this difference.
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Chapter 5

Conclusions and future work

NLTE radiative transfer calculations are essential to accurately reproduce various spec-
tral lines observed in the solar spectrum. Details in these spectral lines are often
inherently three-dimensional. Spectral synthesis in 3D has been met with high compu-
tational complexity and slow convergence. Nevertheless, the evolution of better optics
for solar observations requires high resolution 3D simulations to uncover the mechan-
isms that develop small-scale details in spectra. Therefore, improved methods for 3D
radiative transfer calculations on high resolution simulations are key for advancing our
understanding of the Sun.

This thesis develops a new method to calculate radiative transfer on irregular grids.
With the irregular grid, I could vary the density of grid points through the computa-
tional domain. Thus, highly variable regions contributing sharp changes to radiative
transfer could be resolved with more grid points, while monotonous regions were less
resolved. The irregular grid can resolve important details without acquiring high com-
putational complexity.

Calculating radiative transfer on an irregular grid required a ray tracing algorithm
different from the traditional long and short characteristics applied to Cartesian grids.
To traverse irregular grids, I constructed a Voronoi diagram of the grid points and traced
rays along the Delaunay lines of this diagram. This ray tracing method performed
satisfactory in the searchlight beam test and did not produce more diffusion than short
characteristics with linear interpolation.

An uncertainty that arose during my work was related to the construction of the irreg-
ular grid: is an irregular grid capable of conserving important information for radiative
transfer? I interpolated a Bifrost atmospheric model—where quantities were defined
on a Cartesian grid—onto an irregular grid. By constructing the atmospheric model
in LTE, I found that it is possible to construct irregular grids capable of capturing
the essential components for radiative transfer. It was possible to accurately reproduce
radiative transfer calculations in LTE with an irregular grid having fewer grid points
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than the regular grid counterpart.

Improving convergence of Λ iterations is important in NLTE radiative transfer. To find
out whether irregular grids can accelerate convergence, I calculated a two-level atom
on a quiet sun Bifrost simulation in NLTE. The key assumptions made in the model
were:

• Including the ground and first excited state of the hydrogen atom, plus continuum.

• Complete redistribution of the line profile.

• Artificially increased collisional rates to facilitate convergence.

• Reducing the resolution of the model atmosphere to keep the computational com-
plexity manageable.

It was found that the irregular grids only partly managed to reproduce the spectral line
at the reduced resolution. Results also depended on the construction of the irregular
grid. For the grids I have explored in this thesis, none seemed to place enough grid
points in the upper parts of the atmosphere. Nonetheless, several irregular grids gave
an accelerated convergence compared to the Cartesian grid. For the grid samplings
that gave faster convergence, the speedup was current at multiple grid resolutions at
almost a factor of two. This speedup across resolutions implies that an accelerated
convergence should be expected for higher resolution calculations.

Future exploration of radiative transfer on irregular grids should include grid samplings
that better accentuate the regions most relevant for line formation. A good starting
point can be to average the total extinction over the solid angles of the quadrature used
to compute the mean intensity, then construct an irregular grid to reflect this quantity.

Developments to the code are needed to further the analysis. Firstly, extending the
code with MPI parallelisation and domain decomposition would accommodate higher
resolution calculations. A second important inclusion is to incorporate operator split-
ting. Operator splitting would enable NLTE calculations without artificially increasing
collisional rates. Optimising the Delaunay ray tracing is possible. The horizontal
boundary conditions are currently treated with if tests, involving additional calcula-
tions for every site. Incorporating horizontal boundary information in the neighbour
matrix will speedup the Delaunay ray tracing algorithm.

Reducing noise in the irregular grids is also possible. To give a fairer distribution of
grid points in the domain, one could demand that grid points can only be so close to
each other. Upon the construction of the irregular grid, we can check the distances to
all other sites before sampling a new site. This method would ensure that grid points
are not placed too close, and reduce noise in the grids.

The conclusions from this work can be summarised with these key takeaways:

• Delaunay ray tracing through irregular grids transports radiation accurately.
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• Constructing an optimised grid conserves quantities important for radiative trans-
fer.

• Irregular grids can accurately synthesise radiation with fewer grid points than a
regular grid.

• Optimised grids accelerate the source function’s convergence by almost a factor
of two.

• To accurately reproduce spectral lines, irregular grids need higher resolutions.
The current maximal resolution has three million grid points.
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