
i

Using machine learning to detect

intrusions in industrial control systems

Jacob Nicolai Larsen

Thesis submitted for the degree of master’s in information

security

60 credits

Faculty of informatics

Faculty of mathematics and natural sciences

University of Oslo

Spring 2022

Investigating network anomaly detection methods in industrial control

systems

ii

Comparing machine learning to detect intrusions in control- and

traditional networks

Jacob Nicolai Larsen

iii

Abstract

In recent decades ICS systems have been a vulnerable target for cybercriminals. Cyber attacks

such as Stuxnet show the vulnerabilities in communication between Supervisory data and

Aquiasions (SCADA) systems and Programmable Logic Controllers (PLC) through unknown

attack vectors or mutations of old ones. To protect against these unknown attack vectors are

Intrusion Detection Systems (IDS). A Networks-based IDS has the potential to safeguard

against these unknown attack vectors by detecting anomalies in the network traffic through

Artificial Intelligence (AI). Branching out from AI are Machine Learning (ML) and the newer

Deep Learning (DL). Researchers have extensively researched anomaly NIDS in traditional

networks through ML and DL. Despite the comprehensive analysis, IDS still faces challenges

in improving performance for detecting new attack vectors. As SCADA networks are more

isolated than conventional networks, we propose that machine learning is better suited to

detect anomalies in these environments. Derived from this experiment is the question if the

newer DL methods perform better than ML methods.

The thesis explores this by going through the fundamentals of ICS, such as devices

communicating and their protocols. IDS are analyzed to understand better where

implementation of AI. We discover previous research on AI solutions for traditional and

SCADA networks before selecting AI methods to compare both types of network traffic.

The resulting literature study led to us applying two DL methods, long short-term memory

(LSTM) and Autoencoder (AE), to NSL-KDD and Electra Modbus. In we used ML methods,

Random Forest (RF), Isolation Forest (IS), Support-vector machine (SVM), One-Class SVM

(OCSVM), and Artificial Neural Network (ANN) to the traditional network.

The study showed significantly better results on the SCADA network traffic. However, as the

research shows, SCADA systems have no benchmark dataset for network traffic. With no

benchmark dataset, it is difficult to conclude if the learner performs better. By mainly

focusing on the SCADA system, there have been some biases for the high result of the

learners. In the future, we require a more structured approach to comparing learners of

SCADA and traditional network traffic.

iv

Preface

This project was carried out as the final part of my master’s degree in information security at

the University of Oslo.

First and foremost, I thank my supervisor, Janne Merete Hagen, for her guidance, support,

encouragement, and pleasant conversations through the writing of this thesis.

I would also like to thank my family, friends, and girlfriend Margrethe for their continued

love and support.

Jacob Nicolai Larsen

University of Oslo, June 2022

v

Content

1 Introduction ... 1

2 Aim of thesis ... 2

2.1 Problem statement .. 2

2.2 Contribution ... 2

2.3 Structure ... 2

3 Industrial Control System fundamentals .. 4

3.1 Supervisory Control and Data Acquisition (SCADA) ... 4

3.2 Programmable Logic Controller (PLC) ... 4

3.3 Remote Terminal Unit (RTU) ... 5

3.4 Intelligent Electronic Devices (IED) ... 5

3.5 Human machine interface (HMI) .. 5

3.6 Data Historian .. 6

3.7 SCADA Operations .. 6

3.8 SCADA communication evolution ... 7

3.9 Vulnerabilitets in SCADA .. 8

3.9.1 Attack categories ... 8

3.10 Cyber kill chain .. 10

4 Industrial networks .. 11

4.1 Industrial network topology .. 11

4.2 OSI Model .. 12

4.3 Industrial network protocols ... 12

4.4 Modbus protocol .. 13

4.4.1 Modbus RTU... 14

4.4.2 Modbus TCP/IP ... 15

4.5 Logs in the industrial control network ... 15

5 Intrusion Detection System (IDS) .. 18

5.1 Host-based IDS and Network-based IDS .. 18

5.2 Overview of network anomaly detection ... 19

5.3 The architecture of an anomaly NIDS ... 20

5.4 Aspects of anomaly detection ... 22

5.5 The challenges of Anomaly detection in networks .. 23

6 Machine learning ... 25

vi

6.1 Supervised learning .. 25

6.2 Unsupervised learning .. 26

6.3 Semi-supervised learning .. 26

6.4 Reinforcement learning .. 27

6.5 Deep learning ... 27

6.6 Machine learning algorithms used for anomaly detection engine 28

6.7 Machine learning algorithms .. 28

6.7.1 Support vector machine (SVM) ... 28

6.7.2 Decision trees (DT) ... 29

6.7.3 Ensemble learning ... 29

6.7.4 Random forest ... 29

6.7.5 Isolation forest ... 29

6.7.6 K-nearest neighbors (k-NN) .. 29

6.7.7 K-mean clustering ... 30

6.7.8 Artificial Neural networks (ANN) ... 30

6.8 Deep learning algorithms .. 31

6.8.1 Recurrent Neural Networks (RNNs) .. 31

6.8.2 Long short-term memory (LSTM) ... 31

6.8.3 Autoencoder .. 32

6.9 Evaluating machine learning algorithms ... 34

7 Method .. 36

7.1 Machine learning checklist ... 36

7.2 Framing the problem and looking at the big picture .. 36

7.3 Get the data .. 37

7.4 Exploring the dataset .. 41

7.4.1 NSL-KDD dataset ... 41

7.4.2 NSL-KDD Attack implementation ... 41

7.4.3 NSL-KDD Dataset attributes ... 42

7.4.4 NSL-KDD object description .. 44

7.4.5 NSL-KDD Test set .. 44

7.4.6 Electra dataset ... 45

7.4.7 Electra attack implementation .. 46

7.4.8 Electra dataset attributes .. 47

vii

7.4.9 Addressing Electra Modbus duplicates .. 48

7.4.10 Electra Modbus no duplicates, numerical description 50

7.4.11 Electra object description .. 51

7.4.12 Electra test set ... 52

7.5 Preparing the data ... 53

7.5.1 One hot encoding .. 53

7.5.2 Numeric feature scaling ... 53

7.5.3 Preprocessing the datasets ... 53

8 Results... 54

9 Discussions ... 61

9.1 Limitations ... 61

9.2 Dataset fundamentals .. 61

9.3 Feature selection ... 62

9.4 Biases ... 63

10 Conclusion .. 64

10.1 Future work .. 65

11 Bibliografi ... 66

viii

List of figures:

Figure 1: Common network topologies in an industrial network (Knapp & Langill,

2014) .. 11

Figure 2: Client/server query response process .. 14

Figure 3: Modbus RTU Message header ... 15

Figure 4: Difference between Modbus RTU and Modbus TCP/IP 15

Figure 5: Generic architecture of NIDS (Monowar, Bhattacharyya, & Kalita, 2014).... 21

Figure 6: Unsupervised learning for anomaly detection (Gèron, 2019) 26

Figure 7: Self-supervised learning example showing some labeled classes (Gèron, 2019)

 ... 26

Figure 8: Basics of reinforcement learning (Gèron, 2019) ... 27

Figure 9: LSTM model (Varsamopoulos & Bertels, 2018) .. 32

Figure 10: AE model (Dertat, 2017) .. 33

Figure 11: Electra network topology (Perales Gòmez, et al., 2019) 45

Figure 12: Description of numerical values in Electra Modbus 50

Figure 13: Distribution of Electra Modbus numerical data... 51

ix

List of tables:

Table 1: Classification of attack types on control networks (Wang & Foo, 2018). 9

Table 2: OSI reference model .. 12

Table 3: Potentially useful data from logs in ICS (Hvoland, 2017) 17

Table 4: Anomaly types and characteristics (Monowar, Bhattacharyya, & Kalita, 2014)

 ... 20

Table 5: Distribution of data in NSL-KDD (Saporito, 2019).. 42

Table 6: Attributes of NSL-KDD .. 43

Table 7: Categorical attributes of NSL-KDD ... 44

Table 8: Electra Modbus attack types (Gòmez, et al., 2019) .. 46

Table 9: Attributes of Electra Modbus ... 48

Table 10: Electra labels before and after removing duplicates 49

Table 11: Categorical objects in Electra Modbus. .. 52

Table 12: Distribution of data in Electra Modbus with no duplicate records 52

Table 13: Deep learning algorithms with the best result for Electra Modbus and NSL-

KDD ... 55

Table 14: LSTM with different hyper-parameter applied to Electra Modbus 56

Table 15: LSTM with different hyper-parameter applied to NSL-KDD 57

Table 16: Autoencoder with different hyper-parameter applied to Electra Modbus 58

Table 17: Autoencoder with different hyper-parameter applied to NSL-KDD 58

Table 18: Machine learning algorithms applied to Electra Modbus (Gòmez, et al., 2019)

 ... 59

Table 19: Machine learning algorithms applied to NSL-KDD 60

x

List of equations:

Equation 1: Accuracy .. 34

Equation 2: Precision .. 34

Equation 3: Recall ... 35

Equation 4: F1-Score .. 35

1

1 Introduction

In 2010 the Iranian nuclear program experienced huge setbacks as the gas centrifuges

separating atomic material were spinning out of control. After a thorough investigation,

security analysts uncovered one of the most sophisticated malicious computer worms

ever created. Stuxnet was the resulting worm of a 5-year project exploiting unknown

vulnerabilities (Baezner & Robin, 2017). Analyzing the worm showed it targeted the

supervisory control and acquisition (SCADA) system that communicates with and

controls the programmable logic controller (PLC) controlling the centrifuges (Baezner

& Robin, 2017). Stuxnet establishes the potential objective of hacking these systems

using unknown vulnerabilities. Because of Stuxnet, there has been an increase in attacks

on ICS (Knapp & Langill, 2014).

Intrusion Detection Systems (IDS) and, more specifically, Network-based Intrusion

Detection Systems (NIDS) provide this desired security by constantly monitoring the

network traffic between devices (Zeeshan, Adnan, Cheah, Johari, & Farhan, 2021). By

integrating Artificial Intelligence (AI) and its subcategories Machine Learning (ML)

and Deep Learning (DL), pattern from the network can be learned and used to detect

these unknown attack vectors.

There has been done extensive research on ML and DL as NIDS. Both ML and DL are

powerful tools for learning valuable features from the network traffic and predicting

normal and abnormal activities based on the learned patterns (Zeeshan, Adnan, Cheah,

Johari, & Farhan, 2021). IDS still faces challenges in improving detection accuracy

while reducing false alarm rates and detecting novel intrusions (Zeeshan, Adnan, Cheah,

Johari, & Farhan, 2021).

There are many research papers on NIDS on traditional networks. The research on

NIDS in SCADA networks is not quite as extensive (Alimi, Ouahada, Abu-Mahfouz,

Rimer, & Alimi, 2021). The difference in this thesis compared to other studies on the

topic is comparing the DL and ML models to discover if AI is more suitable in SCADA

networks, as SCADA devices communicate in a more controlled environment than

traditional business networks (Knapp & Langill, 2014).

2

2 Aim of thesis

This thesis aims to apply deep learning methodologies to industrial networks,

comparing the same models on traditional networks. To accomplish this, the thesis will

1. Do a literature study on ICS understanding the environment, such as the network

structure, devices used, and network topologies (Chapter 3-4). 2. Explore IDS to get a

high picture view of where machine learning is applied (Chapter 5). 3. Study previous

AI solutions in solutions in the literature to select appropriate models (Chapter 6). Do a

simulated study applying deep learning methods to both datasets and comparing the

results.

2.1 Problem statement

There are two research questions explored in this thesis:

Research question 1(RQ1): Is it more suitable to apply machine learning in

industrial networks than in traditional networks?

Research question 2(RQ2): Is deep learning more powerful in detection

intrusions than traditional machine learning methods?

2.2 Contribution

This thesis contributes a novel approach to comparing AI NIDS for network traffic.

With this contribution, future researchers can decide if a heavier focus should be on

more isolated networks.

2.3 Structure

Chapter one contains the introduction of the thesis.

Chapter two presents the thesis's problem aim, problem statement, contribution

Chapter three contains the fundamentals of Industrial Control systems used to

understand the current situations of the devices that use control networks. Previous

devastating attacks, as well as typical attacks, are presented to thoroughly understand

the attacks that are present in control network datasets.

3

Chapter four contains how Industrial Control Systems use networks to communicate.

This chapter presents this, such as different communications protocols and general

network topologies. Protocols and network topologies give an overview of the data that

can be present in control network datasets.

Chapter five contains the fundamentals of Intrusion Detection Systems. This chapter

presents current solutions to network attacks and an overview of where the machine

learning algorithms reside.

Chapter six presents machine learning algorithms used by the Intrusion Detection

System. This chapter explains different learning methodologies and commonly used

machine learning algorithms for Intrusion Detection. This chapter also differentiates

between machine learning and deep learning methodologies.

Chapter seven presents the methodology used to apply machine learning algorithms.

Datasets are selected. One of the datasets contains data from the Control network traffic

and one from the traditional network traffic. The attributes of these datasets are

analyzed and preprocessed for the use of the selected machine learning models.

Chapter eight presents the results of the machine learning algorithms. This chapter

selects the different machine learning hyper-paramet0065rs for bough datasets. For

consistency, hyper-parameters for machine learning algorithms are the same to be

comparable between the two chosen datasets. The differences between the datasets are

also discussed as this directly impacts the performance of the machine learning

algorithms. In addition, there is a realistic evaluation of the Control network dataset as

this is not a benchmark dataset.

Chapter nine concludes the thesis.

Chapter ten goes through future work to compare traditional and SCADA network

4

3 Industrial Control System fundamentals

Before being able to apply deep learning models to defend ICS, Sommer & Paxson

underly the importance of understanding the data. Starting with what ICS is. Knapp &

Langill describes it as a “broad class of automation systems used to provide control and

monitoring functionality in manufacturing and industrial facilities” (Knapp & Langill,

2014). The ICS comprises several devices for automation and supervising these

processes. The ICS controls the operations of field components such as sensors,

actuators, motor drives, gauges, and indicators. In other words, ICS is in practice for

industrial automation. Further, it is essential to comprehend commonly used ICS

components and how they communicate within the network to protect the industrial

network.

3.1 Supervisory Control and Data Acquisition (SCADA)

Supervisory Control and Data Acquisition (SCADA) system is typically an automation

control system used in different industries such as energy, petroleum, water, and power.

The system can monitor entire complexes of plants providing the user with remote and

centralized control for any given system. A typical SCADA system contains one or

more control center(s) along with several distributed field devices such as 1)

Programmable Logic controllers (PLCs), 2) Remote terminal units (RTUs), and 3)

intelligent electronic devices (IEDs). The 4) human machine interface (HMI) to

communicate and control these field devices. To store the data collected from these

devices are the 5) Data historian.

3.2 Programmable Logic Controller (PLC)

Programmable Logic Controllers (PLCs) are specialized industrial computers that

automate electromechanical processes (Qassim, Jamil, Patel, & Ja'affar, 2019). PLCs do

not use an operating system (OS) to perform their tasks compared to desktop computers.

Instead, they have specific programs to generate output actions responding to a

particular input keeping the data transmitted to a minimum. To function in production

environments, the physical design of PLCs is robust. The program logic from the PLCs

is kept simple as they often are used for real-time processing. For the simplicity of the

5

program logic, the PLC uses ladder logic or sequential function carts to operate. PLCs

essentially perform an output action based on the state of the input. To communicate,

PLCs can use various communication protocols but typically uses Modbus, ControlNet,

EtherNet/IP, PROFIBUS, or PROFINET. Industrial Protocols are discussed further in

the Industrial network chapter. However, Independent of the protocol in use, the end

goal of the PLC is to automate processes by checking input, applying logic, and

adjusting the output accordingly (Knapp & Langill, 2014).

3.3 Remote Terminal Unit (RTU)

Another device that monitors and controls the field devices is the RTU. The PLC and

the RTU functionality overlap in many areas, and the RTU is often indistinguishable

from the PLC (Knapp & Langill, 2014). Compared to the PLC, the RTU resides in

remote locations such as the outside. The RTU transmits field parameters from the

remote location and sends data back to a master terminal unit (MTU) or directly to a

Human Machine Interface (HMI). Because of the remote location, RTUs must be even

more robust than PLCs as they must withstand environmental factors such as humidity

and temperature. Another problem with remote installation is the requirement for

electricity. Local solar power can power the RTUs to accommodate this problem.

3.4 Intelligent Electronic Devices (IED)

The IED is very similar to the PLC and RTU. The difference between the IED, PLC and

RTU often overlap, but the IDE usually supports more specific functions, whereas PLC

and RTUs have more general use (Knapp & Langill, 2014). Specifically, in many

control systems, power grids may disrupt the RTU and PLC because of the high voltage

present. IEDs reside in these environments.

3.5 Human machine interface (HMI)

The Human machine interface is the device used to control the PLC, RTU, and IED.

The HMI allows operators to interact with the control processes using modern software.

In contrast to the above devices, the HMI uses operating systems such as Windows 7 to

6

perform its tasks. The user interface of the HMI display information about how the

processes are performing by displaying sensor reading, output from PLCs, and other

measurements. Communication to the ICS server happens through protocols such as

EtherNet/IP or Modbus (Knapp & Langill, 2014). We discuss these in the industrial

protocols chapter.

3.6 Data Historian

For data collection, the SCADA system utilizes a data historian. The historian collects

the data through various protocols such as Modbus, PROFIBUS, DNP3, and OPC

(Knapp & Langill, 2014). The data the historian logs are multiple types from the control

system, such as alarms and events, and stored in a purpose-built database as “tags.”

3.7 SCADA Operations

PLCs and other field devices have a preprogrammed logic where the input of the device

affects the output. For the field components to work together autonomously, the

SCADA system is on a low level comprised of multiple control cycles or loops. The

control loop can, for example, be if the temperature is 90 degrees do action. More

complex actions require numerous control loops. On a higher level comes control

processes. The control process uses multiple control loops to act and achieve an

objective, such as producing an item. The HMI controls each of these processes.

Typically, the data from the field components, such as readings, are recorded in an

analog format which is translated to digital data and sent to the field device. The field

device further transmits the data to an MTU that keeps track of the state of the data with

the associated device (Yadav & Paul, 2020). Data is passed along from the MTU to an

HMI.

7

3.8 SCADA communication evolution

The communication of SCADA devices has evolved through many generations. Yadav

& Paul, 2020 categorizes these into four eras.

The first generation of SCADA was a Monolithic SCADA system. The monolithic

SCADA system was an isolated environment where it could not communicate with

other systems as the communication could only happen with vendor-specific protocols.

The system RTUs and MTUs would communicate with each other using Wide Area

Networks (WAN), which were in an early stage.

Second-generation SCADA was the transition from a monolithic system to a distributed

system. Here the use of local area networks (LAN) was used for communication

replacing the WAN communication between RTUs and MTUs. As there was no outside

communication, security was not a concern at the time (Yadav & Paul, 2020).

Third-generation SCADA, also known as the modern SCADA system, utilizes networks

and the web for more cost-efficient solutions and the potential for distributed solutions.

Modern SCADA integrates the Internet protocol (IP) based on WAN to communicate,

giving the ability to connect to the distributed system. Giving the advantage of

accessing the business network from a remote location has enabled products of SCADA

system to rise.

Lastly, the fourth generation of SCADA, which is now on the rise, has been integrating

the internet of things (IoT) innovations such as Cloud computing reducing integration

and deployment costs (Yadav & Paul, 2020).

As seen from the above evolution of SCADA, there have been many changes in how to

communicate. There have also been changes in many protocols used. Many utilizing the

SCADA system have not changed devices with the rapid changes. Because of this and

the long lifespans of SCADA components, a wide variety of communications protocols

and legacy systems are in place.

8

3.9 Vulnerabilitets in SCADA

The numerous legacy systems and modern SCADA using the web and IP-based

communication have opened an attack surface that an adversary can exploit, leading to

high-level threats. The impact of these cyberattacks can range from disrupting or

damaging critical infrastructural operations to causing significant economic losses or,

even more dangerously, claiming human lives (Qassim, Jamil, Patel, & Ja'affar, 2019).

Recent studies have shown over a million ICS/SCADA systems are connected to the

internet with unique IP addresses. Adversaries can effortlessly detect these systems

using search engines like Shodan (Babu, Ijyas, P, & Varghese, 2017). In combination,

many SCADA protocols are legacy and have not adopted modern encryption in an

adequate matter (Babu, Ijyas, P, & Varghese, 2017) should indicate that the need for

security is crucial. Gonzalez, Alhenaki, & Mirakhorli have also documented attacks

have exponentially increased from a few incidents to hundreds per year. Most

adversaries targeted the human-machine interfaces, configurations, and PCSs

(Gonzalez, Alhenaki, & Mirakhorli, 2019). There are many vulnerabilities in SCADA

for the different assets. This thesis will mainly focus on the vulnerabilities of the control

network and communication between field devices, whereby machine learning might

detect these attacks early.

3.9.1 Attack categories

Wang & Foo has divided the different types of attacks on the control network into

eleven categories. Attacks on control networks can be classified even further, but this

thesis will use the attacks described her base for the available attacks on ICS networks.

Table 1 describes these attacks.

9

Table 1: Classification of attack types on control networks (Wang & Foo, 2018).

Attack Type Description

Analysis Often occurs at the beginning of a multi-stage attack. The

adversary tries to get information about the network, such

as IP- and Port-scanning

Reconnaissance The adversary's main objective is to gather network

information for further attacks. Hard to detect

Masquerading Adversary pretends to be an existing service in the network.

Attacks include ARP poisoning and Man in the middle

(MITM) attacks. Hard to detect

Replay Replay attacks disrupt the system flow by sending

previously valid packets.

Real-time message

modification

Real-time message modifications are almost the same as

replay attacks. The difference is the adversary edits real-

time packets to achieve a specific goal. Often done when

the adversary is MITM

Deneil of service (DoS) Adversaries perform DoS attacks to disrupt the availability

of a service. DoS attacks are accomplished by flooding the

service with enough messages so the service can’t handle

everything.

Anomalous message

injection

In Anomalous message injection, adversaries place

malicious content into the legitimate message. The target is

infected when accepting or running the malicious contents.

Time delay Attack Time delay attacks happen after masquerading. The

adversary purposely delays legit messages.

Authentication bypass With authentication bypass, the adversary stealthily gains

unauthorized access to the system with high-level access.

Firmware modification Adversaries launch a counterfeit update to modify the

firmware

Worms After infecting a system, worms replicate and spread to

other hosts on the network

10

3.10 Cyber kill chain

The attack described in table 1 does not often happen in a random order, and for a NIDS

to detect these attacks, data used for the machine learning model must contain attacks

from different stages. The cyber kill chain (Huntchins, Cloppert, & Amin, 2011) is a

model describing an adversary's steps to achieve its objective. The adversary must go

through seven steps in the kill chain to complete its purpose. The kill chain is essential

when selecting a dataset with appropriate attack steps. 1. Reconnaissance 2. Weaponize

3. Delivery 4. Exploitation 5. Installation 6. Command and control (C2), and 6. Actions

on objectives (Hutchins, Cloppert, & Amin, 2011). Stopping the adversary at any of

these steps will mitigate the attack.

1. The Reconnaissance step is where the adversary finds information about the

target. These attacks can be low frequency and hard to notice.

2. After collecting information about the target, the adversary creates a means of

how to deliver the attack.

3. Delivery adversary delivers the malicious code to the vulnerable system.

4. After the malicious code is delivered, the adversary starts exploiting the system.

5. Installation. The installation step creates a persistent threat to the vulnerable

system, such as a backdoor. The adversary ensures access to the system for later

attacks and persistence.

6. With the command-and-control step, the adversary typically has “hands on the

keyboard” access inside the target environment

7. Only after the six previous steps does the adversary achieve its original goal.

When defending an ICS network, the main objective is the integrity of network

packets. In the Stuxnet case, adversaries compromised the integrity of the traffic

packets on the control network. However, adversaries can also ruin the

availability of the provided service or expose the confidentiality of Historian

data.

11

4 Industrial networks

We divide Industrial networks into business-, supervisory (production)- and control

networks. However, most network design is not this simple, and there is often

overlapping in terms of protocols as production supervisory network architecture has

integrated Ethernet/IP. This thesis will not focus on the business network part of the

industrial network architecture as the SCADA system operates on the supervisory- and

control-network segments.

4.1 Industrial network topology

The industrial network (supervisory- and control- network) topology must support many

communication protocols for the various connected devices. The supervisory network

segment handles communication, such as connecting historians to the ICS server and

connecting the ICS to other suppliers. The control network, which is the essential part of

the network for this thesis, handles communication, such as sending data from PLC to

the historian or HMI.

The most common for an industrial network is bus and ring topologies; to support these,

star, tree, and mesh are used (Knapp & Langill, 2014). Figure 1 shows examples of the

various topologies.

Figure 1: Common network topologies in an industrial network (Knapp & Langill, 2014)

12

4.2 OSI Model

We first need to look at the OSI reference model to understand the underlying

communication protocols used in industrial networks. Networks are complex with many

pieces. Network engineers developed the layered protocol stack to acknowledge the

complexity. The layered protocol stack, also called Open Systems Interconnection

model (OSI model), aggregates functionality/services and protocols into a layered

model. Each layer contains the necessary protocols to apply more complex services the

further up the model traversed. Industrial network protocols use the OSI model as well

as traditional networks. The OSI models break down the functionality needed when

sending data between devices. The layers are physical-, data link-, network-, transport-,

session-, presentation- and application-layer. Table 2 displays the OSI reference model.

Table 2: OSI reference model

OSI 7 Layer model Data name

7 Application layer

Message

6 Presentation layer

5 Session layer

4 Transport layer Segment

3 Networking layer Packet

2 Data link layer Frame

1 Physical layer Bits

4.3 Industrial network protocols

SCADA has evolved over many generations, causing various communication protocols

to be developed and used. Many of these protocols are old but still in use as the devices

have a long life expectancy. As mentioned above, we segmented the industrial network

in to supervisory and control networks. Both of these segments use different protocols.

Communication protocols used by the supervisory network include protocols such as

13

Open Process Communications (OPC) and the Inter-Control Center Protocol (ICCP)

(Knapp & Langill, 2014). In the control network, protocols used for communication are

generally called Fieldbus protocols. Modbus is the oldest and most widespread Fieldbus

communication protocol (Collantes & Padilla, 2015), and up to 90% of field devices can

use this for communication (ZAREI, 2020). Other protocols found in the field devices

are CIP, S7comm, RS-232 and RS-485, DNP3, HART, PROFIBUS and PROFINET,

FOUNDATION Fieldbus, BACnet, and more. All the protocols mentioned have been

designed to work in the industrial environment but have evolved support to the ever-

increasing popularity of IP (Malviya, 2019). Protocols found in ICS datasets relevant to

this thesis are Modbus, S7comm, CIP, and HSPA.

4.4 Modbus protocol

The Modbus protocol is a communication protocol published in 1979 and became the

unofficial industry standard for communication between PCLs and other devices. The

Modbus protocol is easily deployed and only requires a few data transmitting

requirements. The only requirements are the packet size of the transmitted data. The

Modbus protocol has different options in the transport layer, including using a serial

port, ethernet, or the internet protocol suite, commonly known as TCP/IP. Modbus

support multiple communications in devices connected to the same cable or on the same

ethernet connection. It is typical for the Modbus protocol to be implemented between

RTUs and a plant/system supervisory computer in the SCADA system in the power

industry. Since 1979, multiple versions of Modbus have been developed, such as RTU,

serial, and TCP/IP.

The Modbus protocol uses a client/server architecture. Because of this, it is always the

client that initiates the communication. The client initiates the communication by

sending a query message while the server responds with the requested data. Figure 2

show this process. The Modbus client query includes the device address where to send

the request, a function code defining the request action, any data transmitted, and an

error checking field. The server responds with the same function code as the query, the

response data, and an error code if the device could not understand the request.

(MODICON, Inc., Industrial Automation Systems, 1996).

14

Figure 2: Client/server query response process

The function code tells the server device what action to perform when a request query is

transmitted. The data, in this case, is used as additional information for the request. For

example, function 03 will query the server to read the hold register and respond with

content. The query data in this context are the memory addresses from where to read.

(MODICON, Inc., Industrial Automation Systems, 1996)

In the server's response massage, the function code reflects the function code of the

request query. If there is no error in the message, the response data field will contain the

data requested by the master/client. If an error occurs, the function code is changed to

indicate an error occurred, and the response data contains a code that describes the data.

(MODICON, Inc., Industrial Automation Systems, 1996)

4.4.1 Modbus RTU

Field devices can use Modbus RTU to communicate over a serial network. The

messages protocol for the Modbus RTU is like what the Modbus protocol describes.

When implementing the Modbus RTU protocol, the serial connection only has (2^8)-1

15

or 255 different devices it can communicate with in the address field. CRC checking is

applied to the whole message to detect errors. Figure 3 displays the OSI level 7 message

data used in the Modbus RTU protocol.

Figure 3: Modbus RTU Message header

4.4.2 Modbus TCP/IP

Like the Modbus RTU, there is Modbus TCP/IP. Modbus TCP/IP protocol also provides

the resources for two devices to communicate over a local or wide area network.

Compared to Modbus RTU, the TCP/IP version can use ethernet by TCP/IP (Acromag,

2005). The datagram header also slightly differs from that of the Modbus RTU. The

checksum field of the message header is replaced as the TCP/IP layers supply this. In

addition, Modbus Application Protocol Header (MBAP) replaces the address field.

Figure 4 illustrates the differences.

Figure 4: Difference between Modbus RTU and Modbus TCP/IP

4.5 Logs in the industrial control network

Logs in ICS are crucial for security and are part of what intrusion detection can analyze.

As this thesis shows, the ICS network and its components can be sizable. The network

has different segments, and each piece has various logging opportunities making it

challenging to collect the logs as there is no central logging system. Field devices such

as PLCs and RTUs do generally not have built-in functionality to keep track of logs, and

to keep logs requires extra process power and storage (BDO AS, 2014). Even though it

can be challenging to maintain logs for these field devices, it can be appropriate. There

16

should be information about log-in attempts, connections, and the status of what ports

are open. As for the non-field devices such as MTUs and HMI, there should be

application logs, security logs, and system logs in place.

The application logs track what devices have one or more applications running when the

application started, who opened the application, and actions run by the user.

Security logs are logs from the security aspects of the system. Here logs from firewalls,

routers, switches, and IDS are kept with normalized times.

The system logs can get information about the system's operating status. The system log

includes error and authentication messages when users run processes with elevated

security status.

Other logging opportunities in the industrial network are Network/IPFIX, which shows

the traffic flow in the network, offering meta-data about connections in the network, the

ports connected to, the amount of data, and where the data is sent from and to (BDO

AS, 2014). This data can be superior for an intrusion detection system using machine

learning. It can difference between automated connections from components in the

network based on time and irregular connections when there might be an adversary

trying to make a replay attack.

The authentication logs show what users have accessed different services in the

network, and the machine learning detection can use this to find outliers such as many

failed log-in attempts. Authentication logs can also be beneficial for the use of anomaly

detection. Table 3 Hovland, 2017 shows valuable data for ICS security.

17

Table 3: Potentially useful data from logs in ICS (Hvoland, 2017)

Log type Data

application log Date, Time

Application name / ID

User

User actions

Security log Date, Time

Source, destination

Port

Protocol

System log Date, Time

Component / ID

Process status

Error message

Netflow/ IPFIX Date, Time

Source, destination

Port

Packet size

Packet amount

Authentication log Date, Time

Service

Source

User

Access rights

18

5 Intrusion Detection System (IDS)

Jim Anderson first proposed the idea of IDS in 1980 (Anderson, 1980). Intrusion is

when an adversary takes actions aimed at compromising a system's confidentiality,

integrity, and availability. The IDS prevents an advisory who tries to gain unauthorized

access to the devices mentioned in chapter 2. IDS detects these advisories by providing

well-established mechanisms, gathering data, and analyzing information from various

areas of the host or network.

Ning & Jajodia's paper from 2003 concluded IDS can generally distinguish between an

intruder’s behavior from a regular user’s traffic (Ning & Jajodia, 2003). Even though it

is a powerful security tool, there are shortcomings, such as detecting unknown attack

vectors.

Standard Intrusion detection function includes (i) monitoring and analyzing user,

systems, and network activity. (ii) recognizing patterns of typical attacks (iii) analyzing

patterns of abnormal activity. IDS works on assessing that intrusion activity are notably

distinguishable from the benign activity and thus detectable. (Monowar, Bhattacharyya,

& Kalita, 2014)

5.1 Host-based IDS and Network-based IDS

Intrusion detection methods can generally be classified based on their deployment.

Deployment the two categories are 1) Host-based intrusion detection system (HIDS)

and 2) Network-based intrusion detection system (NIDS).

HIDS monitors and analyses the internals of a computing system rather than its external

interface. A HIDS might detect internal activity such as what program accesses what

resource and illegitimate access attempts (Monowar, Bhattacharyya, & Kalita, 2014).

SCADA system HIDS typically monitors system settings and configuration files,

applications, and sensitive files (Knapp & Langill, 2014). HIDS resides in devices such

as HMI or historian where such data is located. HIDS can only reside on a single device

requiring multiple HIDS on multiple devices through the system.

On the other hand, NIDS deals with detecting intrusion using partially or whole network

data traffic, causing fewer IDS to cover security across the entire system. The NIDS can

19

alert about intrusion based on abnormal patterns in the network data generated by an

adversary trying to get unauthorized access. The method NIDS operate is categorized

based on the style of detection used. Signature-based detection searches the network

traffic looking for known malicious behavior. Signatures are stored in a database and

compared with network traffic (Joyothsna, Rama Prasad, & Munivara Prasad, 2011).

These accelerate the detection of known attacks. However, as previously discussed,

persistent attacks are on the rise, and adversaries are constantly tweaking known attacks

or coming up with zero-day vulnerabilities, making these signature-based detection

methods limited for attack detection.

The other category of NIDS is anomaly-based. Anomaly-based detection uses machine

learning to either learn the underlying pattern of regular traffic or classify attack vectors

that should generalize to new attack vectors. Researchers regard machine learning

algorithms as efficient methods to improve the detection rate, reduce false alarm rate,

and in the meantime, decrease computation and communication costs (M & Movahedi,

2015). However signature-based version is used in practice (Meng, 2011).

5.2 Overview of network anomaly detection

Anomaly detection attempts to find patterns in data that do not model the expected

behavior in the network. Machine learning is a tool often used to accomplish this. Going

back to the Stuxnet example, when the worm infected the SCADA system, it

reprogramed the PLCs. Stuxnet would have been noticed with proper implementation of

anomaly-based NIDS as it created unusual patterns in control network data.

Monowar, Bhattacharyya, & Kalita's 2014 paper has thoroughly gone through the

aspects of anomaly-based NIDS. They start by classifying two broad categories of

network anomalies. Performance-related anomalies and security-related anomalies.

(Monowar, Bhattacharyya, & Kalita, 2014) The main difference between the two is that

performance-based anomalies are benign in the case of cyber security and do not

represent an adversary trying to invade the system. However, the NIDS will send an

alert in both cases as the regular data traffic pattern has changed. For the SCADA

system, the difference between these is significant as it will affect how to respond to the

alarm. Reports such as (Ahmed, Parkash, & Zhou, 2020) look at different strategies to

20

determine this, such as using data from both the network layer and limited log system,

as this will give more certainty if there is an attack or a system fault.

Ideally, we want the NIDS to only respond to Security-related anomalies described in

table 1. Monowar, Bhattacharyya, & Kalita divided security-related anomalies into three

classes. 1) point, 2) contextual, and 3) collective anomalies (Monowar, Bhattacharyya,

& Kalita, 2014). Table 4 describes these.

Table 4: Anomaly types and characteristics (Monowar, Bhattacharyya, & Kalita, 2014)

Types Characteristics

1) Point anomaly Point anomalies are instances of individual data found anomalous

concerning the rest of the data.

2) Contextual anomaly Contextual anomalies are data instances found abnormal in a

specific context. The structure in the dataset induces context.

3) Collective anomaly A collective anomaly is a collection of related data found

anomalous concerning the entire dataset. The collection of events is

an anomaly, but the individual events are not anomalies when they

occur alone in the sequence.

5.3 The architecture of an anomaly NIDS

Monowar, Bhattacharyya, & Kalita 2014 go through what they have found generic in

the architecture. Figure 5 depicts this generic architecture. An abstract view of how

these are structured will help understand where the machine learning algorithms come

into play.

21

Figure 5: Generic architecture of NIDS (Monowar, Bhattacharyya, & Kalita, 2014)

These components are:

1) Anomaly detection engine: This is the core of the NIDS system. In the anomaly

detection engine, the system tries to classify the into intrusions or not. Some

machine NIDS even go as far as trying to classify the different types of attacks.

The system must preprocess the data for a machine learning algorithm to

understand the network data. The preprocessing step also helps remove biases

and normalize the data, so network packet values with a high number do not

significantly affect the machine learning algorithm. Monowar, Bhattacharyya, &

Kalita also includes a matching mechanism. Signature-based NIDS uses this step

to detect known attack vectors.

2) Reference data: The reference data stores the expected behavior of the system or

known intrusions. Possible types of reference data in a generic ANIDS

architecture are signature, rule, and signature.

22

3) Configuration data: The Configuration data contains the intermediate result of

the detection engine. This component is mainly used in signature-based

detection when partially created signatures resign.

4) Alarm: Component in the system responsible for generating alerts if there is a

potential intrusion. Machine learning outcome triggers this alarm.

5) Human analysis: As IDS only creates an alarm by a suspected attack, there is

needed a person responsible for analyzing, interoperating, and responding to the

trigger alarm. The human analyst is also responsible for diagnosing the alarm

data as a preprocessing step.

6) Post-processing: After an alarm is triggered, post-processing is a necessary step.

The post-processing step diagnoses the event that provoked the warning,

determining if a performance-based or a security-based anomaly caused the

alarm.

7) Traffic capture: Tools used to capture the packet in the network traffic. These

can be full packet captures or network flow statistics. Standard tools used are

Wireshark (packet capture), NFdump (flow capture), Nfsen (flow capture), and

Cisco network flow (flow capture).

8) Security manager: The security manager updates the stored signature and new

signature.

5.4 Aspects of anomaly detection

Intrusion detection using machine learning generally is a classification or clustering

problem. Classification and clustering are discussed in the machine learning part of the

thesis. Chandola, Banerjee, & Kumar has, in their 2009 survey of anomaly detection,

compacted different critical aspects of anomaly detection (Chandola, Banerjee, &

Kumar, 2009). These aspects are 1) Types of input data, 2) Proximity measures, 3)

Labels, 4) Classification based on available labels, 5) Feature identification, and 6)

Reporting.

1) Types of input data: Before applying the input data from the network traffic, it is

essential to describe the data types in the dataset attributes. These attributes can

be binary, categorical, or numeric. In the case of network traffic, the data is often

23

multivariable, containing multiple attribute types. Each of these types requires

different preprocessing to optimize machine learning results.

2) Proximity measures: Proximity measures are necessary for solving classification

and clustering problems. Using a different measure of the error in classification

or distance between the data can change the outcome of the machine learning

result.

3) Labels: In the machine learning landscape, labels represent the class to which

the data sample belongs. In the case of network traffic, this can either be binary

or multiclass. Binary classification labels network traffic as benign or

anomalous—multiclass classification labels traffic data into multiple attacks.

4) Classification based on available labels: Considering the extent of available

labels for the data. Anomaly detection can work in 3 modes, supervised,

unsupervised and semi-supervised. The Machine learning chapter of the thesis

explains these further.

5) Feature identification: What features from the network data can significantly

impact the learner's result. The learning process can reduce computational

complexity by removing irrelevant features, removing information redundancy,

increasing performance, facilitating data understanding, and improving

generalization. (Monowar, Bhattacharyya, & Kalita, 2014)

6) Reporting: The learning algorithm has multiple output types for the input data

These can be a score representing the output compared to a threshold

representing the anomaly rate. In the case of multiclass attack classification, a

vector contains the attack class's likelihood. Or, in the case of anomaly

detection, a binary label, either abnormal or normal.

5.5 The challenges of Anomaly detection in networks

Even though NIDS and machine learning have been extensively researched, signature-

based NIDS is deployed in practice. There are multiple reasons why this is the case, and

known shortcomings of anomaly detection in NIDS include: a high cost of error, lack of

training data, a semantic gap between results and their operational interpretation,

enormous variability in input data, and fundamental difficulties for conduction sound

evaluation (Sommer & Paxson, 2010). A high error cost is actual for SCADA systems

24

as for traditional networks, not detecting an attack renders the system useless. On the

other hand, if the system classifies many anomalies correctly but does this because it

triggers many alarms and falsely sends alarms for benign data. A human analyst would

have to look through all the alarms, which would be expensive. In other fields where

machine learning accelerates, such as recommendation systems, a 90 percent accuracy

is more than enough. It does not lead to a fatal error if the algorithm predicts wrong. In

intrusion detection, this is a horrible result. Since the Sommer & Paxson 2020 report,

there is done considerable development in the benchmark dataset used for traditional

networks. However, the lack of training data for SCADA networks is a genuine

concern.

25

6 Machine learning

When talking about machine learning, it is often in the case of AI. AI is a term that has

been much used and popularized in the mainstream by popular films such as

“terminator” and “the matrix,” where artificial general intelligence has become more

intelligent than humans. A subcategory of this general intelligence is machine learning.

Machine learning is a subcategory of AI when statistical models are used to

automatically “learn” or improve when performing a task. Machine learning is nothing

new. The term has been around since 1940 when Walter Pitts and Warren McCulloch

developed the early stages of what is today called a neural network. Taking inspiration

from the fundamental units in the brain called neurons, they created the first application

of supervised learning. However, it was not until the 1980s that back-propagation,

increased processing power, and data availability accelerated the landscape of machine

learning. Today machine learning is generally classified based on the learning methods

used. These methods include 1) Supervised- 2) unsupervised- and 3) reinforcement

learning.

6.1 Supervised learning

Supervised learning learns by using labeled data representing binary or multiple classes.

The learning algorithm trains to classify new data based on the labels. In NIDS, the

labels for each instance of the network data can be binary such as normal and abnormal,

or multiclass such as different attack categories shown in table 1. Other than

classification, supervised learning algorithms may use regression trying to predict some

numerical value. Supervised learning generally has better results than unsupervised and

reinforcement learning counterparts. A drawback of supervised learning algorithms is

the requirement of labeled data, which is tedious and often requires expertise, especially

if the dataset is not ubiquitous (e.g., pictures of cats and dogs), such as network data. In

the case of intruder detection, there is another major issue: there are far fewer instances

of intrusion data than regular traffic. (Mantere, Sailio, & Noponen, 2015)

26

6.2 Unsupervised learning

Opposite to supervised learning, there is unsupervised learning. There are no labeled

samples in unsupervised learning. Unsupervised learning solves tasks such as clustering,

dimensionality reduction, visualization, association rule learning, and anomaly detection

(Gèron, 2019). Figure 6 displays unsupervised learning does anomaly detection.

Figure 6: Unsupervised learning for anomaly detection (Gèron, 2019)

6.3 Semi-supervised learning

Semi-supervised learning also acknowledges the flaw of requiring fully labeled datasets.

However, instead of not having any instances labeled, such as in unsupervised learning,

generally, a small portion of the data is labeled. The rest of the dataset is labeled based

on these. Often by using a combination of super- and unsupervised learning methods,

the semi-supervised. An example of semi-supervised learning is adding photos to a

photo gallery on the phone. When naming a person on some pictures, the algorithm

labels the rest (Gèron, 2019). Figure 7 illustrates this.

Figure 7: Self-supervised learning example showing some labeled classes (Gèron, 2019)

27

6.4 Reinforcement learning

Lastly, there is reinforcement learning. Reinforming learning is very different from the

learning methods above. As was the case for unsupervised learning, the data is not

labeled. Instead, the learning system, called an agent, selects and performs actions

according to what gives the most reward (displayed in figure 8). Reinforcement learning

has had astonishing results and was used to create deep blue beating human former

chess champion Garry Kasyanov (Campbell, Hoane, & Feng-hsiung, 2002).

Researchers have applied reinforcement learning has also to the task of NIDS. Such as

(Sewak, Sahay, & Rathore, 2022).

Figure 8: Basics of reinforcement learning (Gèron, 2019)

6.5 Deep learning

As stated above, researchers have researched machine learning for quite some time. In

more recent times, branching out from machine learning is deep learning. The

difference between machine- and deep learning is that deep learning tries to mimic

further how the brain works. Recent deep learning strategies have significantly

improved performance in computer vision, natural language processing, and other

predictive tasks (Fan, Cong, & Zhong, 2021). These techniques are generally more

efficient than the ML due to their deep structure and ability to learn the essential

28

features from the dataset on its own to generate an output (Ahmed, Parkash, & Zhou,

2020). However, they usually take a longer time to train because of their complexity.

6.6 Machine learning algorithms used for anomaly detection engine

Researchers have applied numerous unique machine learning algorithms for the NIDS

detection engine. The function of these algorithms is to detect outliers among the input

data by some threshold that determines what “normal” input is. For this task, all the

above learning methods approaches are researched. However, supervised learning

generally has a better detection rate (Joshi, 2017).

The 2020 survey by Ahmed, Parkash, & Zhou provided an overview of the anomaly

detection engine's most commonly used machine- and deep- learning algorithms.

For the machine learning models, they include decision trees (DT) such as random

forest and K-nearest neighbor (k-NN), support vector machine (SVM), k-means

clustering ensemble learning (EL), and artificial neural networks (ANN). (Ahmed,

Parkash, & Zhou, 2020)

Whereas for deep learning, the most used algorithms include Recurrent neural networks

(RNN) with types such as Long short-term memory (LSTM), deep neural network

(DNN), Convolutional neural network (CNN), and Auto encoders (AE) with types such

as stacked, sparse and variational AE.

In SCADA system (Alimi, Ouahada, Abu-Mahfouz, Rimer, & Alimi, 2021) mentions

supervised learning algorithms such as SVM, k-NN, DT, and Random Forest.

6.7 Machine learning algorithms

6.7.1 Support vector machine (SVM)

An SVM is a powerful unsupervised machine learning model that can perform linear,

non-linear, regression, and outlier detection—all of which are used to detect intrusion in

network data (Gèron, 2019).

29

6.7.2 Decision trees (DT)

Decision trees are a supervised learning method. Like SVM, decision trees can perform

various tasks such as classification, regression, or output of multiple values. A Decision

tree classifies the samples through a sequence of decisions. Each branch of the

sequential model represents the outcome of a test. The previous choices help decide the

following in the series.

6.7.3 Ensemble learning

Ensemble refers to a group of predictions. The essence of ensemble learning is that

multiple predictions are better than one. If a large number of non-expert people take a

multiple-choice exam and we compare the results of all the exams, the most chosen

answer to each question is probably the right one. Comparing this to if a single expert

answers the exam, the expert might slip up getting the wrong answer.

6.7.4 Random forest

Random forest uses ensemble learning in a supervised structure. By training a DT on

different subsamples of the data and comparing the results, the model might get higher

performance than if training a single DT classifier.

6.7.5 Isolation forest

Isolation forest works much the same way as Random forest by using DTs. The

Isolation forest, however, is an unsupervised learning model. The Isolation forest can

classify anomalies by calculating the path length to an observation in the DT.

6.7.6 K-nearest neighbors (k-NN)

K-nearest neighbors is a simple yet effective supervised learning algorithm. When

classifying unknown data, the algorithm measures the distance from the labeled data

giving the new data the same class as the k-nearest datapoints. K-NN can classify

complex data with multiple inputs. Even with the algorithm's simplicity, there are many

variants of the k-NN model as there are many ways used to calculate distance. Different

30

distance measurements can be Makowski-, Manhattan- or L1 -, Euclidean- or L2,

cosine- and Jaccard distance.

6.7.7 K-mean clustering

K-means clustering is a form of unsupervised clustering. This learner chooses a random

starting point. The starting point is called the centroid. The k in k-mean refers to the

number of centroid nodes. The distance to the centroid decides the class of the data.

Next, the algorithm finds new centroids, the center of the clusters created, and groups

the data by the distance to the new centroid. This process happens over multiple epochs

until there is little to no change centroid.

6.7.8 Artificial Neural networks (ANN)

An artificial neural network is a supervised learning model built to mimic the human

brain (in a trivial sense). By stacking multiple layers of neurons/perceptrons, the ANN

manages to classify data in a non-linear manner. Making the ANN is beneficial in more

complex data that is not linearly separable (such as network data).

NN has three layers: 1) Input layer, 2) hidden layer, and 3) hidden layer.

1) The NN consists of a single input layer. This layer has the exact dimensions of the

input data.

2) The hidden layer(s) singular or plural depending on the task. The dimension of the

hidden layer(s) or the number of nodes is decided based on the assignment and often

tuned to get the optimal result.

3) When the data has sequentially traversed the input and hidden layer(s), it is sent to

the output layer/node(s). The desired result decides the dimensions of the output layer.

ANNs use back-propagating to train. The model tunes the different weights between the

nodes, gradually getting a better result on the labeled training data.

31

6.8 Deep learning algorithms

Deep learning describes more complex ML models. We also split DL models into

supervised, unsupervised, and reinforcement learning models. For the sake of using

multiple learning types on the datasets. We selected to apply a supervised and

unsupervised model. Those depicted by (Ahmed, Parkash, & Zhou, 2020) for intrusion

detection in the supervised category is Recurrent Neural Networks (RNN) with types

such as Long short-term memory (LSTM). The unsupervised approach includes

Autoencoders (AE).

6.8.1 Recurrent Neural Networks (RNNs)

RNN accelerates in sequence processing, with tasks such as natural language processing

and language translation. In essence, RNNs are the same as ANNs. The difference,

however, is that RNNs consist of multiple layers of ANN. By stacking numerous ANNs,

the model maintains data from previous iterations.

6.8.2 Long short-term memory (LSTM)

As recurrent neural network seems like a good alternative for classification on the

sequential dataset, RNNs have some problems that can be solved using another model.

However, RNN has some known issues, namely vanishing gradient. LSTM is a form of

RNN where the neural network has a feedback loop. The model is built differently

compared to traditional RNN. It consists of a forget-, input, and output gate. With the

help of these gates, the LSTM model can keep only the relevant information over

multiple longer timeframes.

The LSTM model remembers previous states making it useful for work requiring

memory and state awareness (Shrestga & Mahmood, 2019). LSTM feeds data multiple

times through the network, making them favorable for recognizing patterns. In addition,

LSTM only keeps the most helpful information and remembers information from data

processed earlier in the sequence.

32

Figure 9: LSTM model (Varsamopoulos & Bertels, 2018)

As LSTM is particularly good at detecting patterns in data sequences, it is efficient at

detecting attacks such as distributed denial of service (DDOS) and man-in-the-middle

(MITM) attacks (Gao, et al., 2019). Typical machine learning algorithms such as

logistic regression or SVM cannot detect inter-packet patterns (Gao, et al., 2019). As

they are an improved version of RNNs and with their power to detect patterns, LSTM

will be selected as a supervised deep learning model.

6.8.3 Autoencoder

In anomaly detection in industrial networks, there is a high cost of data that is well

balanced, containing an equal amount of bough animalities and regular traffic. An

approach to work around this problem is to use un- or semi-supervised learning.

Autoencoders, are models that learn complex non-linear relationships between the data

points. The autoencoder model uses multiple neural network layers as an encoder and

decoder block. In the encoder part, the network tries to recreate the data trained on by

training and fine tuning with back-propagation. On the other hand, the decoder attempts

to discriminate between the data created by the encoder and the original data. The

model compresses the high dimensional data X into a lower dimension Z before being

33

recreated into the original data X’. With fewer nodes in the lower representation of the

data, the model must carefully choose the most critical aspects of the input and ignore

the noise. Common uses for autoencoder can be compression, recommendation systems,

outlier detection(anomaly), and image generation (Gèron, 2019). We use the

Autoencoder DL model as an unsupervised model on the datasets.

Figure 10: AE model (Dertat, 2017)

6.8.3.1 Autoencoder for anomaly detection

In an autoencoder for anomaly detection training, only normal traffic is input for the

encoder. After training, the lower dimensional layer (red layer) will learn the latent

representation of the normal traffic. The decoder uses the latent representation to

reconstruct the original input data. When there is an anomaly, the decoder will have

difficulty reconstructing the original data, making the reconstruction error high. The

inputs can be flagged as anomalies using a threshold.

34

6.9 Evaluating machine learning algorithms

When evaluating machine learning algorithms, accuracy, the amount of correctly

classified labels, is commonly used as a performance measurement. In intrusion

detection, this might not be optimal. As mentioned previously, normal traffic is

generally more common than malicious traffic. Considering this, if a dataset contains

99% regular traffic and only 1% malicious traffic, an accuracy score of 99% might seem

high, but the model has essentially only classified data as normal.

Therefore, other measurements are used to calculate the performance of the system:

precision, recall, and F1-score.

Precision, recall, and F1-score are calculated based on the different outcomes of a

machine learning model for network intrusion detection. The possible results can be:

- True positive (TP): Intrusion sample classified as an intrusion.

- True negative (TN): Normal sample classified as normal.

- False positive (FP): Normal sample classified as an intrusion.

- False negative (FN): Intrusion sample classified as normal.

Accuracy is useful in the case of evenly distributed intrusion and normal samples.

Accuracy can be calculated by:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

Equation 1: Accuracy

Precision indicates how precise the machine learning model is. And is calculated by the

formula:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Equation 2: Precision

However, a trivial way to have perfect precision is making a single positive prediction

ensuring this is correct. Considering this Recall, also called sensitivity, true positive

35

rate, or in the case of intrusion detection, attack detection rate, is combined with

precision. The recall is the rate of positive instances correctly detected by the classifier.

The recall is calculated by:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

Equation 3: Recall

These measurements are often combined to evaluate machine learning algorithms as

they can directly affect each other. The harmonic score between precision and recall is

called the F-1 score and is calculated by:

𝐹1_𝑆𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

Equation 4: F1-Score

36

7 Method

The first part of the thesis went through the fundamentals of the experiment. The

method chapter will apply a machine learning algorithm to an industrial and a

traditional network. For the results of the models to be comparable, the models will be

kept consistent on bough datasets—a structured approach to applying these models is

required. Gèron’s 2019 book “hands-on machine learning” suggests a structured

checklist for going through machine learning projects (Gèron, 2019).

7.1 Machine learning checklist

Following the process for how to undergo a machine learning project, Gèron 2019

checklist has many appropriate proposals for how this machine learning project should

unfold. Gèrons checklist items that are useful for this thesis include:

1) Framing the problem and looking at the big picture

2) Get the data

3) Explore the data to gain insight

4) Prepare the data to better expose the underlying data patterns to machine

learning algorithms

5) Explore many different solutions and shortlist the best ones

6) Fine-tune your models and shortlist the best ones

Implementation of items [1-4] is in the method chapter. Implementation of items [5-6] is

in the results chapter.

7.2 Framing the problem and looking at the big picture

Starting by framing the problem, Gèron suggests defining the objective in business

terms. The aim of these machine learning algorithms is as a NIDS detection engine. The

learning algorithm should be able to signal intrusions. The solution should be

implemented on the network, analyzing network traffic captured through tools described

in the NIDS architecture. Current solutions to the problem are the use of signature-based

network intrusion detection.

There are multiple ways to frame this problem. Network intrusion detection is generally

solved using supervised learning algorithms with classified intrusions or using an

37

unsupervised approach to distinguish between normal and abnormal data. Often in

classification problems, accuracy is used as the primary performance measurement. In

the case of intrusion detection, this can give misleading results. Intrusions are often rare,

meaning data would probably contain low amounts of positive samples. Performance

measurements used are recall, precision, and f1-score to analyze the results. Emphasized

is F-1-score as it is a combination between recall and precision.

The performance should be high enough for an analyst to find the system useful. If the

algorithm produces classifies many intrusions that are normal behavior, the system will

be rendered useless and lead to more work for an analyst.

When framing the problem, Gèron, 2019 also suggests comparing the task at hand with

issues in other fields. A similar situation to that of intrusion detection is fraud detection.

In fraud detection, many banks have samples of normal behavior for a user while trying

to classify strange behavior that can suggest fraud or stolen credit cards. Methods and

studies from fraud detection can be helpful and possibly reused in the case of network

intrusion detection. Trying to solve this problem manually would be to use a tool such

as Snort writhing rules alerting about known intrusion traffic.

7.3 Get the data

Required for this experiment is traffic from traditional and ICS networks. Table 5 list a

collection of open-source datasets. However, most of these datasets only provide

logfiles, including data described in the log chapter. Only “SWAT,” “Water tank,”

“Electra,” and “ICS-PCAP” contain network data from different protocols. This

experiment has a considerable advantage if the labeled dataset leaves out the “ICS-

PCAP” dataset. The remaining datasets all capture distinct protocols from the network.

As mentioned in the network protocols chapter, the Modbus protocol is the most widely

implemented application layer protocol in ICS. “Water tank” and “Electra” datasets

capture this protocol. In the Electra dataset, however, the Modbus TCP/IP protocols are

implemented, which is a more modern version than Serial Modbus. The Electra dataset

also contains the widest variety of attacks. The experiment will use Electra as a control

network dataset.

38

Compared to ICS network traffic, a wide array of benchmark traditional network traffic

datasets exists. Table 6 lists these benchmark datasets. The work of (Ahmed, Parkash, &

Zhou, 2020) explains that the most used of these datasets is the NSL-KDD, where 60%

of newer studies on traditional network anomaly-based NIDS use this for evaluating

machine learning models. However, they mention that the dataset is old. We outway this

as the network attacks are somewhat similar to those in the SCADA network, making

them more comparable. We describe these attacks in the attack implementation below.

39

Table 5: ICS datasets

Datasets Provides Protocols Attacks

SWAT

(Mathur &

Tippenhauer,

2016)

Packets

Sensors/ Actuators

logs

CIP

EtherNet/IP

False Data Injection

WADI

(Water

Distribution

(Wadi), 2015)

Sensor/ Actuators

logs

- False Data Injection

EPIC

(Adepu,

Kandasamy, &

Mathur, 2019)

Packets

Sensors/ Actuator

state

- False Data Injection

Power system

(Pan, Morris, &

Adhikari, 2015)

Logs

Sensors/ Actuator

state

- False data Injection

Gas Pipeline

(Beaver, Borges-

Hink, & Buckner,

2013)

Precomputed

features from RTU

Telemetry

- False data Injection

Water Tank

(Morris,

Srivastava,

Reaves, & Gao,

2011)

Precomputed

Features

Serial Modbus

DNP3

False Data Injection

DoS

Reconnaissance

Electra

(Gòmez, et al.,

2019)

Precomputed

network traffic

features

Modbus TCP/IP

S7Comm

False Data Injection

Replay

Reconnaissance

ICS-pcap

(Smith, 2016)

Collection of PCAPs

for ICS/SCADA

utilities and

protocols.

DNP3

MODBUS

S7 Comm and

more

Normal traffic

40

Table 6: Traditional network datasets

Datasets Provides Protocols Attacks

Darpa98

(Darpa98,

1998)

Packets TCP/IP DoS

R2L

U2R

Probe

KDDCup99

(KDD99,

u.d.)

Precomputed network features TCP/IP DoS

R2L

U2L

Probe

NSL-KDD

(NSL-KDD,

2015)

Precomputed network features TCP/IP DoS

R2L

U2L

Probe

CTU-13 Packets without payload flow TCP/IP Botnet

CICIDS

(CICIDS,

2011)

Packet flows TCP/IP Brute Force

DoS and DDoS

Hearthbleed

Web attack

Infiltration

Botnet

NGIDS-DS

(NGIDS-DS,

2016)

groundtruth.csv

CSV files of host log, Pcap of the

network packets

TCP/IP DoS

Worms

Reconnaissance

Shellcode

Backdoor

UNSW-NB15

(UNSW-

NB15, 2021)

Pcap files, BRO files, Argus Files,

CSV files, and the reports

TCP/IP Fuzzers

Analysis

Backdoors

DoS

Exploits

Generic

Reconnaissance

Shellcode

Worms

41

7.4 Exploring the dataset

This part (Gèron, 2019) suggests steps such as studying each attribute and its

characteristics. They can be names, type, task usefulness, noise, and kind of noise and

distribution. He also suggests visualizing the data and studying the correlations and

promising transformations. Lastly, he suggests identifying extra data that would be

useful. Additional features can be helpful for future work for control networks.

7.4.1 NSL-KDD dataset

The NSL-KDD dataset is not the first dataset of its kind. The dataset stems from the

KDD’99, where KDD stands for knowledge and data mining competition. The

competitors would create an intrusion detection system distinguishing bad and good

connections in the competition. As a result of the competition, internet traffic was

collected and put together to form KDD’99. NSL-KDD is a further improvement of the

KDD’99, which has been clean up and revised by the University of New Brunswick

(Saporito, 2019). Compared to the KDD’99, the NSL-KDD 1) does not include

redundant records in the training set, 2) No duplicate records in the test sets, 3) The

number of selected records from each difficulty level group is inversely proportional to

the percentage of records in the original KDD data set, 4) The number of records in the

train and test sets are reasonable (NSL-KDD, 2015).

7.4.2 NSL-KDD Attack implementation

The NSL-KDD dataset contains 37 different attack types (Protić, 2018). These 37

attacks are classified into four categories which are 1) Denial of Service (DoS). 2) Probe

3) User to Root (U2R). 4) Remote to Local (R2L). These attack types slightly differ

from those described in table 1 as traditional networks have different attacks.

1) DoS includes attacks where the adversary increases the network traffic to limit

the availability of a service

2) Probe attacks include attacks where the adversary collects information about the

network and hosts to discover vulnerabilities. The probe attack is comparable

with the analysis and reconnaissance attacks in table 1.

3) U2R are attacks where the adversary escalated privileges (root) in the network.

42

4) R2L are attacks where the adversary tries to gain access to the system by getting

the account of a typical user.

 Table 5 displays the distribution of the attack categories.

Table 5: Distribution of data in NSL-KDD (Saporito, 2019)

 Total Normal DoS Probe U2R R2L

Train 125973 67343

(53%)

45927

(37%)

11656

(9.11%)

52

(0.04%)

995

(0.85%)

Test 22544 9711

(43%)

584

(33%)

2421

(11%)

200

(0.9%)

2654

(12.1%)

7.4.3 NSL-KDD Dataset attributes

Table 6 lists the data attributes of NSL-KDD. A detailed description of the features is in

works such as (Dhanabal & Shantharajah, 2015).

Of importance for the experiment is attributed classification. There are four classes of

data types for attributes, namely 1) categorical, 2) binary, 3) discrete, and 4) continuous.

1) Categorical features are often of type: object. The data is usually a fixed number

of classes. The Categorical features from table 6 are: [2, 3, 4, 42]

2) Binary features represent features that are either 1 or 0. Binary features in table 6

are: [7, 12, 14, 15, 21, 22]

3) Discrete features have a fixed range of possible values are: [8, 9, 15, 23-41]

4) Continuous features have an infinite range of possible values: [1, 5, 6, 10, 11,

13, 16-20]

43

Table 6: Attributes of NSL-KDD

Nr Name Type Nr Name Type

1 ‘duration’ Int 22 ‘is_guest_login’ Int

2 ‘protocol_type’ Obj 23 ‘count’ Int

3 ‘service’ Obj 24 ‘src_count’ Int

4 ‘flag’ Obj 25 ‘serror_rate’ Float

5 ‘src_bytes’ int 26 ‘svr_serror_rate’ Float

6 ‘dst_bytes’ Int 27 ‘rerror_rate’ Float

7 ‘land’ Int 28 ‘srv_rerror_rate’ Float

8 ‘wrong_fragment’ Int 29 ‘same_srv_rate’ Float

9 ‘urgent’ Int 30 ‘diff_srv_rate’ Float

10 ‘hot’ Int 31 ‘srv_diff_host_rate’ Float

11 ‘num_failed_logins’ Int 32 ‘dst_host_count’ Int

12 ‘logged_in’ Int 33 ‘dst_host_svr_count’ Int

13 ‘num_compromised’ Int 34 ‘dst_host_svr_count’ Float

14 ‘root_shell’ Int 35 ‘dst_host_diff_srv_rate Float

15 ‘su_attempts’ Int 36 ‘dst_host_same_src_port_rate’ Float

16 ‘num_root’ Int 37 ‘dst_host_src_diff_host_rate’ Float

17 ‘num_file_creations’ Int 38 ‘dst_host_serror_rate’ Float

18 ‘num_shells’ Int 39 ‘dst_host_srv_serror_rate’ Float

19 ‘num_access_files Int 40 ‘dst_host_rerror_rate’ Float

20 ‘num_outbound_cmd’ Int 41 ‘dst_host_rerror_rate’ Float

21 ‘is_host_login’ Int 42 ‘class’ Obj

44

7.4.4 NSL-KDD object description

Traditional networks use many services, status flags, and protocol types. The numerous

object types will lead to significantly more input dimensions for the machine learning

algorithms as these have to be preprocessed for the learner to understand. In table 7,

there is an overview of the categorical attributes in the NSL-KDD dataset.

Table 7: Categorical attributes of NSL-KDD

7.4.5 NSL-KDD Test set

As mentioned in the attack implementation, there are 37 different attacks implemented.

Implemented in the training set are 21 of these. However, the test sets have

implemented all types (Protić, 2018). As APT and zero-day vulnerabilities are the main

reason for machine learning-based NIDS, this train test structure is highly recommended

but can affect the learner's score. Because of this, one can be sure that the learner

generalizes well.

45

7.4.6 Electra dataset

Network traffic of an electric traction substation running in normal conditions and under

attack generates the Electra dataset. (Perales Gòmez, et al., 2019) created the dataset in

realistic scenarios with standard industrial devices such as PLCs and a SCADA system

communicating with well-known industrial protocols such as S7Comm and Modbus

(Perales Gòmez, et al., 2019). The data in the dataset is split into two files comma-

separated value (CSV) files. One subset for the Modbus protocol and one for the

S7Comm protocol.

To create the dataset, the authors used an Electric traction substation, which purpose is

to convert electric power from the form provided by the electrical power industry to the

correct voltage, current, and frequency to support railways/trams. The testbed comprises

one master PLC, four slave PLCs, a SCADA system, a switch for the interconnection of

different devices, and a firewall. Communication protocols used are Modbus TCP, OPC

(communicate), and S7Comm. Figure 11 displays the topology for the network. The

figure shows a simple ring topology connecting the Modbus PLC devices.

For the Modbus subset, 94.8% of the data is the normal flow of the system, which is

kind of high and essential to consider when applying deep learning to anomaly

detection.

Figure 11: Electra network topology (Perales Gòmez, et al., 2019)

46

7.4.7 Electra attack implementation

There are three categories of attacks 1) Reconnaissance attacks, 2) False data injection

attacks, and 3) Replay attacks. Table 8 lists the attacks in the dataset.

There are two types of attacks 1) create packets to perform spurious writes or read in

valid memory of a PLC 2) modify existing packets to alter the data returned by the

server PLC (Gòmez, et al., 2019).

Table 8: Electra Modbus attack types (Gòmez, et al., 2019)

Category Attack Type

Reconnaissance Function codes

recognition

Packet creation

False data injection Response Modification Packet modification

Forced error in response Packet modification

Command Modification Packet modification

Read data Packet creation

Write data Packet creation

Replay Replay valid packets Packet creation

A new node planted in the network creates the attacks. It was used as a MitM node and

configured to implement the false data injection attacks by poisoning the network

device's Address Resolution Protocol (ARP). This way, the new node has access to all

the messages exchanged. The replay and reconnaissance attacks were implemented in

python using the standard library socket class. These attack types are relevant and well

selected as they are on different stages of the cyber kill chain.

47

7.4.8 Electra dataset attributes

Table 9 displays the attributes in the Electra Modbus dataset. When looking at the

dataset's features, we can see eleven values, including the label. The authors have

selected to include only the attributes in the Modbus protocol in addition to MAC/IP

addresses, removing other header fields of Ethernet, TCP, and IP Protocols. (Gòmez, et

al., 2019) From figure 11, we see that 4 of the values are objects which must be

preprocessed for machine and deep learning to work. From the previous figure 11, we

see four devices communicating by following the grey lines. The different data types for

the attributes are:

1) Categorical features are: [2-4]

2) The binary feature is: [6]

3) Discrete features are: [7-10]

4) Continuous features are: [1]

48

Table 9: Attributes of Electra Modbus

Nr Feature name Description Data Type

1 Time Timestamp Int

2 Smac Source mac address Object

3 Dmac Destination mac address Object

4 Sip Source IP address Object

5 Dip Destination IP address Object

6 Request Indicates whether the packet is a request Int

7 Fc Function code Ing

8 Error Error code Int

9 Address Address to perform operation Int

10 Data Indicates data to send to client in case of

read.

In case of write indicates the data client

sends to the server PLC

Int

11 Label A label indicating attack type Object

7.4.9 Addressing Electra Modbus duplicates

NSL-KDD does not include duplicate network traffic. For consistency, we removed

duplicates from the Electra Modbus dataset. After removing the duplicate data samples,

the dataset went from 16289277 records to 41429. This step is required because control

processes repeat the same actions over time, and machine learning can observe the

repetitive nature of the network traffic (Gòmez, et al., 2019). With the new subsample

of the data, there is a [24409, 17020] Split of Normal and anomalous traffic labels,

respectively. The reason for the high number of attack samples and a low number of

49

normal samples is that attack samples were generated randomly. In contrast, regular

traffic is repetitive actions performed by the nodes.

As this thesis only focuses on detecting anomalies, the different types of attacks will not

be classified; instead, all attacks will count as an anomaly. The labels which can be

displayed in table 10 are 1) NORMAL, 2) RESPONSE_ATTACK 3)

WRITE_ATTACK 4) READ_ATTACK 4) MITM_UNALTERED 5)

RECOGNITION_ATTACK 6) FORCE_ERROR_ATTACK 7) REPLAY_ATTACK

Label 1 represents regular network traffic. Labels 2-5 represent injection attacks. Label

6 represents reconnaissance attacks, and label 7 represents replay attacks.

Table 10 displays the number of attack samples after removing the duplicates. The table

shows significantly fewer replay and force-error attacks than the original dataset.

Removing duplicates also makes the time attribute substantially different from the

original dataset, as the time between actions can be considerable compared to in a

general control network. Since this does not match patterns of ICS networks leads to the

removal when training the machine learning algorithms.

Table 10: Electra labels before and after removing duplicates

Electra label distribution Electra no duplicate label distribution

50

7.4.10 Electra Modbus no duplicates, numerical description

Figure 12 displays a detailed description of the numerical attributes in the no duplicate

Electra Modbus. In the figure, the mean is the mean for the feature. Std is the standard

deviation. “Min is the lowest value. The 25%, 50%, and 75% rows show the

corresponding percentiles: a percentile indicates the value below which a given

percentage of observations in a group of observations falls. These are often called

the25thpercentile (or 1st quartile), the median, and the 75th percentile (or 3rd quartile)”

(Gèron, 2019).

The function code (Fc) and error attribute have a min of 0 and a max of 225. These

numbers are not surprising. As explained in the protocol chapter, these are 8-bit binary

values. These values have a low mean and standard deviation. From the 1st quartile,

median, and 3rd quartile, we can see that Fc and error data have a majority of 3 and 0,

respectively.

The address and data field have a high standard deviation. The mean and median are

similar, indicating more evenly distributed data. Figure 13 displays the distribution of

the data.

Figure 12: Description of numerical values in Electra Modbus

51

Figure 13: Distribution of Electra Modbus numerical data

7.4.11 Electra object description

Table 11 displays the categorical values in the Electra dataset without duplicate values.

When we removed the duplicate data, there might be a biased toward the less used IP

and mac addresses. An unsupervised machine learning algorithm might classify these as

outliers based on the low number of instances.

52

Table 11: Categorical objects in Electra Modbus.

7.4.12 Electra test set

Compared to the NSL-KDD dataset, Electra Modbus does not include training data. We

split the remaining no duplicate dataset into training and testing. Table 12 shows the

even distribution of the attacks. However, compared to the NSL-KDD dataset, this

dataset does not include any unknown attacks in the test set. Machine learning

algorithms might have higher metrics as they don’t need to generalize new attack types.

Table 12 displays the attack distribution in training and testing after removing

duplicates.

Table 12: Distribution of data in Electra Modbus with no duplicate records

 Total Normal Reconnaissance False data

injection

Replay

Train 33143 19527

(59%)

2339

(7%)

11275

(34%)

2

Test 8286 4882

(59%)

584

(7%)

2819

(34%)

0

53

7.5 Preparing the data

7.5.1 One hot encoding

Preprocessing must be done on both datasets as computers cannot process categorical

data. One hot encoding is a form of vector where all the values except one are 0. 1

represents the category the value belongs means. [0, 0, 1] or [0, 1, 0] are examples of

one hot vector where there are three categories of data.

7.5.2 Numeric feature scaling

Feature scaling is a crucial step when preprocessing the data. Scaling is needed for the

numerical values to have the same weight on the machine learning outcome. Scaling can

differentiate between a weak machine learning model and a better one (Roy, 2020).

There are typically two techniques used when applying feature scaling. There are a few

different scalers to choose from they are 1) Min-Max scaler, 2) Standard scaler, 3) Max

Abs scaler, 4) Robust scaler, 5) Quantile Transformer scaler, 6) Power transformer

scaler, 7) Unit vector scaler.

Based on the description by (Roy, 2020) of the weaknesses and strengths of the

different scalers. We applied the Robust scaler to the dataset numerical values.

Considering the data should contain outliers, the mean and standard deviation difference

is high.

7.5.3 Preprocessing the datasets

To keep the experiment consistent. We applied the same preprocessing steps to bough

datasets. Firstly, numerical features were scaled using the robust scaler. Secondly, we

used a one-hot-encoder to preprocess categorical data. In addition, we removed the time

attribute from the Electra Modbus dataset. After preprocessing, the Electra Modbus

dataset went from 9 inputs to 22. NSL-KDD when from 41 to 122.

54

8 Results

Results display the precision metrics of the machine and deep learning models. The

different deep learning model's hyper-parameter is kept similar to explore the research

questions of the thesis. Deep learning algorithms try multiple hyper-parameters—tables

13 and 14 display the evaluation metrics for LSTM on both datasets. Tables 15 and 16

display evaluation metrics for AE on both datasets. Table 17 displays the best-

performing models of both LSTM and AE.

The hyper-parameter for machine learning models is not tuned. As (Gòmez, et al., 2019)

have tried numerous hyper-parameters for the machine learning models. The best hyper-

parameter was applied to NSL-KDD to compare. Table 18 displays the results from

(Gòmez, et al., 2019). Table 19 displays the same machine learning models on NSL-

KDD.

Tables [13-19] show a significant difference between the performance evaluations for

control and traditional network traffic. These results indicate that machine learning

performs better on control networks. However, there are other things to evaluate than

the learners' performance. We discuss these shortcomings of the experiment in the

discussion chapter.

55

Table 13: Deep learning algorithms with the best result for Electra Modbus and NSL-KDD

Dataset Model Hyper-

parameter

Precision Recall F1-

Score

Accuracy

Electra

Modbus

LSTM Number of

layers: 3

Neurons pr

layer: [128]

100% 99.68% 99.84% 99.87%

Electra

Modbus

Autoencoder Encoding

dim: 11

(50% of

input dim)

Encoding

layers: 1

100% 85.63% 92.26% 94.10%

NSL-

KDD

LSTM Number of

layers: 1

Neurons pr

layer: [64]

99.76% 43.94% 61.00% 45.06%

NSL-

KDD

Autoencoder Encoding

dim: 11

(50% of

input dim)

Encoding

layers: 1

49.27% 94.42% 64.75% 55.71%

In table 14, when optimizing the LSTM on Electra Modbus data, the model recall is

generally very high, almost always 100%, meaning that the model detects all the attack

data. Precision, however, has a broader fluctuation from 70%-100%. Much of the

expected data is classified as attacks for low-precision models. The results from the

LSTM models with one hidden layer are generally the same. The best results of the

LSTM model are the ones with three layers and the 128 and 64 neurons per layer. Too

many layers, however, can lead to overfitting, which might have been the case here

considering the low amount of features in the dataset.

56

Table 14: LSTM with different hyper-parameter applied to Electra Modbus

Hyper-parameter Precision Recall F1-score Accuracy

Number of layers: 1

Neurons pr layer: 128

70.27% 100% 82.55% 87.78%

Number of layers: 1

Neurons pr layer: 64

70.29% 100% 82.56% 87.79%

Number of layers: 1

Neurons pr layer: 32

70.19% 100% 82.51% 87.74%

Number of layers: 2

Neurons pr layer: 128

78.20% 100% 87.76% 91.04%

Number of layers: 2

Neurons pr layer: 64

78.93% 100% 88.23% 91.34%

Number of layers: 2

Neurons pr layer: 32

74.62% 100% 85.46% 89.57%

Number of layers: 3

Neurons pr layer: 128

100% 99.68% 99.84% 99.87%

Number of layers: 3

Neurons pr layer: 64

93.89% 99.66% 96.69% 97.35%

Number of layers: 3

Neurons pr layer: 32

66.45% 100% 79.84% 86.22%

In table 15, when optimizing the LSTM on NSL-KDD, we can see that the results are

significantly lower than that of the Electra optimization. Two models have outlier

results, namely the model with 32 neurons per layer and one and two layers. As the

input dimension of NSL-KDD is so high, the low number of neurons might have caused

the model to underfit. We disregard these models. From the rest of the models, we see

that there is a low difference in performance. The low difference indicates that we

should have selected a wider variety of model parameters. The accuracy of these models

is relatively low too. Since 57% of the data is an anomaly, it would give better accuracy

if classifying all attacks as intrusions. The low accuracy score can directly indicate

57

overfitting done in training, showing that the models do not detect the new attacks in the

test set.

Table 15: LSTM with different hyper-parameter applied to NSL-KDD

Hyper-parameter Precision Recall F1-score Accuracy

Number of layers: 1

Neurons pr layer: 128

99.83% 44.33% 60.44% 43.71%

Number of layers: 1

Neurons pr layer: 64

99.76% 43.94% 61.00% 45.06%

Number of layers: 1

Neurons pr layer: 32

0.08% 2.15% 0.15% 55.35%

Number of layers: 2

Neurons pr layer: 128

99.47% 43.93% 60.99% 45.05%

Number of layers: 2

Neurons pr layer: 64

99.82% 43.94% 61.02% 45.08%

Number of layers: 2

Neurons pr layer: 32

0.04% 2.7% 0.01% 56.3%

Number of layers: 3

Neurons pr layer: 128

99.73% 43.93% 60.99% 45.05%

Number of layers: 3

Neurons pr layer: 64

99.76% 43.93% 61.00% 45.06%

Number of layers: 3

Neurons pr layer: 32

99.71% 43.92% 60.98% 45.04%

Tables 16 and 17 show the optimization of the AE. Even though the f1-score of all the

modes was not as high as the best LSTM, the AE scored better than most LSTMs for the

Electra dataset. The AE recall was also better across the board, meaning the learner did

not send as many false alarms. On the NSL-KDD dataset, the AE did outperform the

LSTM. The recall of the AE was low on NSL-KDD, indicating the AE sent a low

58

number of false alarms. However, looking at the accuracy, even though the AE did

perform better, it performed worse than classifying all the data as malicious. The low

accuracy indicates overfitting the training set and cannot generalize on new attack

instances.

Table 16: Autoencoder with different hyper-parameter applied to Electra Modbus

Hyper-parameter Precision Recall F1-score Accuracy

Encoding dim: 16 (75% of input dim)

Encoding layers: 1

100% 85.31% 92.07% 93.96%

Encoding dim: 11 (50% of input dim)

Encoding layers: 1

100% 85.63% 92.26% 94.10%

Encoding dim: 5 (25% of input dim)

Encoding layers: 1

100% 85.23% 92.07 93.85%

Table 17: Autoencoder with different hyper-parameter applied to NSL-KDD

Hyper-parameter Precision Recall F1-score Accuracy

Encoding dim: 16 (75% input dim)

Encoding layers: 1

48.87% 94.48% 64.42% 55.05%

Encoding dim: 11 (50% of input dim)

Encoding layers: 1

49.19% 94.48% 64.70% 55.59%

Encoding dim: 5 (25% of input dim)

Encoding layers: 1

49.27% 94.42% 64.75% 55.71%

59

Table 19 displays the machine learning result for NSL-KDD. Even though they

performed worse than the ones in table 18 by (Perales Gòmez, et al., 2019), they did

perform better than the DL models (except for isolation forest) in terms of f1-score. The

relatively low precision for these ML models indicates that many attacks would have

gone undetected in NSL-KDD. Worth considering is the fact that the ML models on

NSL-KDD were not hyper-parameter optimized. With other hyper-parameter, these

models might have performed significantly better. We should also have measured the

accuracy of these models to detect overfitting.

Table 18: Machine learning algorithms applied to Electra Modbus (Gòmez, et al., 2019)

Dataset Model Hyper-parameters Precision Recall F1-Score

Electra

Modbus

Random Forest Estimator: 200 98.77% 98.71% 98.74%

SVM C: 10

Gamma: 1

97.56% 100% 98.76%

Artificial Neural

Network

Nr of layers: 1

Neurons per layer:

[128]

96.92% 100% 98.43%

OCSVM Nu: 0.1

Gamma: 0.1

98.62% 98.56% 98.59%

Isolation Forest Estimators: 100

Contamination: 0.1

87.39% 100% 93.27%

60

Table 19: Machine learning algorithms applied to NSL-KDD

Dataset Model Hyper-parameters Precision Recall F1-Score

NSL-

KDD

Random Forest Estimator: 200 63.38% 90.09% 74.41%

SVM C: 10

Gamma: 1

61.47% 97.25% 75.33%

Artificial Neural

Network

Nr of layers: 1

Neurons per layer:

[128]

62.08% 90.30% 73.57%

OCSVM Nu: 0.1

Gamma: 0.1

78.00% 89.47% 83.34%

Isolation Forest Estimators: 100

Contamination: 0.1

31.63% 83.93% 45.94%

61

9 Discussions

Even though it might seem that research question one, “Is it more suitable to apply

machine learning in industrial networks compared to in traditional networks?” has a

definite answer because of the significate difference in performance. There are other

aspects of machine learning that can have an impact on the measured performances. In

this chapter, we will discuss these features affecting performance.

9.1 Limitations

The landscape of Industrial Control Systems is significant, and there are multiple types

of Industrial Control systems. We selected the Supervisory Control and Automation

type of Industrial Control System. Intrusion detection systems are also a broad

landscape. The thesis mainly focuses on the ones used in the network and used machine

learning.

A limitation of the results research questions for the thesis is the availability of datasets

used for machine learning in Network Intrusion Detection Systems. There are many

benchmark datasets available for traditional networks, however. Because of this, many

machine learning algorithms in the datasets there are machine learning algorithms

applied to these individual datasets. As this is not the case for industrial networks, there

are fewer machine learning algorithms to compare. The thesis focuses mainly on the

supervised- and unsupervised learning models.

9.2 Dataset fundamentals

Traditional networks have a variety of benchmark datasets captured from real scenarios.

ICS does not have this luxury. Machine learning algorithms are only as valuable as the

data used—garbage in, garbage out. (Wang & Foo, 2018) proposes a structured

approach to evaluating ICS datasets with fundamental, special, and reality requirements.

The fundamental requirements that affect the learning algorithms' performance include

training, testing correlation, and capture from all nodes.

Both datasets have a high correlation between training and testing for training testing.

Tables 5 and 12 show this. However, the NSL-KDD dataset has unique attacks in the

62

testing set, which requires the learning algorithm to generalize well for high-

performance measurements. The unique attack is the training set is part of what leads to

a difference in performance between the learning algorithms.

Special requirements mentioned by (Wang & Foo, 2018) are about regular and

abnormal traffic. These can directly affect the learner's performance—a special

requirement is the number of nodes captured in the network traffic. Electra Modbus

dataset only uses a small portion of the nodes available. The small number of

communicating nodes makes the Electra Modbus dataset less realistic than general

control network traffic. In a more natural environment, as seen in the ICS chapter, many

more devices are often required to communicate to perform a task.

Electra Modbus only uses one communication protocol for the expected traffic. As the

IDS chapter explains, NIDS should cover a broader range of hosts. Therefore, it is

generally better to have multiple protocols in the datasets. Including one protocol also

affects the attack surface as some attacks use other protocol vulnerabilities. Considering

this combining the Modbus and S7Comm would have given more realistic results.

The anomaly samples for Electra datasets with no duplicates, displayed in table 12, are

unevenly distributed. In the table, we see a far higher percentage of repaying attacks

which can contribute to the high performance of the learners.

9.3 Feature selection

This experiment compares machine learning algorithms against each other. As shown in

table 7, NSL-KDD, compared to Electra Modbus, includes a variety of protocols,

services, and TCP flags. Because of this, during preprocessing, the NSL-KDD dataset

gets a significantly more considerable amount of input features. As shown in the work

by (K. A. Taher, 2019) and (L. Hakim, 2019), the features selected significantly impact

the learner. Considering this, we should only have included directly correlated features

between the datasets. Table 2 of the OSI model would feature 1-4 as these layers are

similar in traditional and control traffic. These features are, however, not included in

both datasets. In the future, when comparing traditional- and control networks. Datasets

should consist of full packet capture, selecting only these features. Another approach to

the mismatch of the attributes in conventional- and control datasets would be to include

63

log features such as those described by (BDO AS, 2014). The traditional benchmark

datasets often include data collected from logs. Creators of control network datasets

should contain log files for comparing traditional- and control network traffic. For

intrusion detection on ICS datasets (Wang & Foo, 2018) also request this.

9.4 Biases

To compare the tradition- and control network dataset, this thesis conducted a literature

study of ICS that might have biased the learners' results. Electra's numerical features

were in focus when selecting the numerical scaler for the dataset. However, in the

literature, many other normalizations and scaling techniques are to NSL-KDD. Focusing

heavily on the ICS datasets has led to biases in the results. As shown in the work of

(Umar & Zhanfang, 2020), the selection of normalization or scaling directly affects the

impact of the learner. The numeric scaler was kept consistent for the sake of comparing

the learner. However, future work comparing datasets should thoroughly analyze all

numerical features. If the features from both datasets were the same, the impact of this

might not have been that large.

Another bias toward the control network dataset is the hyperparameter of the learns.

Traditional machine learner's hyper-parameters were selected based on the work of

(Perales Gòmez, et al., 2019), which optimized the hyper-parameters for the traditional

learner based on the control network dataset. For example, the work of (Meira, 2019)

and (Ingre & Yadav, 2015) shows a higher performance evaluation of Isolation forests

and ANN on NSL-KDD, respectively.

64

10 Conclusion

This thesis went through a literature study of ICS and ML- and DL methods used in IDS

to determine if these are better suited in control networks as these environments are

more closed to human input. We applied various ML- and DL methods to NSL-KDD

and Electra Modbus. We selected datasets based on the coverage of attacks trying to

keep these comparable even though attack vectors for the different networks vary.

To answer the first question, “Is it more suitable to apply machine learning in industrial

networks compared to traditional networks?” this thesis applied LSTM and AE to both

traditional and control networks as a NIDS detection engine. In addition, we selected a

range of machine learning algorithms to use on the NSL-KDD dataset. The resulting

experiment shows significantly higher results on the control network traffic than on

traditional traffic. The f1-score of the LSTM was 99.84% and 61.00% on the control

and traditional network, respectively. The f1-score of the autoencoder was 92.26% and

64.75% on the control- and traditional-network, respectively. All the machine

algorithms applied on Electra Modbus outperformed the one used on NSL-KDD.

However, an important factor when evaluating machine learning is the datasets. For

traditional network traffic, there is a wide array of benchmark datasets. However, for

control-network traffic, there is no such benchmark. To evaluate if machine learning is

more suitable in industrial networks without a benchmark dataset therefore

inconclusive.

The second research question derived from this experiment, “is deep learning more

powerful in detection intrusions than traditional machine learning methods?” is also

hard to evaluate because of the lack of benchmark datasets. From the experiment

conducted, one of the deep learning models, the LSTM, performed better with an f1-

score of 99.84%, which is better than the best machine learning model (Gòmez, et al.,

2019) with an f1-score of 98.74%. The Autoencoder, on the other hand, performed

significantly worse with an f1-score of 92.26%. The ML methods on NSL-KDD all

performed better than the DL methods, except isolation forest.

65

10.1 Future work

Future work requires a benchmark dataset for SCADA systems. This dataset should

contain network traffic in addition to log files should be included to extract features that

are compatible with traditional network features. The SCADA system network data

should also be captured from more devices and have a variety of protocols for the

dataset to be considered a benchmark.

A structured approach for comparing the datasets is also required to remove biases from

the comparison. This approach should weigh both datasets' feature selection, isolating

the same features, to get comparable results. The learns hyper-parameters should also be

randomly selected to avoid biases.

66

11 Bibliografi

Acromag. (2005). INTRODUCTION TO MODBUS TCP/IP. ACROMAG

INCORPORATED.

Adepu, S., Kandasamy, N. K., & Mathur, A. (2019). Epic: An electric power testbed for

research and training in cyber physical systems security. Computers Security (ss.

37-52). Cham, Switzerland: Springer.

Ahmed, C. M., Parkash, J., & Zhou, J. (2020). Revisiting Anomaly Detection in ICS:

Aimed at Segregation of Attacks and Faults. Singapore: ResearchGate.

Alimi, O. A., Ouahada, K., Abu-Mahfouz, A. M., Rimer, S., & Alimi, K. O. (2021). A

Review of Research Works on Supervised Learning Algorithms for SCADA

Intrusion Detection and Classification. sustainability.

Anderson, J. P. (1980). Computer Security Threat Monitoring and Surveillance. Fort

Washington.

Aygun, R. C., & Yavuz, A. G. (2017). Network Anomaly Detection with Stochastically

Improved Autoencoder Based. Istanbul, Turkey: IEEE.

Babu, B., Ijyas, T., P, M., & Varghese, J. (2017). Security Issues in SCADA based

Industrial Control Systems. abha: IEEE.

Baezner, M., & Robin, P. (2017). Stuxnet. ETH Zürich: Center for Security Studies

(CSS).

BDO AS. (2014). Metodikk for informasjonsinnhenting etter IKT-sikkerhetshendelser i.

Norges vassdrags- og energidirektorat.

Beaver, J. M., Borges-Hink, R. C., & Buckner, M. A. (2013). An evaluation of machine

learning methods to detect malicious SCADA communications. (ss. 54–59).

Bosijancic Rakas, S. V., Stojanovic, M. D., & Markovic-Petrovic, J. D. (2020). A

Review of Research Work on Network-Based SCADA Intrusion Detection

Systems. IEEE.

Campbell, M., Hoane, J. A., & Feng-hsiung, H. (2002). Deep Blue. New York: Elsevier

B.V.

Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly Detection: A Survey. ACM

Computing Surveys (ss. 1-12). Minneapolis: DBLP.

CICIDS. (2011). Hentet fra https://www.stratosphereips.org/datasets-ctu13

Collantes, M. H., & Padilla, A. L. (2015). Protocols and network security in ICS

infrastructures. Incibe.

Darpa98. (1998, Feb). Hentet fra https://www.ll.mit.edu/r-d/datasets/1998-darpa-

intrusion-detection-evaluation-dataset

Dertat, A. (2017, Oct 3). towardsdatascience. towardsdatascience.com:

https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-

1c083af4d798

67

Dev, R. R., & Abualkibash, M. (2019). INTRUSION DETECTION SYSTEM

CLASSIFICATION USING DIFFERENT MACHINE LEARNING

ALGORITHMS ON KDD-99 AND NSL-KDD DATASETS. Ypsilanti, Michigan,

USA: International Journal of Computer Science & Information Technology

(IJCSIT).

Dhanabal, L., & Shantharajah, S. P. (2015). A Study on NSL-KDD Dataset for Intrusion

Detection System Based on Classification Algorithms. Coimbatore, India:

International Journal of Advanced Research in Computer and Communication

Engineering.

Ever, Y. K., Sekeroglu, B., & Dimililer , K. (2019). Classification Analysis of Intrusion

Detection on NSL-KDD Using Machine Learning Algorithms. Springer .

Fan, J., Cong, M., & Zhong, Y. (2021). A Selective Overview of Deep Learning.

Institute of Mathematical Statistics.

Feng, C., Li, T., & Chana, D. (2017). Multi-level Anomaly Detection in industrial

Control Systems via package Signatures and LSTM Networks. Denver: IEEE.

(2014). Framework for Improving. National Institute of Standards and Technology.

Gao, J., Gan, L., Buschendorf, F., Zhang, L., Liu, H., Li, P., . . . Lu, T. (2019). LSTM

for SCADA Intrusion Detection. Victoria, Canada: IEEE.

Gèron, A. (2019). Hands-on Machine Learning with Scikit-learn, Keras & TensorFlow.

Canada: O'Reilly Media, Inc.

Gòmez, À. L., Celdràn, A. H., Sarmiento, C. C., Maimò, L. F., Clemente, F. J., Del

Canto Masa, C. J., & Nistal, M. N. (2019). On the Generation of Anomaly

Detection Datasets in Industrial Control Systems. Murica, Waterford: IEEE.

Gonzalez, D., Alhenaki, F., & Mirakhorli, M. (2019). Architectural Security

Weaknesses in Industrial. Rochester, NY USA: IEEE.

Holländer, B. (2020, October 1). medium.com. Hentet fra medium.com:

https://medium.com/p/86135f7c0d35

Huntchins, E. M., Cloppert, M. J., & Amin, R. M. (2011). Intelligence-Driven

Computer Network Defense Informed by Analysis of Adversary Campaigns and

Intrusion Kill Chains. ResearchGate.

Hutchins, E. M., Cloppert, M. J., & Amin, R. M. (2011). Intelligence-Driven Computer

Network Defense Informed by Analysis of Adversary Campaigns and Intrusion

Kill Chains. ResearchGate.

Hvoland, K. (2017). Logging og logganalyse i energiforsyningen. Oslo: Norges

vassdrags- og energidirektorat.

Ingre, B., & Yadav, A. (2015). Performance analysis of NSL-KDD dataset using ANN.

Guntur, India: IEE.

ITrust. (2015). Hentet fra https://itrust.sutd.edu.sg/itrust-labs_datasets/dataset_info/

68

ITrust. (2019, Dec). Hentet fra https://itrust.sutd.edu.sg/itrust-

labs_datasets/dataset_info/

Johnson, A. L. (2014, Jun 8). community.broadcom.com.

https://community.broadcom.com/symantecenterprise/communities/community-

home/librarydocuments/viewdocument?DocumentKey=7382dce7-0260-4782-

84cc-890971ed3f17&CommunityKey=1ecf5f55-9545-44d6-b0f4-

4e4a7f5f5e68&tab=librarydocuments

Joshi, N. (2017). Machine learning for anomaly detection.

Joyothsna, V., Rama Prasad, V. V., & Munivara Prasad, K. (2011). A Review of

Anomaly based intrusion Detection Systems. Tirupati: International Journal of

Computer Applications.

K. A. Taher, B. M. (2019). K. A. Taher, B. Mohammed Yasin Jisan and M. M. Rahman.

International Conference on Robotics,Electrical and Signal Processing

Techniques (ICREST) (ss. 643-646). Dhaka, Bangladesh: IEEE.

Kaspersky Lab. (2021). Threat landscape for auomation systems. Kaspersky ICS Cert.

KDD99. (u.d.). Hentet fra http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

Kim, S., Jo, W., & Shon, T. (2019). APAD: Autoencoder-based Payload Anomaly

Detection for industrial IoE. Suwon-si: ScoemceDorect.

Knapp, E. (2011). Industrial Network Security. Sciencedirect.

Knapp, E. D., & Langill, J. T. (2014). Industrial Network Security, 2nd Edition.

Syngress.

L. Hakim, R. F. (2019). Influence Analysis of Feature Selection to Network Intrusion

Detection System Performance Using NSL-KDD Dataset. International

Conference on Computer Science, Information Technology, and Electrical

Engineering (ICOMITEE) (ss. 217-220). Jember, Indonesia: IEEE.

M System co ltd. (u.d.). Modbus Protocol Reference Guide. Japan: M system co ltd.

M, Z., & Movahedi, M. (2015). Machine learning techniques for intrusion detection.

CoRR.

Malviya, N. (2019). ICS Protocols.

Mantere, M., Sailio, M., & Noponen, S. (2015). A Module for Anomaly Detection in ICS

Networks. Oulu: ACM.

Mathur, A. P., & Tippenhauer, N. O. (2016). Swat: A water treatment testbed for. Proc.

Int. Workshop Cyber-Phys, (ss. 31–36).

McClanahan, R. H. (2002). The benefits of networked SCADA systems utilizing IP-

enabled networks. Colorado Springs: IEEE.

Meira, J. A. (2019). Performance evaluation of unsupervised techniques in cyber-attack

anomaly detection. Ambient Intell Human Comput (ss. 4477–4489). Springer

link.

69

Meng, Y.-X. (2011). The practice on using machine learning for network anomaly

intrusion detection. International Conference on Machine Learning and

Cybernetics. Guilin, China: IEEE.

MODICON, Inc., Industrial Automation Systems. (1996). Modicon Modbus Protocol

Reference Guide. North Andover, Massachusetts: MODICON, Inc., Industrial

Automation Systems.

Monowar, B. H., Bhattacharyya, D. K., & Kalita, J. K. (2014). Network Anomaly

Detection: Methods, Systems and tools. IEEE.

Morris, T., Srivastava, A., Reaves, B., & Gao, W. K. (2011). A control system testbed

to validate critical infrastructure protection concepts. Int. J. Crit. Infrastruct.

Protection, (ss. 88–103).

Negandhi, P., Trivedi, Y., & Mangrulkar, R. (2019). Intrusion Detection System Using

Random Forest on the NSL-KDD Dataset. I Emerging Research in Computing,

Information, Communication and Applications (ss. 519–531). Singapore:

Springer.

NGIDS-DS. (2016). Hentet fra https://research.unsw.edu.au/people/professor-jiankun-

hu

Ning, P., & Jajodia, S. (2003). Intrusion Detection Techniques. The Internet

Encyclopedia.

NSL-KDD. (2015). unb.ca. Hentet fra https://www.unb.ca/cic/datasets/nsl.html:

https://www.unb.ca/cic/datasets/nsl.html

Pan, S., Morris, T., & Adhikari, U. (2015). Developing a Hybrid Intrusion Detection

System Using Data Mining for Power Systems. IEEE Transactions on Smart

Grid, (ss. 3104-3113).

Parkhi, O., Vedaldi, A., & Zisserman, A. (2015). Deep face recognition. Oxford: British

Machine Vision Association.

Perales Gòmez, À. L., Maimò, L. F., Celdràn, A. H., Clemente, F. J., Sarmiento, C. C.,

Del Canto Masa, C. J., & Nistal, R. M. (2019). On the Generation of Anomaly

Detection Dataset in Industial Control Systems. Murcia: IEEE.

Protić, D. D. (2018). REVIEW OF KDD CUP ‘99, NSL-KDD AND KYOTO 2006+

DATASETS. Belgrade, Republic of Serbia.

Qassim, Q. S., Jamil, N., Patel, A., & Ja'affar, N. (2019). A review of security

assessment methodologies in industrial control systems. Selangor: Emerald

insight.

Roopa Devi, E. M., & Suganthe, R. C. (2018). Enhanced transductive support vector

machine classification with grey wolf optimizer cuckoo search optimization for

intrusion detection system.

Roy, B. (2020, April 6.). towardsdatascience. towardsdatascience:

https://towardsdatascience.com/all-about-feature-scaling-bcc0ad75cb35

70

Saporito, G. (2019, Sep 17.). towardsdatascience. Hentet fra

https://towardsdatascience.com/a-deeper-dive-into-the-nsl-kdd-data-set-

15c753364657

Sewak, M., Sahay, S. K., & Rathore, H. (2022). Deep Reinforcement Learning for

Cybersecurity Threat Detection and Protection: A Review. Communications in

Computer and Information Science (ss. 51–72). Spring Link.

Shrestga, A., & Mahmood, A. (2019). Review of Deep Learning Algorithms. Bridgeport

USA: IEEE.

Singh, S., & Sanjay, S. (2015). Cyber Attack Detection System based on Improved

Support Vector Machine. International Journal of Security and Its Applications.

Slowik, J. (2019). Evolution of ICS Attacks and the Prospects.

Smith, J. (2016). GitHub: https://github.com/automayt/ICS-pcap

Sokolov, A. N., Pyatnitsky, I. A., & Alabugin, S. K. (2019). Applying Methods of

Machine Learning in the Task of Intrusion Detection Based on the Analysis of

Industrial Process State and ICS Networking. Chelyabinsk: Imprint.

Sommer, R., & Paxson, V. (2010). Outside the Closed World: On Using Machine

Learning For Network Intrusion Detection. Berkeley: IEEE computer society.

Tasi, C.-F., Hsu, Y.-F., Lin, C.-Y., & Lin, W.-Y. (2009). Intrusion Detection by

machine learning: A review. Taiwan: Elsevier Ltd.

Team, K. L. (2014). Energetic Bear — Crouching Yet. Kaspersky Lab Global Research

and Analysis Team. Hentet fra https://media.kasperskycontenthub.com/wp-

content/uploads/sites/43/2018/03/08080817/EB-YetiJuly2014-Public.pdf

Umar, M. A., & Zhanfang, C. (2020). Effects of Feature Selection and Normalization on

Network. 7186 Weixing Road, Jilin, China.

UNSW-NB15. (2021). https://www.unsw.adfa.edu.au/unsw-canberra-

cyber/cybersecurity/ADFA-NB15-Datasets/

Varsamopoulos, S., & Bertels, K. (2018). Designing neural network based decoders for

surface codes. ResearchGate.

Wang, X., & Foo, E. (2018). Assessing Industrial Control System Attack Datasets for

Intrusion Detection. Brisbane, Australia: IEEE.

Water Distribution (Wadi). (2015). Hentet fra https://itrust.sutd.edu.sg/testbeds/water-

distribution-wadi/

Wun-Hwa, C., Sheng-Hsun, H., & Hwang-Pin, S. (2005). Application of SVM and ANN

for intrusion detection. Science direct.

Xiaoyong, Y., Chuanhuang, L., & Xiaolin, L. (2017). DeepDefence: Identifying DDoS

attacks via deep learning. Florida, USA: IEEE.

Yadav, G., & Paul, K. (2020). Architecture and Security of SCADA Systems: A Review.

Delhi: ResearchGate.

71

YIN, C., YUEFEI, Z., JINLONG, F., & XINZHENG, H. (2017). A Deep Learning

Approach for Intrusion detection using recurrent reural networks. Zhengzhou,

China: IEEE.

ZAREI, K. (2020, Feb 26). norcalcontrols.net. Hentet fra blog.norcalcontrols.net:

https://blog.norcalcontrols.net/scada-networking-protocols-and-basics

Zeeshan, A., Adnan, S. K., Cheah, W. S., Johari, A., & Farhan, A. (2021). Network

intrusion detection system: A systematic study of machine learning and deep

learning approaches. Trans Emerging Tel Tech.

Zhang, R. B., Xia, L. H., & Lu, Y. (2019). Anomaly Detection of ICS based on EB-

OCSVM. Anhui: IOP Publishing.

