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Abstract 

In recent decades ICS systems have been a vulnerable target for cybercriminals. Cyber attacks 

such as Stuxnet show the vulnerabilities in communication between Supervisory data and 

Aquiasions (SCADA) systems and Programmable Logic Controllers (PLC) through unknown 

attack vectors or mutations of old ones. To protect against these unknown attack vectors are 

Intrusion Detection Systems (IDS). A Networks-based IDS has the potential to safeguard 

against these unknown attack vectors by detecting anomalies in the network traffic through 

Artificial Intelligence (AI). Branching out from AI are Machine Learning (ML) and the newer 

Deep Learning (DL).  Researchers have extensively researched anomaly NIDS in traditional 

networks through ML and DL. Despite the comprehensive analysis, IDS still faces challenges 

in improving performance for detecting new attack vectors. As SCADA networks are more 

isolated than conventional networks, we propose that machine learning is better suited to 

detect anomalies in these environments. Derived from this experiment is the question if the 

newer DL methods perform better than ML methods. 

The thesis explores this by going through the fundamentals of ICS, such as devices 

communicating and their protocols. IDS are analyzed to understand better where 

implementation of AI. We discover previous research on AI solutions for traditional and 

SCADA networks before selecting AI methods to compare both types of network traffic.  

The resulting literature study led to us applying two DL methods, long short-term memory 

(LSTM) and Autoencoder (AE), to NSL-KDD and Electra Modbus. In we used ML methods, 

Random Forest (RF), Isolation Forest (IS), Support-vector machine (SVM), One-Class SVM 

(OCSVM), and Artificial Neural Network (ANN) to the traditional network. 

The study showed significantly better results on the SCADA network traffic. However, as the 

research shows, SCADA systems have no benchmark dataset for network traffic. With no 

benchmark dataset, it is difficult to conclude if the learner performs better. By mainly 

focusing on the SCADA system, there have been some biases for the high result of the 

learners. In the future, we require a more structured approach to comparing learners of 

SCADA and traditional network traffic. 
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1 Introduction 

In 2010 the Iranian nuclear program experienced huge setbacks as the gas centrifuges 

separating atomic material were spinning out of control. After a thorough investigation, 

security analysts uncovered one of the most sophisticated malicious computer worms 

ever created. Stuxnet was the resulting worm of a 5-year project exploiting unknown 

vulnerabilities (Baezner & Robin, 2017). Analyzing the worm showed it targeted the 

supervisory control and acquisition (SCADA) system that communicates with and 

controls the programmable logic controller (PLC) controlling the centrifuges (Baezner 

& Robin, 2017). Stuxnet establishes the potential objective of hacking these systems 

using unknown vulnerabilities. Because of Stuxnet, there has been an increase in attacks 

on ICS (Knapp & Langill, 2014).  

Intrusion Detection Systems (IDS) and, more specifically, Network-based Intrusion 

Detection Systems (NIDS) provide this desired security by constantly monitoring the 

network traffic between devices (Zeeshan, Adnan, Cheah, Johari, & Farhan, 2021). By 

integrating Artificial Intelligence (AI) and its subcategories Machine Learning (ML) 

and Deep Learning (DL), pattern from the network can be learned and used to detect 

these unknown attack vectors. 

There has been done extensive research on ML and DL as NIDS. Both ML and DL are 

powerful tools for learning valuable features from the network traffic and predicting 

normal and abnormal activities based on the learned patterns (Zeeshan, Adnan, Cheah, 

Johari, & Farhan, 2021). IDS still faces challenges in improving detection accuracy 

while reducing false alarm rates and detecting novel intrusions (Zeeshan, Adnan, Cheah, 

Johari, & Farhan, 2021).  

There are many research papers on NIDS on traditional networks. The research on 

NIDS in SCADA networks is not quite as extensive (Alimi, Ouahada, Abu-Mahfouz, 

Rimer, & Alimi, 2021). The difference in this thesis compared to other studies on the 

topic is comparing the DL and ML models to discover if AI is more suitable in SCADA 

networks, as SCADA devices communicate in a more controlled environment than 

traditional business networks (Knapp & Langill, 2014). 
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2 Aim of thesis 

This thesis aims to apply deep learning methodologies to industrial networks, 

comparing the same models on traditional networks. To accomplish this, the thesis will 

1. Do a literature study on ICS understanding the environment, such as the network 

structure, devices used, and network topologies (Chapter 3-4). 2. Explore IDS to get a 

high picture view of where machine learning is applied (Chapter 5). 3. Study previous 

AI solutions in solutions in the literature to select appropriate models (Chapter 6). Do a 

simulated study applying deep learning methods to both datasets and comparing the 

results. 

 

2.1 Problem statement 

There are two research questions explored in this thesis: 

Research question 1(RQ1): Is it more suitable to apply machine learning in 

industrial networks than in traditional networks? 

Research question 2(RQ2): Is deep learning more powerful in detection 

intrusions than traditional machine learning methods? 

 

2.2 Contribution 

This thesis contributes a novel approach to comparing AI NIDS for network traffic. 

With this contribution, future researchers can decide if a heavier focus should be on 

more isolated networks. 

  

2.3 Structure 

Chapter one contains the introduction of the thesis. 

Chapter two presents the thesis's problem aim, problem statement, contribution  

Chapter three contains the fundamentals of Industrial Control systems used to 

understand the current situations of the devices that use control networks. Previous 

devastating attacks, as well as typical attacks, are presented to thoroughly understand 

the attacks that are present in control network datasets.  
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Chapter four contains how Industrial Control Systems use networks to communicate. 

This chapter presents this, such as different communications protocols and general 

network topologies. Protocols and network topologies give an overview of the data that 

can be present in control network datasets.  

Chapter five contains the fundamentals of Intrusion Detection Systems. This chapter 

presents current solutions to network attacks and an overview of where the machine 

learning algorithms reside.  

Chapter six presents machine learning algorithms used by the Intrusion Detection 

System. This chapter explains different learning methodologies and commonly used 

machine learning algorithms for Intrusion Detection. This chapter also differentiates 

between machine learning and deep learning methodologies. 

Chapter seven presents the methodology used to apply machine learning algorithms. 

Datasets are selected. One of the datasets contains data from the Control network traffic 

and one from the traditional network traffic. The attributes of these datasets are 

analyzed and preprocessed for the use of the selected machine learning models.  

Chapter eight presents the results of the machine learning algorithms. This chapter 

selects the different machine learning hyper-paramet0065rs for bough datasets. For 

consistency, hyper-parameters for machine learning algorithms are the same to be 

comparable between the two chosen datasets. The differences between the datasets are 

also discussed as this directly impacts the performance of the machine learning 

algorithms. In addition, there is a realistic evaluation of the Control network dataset as 

this is not a benchmark dataset.   

Chapter nine concludes the thesis. 

Chapter ten goes through future work to compare traditional and SCADA network 
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3 Industrial Control System fundamentals  

Before being able to apply deep learning models to defend ICS, Sommer & Paxson 

underly the importance of understanding the data. Starting with what ICS is. Knapp & 

Langill describes it as a “broad class of automation systems used to provide control and 

monitoring functionality in manufacturing and industrial facilities” (Knapp & Langill, 

2014). The ICS comprises several devices for automation and supervising these 

processes. The ICS controls the operations of field components such as sensors, 

actuators, motor drives, gauges, and indicators. In other words, ICS is in practice for 

industrial automation. Further, it is essential to comprehend commonly used ICS 

components and how they communicate within the network to protect the industrial 

network.  

 

3.1 Supervisory Control and Data Acquisition (SCADA) 

Supervisory Control and Data Acquisition (SCADA) system is typically an automation 

control system used in different industries such as energy, petroleum, water, and power.  

The system can monitor entire complexes of plants providing the user with remote and 

centralized control for any given system.  A typical SCADA system contains one or 

more control center(s) along with several distributed field devices such as 1) 

Programmable Logic controllers (PLCs), 2) Remote terminal units (RTUs), and 3) 

intelligent electronic devices (IEDs). The 4) human machine interface (HMI) to 

communicate and control these field devices. To store the data collected from these 

devices are the 5) Data historian. 

 

3.2 Programmable Logic Controller (PLC) 

Programmable Logic Controllers (PLCs) are specialized industrial computers that 

automate electromechanical processes (Qassim, Jamil, Patel, & Ja'affar, 2019). PLCs do 

not use an operating system (OS) to perform their tasks compared to desktop computers. 

Instead, they have specific programs to generate output actions responding to a 

particular input keeping the data transmitted to a minimum. To function in production 

environments, the physical design of PLCs is robust. The program logic from the PLCs 

is kept simple as they often are used for real-time processing. For the simplicity of the 
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program logic, the PLC uses ladder logic or sequential function carts to operate. PLCs 

essentially perform an output action based on the state of the input. To communicate, 

PLCs can use various communication protocols but typically uses Modbus, ControlNet, 

EtherNet/IP, PROFIBUS, or PROFINET. Industrial Protocols are discussed further in 

the Industrial network chapter. However, Independent of the protocol in use, the end 

goal of the PLC is to automate processes by checking input, applying logic, and 

adjusting the output accordingly (Knapp & Langill, 2014).  

 

3.3 Remote Terminal Unit (RTU) 

Another device that monitors and controls the field devices is the RTU. The PLC and 

the RTU functionality overlap in many areas, and the RTU is often indistinguishable 

from the PLC (Knapp & Langill, 2014). Compared to the PLC, the RTU resides in 

remote locations such as the outside. The RTU transmits field parameters from the 

remote location and sends data back to a master terminal unit (MTU) or directly to a 

Human Machine Interface (HMI). Because of the remote location, RTUs must be even 

more robust than PLCs as they must withstand environmental factors such as humidity 

and temperature. Another problem with remote installation is the requirement for 

electricity. Local solar power can power the RTUs to accommodate this problem. 

 

3.4 Intelligent Electronic Devices (IED) 

The IED is very similar to the PLC and RTU. The difference between the IED, PLC and 

RTU often overlap, but the IDE usually supports more specific functions, whereas PLC 

and RTUs have more general use (Knapp & Langill, 2014). Specifically, in many 

control systems, power grids may disrupt the RTU and PLC because of the high voltage 

present. IEDs reside in these environments. 

 

3.5 Human machine interface (HMI) 

The Human machine interface is the device used to control the PLC, RTU, and IED. 

The HMI allows operators to interact with the control processes using modern software. 

In contrast to the above devices, the HMI uses operating systems such as Windows 7 to 
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perform its tasks. The user interface of the HMI display information about how the 

processes are performing by displaying sensor reading, output from PLCs, and other 

measurements. Communication to the ICS server happens through protocols such as 

EtherNet/IP or Modbus (Knapp & Langill, 2014). We discuss these in the industrial 

protocols chapter.  

 

3.6 Data Historian 

For data collection, the SCADA system utilizes a data historian. The historian collects 

the data through various protocols such as Modbus, PROFIBUS, DNP3, and OPC 

(Knapp & Langill, 2014). The data the historian logs are multiple types from the control 

system, such as alarms and events, and stored in a purpose-built database as “tags.”  

 

3.7 SCADA Operations 

PLCs and other field devices have a preprogrammed logic where the input of the device 

affects the output. For the field components to work together autonomously, the 

SCADA system is on a low level comprised of multiple control cycles or loops. The 

control loop can, for example, be if the temperature is 90 degrees do action. More 

complex actions require numerous control loops. On a higher level comes control 

processes. The control process uses multiple control loops to act and achieve an 

objective, such as producing an item. The HMI controls each of these processes. 

Typically, the data from the field components, such as readings, are recorded in an 

analog format which is translated to digital data and sent to the field device. The field 

device further transmits the data to an MTU that keeps track of the state of the data with 

the associated device (Yadav & Paul, 2020). Data is passed along from the MTU to an 

HMI.  
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3.8 SCADA communication evolution 

The communication of SCADA devices has evolved through many generations. Yadav 

& Paul, 2020 categorizes these into four eras.  

The first generation of SCADA was a Monolithic SCADA system. The monolithic 

SCADA system was an isolated environment where it could not communicate with 

other systems as the communication could only happen with vendor-specific protocols. 

The system RTUs and MTUs would communicate with each other using Wide Area 

Networks (WAN), which were in an early stage.  

Second-generation SCADA was the transition from a monolithic system to a distributed 

system. Here the use of local area networks (LAN) was used for communication 

replacing the WAN communication between RTUs and MTUs. As there was no outside 

communication, security was not a concern at the time (Yadav & Paul, 2020). 

Third-generation SCADA, also known as the modern SCADA system, utilizes networks 

and the web for more cost-efficient solutions and the potential for distributed solutions. 

Modern SCADA integrates the Internet protocol (IP) based on WAN to communicate, 

giving the ability to connect to the distributed system. Giving the advantage of 

accessing the business network from a remote location has enabled products of SCADA 

system to rise. 

Lastly, the fourth generation of SCADA, which is now on the rise, has been integrating 

the internet of things (IoT) innovations such as Cloud computing reducing integration 

and deployment costs (Yadav & Paul, 2020). 

As seen from the above evolution of SCADA, there have been many changes in how to 

communicate. There have also been changes in many protocols used. Many utilizing the 

SCADA system have not changed devices with the rapid changes. Because of this and 

the long lifespans of SCADA components, a wide variety of communications protocols 

and legacy systems are in place.  
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3.9 Vulnerabilitets in SCADA 

The numerous legacy systems and modern SCADA using the web and IP-based 

communication have opened an attack surface that an adversary can exploit, leading to 

high-level threats. The impact of these cyberattacks can range from disrupting or 

damaging critical infrastructural operations to causing significant economic losses or, 

even more dangerously, claiming human lives (Qassim, Jamil, Patel, & Ja'affar, 2019). 

Recent studies have shown over a million ICS/SCADA systems are connected to the 

internet with unique IP addresses. Adversaries can effortlessly detect these systems 

using search engines like Shodan (Babu, Ijyas, P, & Varghese, 2017). In combination, 

many SCADA protocols are legacy and have not adopted modern encryption in an 

adequate matter (Babu, Ijyas, P, & Varghese, 2017) should indicate that the need for 

security is crucial. Gonzalez, Alhenaki, & Mirakhorli have also documented attacks 

have exponentially increased from a few incidents to hundreds per year. Most 

adversaries targeted the human-machine interfaces, configurations, and PCSs 

(Gonzalez, Alhenaki, & Mirakhorli, 2019). There are many vulnerabilities in SCADA 

for the different assets. This thesis will mainly focus on the vulnerabilities of the control 

network and communication between field devices, whereby machine learning might 

detect these attacks early.  

 

3.9.1 Attack categories 

Wang & Foo has divided the different types of attacks on the control network into 

eleven categories. Attacks on control networks can be classified even further, but this 

thesis will use the attacks described her base for the available attacks on ICS networks. 

Table 1 describes these attacks. 
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Table 1: Classification of attack types on control networks (Wang & Foo, 2018). 

Attack Type Description 

Analysis Often occurs at the beginning of a multi-stage attack. The 

adversary tries to get information about the network, such 

as IP- and Port-scanning 

Reconnaissance The adversary's main objective is to gather network 

information for further attacks. Hard to detect 

Masquerading Adversary pretends to be an existing service in the network. 

Attacks include ARP poisoning and Man in the middle 

(MITM) attacks. Hard to detect 

Replay Replay attacks disrupt the system flow by sending 

previously valid packets.  

Real-time message 

modification 

Real-time message modifications are almost the same as 

replay attacks. The difference is the adversary edits real-

time packets to achieve a specific goal. Often done when 

the adversary is MITM  

Deneil of service (DoS) Adversaries perform DoS attacks to disrupt the availability 

of a service. DoS attacks are accomplished by flooding the 

service with enough messages so the service can’t handle 

everything. 

Anomalous message 

injection 

In Anomalous message injection, adversaries place 

malicious content into the legitimate message. The target is 

infected when accepting or running the malicious contents. 

Time delay Attack Time delay attacks happen after masquerading. The 

adversary purposely delays legit messages. 

Authentication bypass With authentication bypass, the adversary stealthily gains 

unauthorized access to the system with high-level access. 

Firmware modification Adversaries launch a counterfeit update to modify the 

firmware 

Worms After infecting a system, worms replicate and spread to 

other hosts on the network 
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3.10 Cyber kill chain 

The attack described in table 1 does not often happen in a random order, and for a NIDS 

to detect these attacks, data used for the machine learning model must contain attacks 

from different stages. The cyber kill chain (Huntchins, Cloppert, & Amin, 2011) is a 

model describing an adversary's steps to achieve its objective. The adversary must go 

through seven steps in the kill chain to complete its purpose. The kill chain is essential 

when selecting a dataset with appropriate attack steps. 1. Reconnaissance 2. Weaponize 

3. Delivery 4. Exploitation 5. Installation 6. Command and control (C2), and 6. Actions 

on objectives (Hutchins, Cloppert, & Amin, 2011). Stopping the adversary at any of 

these steps will mitigate the attack. 

1. The Reconnaissance step is where the adversary finds information about the 

target. These attacks can be low frequency and hard to notice.  

2. After collecting information about the target, the adversary creates a means of 

how to deliver the attack. 

3. Delivery adversary delivers the malicious code to the vulnerable system. 

4. After the malicious code is delivered, the adversary starts exploiting the system. 

5. Installation. The installation step creates a persistent threat to the vulnerable 

system, such as a backdoor. The adversary ensures access to the system for later 

attacks and persistence. 

6. With the command-and-control step, the adversary typically has “hands on the 

keyboard” access inside the target environment 

7. Only after the six previous steps does the adversary achieve its original goal.  

When defending an ICS network, the main objective is the integrity of network 

packets. In the Stuxnet case, adversaries compromised the integrity of the traffic 

packets on the control network. However, adversaries can also ruin the 

availability of the provided service or expose the confidentiality of Historian 

data.  
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4 Industrial networks 

We divide Industrial networks into business-, supervisory (production)- and control 

networks. However, most network design is not this simple, and there is often 

overlapping in terms of protocols as production supervisory network architecture has 

integrated Ethernet/IP. This thesis will not focus on the business network part of the 

industrial network architecture as the SCADA system operates on the supervisory- and 

control-network segments.  

 

4.1 Industrial network topology 

The industrial network (supervisory- and control- network) topology must support many 

communication protocols for the various connected devices. The supervisory network 

segment handles communication, such as connecting historians to the ICS server and 

connecting the ICS to other suppliers. The control network, which is the essential part of 

the network for this thesis, handles communication, such as sending data from PLC to 

the historian or HMI. 

The most common for an industrial network is bus and ring topologies; to support these, 

star, tree, and mesh are used (Knapp & Langill, 2014). Figure 1 shows examples of the 

various topologies. 

 

Figure 1: Common network topologies in an industrial network (Knapp & Langill, 2014) 
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4.2 OSI Model  

We first need to look at the OSI reference model to understand the underlying 

communication protocols used in industrial networks. Networks are complex with many 

pieces. Network engineers developed the layered protocol stack to acknowledge the 

complexity. The layered protocol stack, also called Open Systems Interconnection 

model (OSI model), aggregates functionality/services and protocols into a layered 

model. Each layer contains the necessary protocols to apply more complex services the 

further up the model traversed. Industrial network protocols use the OSI model as well 

as traditional networks. The OSI models break down the functionality needed when 

sending data between devices. The layers are physical-, data link-, network-, transport-, 

session-, presentation- and application-layer. Table 2 displays the OSI reference model.  

Table 2: OSI reference model 

OSI 7 Layer model Data name 

7 Application layer  

Message 

 

6 Presentation layer 

5 Session layer 

4 Transport layer Segment 

3 Networking layer Packet 

2 Data link layer Frame 

1 Physical layer Bits 

 

4.3 Industrial network protocols  

SCADA has evolved over many generations, causing various communication protocols 

to be developed and used. Many of these protocols are old but still in use as the devices 

have a long life expectancy. As mentioned above, we segmented the industrial network 

in to supervisory and control networks. Both of these segments use different protocols. 

Communication protocols used by the supervisory network include protocols such as 
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Open Process Communications (OPC) and the Inter-Control Center Protocol (ICCP) 

(Knapp & Langill, 2014). In the control network, protocols used for communication are 

generally called Fieldbus protocols. Modbus is the oldest and most widespread Fieldbus 

communication protocol (Collantes & Padilla, 2015), and up to 90% of field devices can 

use this for communication (ZAREI, 2020). Other protocols found in the field devices 

are CIP, S7comm, RS-232 and RS-485, DNP3, HART, PROFIBUS and PROFINET, 

FOUNDATION Fieldbus, BACnet, and more. All the protocols mentioned have been 

designed to work in the industrial environment but have evolved support to the ever-

increasing popularity of IP (Malviya, 2019). Protocols found in ICS datasets relevant to 

this thesis are Modbus, S7comm, CIP, and HSPA. 

 

4.4 Modbus protocol  

The Modbus protocol is a communication protocol published in 1979 and became the 

unofficial industry standard for communication between PCLs and other devices. The 

Modbus protocol is easily deployed and only requires a few data transmitting 

requirements. The only requirements are the packet size of the transmitted data. The 

Modbus protocol has different options in the transport layer, including using a serial 

port, ethernet, or the internet protocol suite, commonly known as TCP/IP. Modbus 

support multiple communications in devices connected to the same cable or on the same 

ethernet connection. It is typical for the Modbus protocol to be implemented between 

RTUs and a plant/system supervisory computer in the SCADA system in the power 

industry. Since 1979, multiple versions of Modbus have been developed, such as RTU, 

serial, and TCP/IP. 

The Modbus protocol uses a client/server architecture. Because of this, it is always the 

client that initiates the communication. The client initiates the communication by 

sending a query message while the server responds with the requested data. Figure 2 

show this process. The Modbus client query includes the device address where to send 

the request, a function code defining the request action, any data transmitted, and an 

error checking field. The server responds with the same function code as the query, the 

response data, and an error code if the device could not understand the request. 

(MODICON, Inc., Industrial Automation Systems, 1996).  
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Figure 2: Client/server query response process  

The function code tells the server device what action to perform when a request query is 

transmitted. The data, in this case, is used as additional information for the request. For 

example, function 03 will query the server to read the hold register and respond with 

content. The query data in this context are the memory addresses from where to read. 

(MODICON, Inc., Industrial Automation Systems, 1996) 

In the server's response massage, the function code reflects the function code of the 

request query. If there is no error in the message, the response data field will contain the 

data requested by the master/client. If an error occurs, the function code is changed to 

indicate an error occurred, and the response data contains a code that describes the data. 

(MODICON, Inc., Industrial Automation Systems, 1996) 

 

4.4.1 Modbus RTU 

Field devices can use Modbus RTU to communicate over a serial network. The 

messages protocol for the Modbus RTU is like what the Modbus protocol describes. 

When implementing the Modbus RTU protocol, the serial connection only has (2^8)-1 
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or 255 different devices it can communicate with in the address field. CRC checking is 

applied to the whole message to detect errors. Figure 3 displays the OSI level 7 message 

data used in the Modbus RTU protocol. 

 

Figure 3: Modbus RTU Message header  

 

4.4.2 Modbus TCP/IP 

Like the Modbus RTU, there is Modbus TCP/IP. Modbus TCP/IP protocol also provides 

the resources for two devices to communicate over a local or wide area network. 

Compared to Modbus RTU, the TCP/IP version can use ethernet by TCP/IP (Acromag, 

2005). The datagram header also slightly differs from that of the Modbus RTU. The 

checksum field of the message header is replaced as the TCP/IP layers supply this. In 

addition, Modbus Application Protocol Header (MBAP) replaces the address field. 

Figure 4 illustrates the differences.  

 

Figure 4: Difference between Modbus RTU and Modbus TCP/IP 

 

4.5 Logs in the industrial control network  

Logs in ICS are crucial for security and are part of what intrusion detection can analyze. 

As this thesis shows, the ICS network and its components can be sizable. The network 

has different segments, and each piece has various logging opportunities making it 

challenging to collect the logs as there is no central logging system. Field devices such 

as PLCs and RTUs do generally not have built-in functionality to keep track of logs, and 

to keep logs requires extra process power and storage (BDO AS, 2014). Even though it 

can be challenging to maintain logs for these field devices, it can be appropriate. There 
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should be information about log-in attempts, connections, and the status of what ports 

are open. As for the non-field devices such as MTUs and HMI, there should be 

application logs, security logs, and system logs in place.  

The application logs track what devices have one or more applications running when the 

application started, who opened the application, and actions run by the user.  

Security logs are logs from the security aspects of the system. Here logs from firewalls, 

routers, switches, and IDS are kept with normalized times. 

The system logs can get information about the system's operating status. The system log 

includes error and authentication messages when users run processes with elevated 

security status.  

Other logging opportunities in the industrial network are Network/IPFIX, which shows 

the traffic flow in the network, offering meta-data about connections in the network, the 

ports connected to, the amount of data, and where the data is sent from and to (BDO 

AS, 2014). This data can be superior for an intrusion detection system using machine 

learning. It can difference between automated connections from components in the 

network based on time and irregular connections when there might be an adversary 

trying to make a replay attack.  

The authentication logs show what users have accessed different services in the 

network, and the machine learning detection can use this to find outliers such as many 

failed log-in attempts. Authentication logs can also be beneficial for the use of anomaly 

detection. Table 3 Hovland, 2017 shows valuable data for ICS security.  
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Table 3: Potentially useful data from logs in ICS (Hvoland, 2017) 

Log type Data 

application log Date, Time 

Application name / ID 

User 

User actions 

Security log Date, Time 

Source, destination 

Port 

Protocol 

System log Date, Time 

Component / ID 

Process status 

Error message  

Netflow/ IPFIX Date, Time 

Source, destination 

Port 

Packet size 

Packet amount 

Authentication log Date, Time 

Service 

Source 

User 

Access rights 
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5 Intrusion Detection System (IDS) 

Jim Anderson first proposed the idea of IDS in 1980 (Anderson, 1980). Intrusion is 

when an adversary takes actions aimed at compromising a system's confidentiality, 

integrity, and availability. The IDS prevents an advisory who tries to gain unauthorized 

access to the devices mentioned in chapter 2. IDS detects these advisories by providing 

well-established mechanisms, gathering data, and analyzing information from various 

areas of the host or network.  

Ning & Jajodia's paper from 2003 concluded IDS can generally distinguish between an 

intruder’s behavior from a regular user’s traffic (Ning & Jajodia, 2003). Even though it 

is a powerful security tool, there are shortcomings, such as detecting unknown attack 

vectors.  

Standard Intrusion detection function includes (i) monitoring and analyzing user, 

systems, and network activity. (ii) recognizing patterns of typical attacks (iii) analyzing 

patterns of abnormal activity. IDS works on assessing that intrusion activity are notably 

distinguishable from the benign activity and thus detectable. (Monowar, Bhattacharyya, 

& Kalita, 2014) 

 

5.1 Host-based IDS and Network-based IDS 

Intrusion detection methods can generally be classified based on their deployment. 

Deployment the two categories are 1) Host-based intrusion detection system (HIDS) 

and 2) Network-based intrusion detection system (NIDS). 

HIDS monitors and analyses the internals of a computing system rather than its external 

interface. A HIDS might detect internal activity such as what program accesses what 

resource and illegitimate access attempts (Monowar, Bhattacharyya, & Kalita, 2014). 

SCADA system HIDS typically monitors system settings and configuration files, 

applications, and sensitive files (Knapp & Langill, 2014). HIDS resides in devices such 

as HMI or historian where such data is located. HIDS can only reside on a single device 

requiring multiple HIDS on multiple devices through the system.  

On the other hand, NIDS deals with detecting intrusion using partially or whole network 

data traffic, causing fewer IDS to cover security across the entire system. The NIDS can 
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alert about intrusion based on abnormal patterns in the network data generated by an 

adversary trying to get unauthorized access. The method NIDS operate is categorized 

based on the style of detection used. Signature-based detection searches the network 

traffic looking for known malicious behavior. Signatures are stored in a database and 

compared with network traffic (Joyothsna, Rama Prasad, & Munivara Prasad, 2011). 

These accelerate the detection of known attacks. However, as previously discussed, 

persistent attacks are on the rise, and adversaries are constantly tweaking known attacks 

or coming up with zero-day vulnerabilities, making these signature-based detection 

methods limited for attack detection.  

The other category of NIDS is anomaly-based. Anomaly-based detection uses machine 

learning to either learn the underlying pattern of regular traffic or classify attack vectors 

that should generalize to new attack vectors. Researchers regard machine learning 

algorithms as efficient methods to improve the detection rate, reduce false alarm rate, 

and in the meantime, decrease computation and communication costs (M & Movahedi, 

2015). However signature-based version is used in practice (Meng, 2011).  

 

5.2 Overview of network anomaly detection 

Anomaly detection attempts to find patterns in data that do not model the expected 

behavior in the network. Machine learning is a tool often used to accomplish this. Going 

back to the Stuxnet example, when the worm infected the SCADA system, it 

reprogramed the PLCs. Stuxnet would have been noticed with proper implementation of 

anomaly-based NIDS as it created unusual patterns in control network data. 

Monowar, Bhattacharyya, & Kalita's 2014 paper has thoroughly gone through the 

aspects of anomaly-based NIDS. They start by classifying two broad categories of 

network anomalies. Performance-related anomalies and security-related anomalies. 

(Monowar, Bhattacharyya, & Kalita, 2014) The main difference between the two is that 

performance-based anomalies are benign in the case of cyber security and do not 

represent an adversary trying to invade the system. However, the NIDS will send an 

alert in both cases as the regular data traffic pattern has changed. For the SCADA 

system, the difference between these is significant as it will affect how to respond to the 

alarm. Reports such as (Ahmed, Parkash, & Zhou, 2020) look at different strategies to 
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determine this, such as using data from both the network layer and limited log system, 

as this will give more certainty if there is an attack or a system fault.  

Ideally, we want the NIDS to only respond to Security-related anomalies described in 

table 1. Monowar, Bhattacharyya, & Kalita divided security-related anomalies into three 

classes. 1) point, 2) contextual, and 3) collective anomalies (Monowar, Bhattacharyya, 

& Kalita, 2014). Table 4 describes these.  

 

Table 4: Anomaly types and characteristics (Monowar, Bhattacharyya, & Kalita, 2014) 

Types Characteristics 

1) Point anomaly Point anomalies are instances of individual data found anomalous 

concerning the rest of the data. 

2) Contextual anomaly Contextual anomalies are data instances found abnormal in a 

specific context. The structure in the dataset induces context.  

3) Collective anomaly A collective anomaly is a collection of related data found 

anomalous concerning the entire dataset. The collection of events is 

an anomaly, but the individual events are not anomalies when they 

occur alone in the sequence. 

 

5.3 The architecture of an anomaly NIDS 

Monowar, Bhattacharyya, & Kalita 2014 go through what they have found generic in 

the architecture. Figure 5 depicts this generic architecture. An abstract view of how 

these are structured will help understand where the machine learning algorithms come 

into play. 
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Figure 5: Generic architecture of NIDS (Monowar, Bhattacharyya, & Kalita, 2014)  

 

These components are: 

1) Anomaly detection engine:  This is the core of the NIDS system. In the anomaly 

detection engine, the system tries to classify the into intrusions or not. Some 

machine NIDS even go as far as trying to classify the different types of attacks. 

The system must preprocess the data for a machine learning algorithm to 

understand the network data. The preprocessing step also helps remove biases 

and normalize the data, so network packet values with a high number do not 

significantly affect the machine learning algorithm. Monowar, Bhattacharyya, & 

Kalita also includes a matching mechanism. Signature-based NIDS uses this step 

to detect known attack vectors. 

2) Reference data: The reference data stores the expected behavior of the system or 

known intrusions. Possible types of reference data in a generic ANIDS 

architecture are signature, rule, and signature.  
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3) Configuration data: The Configuration data contains the intermediate result of 

the detection engine. This component is mainly used in signature-based 

detection when partially created signatures resign. 

4) Alarm: Component in the system responsible for generating alerts if there is a 

potential intrusion. Machine learning outcome triggers this alarm. 

5) Human analysis: As IDS only creates an alarm by a suspected attack, there is 

needed a person responsible for analyzing, interoperating, and responding to the 

trigger alarm. The human analyst is also responsible for diagnosing the alarm 

data as a preprocessing step. 

6) Post-processing: After an alarm is triggered, post-processing is a necessary step. 

The post-processing step diagnoses the event that provoked the warning, 

determining if a performance-based or a security-based anomaly caused the 

alarm. 

7) Traffic capture: Tools used to capture the packet in the network traffic. These 

can be full packet captures or network flow statistics. Standard tools used are 

Wireshark (packet capture), NFdump (flow capture), Nfsen (flow capture), and 

Cisco network flow (flow capture). 

8) Security manager: The security manager updates the stored signature and new 

signature. 

 

5.4 Aspects of anomaly detection 

Intrusion detection using machine learning generally is a classification or clustering 

problem. Classification and clustering are discussed in the machine learning part of the 

thesis. Chandola, Banerjee, & Kumar has, in their 2009 survey of anomaly detection, 

compacted different critical aspects of anomaly detection (Chandola, Banerjee, & 

Kumar, 2009). These aspects are 1) Types of input data, 2) Proximity measures, 3) 

Labels, 4) Classification based on available labels, 5) Feature identification, and 6) 

Reporting.  

1) Types of input data: Before applying the input data from the network traffic, it is 

essential to describe the data types in the dataset attributes. These attributes can 

be binary, categorical, or numeric. In the case of network traffic, the data is often 
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multivariable, containing multiple attribute types. Each of these types requires 

different preprocessing to optimize machine learning results. 

2) Proximity measures: Proximity measures are necessary for solving classification 

and clustering problems. Using a different measure of the error in classification 

or distance between the data can change the outcome of the machine learning 

result. 

3) Labels: In the machine learning landscape, labels represent the class to which 

the data sample belongs. In the case of network traffic, this can either be binary 

or multiclass. Binary classification labels network traffic as benign or 

anomalous—multiclass classification labels traffic data into multiple attacks. 

4) Classification based on available labels: Considering the extent of available 

labels for the data. Anomaly detection can work in 3 modes, supervised, 

unsupervised and semi-supervised. The Machine learning chapter of the thesis 

explains these further. 

5) Feature identification: What features from the network data can significantly 

impact the learner's result. The learning process can reduce computational 

complexity by removing irrelevant features, removing information redundancy, 

increasing performance, facilitating data understanding, and improving 

generalization. (Monowar, Bhattacharyya, & Kalita, 2014) 

6) Reporting: The learning algorithm has multiple output types for the input data 

These can be a score representing the output compared to a threshold 

representing the anomaly rate. In the case of multiclass attack classification, a 

vector contains the attack class's likelihood. Or, in the case of anomaly 

detection, a binary label, either abnormal or normal. 

 

5.5 The challenges of Anomaly detection in networks 

Even though NIDS and machine learning have been extensively researched, signature-

based NIDS is deployed in practice. There are multiple reasons why this is the case, and 

known shortcomings of anomaly detection in NIDS include: a high cost of error, lack of 

training data, a semantic gap between results and their operational interpretation, 

enormous variability in input data, and fundamental difficulties for conduction sound 

evaluation (Sommer & Paxson, 2010). A high error cost is actual for SCADA systems 
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as for traditional networks, not detecting an attack renders the system useless. On the 

other hand, if the system classifies many anomalies correctly but does this because it 

triggers many alarms and falsely sends alarms for benign data. A human analyst would 

have to look through all the alarms, which would be expensive. In other fields where 

machine learning accelerates, such as recommendation systems, a 90 percent accuracy 

is more than enough. It does not lead to a fatal error if the algorithm predicts wrong. In 

intrusion detection, this is a horrible result. Since the Sommer & Paxson 2020 report, 

there is done considerable development in the benchmark dataset used for traditional 

networks. However, the lack of training data for SCADA networks is a genuine 

concern.  
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6 Machine learning 

When talking about machine learning, it is often in the case of AI. AI is a term that has 

been much used and popularized in the mainstream by popular films such as 

“terminator” and “the matrix,” where artificial general intelligence has become more 

intelligent than humans. A subcategory of this general intelligence is machine learning. 

Machine learning is a subcategory of AI when statistical models are used to 

automatically “learn” or improve when performing a task. Machine learning is nothing 

new. The term has been around since 1940 when Walter Pitts and Warren McCulloch 

developed the early stages of what is today called a neural network. Taking inspiration 

from the fundamental units in the brain called neurons, they created the first application 

of supervised learning. However, it was not until the 1980s that back-propagation, 

increased processing power, and data availability accelerated the landscape of machine 

learning. Today machine learning is generally classified based on the learning methods 

used. These methods include 1) Supervised- 2) unsupervised- and 3) reinforcement 

learning. 

 

6.1 Supervised learning 

Supervised learning learns by using labeled data representing binary or multiple classes. 

The learning algorithm trains to classify new data based on the labels. In NIDS, the 

labels for each instance of the network data can be binary such as normal and abnormal, 

or multiclass such as different attack categories shown in table 1. Other than 

classification, supervised learning algorithms may use regression trying to predict some 

numerical value. Supervised learning generally has better results than unsupervised and 

reinforcement learning counterparts. A drawback of supervised learning algorithms is 

the requirement of labeled data, which is tedious and often requires expertise, especially 

if the dataset is not ubiquitous (e.g., pictures of cats and dogs), such as network data.  In 

the case of intruder detection, there is another major issue: there are far fewer instances 

of intrusion data than regular traffic. (Mantere, Sailio, & Noponen, 2015) 
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6.2 Unsupervised learning 

Opposite to supervised learning, there is unsupervised learning. There are no labeled 

samples in unsupervised learning. Unsupervised learning solves tasks such as clustering, 

dimensionality reduction, visualization, association rule learning, and anomaly detection 

(Gèron, 2019). Figure 6 displays unsupervised learning does anomaly detection.  

 

Figure 6: Unsupervised learning for anomaly detection (Gèron, 2019) 

6.3 Semi-supervised learning 

Semi-supervised learning also acknowledges the flaw of requiring fully labeled datasets. 

However, instead of not having any instances labeled, such as in unsupervised learning, 

generally, a small portion of the data is labeled. The rest of the dataset is labeled based 

on these. Often by using a combination of super- and unsupervised learning methods, 

the semi-supervised. An example of semi-supervised learning is adding photos to a 

photo gallery on the phone. When naming a person on some pictures, the algorithm 

labels the rest (Gèron, 2019). Figure 7 illustrates this. 

 

Figure 7: Self-supervised learning example showing some labeled classes (Gèron, 2019) 
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6.4 Reinforcement learning  

Lastly, there is reinforcement learning. Reinforming learning is very different from the 

learning methods above. As was the case for unsupervised learning, the data is not 

labeled. Instead, the learning system, called an agent, selects and performs actions 

according to what gives the most reward (displayed in figure 8). Reinforcement learning 

has had astonishing results and was used to create deep blue beating human former 

chess champion Garry Kasyanov (Campbell, Hoane, & Feng-hsiung, 2002). 

Researchers have applied reinforcement learning has also to the task of NIDS. Such as 

(Sewak, Sahay, & Rathore, 2022).  

 

Figure 8: Basics of reinforcement learning (Gèron, 2019) 

 

6.5 Deep learning 

As stated above, researchers have researched machine learning for quite some time. In 

more recent times, branching out from machine learning is deep learning. The 

difference between machine- and deep learning is that deep learning tries to mimic 

further how the brain works. Recent deep learning strategies have significantly 

improved performance in computer vision, natural language processing, and other 

predictive tasks (Fan, Cong, & Zhong, 2021). These techniques are generally more 

efficient than the ML due to their deep structure and ability to learn the essential 
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features from the dataset on its own to generate an output (Ahmed, Parkash, & Zhou, 

2020). However, they usually take a longer time to train because of their complexity. 

 

6.6 Machine learning algorithms used for anomaly detection engine 

Researchers have applied numerous unique machine learning algorithms for the NIDS 

detection engine. The function of these algorithms is to detect outliers among the input 

data by some threshold that determines what “normal” input is. For this task, all the 

above learning methods approaches are researched. However, supervised learning 

generally has a better detection rate (Joshi, 2017).  

The 2020 survey by Ahmed, Parkash, & Zhou provided an overview of the anomaly 

detection engine's most commonly used machine- and deep- learning algorithms.  

For the machine learning models, they include decision trees (DT) such as random 

forest and K-nearest neighbor (k-NN), support vector machine (SVM), k-means 

clustering ensemble learning (EL), and artificial neural networks (ANN). (Ahmed, 

Parkash, & Zhou, 2020)  

Whereas for deep learning, the most used algorithms include Recurrent neural networks 

(RNN) with types such as Long short-term memory (LSTM), deep neural network 

(DNN), Convolutional neural network (CNN), and Auto encoders (AE) with types such 

as stacked, sparse and variational AE.  

In SCADA system (Alimi, Ouahada, Abu-Mahfouz, Rimer, & Alimi, 2021) mentions 

supervised learning algorithms such as SVM, k-NN, DT, and Random Forest. 

6.7 Machine learning algorithms 

6.7.1 Support vector machine (SVM) 

An SVM is a powerful unsupervised machine learning model that can perform linear, 

non-linear, regression, and outlier detection—all of which are used to detect intrusion in 

network data (Gèron, 2019).  
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6.7.2 Decision trees (DT) 

Decision trees are a supervised learning method. Like SVM, decision trees can perform 

various tasks such as classification, regression, or output of multiple values. A Decision 

tree classifies the samples through a sequence of decisions. Each branch of the 

sequential model represents the outcome of a test. The previous choices help decide the 

following in the series. 

 

6.7.3 Ensemble learning 

Ensemble refers to a group of predictions. The essence of ensemble learning is that 

multiple predictions are better than one. If a large number of non-expert people take a 

multiple-choice exam and we compare the results of all the exams, the most chosen 

answer to each question is probably the right one. Comparing this to if a single expert 

answers the exam, the expert might slip up getting the wrong answer.  

 

6.7.4 Random forest 

Random forest uses ensemble learning in a supervised structure. By training a DT on 

different subsamples of the data and comparing the results, the model might get higher 

performance than if training a single DT classifier. 

 

6.7.5 Isolation forest 

Isolation forest works much the same way as Random forest by using DTs. The 

Isolation forest, however, is an unsupervised learning model. The Isolation forest can 

classify anomalies by calculating the path length to an observation in the DT. 

 

6.7.6 K-nearest neighbors (k-NN) 

K-nearest neighbors is a simple yet effective supervised learning algorithm. When 

classifying unknown data, the algorithm measures the distance from the labeled data 

giving the new data the same class as the k-nearest datapoints. K-NN can classify 

complex data with multiple inputs. Even with the algorithm's simplicity, there are many 

variants of the k-NN model as there are many ways used to calculate distance. Different 
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distance measurements can be Makowski-, Manhattan- or L1 -, Euclidean- or L2, 

cosine- and Jaccard distance. 

 

6.7.7 K-mean clustering 

K-means clustering is a form of unsupervised clustering.  This learner chooses a random 

starting point. The starting point is called the centroid. The k in k-mean refers to the 

number of centroid nodes. The distance to the centroid decides the class of the data. 

Next, the algorithm finds new centroids, the center of the clusters created, and groups 

the data by the distance to the new centroid. This process happens over multiple epochs 

until there is little to no change centroid.  

 

6.7.8 Artificial Neural networks (ANN) 

An artificial neural network is a supervised learning model built to mimic the human 

brain (in a trivial sense). By stacking multiple layers of neurons/perceptrons, the ANN 

manages to classify data in a non-linear manner. Making the ANN is beneficial in more 

complex data that is not linearly separable (such as network data).  

NN has three layers: 1) Input layer, 2) hidden layer, and 3) hidden layer.  

1) The NN consists of a single input layer. This layer has the exact dimensions of the 

input data. 

2) The hidden layer(s) singular or plural depending on the task. The dimension of the 

hidden layer(s) or the number of nodes is decided based on the assignment and often 

tuned to get the optimal result. 

3) When the data has sequentially traversed the input and hidden layer(s), it is sent to 

the output layer/node(s). The desired result decides the dimensions of the output layer. 

ANNs use back-propagating to train. The model tunes the different weights between the 

nodes, gradually getting a better result on the labeled training data. 
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6.8 Deep learning algorithms 

Deep learning describes more complex ML models. We also split DL models into 

supervised, unsupervised, and reinforcement learning models. For the sake of using 

multiple learning types on the datasets. We selected to apply a supervised and 

unsupervised model. Those depicted by (Ahmed, Parkash, & Zhou, 2020) for intrusion 

detection in the supervised category is Recurrent Neural Networks (RNN) with types 

such as Long short-term memory (LSTM). The unsupervised approach includes 

Autoencoders (AE). 

 

6.8.1 Recurrent Neural Networks (RNNs) 

RNN accelerates in sequence processing, with tasks such as natural language processing 

and language translation. In essence, RNNs are the same as ANNs. The difference, 

however, is that RNNs consist of multiple layers of ANN. By stacking numerous ANNs, 

the model maintains data from previous iterations. 

 

6.8.2 Long short-term memory (LSTM) 

As recurrent neural network seems like a good alternative for classification on the 

sequential dataset, RNNs have some problems that can be solved using another model. 

However, RNN has some known issues, namely vanishing gradient. LSTM is a form of 

RNN where the neural network has a feedback loop. The model is built differently 

compared to traditional RNN. It consists of a forget-, input, and output gate. With the 

help of these gates, the LSTM model can keep only the relevant information over 

multiple longer timeframes.  

The LSTM model remembers previous states making it useful for work requiring 

memory and state awareness (Shrestga & Mahmood, 2019). LSTM feeds data multiple 

times through the network, making them favorable for recognizing patterns. In addition, 

LSTM only keeps the most helpful information and remembers information from data 

processed earlier in the sequence.  
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Figure 9: LSTM model (Varsamopoulos & Bertels, 2018) 

 

As LSTM is particularly good at detecting patterns in data sequences, it is efficient at 

detecting attacks such as distributed denial of service (DDOS) and man-in-the-middle 

(MITM) attacks (Gao, et al., 2019). Typical machine learning algorithms such as 

logistic regression or SVM cannot detect inter-packet patterns (Gao, et al., 2019). As 

they are an improved version of RNNs and with their power to detect patterns, LSTM 

will be selected as a supervised deep learning model. 

 

6.8.3 Autoencoder 

In anomaly detection in industrial networks, there is a high cost of data that is well 

balanced, containing an equal amount of bough animalities and regular traffic. An 

approach to work around this problem is to use un- or semi-supervised learning.  

Autoencoders, are models that learn complex non-linear relationships between the data 

points. The autoencoder model uses multiple neural network layers as an encoder and 

decoder block. In the encoder part, the network tries to recreate the data trained on by 

training and fine tuning with back-propagation. On the other hand, the decoder attempts 

to discriminate between the data created by the encoder and the original data. The 

model compresses the high dimensional data X into a lower dimension Z before being 
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recreated into the original data X’. With fewer nodes in the lower representation of the 

data, the model must carefully choose the most critical aspects of the input and ignore 

the noise. Common uses for autoencoder can be compression, recommendation systems, 

outlier detection(anomaly), and image generation (Gèron, 2019). We use the  

Autoencoder DL model as an unsupervised model on the datasets. 

 

Figure 10: AE model (Dertat, 2017) 

 

6.8.3.1 Autoencoder for anomaly detection 

In an autoencoder for anomaly detection training, only normal traffic is input for the 

encoder. After training, the lower dimensional layer (red layer) will learn the latent 

representation of the normal traffic. The decoder uses the latent representation to 

reconstruct the original input data. When there is an anomaly, the decoder will have 

difficulty reconstructing the original data, making the reconstruction error high. The 

inputs can be flagged as anomalies using a threshold. 
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6.9 Evaluating machine learning algorithms 

When evaluating machine learning algorithms, accuracy, the amount of correctly 

classified labels, is commonly used as a performance measurement. In intrusion 

detection, this might not be optimal. As mentioned previously, normal traffic is 

generally more common than malicious traffic. Considering this, if a dataset contains 

99% regular traffic and only 1% malicious traffic, an accuracy score of 99% might seem 

high, but the model has essentially only classified data as normal.  

Therefore, other measurements are used to calculate the performance of the system: 

precision, recall, and F1-score. 

 

Precision, recall, and F1-score are calculated based on the different outcomes of a 

machine learning model for network intrusion detection. The possible results can be: 

- True positive (TP): Intrusion sample classified as an intrusion. 

- True negative (TN): Normal sample classified as normal. 

- False positive (FP): Normal sample classified as an intrusion. 

- False negative (FN): Intrusion sample classified as normal. 

Accuracy is useful in the case of evenly distributed intrusion and normal samples. 

Accuracy can be calculated by: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Equation 1: Accuracy 

 

Precision indicates how precise the machine learning model is. And is calculated by the 

formula: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Equation 2: Precision 

 

However, a trivial way to have perfect precision is making a single positive prediction 

ensuring this is correct. Considering this Recall, also called sensitivity, true positive 
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rate, or in the case of intrusion detection, attack detection rate, is combined with 

precision. The recall is the rate of positive instances correctly detected by the classifier. 

The recall is calculated by: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Equation 3: Recall 

 

These measurements are often combined to evaluate machine learning algorithms as 

they can directly affect each other. The harmonic score between precision and recall is 

called the F-1 score and is calculated by: 

𝐹1_𝑆𝑐𝑜𝑟𝑒 =  
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

Equation 4: F1-Score 
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7 Method 

The first part of the thesis went through the fundamentals of the experiment. The 

method chapter will apply a machine learning algorithm to an industrial and a 

traditional network. For the results of the models to be comparable, the models will be 

kept consistent on bough datasets—a structured approach to applying these models is 

required. Gèron’s 2019 book “hands-on machine learning” suggests a structured 

checklist for going through machine learning projects (Gèron, 2019). 

7.1 Machine learning checklist 

Following the process for how to undergo a machine learning project, Gèron 2019 

checklist has many appropriate proposals for how this machine learning project should 

unfold. Gèrons checklist items that are useful for this thesis include:  

1) Framing the problem and looking at the big picture 

2) Get the data 

3) Explore the data to gain insight 

4) Prepare the data to better expose the underlying data patterns to machine 

learning algorithms 

5) Explore many different solutions and shortlist the best ones 

6) Fine-tune your models and shortlist the best ones 

Implementation of items [1-4] is in the method chapter. Implementation of items [5-6] is 

in the results chapter.  

 

7.2 Framing the problem and looking at the big picture 

Starting by framing the problem, Gèron suggests defining the objective in business 

terms. The aim of these machine learning algorithms is as a NIDS detection engine. The 

learning algorithm should be able to signal intrusions. The solution should be 

implemented on the network, analyzing network traffic captured through tools described 

in the NIDS architecture. Current solutions to the problem are the use of signature-based 

network intrusion detection.  

There are multiple ways to frame this problem. Network intrusion detection is generally 

solved using supervised learning algorithms with classified intrusions or using an 
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unsupervised approach to distinguish between normal and abnormal data. Often in 

classification problems, accuracy is used as the primary performance measurement. In 

the case of intrusion detection, this can give misleading results. Intrusions are often rare, 

meaning data would probably contain low amounts of positive samples. Performance 

measurements used are recall, precision, and f1-score to analyze the results. Emphasized 

is F-1-score as it is a combination between recall and precision. 

The performance should be high enough for an analyst to find the system useful. If the 

algorithm produces classifies many intrusions that are normal behavior, the system will 

be rendered useless and lead to more work for an analyst.  

When framing the problem, Gèron, 2019 also suggests comparing the task at hand with 

issues in other fields. A similar situation to that of intrusion detection is fraud detection. 

In fraud detection, many banks have samples of normal behavior for a user while trying 

to classify strange behavior that can suggest fraud or stolen credit cards. Methods and 

studies from fraud detection can be helpful and possibly reused in the case of network 

intrusion detection. Trying to solve this problem manually would be to use a tool such 

as Snort writhing rules alerting about known intrusion traffic. 

 

7.3 Get the data 

Required for this experiment is traffic from traditional and ICS networks. Table 5 list a 

collection of open-source datasets. However, most of these datasets only provide 

logfiles, including data described in the log chapter. Only “SWAT,” “Water tank,” 

“Electra,” and “ICS-PCAP” contain network data from different protocols. This 

experiment has a considerable advantage if the labeled dataset leaves out the “ICS-

PCAP” dataset. The remaining datasets all capture distinct protocols from the network. 

As mentioned in the network protocols chapter, the Modbus protocol is the most widely 

implemented application layer protocol in ICS. “Water tank” and “Electra” datasets 

capture this protocol. In the Electra dataset, however, the Modbus TCP/IP protocols are 

implemented, which is a more modern version than Serial Modbus. The Electra dataset 

also contains the widest variety of attacks. The experiment will use Electra as a control 

network dataset. 



38 

 

Compared to ICS network traffic, a wide array of benchmark traditional network traffic 

datasets exists. Table 6 lists these benchmark datasets. The work of (Ahmed, Parkash, & 

Zhou, 2020) explains that the most used of these datasets is the NSL-KDD, where 60% 

of newer studies on traditional network anomaly-based NIDS use this for evaluating 

machine learning models. However, they mention that the dataset is old. We outway this 

as the network attacks are somewhat similar to those in the SCADA network, making 

them more comparable. We describe these attacks in the attack implementation below. 
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Table 5: ICS datasets 

Datasets Provides Protocols Attacks 

SWAT 

(Mathur & 

Tippenhauer, 

2016) 

Packets 

Sensors/ Actuators 

logs 

CIP 

EtherNet/IP 

False Data Injection 

WADI 

(Water 

Distribution 

(Wadi), 2015) 

Sensor/ Actuators 

logs 

- False Data Injection 

EPIC 

(Adepu, 

Kandasamy, & 

Mathur, 2019) 

Packets 

Sensors/ Actuator 

state 

- False Data Injection 

Power system 

(Pan, Morris, & 

Adhikari, 2015) 

Logs 

Sensors/ Actuator 

state 

- False data Injection 

Gas Pipeline 

(Beaver, Borges-

Hink, & Buckner, 

2013) 

Precomputed 

features from RTU 

Telemetry 

- False data Injection 

Water Tank 

(Morris, 

Srivastava, 

Reaves, & Gao, 

2011) 

Precomputed 

Features 

Serial Modbus 

DNP3 

False Data Injection 

DoS 

Reconnaissance 

Electra 

(Gòmez, et al., 

2019) 

Precomputed 

network traffic 

features 

Modbus TCP/IP 

S7Comm 

False Data Injection 

Replay 

Reconnaissance 

ICS-pcap 

(Smith, 2016) 

Collection of PCAPs 

for ICS/SCADA 

utilities and 

protocols. 

DNP3 

MODBUS 

S7 Comm and 

more 

Normal traffic 
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Table 6: Traditional network datasets 

Datasets Provides Protocols Attacks 

Darpa98 

(Darpa98, 

1998) 

Packets TCP/IP DoS 

R2L 

U2R 

Probe 

KDDCup99 

(KDD99, 

u.d.) 

Precomputed network features TCP/IP DoS 

R2L 

U2L 

Probe 

NSL-KDD 

(NSL-KDD, 

2015) 

Precomputed network features TCP/IP DoS 

R2L 

U2L 

Probe 

CTU-13 Packets without payload flow  TCP/IP Botnet 

CICIDS 

(CICIDS, 

2011) 

Packet flows TCP/IP Brute Force 

DoS and DDoS 

Hearthbleed 

Web attack 

Infiltration 

Botnet 

NGIDS-DS 

(NGIDS-DS, 

2016) 

groundtruth.csv 

CSV files of host log, Pcap of the 

network packets 

TCP/IP DoS 

Worms 

Reconnaissance 

Shellcode 

Backdoor 

UNSW-NB15 

(UNSW-

NB15, 2021) 

Pcap files, BRO files, Argus Files, 

CSV files, and the reports 

TCP/IP Fuzzers 

Analysis 

Backdoors  

DoS  

Exploits 

Generic 

Reconnaissance 

Shellcode 

Worms 
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7.4 Exploring the dataset 

This part (Gèron, 2019) suggests steps such as studying each attribute and its 

characteristics. They can be names, type, task usefulness, noise, and kind of noise and 

distribution. He also suggests visualizing the data and studying the correlations and 

promising transformations. Lastly, he suggests identifying extra data that would be 

useful. Additional features can be helpful for future work for control networks. 

 

7.4.1 NSL-KDD dataset 

The NSL-KDD dataset is not the first dataset of its kind. The dataset stems from the 

KDD’99, where KDD stands for knowledge and data mining competition. The 

competitors would create an intrusion detection system distinguishing bad and good 

connections in the competition. As a result of the competition, internet traffic was 

collected and put together to form KDD’99. NSL-KDD is a further improvement of the 

KDD’99, which has been clean up and revised by the University of New Brunswick 

(Saporito, 2019). Compared to the KDD’99, the NSL-KDD 1) does not include 

redundant records in the training set, 2) No duplicate records in the test sets, 3) The 

number of selected records from each difficulty level group is inversely proportional to 

the percentage of records in the original KDD data set, 4) The number of records in the 

train and test sets are reasonable (NSL-KDD, 2015). 

 

7.4.2 NSL-KDD Attack implementation 

The NSL-KDD dataset contains 37 different attack types (Protić, 2018). These 37 

attacks are classified into four categories which are 1) Denial of Service (DoS). 2) Probe 

3) User to Root (U2R). 4) Remote to Local (R2L). These attack types slightly differ 

from those described in table 1 as traditional networks have different attacks. 

1) DoS includes attacks where the adversary increases the network traffic to limit 

the availability of a service 

2) Probe attacks include attacks where the adversary collects information about the 

network and hosts to discover vulnerabilities. The probe attack is comparable 

with the analysis and reconnaissance attacks in table 1. 

3) U2R are attacks where the adversary escalated privileges (root) in the network. 
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4) R2L are attacks where the adversary tries to gain access to the system by getting 

the account of a typical user. 

 Table 5 displays the distribution of the attack categories. 

Table 5: Distribution of data in NSL-KDD (Saporito, 2019) 

 Total Normal DoS Probe U2R R2L 

Train 125973 67343 

(53%) 

45927 

(37%) 

11656 

(9.11%) 

52 

(0.04%) 

 

995 

(0.85%) 

Test 22544 9711 

(43%) 

584 

(33%) 

2421 

(11%) 

200 

(0.9%) 

2654 

(12.1%) 

7.4.3 NSL-KDD Dataset attributes 

Table 6 lists the data attributes of NSL-KDD. A detailed description of the features is in 

works such as (Dhanabal & Shantharajah, 2015). 

Of importance for the experiment is attributed classification. There are four classes of 

data types for attributes, namely 1) categorical, 2) binary, 3) discrete, and 4) continuous.  

1) Categorical features are often of type: object. The data is usually a fixed number 

of classes. The Categorical features from table 6 are: [2, 3, 4, 42] 

2) Binary features represent features that are either 1 or 0. Binary features in table 6 

are: [7, 12, 14, 15, 21, 22] 

3) Discrete features have a fixed range of possible values are: [8, 9, 15, 23-41] 

4) Continuous features have an infinite range of possible values: [1, 5, 6, 10, 11, 

13, 16-20] 
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Table 6: Attributes of NSL-KDD 

Nr Name Type  Nr Name Type 

1 ‘duration’ Int 22 ‘is_guest_login’ Int 

2 ‘protocol_type’ Obj 23 ‘count’ Int 

3 ‘service’ Obj 24 ‘src_count’ Int 

4 ‘flag’ Obj 25 ‘serror_rate’ Float 

5 ‘src_bytes’ int 26 ‘svr_serror_rate’ Float 

6 ‘dst_bytes’ Int 27 ‘rerror_rate’ Float 

7 ‘land’ Int 28 ‘srv_rerror_rate’ Float 

8 ‘wrong_fragment’ Int 29 ‘same_srv_rate’ Float 

9 ‘urgent’ Int 30 ‘diff_srv_rate’ Float 

10 ‘hot’ Int 31 ‘srv_diff_host_rate’ Float 

11 ‘num_failed_logins’ Int 32 ‘dst_host_count’ Int 

12 ‘logged_in’ Int 33 ‘dst_host_svr_count’ Int 

13 ‘num_compromised’ Int 34 ‘dst_host_svr_count’ Float 

14 ‘root_shell’ Int 35 ‘dst_host_diff_srv_rate Float 

15 ‘su_attempts’ Int 36 ‘dst_host_same_src_port_rate’ Float 

16 ‘num_root’ Int 37 ‘dst_host_src_diff_host_rate’ Float 

17 ‘num_file_creations’ Int 38 ‘dst_host_serror_rate’ Float 

18 ‘num_shells’ Int 39 ‘dst_host_srv_serror_rate’ Float 

19 ‘num_access_files Int 40 ‘dst_host_rerror_rate’ Float 

20 ‘num_outbound_cmd’ Int 41 ‘dst_host_rerror_rate’ Float 

21 ‘is_host_login’ Int 42 ‘class’ Obj 
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7.4.4 NSL-KDD object description 

Traditional networks use many services, status flags, and protocol types. The numerous 

object types will lead to significantly more input dimensions for the machine learning 

algorithms as these have to be preprocessed for the learner to understand. In table 7, 

there is an overview of the categorical attributes in the NSL-KDD dataset.  

Table 7: Categorical attributes of NSL-KDD 

  

 
 

 

7.4.5 NSL-KDD Test set 

As mentioned in the attack implementation, there are 37 different attacks implemented. 

Implemented in the training set are 21 of these. However, the test sets have 

implemented all types (Protić, 2018). As APT and zero-day vulnerabilities are the main 

reason for machine learning-based NIDS, this train test structure is highly recommended 

but can affect the learner's score. Because of this, one can be sure that the learner 

generalizes well. 
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7.4.6 Electra dataset 

Network traffic of an electric traction substation running in normal conditions and under 

attack generates the Electra dataset. (Perales Gòmez, et al., 2019) created the dataset in 

realistic scenarios with standard industrial devices such as PLCs and a SCADA system 

communicating with well-known industrial protocols such as S7Comm and Modbus 

(Perales Gòmez, et al., 2019). The data in the dataset is split into two files comma-

separated value (CSV) files. One subset for the Modbus protocol and one for the 

S7Comm protocol.  

To create the dataset, the authors used an Electric traction substation, which purpose is 

to convert electric power from the form provided by the electrical power industry to the 

correct voltage, current, and frequency to support railways/trams. The testbed comprises 

one master PLC, four slave PLCs, a SCADA system, a switch for the interconnection of 

different devices, and a firewall. Communication protocols used are Modbus TCP, OPC 

(communicate), and S7Comm. Figure 11 displays the topology for the network. The 

figure shows a simple ring topology connecting the Modbus PLC devices.  

For the Modbus subset, 94.8% of the data is the normal flow of the system, which is 

kind of high and essential to consider when applying deep learning to anomaly 

detection. 

 

Figure 11: Electra network topology (Perales Gòmez, et al., 2019) 
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7.4.7 Electra attack implementation 

There are three categories of attacks 1) Reconnaissance attacks, 2) False data injection 

attacks, and 3) Replay attacks. Table 8 lists the attacks in the dataset.  

There are two types of attacks 1) create packets to perform spurious writes or read in 

valid memory of a PLC 2) modify existing packets to alter the data returned by the 

server PLC (Gòmez, et al., 2019). 

 

Table 8: Electra Modbus attack types (Gòmez, et al., 2019) 

Category Attack Type 

Reconnaissance Function codes 

recognition 

Packet creation 

False data injection Response Modification Packet modification 

Forced error in response Packet modification 

Command Modification Packet modification 

Read data Packet creation 

Write data Packet creation 

Replay Replay valid packets Packet creation 

 

A new node planted in the network creates the attacks. It was used as a MitM node and 

configured to implement the false data injection attacks by poisoning the network 

device's Address Resolution Protocol (ARP). This way, the new node has access to all 

the messages exchanged. The replay and reconnaissance attacks were implemented in 

python using the standard library socket class. These attack types are relevant and well 

selected as they are on different stages of the cyber kill chain. 
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7.4.8 Electra dataset attributes 

Table 9 displays the attributes in the Electra Modbus dataset. When looking at the 

dataset's features, we can see eleven values, including the label. The authors have 

selected to include only the attributes in the Modbus protocol in addition to MAC/IP 

addresses, removing other header fields of Ethernet, TCP, and IP Protocols. (Gòmez, et 

al., 2019) From figure 11, we see that 4 of the values are objects which must be 

preprocessed for machine and deep learning to work. From the previous figure 11, we 

see four devices communicating by following the grey lines. The different data types for 

the attributes are:  

1) Categorical features are: [2-4] 

2) The binary feature is: [6] 

3) Discrete features are: [7-10] 

4) Continuous features are: [1] 
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Table 9: Attributes of Electra Modbus 

Nr Feature name Description Data Type 

1 Time Timestamp Int 

2 Smac Source mac address Object 

3 Dmac Destination mac address Object 

4 Sip Source IP address Object 

5 Dip  Destination IP address Object 

6 Request Indicates whether the packet is a request Int 

7 Fc Function code Ing 

8 Error Error code Int 

9 Address Address to perform operation Int 

10 Data Indicates data to send to client in case of 

read. 

In case of write indicates the data client 

sends to the server PLC 

Int 

11 Label A label indicating attack type Object 

 

7.4.9 Addressing Electra Modbus duplicates 

NSL-KDD does not include duplicate network traffic. For consistency, we removed 

duplicates from the Electra Modbus dataset. After removing the duplicate data samples, 

the dataset went from 16289277 records to 41429. This step is required because control 

processes repeat the same actions over time, and machine learning can observe the 

repetitive nature of the network traffic (Gòmez, et al., 2019). With the new subsample 

of the data, there is a [24409, 17020] Split of Normal and anomalous traffic labels, 

respectively. The reason for the high number of attack samples and a low number of 
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normal samples is that attack samples were generated randomly. In contrast, regular 

traffic is repetitive actions performed by the nodes. 

As this thesis only focuses on detecting anomalies, the different types of attacks will not 

be classified; instead, all attacks will count as an anomaly. The labels which can be 

displayed in table 10 are 1) NORMAL, 2) RESPONSE_ATTACK 3) 

WRITE_ATTACK 4) READ_ATTACK 4) MITM_UNALTERED 5) 

RECOGNITION_ATTACK 6) FORCE_ERROR_ATTACK 7) REPLAY_ATTACK  

Label 1 represents regular network traffic. Labels 2-5 represent injection attacks. Label 

6 represents reconnaissance attacks, and label 7 represents replay attacks. 

Table 10 displays the number of attack samples after removing the duplicates. The table 

shows significantly fewer replay and force-error attacks than the original dataset. 

Removing duplicates also makes the time attribute substantially different from the 

original dataset, as the time between actions can be considerable compared to in a 

general control network. Since this does not match patterns of ICS networks leads to the 

removal when training the machine learning algorithms. 

 

Table 10: Electra labels before and after removing duplicates 

Electra label distribution Electra no duplicate label distribution 
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7.4.10 Electra Modbus no duplicates, numerical description 

Figure 12 displays a detailed description of the numerical attributes in the no duplicate 

Electra Modbus. In the figure, the mean is the mean for the feature. Std is the standard 

deviation. “Min is the lowest value. The 25%, 50%, and 75% rows show the 

corresponding percentiles: a percentile indicates the value below which a given 

percentage of observations in a group of observations falls. These are often called 

the25thpercentile (or 1st quartile), the median, and the 75th percentile (or 3rd quartile)” 

(Gèron, 2019). 

The function code (Fc) and error attribute have a min of 0 and a max of 225. These 

numbers are not surprising. As explained in the protocol chapter, these are 8-bit binary 

values. These values have a low mean and standard deviation. From the 1st quartile, 

median, and 3rd quartile, we can see that Fc and error data have a majority of 3 and 0, 

respectively.   

The address and data field have a high standard deviation. The mean and median are 

similar, indicating more evenly distributed data. Figure 13 displays the distribution of 

the data.  

 

 

Figure 12: Description of numerical values in Electra Modbus 
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Figure 13: Distribution of Electra Modbus numerical data 

 

7.4.11 Electra object description 

Table 11 displays the categorical values in the Electra dataset without duplicate values. 

When we removed the duplicate data, there might be a biased toward the less used IP 

and mac addresses. An unsupervised machine learning algorithm might classify these as 

outliers based on the low number of instances. 
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Table 11: Categorical objects in Electra Modbus. 

  

  

 

 

7.4.12 Electra test set 

Compared to the NSL-KDD dataset, Electra Modbus does not include training data. We 

split the remaining no duplicate dataset into training and testing. Table 12 shows the 

even distribution of the attacks. However, compared to the NSL-KDD dataset, this 

dataset does not include any unknown attacks in the test set. Machine learning 

algorithms might have higher metrics as they don’t need to generalize new attack types. 

Table 12 displays the attack distribution in training and testing after removing 

duplicates. 

 

Table 12: Distribution of data in Electra Modbus with no duplicate records 

 Total Normal Reconnaissance False data 

injection 

Replay 

Train 33143 19527 

(59%) 

2339 

(7%) 

11275 

(34%) 

2 

 

Test 8286 4882 

(59%) 

584 

(7%) 

2819 

(34%) 

0 
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7.5 Preparing the data 

7.5.1 One hot encoding 

Preprocessing must be done on both datasets as computers cannot process categorical 

data. One hot encoding is a form of vector where all the values except one are 0. 1 

represents the category the value belongs means. [0, 0, 1] or [0, 1, 0] are examples of 

one hot vector where there are three categories of data.  

 

7.5.2 Numeric feature scaling 

Feature scaling is a crucial step when preprocessing the data. Scaling is needed for the 

numerical values to have the same weight on the machine learning outcome. Scaling can 

differentiate between a weak machine learning model and a better one (Roy, 2020). 

There are typically two techniques used when applying feature scaling. There are a few 

different scalers to choose from they are 1) Min-Max scaler, 2) Standard scaler, 3) Max 

Abs scaler, 4) Robust scaler, 5) Quantile Transformer scaler, 6) Power transformer 

scaler, 7) Unit vector scaler.  

Based on the description by (Roy, 2020) of the weaknesses and strengths of the 

different scalers. We applied the Robust scaler to the dataset numerical values. 

Considering the data should contain outliers, the mean and standard deviation difference 

is high. 

 

7.5.3 Preprocessing the datasets 

To keep the experiment consistent. We applied the same preprocessing steps to bough 

datasets. Firstly, numerical features were scaled using the robust scaler. Secondly, we 

used a one-hot-encoder to preprocess categorical data. In addition, we removed the time 

attribute from the Electra Modbus dataset. After preprocessing, the Electra Modbus 

dataset went from 9 inputs to 22. NSL-KDD when from 41 to 122.  
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8 Results 

Results display the precision metrics of the machine and deep learning models. The 

different deep learning model's hyper-parameter is kept similar to explore the research 

questions of the thesis. Deep learning algorithms try multiple hyper-parameters—tables 

13 and 14 display the evaluation metrics for LSTM on both datasets. Tables 15 and 16 

display evaluation metrics for AE on both datasets. Table 17 displays the best-

performing models of both LSTM and AE.  

The hyper-parameter for machine learning models is not tuned. As (Gòmez, et al., 2019) 

have tried numerous hyper-parameters for the machine learning models. The best hyper-

parameter was applied to NSL-KDD to compare. Table 18 displays the results from 

(Gòmez, et al., 2019). Table 19 displays the same machine learning models on NSL-

KDD. 

Tables [13-19] show a significant difference between the performance evaluations for 

control and traditional network traffic. These results indicate that machine learning 

performs better on control networks. However, there are other things to evaluate than 

the learners' performance. We discuss these shortcomings of the experiment in the 

discussion chapter. 
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Table 13: Deep learning algorithms with the best result for Electra Modbus and NSL-KDD 

Dataset Model Hyper-

parameter 

Precision Recall F1-

Score 

Accuracy 

Electra 

Modbus 

LSTM Number of 

layers: 3 

Neurons pr 

layer: [128] 

100% 99.68% 99.84% 99.87% 

Electra 

Modbus 

Autoencoder Encoding 

dim: 11 

(50% of 

input dim) 

Encoding 

layers: 1 

100% 85.63% 92.26% 94.10% 

NSL-

KDD 

LSTM Number of 

layers: 1 

Neurons pr 

layer: [64] 

99.76% 43.94% 61.00% 45.06% 

NSL-

KDD 

Autoencoder Encoding 

dim: 11 

(50% of 

input dim) 

Encoding 

layers: 1 

49.27% 94.42% 64.75% 55.71% 

 

In table 14, when optimizing the LSTM on Electra Modbus data, the model recall is 

generally very high, almost always 100%, meaning that the model detects all the attack 

data. Precision, however, has a broader fluctuation from 70%-100%. Much of the 

expected data is classified as attacks for low-precision models. The results from the 

LSTM models with one hidden layer are generally the same. The best results of the 

LSTM model are the ones with three layers and the 128 and 64 neurons per layer. Too 

many layers, however, can lead to overfitting, which might have been the case here 

considering the low amount of features in the dataset. 

 

 



56 

 

Table 14: LSTM with different hyper-parameter applied to Electra Modbus 

Hyper-parameter Precision Recall F1-score Accuracy 

Number of layers: 1 

Neurons pr layer: 128 

70.27% 100% 82.55% 87.78% 

Number of layers: 1 

Neurons pr layer: 64 

70.29% 100% 82.56% 87.79% 

Number of layers: 1 

Neurons pr layer: 32 

70.19% 100% 82.51% 87.74% 

Number of layers: 2 

Neurons pr layer: 128 

78.20% 100% 87.76% 91.04% 

Number of layers: 2 

Neurons pr layer: 64 

78.93% 100% 88.23% 91.34% 

Number of layers: 2 

Neurons pr layer: 32 

74.62% 100% 85.46% 89.57% 

Number of layers: 3 

Neurons pr layer: 128 

100% 99.68% 99.84% 99.87% 

Number of layers: 3 

Neurons pr layer: 64 

93.89% 99.66% 96.69% 97.35% 

Number of layers: 3 

Neurons pr layer: 32 

66.45% 100% 79.84% 86.22% 

 

In table 15, when optimizing the LSTM on NSL-KDD, we can see that the results are 

significantly lower than that of the Electra optimization. Two models have outlier 

results, namely the model with 32 neurons per layer and one and two layers. As the 

input dimension of NSL-KDD is so high, the low number of neurons might have caused 

the model to underfit. We disregard these models. From the rest of the models, we see 

that there is a low difference in performance. The low difference indicates that we 

should have selected a wider variety of model parameters. The accuracy of these models 

is relatively low too. Since 57% of the data is an anomaly, it would give better accuracy 

if classifying all attacks as intrusions. The low accuracy score can directly indicate 
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overfitting done in training, showing that the models do not detect the new attacks in the 

test set. 

 

Table 15: LSTM with different hyper-parameter applied to NSL-KDD 

Hyper-parameter Precision Recall F1-score Accuracy 

Number of layers: 1 

Neurons pr layer: 128 

99.83% 44.33% 60.44% 43.71% 

Number of layers: 1 

Neurons pr layer: 64 

99.76% 43.94% 61.00% 45.06% 

Number of layers: 1 

Neurons pr layer: 32 

0.08% 2.15% 0.15% 55.35% 

Number of layers: 2 

Neurons pr layer: 128 

99.47% 43.93% 60.99% 45.05% 

Number of layers: 2 

Neurons pr layer: 64 

99.82% 43.94% 61.02% 45.08% 

Number of layers: 2 

Neurons pr layer: 32 

0.04% 2.7% 0.01% 56.3% 

Number of layers: 3 

Neurons pr layer: 128 

99.73% 43.93% 60.99% 45.05% 

Number of layers: 3 

Neurons pr layer: 64 

99.76% 43.93% 61.00% 45.06% 

Number of layers: 3 

Neurons pr layer: 32 

99.71% 43.92% 60.98% 45.04% 

 

Tables 16 and 17 show the optimization of the AE. Even though the f1-score of all the 

modes was not as high as the best LSTM, the AE scored better than most LSTMs for the 

Electra dataset. The AE recall was also better across the board, meaning the learner did 

not send as many false alarms. On the NSL-KDD dataset, the AE did outperform the 

LSTM. The recall of the AE was low on NSL-KDD, indicating the AE sent a low 
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number of false alarms. However, looking at the accuracy, even though the AE did 

perform better, it performed worse than classifying all the data as malicious. The low 

accuracy indicates overfitting the training set and cannot generalize on new attack 

instances.  

 

Table 16: Autoencoder with different hyper-parameter applied to Electra Modbus 

Hyper-parameter Precision Recall F1-score Accuracy 

Encoding dim: 16 (75% of input dim) 

Encoding layers: 1 

100% 85.31% 92.07% 93.96% 

Encoding dim: 11 (50% of input dim) 

Encoding layers: 1 

100% 85.63% 92.26% 94.10% 

Encoding dim: 5 (25% of input dim) 

Encoding layers: 1 

100% 85.23% 92.07 93.85% 

 

Table 17: Autoencoder with different hyper-parameter applied to NSL-KDD 

Hyper-parameter Precision Recall F1-score Accuracy 

Encoding dim: 16 (75% input dim) 

Encoding layers: 1 

48.87% 94.48% 64.42% 55.05% 

Encoding dim: 11 (50% of input dim) 

Encoding layers: 1 

49.19% 94.48% 64.70% 55.59% 

Encoding dim: 5 (25% of input dim) 

Encoding layers: 1 

49.27% 94.42% 64.75% 55.71% 
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Table 19 displays the machine learning result for NSL-KDD. Even though they 

performed worse than the ones in table 18 by (Perales Gòmez, et al., 2019), they did 

perform better than the DL models (except for isolation forest) in terms of f1-score. The 

relatively low precision for these ML models indicates that many attacks would have 

gone undetected in NSL-KDD. Worth considering is the fact that the ML models on 

NSL-KDD were not hyper-parameter optimized. With other hyper-parameter, these 

models might have performed significantly better. We should also have measured the 

accuracy of these models to detect overfitting. 

 

Table 18: Machine learning algorithms applied to Electra Modbus (Gòmez, et al., 2019) 

Dataset Model  Hyper-parameters Precision Recall F1-Score 

 

 

Electra 

Modbus 

Random Forest Estimator: 200 98.77% 98.71% 98.74% 

SVM C: 10 

Gamma: 1 

97.56% 100% 98.76% 

Artificial Neural 

Network 

Nr of layers: 1 

Neurons per layer: 

[128] 

96.92% 100% 98.43% 

OCSVM Nu: 0.1 

Gamma: 0.1 

98.62% 98.56% 98.59% 

Isolation Forest Estimators: 100 

Contamination: 0.1 

87.39% 100% 93.27% 
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Table 19: Machine learning algorithms applied to NSL-KDD 

Dataset Model  Hyper-parameters Precision Recall F1-Score 

 

 

NSL-

KDD 

Random Forest Estimator: 200 63.38% 90.09% 74.41% 

SVM C: 10 

Gamma: 1 

61.47% 97.25% 75.33% 

Artificial Neural 

Network 

Nr of layers: 1 

Neurons per layer: 

[128] 

62.08% 90.30% 73.57% 

OCSVM Nu: 0.1 

Gamma: 0.1 

78.00% 89.47% 83.34% 

Isolation Forest Estimators: 100 

Contamination: 0.1 

31.63% 83.93% 45.94% 
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9 Discussions 

Even though it might seem that research question one, “Is it more suitable to apply 

machine learning in industrial networks compared to in traditional networks?” has a 

definite answer because of the significate difference in performance. There are other 

aspects of machine learning that can have an impact on the measured performances. In 

this chapter, we will discuss these features affecting performance. 

 

9.1 Limitations 

The landscape of Industrial Control Systems is significant, and there are multiple types 

of Industrial Control systems. We selected the Supervisory Control and Automation 

type of Industrial Control System. Intrusion detection systems are also a broad 

landscape. The thesis mainly focuses on the ones used in the network and used machine 

learning. 

A limitation of the results research questions for the thesis is the availability of datasets 

used for machine learning in Network Intrusion Detection Systems. There are many 

benchmark datasets available for traditional networks, however. Because of this, many 

machine learning algorithms in the datasets there are machine learning algorithms 

applied to these individual datasets. As this is not the case for industrial networks, there 

are fewer machine learning algorithms to compare. The thesis focuses mainly on the 

supervised- and unsupervised learning models.  

 

9.2 Dataset fundamentals  

Traditional networks have a variety of benchmark datasets captured from real scenarios. 

ICS does not have this luxury. Machine learning algorithms are only as valuable as the 

data used—garbage in, garbage out. (Wang & Foo, 2018) proposes a structured 

approach to evaluating ICS datasets with fundamental, special, and reality requirements.  

The fundamental requirements that affect the learning algorithms' performance include 

training, testing correlation, and capture from all nodes. 

Both datasets have a high correlation between training and testing for training testing. 

Tables 5 and 12 show this. However, the NSL-KDD dataset has unique attacks in the 
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testing set, which requires the learning algorithm to generalize well for high-

performance measurements. The unique attack is the training set is part of what leads to 

a difference in performance between the learning algorithms. 

Special requirements mentioned by (Wang & Foo, 2018) are about regular and 

abnormal traffic. These can directly affect the learner's performance—a special 

requirement is the number of nodes captured in the network traffic. Electra Modbus 

dataset only uses a small portion of the nodes available. The small number of 

communicating nodes makes the Electra Modbus dataset less realistic than general 

control network traffic. In a more natural environment, as seen in the ICS chapter, many 

more devices are often required to communicate to perform a task. 

Electra Modbus only uses one communication protocol for the expected traffic. As the 

IDS chapter explains, NIDS should cover a broader range of hosts. Therefore, it is 

generally better to have multiple protocols in the datasets. Including one protocol also 

affects the attack surface as some attacks use other protocol vulnerabilities. Considering 

this combining the Modbus and S7Comm would have given more realistic results. 

The anomaly samples for Electra datasets with no duplicates, displayed in table 12, are 

unevenly distributed. In the table, we see a far higher percentage of repaying attacks 

which can contribute to the high performance of the learners.  

 

9.3 Feature selection 

This experiment compares machine learning algorithms against each other. As shown in 

table 7, NSL-KDD, compared to Electra Modbus, includes a variety of protocols, 

services, and TCP flags. Because of this, during preprocessing, the NSL-KDD dataset 

gets a significantly more considerable amount of input features. As shown in the work 

by (K. A. Taher, 2019) and (L. Hakim, 2019), the features selected significantly impact 

the learner. Considering this, we should only have included directly correlated features 

between the datasets. Table 2 of the OSI model would feature 1-4 as these layers are 

similar in traditional and control traffic. These features are, however, not included in 

both datasets. In the future, when comparing traditional- and control networks. Datasets 

should consist of full packet capture, selecting only these features. Another approach to 

the mismatch of the attributes in conventional- and control datasets would be to include 
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log features such as those described by (BDO AS, 2014). The traditional benchmark 

datasets often include data collected from logs. Creators of control network datasets 

should contain log files for comparing traditional- and control network traffic. For 

intrusion detection on ICS datasets (Wang & Foo, 2018) also request this. 

 

9.4 Biases 

To compare the tradition- and control network dataset, this thesis conducted a literature 

study of ICS that might have biased the learners' results. Electra's numerical features 

were in focus when selecting the numerical scaler for the dataset. However, in the 

literature, many other normalizations and scaling techniques are to NSL-KDD. Focusing 

heavily on the ICS datasets has led to biases in the results. As shown in the work of 

(Umar & Zhanfang, 2020), the selection of normalization or scaling directly affects the 

impact of the learner. The numeric scaler was kept consistent for the sake of comparing 

the learner. However, future work comparing datasets should thoroughly analyze all 

numerical features. If the features from both datasets were the same, the impact of this 

might not have been that large. 

Another bias toward the control network dataset is the hyperparameter of the learns. 

Traditional machine learner's hyper-parameters were selected based on the work of 

(Perales Gòmez, et al., 2019), which optimized the hyper-parameters for the traditional 

learner based on the control network dataset. For example, the work of (Meira, 2019) 

and (Ingre & Yadav, 2015) shows a higher performance evaluation of Isolation forests 

and ANN on NSL-KDD, respectively.  
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10 Conclusion  

This thesis went through a literature study of ICS and ML- and DL methods used in IDS 

to determine if these are better suited in control networks as these environments are 

more closed to human input. We applied various ML- and DL methods to NSL-KDD 

and Electra Modbus. We selected datasets based on the coverage of attacks trying to 

keep these comparable even though attack vectors for the different networks vary. 

To answer the first question, “Is it more suitable to apply machine learning in industrial 

networks compared to traditional networks?” this thesis applied LSTM and AE to both 

traditional and control networks as a NIDS detection engine. In addition, we selected a 

range of machine learning algorithms to use on the NSL-KDD dataset. The resulting 

experiment shows significantly higher results on the control network traffic than on 

traditional traffic. The f1-score of the LSTM was 99.84% and 61.00% on the control 

and traditional network, respectively. The f1-score of the autoencoder was 92.26% and 

64.75% on the control- and traditional-network, respectively. All the machine 

algorithms applied on Electra Modbus outperformed the one used on NSL-KDD. 

However, an important factor when evaluating machine learning is the datasets. For 

traditional network traffic, there is a wide array of benchmark datasets. However, for 

control-network traffic, there is no such benchmark. To evaluate if machine learning is 

more suitable in industrial networks without a benchmark dataset therefore 

inconclusive.  

The second research question derived from this experiment, “is deep learning more 

powerful in detection intrusions than traditional machine learning methods?” is also 

hard to evaluate because of the lack of benchmark datasets. From the experiment 

conducted, one of the deep learning models, the LSTM, performed better with an f1-

score of 99.84%, which is better than the best machine learning model (Gòmez, et al., 

2019) with an f1-score of 98.74%. The Autoencoder, on the other hand, performed 

significantly worse with an f1-score of 92.26%. The ML methods on NSL-KDD all 

performed better than the DL methods, except isolation forest.  
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10.1 Future work 

Future work requires a benchmark dataset for SCADA systems. This dataset should 

contain network traffic in addition to log files should be included to extract features that 

are compatible with traditional network features. The SCADA system network data 

should also be captured from more devices and have a variety of protocols for the 

dataset to be considered a benchmark.  

A structured approach for comparing the datasets is also required to remove biases from 

the comparison. This approach should weigh both datasets' feature selection, isolating 

the same features, to get comparable results. The learns hyper-parameters should also be 

randomly selected to avoid biases. 
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