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Preface
This thesis is submitted in partial fulfillment of the requirements for the
degree of Philosophiae Doctor at the University of Oslo. The research
presented here was conducted at the Institute of Theoretical Astrophysics
(ITA) under the supervision of professor David F. Mota and associate
professor Hans A. Winther. This thesis represents an effort to further
our understanding of self-interacting scalar field models of dark matter.
There exists a multitude of realizations for this kind of dark matter,
most of which propose to explain observations that are not yet fully
accounted for in the standard model of our universe. In this work we
have investigated some of the unique aspects of these models in order
to better understand how they impact the formation of structure in
our universe, as well as how observational probes that can be used to
constrain the model parameters are affected.

In Chapter 1 we review the basic theoretical framework of the standard
cosmological model, from the smooth and homogeneous background
universe, to the initial tiny deviations described by linear perturbation
theory, and finally the non-linear structures that we observe today that
require large-scale cosmological simulations to study. We also briefly
review the timeline of the universe, as well as some of the open questions
in this standard model of the universe.

In Chapter 2 we go through the basic theory and phenomenology of
ultra-light scalar fields in cosmology, and how they might help explain
observations that are not fully understood within the standard model.

In Chapter 3 we provide brief summaries of the four papers produced
during this PhD and their main findings.
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Chapter 1

The Standard Model of the
Universe

1.1 Introduction

The cosmos is a place of wonder and mystery that has fueled the human
imagination for millennia. We have since the dawn of our specie populated
the star-speckled void with stories of gods and monsters, great triumphs
and tragedies, in an effort to understand our physical world. There was
a time when it was believed the sun rose in the east and set in the west
because a great being carried it across the sky. In Greek mythology it
was Helios who rode above the horizon with the sun harnessed to his
chariot, while in Norse and Vedic lore it was Sól and Surya. The stories
did not just extend to the machinations of the heavens. The Greeks
also believed the Earth became cold and barren in winter because the
Olympian god Demeter refused to let anything grow and flourish during
the months her daughter Persephone was forced to return to Hades in the
underworld each year. In Japanese mythology, the tides were controlled
by the dragon god Ryūjin through the use of magical gems. But as time
passed these stories were replaced with another kind of myth. One of
mathematics and physical laws, which has proven successful in explaining
nearly every facet of our world. We now know that the sun rises and sets
on the horizon, and that the seasons change, because of the tilted rotation
of the Earth and its orbit around the Sun. We also know that the ebb
and flow of the tides are due to the gravitational pull of the moon—not
the divine influence of magic jewelry. Equipped with the principles and
tools of physics and mathematics, mankind has returned it gaze towards
the skies, beyond the Solar system, even our own Milky Way, to the
largest structures of the universe, in order to further understand our
physical world—the realm of cosmology.

1.2 A Short History of Cosmology

Cosmology is, broadly speaking, the study of the matter and energy
content of our universe and the structures that form in it. Gravity is
the dominant force on the scales relevant for cosmology, since the other
fundamental forces of nature are either too short ranged (the weak and
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1. The Standard Model of the Universe

strong force), or the universe has zero net charge associated with the
force (electromagnetism). For over 200 years the accepted theory of
celestial motion was Newton’s universal law of gravitation, which he
formulated in 1687 [94]. Within Newton’s framework the universe was
static and eternal, forever unchanging in the grand scheme of things. It
was not until Einstein proposed his general theory of relativity in 1915
[39, 38], providing the theoretical foundation for describing gravity in
a way consistent with relativity, that it was realized the universe is far
from unchanging.

In Einstein’s theory of General Relativity (GR), gravity is not a
force, but motion along geodesics in a 4-dimensional spacetime that is
curved by matter and energy. In systems like the Solar system, or even
galaxies, the geodesics that planets and stars trace through spacetime
are nearly indistinguishable from those predicted by Newton’s inverse
square law. On scales much larger than galaxies, on the other hand, the
universe starts to deviate from the Newtonian paradigm. Edwin Hubble
discovered in 1929 that the recessional velocity v of galaxies increases
with their distance d from us [59];

v = H0d, (1.1)

where the parameter H0 ≈ 70kms−1Mpc−1 is known as Hubble’s
constant, and quantifies the observed increase in the recessional
velocity with distance. This constant is also often written as H0 =
100h kms−1Mpc−1, where h ≈ 0.7. Newtonian cosmology fails to provide
a satisfactory explanation for this observation, but GR provides an
elegant solution; that the overall fabric of spacetime of our universe
is expanding. Distant galaxies appear to be moving away from us at
increasing velocities because the intervening space is continually being
filled with more space.

Hubble’s discovery of cosmic expansion had several far-reaching
consequences for our understanding of the past history of the universe.
Since the universe is currently expanding, it stands to reason that the
universe used to be smaller, and therefore denser and hotter. So much
so, in fact, that in the distant past everything we see around us was
part of a nearly formless primordial plasma. Only when the universe
became sufficiently cold and diluted did structures like galaxies, stars,
and planets form. If we extrapolate the expansion far enough back in
time, the universe might have sprung into existence from a seemingly
infinitely small and dense state—a singularity. Such a universe can, for
all intents and purposes, be considered to have existed for a finite time,
currently estimated to 13.8 billion years. This scenario is called the Big
Bang, and an incredible achievement of astronomy is the confirmation of
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A Short History of Cosmology

a number of predictions of Big Bang theory, such as the relic abundances
of nuclear elements produced in the first few minutes of the universe,
known as Big Bang Nucleosythesis (BBN), and the afterglow of the
primordial plasma when photons and baryons decoupled as electrons and
protons recombined into neutral hydrogen, which left a faint imprint of
the universe on the sky of when it was just 380,000 years old.1 This
signal is the cosmic microwave background radiation (CMB), and was
first observed as a constant background temperature of around 3K in
1965 by Arno Penzias and Robert Wilson [102], who were awarded the
1978 Nobel prize in physics for their discovery. The CMB has since been
measured with incredible precision [130, 132, 73, 6, 27, 140, 19, 133], as
shown in figure 1.1, and found to be a nearly perfect blackbody radiation
at 2.7K with tiny anisotropies—the imprint of the initial inhomogeneities
that gave rise to all cosmic structures we see today. The near homogeneity
of the CMB, and the nearly scale-invariant spectrum of perturbations
in it, has provided strong support for inflationary theory—that the
universe underwent an initial period of extreme and accelerated expansion,
bringing tiny quantum fluctuations into the classical realm which became
the initial conditions for our universe.

It eventually became clear that GR and the observed matter in our
universe is not enough to provide a consistent picture of the cosmos.
In 1998, studies of supernova distances and redshifts showed that the
universe is not just expanding, but it is doing so at an accelerated pace
[112, 103]. No known substance can cause such accelerated expansion—all
standard matter is gravitationally attractive—which means there must
exist an additional unknown component in our universe that is somehow
gravitationally repulsive, present even in the seemingly empty regions
between galaxies and clusters of galaxies. There exists many hypothetical
realizations for this so-called dark energy (DE), including vacuum energy,
modified gravity, or a cosmological constant.

Observations have for nearly a century hinted at the existence of a
second unseen component in our universe. In the 1930s Jan Oort and
Fritz Zwicky observed that galaxies in galaxy clusters are moving too fast
to be consistent with the observed matter and virial equilibrium [152,
153]. Vera Rubin and Kent Ford made similar observations in the 1970s
in the rotation curves of galaxies: The circular velocities of stars and gas
clouds are much too fast to be orbiting just the visible mass inside the
galaxies [116]. It became clear that a large amount of matter is missing
in order for galaxies and galaxy clusters to be gravitationally bound,

1The term "recombination" for when electrons and protons formed neutral atoms
is a bit of a misnomer, since it is seemingly the first time stable neutral hydrogen
existed in our universe.

3



1. The Standard Model of the Universe

Figure 1.1: The CMB signal (upper) as seen by the Planck satellite after
removing foreground signals and subtracting the dipole, and (lower)
the power spectrum of the temperature fluctuations from (red dots)
observations compared against (green line) the theoretical spectrum and
(shaded green) cosmic variance. The temperature fluctuations are the
imprint of the universe in the moments before it became transparent to
photons during recombination, and are of order ±200μK, compared to
the CMB mean blackbody temperature of 2.7K. Credit: ESA, Planck
Collaboration.
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General Relativity

otherwise they would break apart due to the large orbital velocities. It
was initially thought this missing dark matter (DM) could be hidden
baryonic matter, such as cool stars, gases, and solid bodies, but BBN and
the CMB tells us this is not the case. For instance, the rate of nuclear
reactions during BBN depend strongly on the baryon density, and the
relic abundances of light elements are consistent with only a small amount
of baryonic matter [139]. Furthermore, the anisotropies of the CMB are
too small to seed the structures we see in the universe today. Simply
put, not enough time has passed for the perturbations observed in the
CMB to grow into galaxies if all of matter is baryonic. If, on the other
hand, DM was cold and decoupled from the hot photon-baryon plasma,
it could have begun clustering earlier, creating potential wells for baryons
to fall into after recombination, hence speeding up the growth of visible
structures. There are further features in the CMB that indicate the
existence of a cold DM (CDM) component decoupled from visible matter,
such as the relative height of the acoustic peaks and their characteristic
scale on the sky. Additionally, weak lensing measurements of colliding
clusters show that the majority of the mass is offset from the visible gas
and stars [55], the most famous example of this being the Bullet Cluster
shown in figure 1.2, providing further strong evidence for a dark and
as-of-yet unidentified matter component in our universe.

Although little is known about DM and DE, a cold and collisionless
DM component (i.e. CDM), and a cosmological constant (Λ) for DE,
combined with GR and the standard model of particle physics, provides
a very successful model for describing the universe we live in. This
standard model for cosmology is called the ΛCDM model, named so after
its two largest unknowns that make up around 95% of the cosmic energy
content today. In the next few sections we will review the basic concepts
of cosmology and ΛCDM before taking a closer look at the topic of this
thesis—exploring light scalar field models of DM beyond CDM.

1.3 General Relativity

An action is often considered the most fundamental object for the
dynamical behaviour of a system, which in GR is the Einstein–Hilbert
action [56];

S =
∫ [

1
16πG

(R − 2Λ) + Lm

] √−g d4x. (1.2)

This describes a universe with; a spacetime metric gμν , which has a
determinant g = det(gμν) and a local curvature given by the Ricci scalar
R; a cosmological constant Λ; and matter, which is encoded in the matter

5



1. The Standard Model of the Universe

Figure 1.2: A composite image of a pair of galaxy clusters that have
collided head on, known as the Bullet Cluster. Galaxies are seen in the
optical as orange and white, while the hot intracluster gas as seen in
X-ray is shown in pink. The mass distribution in the cluster is shown
in blue, obtained from the distortion of the background galaxies due
to gravitational lensing. The Bullet Cluster reveals that the majority
of the mass is not in the visible stars or gas, but in the form of an
unknown form of cold and collisionless matter, i.e. dark matter. Credit:
X-ray: NASA/CXC/CfA/M.Markevitch et al.; Optical: NASA/STScI;
Magellan/U.Arizona/D.Clowe et al.; Lensing Map: NASA/STScI; ESO
WFI; Magellan/U.Arizona/D.Clowe et al.
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General Relativity

Lagrangian Lm. In GR, the metric tensor—the very fabric of space and
time—is dynamical, and variation of the action δS = 0 with respect to
gμν gives the Einstein field equations;

Rμν − 1
2

gμνR = 8πGTμν − Λgμν . (1.3)

The Einstein field equations form a set of 10 coupled non-linear differential
equations for the 10 independent components of the symmetric metric
tensor gμν , and describe how spacetime is curved by matter and energy,
given by energy-momentum tensor,

Tμν = −2
δLm

δgμν
+ gμνLm. (1.4)

For a perfect fluid the energy-momentum tensor assumes the simple form

Tμν = (ρ + P )uμuν + Pgμν , (1.5)

where ρ is the energy density, P the pressure, and uμ = dxμ/dτ the
four-velocity of the fluid. The Ricci curvature tensor Rμν provides a
measure of the curvature of the spacetime manifold, and is the contraction
Rμν = Rα

μαν of the Riemann tensor,

Rμ
νρσ =

∂Γμ
νσ

∂xρ
− ∂Γμ

νρ

∂xσ
+ Γμ

ηρΓη
νσ − Γμ

ησΓη
νρ, (1.6)

where the Christoffel symbols Γμ
αβ are given by

Γμ
αβ =

1
2

gμρ

(
∂gβρ

∂xα
+

∂gαρ

∂xβ
− ∂gαβ

∂xρ

)
, (1.7)

while the Ricci scalar is the contraction of the Ricci curvature tensor,
R = Rμ

μ.
The Einstein field equations are only one side of a geometric theory

of gravitation. We also need to know how particles move through curved
spacetime. The equations of motion can once again be derived from the
variation of an action. This time, the action is the length of the curve
through spacetime

I =
∫

ds, (1.8)

where ds =
√−gμνdxμdxν is the line-element. We define an affine

parameter λ that parameterizes the curve, xμ(λ), such that

I =
∫

ds =
∫ √

−gμν
dxμ

dλ

dxν

dλ
dλ. (1.9)
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1. The Standard Model of the Universe

The variation δI = 0 with respect to λ gives the "straight path" through
curved spacetime, i.e. the geodesic, as

d2xμ

dτ2 + Γμ
αβ

dxα

dτ

dxβ

dτ
= 0. (1.10)

where we have used the proper time τ as the affine parameter. The
motion of free-falling bodies in GR is therefore encoded in the Christoffel
symbols, quantifying the curvature of the local spacetime in a particular
choice of coordinates.

1.4 The Smooth Universe

An important assumption in physical cosmology is the Copernican
principle, which states there is nothing singular about our position
in the universe. Furthermore, the universe appears to be isotropic, i.e. on
sufficiently large scales it looks the same in all directions, which combined
with the Copernican principle implies the universe is homogeneous.
As a result, the matter and energy content of the universe, as well
as the metric tensor, is only dependent on time on very large scales.
Observations indicate that our universe does not have an overall curvature,
so lets consider the line-element of a homogeneous universe, given by the
Friedmann-Robertson-Walker (FRW) metric, in the spatially flat case;

ds2 = −dt2 + a2dridri. (1.11)

Here, the Cartesian coordinates ri are comoving coordinates, which are
defined such that an object at rest with respect to the homogeneous
average background has fixed comoving coordinates. The physical proper
coordinates xi are related to the comoving ones by xi = ari, where a is
the scale factor. All time dependence of the line-element is assumed to
be encoded in a, and the solutions of the Einstein field equations in such
a flat and homogeneous universe are

H2 =
(

1
a

da

dt

)2
=

8πG

3
ρ̄, (1.12)

1
a

d2a

dt2 = −4πG

3
(ρ̄ + 3P̄ ), (1.13)

where ρ̄ and P̄ are the total energy density and pressure of the
homogeneous background. These are known as the Friedmann equations
[44, 45], and describe the expansion of the universe, though we will
usually refer to eq. (1.12) as the Friedmann equation. H is the Hubble
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The Smooth Universe

parameter, and gives the relative expansion rate of the universe. It is
easy now to see how Hubble’s law is a consequence of cosmic expansion;

v =
dx

dt
=

d(ar)
dt

=
da

dt
r = H0x, (1.14)

where Hubble’s constant is just the Hubble parameter at the present
time. The recessional velocities of distant galaxies can be interpreted as
not actually moving away from us in the usual sense, but instead that
the intervening space is continually expanding. The observed redshift of
a distant receding object can therefore be regarded as not being due to
the Doppler effect, but the influence of expansion on the light emitted
by the object as it propagates through the universe. As the universe
expands and stretches, the electromagnetic radiation moving through
it is stretched as well. A wave of light emitted with wavelength λe at
a time te when the scale factor was ae, will at a later time to when
a(to) = ao > ae be observed to have a wavelength λo of

λo = λe
a0
ae

> λe. (1.15)

The light has therefore been redshifted in the time between being emitted
and observed, and, given a specific cosmology, a number of things can be
characterized by the amount of cosmic redshift we observe in an object,
such as its distance from us, the time that has passed since the light was
emitted, and the amount of cosmic expansion during that time. It is
therefore very useful to define a measure of cosmic redshift, given by the
relative change in the observed wavelength due to cosmic expansion;

z =
λo − λe

λe
=

ao

ae
− 1. (1.16)

For context, our closest galactic neighbor, the Andromeda galaxy, is at
z ≈ 2 × 10−4 [110], although its observed redshift is actually z ≈ −10−3 ,
i.e. blueshifted, because it is moving towards us. The most distant galaxy
observed to date is GN-z11 at redshift z = 11.02 [97], and recombination
and the formation of the CMB happened at z ≈ 1100 [27], i.e. when the
universe was around a thousand times smaller than it is today. While
we cannot observe BBN directly, since all the light from that era has
been absorbed and re-scattered before reaching us, we can still specify at
which redshift we would have observed that light, which is z ∼ 109 [139].

As the universe changes with time, so does the matter and energy in
it. Their evolution is described by local conservation laws, which in GR
are given by the covariant derivative of the energy-momentum tensor;

∇μT μν = ∂μT μν + Γμ
μαT αν + Γν

μαT μα = 0. (1.17)

9



1. The Standard Model of the Universe

For a perfect fluid at the homogeneous level, or the background level of
universe, we simply get

dρ̄

da
= −3

ρ̄ + P̄

a
= −3ρ̄

1 + ω

a
, (1.18)

where we have defined the equation of state ω = P̄ /ρ̄. This equation
is also valid for the individual components of the universe that satisfy
eq. (1.17) at the background level separately. If, for instance, two or
more components were coupled in such a way that energy is transferred
between them, then eq. (1.17) would contain extra source terms that
would modify eq. (1.18), making the evolution of these components
codependent. For the most part, however, the principle components of
our universe do not appear to have such interactions. The background
evolution can now be derived for the various forms of energy. Nearly
pressureless matter, also referred to as dust, has ω ≈ 0, and therefore
evolves as

ρ̄m = ρ̄m0a−3, (1.19)

where subscripts "0" indicate the value today. This is readily interpreted
as the rest energy of a conserved number of particles becoming diluted
as the universe expands. Relativistic matter and radiation, on the other
hand, are dominated by their relativistic kinetic energy and have ω = 1/3,
hence

ρ̄r = ρ̄r0a−4. (1.20)

This can be understood as the decrease in energy density due to both the
a−3 decrease in particle density, as well as a reduction in the relativistic
energy of the particles, which is inversely proportional to their wavelength,
contributing with an extra factor of a−1.

According to eq. (1.18), the cosmological constant, when interpreted
as a constant form of energy ρ̄Λ = Λ/8πG on the right hand side of eq.
(1.3), must have a constant negative pressure P̄Λ = −ρ̄Λ.

By inserting the equations for matter, radiation, and DE into the
Friedmann equation, the evolution of the scale factor, and hence the
expansion history of the universe, can derived. It is advantageous to
define the fractional contributions to the critical energy density ρc of the
universe of the various components,

Ωi =
ρ̄i

ρc
, (1.21)

where

ρc =
3H2

8πG
. (1.22)
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The Perturbed Universe

It is called the critical density because it is exactly the energy density
needed for the universe to be flat, and therefore also corresponds to the
total energy in our case, ρc = ρ̄m + ρ̄r + ρ̄Λ. With these definitions, the
first Friedmann equation becomes

H2 = H2
0

[
Ωm0a−3 + Ωr0a−4 + ΩΛ0

]
. (1.23)

Because the different forms of energy depend on the scale factor
in different ways, they will each have dominated the total energy and
expansion history at different epochs: First radiation dominated the total
energy, followed by matter, until finally DE, as shown in figure 1.3. The
scale factor in these different epoch evolve as

a(t) ∼ t1/2 during radiation-domination,

a(t) ∼ t2/3 during matter-domination,

a(t) ∼ eH0
√

ΩΛt during DE-domination,

(1.24)

where the universe is decelerating during both radiation-and matter-
domination, but is expanding at an exponentially accelerated rate during
DE-domination. These three components form the backbone of the
ΛCDM model, where the matter part includes both visible baryonic
matter and CDM, Ωm0 = Ωb0 + Ωdm0, while photons and relativistic
neutrinos make up the radiation, Ωr0 = Ωγ0 + Ων0. The energy fractions
today are constrained by observations, with [1]

Ωdm0 = 0.26,

Ωb0 = 0.049,

ΩΛ0 = 0.69,

Ωγ0 = 5.5 × 10−5,

Ων0 = 3.7 × 10−5.

(1.25)

1.5 The Perturbed Universe

There is much more to the universe than just matter and energy. There
is also structure, without which the cosmos would have been a very dull
place. In the early universe, however, the seeds for all this structure
were just tiny deviations from an otherwise nearly perfectly homogeneous
cosmic soup. We can therefore use perturbation theory to accurately
describe the growth of structure for a large portion of cosmic history.
This generally requires the full machinery of Einstein’s field equations
and the Boltzmann equation for each particle component in order to
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1. The Standard Model of the Universe

Figure 1.3: The composition of the cosmic energy budget through time,
given by the energy fractions Ωi for DM, baryons, total radiation, and a
cosmological constant Λ, as functions of cosmic redshift z.

calculate e.g. the theoretical CMB temperature and polarization power
spectra [72]. For the purposes of this discussion, which mainly focuses on
the growth of matter inside the horizon, we will come a long way using a
Newtonian fluid approximation.

The starting point in the Newtonian approximation are the hydro-
dynamic equations for the non-relativistic matter fluid with density ρ,
pressure P , and velocity v,

∂ρ

∂t
+ ∇ · (ρv) = 0, (1.26)

∂v

∂t
+ (v · ∇)v = −1

ρ
∇P − ∇Φ, (1.27)

as well as the Poisson equation for the gravitational potential Φ sourced
by the total overdensity ρtot − ρ̄tot,

∇2Φ = 4πG(ρtot − ρ̄tot). (1.28)

Lets consider the growth of perturbations during matter-domination,
which lasted from radiation-matter equality at zeq ≈ 3400 until very
recently. The gravitational potential is largely sourced by matter, hence
we can neglect the contribution from radiation during this time. The
fluid variables and potential are split into a homogeneous background
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and deviations from this background

ρ = ρ̄ + δρ,

P = P̄ + δP = P̄ + c2
sδρ,

v = v̄ + δv,

Φ = δΦ,

(1.29)

where we have assume that the pressure and density perturbations are
related by the fluid sound speed cs via δP = c2

sδρ. By changing to
comoving coordinates r = x/a, we see that the velocity is actually split
into the Hubble flow Hx, i.e. the velocity due to expansion, and the
deviation from the Hubble flow,

v =
∂x

∂t
=

∂(ar)
∂t

= Hx + a
∂r

∂t
= Hx + au, (1.30)

where u is the comoving velocity, often called the peculiar velocity. Also,
since the background density changes with time, it useful to define the
density contrast δ = δρ/ρ̄ and consider the evolution of this rather than
δρ. The linear fluid equations in the comoving frame, with the ∇-operator
in comoving coordinates given by ∇c = a∇, are

∂δ

∂t
= −∇c · u, (1.31)

∂u

∂t
+ 2Hu = −a−2c2

s∇δ − a−2∇cδΦ, (1.32)

∇2
cδΦ = 4πGa2ρ̄δ. (1.33)

We can combine these into a single second-order differential equation for
δ,

∂2δ

∂t2 + 2H
∂δ

∂t
= −a−2c2

s∇2δ + 4πGρ̄δ, (1.34)

which, upon using the Fourier transformation

δ(r, t) =
∑

k

δk(t)eikc·r, (1.35)

where the physical wavenumber k is related to the comoving one kc by
kc = ak, gives

∂2δk

∂t2 + 2H
∂δk

∂t
=

[
4πGρ̄ − c2

sk2]
δk. (1.36)

As we can see from eq. (1.36), the different k-modes decouple in linear
theory, and can therefore be treated separately. Several factors affect

13
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the growth of structure: The expansion of the universe acts as a kind of
friction, often called the Hubble friction, which slows down the growth
rate. Gravity, as expected, causes tiny initial deviations to be unstable
and became larger, whereas pressure slows down this process, even halting
the gravitational collapse completely at sufficiently small scales by making
the right hand side of eq. (1.36) negative. The critical scale below which
structure is pressure-supported against gravity is called the Jeans’ scale,
given by

λJ =
2π

kJ
= cs

√
π

Gρ̄
. (1.37)

At scales much larger than λJ, it can be shown using eq. (1.36) and the
Friedmann equation that during matter-domination the matter density-
contrast evolves as δ ∝ tn, with a decaying mode n = −1 and a growing
mode n = 2/3. In fact, the growing mode is proportional to the scale
factor, δ ∝ a, and is one of the reasons why all of matter cannot have
been baryonic and originated from the order 10−4 deviations seen in
the CMB at z ∼ 1000. The density-contrast could only have grown by
a factor 1000 and would have been δ ∼ 10−1 today, which is in stark
disagreement with the highly non-linear structure we see all around us.
DM is therefore needed, since it was able to grow in the time before
recombination, while the baryons were still tightly coupled to the photons
and their perturbations stable against gravitational collapse due to the
immense radiation pressure.

However, the DM perturbation modes did not grow much during
radiation-domination once they entered the horizon. This can be seen by
again considering the Newtonian fluid equations for DM with vanishing
pressure. During radiation-domination the DM modes are still mostly
affected by their own gravitational potential, since the oscillations of
the dominant radiation cancel out on average, but the expansion rate
is largely determined by the radiation. Lets reinstate the labels for
the matter and radiation, and insert for the Hubble parameter using
Friedmann’s equation, H2 = 8πG(ρ̄r + ρ̄m)/3. We can change the
time-variable from t to y = a/aeq = ρ̄m/ρ̄r, which gives

∂2δk

∂y2 +
2 + 3y

2y(1 + y)
∂δk

∂y
− 3δk

2y(1 + y)
= 0. (1.38)

The growing mode of this equation is δk ∝ 1 + 3y/2, i.e. it is nearly
frozen. Sub-horizon matter density modes did not grown more than
by a factor of 5/2 during all of radiation-domination. Simply put, the
universe expands at a faster rate than density perturbations can collapse
in this period, and is known as the Mészáros effect [81]. Perturbations
on scales much larger than the horizon, on the other hand, have not
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yet been affected by causal physics and are free to grow as if it obeyed
the Friedmann equation. Recall that in a flat universe the Friedmann
equation is

H2 =
8πG

3
ρ. (1.39)

An overdensity δρ on top of the critical mean density ρc induces a local
positive curvature k > 0, which changes the Friedmann equation to

H2 =
8πG

3
(ρc + δρ) − k

a2 . (1.40)

The evolution of the super-horizon density perturbation is therefore given
by the evolution of the induced curvature;

δ =
δρ

ρc
=

(k/a2)
8πGρc/3

∝ 1
a2ρc

. (1.41)

Inserting ρc = ρ̄r ∝ a−4, since radiation makes up nearly all of the energy
budget in the early universe, gives δ ∝ a2 for super-horizon modes during
radiation-domination, both for DM and the coupled baryon-photon fluid.
The additional growth in the DM modes needed for non-linear structure
to form in time for us to observe it today therefore happened in the
period between shortly before matter-radiation equality at zeq ≈ 3400
and recombination at zrec ≈ 1100.

The growth of linear structure is not only stalled during radiation-
domination. In the late universe, with DE-domination, we are again in a
period in which the rate of expansion is larger than the linear growth rate.
Let us, for a final time, consider the Newtonian equations for sub-horizon
perturbations. At z ≈ 0.4, matter ceased to be the dominant energy
component in our universe, giving way to DE, which in the standard
model is given by a cosmological constant. Since DE does not cluster
(or at least, it does not seem to cluster very much), matter remains the
leading contributor to the gravitational potential. Inserting a(t) and
H for a largely DE-dominated universe, and defining the time-variable
τ = H0

√
ΩΛ0t, therefore gives

∂2δk

∂τ2 + 2
∂δk

∂τ
=

3
2

Ωm0
Ωλ0

e−3(τ−τ0)δk, (1.42)

where τ0 is a reference time. The right hand side of eq. (1.42) is quickly
suppressed by the exponential, and the remaining gives δk = constant.

1.5.1 The Matter Power Spectrum

The amount of structure in the universe is effectively quantified by the
matter power spectrum, which can be inferred from observations, such
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as the CMB or galaxy surveys. The matter power spectrum provides
a measure for the amount of clustering on a given scale, and can be
compared with the theoretical predictions of various models in order to
constrain them. Given the overdensity

δ(x) =
ρ(x) − ρ̄

ρ̄
, (1.43)

the matter power spectrum P (k) is defined as the Fourier transform of
the two-point correlation function ξ(r),

ξ(r) = 〈δ(x)δ(x + r)〉 , (1.44)

such that
P (k) =

∫
d3x ξ(x)e−ik·x. (1.45)

In a homogeneous and isotropic universe, the two-point correlation
function is independent of the direction of r, so that ξ(r) = ξ(r)|r=r,
i.e. the amount of correlation in the density field on a given scale is
only dependent on the separation, not the direction. The power is then
also independent of the direction, P (k) = P (k)|k=k. In terms of the
overdensity k-modes δk, the power spectrum is alternatively given by

(2π)3P (k)δ3(k − k′) = 〈δkδk′〉 , (1.46)

where δ3 is the 3D Dirac delta function, and 〈. . .〉 is an ensemble average.
In the linear regime we can evaluate the matter power spectrum

mode-by-mode, since the k-modes are decoupled, and therefore readily
use the results from perturbation theory to predict the properties of
P (k). For instance, superhorizon modes grow like δk ∝ a−2 until they
enter the horizon. However, the modes that enter during radiation-
domination become nearly frozen until matter-domination. The matter
power spectrum therefore has a turnover at the scale corresponding to
when k-modes started entering the horizon during matter-domination
instead of radiation-domination, i.e. the size of the horizon at matter-
radiation equality, kH . The power at k > kH is suppressed compared to
k < kH due to these modes entering the horizon early during radiation-
domination, which is exactly what is seen from observations, as shown
in figure 1.4. The shape of the matter power spectrum on large scales,
P (k < kH) ∝ kn, is from the primordial perturbations produced by
whatever physics operated in the very early universe, with n ≈ 0.96
[1], close to the n = 1 scale-invariant Harrison-Zeldovich spectrum of
fluctuations.
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Figure 1.4: The theoretical linear matter power spectrum for the standard
ΛCDM model (black) compared to observations, from ref. [20]. The
dotted line is the non-linear power spectrum.

1.6 The Non-Linear Universe

Linear theory accurately describes the evolution of structure for a large
portion of cosmic history, but when perturbations approach unity, δ ∼ 1,
non-linear methods are needed. This usually involves large numerical
simulations, but some initial insights can be obtained with a simple and
analytic model called the top-hat spherical collapse model [51, 101].

1.6.1 Top-Hat Spherical Collapse

In the top-hat spherical collapse approximation, we consider the universe
to be dominated by cold and collisionless matter with average density
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ρ̄. A spherical region of overdensity δ = 3M/(4πρ̄R3) − 1 with mass M
and physical radius R obeys eq. (1.13),

d2R

dt2 = −GM

R2 = −4πG

3
ρ̄(1 + δ)R, (1.47)

effectively behaving as a closed universe with a "local" scale-factor R.
Integrating once gives

1
2

(
dR

dt

)2
− GM

R
= E, (1.48)

where the constant E is the specific energy of the shell at radius R. The
radius is initially R(ti) = Ri, and is expanding with the background,
(dR/dt)i = HiRi. For E > 0 the spherical overdensity expands forever,
i.e. it never completely decouples from the background expansion to
undergo gravitational collapse. For E < 0, on the other hand, the
overdensity is gravitationally bound, and eq. (1.47) has the solution

R = A(1 − cos θ),
t = B(θ − sin θ),

δ =
9
2

(θ − sin θ)2

(1 − cos θ)3 − 1,

A3 = GMB2

(1.49)

Initially, the shell at R expands with the background universe, but slows
down and eventually comes to a halt before collapsing. The maximum
radius is called the turn-around radius Rta, and is reached at θta = π/2,
while the collapse happens at θc = 2π. A realistic overdensity, however,
is not perfectly symmetric and homogeneous, and will undergo processes
that brings it to virial equilibrium rather than to R → 0 and δ → ∞.
For cold and collisionless matter, the virial theorem states that the
gravitational potential and kinetic energy at virial equilibrium, Uvir and
Kvir, satisfies

Uvir = −2Kvir. (1.50)

Since at virial equilibrium E = U + K = Uvir/2 = −GM/Rvir, and at
the turn-around radius E = Uta = −GM/Rta, we have Rvir = Rta/2, i.e.
the radius of the gravitationally bound object at virial equilibrium is half
the turn-around radius, which is reached at θvir = 3π/2. The overdensity
at this time is δ ≈ 146, although the virial overdensity is instead often
defined as Δvir = ρ(3π/2)/ρ̄(2π) = 18π2 ≈ 178, i.e. the overdensity of
the virialized object at the time of collapse. Expanding eq. (1.49) to
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lowest order in time gives the growth of the overdensity as

δ(t) =
3
20

(
6t

B

)2/3
, (1.51)

which is the same time-dependence as in the linear regime. Evaluating
this linear overdensity at the collapse time tc = 2πB gives δc ≈ 1.69. This
number turns out to be very useful in many applications, for instance the
Press-Schechter formalism and its extensions for predicting the abundance
of halos of a particular mass, where δc is used as a criterion for when
modes in linear theory can be regarded as collapsed structures, i.e. as
DM halos [109, 100, 15].

There are several important lessons to be learned from this exercise.
Not all perturbations collapse and form halos. The initial overdensity
needs to be gravitationally bound, otherwise it will never decouple from
the background expansion. The overdensity of the final virialized object
is independent of the initial halo mass and size. The characteristic
density of DM halos as observed today therefore reflects the density of
the universe at the time of collapse, ρhalo ∼ Δvirρc. An overdensity of
order Δvir ≈ 178 is often used in numerical simulations as a threshold
for identifying and extracting information about halos from the density
field.

Gravitational collapse and the subsequent formation of realistic
halos is far from spherically symmetric, nor do they occur in isolation.
Halos interact with one another gravitationally over large distances and
merge into more massive structures, continually undergoing changes.
Furthermore, the universe contains more than just dark and collisionless
matter. Dark energy dominates the late universe, causing the universe to
expand at an accelerated pace, and baryonic physics also contributes to
the dynamical evolution of DM halos and galaxies. The analytic top-hat
spherical collapse model presented above does not include any of this,
and to properly model all of these effects, one must resort to numerical
simulations.

1.6.2 Numerical Simulations of Structure Formation

Perturbations on scales much larger than 1Mpc are still in the linear
regime today, but below a few Mpc matter has collapsed into highly
non-linear halos and filaments, creating the vast and intricate structures
of the cosmic web. Numerical simulations must be employed to study how
the initial seeds of the universe evolved from their linear perturbations,
through the quasi-linear regime, and finally into the non-linear structures
we observe today. Since DM appears to be largely cold and collisionless,
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Figure 1.5: A 15Mpc/h thick slice of the DM density distribution in
a large-scale cosmological simulation with boxsize 500Mpc/h at z = 0.
Credit: The Millennium Simulation Project.

numerical methods usually use a generalization of the gravitational two-
body problem—the N-body problem—to study the formation of DM
structures. These simulations are, rather unsurprisingly, called N -body
simulations, with the first application carried out using an analogue setup.
In 1941, Erik Helmberg exploited the fact that the intensity of light
decreases with distance r as 1/r2, just like Newton’s law of gravitation
[58]. He therefore used light bulbs to represent the gravitating bodies,
and computed the total "gravitational force" on each object by measuring
the total intensity of light at the position of the light bulb from all the
other light bulbs. A direct summation of the gravitational forces requires
O(N2) operations for each time-step of the simulation, but Helmberg’s
light bulb analogue reduces this task to O(N) operations, or rather,
measurements.

Computational astrophysics and cosmology has come a long way since
Helmberg’s analogue simulation, due to the advent of digital computers
and the exponential growth in computing power, as well as advancements
in numerical methods, in particular for computing the gravitational
potential. Today, N -body simulations running in parallel on modern
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supercomputers can use billions—even trillions [61, 108, 26]—of particles
in order to trace the evolution of the universe on Mpc and Gpc scales,
and the access to a large number of codes in the cosmological and
astrophysical community, such as RAMSES [142], GADGET [135, 134,
136], PKDGRAV [138, 137, 108], Gasoline [147, 148], and CON CEPT [30],
to name just a few, has made such simulations increasingly commonplace.
These codes use a variety of methods for computing the gravitational
forces acting on the N -body particles and integrating their paths through
time, but they all aim to solve, in some form or another, the geodesic
equation, which in the Newtonian limit is

d2x

dt2 + 2H
dx

dt
= −a−2∇Φ, (1.52)

where the Hubble rate acts as a friction term and takes into account the
effect of cosmic expansion on the particles’ motion. The most demanding
part of an N -body code is accurately computing the total gravitational
force on each particle, and there are many strategies for doing so efficiently,
reducing the force calculation from the O(N2) operations needed for
direct summation to O(N log N) or better. For instance, the GADGET
code uses a tree algorithm, which groups particles together into layered
nodes in a hierarchical way. Each node is subdivided into eight sub-nodes,
representing a subdivision of the simulated volume into cells with half
the cell-length of the parent cell, when the number of particles exceeds
a threshold, creating an oct-tree. The force contribution of a distant
group of particles is computed using their tree node rather than the
individual particles, with the depth in the oct-tree used determined
by the distance. RAMSES also uses an oct-tree to construct a grid
that adaptively increases the grid resolution in areas of interest, called
adaptive mesh refinement (AMR). However, instead of calculating the
gravitational force between each particle using the nodes of the oct-tree,
Ramses projects the particle masses onto the grid to get the density field,
which it then uses to solve the Poisson equation using multigrid methods.
Once the gravitational potential is computed, the gravitational force at
the position of each particle is obtained as simply the gradient of the
potential.

Cosmological N -body simulations show that DM halos are surprisingly
regular in their shapes, and are well-described by a universal halo profile,
called the Navarro-Frenk-White (NFW) profile [92, 91],

ρ(r) =
ρs

r
rs

(
1 + r

rs

)2 , (1.53)

where the parameters ρs and rs are the characteristic density and radius
of the halo. Alternatively, halos can be parameterized using a measure
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of the halo mass, such as M200 (defined as the total mass at r200, inside
of which the average density is 200 times the critical density of the
universe), and the concentration C200 = r200/rs. Simulations also show
that cosmic structure is consistent with a hierarchical formation history in
which low-mass objects collapsed first, which eventually merged to form
increasingly larger structures, such as groups of galaxies, galaxy clusters,
and superclusters. As we saw from the analytic top-hat spherical collapse
model considered in section 1.6.1, halos that collapse early are expected
to be denser than those that form later, since the average density of the
universe was higher, a feature that is confirmed by N -body simulations.

Many codes also include methods to account for gas dynamics. The
standard hydrodynamic equations describe mass continuity, conservation
of momentum, and conservation of energy;

∂ρ

∂t
+ ∇ · (ρv) = 0, (1.54)

∂v

∂t
+ (v · ∇)v = −1

ρ
∇P − ∇Φ, (1.55)

∂E

∂t
+ ∇ · [(E + P )v] = −ρv · ∇Φ, (1.56)

which gives the evolution of a fluid with density ρ, velocity field v,
total energy E = ρv2/2 + U , and pressure P , under the influence of
the gravitational potential. These can be expanded to include radiative
transfer and electrically conductive properties to produce the equations
for radiation hydrodynamics and magnetohydrodynamics, which are used
for e.g. describing the baryonic gases around galaxies or the hot plasma
of the Sun.

Numerical simulations of hydrodynamics are more computationally
demanding to solve than pure N -body simulations, since the equations
of motion are more complex and prone to instabilities unless extra care
is taken. Fortunately, after many decades of development, there is a
multitude of reliable numerical methods available today, many of which
can be categorised into two main types: The first is a Lagrangian-type
method called smoothed particle hydrodynamics (SPH) [46, 71], which
uses moving particles to represent the flow of fluid elements and to
carry information about the hydrodynamic and thermal properties of
the fluid. SPH methods are therefore a mesh-free way to simulate
hydrodynamics that naturally increases the local resolution in high-
density regions dynamically, since high mass densities simply corresponds
to high number densities of SPH-particles. Additionally, SPH essentially
reduces to an N -body scheme in the pressureless limit, making it a
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powerful tool for studying the evolution of gas in and around galaxies,
and is used in codes such as GADGET and Gasoline.

The second is an Eulerian approach that uses a grid, with the fluid
properties stored at each grid position, representing the average local
fluid element within a cell of finite volume. The change in the local fluid
quantities in each cell is usually obtained by evaluating the flux at each
inter-cell boundary, then applying the change due to these fluxes through
the interfaces at each time-step. This is called Godunov’s scheme [47],
and preserves the conservative properties of conservative equations, such
as the hydrodynamic equations, by passing the outputted flux of a cell
as the input flux to its neighboring cells, thereby yielding a net flux of
the whole domain that is determined solely by the boundary conditions.
For periodic boundary conditions, which is often used in cosmological
simulations, the overall flux is therefore zero. Source terms due to e.g.
gravity, however, break the conservative properties of the hydrodynamic
equations exploited by Godunov’s scheme, and must therefore be treated
separately, although they can usually be integrated in such a way as to
satisfy e.g. the conservation of total fluid energy and potential energy to
within some desired limit. Although grid-based methods do not reduce
to N -body simulations in the collisionless limit, the grid representing the
fluid can more easily be adaptively refined using more general criteria—
not just the fluid density—once AMR has been implemented. In this
thesis, scalar field models of DM is explored with hydrodynamics, using,
among other things, the RAMSES code, a grid-based code for performing
cosmological simulations with an implementation of Godunov’s scheme
and AMR.

1.7 Timeline of the Universe

We have so far considered some of the fundamentals of cosmology, working
our way through increasingly more structure and complexity—from the
smooth background universe to linear and non-linear structures. We
have also briefly mentioned a few important events that have taken place
in the early universe, such as the production of light elements during
BBN, or the formation of the CMB radiation. However, we have failed
to present a simple and clear overview of the most important epochs
and milestones of our universe, and their chronological order—a cosmic
biography, so to speak. In this section we aim to remedy this.

1.7.1 The Big Bang and the Very Early Universe

Presumably, the universe started at some point (either as a genuine
beginning of all time and space, or as some kind of rebirth and start of a
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Figure 1.6: A timeline of our universe, from the Big Bang to today.
Credit: Original version: NASA/WMAP Science Team; modified by
Cherkash.

new cosmic cycle), seemingly expanding from a spacetime singularity—
a Big Bang—for which no known physical laws apply. We believe
that the birth of our universe was followed by a very short period
of extreme expansion, lasting only about 10−32s, but during which the
universe expanded by more than 26 orders of magnitude and the initial
perturbations in our universe were established [35]. After this period of
cosmic inflation, the universe was filled with a hot, relativistic, cosmic
soup of particles that began to coalesce into heavier particles as the
universe cooled; free quarks and antiquarks ceased being pair-created
and annihilated, and an excess of quarks combined to form protons and
neutrons, i.e. baryons [64].

1.7.2 Neutrino Decoupling

When cosmic time reached around 1s, or redshift z ∼ 1010, neutrinos
ceased to effectively interact with the cosmic soup, becoming decoupled
and no longer in thermal equilibrium with the rest of the universe [64].
The neutrinos therefore became a kind of background of particles that
were largely "blind" to the rest of the universe.
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1.7.3 Electron-Positron Annihilation

Shortly after neutrino decoupling, at 1s − 10s, or z ∼ 1010 − 109, the
temperature of the cosmic plasma cooled to below the electron and
positron rest mass, and they started to become non-relativistic, no longer
being pair-created [64]. Just like the quarks, electrons and positrons
annihilated, but a small excess of electrons remained in equal number to
the protons, so the universe remained electrically neutral. The energy
released from the annihilated particles caused the cosmic plasma to heat
up slightly, so that after electron-positron annihilation, the temperature
T of the remaining particles is slightly larger than the temperature Tν of
the neutrino background that decoupled earlier and hence received none of
this energy. This temperature difference can be found by considering the
conservation of entropy before and after electron-positron annihilation;

Tν =
(

4
11

)1/3
T. (1.57)

1.7.4 Big Bang Nucleosynthesis

At around 10s, z ∼ 109, protons and neutrons became able to combine
into heavier elements without immediately being disintegrated by high-
energy photons. BBN—Big Bang Nucleosynthesis—began to proceed,
and produced a significant amount of helium-4, but also trace amounts of
deuterium, helium-3, and lithium-7, until about 103s, z ∼ 107, when the
rate of interactions became too low for the nuclear processes to continue
[139], as shown in figure 1.7.

1.7.5 Matter-Radiation Equality

Radiation dominated the energy content of the universe after inflation (or
whatever physics operated at those early times). After electron-positron
annihilation, photons were the dominant particle specie in terms of
energy, followed by relativistic neutrinos. However, the energy density
of radiation decreases faster than non-relativistic matter, and at some
point matter (baryons and dark matter) began to dominate instead. This
cosmic milestone is called matter-radiation equality, and happened at
redshift z ∼ 3400, about 50, 000 years after the Big Bang.

1.7.6 Recombination and the Formation of The Cosmic
Microwave Background

After electron-positron annihilation and BBN, the particles that remained
in thermal equilibrium were photons, protons (and some heavier elements),
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Figure 1.7: The relic abundances of light nuclear elements during standard
Big Bang nucleosynthesis (SBBN) until the freeze-out of all nuclear
reactions. The helium-4 mass fraction is denoted by Yp. The figure is
from ref. [107].

and electrons. These formed a tightly coupled fluid called the baryon-
photon fluid, since the photons could effectively scatter off the free
electrons and protons, and therefore had a very small mean free path.
At this time, the universe was opaque to photons, and the baryon-
photon fluid oscillated due to the high radiation pressure of the photons.
Eventually, at z ≈ 1100, roughly 380,000 years after the Big Bang, the
universe cooled sufficiently for electrons and protons to combine to form
neutral hydrogen, called recombination [35]. The resulting neutral atoms
could no longer interact freely with photons due to their excited states
being limited to quantized energy levels, causing photons to decouple
and their mean free path to become very large in a short amount of
time, essentially making the universe suddenly transparent. These free-
streaming photons became the CMB that we observe today, and the
imprint of the perturbations of the baryon-photon plasma at the time
of recombination has remained in the temperature and polarization
anisotropies of the CMB, which has been been—and continues to be—
used with much success to obtain valuable knowledge about our universe.
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1.7.7 The Dark Ages, Structure Formation, and Reionization

After recombination, the baryonic matter was no longer subject to the
high radiation pressure of the photons, and could therefore start to
collapse. Since DM decoupled long before baryons (presumably sometime
in the very early universe), it started collapsing earlier and established
potential wells that the baryons fell into, speeding up the formation of
visible structures. However, for a long time the universe was devoid of
visible light, since the CMB signal became redshifted to the infrared
and no stars and galaxies had yet formed. This period is called the
dark ages. Eventually, during z ∼ 20 − 6, between 150 million to one
billion years after the Big Bang, matter became sufficiently collapsed
and dense to create stars, which became a source of new high-energy
photons that reverted the neutral hydrogen gas from recombination into
an ionized plasma, a so-called reionization of the universe [90], although,
due to the low matter density at this time, the universe remained largely
transparent.

1.7.8 Dark Energy Domination and Accelerated Cosmic
Expansion

Matter dominated the energy content of our universe, and hence cosmic
expansion, from matter-radiation equality until very recently. Since
z ≈ 0.4, or around 10 billion years after the Big Bang, a new form of
energy has become the dominant component and is causing an accelerated
cosmic expansion. This unknown form of energy is what we call DE—
dark energy—which is well-described by a cosmological constant, and
remains the dominant energy component in our universe today, 13.8
billion years after the Big Bang.

1.8 Open Questions

Although the current standard model of our universe—the ΛCDM model—
has proven to be extremely successful in explaining phenomena over a
vast range of scales throughout most of cosmic history, there are aspects
of the model that are either not entirely in agreement with observations,
seemingly internally inconsistent, or that lacks a fundamental theoretical
description. Some to these issues might be resolved within ΛCDM
through a deeper understanding of the model, while others will likely
require a more complete theory of gravity and particle physics. In the
following we summarize some of the open questions in the standard model
of the universe.
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1.8.1 Dark Matter

DM is the dominant matter component in our universe, making up
about 85% of all matter, and 25% of the total energy budget in our
universe today. Although the simplest model for DM—the cold and
collisionless CDM model—provides excellent agreement with observables
on nearly all scales, it does not tell us what DM is, and is therefore a
phenomenological model rather than a microphysical one. An enormous
effort is currently being carried out by the astrophysical and cosmological
communities in observational, experimental, and theoretical physics
to further our understanding of the universe, and one of the central
aims of this effort is to find probes for DM. These include probes for
DM interactions with standard model particles in particle colliders and
scattering experiments, indirect detections from DM annihilation and
decays, and the gravitational influence of DM on galactic and cosmological
structures. A particularly promising and popular class of DM candidates
are weakly interacting massive particles (WIMPs), which have masses
in the range mweak ∼ 10GeV − TeV and are coupled to standard model
particles via the weak interaction. WIMPs are found in many particle
theories beyond the standard model, for instance the lightest neutralino
in supersymmetry, and fulfill most of the observed requirements for DM,
including the correct relic abundance via thermal production. However,
no reliable signature of a WIMP has yet been observed, and limits on
the parameter space are approaching the neutrino floor, below which any
potential WIMP signal will be difficult to distinguish from neutrinos from
e.g. the Sun, the atmosphere, and supernovae [115]. It is therefore still an
open question what kind of particle DM is, or if it even is a new, unknown
elementary particle. In fact, our ignorance about the fundamental nature
of DM can be illustrated by the sheer scale of the possible mass range for
DM, from 10−22eV for ultra-light DM, to primordial black hole DM with
masses up to hundreds, or even thousands, of solar masses M� ∼ 1066eV
[42, 146]. Today, what we know with reasonable certainty is that DM

• makes up around 85% of the all matter, and 25% of the total energy
in our universe today,

• clusters largely as though it is cold and pressureless,

• is very weakly coupled to the visible sector,

• is unlikely to have been baryonic in nature during BBN or the time
leading up to the CMB2.

2It is possible that all or some fraction of DM is made up of primordial black
holes, which might have been produced from baryonic matter in the early universe,
which would technically make DM "baryonic".
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1.8.2 Dark Energy and the Fine-Tuning Problem

DE is the dominant form of energy in our universe today, making
up around 70% of the total energy budget, and is the driving force
behind the late-time accelerated cosmic expansion. However, like DM,
its fundamental nature is a complete mystery. In the standard ΛCDM
model, DE is a cosmological constant, which is allowed for in Einstein’s
field equations. In fact, there is nothing wrong about a cosmological
constant being a fundamental quantity of nature, but it might also be
a signature of new physics. There are many possible mechanisms that
can produce DE, such as modified theories gravity, vacuum energy, or
even exotic DM models, but these suggestions usually give rise to a
fine-tuning problem. For instance, vacuum energy in quantum field
theory has the same properties as a cosmological constant, but the
expected contribution from known physics, such as the zero-point energy
of quantum fields or the Higgs condensate, gives a value for DE that is
many orders of magnitude larger than observed [7]. New physics should
therefore somehow provides a cancellation of many orders of magnitude
in vacuum energy, leaving only a small amount of energy that we observe
as a cosmological constant, but this requires a high degree of fine-tuning
of the model parameters.

1.8.3 Cosmological Initial Conditions

All structure we observe today must have been seeded by some mechanism
around the time of the Big Bang, providing the initial conditions of our
universe, but we do not know what this mechanism was. The currently
accepted picture is inflationary theory, which proposes that shortly after
the Big Bang, the universe experienced an incredible burst of expansion
in an extremely short period of time, expanding by at least a factor of
1026 in a period of 10−32 seconds [35]. Such a scenario provides a unified
solution to several puzzling observations, for instance, that the universe
appears to be nearly flat, and that the whole of the CMB is in nearly
perfect thermal equilibrium, despite the fact that regions separated by
more than around 1◦ on the sky cannot have been in causal contact
in the standard Big Bang scenario. Inflationary theory also provides a
mechanism for generating the initial perturbations in our universe by
quickly stretching tiny quantum fluctuations to classical scales, which
remained after inflation ended. The driving force behind the inflationary
epoch is postulated to be one or more co-called inflaton fields, although
no traces of any such field has been observed.
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1.8.4 The Hubble Tension

The Hubble constant H0 describes the current rate of cosmic expansion,
and there are two principle ways of measuring it to a high level of precision.
The first is to observe the redshift and luminosity of so-called standard
candles—astronomical objects of known luminosities, such as Cepheid
variables and type Ia supernovae. A distance ladder is constructed by
calibrating increasingly more distant standard candles, starting with e.g.
parallax as the first "rung" of the ladder, to map the apparent distances
to objects as a function of their redshifts, which can then be used to
trace the expansion history, and gives H0 = (73.0 ± 1.0)km/s/Mpc [111].
However, this kind of direct measurement is limited to relatively low
redshifts, around z � 2. The other principle way to find H0 is to match
the theoretical predictions for the CMB within the standard ΛCDM
model to the observed CMB signal, from which the Hubble constant is
inferred to be H0 = (67.4±0.4)km/s/Mpc [1]. This indirect measurement
of H0 depend crucially on the physics at high redshifts when the CMB
was formed, z > 1000. The discrepancy between these direct and indirect
probes (corresponding to late-and early-time probes in the context of
the CMB signal, and the distance ladder and standard candles) is more
than 5σ, and might be due to systematic errors in their respective
measurements. If, on the other hand, the tension is real, it might instead
hint at physics beyond the standard model. Many models of both DE
and DM are in fact motivated by trying to alleviate this interesting
tension, although the models considered in this thesis are not.

1.8.5 Small-Scale Structure

While ΛCDM provides an accurate description of the structures in our
universe over a large range of scales, there appears to be a possible
tension between the theoretical predictions of the model and observations
on the scale of low-mass halos [149, 34, 18]. N -body simulations predict
NFW density profiles for DM halos, which diverge near the center as r−1,
whereas observations instead favor a flatter central slope, i.e. halo cores
rather than cusps [98], as shown in figure 1.8. Additionally, simulations
predict a high abundance of low-mass halos in our universe, in contrast to
the limited number observed in the Local Group. CDM therefore seems to
produce too much small-scale structures, and although including baryonic
physics in simulations has been found to alleviate these discrepancies
somewhat, it is still an area of debate whether or not they are indications
of a real underlying issue of the ΛCDM model. An intriguing possibility is
for these discrepancy to be due to properties of DM beyond the standard
cold and collisionless model. After all, DM is the dominant matter
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Figure 1.8: Scaled DM rotation curves and density profiles from
observations, indicating the presence of DM cores, compared to the
cuspy NFW profiles predicted by DM-only simulations. The figure is
from ref. [98].

component in the universe, hence DM properties such as warmness, self-
interactions, and even wavelike dynamics might affect the distribution of
matter in halos that can be observed.

1.8.6 Matter-Antimatter Asymmetry

In the first few moment after the Big Bang, the universe was filled with
a hot plasma with pairs of matter and antimatter particles continually
being created and annihilated. As the universe expanded and cooled
down, the various species of matter (and antimatter) became non-
relativistic and ceased to be pair-created. Nearly all of matter and

31



1. The Standard Model of the Universe

antimatter then annihilated, except for a small fraction of matter due
to an imbalance between matter and antimatter in our universe, which
makes up everything we observe around us today. However, our current
standard model of physics provides no clear explanation for why our
universe had such an imbalance.

1.8.7 Quantum Gravity

Our most fundamental theory of particle physics—describing the nature
of particles and their interactions—is formulated within the framework
of quantum field theory. Our best theory of gravitation—Einstein’s
general theory of relativity—on the other hand, is a classical theory,
which is incomplete in regions where the effects of gravity are very strong,
such as in the vicinity of black holes or in the very early universe. It
is therefore desirable to promote the classical theory of gravity to a
quantum theory, which in turn might lead to a unified quantum theory
of all four fundamental forces of nature. However, current efforts to
formulate gravity using the principles of quantum field theory have thus
far failed, suggesting that quantum gravity might need to be formulated
within a new framework, such as loop quantum gravity or string theory.

Many of these open questions may be related to one another. For
instance, a quantum theory of gravity might help us better understand
the origin of the structure in our universe, while a theory beyond the
standard model of particles might explain both the asymmetry of matter
and antimatter, and the nature of DE and DM. In this thesis, we
are instead largely concerned with the description of DM beyond the
CDM paradigm, specifically scalar field DM, and how that affects the
growth and distribution of matter in the universe, including small-scale
structures.
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Chapter 2

Ultra-light Dark Matter
The continued non-detection of a WIMP candidate for DM increasingly
opens up the possibility that DM is another kind of particle entirely, and
that other lines of investigation should be considered. Ultra-light scalar
and pseudo-scalar fields are an intriguing alternative in this regard, since
at least one fundamental scalar field is known to exist—the Higgs field—
and others arise in theories beyond the standard model, such as the axion
as a solution to the strong-CP problem in quantum chromodynamics,
or as a generic prediction of string theory [75]. For masses in the range
10−22eV to 1eV, ultra-light DM (ULDM) exhibit wave-like behaviour at
astrophysical scales, and might therefore also offer a solution to the small-
scale issues of ΛCDM that CDM-like candidates such as WIMPs struggle
to explain, as well as give rise to a rich phenomenology (depending on
the mass and interactions of the field) that can affect DM structures
on large and small scales. In this section we review some of the basic
theoretical framework and features of ULDM that are relevant for the
work carried out during this PhD.

2.1 Condensation and the Non-Linear Schrödinger
Equation

The wave-like dynamics of ULDM become important when the de Broglie
wavelength λdB is larger than the inter-particle distance l of DM particles
[43],

λdB ∼ 1
mv

> l =
(

m

ρ

)1/3
, (2.1)

which in terms of the mass is

m <

(
ρ

v4

)1/3
. (2.2)

If we insert the characteristic density and velocity of DM in halos of
mass M at redshift zvir,

ρ200 = 200ρc ∼ 1.95 × 10−27(1 + zvir)3 g/cm3, (2.3)

v200 ∼ 85
( M

1012M�

)1/3√
1 + zvir km/s, (2.4)
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we get

m < 2.3(1 + zvir)3/8
( M

1012M�

)−1/4
eV. (2.5)

Below this mass, a DM scalar field is hypothesised to transition into a
phase in which the occupation number of a coherent state described by a
single wavefunction becomes very large. A more illustrative description of
this phase can be obtained by considering the grand canonical ensemble
for a homogeneous gas of bosons. Below a critical temperature Tc, a
macroscopic fraction of particles will start to aggregate in the quantum
state of minimum energy, undergoing a phase transition until at T = 0
the whole system shares the same quantum state and wavefunction [104,
106]. This phenomenon is called Bose-Einstein condensation (BEC) [16,
37], and is a unique phase of matter in which the quantum mechanical
effects of the system become apparent in the macroscopic realm. In
fact, BECs have been an active active area of research in condensed
matter physics—both theoretically and experimentally—for decades. For
a homogeneous and ideal bosons gas, the fraction of particles in the BEC
is

n0
n

= 1 −
(

T

Tc

)3/2
, (2.6)

where the critical temperature Tc is

Tc =
2π

m

(
n

ζ(3/2)

)2/3
, (2.7)

and n is the total particle number density, n0 is the number density of the
condensate, and ζ(x) is the Riemann zeta function. Following a procedure
familiar from condensed matter physics, the equations of motion for a
BEC can be derived from the many-body quantum Hamiltonian of the
system

Ĥ =
∫

d3r Ψ̂†
[

− ∇2

2m
+ V

]
Ψ̂ +

g

2

∫
d3r Ψ̂†Ψ̂†Ψ̂Ψ̂, (2.8)

where Ψ̂ is the second quantized boson field operator, V is an external
potential, and g is the coupling strength of an effective two-body contact
interaction. In the Heisenberg picture, the equation of motion for the
field operator is given by

i
∂Ψ̂
∂t

= [Ψ̂, Ĥ] =
(

− ∇2

2m
+ V

)
Ψ̂ + gΨ̂†Ψ̂Ψ̂. (2.9)

Solving the full many-body problem is challenging, but in the BEC
phase, where the majority of particles are in the condensate, a mean-field
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approximation due to Bogoliubov can be used [13]. The field operator is
separated into a classical field ψ and quantum perturbations δψ̂,

Ψ̂ = ψ + δψ̂, (2.10)

where the classical component satisfies ψ = 〈Ψ̂〉 and is the wavefunction
of the condensate, while the perturbations have 〈δψ̂〉 = 0 and describe
excitations on top of the BEC, i.e. the ground state. Furthermore,
n0 = |ψ|2, and as T → 0 we have n0 ≈ n, where the approximate
sign is due to an effect called quantum depletion when interactions are
present, which forces a small fraction of particles out of the condensate
even at absolute zero [104, 70]. For our purposes, however, this effect
is negligible. In weakly interacting and dilute bose gases well below the
critical temperature, the mean-field approximation for the equation of
motion of the condensate wavefunction is therefore

i
∂ψ

∂t
=

(
− ∇2

2m
+ V + g|ψ|2

)
ψ, (2.11)

and is known as the Gross-Pitaevskii equation [50, 105], or the non-linear
Schrödinger equation (NLSE).

For a DM scalar field to be described by a macroscopic shared
wavefunction, it must presumably have been produced in the early
universe in such a way that the field was either initially in the
coherent state, for instance via the misalignment mechanism; or the
field thermalized and underwent a phase transition, possibly through
gravitational interactions or self-couplings. There is, however, no
consensus on the precise nature of Bose-Einstein condensation in scalar
field DM, and under what circumstances scalar DM particles can form a
BEC with long-range order, described by a single (classical) wavefunction
[76, 144, 126, 125, 40, 32, 52, 10, 75]. In the following, we simply assume
that such a description is valid for scalar field DM.

2.2 Ultra-light Scalar Fields in Cosmology

In cosmology the potential of interest is the gravitational potential, hence
we replace V = Φ. The NLSE can alternatively be derived from the
action of a minimally coupled scalar field, for instance a complex scalar
field with the Lagrangian

L =
1
2

gμν∂μΨ∗∂νΨ − 1
2

m2|Ψ|2 − 1
2

gm2|Ψ|4, (2.12)

which, upon defining Ψ = ψe−imt/
√

m and taking the non-relativistic
limit, also yields the NLSE. A real scalar field, with Ψ = Ψ∗, is also
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often considered, for which the NLSE is instead obtained by the field
redefinition Ψ = (ψe−imt + ψ∗eimt)/

√
2m. The relativistic Lagrangian

provides a description of ULDM in the regime where the non-relativistic
NLSE is invalid, and is necessary for studying ULDM at early-times.
The background evolution of the scalar field Ψ in an expanding universe
is

∂2Ψ
∂t2 + 3H

∂Ψ
∂t

+ m2Ψ + 2gm2|Ψ|2Ψ = 0. (2.13)

In the free-field limit of a real scalar field, in a universe with scale factor
a ∝ tp, the above admits the solution [75]

Ψ = a−3/2(t/ti)1/2[C1Jn(mt) + C2Yn(mt)], (2.14)

where Jn and Yn are Bessel functions of the first and second kind,
respectively, ti is the initial time, and n = (3p − 1)/2. At early times
when H � m, the scalar field is overdamped and frozen due to the large
Hubble friction. Such a field has equation of state w = −1, and hence
behaves as DE. In the complex case, we instead find a stiff era with w = 1
[69]. The energy density of this phase goes like ρ ∼ a−6, such that the
universe is dominated by the self-interacting scalar field during this time.

Eventually the expansion rate slows such that H � m, whereupon the
field instead becomes underdamped and begins to oscillate. In the free-
field limit the frequency of the oscillations is ω = m, and the equation of
state oscillates between −1 < w < 1, but sufficiently fast that it averages
to 〈w〉 = 0, and therefore evolves as matter. The interacting case is a
bit more complicated, since then the field oscillations also depend on the
self-interaction and the field itself [77, 69],

ω = m

√
1 +

2g

m
|Ψ|2. (2.15)

The interaction energy dominates initially, causing the scalar field to
behave as radiation, w = 1/3. Only once the field is sufficiently diluted
and the interaction energy becomes subdominant does the self-interacting
ULDM behave as matter, although with some remaining interaction
pressure. This can be seen quantitatively by evaluating the equation of
motion and averaging over oscillations [69];

〈|∂tΨ|2〉 = m2 〈|Ψ|2〉 + 2gm2 〈|Ψ|4〉 . (2.16)

The resulting averaged background energy density and pressure is

〈ρ̄〉 = m 〈|Ψ|2〉 +
3
2

g 〈|Ψ|2〉2
, (2.17)

36



Ultra-light Scalar Fields in Cosmology

〈P̄ 〉 =
1
2

g 〈|Ψ|2〉2 =
m2

18g

(√
1 +

6g 〈ρ̄〉
m2 − 1

)2
. (2.18)

The interaction-dominated limit g 〈ρ̄〉 /m2 � 1 gives the radiation-like
pressure 〈P̄ 〉 = 〈ρ̄〉 /3, while g 〈ρ̄〉 /m2 � 1 gives the non-relativistic
pressure 〈P̄ 〉 = g 〈ρ̄〉2

/2m2. A very simple approximation for the
equation of state in these two regimes, accurate to within 20% − 30%, is
[53]

w0 =
P̄

ρ̄
=

1
3

1
1 + a3/3w0

, (2.19)

where w0 is the non-relativistic equation of state today.
Returning to the non-relativistic regime, the NLSE can be recast in

a hydrodynamical form by substituting for the wavefunction

ψ =
√

neiS =
√

ρ

m
eiS , (2.20)

where ρ = mn is the mass density, and the velocity field is defined by
v = ∇S/m, which gives the Madelung equations [74],

∂ρ

∂t
+ ∇ · (ρv) = 0, (2.21)

∂v

∂t
+ (v · ∇)v + ∇

(
gρ

m2 − 1
2m2

∇2√
ρ√

ρ
+ φ

)
= 0. (2.22)

These equations describe the conservation of mass and momentum of
the condensate fluid, but differs from standard hydrodynamics by the
absence of an energy equation, the presence of a self-interaction pressure
(the same as we found in the non-relativistic limit above),

PSI =
gρ2

2m2 , (2.23)

and a so-called quantum potential

Q = − 1
2m2

∇2√
ρ√

ρ
. (2.24)

Both the NLSE and the Madelung equations have been widely used in
cosmology to study the formation of structure in models of ULDM, such
as the properties of low-mass halos and galaxies [80, 48, 14, 24, 25, 113,
60, 151, 8, 29, 65] to simulations [119, 120, 121, 87, 88, 145, 95, 85, 86, 96,
78]. At large scales they reproduce the successes of CDM, behaving as a
dark, cold, and collisionless matter component, while at small scales the
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Figure 2.1: Snapshots from CDM (upper) and FDM (lower) simulations
at z = 5.5 and FDM mass m = 2.5 × 10−22eV. Shown are (a) projection
plots of the simulated domain, (b) projections of the DM, gas and star
components in a filament, and (c) a slice through a filament. The figure
is from ref. [88].

wave-like behaviour, as well as interactions if present, become important.
In the free-field limit, where g = 0, only the quantum potential remains
as a dispersive term in the Madelung equations, and can be regarded as
an expression of the Heisenberg uncertainty principle, i.e. the reluctance
of the wavefunction to become localized at any given position, which is
why this kind of DM is often called Fuzzy DM (FDM). The quantum
potential allows the FDM field to resist gravitational collapse at the scale
of the particles’ de Broglie wavelength. In the center of FDM halos, the
density profile transitions to a soliton solution, which is cored rather
than cuspy. Furthermore, FDM produces interference patterns in halos
and filaments due to its wave-like nature, a feature that is very distinct
from CDM, as seen in figure 2.1.

In an expanding universe, the linear equation for the self-gravitating
FDM overdensity in Fourier space is [75]

∂2δk

∂t2 + 2H
∂δk

∂t
=

[
4πGρ̄ − k4

4m2a2

]
δk, (2.25)

from which we identify a k-dependent effective sound speed due to the
quantum potential that is solely given by the mass of the ULDM particle,

c2
s =

k2

4m2a2 , (2.26)

38



Superfluidity

which suppresses the growth of small-scale structures. At hydrostatic
equilibrium, halos of mass M have core radii of order [80]

RFDM =
10

GMm2 . (2.27)

i.e. more massive halos produce smaller solitonic cores, a feature that
has been confirmed by large scale simulations [21]. FDM is therefore
a DM candidate that might provide a dark-sector solution for some
of the small-scale issues of ΛCDM, although recent bounds from the
Lyman-alpha forest seem to rule out the canonical mass range needed to
do so [114].

ULDM with self-interactions, usually in the limit where the quantum
potential can be largely neglected, called the Thomas-Fermi limit, is also
an interesting DM alternative that might help explain the small-scale
discrepancies of ΛCDM. We refer to this kind of DM as self-interacting
Bose-Einstein condensate (SIBEC) DM, and a useful relation can be
obtained by considering SIBEC-DM halos at hydrostatic equilibrium,
which gives the density profile [48]

ρ(r) = ρ0
sin(Ar)

Ar
, (2.28)

where A =
√

4πGm2/g, and vanishes at

r = Rc =
√

gπ

4Gm2 . (2.29)

SIBEC-DM halos are therefore also naturally cored due to the self-
interaction pressure, although realistic halos do not vanish completely
at Rc, but instead transition to a NFW envelope [54]. Unlike FDM,
the hydrostatic core radii of SIBEC-DM halos are independent of the
halo masses and central densities, and are instead only given by the
model parameters, g/m2. The universal core radius Rc is therefore an
alternative way to parameterize SIBEC-DM in the Thomas-Fermi limit,
and is related to the equation of state today in eq. (2.19) by

w0 ≈ 10−15
(

Rc

1kpc

)2
. (2.30)

2.3 Superfluidity

A pressure solely dependent on the model parameters and local density
(i.e. no thermal dependence) is not the only special feature of SIBEC-DM.
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BECs with self-interactions are superfluids, which at finite temperatures
behave in very peculiar ways, unlike anything we expect from conventional
fluids.

To see why interactions are necessary for BEC superfluids, lets recount
one of their unique properties; that they can flow past obstacles without
dissipating energy. If we imagine a heavy obstacle moving at constant
velocity v through a condensate in its ground state, it can be shown that
in the frame of the obstacle the energy needed to produce an excitation in
the condensate is εp −p ·v, where p and εp are the momentum and energy
of the excitation. However, in the frame of the obstacle, its potential
is static, hence it cannot transfer energy to the condensate, making it
impossible for excitations to spontaneously appear for velocities smaller
than

v < vc = min
(

εp

p

)
. (2.31)

Only for v > vc can excitations be produced in the BEC fluid that
can contribute to dissipation. The quantity vc is therefore called the
critical velocity, and eq. (2.31) is known as the Landau criterion for
superfluidity [66]. The excitations in an ideal BEC are just free particles
with εp = p2/2m, which gives vc = 0. Ideal BECs are therefore not
superfluid, as any motion of an obstacle can cause dissipation. In an
interacting BEC, on the other hand, the elementary excitations of the
condensate are no longer free particles, but collective modes, or quasi-
particles. For the system given by the Hamiltonian in eq. (2.8), the
energy spectrum of the quasi-particles is

εp =

√
p2

2m

(
p2

2m
+ 2gn

)
, (2.32)

whose long-wavelength excitations are sound modes with εp = csp, where
the sound speed is cs =

√
gn/m. The critical velocity is in this case

vc = cs > 0, hence interacting BECs are superfluids.
At T = 0, a SIBEC is entirely superfluid and well-described by the

NLSE for the condensate. At finite temperatures, on the other hand,
the system is not entirely superfluid. There is a thermal component,
composed of thermal excitations that carries thermal energy and entropy,
and can experience dissipation, just like a regular fluid. In fact, a
finite-temperature superfluid is perhaps best described as a two-fluid
system; one component is superfluid (in the usual sense); the other
component behaves as a conventional, or normal, fluid. In many systems,
the superfluid and non-superfluid components correspond roughly to the
condensate and non-condensate fractions, but not exactly. For instance,
at T → 0, quantum depletion of the condensate due to interactions
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causes the bose gas to not be entirely Bose-Einstein condensed, i.e. share
a single coherent wavefunction, but it can still be entirely superfluid.
In strongly interacting liquids, such as superfluid 4He, the depletion is
even stronger and the condensate fraction never exceeds 10%, while the
superfluid fraction approaches unity. In weakly interacting fluids the
distinction between the condensate and superfluid fraction is small, and
the two terms are often used interchangeably.

The two-fluid hydrodynamic equations for a finite-temperature
superfluid, in the Thomas-Fermi limit, are [141, 23]

∂ρ

∂t
+ ∇ · j = 0, (2.33)

∂S

∂t
+ ∇ · (Sun) = 0, (2.34)

∂us

∂t
+ ∇(μ +

1
2

u2
s) = −∇Φ, (2.35)

∂j

∂t
+ ∇P + ρs(us · ∇)us + ρn(un · ∇)un

+ us[∇ · (ρsus)] + un[∇ · (ρnun)] = −ρ∇Φ.
(2.36)

The normal fluid component has density ρn, velocity un, and transports
both mass and thermal energy, while the superfluid component has
density ρs, a velocity field us, and carries no entropy. The total mass
density and momentum is the sum of the two components, ρ = ρn + ρs

and j = ρnun + ρsus, and the fluid pressure is P , the entropy density S,
temperature T , and μ = [P + U − ST − 1

2 ρn(us − un)2]/ρ.
The partially independent motion of the superfluid and normal fluid

components allows for mass and entropy to move separately. This is
best seen if we introduce the net mass velocity v = j/ρ, the counterflow
velocity w = us − un, and insert into the continuity equations for mass
and entropy,

∂ρ

∂t
+ ∇ · (ρv) = 0, (2.37)

∂S

∂t
+ ∇ · (Sv) − ∇ ·

(
Sρs

ρ
w

)
= 0. (2.38)

The entropy equation has an extra flux term due to the counterflow of
the superfluid and normal fluid, and is therefore known as thermal coun-
terflow. There is an additional sound mode associated with counterflow,
called second-sound, which propagates entropy and temperature pertur-
bations rather than density perturbations. Furthermore, the equation for
the counterflow ∂w/∂t contains a term S∇T/ρn, driving the counterflow
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to be directed towards higher temperatures, making superfluids very
efficient at redistributing thermal differences. However, the counterflow
cannot become arbitrarily large, because the Landau criterion also ap-
plies to the relative motion of the superfluid and normal fluid, where the
thermal excitations play the role of obstacles in the superfluid. This effect
is not included in the two-fluid hydrodynamic eqs. (2.33)-(2.36), and
must be added separately as an additional mutual friction term (see e.g.
refs. [49, 36, 128, 129, 31, 131]). The critical velocity for the counterflow
is smaller than the sound speed cs, though for weak interactions and
temperatures well below Tc, the difference is small [93].
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Summary and Outlook
This thesis represents an effort to further our understanding of self-
interacting scalar field models of DM. Several variants of this kind of
DM have been proposed as alternatives to CDM in order to alleviate the
small-scale tensions in ΛCDM, and the addition of self-interactions has
important consequences for the phenomenology of scalar field DM. As we
saw in Chapter 2, self-interactions give rise to a mean-field potential in
the NLSE, and a non-thermal pressure in the hydrodynamic formulation,
that modifies the central structure of DM halos, creating cores rather
than cusps, as well as changing the properties of DM at early times. At
finite temperatures, the self-interacting scalar field exhibits superfluidity
that can produce very different features than what one would naively
expect from standard hydrodynamics. The four papers produced during
this PhD deal with these aspects of scalar field DM, and in the following,
we give a short summary of these papers.

3.1 Summaries of Papers

Paper I

This paper was motivated by the superfluid DM model presented in ref.
[9], which was constructed to give rise to modified Newtonian dynamics
(MOND) [84, 82, 83] inside galaxies. The MONDian force, which has
been shown to reproduce observed scaling relations in galaxies that are
not easily explained in ΛCDM [41], such as the baryonic Tully-Fisher
relation [79] that relates the observed asymptotic circular velocity vc

in galaxies with their baryonic mass Mb by Mb ∝ v4
c , comes about

in this model when DM condenses inside galaxies and the superfluid
phonons propagate an extra force between visible matter. The advantage
of this realization of MOND is that outside galaxies, where MOND
generally fails to reproduce observations, the scalar field DM does
not propagate the extra force and behaves as CDM. However, for the
superfluid phonons inside galaxies to be stable, ref. [9] assumed that
the DM superfluid was at finite temperatures. In Paper I we therefore
considered how the growth of structure could be affected by such a
finite temperature superfluid by performing 1D simulations of spherically
symmetric superfluid overdensities using two-fluid hydrodynamics, eqs.
(2.33)-(2.34), starting from tiny initial perturbations and simulating until
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the non-linear regime. The models considered in Paper I are not strictly
the same as the one proposed in ref. [9], since their MONDian superfluid
cannot come from a weakly interacting scalar theory with simple 2-body
or 3-body interactions. Instead they serve as simplified prototypes for
superfluid DM at finite temperatures. We found that even in the presence
of a large thermal pressure, which would significantly slow down the
growth of structures in a conventional fluid, the thermal counterflow of the
superfluid was able to effectively redistribute the thermal energy during
collapse, making the halo centers colder than expected. The superfluid
halos could therefore collapse largely unimpeded by the thermal pressure.

Paper II

In this paper we continued to explore the effect of superfluid thermal
counterflow in self-interacting scalar field DM, this time for a gravitational
drag effect called dynamical friction, generalizing the results of ref. [8] to
finite temperatures in the Thomas-Fermi limit. A massive object moving
through a background medium, such as a cluster of stars or a gas cloud,
creates an overdensity that trails it due to its gravitational interaction
with the background, which in turn exerts a net gravitational force on
the massive body opposite its direction of motion. The nature of this
gravitational drag force depends on how the background medium responds
to the initial perturbing body, and is different for e.g. collisionless
particles [22, 89, 28, 11], ideal gases [99, 118, 67, 68, 143], relativistic
fluids [5, 63], and magnetized fluids [117, 123]. Since DM dominates the
matter content in the universe, in particular inside galaxies, dynamical
friction can be used as an indirect probe for DM (for instance FDM
as was done in ref. [65]), even if DM is completely decoupled from
the visible sector, since the dynamical friction only operates via the
gravitational force. In Paper II we derived equations for the dynamical
friction force on an object moving through a superfluid background
medium from linear perturbation theory that we tested against idealized
hydrodynamic simulations, which confirmed the linear results. We found
once again the thermal counterflow to effectively redistribute the thermal
energy in such a way that the DM superfluid could respond to the massive
perturbing body moving through it as though it were at zero temperature.
The resulting gravitational drag in a superfluid can therefore become
several orders of magnitude larger compared to a normal fluid with
the same pressure forces. These results were applied to the Fornax
dwarf spheroidal’s (dSph) globular clusters (GC), under the assumption
that the Fornax dSph is dominated by superfluid DM. Scalar field DM
with sufficiently strong interactions to support the Fornax dSph’s core
through the interaction pressure alone results in large decay times for
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the GCs’ orbits that are consistent with observations. However, if the
Fornax dSph core is not entirely supported by self-interactions, either
because there is a thermal contribution to the DM hydrostatic pressure,
or there is some other mechanism responsible for the core (both of which
would suggest a lower value for the DM self-interaction strength), then
linear theory suggests that the dynamical friction acting on the GCs
due to the background DM superfluid is too large for the GCs’ orbits
to have survived for as long as they have, even for superfluid DM at
finite-temperature where the thermal pressure can be much larger than
the interaction pressure.

Paper III

In this paper we shifted our focus to zero-temperature scalar fields with
self-interactions—the case usually considered in the literature, and that
we refer to as SIBEC-DM—and tested how well large-scale observables
constrains the self-interactions of the field. The scalar field was modeled
as a perfect fluid with a time-dependent equation of state and sound
speed specific to SIBEC-DM, describing the early radiation-like and late
non-relativistic eras from refs. [77, 69], i.e. eq. (2.18) (similar to what
was done in ref. [57] for an effective FDM equation of state and sound
speed). The linear equations from cosmological perturbation theory with
this equation of state were implemented into the Boltzmann code CLASS
[12], and constraints on the self-interaction obtained with the Markov
Chain Monte Carlo code MontePython [4, 17], using CMB temperature
and polarization power spectra from the Planck 2018 data release [1],
BAO and growth rate measurements from BOSS [2], and the Pantheon
compilation of SNIa distances [122]. We found that a self-interaction
corresponding to Rc > 1kpc, which is the parameter space generally
considered necessary in order to explain the core-cusp problem in ΛCDM,
to be ruled out at 2.4σ, or 98.5% confidence. The canonical parameter
space for this kind of DM is therefore weakly ruled out by the large scale
observables considered in this work, and complements the findings of ref.
[124], in which the self-interacting scalar field DM halo mass function
(HMF) was compared to observations, suggesting that Rc needs to be as
low as 10pc to not overly suppress the observed abundance of halos.

Paper IV

In this paper we investigated the formation of structure in a universe with
SIBEC-DM using fully 3D cosmological simulations. We implemented
into the cosmological simulation code RAMSES a hydrodynamic
approximation of the NLSE that includes the dynamics on the de Broglie
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scale as an effective thermal energy, obtained by defining a phase space
distribution function of the wavefunction that is smoothed at scales larger
than the de Broglie wavelength. This smoothing yields a collisionless
Boltzmann equation from which a set of hydrodynamic equations are
derived [127, 150], which are computationally easier to solve compared to
the full NLSE. This work is therefore a generalization of refs. [33, 124],
in which the same approximation was used in spherically symmetric 1D
simulations in order to investigate the collapse of SIBEC-DM overdensities
and the resulting halos. Artificial initial conditions and parameters were
used in Paper IV, since the realistic matter power spectrum from Paper
III and ref. [124] requires both very large simulated volumes due to the
strong suppression of power in SIBEC-DM, and very high resolution
in order to resolve the halo cores. Despite these not-so-realistic initial
conditions, the simulations run in Paper IV confirm many of the features
expected from hydrostatic equilibrium and that found in ref. [124], such
as SIBEC-DM cores that are only weakly dependent on the halo mass,
the halo profiles transitioning to NFW envelopes near the core radius
Rc, and the domination of effective thermal energy throughout the halos,
despite the interaction energy initially being much larger. We also found
that halo scaling relations, such as core density and mass versus halo
mass, largely agree with simple analytic considerations assuming weak
halo mass-scaling of the cores and velocity tracing in the envelope. These
SIBEC-DM scaling relations also seem to generally agree better with
observations than FDM-only simulations.

3.2 Outlook

The study of ULDM is an active area of research in cosmology, with
different realizations and scenarios being developed in an effort to further
our understanding of this kind of DM and how they might address
shortcomings of the standard ΛCDM model. Although these models can
often appear quite simple, with just one or two extra model parameters,
they harbour a rich phenomenology that must be explored in detail
in order to fully appreciate their effect on galactic and cosmological
structures. This is an important endeavor for these models to be
reliably tested against observational probes. Small-scale structures are
of particular interest as future surveys such as the LSST and Euclid will
conduct comprehensive galaxy surveys and provide improved data on e.g.
the matter power spectrum on small scales, the distribution of DM in
galaxies and clusters of galaxies, and upper limits on DM self-interactions
[3, 62], all of which can be used to provide improved constraints on scalar
field DM.
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Our results in Papers I and II showed that in finite-temperature
self-interacting scalar field DM, thermal counterflow can cause the DM
superfluid to collapse as well as react to perturbations as though it
were close to zero temperatures, thereby "screening" the effect of the
thermal component of the DM fluid in some situations, which is very
different from what might naively be expected if we use our intuition
from conventional hydrodynamics for the self-interacting scalar field DM
fluid. However, our calculations and simulations were performed in highly
idealized scenarios, and might therefore not hold in more realistic setups.
In particular, the thermal counterflow depends crucially on the superfluid
critical velocity, which is likely exceeded at effectively lower velocities
due to turbulence, which will require fully 3D simulations to resolve.

In Paper III we used large-scale observables to obtain constraints on
the self-interaction of scalar field DM, and showed that the self-coupling
strength generally found to be needed in order to produce the DM halo
cores implied by rotation velocity curves [151, 29] is not compatible with
these large-scale observables. This is the same conclusion drawn by other
recent work, using the HMF of SIBEC-DM halos [124]. These constraints
pose a challenge for SIBEC-DM, hence further study is warranted in
order to validate these results and to find even stronger tests. This was
the aim of Paper IV, in which we generalized the 1D simulations of refs.
[33] and [124] to 3D, and we confirmed many of the halo features found in
these works. Intriguingly, we also found SIBEC-DM halo scaling relations
that generally fit the data better than FDM-only simulations. However,
due to the large computational cost of our simulations, a hydrodynamic
approximation of the NLSE was used, as well as relatively small simulated
domains and artificial initial conditions that are incompatible with a
realistic cosmic history for self-interacting scalar field DM. Further work
is therefore needed in this direction in order to produce results that
represent realistic cosmological realizations of SIBEC-DM that can be
used to reliably test against observables such as the HMF, the Ly-α
forest, rotation curves, and weak and strong lensing.
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ABSTRACT

Aims. We intend to understand cosmological structure formation within the framework of superfluid models of dark matter with finite
temperatures. Of particular interest is the evolution of small-scale structures where the pressure and superfluid properties of the dark
matter fluid are prominent. We compare the growth of structures in these models with the standard cold dark matter paradigm and
non-superfluid dark matter.
Methods. The equations for superfluid hydrodynamics were computed numerically in an expandingΛCDM background with spherical
symmetry; the effect of various superfluid fractions, temperatures, interactions, and masses on the collapse of structures was taken
into consideration. We derived the linear perturbation of the superfluid equations, giving further insights into the dynamics of the
superfluid collapse.
Results. We found that while a conventional dark matter fluid with self-interactions and finite temperatures experiences a suppression
in the growth of structures on smaller scales, as expected due to the presence of pressure terms, a superfluid can collapse much more
efficiently than was naively expected due to its ability to suppress the growth of entropy perturbations and thus gradients in the thermal
pressure. We also found that the cores of the dark matter halos initially become more superfluid during the collapse, but eventually
reach a point where the superfluid fraction falls sharply. The formation of superfluid dark matter halos surrounded by a normal fluid
dark matter background is therefore disfavored by the present work.

Key words. cosmology: theory – dark matter – large-scale structure of Universe

1. Introduction

A universe with cold dark matter (CDM), a cosmological con-
stant (Λ), and inflationary initial conditions forms the founda-
tion of the standard ΛCDM paradigm that has proven successful
at explaining a wide range of observables, such as the expan-
sion history of the universe, the cosmic microwave background,
formation of large-scale structure, the matter power spectra,
and the abundance of light elements (Tegmark et al. 2004;
Planck Collaboration XIII 2016; Cyburt et al. 2016). Nonethe-
less, it is a phenomenological model that is ignorant of the ori-
gin of the cosmological constant and the identity of dark matter
(DM), which remain two of the greatest mysteries in fundamen-
tal physics today.

A number of challenges to ΛCDM have emerged as
both observations and numerical simulations become increas-
ingly more precise, especially on small scales. The cores of
DM halos predicted from N-body simulations are denser and
more cuspy than observed, and the number of dwarf galax-
ies in the Local Group is far smaller than expected from
pure ΛCDM simulations. These issues are known as the
too-big-to-fail, cusp-core, and missing satellite problems (see
e.g., Del Popolo & Le Delliou 2017; Bullock & Boylan-Kolchin
2017 and references therein). Another puzzling phenomenol-
ogy on the scale of galaxies is the empirical baryonic Tully-
Fisher relation (BTFR; McGaugh et al. 2000; McGaugh 2005;
Lelli et al. 2015). This relates the baryonic mass of galaxies
Mb with the asymptotic circular velocity vc through Mb ∼ v4c
and holds for many orders of magnitude with remarkably small

scatter. The ΛCDM prediction for this relation is M ∼ v3c with
the total mass M from both baryons and DM (McGaugh 2012).
It is the latter that dominates the gravitational pull in galaxies,
which only adds to the strangeness of the BTFR.

Solutions to these problems within the framework of
ΛCDM have been proposed by including baryonic physics
(Santos-Santos et al. 2015; Sales et al. 2016; Zhu et al. 2016;
Sawala et al. 2016), but it is unclear if they can completely cure
the ails of ΛCDM. These processes are not yet fully understood
and are difficult to model in simulations of galaxy formation,
and their stochastic nature makes it even more puzzling as to
how they can be responsible for the tight correlation in scaling
relations, such as the BTFR.

An alternative possibility is that the mismatch between
observations and simulations is an indication of physics beyond
the standard model, either through modified theories of gravity,
the particle nature of DM, or both. An example of such a model
is modified Newtonian dynamics (MOND; Milgrom 1983a,b,c;
Famaey & McGaugh 2012), in which the Newtonian law of
gravity in low-acceleration regions is modified to explain the
rotation curves of galaxies without the need of resorting to DM.
One of its most appealing features is that the BTFR and its small
scatter is a direct consequence of it. However, MOND and its rel-
ativistic extensions face challenges of their own on extragalactic
scales where the CDM paradigm is successful (Zuntz et al. 2010;
Dodelson 2011; Angus et al. 2013, 2014). This has, somewhat
ironically, motivated extended models of DM where MOND is
an emergent fifth force on small scales (Berezhiani & Khoury
2015; Khoury 2016). This is achieved by DM undergoing
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Bose–Einstein condensation on galactic scales and adding a cou-
pling designed to give a MONDian long-range force between
baryons mediated by phonons in the superfluid cores of galax-
ies. Outside galaxies, the DM fluid ceases to be superfluid, and
the extra force disappears, preserving the success of CDM on
large scales.

Superfluid dark matter (SFDM) models are also interesting
on more general grounds. From condensed matter physics, we
know that self-interacting boson gases can become superfluid
given sufficiently high densities and low temperatures. In the
weakly interacting Bose gas, the critical temperature that marks
the onset of superfluidity depends almost solely on the particle
mass and number density. We can therefore expect boson DM
candidates with self-interactions to exhibit superfluid behavior
in certain mass ranges.

Observations of the large-scale structure of the universe
strongly favor cold and collisionless DM, but for SFDM this is
no longer the case since the transition in and out of the super-
fluid phase requires both self-interactions and finite tempera-
tures. We must therefore be wary of how structure forms in
SFDM. Studies of other DM models with pressure-like terms,
such as fuzzy dark matter (Hu et al. 2000; Schive et al. 2014;
Schwabe et al. 2016; Mocz et al. 2017) and self-interacting dark
matter (Spergel & Steinhardt 2000; Elbert et al. 2015; Tulin & Yu
2018), find they can help remove the surplus of small-scale struc-
ture inΛCDM. So far, there has been little work done on structure
formation in SFDM and how it differs from conventional DM flu-
ids. In this paper, we aim to provide preliminary answers to these
questions by considering the spherical collapse of SFDM.

The paper is organized as follows: in Sect. 2, the equations
for superfluid hydrodynamics used to describe the collapse of
SFDM are introduced, as well as the critical temperature and
the critical velocity, which are important for the superfluid phe-
nomenology. The linear expansion of the superfluid equations
was derived to better understand how superfluidity changes the
behavior of the DM fluid. In Sect. 3, the results are presented and
discussed, and we draw our conclusions in Sect. 4.

2. Method

2.1. Superfluid hydrodynamics

To describe a finite-temperature superfluid, we employed
the superfluid hydrodynamic equations (Taylor & Griffin 2005;
Chapman et al. 2014), which in proper coordinates and physical
variables are;

∂ρ

∂t
+ ∇ · j = 0, (1)

∂S
∂t
+ ∇ · (S un) = 0, (2)

∂us

∂t
+ ∇

(
μ +

1

2
u2

s

)
= −∇Φ, (3)

∂ j
∂t
+ ∇P + ρs(us · ∇)us + ρn(un · ∇)un

+ us[∇ · (ρsus)] + un[∇ · (ρnun)] = −ρ∇Φ, (4)

∂E
∂t
+ ∇ ·

[ (
U +

1

2
ρnu2

n + P
)

un +
1

2
ρsu2

s us

+ μρs(us − un)

]
= − j · ∇Φ. (5)

This set of equations describes the evolution of the fluid mass
density ρ, entropy density S, superfluid velocity us, momentum

density j, and energy density E under the influence of the grav-
itational potential Φ sourced by matter and a cosmological con-
stant,

∇2Φ = 4πG(ρ − 2ρΛ). (6)

Equations (2) and (5) are degenerate in our set of equations if the
solution is free of shocks, otherwise entropy is generated. The
former is used in this work, but both are given for completeness.

A superfluid differs from a classical fluid in that it con-
sists of two fluid components; the “superfluid” with density ρs

and velocity us, and the “normal fluid” with density ρn and
velocity un. The sum of the two component densities gives
the total fluid density ρ = ρn + ρs, and likewise for momen-
tum, j = ρnun + ρsus. However, only the normal fluid trans-
ports entropy and thermal energy, as can be seen from Eqs. (2)
and (5), and the superfluid velocity evolves according to its
own potential given in Eq. (3), where the chemical potential is
μ = [P+U−S T− 1

2
ρn(us−un)2]/ρ. Since there are two fluid com-

ponents with separate velocity fields a superfluid can have two
sound modes. One is called first sound and is associated with
density perturbations, which we are familiar with from regular
hydrodynamics. The other is called second sound and is asso-
ciated with temperature perturbations. This is made possible by
the fact that only the normal component carries entropy, hence
the normal and superfluid components can oscillate in such a
way that perturbations in temperature, and not density, are prop-
agated through the fluid. As we will see it is this property that is
responsible for the difference in collapse of superfluid and non-
superfluid DM.

The remaining variables in the above set of equations are
pressure P, internal energy density U, and temperature T . In the
limit ρs = 0, they reduce to the Euler equations of fluid dynam-
ics.

2.2. Critical temperature and velocity, and equation of state

When a boson gas is cooled below a critical temperature Tc,
the particles begin accumulating in the quantum ground state of
the system and form a Bose–Einstein condensate (BEC). In the
three-dimensional homogeneous and ideal Bose gas this critical
temperature is

Tc =
2π�2

m5/3kB

(
ρ

ζ(3/2)

)2/3

, (7)

where ζ(x) is the Riemann Zeta-function. This result holds app-
roximately for weakly interacting gases as well (Sharma et al.
2019), apart from a small interaction-dependent shift (Andersen
2004) that we neglect.

The formation of a BEC does not automatically imply a
superfluid. A further criterion must be satisfied as realized by
Landau (1941). He assumed that if dissipation and heating hap-
pens through the creation of elementary excitations in the fluid,
and if these excitations can no longer spontaneously appear the
fluid will become superfluid. This gives the so-called Landau cri-
terion and requires the relative motion w = us − un to be smaller
than the critical velocity vc,

w < vc = min
p

ε(p)

p
, (8)

where ε(p) is the energy of an elementary excitation with
momentum p. Clearly, we must have vc > 0, otherwise any
motion will destroy the superflow, and it no longer makes sense
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to refer to it as a superfluid. An ideal Bose gas can therefore not
be superfluid since the elementary excitations are ε(p) = p2/2m
so that vc = 0. In an interacting Bose gas, on the other hand, the

condensation of the gas makes the energy spectrum phonon-like
at small momenta, ε(p) = cs p. The critical velocity is in this case

finite, vc = cs, and we get superfluidity.

As w approaches and exceeds the critical velocity, the super-
fluid flow begins to decay. This happens because a tangle of
superfluid vortices, so-called quantum turbulence, forms and

interacts with the excitations that make up the normal fluid,
resulting in a dissipative mutual friction between the normal

and superfluid components (Skrbek 2011; Skrbek & Sreenivasan
2012; Barenghi et al. 2014). This effect is not included in the

equations for superfluid hydrodynamics and must be added
through additional terms. However, this would require us to

assume the dependence of this force on the fluid variables
and specify the extra parameters introduced to our model (for
examples of this in numerical studies of superfluid helium, see

Doi et al. 2008; Darve et al. 2012; Soulaine et al. 2017). To cap-
ture the basic consequence of Landau’s criterion relevant for this

work, which is that the counterflow w is limited by the critical
velocity, we instead assume the mutual friction only takes place
once the critical velocity is exceeded, and that the complicated
processes taking place happen on time and length scales much
shorter than we are considering. The mutual friction is there-
fore effectively instantaneous, and since it is dissipative, there is
a conversion of kinetic energy into internal energy, heating the
fluid and generating entropy. Stated more precisely, we enforce
the superfluid critical velocity at every position in our numeri-
cal scheme by converting kinetic energy of the two fluid com-
ponents (while conserving the total momentum) into internal
energy and generated entropy so that w < vc is always satisfied.
See Appendix B.3 for further details.

We must also specify the equation of state (EOS) that defines
how the thermodynamic quantities depend on the temperature
and particle density. In superfluids, the EOS is also a func-
tion of the counterflow w (Landau & Lifshitz 1987; Khalatnikov
2000), but we neglected this dependence and used the EOS cor-
responding to the w = 0 limit. While this work is motivated
by the superfluid DM model presented by Berezhiani & Khoury
(2015), it lacks a complete EOS at finite temperatures. We there-
fore employed the weakly interacting Bose gas with effective
repulsive two- and three-body contact interactions as described
by Sharma et al. (2019), where the three-body case corresponds
most closely to the model by Berezhiani & Khoury (2015).
Effective contact interactions can describe the s-wave scatter-
ing limit of more complicated interactions through the Born
approximation, which makes this class of models a more gen-
eral description of superfluids (Pethick & Smith 2008). The cou-
pling term between the DM fluid and baryons that gives rise
to the emergent fifth force is not included in this work. For
computational speed, we approximated the EOS in the sub-Tc

regime by an ideal Bose gas with contributions from interactions
at zero temperature. Notably, the superfluid fraction is approx-
imated as the fraction of condensed particles in an ideal BEC,
fs = ρs/ρ = 1 − (T/Tc)3/2. This might appear paradoxical since
we already stated that an ideal Bose gas cannot be superfluid,
but in the weakly interacting gas these quantities can be seen
from Fig. 1 to be closely related. For strong interactions, the
superfluid fraction can approach unity while the condensate frac-
tion remains small, which is the case in superfluid 4He (Glyde
2013), but this scenario is outside the scope of this paper. See
Appendix A for further details on the EOS.

Fig. 1. Superfluid fraction fs for the two-body interacting Bose gas cal-
culated by Sharma et al. (2019) with ρ = 108 ρc0 and m = 1 eV com-
pared to the approximation fs,ap. = 1 − (T/Tc)

3/2. For sufficiently weak
interactions, fs can be approximated by the condensate fraction in an
ideal Bose gas.

2.3. Super-comoving variables

Since we are interested in the evolution of the superfluid in an
expanding space, we introduce the peculiar velocity u = u − Hr
and super-comoving variables (Martel & Shapiro 1998), denoted
by a tilde-sign, to rewrite the hydrodynamic equations in a more
convenient form1:

∂ρ̃

∂t̃
+ ∇̃ · j̃ = 0, (9)

∂S̃
∂t̃
+ ∇̃ · (S̃ ũn) = 0, (10)

∂ũs
∂t̃
+ ∇̃

(
μ̃ +

1

2
ũ2s

)
= −∇̃φ̃, (11)

∂ j̃
∂t̃
+ ∇̃P̃ + ρ̃s(ũs · ∇̃)ũs + ρ̃n(ũn · ∇̃)ũn

+ ũs[∇̃ · (ρ̃sũs)] + ũn[∇̃ · (ρ̃nũn)] = −ρ̃∇̃φ̃, (12)

∂Ẽ
∂t̃
+ ∇̃ ·

[ (
Ũ +

1

2
ρ̃nṽ

2
n + P̃

)
ũn +

1

2
ρ̃sṽ

2
s ũs

+ μ̃ρ̃s(ũs − ũn)

]
= −H̃(3P̃ − 2Ũ) − j̃ · ∇̃φ̃. (13)

The super-comoving quantities are re-scaled to reduce the
dependence on the scale factor a, with the variables defined as
before: j̃ = ρ̃nũn + ρ̃sũs and Ẽ = Ũ + 1

2
ρ̃nṽ

2
n +

1
2
ρ̃sṽ

2
s . The only

real difference is the peculiar gravitational potential φ̃ that is now
given by (in a flat universe with matter and a cosmological con-
stant)

∇̃2φ̃ = 6a (ρ̃ − 1) . (14)

H̃ is the super-comoving Hubble parameter.

2.4. Linear perturbation expansion

The superfluid hydrodynamic equations at linear order can tell
us a lot about the collapse of a superfluid, in particular how it

1 The temperature and entropy in super-comoving variables are not
given in Martel & Shapiro (1998, MS). We define them here as T̃ =
a2T/T∗ and S̃ = a3S/S ∗, where T∗ is a free parameter, S ∗ = ρ∗v2∗/T∗,
with ρ∗ and v∗ given in MS.
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will differ from CDM and non-superfluid thermal DM. The fluid
variables are expanded around their background values, ρ̃ = ρ̃0+
δρ̃, S̃ = S̃ 0+δS̃ , etc. The peculiar background velocities are zero,
so ũs = δũs, ũn = δũn, and j̃ = δ j̃. We also have ∇̃2δφ̃ = 6aδρ̃.
This gives the following linear equations;

∂δρ̃

∂t̃
+ ∇̃ · δ j̃ = 0, (15)

∂δS̃
∂t̃
+ S̃ 0∇̃ · δũn = 0, (16)

∂δũs
∂t̃
+ ∇̃(δμ̃ + δφ̃) = 0, (17)

∂δ j̃
∂t̃
+ ∇̃δP̃ + ρ̃0∇̃δφ̃ = 0. (18)

These can be combined into two coupled equations for δρ̃ and
δS̃ in k̃-space;

∂2δρ̃k̃

∂t̃2
+

[ (
∂P̃
∂ρ̃

)
0

k̃2 − 6aρ̃0

]
δρ̃k̃ +

(
∂P̃
∂S̃

)
0

k̃2δS̃ k̃ = 0, (19)

∂2δS̃ k̃

∂t̃2
+ S̃ 0

[{
1

ρ̃0

(
∂P̃
∂ρ̃

)
0

+
S̃ 0ρ̃s0

ρ̃0ρ̃n0

(
∂T̃
∂ρ̃

)
0

}
k̃2 − 6a

]
δρ̃k̃

+ S̃ 0

[
1

ρ̃0

(
∂P̃
∂S̃

)
0

+
S̃ 0ρ̃s0

ρ̃0ρ̃n0

(
∂T̃
∂S̃

)
0

]
k̃2δS̃ k̃ = 0, (20)

where the subscript “0” indicates the background values.
We would like to enforce the critical velocity in the linear

approach, though we cannot do it in the same way as for the full
hydrodynamic equations. Since the effect of the critical velocity
is to essentially restrict the two-fluid nature of the superfluid,
forcing the whole fluid to evolve like a normal fluid, we can, as a
rough approximation, set ρs = 0 and ρn = ρ once w̃k̃ ≥ ṽc, where

w̃k̃ is the relative velocity of mode k̃ and evolves at linear order
according to

∂w̃k̃

∂t̃
= k̃

S̃ 0

ρ̃n0

[ (
∂T̃
∂ρ̃

)
0

δρ̃k̃ +

(
∂T̃
∂S̃

)
0

δS̃ k̃

]
. (21)

This approximation is further justified by the fact that the critical
velocity decreases with the DM density. Once w reaches vc, it
only becomes smaller in the linear regime, forcing the superfluid
to behave even more like a normal fluid.

A few qualitative statements can be made from Eqs. (19)
and (20). Both mass density and entropy perturbations grow due
to gravity, but this growth is slowed by pressure terms that are
scale dependent through the k̃2 factor, as expected in a self-
gravitating fluid with nonzero pressure. In a superfluid, how-
ever, there are additional effective pressure terms that suppress
the growth of entropy perturbations, and hence thermal pres-
sure, that are absent in conventional fluids. This in turn allows
the mass density perturbations to collapse more efficiently, even
though the DM fluid may have relatively high temperatures. The
reason for this behavior is the superfluid component’s attraction
to higher temperatures. The normal component tends to transport
mass and entropy from hot to cold regions, while the superfluid
tends to flow in the opposite direction and balance the mass-loss
due to the normal component, resulting in a thermal flux that can
be large compared to the net mass flux. This effect, called ther-
mal counterflow, makes superfluids very efficient at conducting
heat.

Fig. 2. Profiles of a collapsing SFDM halo with an initial Gaussian den-
sity contrast, m = 30 eV, g = 10−5 eV−2, L = 100 kpc, and T/Tc = 0.1.
A thermal counterflow develops and the growth of entropy perturbations
is at first suppressed. This also gives a slight decrease in the ratio T/Tc,
and hence the superfluid fraction, since fs = ρs/ρ = 1−(T/Tc)

3/2. As the
critical velocity is reached, entropy is generated, and T/Tc increases.

3. Results and discussion

The hydrodynamic equations were integrated numerically using
a modified first-order FORCE scheme (see Toro 2006 and
Appendix B for further details) for a spherically symmetric sys-

tem with an initial density contrast of the form δρ̃/ρ̃0 = Δ0e−(r̃/L̃)2

and δS̃ = 0, where L̃ is the size of the overdensity. The ini-
tial state is at approximately the same T/Tc, and hence the
same mixing fraction of the normal and superfluid components,
throughout the system. A flat ΛCDM background cosmology
with Ωm0 = 0.3, ΩΛ0 = 0.7, and h = 0.7 was used, and the
integration started at redshift z = 1000 with Δ0 = 5 × 10−3. An
example of a collapsing SFDM halo at various redshifts can be
seen in Fig. 2, illustrating that as the halo collapses, a thermal
counterflow carrying entropy away from the halo center devel-
ops, slowing down the growth of entropy until the critical veloc-
ity is reached and the fluid starts heating up.

3.1. Growth of structure

In Figs. 3–5, the redshift when the central density contrast
reaches 200 is shown for various parameters for both the super-
fluid and non-superfluid (a conventional fluid with ρs = 0,
ρn = ρ, and the same EOS) cases. While the growth of structure
is slower compared to CDM, the SFDM halos collapse more effi-
ciently than their non-superfluid counterparts as the interaction
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Fig. 3. Comparison of redshifts when the central density contrast
reaches 200 as function of the interaction strength for various particle
masses, with T/Tc = 0.1 and L = 100 kpc. Both the superfluid case
(solid lines) and the corresponding non-superfluid case (striped lines)
are shown. For constant T/Tc, the temperature is increased for decreas-
ing mass, since Tc ∼ m−5/3. The comparison of the collapse for various
masses is therefore not done at the same temperature, but instead at a
similar place in the superfluid phase.

Fig. 4. Comparison of redshifts when the central density contrast
reaches 200 as function of the interaction strength for various scales,
with T/Tc = 0.1 and m = 50 eV. Both the superfluid case (solid lines)
and the corresponding non-superfluid case (striped lines) are shown.

strength is increased until a maximum is reached, after which
the growth of structure in both super-and non-superfluid DM is
suppressed. This is counter to what one would intuitively expect,
since an increase in interactions also means an increase in pres-
sure. It can, however, be understood as follows: for small inter-
actions, the superfluid behaves nearly the same as a normal fluid
because the critical velocity, which scales as vc ∼

√
gi, is reached

very early. When this happens, the flow of the normal and super-
fluid components become “locked” to one another, unable to effi-
ciently conduct heat away from the halo core. As the interaction
increases, the thermal counterflow can both be larger and last
longer, resulting in an increased suppression of thermal gradi-
ents and thus allows for a faster collapse. For sufficiently large
interactions, the collapse is instead suppressed due to large zero-
temperature pressure gradients that the superfluid is unable to
wash out.

Most production of entropy due to mutual friction as the Lan-
dau criterion is broken takes place away from the center of the
halo. The resulting extra thermal pressure acting on the interior
causes the central density contrast to grow slightly faster and can
best be seen by the gap between collapse times of the superfluid

Fig. 5. Comparison of redshifts when the central density contrast
reaches 200 as function of the interaction strength for various temper-
atures, with m = 50 eV and L = 100 kpc. Both the superfluid case
(solid lines) and the corresponding non-superfluid case (striped lines)
are shown.

Fig. 6. Comparison of redshifts when the central density contrast
reaches 200 for two-body and three-body interactions as function of
the interaction strengths g2 and g3, respectively, with m = 30 eV,
L = 100 kpc, and T/Tc = 0.1. The three-body interaction is multiplied

by
√

10×10−4 to make the comparison clearer. Both the superfluid case
(solid lines) and the non-superfluid (striped lines) are shown.

and non-superfluid cases at low g2. If entropy was not produced,
this gap would vanish.

3.2. Dependence on equation of state

The Bose gas with two-body interactions is compared with three-
body interactions in Fig. 6. The same qualitative behavior is
present in both cases and is expected to be a general feature
regardless of the EOS used, as long as there is superfluidity.
In the linear expansion of the superfluid equations, Eqs. (19)
and (20), the additional effective pressure terms due to a super-
fluid component require only the temperature to be dependent
on mass density or entropy. Indeed, the approximated two-body
and three-body EOS used in this work both have a temperature
profile that is independent of mass density for T < Tc, so that
one of the effective pressure terms in Eq. (20) is absent. For EOS
where the temperature is dependent on both the mass density and
entropy, the collapse of SFDM may be even more efficient.

3.3. Effect of small-scale and nonradial motion

In this work, we assumed perfect radial infall of DM. The rel-
ative velocity w is simply the difference between the radial
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Fig. 7. Comparison of redshifts when the central density contrast
reaches 200 for various effective critical velocities as function of the
interaction strength, with m = 30 eV, T/Tc = 0.1, and L = 100 kpc.
Both the superfluid case (solid lines) and the non-superfluid (striped
line) are shown.

velocities of the two fluid components. In a real system, there
is expected to be additional small-scale motion in all directions,
such as turbulence that our simplified model averages over. The
superfluid critical velocity may therefore be exceeded on small
scales, while the large-scale radial average only appears to have
w < vc. In this case, the superfluid would behave like a con-
ventional fluid at much smaller w. In other words, there is an
effective superfluid critical velocity veffc < vc that is a decreas-
ing function of the local turbulence. This leads to a difference in
collapse times of halos with different amounts of turbulence, the
turbulent ones collapsing at a slower rate, as seen in Fig. 7.

3.4. Evolution of superfluid fraction

In a conventional fluid, the entropy and mass density collapses
at the same rate so that the ratio T/Tc is constant. A fluid that is
initially in the normal phase will therefore remain so. A collaps-
ing superfluid, on the other hand, experiences an increase in the
superfluid fraction due to thermal counterflow until the critical
velocity is reached. At this point, entropy is generated causing
T/Tc to rise, and thus the superfluid fraction to fall; though it
takes time for the full effect of this to propagate to the center
of the halo, as shown in Figs. 2 and 8. It may be, however, that
Eqs. (1)–(5) do not properly describe super-critical flow, and too
much entropy is generated in our numerical scheme for enforc-
ing the critical velocity. The evolution of T/Tc when no entropy
is generated is therefore also shown in Fig. 8 as the opposite
extreme. This case behaves similarly until near the end of the
collapse, where T/Tc rises only modestly. Profiles are shown
in Fig. 9, which corresponds to Fig. 2 with no production of
entropy.

The decrease in T/Tc during collapse becomes smaller as the
temperature approaches Tc, where the superfluid fraction goes
to zero and thermal counterflow becomes inefficient. The for-
mation of DM halos with much higher superfluid fractions than
the background, as required in the emergent MOND scenario of
Berezhiani & Khoury (2015), therefore appears unlikely through
collapse alone. Additional cooling mechanisms during or after
collapse are necessary.

3.5. Dark matter self-interaction constraints

The distribution of DM, gas, and stellar mass in cluster col-
lisions provides constraints on the cross-section of DM self-

Fig. 8. Evolution of T/Tc in the halo center during collapse for various
masses and initial temperatures with g = 10−5 eV−2 and L = 100 kpc.
Both the evolution with entropy production (solid lines) and without
(striped lines) are shown until the overdensity reach 105. The two cases
differ only in the end stage of the collapse, well after the critical velocity
is first reached, indicated by the colored vertical lines.

Fig. 9. Profiles of a collapsing SFDM halo where no entropy is produced
as w = vv with an initial Gaussian density contrast, m = 30 eV, g =
10−5 eV−2, L = 100 kpc, and T/Tc = 0.1.

interactions, σ/m < 0.5 cm2 g−1 (Harvey et al. 2015). In
terms of the two-body interaction strength, this corresponds to
(Pitaevskii & Stringari 2016)

g2 =
√

4πσ
�

2

m
< 5 × 10−12

(
1 eV

m

)1/2

eV−2. (22)

The values of g2 in the above results do not generally satisfy this
constraint, but we chose to relax it since we do not know how
it translates to SFDM. In any case, the above features were also
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Fig. 10. Redshifts when the linear density contrast for the mode k =
2/100 kpc−1 with T/Tc = 2 × 10−6 reaches unity for various masses
and interaction strengths. Both the superfluid case (solid lines) and the
corresponding non-superfluid case (striped lines) are shown, illustrat-
ing that the same features can be found for a choice of parameters
that satisfy the constraint from cluster collisions on DM mass and self-
interaction.

found for smaller g2 using perturbation theory (while simultane-
ously lowering m and T/Tc) that do satisfy the constraints, as is
exemplified in Fig. 10.

4. Conclusions

When superfluid behavior is included in a finite-temperature
DM fluid, the formation of structure is found to be much more
efficient in certain regions of parameter space than one would,
naively, expect, through it is still slower compared to CDM.
The effect of thermal counterflow is most prominent when the
thermal suppression is large, such as at small scales and rel-
atively high temperatures. The increased collapse efficiency is
also expected to be a general feature of SFDM regardless of the
EOS used, though the specific model in question will certainly
affect the finer details through the dependence of entropy, pres-
sure, and critical velocity on temperature, mass density, and the
model parameters. The toy models used in this work were moti-
vated by condensed matter physics, but suffer some severe limi-
tations at high redshifts. Both are derived under the assumption
that the interactions are weak and the number density is not too
large, which is invalid at very early times. Furthermore, the zero-
temperature pressure depends on the number density through n2

and n3, resulting in very high pressures at high redshifts that
might wash out the initial perturbations set up by inflation. The
generalization of this work to more exotic DM fluids and adding
interactions between DM and baryons, which has recently been
considered in the literature, is therefore of interest in the further
study of SFDM models. It may also be of interest to study the
case when thermal equilibrium is not always assumed so that the
DM fluid can fall in and out of equilibrium and superfluidity can
vanish and reappear.

Superfluid models of DM involve processes that require the
superfluid hydrodynamic equations to be properly described.
Throughout this work, spherical symmetry was assumed, but
nonradial and turbulent motion is expected to have a significant
impact on the superfluid dynamics, especially through the criti-
cal velocity, which is broken at smaller radial thermal counter-
flows. It is also important to understand the effect of mergers in
SFDM. Large-scale and high-resolution simulations will there-
fore be essential for the further study of structure formation. The

main challenge in this line of inquiry may be developing numer-

ical schemes that are faster and more accurate than the modified
first-order FORCE scheme used in this work that can capture the

small-scale motion of the superfluid and its effect on structure
formation.
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Appendix A: equation of state

An EOS for a weakly interacting Bose gas valid at all temper-
atures was recently proposed by Sharma et al. (2019) for two-
body and three-body interactions. Since we do not know the
true EOS of DM and must resort to toy models, we instead
approximated the EOS by using an ideal Bose gas with zero-
temperature contributions from weak interactions. At very low
temperatures, this approximation breaks down as the interac-
tions become increasingly important, but we generally remain
well above this regime.

An important quantity is the critical temperature Tc, above
which the fluid behaves as a normal fluid, while below the fluid
condenses into a BEC and becomes superfluid;

Tc =
2π�2

mkB

(
n

ζ(3/2)

)2/3

=
2π�2

m5/3kB

(
ρ

ζ(3/2)

)2/3

, (A.1)

where n = ρ/m is the particle number density.
As an estimate for the superfluid fraction fs = ρs/ρ we use

the fraction of particles in the BEC in an ideal Bose gas;

fs =

⎧⎪⎪⎨⎪⎪⎩1 −
(

T
Tc

)3/2
, T ≤ Tc

0, T > Tc.
(A.2)

For the other thermodynamic quantities, such as pressure,
entropy, etc., we must consider them above and below Tc sep-
arately. Both two-body and three-body interactions are given,
parameterized by g2 and g3, respectively.

A.1. T > Tc

The pressure is given by

P =

⎧⎪⎪⎨⎪⎪⎩g2n2 +
√

2Γ(5/2)(kBT )5/2m3/2

3π2�3 Li5/2
(
eβ(μ−2g2n)

)
, two-body

4g3n3 +
√

2Γ(5/2)(kBT )5/2m3/2

3π2�3 Li5/2
(
eβ(μ−6g3n2)

)
, three-body,

(A.3)

where Γ(x) is the gamma function, Liz(x) is the polylogarithmic
function, β = 1/kBT , and the chemical potential μ is determined
by the equation for the number density

n =

⎧⎪⎪⎨⎪⎪⎩
√

2Γ(5/2)

3π2�3 (kBT )3/2m3/2Li3/2
(
eβ(μ−2g2n)

)
, two-body

√
2Γ(5/2)

3π2�3 (kBT )3/2m3/2Li3/2
(
eβ(μ−6g3n2)

)
, three-body.

(A.4)

The entropy is

S =
{

5
2

P
T − nβ(μ − 2g2n), two-body

5
2

P
T − nβ(μ − 6g3n2), three-body,

(A.5)

and the internal energy is

U = S T − P + μn. (A.6)

The sound speed used when determining the time-stepping
in the numerical scheme was

cs =

√
5

3

kBT
m
· (A.7)

In the limit of very high temperature, these reduce to the clas-
sical ideal gas.

A.2. T ≤ Tc

The EOS below the critical temperature is given by the ideal
Bose gas plus some zero-temperature contributions due to inter-
actions;

P =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2
g2n2 + ζ(5/2)

(
m

2π�2

)3/2
(kBT )5/2, two-body

2
3
g3n3 + ζ(5/2)

(
m

2π�2

)3/2
(kBT )5/2, three-body,

(A.8)

S =
5

2
ζ(5/2)

( m
2π�2

)3/2

k5/2
B

T 3/2, two-and three-body, (A.9)

μ =

{
g2n, two-body

g3n2, three-body,
(A.10)

and the internal energy is again given by Eq. (A.6). The fastest
sound speed was approximated using

cs =

√
ζ(5/2)

ζ(3/2)

5

3

kBT
m
, (A.11)

and the critical velocity given by

vc =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
√
g2n
m

[
1 − (T/Tc)3/2

]
, two-body√

2g3n2

m
[
1 − (T/Tc)3/2

] [
1 + 2(T/Tc)3/2

]
, three-body.

(A.12)

There is a small discontinuity at the critical temperature, with
μ = 2ng2 above and μ = ng2 below for the two-body interaction
(and a similar jump in zero-temperature pressure and internal
energy). There should be a crossover region as the condensate
fraction increases, but during this crossover the thermal contri-
butions dominates and the discontinuity is negligible.

Appendix B: Numerical scheme

In this work, we employed a modified first-order FORCE scheme
(Toro 2006) – an incomplete Riemann solver – for the superfluid
hydrodynamic equations with source terms due to gravity and
from using spherical coordinates. The source terms were evalu-
ated at two stages during each time-step: once before the advec-
tion step, and once after, at which point the average of the two
evaluations was added to the solution. Gravity was also evaluated
with half a time-step when computing fluxes during the advec-
tion step. Finally, we enforced the critical velocity, which was
done in three stages; once when computing fluxes, once after
the fluxes from the advection step were applied, and a final time
after the source terms were applied. Further details are presented
below.

For spherical collapse, this scheme was found to be suffi-
cient since the solutions are mostly smooth, evolve slowly, and
are one-dimensional. For more complex and higher dimensional
cases where shock fronts arise and the solutions undergo fast
changes, this scheme is expected to perform suboptimally, pri-
marily because it is first-order. There is a well-known way to
increase the order and thus accuracy of the scheme through slope
reconstruction and slope limiters. However, instabilities arose
when the superfluid component was included, and adding fur-
ther restrictions to the reconstructed slopes with modified slope
limiters failed to fix this. Slope reconstruction was therefore not
used.
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B.1. First-order FORCE scheme

The FORCE scheme is a variant of Godunov’s method for solv-
ing partial differential equations. In this method, the domain is
divided into finite-volume elements, or cells, and the Riemann
problem at each cell interface is solved. The Riemann problem
is the initial value problem with two piece-wise constant ini-
tial regions connected by a discontinuity, then asking how this
evolves in time and what the net flux across the interface is.
The scheme for computing or approximating this flux is called a
Riemann solver and is what characterizes the different ways of
implementing Godunov’s method.

To see how this works, one can consider the m-component
state vector U that obeys the one-dimensional conservative equa-
tion

∂tU + ∂xF(U) = 0, (B.1)

where F is the flux. By integrating over the time interval [tn, tn+1]
and cell-volume [xi−1/2, xi+1/2], we get

Un+1
i = Un

i −
Δt
Δx

[Fi−1/2 − Fi+1/2], (B.2)

where

Un
i =

1

Δx

∫ xi+1/2

xi−1/2

U(x, tn) dx, (B.3)

Fi+1/2 =
1

Δt

∫ tn+1

tn
F(xi+1/2, t) dt. (B.4)

In the first-order Godunov scheme, the state U is assumed to be
piece-wise constant in each cell, given by the cell average Un

i .
To compute Fi+1/2, the states on the left and right sides of the
interface is used, Ui+1/2,L = Un

i and Ui+1/2,R = Un
i+1, and the

corresponding Riemann problem is solved or approximated. The
time-step is chosen so that no signal in the domain travels further
than one cell length Δx. This is given by a Courant-Friedrich-
Lewy (CFL) type condition

Δts = Cs
CFL

Δx
vmax

, (B.5)

where vmax is the maximum signal speed in the domain, and Cs
CFL

is a number less than one that controls how far across a cell the
fastest signal is allowed to move during each time-step. In sim-
ulations with gravity and expansion, additional constraints need
to be added to the time-stepping. For gravity, the free-fall dis-
tance in each cell, with acceleration g, must be smaller than the
cell lengths,

Δtff = CffCFL

√
2Δx
g
, (B.6)

and for expansion, the relative change in the scale factor is
restricted:

Δtexp = Cexp

CFL

1

H
· (B.7)

Here, Cff
CFL

and Cexp

CFL
are also numbers less than one. In this

work, we used Cs
CFL
= 0.5, Cff

CFL
= 0.5, and Cexp

CFL
= 0.01. The

final value for the time-step is the smallest of the above,

Δt = min[Δts, Δtff, Δtexp]. (B.8)

The FORCE scheme approximates the interface flux F
(given the left and right states UL and UR) as the average of the
Lax–Friedrichs flux and the two-step Lax–Wendroff flux;

FFORCE =
1

2
[FLF + FLW],

FLF =
1

2
[F(UL) + F(UR)] −

1

2

Δx
Δt

[UR − UL],

FLW = F(ULW),

ULW =
1

2
[UL + UR] −

1

2

Δt
Δx

[F(UR) − F(UL)]. (B.9)

We modified this by enforcing the critical velocity on the inter-

mediate state ULW before computing the flux FLW.

B.2. Sources

Gravity and extra terms when using spherical coordinates and

super-comoving variables appear as source terms S in the super-
fluid equations. Continuing with the above example, we have

∂tU + ∂xF(U) = S. (B.10)

To modify our Godunov scheme to incorporate the sources in
the flux, we did the following: at the beginning of each time-
step, we had the states Un

i . To do the advection (the Godunov

step), we input the left and right states at each boundary i + 1/2;

Ui+1/2,L = Ui, Ui+1/2,R = Ui+1. But before we computed the

interface flux, we applied half a time-step of the source due to
gravity,

U∗i+1/2,L = Ui+1/2,L +
1

2
Δt

(
Sn

i+1/2,L

)
grav
,

U∗i+1/2,L = Ui+1/2,R +
1

2
Δt

(
Sn

i+1/2,R

)
grav
, (B.11)

where Sn
i+1/2,L and Sn

i+1/2,R are the left and right values for the

sources. In this work, we computed these using the average grav-

itational acceleration (∇Φ)n
i+1/2,L/R =

1
2
[(∇Φ)n

i + (∇Φ)n
i+1

], and

the left and right states Ui+1/2,L/R. We then used U∗i+1/2,L and

U∗i+1/2,R as the input states in the Godunov scheme to get Fi+1/2,
and updated the state vectors from the previous time-step:

Un+1,∗
i = Un

i −
Δt
Δx

[Fi−1/2 − Fi+1/2]. (B.12)

This modification to the Godunov scheme was to include the
effect of gravity on the flux, but explicitly adding the sources to

the solution remains to be done. For this, we used the average
before and after the advection step;

Un+1
i = Un+1,∗

i + Δt
1

2
[Sn

i + Sn+1,∗
i ]. (B.13)

B.3. Enforcing critical velocity

The critical velocity was enforced by iteratively converting
kinetic energy into internal energy and generated entropy in all
cells until w < vc. The scheme works as follows: we consider a
cell with the state vector Ul, where l denotes the current step in
the iterative scheme to enforce vc, and l = 0 is the initial state.
From this we get the fluid variables of the cell, vls, v

l
n, S l, etc. If

wl < vlc, the Landau criterion is satisfied and we do nothing. If
instead wl > vlc, we apply a small change Δvls to vls to update it to
l + 1 and decrease w,
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ul+1
s = u

l
s + Δu

l
s. (B.14)

By keeping j constant and assuming that the change in the super-
fluid fraction is negligible compared to the change in velocity,
we get

Δuln = −
ρl

s

ρl
n

Δuls. (B.15)

Using conservation of energy the change in internal energy is
equal to the change in kinetic energy;

ΔUl = −ΔEl
kin = −Δ

(
1

2
ρl

n|uln|2 +
1

2
ρl

s|uls|2
)

= −ρl
s(u

l
s − uln) · Δuls. (B.16)

The change in entropy is ΔS l = ΔQl/T l, where ΔQl is the heat-

ing of the fluid, which in this case is just the change in internal
energy:

ΔS l =
ΔQl

T l =
ΔUl

T l = −
ρl

s(u
l
s − uln) · Δuls

T l · (B.17)

The updated entropy is

S l+1 = S l + ΔS l. (B.18)

We arrive at the state vector Ul+1 and repeat the above process
until w < vc. The only part that needs to be specified is Δuls,
which was chosen as

Δuls = −C(wl) ŵl, (B.19)

where

C(w) = [10−2, 10−5]w. (B.20)

The numerical factor in Eq. (B.20) was tuned to give as smooth
w-profile as possible while keeping the scheme from becoming
too slow.
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ABSTRACT

Aims. The aim of the present work is to better understand the gravitational drag forces, also referred to as dynamical friction, acting on
massive objects moving through a self-interacting Bose-Einstein condensate, also known as a superfluid, at finite temperatures. This
is relevant for models of dark matter consisting of light scalar particles with weak self-interactions that require nonzero temperatures,
or that have been heated inside galaxies.
Methods. We derived expressions for dynamical friction using linear perturbation theory, and compared these to numerical simulations
in which nonlinear effects are included. After testing the linear result, it was applied to the Fornax dwarf spheroidal galaxy, and two of
its gravitationally bound globular clusters. Dwarf spheroidals are well-suited for indirectly probing properties of dark matter, and so
by estimating the rate at which these globular clusters are expected to sink into their host halo due to dynamical friction, we inferred
limits on the superfluid dark matter parameter space.
Results. The dynamical friction in a finite-temperature superfluid is found to behave very similarly to the zero-temperature limit,
even when the thermal contributions are large. However, when a critical velocity for the superfluid flow is included, the friction force
can transition from the zero-temperature value to the value in a conventional thermal fluid. Increasing the mass of the perturbing
object induces a similar transition to when lowering the critical velocity. When applied to two of Fornax’s globular clusters, we find
that the parameter space preferred in the literature for a zero-temperature superfluid yields decay times that are in agreement with
observations. However, the present work suggests that increasing the temperature, which is expected to change the preferred parameter
space, may lead to very small decay times, and therefore pose a problem for finite-temperature superfluid models of dark matter.

Key words. dark matter – cosmology: theory

1. Introduction

When a massive object moves through a background medium,
its gravitational field can cause the background to form an over-
density that trails it, and in turn exerts a gravitational force on
the object that produced it. This is known as dynamical friction,
and is a purely gravitational phenomenon. It can therefore also
arise in systems in which the constituent components otherwise
have very weak or no coupling to one another, or behave as col-
lisionless particles, such as dark matter (DM) and stars. Many
important processes in the formation of structure, the evolution
of galaxies, and the dynamics of astrophysical systems, such as
mergers (Jiang et al. 2008; Boylan-Kolchin et al. 2008), the sink-
ing of satellites into their host halos (Colpi et al. 1999; Cowsik
et al. 2009; Cole et al. 2012; Tamfal et al. 2020), the decay of
orbiting black holes and binaries (Just et al. 2011; Pani 2015;
Dosopoulou & Antonini 2017; Gómez & Rueda 2017), and bar–
halo interactions in disk galaxies (Weinberg 1985; Debattista &
Sellwood 2000; Sellwood 2014), therefore depend on the nature
of this drag force.

The first detailed calculation of dynamical friction was car-
ried out by Chandrasekhar (1943) in the context of stellar dynam-
ics. Chandrasekhar considered the varying gravitational forces
acting on a star as it moves through its stellar neighborhood,
and found that it experiences a net average force opposite to
its direction of motion, that is, a gravitational drag force. He
treated the background of stars as an infinite homogeneous gas of

collisionless particles following a Maxwell-Boltzmann velocity
distribution, an approach that can also be used for collisionless
DM (Mulder 1983; Colpi et al. 1999; Binney & Tremaine 2008).
However, for a collisional medium, pressure forces must be taken
into account when computing the dynamical friction, and this
has been done both analytically and numerically for various
types of gases, such as ideal (Ostriker 1999; Sánchez-Salcedo &
Brandenburg 1999; Lee & Stahler 2011, 2014; Thun et al. 2016),
relativistic (Barausse 2007; Katz et al. 2019), and magnetized
gases (Sánchez-Salcedo 2012; Shadmehri & Khajenabi 2012).

The nature of the dynamical friction due to DM is related
to the nature of DM itself. The standard model of the universe,
ΛCDM, includes cold and collisionless DM as the predomi-
nant matter component, making up about 80% of all matter.
While extremely successful at explaining observables such as
the microwave background radiation, large-scale structure, the
expansion history of the Universe, and important properties of
galaxies (Davis et al. 1985; Percival et al. 2001; Tegmark et al.
2004; Trujillo-Gomez et al. 2011; Vogelsberger et al. 2014;
Planck Collaboration XIII 2016; Riess et al. 2016), the identity
of DM has remained elusive. Furthermore, there are discrepan-
cies between simulations of structure formation at small scales,
and observations (for reviews, see e.g., Weinberg et al. 2015; Del
Popolo & Le Delliou 2017; Bullock & Boylan-Kolchin 2017).
These discrepancies may have their solution within ΛCDM by
including more realistic models of baryonic physics in simula-
tions (Santos-Santos et al. 2015; Sales et al. 2016; Zhu et al. 2016;
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Sawala et al. 2016), but the solution may also be in alter-
native models of DM (Hu et al. 2000; Spergel & Steinhardt
2000; Shao et al. 2013; Lovell et al. 2014; Schive et al. 2014;
Elbert et al. 2015; Berezhiani & Khoury 2015; Khoury 2016;
Schwabe et al. 2016; Mocz et al. 2017; Tulin & Yu 2018; Clesse
& García-Bellido 2018; Boldrini et al. 2020). For these reasons,
studies have also been carried out on dynamical friction in var-
ious DM models, such as fuzzy DM (Hui et al. 2017; Bar-Or
et al. 2019; Lancaster et al. 2020), and self-interacting Bose-
Einstein condensed (SIBEC) DM (Berezhiani et al. 2019), also
known as superfluid DM. A number of studies have considered
finite-temperature effects of interacting superfluid DM (Harko
& Mocanu 2012; Slepian & Goodman 2012; Harko et al. 2015;
Sharma et al. 2019). Of particular note is the one presented
by Berezhiani & Khoury (2015), who suggested that superfluid
DM, when provided with a special Lagrangian structure and cou-
pling to the visible sector, can give rise to modified Newtonian
dynamics (MOND; Milgrom 1983a,b,c; Famaey & McGaugh
2012) between baryons at galactic scales. This MONDian force
is mediated by superfluid phonons, which cease to be coher-
ent on scales larger than galaxies, resulting in the vanishing of
the extra force and the preservation of the large-scale success
of CDM. For the fifth force to be MONDian, the DM particles
need exotic three-body self-interactions, and the DM fluid has
to be above a certain temperature to be well-behaved. Finite-
temperature DM might arise through processes inside galaxies
that transfer energy to the DM halo (Goerdt et al. 2010; Pontzen
& Governato 2012; Read et al. 2019), possibly heating up the
DM fluid.

Because the form of the dynamical friction experienced by
visible matter embedded in DM halos depends on the properties
of DM, observations of galaxies can be used to constrain DM.
Dwarf spheroidal galaxies (dSph) are particularly well-suited
for this purpose. Being poor in visible matter, their dynami-

cal behavior is dominated by their DM component and they
therefore provide a testing ground for DM models (Battaglia
et al. 2013; Walker 2013; Strigari 2018). One such system is
the Fornax dSph and its five gravitationally bound globular clus-
ters (GCs; Mackey & Gilmore 2003), with a sixth one recently
found to likely be a genuine, albeit dim, GC (Wang et al. 2019a).
The orbital decay times of these GCs, in particular the inner two
(not counting the recently discovered sixth GC), due to dynam-
ical friction from a CDM background, have been estimated to
τDF � 1 Gyr (Oh et al. 2000; Cole et al. 2012; Hui et al. 2017;
Arca-Sedda & Capuzzo-Dolcetta 2017), much shorter than the
supposed age of the host system, τage ∼ 10 Gyr (del Pino et al.
2013; Wang et al. 2019b). Furthermore, there is no bright stellar
nucleus at the center of Fornax dSph that would suggest the sink-
ing of other GCs in the past. This apparent mismatch between
theoretical prediction and observation suggests one of two sce-
narios; that we are witnessing these GCs just as they are about
to fall into their host, implying a fine-tuning of their initial posi-
tions, which seems unlikely; or that there is some mechanism, or
property of DM that stops the GCs from migrating towards the
center of the Fornax dSph. This discrepancy between CDM esti-
mates and observations is the so-called timing-problem, and a
number of solutions have been proposed, such as massive black
holes heating the system (Oh et al. 2000); assuming the CDM
profile of Fornax to be cored instead of cuspy (Goerdt et al.
2006; Cole et al. 2012); inaccurate modeling of the Fornax sys-
tem and the rate of the orbital decay (Cowsik et al. 2009; Kaur &
Sridhar 2018; Boldrini et al. 2019; Leung et al. 2020; Meadows
et al. 2020); or some exotic property of DM (Hui et al. 2017;
Lancaster et al. 2020).

In this work we extend the analysis of dynamical fric-
tion in a zero-temperature superfluid to finite temperatures,
where the fluid is in a mixed state of normal fluid–made up
of thermal excitations–and superfluid. This type of system has
pressure terms coming from both thermal excitations and self-
interactions, and can exhibit unique features due to the separate
flow of the superfluid and normal fluid components. With an
expression for the dynamical friction in SIBEC-DM, we estimate
the time it takes for two of the GCs orbiting the Fornax dSph to
sink into their host halo due to this gravitational drag, thereby
inferring constraints on finite-temperature superfluid DM. The
paper is organized as follows: in Sect. 2 the superfluid equa-
tions at both zero and finite temperatures are introduced, as well
as some basic notions related to superfluidity. In Sects. 3 and 4
these equations are used to derive the dynamical friction at lin-
ear order, both in a steady-state and a finite-time scenario. The
dynamical friction is also found using numerical simulations of
the full superfluid hydrodynamic equations in Sect. 5, which is
compared to the linear result in Sect. 6. The tools developed in
the preceding sections are used in Sect. 7 to estimate the decay
times of two of the GCs orbiting the Fornax dSph, and con-
straints on SIBEC-DM are inferred. In Sect. 8 a summary of this
work and the main results are presented. Natural units are used
throughout.

2. Hydrodynamics of finite-temperature superfluids

In the standard treatment, superfluids are often related to Bose-
Einstein condensates (BEC), which form when the temperature
is sufficiently low and the particle density high enough that
the de Broglie wavelengths of identical bosons overlap, creat-
ing a coherent state that can be described by a single-particle
wave-function. This wave-function is usually associated with the
superfluid, and can therefore be regarded as a quantum mechan-
ical effect at macroscopic scales. The wave-function ψ at the
mean-field level is governed by the Gross-Pitaevskii equation,
a non-linear Schrödinger equation with effective contact interac-
tions parameterized by g;

i
∂ψ

∂t
=

[
−∇2

2m
+ g|ψ|2 + mVext

]
ψ. (1)

The external potential Vext can be a trapping potential, as is often
used in cold atomic experiments, or a gravitational potential. The
amplitude of ψ is related to the particle number density by n =
|ψ|2, and mass density ρ = m|ψ|2.

By inserting for the wave-function

ψ =
√

neiS =

√
ρ

m
eiS, (2)

and defining the velocity field u = ∇S/m, the nonlinear
Schrödinger equation can be reformulated in a hydrodynamic
form. The real and imaginary parts of the Schrödinger equation
give the set of equations

∂ρ

∂t
+ ∇ · (ρu) = 0, (3)

∂u

∂t
+ (u · ∇)u + ∇

(
gρ

m2
+ Q + Vext

)
= 0. (4)

These are the so-called Madelung equations (Madelung 1926).
The first is a continuity equation for mass, and the second is a
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quantum variant of the momentum equation, with the quantum
potential

Q = −
1

2m2

∇2 √ρ
√
ρ
, (5)

coming from the kinetic part of the Schrödinger equation that is
present even in the absence of interactions. From the definition
of the velocity field, we see that it is irrotational, because the
curl of a gradient is zero. However, there can arise defects in the
superfluid, around which the circulation is quantized as

m
∮
u · dl = 2πN, N ∈ Z, (6)

because the complex wave-function must be single-valued.
These special structures in superfluids are called quantum vor-
ticies. Both the Schrödinger and Madelung formulations have
been used in cosmology as models for DM in order to explain
the absence of small-scale structure that is predicted in N-body
simulations of CDM (Schive et al. 2014; Mocz et al. 2017; Nori
& Baldi 2018, 2021; Mina et al. 2020a,b).

At finite temperatures, the hydrodynamic formulation of a
superfluid must take into account that the fluid is no longer com-
pletely superfluid. There is a thermal cloud of excitations in addi-
tion to the coherent superfluid state that carries entropy, gives a
thermal contribution to the fluid pressure, and can be viscous and
rotational. To complicate matters further, as the temperature of
the fluid changes, the fraction of the fluid in this thermal cloud
changes as well. This property of superfluids, to behave both as
a superfluid (in the sense that we usually understand the term, as
a fluid with zero viscosity, quantized circulation, and carrying no
entropy) and a conventional fluid, has led to the development of
a two-fluid picture of superfluids. The hydrodynamic equations
for a finite-temperature superfluid are (neglecting the quantum
potential; Taylor & Griffin 2005; Chapman et al. 2014):

∂ρ

∂t
+ ∇ · j = 0, (7)

∂S
∂t
+ ∇ · (S un) = 0, (8)

∂us

∂t
+ ∇

(
μ +

1

2
u2

s

)
= −∇Φ, (9)

∂ j
∂t
+ ∇P + ρs(us · ∇)us + ρn(un · ∇)un

+ us[∇ · (ρsus)] + un[∇ · (ρnun)] = −ρ∇Φ. (10)

The thermal cloud, which we refer to as the “normal fluid”, has
density ρn, velocity un, and transports both mass and thermal
energy. The second component is the “superfluid”, with density
ρs, a velocity field us, and carries no entropy. The total mass
density is the sum of the two components, ρ = ρn + ρs, and
likewise for momentum, j = ρnun + ρsus. The fluid pressure is
P, the entropy density S , temperature T , and μ = [P+U − S T −
1
2
ρn(us − un)2]/ρ.

As previously mentioned, superfluids and BECs are related
phenomena, but it is important to stress that they are not equiv-
alent. The formation of a BEC does not automatically imply
a superfluid. To see this we must consider the co-called Lan-
dau criterion. Landau, in his seminal paper on superfluid liquid
helium 4 (Landau 1941), made the following argument: Assume
that dissipation and heating in a fluid takes place via the creation
of elementary excitations. If these excitations become energet-
ically unfavorable and cannot spontaneously appear, then dis-
sipation and heating ceases, and the fluid becomes superfluid.

The criterion for such a condition is for the relative velocity
v between the superfluid and a scattering potential, such as an
impurity or a container wall, to be smaller than a critical value,

v < vc = min
p

ε(p)

p
, (11)

where ε(p) is the energy of an elementary excitation with
momentum p (Pitaevskii & Stringari 2016). This criterion shows
that an ideal BEC, for which the excitation spectrum is ε(p) =
p2/2m, has vc = 0 and is therefore not a superfluid. On the other
hand, a Bose gas with weak interactions has–upon the formation
of a BEC–an energy spectrum that is linear at small momentum,
ε(p) = cs p. Hence vc = cs, and weakly interacting BECs are
superfluids.

The Landau criterion is usually derived with the velocity rel-
ative to an external scatterer in mind, but it also applies to the
thermal excitations that make up the normal fluid. The critical
value for the relative velocity w = us − un of the normal fluid
and superfluid is smaller than the one determined by Eq. (11),
but the difference is small at low temperatures and weak self-
interactions (Navez & Graham 2006).

The presence of the relative velocity w, because of the par-
tially independent motion of the superfluid and normal fluid
components in a finite-temperature superfluid, has important
consequences for its behavior. The superfluid part does not carry
heat, while the normal fluid does, allowing mass and entropy to
flow separately. This becomes clear if we define the velocity field
for the mass flux, u = j/ρ, and express the equations for mass
and entropy conservation in terms of w and u;

∂ρ

∂t
+ ∇ · (ρu) = 0, (12)

∂S
∂t
+ ∇ · (S u) − ∇ ·

(
S ρs

ρ
w

)
= 0. (13)

For a finite superfluid fraction, the entropy has an additional flux
term, and therefore entropy and mass can have different flow pat-
terns. This property is called thermal counterflow. The equation
for ∂w/∂t contains a driving term S∇T/ρn, and so the counter-
flow w tends to be directed towards regions of higher tempera-
ture, washing out thermal differences in the superfluid. As we
see below, it is this property that makes the dynamical friction
in a superfluid different from a corresponding fully normal fluid
(i.e., a conventional fluid, ρs = 0, with the same pressure forces).

When the Landau criterion is broken, with w approach-
ing and passing the critical velocity, the superfluid flow starts
to decay as a tangle of quantum vortices form, and causes a
mutual friction between the superfluid and normal fluid compo-
nents (Skrbek 2011; Skrbek & Sreenivasan 2012; Barenghi et al.
2014). Such a dissipative effect is not present in the superfluid
equations, but can be included with additional terms, as has been
done in numerical studies of superfluid helium (Doi et al. 2008;
Darve et al. 2012; Soulaine et al. 2017). However, to circumvent
the need for extra parameters and the need to assume the func-
tional form of the mutual friction, we instead follow the same
approach used in a previous work (Hartman et al. 2020); the
dissipative processes are assumed to take place instantaneously
when the relative velocity w exceeds the critical velocity. The
velocity field us is changed in such a way that the fluid momen-
tum is conserved, and that only the magnitude of w is altered, not
its direction, bringing it to w = vc. In other words, we assume the
mutual friction to be directed along w.

The critical temperature Tc is a central quantity in BEC
superfluids. For T > Tc, a gas of identical bosons is a normal
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fluid, but for T < Tc, the particles begin accumulating in the
ground state, forming a BEC, which in turn can form a super-
fluid. In the three-dimensional, homogeneous, ideal Bose gas,
this critical temperature is

Tc =
2π�2

m5/3

(
ρ

ζ(3/2)

)2/3

, (14)

where ζ(x) is the Riemann Zeta-function, and holds approxi-
mately for weakly interacting gases as well (Andersen 2004;
Sharma et al. 2019).

For the thermodynamic quantities of a weakly interacting
Bose gas, we again follow the approach used in a previous work
(Hartman et al. 2020). The equation of state is approximated by
an ideal gas with contributions from two-body interactions,

P =
1

2

g

m2
ρ2 + ζ(5/2)

( m
2π

)3/2

T 5/2, (15)

S =
5

2
ζ(5/2)

( m
2π

)3/2

T 3/2, (16)

valid only for T < Tc. The fraction of particles in the condensate
f0 and the superfluid fs = ρs/ρ are both taken to be equal to the
condensate fraction in the ideal case;

fs = f0 = 1 −
(

T
Tc

)3/2

· (17)

The critical velocity is approximated as

vc =

√
gn f0

m
· (18)

As long as the temperature is not too close to the transition point,
and the interactions are sufficiently weak, these approximations
work well.

3. Dynamical friction from steady-state linear
perturbation theory

The starting point for computing the dynamical friction acting
on an object, or a “perturber”, moving through the superfluid are
Eqs. (7)–(10). The gravitational potential is sourced by both the
background mass density ρ, and the mass distribution ρpert of the
perturber:

∇2Φ = 4πG[ρ + ρpert]. (19)

The superfluid is assumed to be homogeneous, and so the fluid
variables are expanded to linear order, ρ = ρ0 + δρ, S = S 0 + δS ,
us = δus, and so on. The linear equations are

∂δρ

∂t
+ ∇ · δ j = 0, (20)

∂δS
∂t
+ S 0∇ · δun = 0, (21)

∂δus

∂t
+

1

ρ0

∇δP − S 0

ρ0

∇δT = −∇δΦ, (22)

∂δ j
∂t
+ ∇δP = −ρ0∇δΦ, (23)

δun =
1

ρ0

δ j −
ρs0

ρ0

δus, (24)

∇2δΦ = 4πG[δρ + ρpert]. (25)

These can be combined into two coupled equations for δρ and
δS ;

∂2δρ

∂t2
−

[(
∂P
∂ρ

)
0

∇2 + 4πGρ0

]
δρ −

(
∂P
∂S

)
0

∇2δS = 4πGρ0ρpert,

(26)

∂2δS
∂t2
−

S 0

ρ0

[(
∂P
∂ρ

)
0

∇2 + S 0

ρs0

ρn0

(
∂T
∂ρ

)
0

∇2 + 4πGρ0

]
δρ

−
S 0

ρ0

[(
∂P
∂S

)
0

∇2 + S 0

ρs0

ρn0

(
∂T
∂S

)
0

∇2

]
δS = 4πGS 0ρpert.

(27)

The “0” subscript indicates that the quantity is evaluated at the
background level. As expected, there are scale-dependent pres-
sure terms that inhibit the growth of mass density and entropy
perturbations, but in the entropy equation there are additional
effective pressure terms that further reduce entropy perturba-
tions. These are due to thermal counterflow and depend on the
superfluid fraction, vanishing in the fully normal fluid limit. It
must be noted that the critical velocity vc is not included in the
present approach, but the effect of this on linear theory is con-
sidered further in Sect. 4, as well as in Sect. 5 using numerical
simulations.

Writing δρ = αρ0, and Fourier transforming into momentum
(k) and frequency (k0) space, the solutions of the k-modes αk are
found:

αk = −4πGρpert,k
k2

0 − Ak2(
k2

0
− ω2

k+

) (
k2

0
− ω2

k−

) , (28)

where the dispersion relation is

ω2
k± = C4k2 −C2 ±

√
C3k4 − 2C1C2k2 +C2

2
, (29)

and

A =
S 2

0

ρ0

ρs0

ρn0

(
∂T
∂S

)
0

, (30)

C1 =
1

2

(
∂P
∂ρ

)
0

+
S 0

2ρ0

(
∂P
∂S

)
0

−
S 2

0

2ρ0

ρs0

ρn0

(
∂T
∂S

)
0

, (31)

C2 = 2πGρ0, (32)

C3 = C2
4 +

S 2
0

ρ0

ρs0

ρn0

[(
∂P
∂S

)
0

(
∂T
∂ρ

)
0

−
(
∂P
∂ρ

)
0

(
∂T
∂S

)
0

]
, (33)

C4 =
1

2

(
∂P
∂ρ

)
0

+
S 0

2ρ0

(
∂P
∂S

)
0

+
S 2

0

2ρ0

ρs0

ρn0

(
∂T
∂S

)
0

· (34)

The dynamical friction is given by the change in the energy of
the perturber,

FDF = −
M
V
∂Φα
∂t
, (35)

where M and V are the mass and velocity of the perturber, and
Φα is the gravitational potential of the background fluid,

∇2Φα = 4πGρ0α. (36)

This is readily found in k-space,

Φα,k = −
4πGρ0αk

k2
, (37)
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which can be Fourier transformed back into position-space to
give the dynamical friction,

FDF =
M
V
∂

∂t

∫
dk4

(2π)4
eik0t−ik·xΦα,k

= −
4πGM2ρ0

V

∫
dk4

(2π)4

ik0

k2
eik0t−ik·xαk. (38)

Approximating the perturber as a point particle moving along the
z-axis with constant velocity V ,

ρpert(x, t) = Mδ(x)δ(y)δ(z − Vt), (39)

or in k-space

ρpert,k = 2πMδ(k0 − Vkz), (40)

yields the expression for the dynamical friction as

FDF =
32π3G2M2ρ

V

∫
dk4

(2π)4

ik0

k2
eik0t−ik·x

×
(k2

0 − Ak2)δ(k0 − Vkz)

(k2
0
− ω2

k+)(k2
0
− ω2

k−)
· (41)

Equation (41) can be tackled by extending the k0-integral
into the complex place and closing it in the upper half plane
(assuming t > 0), meaning that contour integration can be used.
The poles are pushed slightly off the real line by the prescription
ωk± → ωk± + iε, and only the residual of the poles inside the
contour contribute to the integral. Taking the limit ε → 0+ after
integrating gives the dynamical friction as

FDF = −
16π3G2M2ρ0

V

∫
dk3

(2π)3

1

k2

1

ω2
k+ − ω

2
k−

×
[
eiωk+t−ik·x(ω2

k+ − Ak2)δ(ωk+ − Vkz)

− eiωk−t−ik·x(ω2
k− − Ak2)δ(ωk− − Vkz)

]
. (42)

Spherical polar coordinates are adopted for the integral over
momentum, with the polar angle θ defined as the angle relative
to the direction of propagation, the z-axis, and the force is eval-
uated at the position of the perturber, x = Vt ẑ. The integrand
is independent of the azimuthal angle, but depends on the polar
angle through kz = k cos θ. Integrating over the azimuthal angle
therefore gives a factor 2π, while the polar angle in combina-
tion with the δ-function fixes the exponentials to one and places
upper limits on the momentum, k < k∗,±max, where k∗,±max satisfies
kV = ωk±. Further constraints are placed on k: The remaining
k-integral is bounded by the finite sizes of the perturber and the
cloud it moves through, Rmax = Rcloud and Rmin = Rpert, other-
wise both ultraviolet (UV)- and infrared (IR) divergences may
be encountered, because the perturber is modeled as a point par-
ticle, and the background fluid as infinite and uniform. We must
also have k > k∗,±

min
, where k∗,±

min
is the minimum momentum for

which ωk± are real. At small k, or, equivalently, large scales,
where ωk± become complex or imaginary, the background cloud
will be gravitationally unstable and deform. We denote as a gen-
eral measure the upper limits in k for the two terms in Eq. (42)
by k±max, and the lower limits by k±

min
. Inserting the expression for

ωk± and using that C4 − A = C1, the dynamical friction becomes

FDF = −
4πG2M2ρ0

V2

[ ∫ k+max

k+
min

dk
2k

(
C1k2 −C2√

C3k4 − 2C1C2k2 +C2
2

+ 1

)

−
∫ k−max

k−
min

dk
2k

(
C1k2 −C2√

C3k4 − 2C1C2k2 +C2
2

− 1

)]
· (43)

There is an implicit criterion that k±max > k±
min
> 0, otherwise the

integral is zero.
Equation (43) can be solved analytically, but its expression

is not particularly enlightening. Instead, we focus on a few lim-
iting cases for which the force reduces to a simplified form; zero
temperature, the fully normal fluid, small velocities, and no self-
gravitation.

3.1. Zero-temperature limit

Taking the limit T → 0 (under the assumption that terms such
as S 2ρs/ρn go to zero as well) yields one band for the dispersion
relation,

ω2
k = c2

T=0k2 − 4πGρ0, (44)

where the sound speed at zero temperature is

c2
T=0 =

(
∂P
∂ρ

)
0

· (45)

The dynamical friction becomes

FDF = −
4πG2M2ρ0

V2
ln

(
kmax

kmin

)
, (46)

with

kmax = min

⎛⎜⎜⎜⎜⎜⎜⎝2πR−1
min,

√
4πGρ0

c2
T=0
− V2

⎞⎟⎟⎟⎟⎟⎟⎠ , (47)

kmin = max

⎛⎜⎜⎜⎜⎜⎜⎝2πR−1
max,

√
4πGρ0

c2
T=0

⎞⎟⎟⎟⎟⎟⎟⎠ · (48)

3.2. Normal fluid limit

Taking the fully normal fluid limit ρs → 0 also gives one band
for the dispersion relation,

ω2
k = c2

nk2 − 4πGρ0, (49)

with the sound speed in the fully normal fluid

c2
n =

(
∂P
∂ρ

)
0

+
S 0

ρ0

(
∂P
∂S

)
0

· (50)

The dynamical friction is again given by Eq. (46), but with

kmax = min

⎛⎜⎜⎜⎜⎜⎜⎝2πR−1
max,

√
4πGρ0

c2
n − V2

⎞⎟⎟⎟⎟⎟⎟⎠ , (51)

kmin = max

⎛⎜⎜⎜⎜⎜⎜⎝2πR−1
min,

√
4πGρ0

c2
n

⎞⎟⎟⎟⎟⎟⎟⎠ · (52)

This is the same as the zero-temperature case, but with a different
sound speed.
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3.3. Small-velocity limit

At sufficiently small velocities, V2 � C4 −
√

C3, assuming that
the finite sizes of the background cloud and perturber do not set
the integral limits in Eq. (43), the dynamical friction becomes

FDF = −
2πG2M2ρ0

c2
T=0

· (53)

This is equal to the friction force at T = 0 in the same limit, as
opposed to when ρs = 0;

FDF = −
2πG2M2ρ0

c2
n

· (54)

The dynamical friction of a superfluid therefore approaches the
zero-temperature limit even when there is a significant thermal
contribution. This happens because counterflow in the superfluid
conspires against thermal perturbations, allowing the mass over-
density to behave similarly to a zero-temperature fluid. With only
the interaction pressure that is present at zero temperature effec-
tively damping density perturbations, the density contrast of the
superfluid can grow larger (compared to a normal fluid at the
same temperature) and hence produce a stronger net gravita-
tional force acting on the perturber. However, we recall that this
result does not include the effect of the critical velocity which
would limit this thermal counterflow. In Sect. 4 we propose a
scheme to include the critical velocity in linear perturbation the-
ory, and then test the scheme using hydrodynamic simulations in
Sect. 6.

3.4. Neglecting self-gravitation

The numerical results presented in Sect. 6, as well as the decay
times of globular clusters in Sect. 7, are obtained when self-
gravitation is neglected. It is therefore of interest to see what
the steady-state linear theory predicts in this case as well.

Neglecting self-gravitation amounts to setting C2 = 0. The
dispersion relation becomes

ω2
k± = (C4 ±

√
C3)k2 = c2

±k2. (55)

For the equation of state used throughout this work, and T/Tc �
0.2, the above superfluid sound speeds can be accurately approx-
imated by

c+ =

√
c2

n − c2
T=0

fn
, (56)

c− = cT=0. (57)

We note that for cn � cT=0, we have c+ ≈ cn/
√

fn � cn. The
dynamical friction takes the form

FDF = −
4πG2M2ρ0

V2
ln

(
Rmax

Rmin

)

×
1

2

[(
1 −

C1√
C3

)
θ(V − c−) +

(
1 +

C1√
C3

)
θ(V − c+)

]
. (58)

One feature that is clear in this limit is that FDF jumps from
zero as V becomes larger than c−, and jumps again as it crosses
c+. It seems odd that the force should change value so dramat-
ically when the velocity of the perturber crosses these thresh-
olds, and indeed we find in the numerical simulations in Sect. 5

that it does not. The problem is that in the steady-state case, as
considered in this section, the linear over-density is symmetric
upstream and downstream when the perturber moves at subsonic
speeds, resulting in a zero net gravitational force at the position
of the perturber. This is not an issue at supersonic speeds because
the perturber moves faster than the background fluid can respond
to the perturbation, which is at the speed of sound, resulting
in a clear cone trailing the perturber (Ostriker 1999). At sub-
sonic speeds, on the other hand, the fluid reacts faster than the
perturber moves, and with an infinite amount of time to propa-
gate this response, the first-order perturbation of the background
becomes symmetric. In order to overcome this shortcoming of
steady-state linear perturbation theory, other studies have bro-
ken this symmetry by switching on the perturber for a finite
time (Ostriker 1999; Sánchez-Salcedo 2012), or by going to
second-order perturbations (Lee & Stahler 2011; Shadmehri
& Khajenabi 2012). In the following section, the finite-time
approach is employed for a superfluid.

4. Dynamical friction from finite-time linear
perturbation theory

For the finite-time calculation, Eqs. (26) and (27) are used with-
out self-gravitation, and an approach very similar to the one used
by Ostriker (1999) is followed.

The equations can be written in matrix form as

∂2Y
∂t2
+ A∇2Y = Fρpert, (59)

where

Y =
(
δρ
δS

)
, (60)

A =

⎛⎜⎜⎜⎜⎜⎜⎝
(
∂P
∂ρ

)
0

(
∂P
∂S

)
0

S 0

ρ0

(
∂P
∂ρ

)
0
+

S 2
0

ρ0

ρs0

ρn0

(
∂T
∂ρ

)
0

S 0

ρ0

(
∂P
∂S

)
0
+

S 2
0

ρ0

ρs0

ρn0

(
∂T
∂S

)
0

⎞⎟⎟⎟⎟⎟⎟⎠ , (61)

and

F =
(
4πGρ0

4πGS 0

)
. (62)

By diagonalizing matrix A, the coupled set of equations can be
transformed into two decoupled wave equations of the form

∂2χi

∂t2
− c2

i ∇
2χi = fi, (63)

which are solved using the retarded Green’s function for the
wave equation in three dimensions:

χi(x, t) =
∫

d3x′
∫

dt′
δ(t′ − (t − |x − x′|/ci)) fi(x′, t′)

4πc2
i |x − x′|

· (64)

For a point source switched on at the origin at t = 0 and moving
at speed V = V ẑ,

fi(x, t) = Kiδ(x)δ(y)δ(z − Vt)H(t), (65)

where H(x) is the Heaviside function, the solution of χ becomes,
upon defining s = z − Vt,Mi = V/ci, and R2 = x2 + y2,

χi(x, t) =
Ki

4πc2
i

√
s2 + R2(1 −M2

i )

Hi, (66)

Hi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 for R2 + z2 < (cit)2,

2
forMi > 1,R2 + z2 > (cit)2,

s/R < −
√
M2

i − 1, and z > cit/Mi,

0 otherwise.

(67)
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The resulting overdensity δρ is a weighted sum of χ+ and χ−, and
the dynamical friction is obtained by integrating the gravitational
force due to the overdensity over the whole volume, that is,

FDF = 2πGM
∫

ds
∫

dR
sRδρ

(s2 + R2)3/2
· (68)

In spherical polar coordinates, s = r cos θ = rx and R = r sin θ =

r
√

1 − x2, we get

FDF = −
4πG2M2ρ0

V2
(I+ + I−), (69)

Ii = −Di

∫ Rmax

Rmin

dr
2r

∫ 1

−1

dx
xM2

iHi√
1 −M2

i + x2M2
i

, (70)

where we have again introduced an upper and lower cutoff of
scales in the integral to avoid UV- and IR divergences. The sound
speeds c+ and c− are the same as the ones given in Eq. (55), and

D+ = −
S 0

(
∂P
∂S

)
0

[
S 0
ρs0

ρn0

(
∂T
∂ρ

)
0
+ c2
+

]
ρ0(c2

+ − c2
−)

[ (
∂P
∂ρ

)
0
− c2
+

] , (71)

D− =
S 0

(
∂P
∂S

)
0

[
S 0
ρs0

ρn0

(
∂T
∂ρ

)
0
+ c2
−

]
ρ0(c2

+ − c2
−)

[ (
∂P
∂ρ

)
0
− c2
−
] · (72)

The dynamical friction from the finite-time calculation is
compared to the steady-state result in Fig. 1. The discontinuities
have been removed, with the force increasing with velocity V
until it reaches a maximum near the sound speed, after which the
perturber becomes supersonic and the friction force decreases
with the same 1/V2 dependence as in the steady-state result.
As time passes, the finite-time result approaches the steady-state
result, as expected.

Both approaches predict FDF in the superfluid phase to be
very close to the zero-temperature value, even when thermal
pressure dominates over the contribution from self-interactions.
However, we must recall again that the Landau criterion is not
included in linear perturbation theory, which will limit the ther-
mal counterflow of the superfluid, making it behave more like a
normal fluid, thus decreasing the dynamical friction as thermal
pressure forces inhibit the growth of density perturbations. Let
us therefore construct an ad hoc scheme to include the critical
velocity in the linear theory.

The critical velocity is expected to have an effect when the
relative velocity is of the order of the critical velocity and larger.
Therefore, let us consider the linearized equation for the relative
velocity,

∂w

∂t
=

S 0

ρn0

∇δT = S 0

ρn0

[(
∂T
∂S

)
0

∇δS +
(
∂T
∂ρ

)
0

∇δρ
]
· (73)

The amplitude of δρ and δS , and hence δT , increases with M,
driving w up to the critical value faster, causing the effect of the
critical velocity on the system to be more prominent. Increasing
M should therefore have a similar effect as lowering vc in tran-
sitioning the superfluid dynamical friction from the T = 0 value
to the fully normal fluid value.

We now assume that for an estimate of the characteristic
counterflow w̄ of the system, there is an interpolating function
f (w̄, vc) with f (w̄ � vc)→ 1, f (w̄ � vc)→ 0, and a transitional
region around w̄ ∼ vc, such that

FDF = f (w̄, vc)Fsf
DF + [1 − f (w̄, vc)]Fnf

DF, (74)

(a)

(b)

(c)

Fig. 1. Dynamical friction from linear perturbation theory using the
finite-time approach (solid lines) and the steady-state approach (dotted
lines) as a function of V . As time passes, the finite-time result, Eq. (69),
approaches the steady-state result, Eq. (58). In the zero-temperature
limit, we have T = 0, while in the normal fluid case we have ρs = 0.
(a) t = 0.1Rmax/V . (b) t = Rmax/V . (c) t = 10Rmax/V .

where Fsf
DF

and Fnf
DF is the dynamical friction from linear the-

ory for the superfluid and fully normal fluid, respectively. Using
Eq. (73) we can write

w̄ =
S 0

ρn0

δT (0)

L
Δt =

S 0

ρn0

[(
∂T
∂S

)
0

δS (0)

L
+

(
∂T
∂ρ

)
0

δρ(0)

L

]
Δt. (75)

The length L and time Δt are characteristic scales over which the
fluid attains the mass and entropy overdensity at the origin, δρ(0)
and δS (0). The timescale can be estimated as Δt = L/v, where v
is some characteristic velocity in the problem. The largest super-
fluid sound speed, c+, which is essentially the fastest speed with
which the superfluid can respond to disturbances, was found to
work.

For the δ-function perturbation, the central values for the
mass and entropy overdensities diverge in the linear theory,
meaning that δρ(0) and δS (0) are not well-defined. Instead, these
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should be evaluated at some point near the origin, as was done
for dynamical friction. With the equation of state used in this
work, an estimate of the linear entropy contrast at Rmin/2 is

δS (Rmin/2) ≈
2S 0GM
c2
+Rmin

· (76)

The rough estimate of the counterflow is therefore

w̄ =
S 2

0

ρn0

(
∂T
∂S

)
0

2GM
c3
+Rmin

· (77)

Only the form of the interpolating function f (w̄, vc) remains to
be specified. The simple but rather arbitrary choice,

f (w̄, vc) =
vc

vc + w̄
=

⎡⎢⎢⎢⎢⎣1 + S 2
0

ρn0

(
∂T
∂S

)
0

2G
c3
+Rmin

M
vc

⎤⎥⎥⎥⎥⎦−1

, (78)

was found to work well, as we see in Sect. 6.

5. Numerical simulation of dynamical friction

To test the calculations from linear perturbation theory, the
full superfluid equations are integrated numerically. We use the
frame comoving with the perturber, meaning that its gravita-
tional field is static and centered at the origin, while the back-
ground fluid is moving. We take the perturber to be a sphere with
uniform mass density ρpert = 3M/4πR3

pert. The system has rota-

tional symmetry, and so cylindrical coordinates are employed;
the axial distance is z, the distance along the axis of rotational
symmetry, and the radial distance is r, the distance from the axis.
The simulation volume is therefore a cylinder, and we take its
domain to be −L < z < L and 0 < r < L.

The superfluid is initialized as a uniform fluid moving with
velocity V = −Vẑ. More fluid is injected into the simulation
volume with the same velocity at the z = +L boundary. The z =
−L and r = L boundaries are taken to have zero gradients, while
the inner boundary r = 0 has a reflecting boundary condition.

To numerically integrate the superfluid equations, a Godunov
scheme similar to the one described in Hartman et al. (2020) is
used. In the present work, the generation of entropy when the
Landau criterion is broken is not included. Also, as we evolve
the entropy instead of the energy, and we do not include any vis-
cosity, the numerical scheme dissipates kinetic energy at shock
fronts that is not converted into internal energy. In the absence
of this shock heating, the total energy is not strictly conserved.
Nevertheless, we have found that this inaccuracy is by and large
negligible for the scenarios we consider here because the solu-
tions are mostly in or near the linear regime.

The self-gravitation of the superfluid is neglected. The grav-
itational field it produces is computed only to find the result-
ing force on the perturber, that is, the dynamical friction. The
initial fluid parameters are ρ = 2 × 107 M� kpc−3, T = 0.2Tc,
m = 500 eV, and g = 2 × 10−3 eV−2. These parameters are cho-
sen only to illustrate the basic features of dynamical friction in
superfluids while keeping the simulation run-times reasonably
short. Unless stated otherwise, the size of the perturber is taken
to be Rpert = 2 pc with mass M = 0.1 M�, while the simula-
tion size is L = 150 pc. The simulation is run until t = 10 pc/V ,
that is, until the background has moved 10 pc. This is small com-
pared to the full simulated length, but is necessary for preventing
boundary effects from interfering with the results. Rmin is taken
to be the size of the perturber, Rmin = 2 pc, and Rmax the radius

Fig. 2. Dynamical friction against velocity for the superfluid with vary-
ing veff

c , and for the zero temperature and the fully normal fluid limits.
The results from finite-time linear perturbation theory are shown with
dotted lines of the same colors. Even with the critical velocity included,
the superfluid case gives a dynamical friction force of the same mag-
nitude as the zero temperature limit. When veff

c is decreased, the super-
fluid approaches the fully normal fluid limit as thermal counterflow is
increasingly limited. The sound speeds cT=0 and cn are indicated by the
vertical dotted lines.

of the cylindrical simulation volume, Rmax = 150 pc, when com-
pared to linear perturbation theory. The resolution of the sim-
ulated volume is 4096 × 2048 cells, in the z and r directions,
respectively, for the superfluid case. In the zero-temperature and
normal fluid limits, for which the numerical scheme was made
second-order in time and space using a MinMod slope-limited
MUSCL-Hancock scheme (Toro 2006) without stability issues,
a lower resolution of 2048 × 1024 is used.

An effective critical velocity veff
c , which is just vc multiplied

by some factor, is used in the simulations to show the effect of
varying vc without actually changing other parameters such as
the particle mass and self-interaction.

6. Comparison of perturbation theory and
numerical simulation

In Fig. 2 the dynamical friction from the numerical simulations is
compared to the linear result with the effect of the critical veloc-
ity included, Eqs. (69), (74), and (78). Even with the Landau
criterion, given by Eq. (18), the dynamical friction in the super-
fluid can be very similar to the zero-temperature limit, as was
shown in the linear theory. This similarity can also be seen in
the mass density profile shown in Fig. 3. At T = 0, for which
the pertuber is supersonic with V = 1.5cT=0, there is a well-
defined supersonic cone that trails the pertuber, and the den-
sity contrast reaches about 4.5. The finite-temperature superfluid
has a similar density contrast and supersonic cone, though not
as well-defined, illustrating that the superfluid behaves like the
T = 0 limit as thermal counterflow suppresses thermal perturba-
tions. In the fully normal fluid case, the density contrast is much
smaller, around 0.17, and the perturber is instead moving at sub-
sonic speeds, because V = 1.5cT=0 < cn, hence there is no sonic
cone. As veff

c is decreased, the relative velocity becomes increas-
ingly limited and the thermal counterflow inefficient, causing
the superfluid density profile to approach the fully normal fluid
limit. The dynamical friction changes accordingly, as shown in
Fig. 4. Furthermore, Fig. 5 shows the friction force as a function
of the mass of the perturber M, confirming the expectation that
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(a) (b)

(c) (d) (e)

Fig. 3. Density profiles and streamlines for V = 1.5cT=0. The mass density profiles are superimposed by the net mass density velocity, u = j/ρ,
while the entropy density is superimposed by the relative velocity w = us − un. The perturber has mass M = 5 M�, the simulation volume is
L = 75 pc, and the time is t = 50 pc/V . (a) T = 0 limit. (b) ρs = 0 limit. (c) veff

c = vc. (d) veff
c = 10−1vc. (e) veff

c = 10−5vc.

Fig. 4. Dynamical friction against the effective critical velocity veff
c , for

V = 1.5cT=0, with the results from finite-time linear perturbation theory
included with dotted lines of the same colors. As veff

c is lowered, the
dynamical friction goes from about the same value as the zero tempera-
ture limit to the value in the fully normal fluid limit, changing by about
two orders of magnitude.

increasing M causes a transition from superfluid to normal fluid
behavior in a similar manner to decreasing vc.

The numerical results of Figs. 2, 4, and 5 show that the
scheme to include vc in the linear theory (Eqs. (74) and (78)) suc-
cessfully captures the basic dependence on the perturber mass
and critical velocity, though it fails at low velocities, V < cT=0 ≈
c−, suggesting that other factors might come into play at those
speeds. However, as we see in the following section, this does

Fig. 5. Dynamical friction against the perturber mass M, for V =
1.5cT=0, with the results from finite-time linear perturbation theory
included with dotted lines of the same colors. The departure from per-
turbation theory for the zero-temperature case at high M is due to
nonlinear effects. Increasing the mass of the perturber causes the super-
fluid to behave increasingly like a normal fluid, similarly to the effect of
decreasing veff

c .

not cause any problems when applied to the Fornax dSph, as
in the relevant parameter space we have w̄ � vc, which is
far away from the transition between the superfluid and normal
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Table 1. Halo mass profile parameters, using Eq. (80), with values from Cole et al. (2012).

Model Name γ0 γ∞ η rs M (1.8 kpc) ρ̄
[kpc] [108 M�] [108 M� kpc−3]

LC Large core 0.07 4.65 3.7 1.4 4.12 0.35
WC Weak cusp 0.08 4.65 2.77 0.62 1.03 0.71

Notes. The density parameter ρ̄ is computed from the mass enclosed within 1.8 kpc.

fluid phase, and therefore no interpolation is needed. No further
attempt was therefore made to improve the scheme.

7. Application to the Fornax system

So far, only the physics of dynamical friction in superfluids has
been discussed, with little reference to the real world. Now,
armed with the expressions derived and tested in the previ-
ous sections, the parameter space of superfluid DM–the particle
mass, self-interaction, and temperature–can be explored by esti-
mating the orbital decay time of GCs in the Fornax dSph, and
checking whether the timing problem is alleviated for SIBEC-
DM, or exacerbated.

The decay time can be defined as the time τDF it takes
dynamical friction to reduce the angular momentum L of the
GCs to zero;

τDF =
L

r|FDF|
=

MV
|FDF|

, (79)

where M, V , and r are the mass, circular orbital velocity, and
the orbital radius of the GCs. The density profile of the Fornax
dSph is modeled in the same way as in Cole et al. (2012), using
a spherical double-power-law profile1 of the form

ρ(r) = ρ̄

(
r
rs

)−γ0
[
1 +

(
r
rs

)η] γ0−γ∞η
. (80)

The profile parameters, still following Cole et al. (2012), are
listed in Table 1, and correspond to different models for the shape
of the Fornax dSph. As SIBEC-DM, like many alternative the-
ories for DM, is in part motivated by typically having a cored
profile, we only focus on the Large core (LC) and Weak cusp
(WC) models from Cole et al. (2012). It should also be noted
that the density profile Eq. (80) models the total mass density,
that is, both stellar and DM, but as DM is the dominant com-
ponent, we use it as a pure DM profile. As illustrated in Fig. 6,
subtracting a subdominant portion of the density ρ0 = ρ(r) in
the computation of the SIBEC-DM dynamical friction in order
to account for the presence of stellar mass does not significantly
alter the value of the orbital decay time.

Estimates of the masses, projected orbital radii r⊥, and core
radii rc of the GCs, which we use as Rmin in perturbation theory,
are listed in Table 2. As in Lancaster et al. (2020) and Hui et al.

(2017), r = 2r⊥/
√

3 is used as the “true” radial distance from
the Fornax center. This larger radial distance leads to a longer
estimate of the decay time τDF, as illustrated in Fig. 6. The orbital
velocities of the GCs are assumed to be circular, determined by
the total halo mass enclosed by their orbits, Mencl,

V =

√
GMencl

r
· (81)

1 There appears to be a sign error in Eq. (1) in Cole et al. (2012)
when comparing the resulting profiles to their own figures, as well as
compared to other works that use the same type of profile (Zhao 1996;
Walker et al. 2009; Hague & Wilkinson 2013).

Table 2. Projected radial distances, masses, and core radii of the GCs
(not including the sixth found by Wang et al. 2019b) in the Fornax dSph,
taken from Mackey & Gilmore (2003).

GC label Projected radial GC core Mass M
distance r⊥ [kpc] radius rc [pc] [105 M�]

GC1 1.6 10.03 0.37
GC2 1.05 5.81 1.82
GC3 0.43 1.60 3.63
GC4 0.24 1.75 1.32
GC5 1.43 1.38 1.78

Fig. 6. Change in the orbital decay time as parameters related to the
modeling of the Fornax dSph, the GCs, and the dynamical friction are
varied. The reference values, which are for GC3 in the LC model, are
labeled with the subscript “ref”.

Inside rs the density profile of the Fornax dSph is approxi-
mately constant and cored for the LC and WC models. Hence,
we use rs as the “core size” of the Fornax, Rc, and the upper
length scale when we use perturbation theory, Rmax. The DM
density is determined at the position of the GCs using Eq. (80).

There is a limited region of parameter space that is both
physically relevant, and may provide a reasonable estimate of
τDF. This region should satisfy the following:

– The core radius of the halo obtained from hydrostatic equi-
librium should not exceed the core radius of the dSph as
modeled by Eq. (80).

– The DM mass and self-interaction should satisfy constraints
from observations of the deceleration of DM in cluster colli-
sions (Harvey et al. 2015).

– The relaxation rate of DM should be higher than the rate
of dynamical changes in the dSph, so that the system can
thermalize and form a superfluid.

– Perturbation theory is only properly valid for δρ/ρ � 1.
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– The ad hoc scheme to include the critical velocity intro-
duced at the end of Sect. 4 failed to reproduce the numerical
results of Sect. 6 for velocities V < c−. Therefore, we cannot
trust the dynamical friction obtained from linear perturbation
theory for these velocities. However, this should only be a
problem near the transition w̄ ∼ vc, where the form of inter-
polation between the superfluid and normal fluid result is
important.

While this list is not exhaustive, it provides a minimum set of cri-
teria that should be fulfilled. Due to our ignorance of the general
behavior of superfluid DM in a number of situations, we enforce
relaxed variants of the above constraints.

As seen in the previous sections, and shown in an earlier
work (Hartman et al. 2020), counterflow can effectively redis-
tribute thermal energy in a superfluid. Therefore, the shape of the
temperature profile of a realistic superfluid DM halo is unknown.
The least constraining assumption is therefore made; that the
counterflow has washed out any significant thermal differences,
so that only the interaction part of the pressure (the only pressure
present at T = 0) determines the hydrostatic profile. Demand-
ing that the core radius of the halo be larger than the core
radius obtained from hydrostatic equilibrium, which we define
as ρ(Rc) ≈ ρ(0)/2, gives

g � πGR2
cm2. (82)

This relaxed constraint is only possible if it is physically feasible
for the counterflow to transport a significant portion of the ther-
mal energy away from the halo core. A supplementary criterion
can be derived by demanding that the total entropy flux due to
thermal counterflow at the core edge Rc, with w = vc, be of the
same order as the total entropy enclosed in Rc. This leads to

g �
m2

9ρ

R2
c

Δt2
, (83)

where Δt should be smaller than the age of the dSph, for example
Δt ∼ 1 Gyr. As shown in Fig. 7, the difference between the T = 0
and the finite temperature treatment of the hydrostatic halo size
can be very large, and we do not expect a realistic superfluid
halo to be able to completely remove thermal differences, even
if upper estimates of the thermal counterflow suggest it could. A
realistic superfluid core radius is therefore expected to be larger
than the zero-temperature estimate used to derive Eq. (82).

By measuring the spatial offset of stars, gas, and DM in col-
liding galaxy clusters, a constraint on the self-interaction cross
section of DM, σ, can be established (Harvey et al. 2015). The
lack of deceleration of DM and its proximity to the collision-
less stars in these collisions places an upper limit of σ/m �
0.5 cm−2 g−1. In terms of the self-interaction parameter g, this
constraint reads (Pitaevskii & Stringari 2016)

g =

√
4πσ

m
� 5 × 10−12

(
1 eV

m

)1/2

eV−2. (84)

While the above places upper limits on g, there is also a
lower limit that must be considered given by the criterion that
the DM superfluid should be thermalized across much of the
halo core. For this we require the relaxation rate of DM, ΓDM,
to be higher than the rate of dynamical changes in the halo core,
Γgrav ∼

√
Gρ. For two-body interactions, the relaxation rate is

Γ ∼ nσδv, where σ is the scattering cross-section and δv the
velocity dispersion of the particles. In terms of g, as above, the
cross-section is σ = m2g2/4π. However, for a condensed Bose

Fig. 7. Criteria listed in the text, and the orbital decay timescale for
GC3 at T/Tc = 10−4 in the LC model for reference (solid black line).
Permitted parameter space; the left side is from the constraint on the
halo core radius in hydrostatic equilibrium, Eq. (82); the upper right
side from the constraint from galaxy cluster collisions, Eq. (84); and the
lower right side from the minimum relaxation rate needed to thermalize
the fluid across the halo, Eq. (86) (solid blue line). V = c−, with V <
c− on the left side (dotted blue line). Criterion for linear perturbation
theory to be properly valid, with δρ/ρ0 < 1 satisfied on the left side
(dashed blue line). Supplementary criterion for the T = 0 treatment of
the hydrostatic halo size, with Eq. (83) satisfied on the left side (solid
red line). w̄ = vc, where the superfluid dynamical friction transitions
from superfluid on the left side, to normal fluid on the right (dashed
red line). Constraint on the halo core radius in hydrostatic equilibrium
with thermal pressure included, with halo cores smaller than the core as
modeled by Eq. (80) on the right side.

gas, the relaxation rate is enhanced, that is, Γ ∼ Nnσδv, where

N = n
(2π)3

4π
3

(mδv)3
, (85)

because of the high occupation number of the ground state
(Sikivie & Yang 2009). Using δv ∼ V , that is, that the DM veloc-
ity dispersion is of the same order as the GC orbital velocity, the
criterion ΓDM > Γgrav becomes

g �

√
2

3π

m3/2G1/4V
ρ3/4

· (86)

It should be noted that the enhancement factor is included in this
criterion, but not in the constraint from cluster collisions. This is
another example of a relaxed constraint due to our ignorance of
how the superfluid properties might change in the various situa-
tions. The characteristic speeds of cluster collisions are usually
much higher than inside halos, which might result in a much
larger disruption of the DM BEC. Furthermore, the DM fluid
may not even be condensed throughout most of the cluster, only
inside dense structures. We therefore choose the least restrictive
constraint by includingN inside the dSph DM halo, but not out-
side.

The remaining constraints due to δρ/ρ � 1 and V < c−
are readily obtained from perturbation theory and Eq. (57). The
result from the finite-time approach, Eq. (69), with our proposed
scheme for including the critical velocity, Eqs. (74) and (78),
is used to compute the dynamical friction. The characteristic
timescale t = r/V is used as the finite time the perturber has
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been active, though the results are not sensitive to this choice.
A deficiency of the finite-time formalism is the lack of self-
gravitation in the background fluid, and it might seem that a bet-
ter choice is to instead use the steady-state expression, Eq. (43),
which includes this property. However, that result assumes the
perturber has acted on an otherwise static background for an
infinite amount time, and does not take into account that the
background can be rotationally supported, and therefore resist
the large-scale gravitational collapse induced by the perturber.
Furthermore, numerical studies of dynamical friction in realistic
halos show that linear theory can provide reasonable estimates of
the gravitational drag force even with self-gravitation neglected
if the mass of the perturber is significantly smaller than the
mass of the host halo (Fujii et al. 2006; Aceves & Colosimo
2007; Binney & Tremaine 2008; Chapon et al. 2013; Antonini
& Merritt 2011; Tamfal et al. 2020), as is the case here. How-
ever, because linear perturbation theory assumes a uniform back-
ground with an upper cutoff of scales to take into account the
finite extent of the background, we focus on the GCs located
inside rs, where the density profile of the LC and WC models
are approximately flat, which are GC3 and GC4. These are also
the ones that the timing-problem usually applies too (Cole et al.
2012; Hui et al. 2017; Arca-Sedda & Capuzzo-Dolcetta 2017).

The criteria on the parameter space listed above are illus-
trated in Fig. 7 for GC3 in the LC profile, with the estimated
orbital decay time for reference. Some features that also hold for
the other cases shown in Fig. 8 are worth pointing out. First, the
transition point between superfluid and normal fluid behavior,
w̄ = vc, lies far away from the region δρ/ρ0 < 1 where perturba-
tion theory is valid, meaning that we do not need to worry about
the accuracy of the interpolation scheme described in Sect. 4.
Second, the decay time becomes very large for V < c−, because,
as we have seen in the previous sections, the dynamical friction
vanishes quickly for velocities below the lowest sound speed.

The orbital decay time for a wide range of parameters is
shown in Fig. 8 for the two GCs inside the core radius of the
Fornax dSph, GC3 and GC4, in the two density profiles con-
sidered. τDF generally either attains a minimum value, τDF,min,
or approaches infinity. The minimum values in the region V >
c− and δρ/ρ0 < 1 are summarized in Table 3, with τDF in
the range 67 Myr−197 Myr. These timescales are considerably
smaller than the CDM result assuming the same density pro-
files, 515 Myr−1327 Myr, with the dynamical friction given by
Binney & Tremaine (2008)

FDF,CDM = −
4πM2G2ρ0 lnΛ

V2

[
erf(X) −

2X
√
π

e−X2

]
, (87)

where Λ ≈ rδv2/GM, X = V/
√

2δv, δv is the velocity disper-
sion of CDM particles, taken to be δv ≈ V , and erf is the error
function.

The decay time remains small even if parameters used to
model the Fornax dSph, the GCs, and the dynamical friction are
varied, as illustrated in Fig. 6. A notable exception is the posi-
tion of the GC, for which τDF is considerably shorter when closer
to the halo center, and likewise longer when further away. This
implies that the value for τDF obtained from Eq. (79) overesti-
mates the time it takes the GC to fully decay from its current
position, but it also implies that the migration towards the halo
center was slower in the past when the GCs were at larger radial
distances. Indeed, estimates of τDF,min for GC1, GC2, and GC5,
all of which are located at r � 1 kpc, give decay times in excess
of 4 Gyr. In the CDM case, the decay times for these GCs are
even longer: 17 Gyr and more. These estimates do not suggest a

timing problem for the outer GCs, even if their decay times are
considerably shorter for SIBEC-DM compared to CDM. How-
ever, we note that these GCs are near or outside the radius rs,
where the density profile of the dSph falls sharply, and there-
fore we do not expect the result for the dynamical friction, nor
Eq. (79), to necessarily provide a reasonable estimate of τDF.
Nonetheless, the present results show that for a large region of
the relevant parameter space of the SIBEC-DM model consid-
ered here, GC3 and GC4 are currently racing towards the center
of their host halo in a SIBEC-DM universe.

Let us now consider τDF in light of constraints on the SIBEC-
DM model from the literature. By fitting rotation curves of
slowly rotating SIBEC-DM halos in hydrostatic equilibrium in
173 nearby galaxies from the Spitzer Photomery & Accurate
Rotation Curves (SPARC) data (Lelli et al. 2016), Crǎciun &
Harko (2020) estimated the properties of SIBEC-DM halos at
T = 0, and found the best fit values for g/m2 to be between
2.7×10−4 eV−4 and 5.0×10−2 eV−4. For reference, the estimated
limit from hydrostatic equilibrium using Eq. (82) gives g/m2 of
less than about 2 × 10−4 eV−4 or 10−3 eV−4, depending on the
profile used for the dSph. As the preferred values obtained by
Crǎciun & Harko (2020) for zero-temperature SIBEC-DM sat-
isfy V < c− for the GCs and dSph profiles considered, lead-
ing to a vanishing dynamical friction, the T = 0 case does not
have a timing-problem, a result that could also have been found
using heuristic arguments; if the halo is largely supported by
hydrostatic pressure, that is, its Jeans’ length RJ ∼ cs/

√
Gρ is

of the order of the DM halo core radius Rc, then density per-
turbations on smaller scales inside the halo will be highly sup-
pressed, resulting in very weak dynamical friction, and therefore
long decay times.

In a finite-temperature SIBEC-DM halo–for which we
expect the preferred values for g/m2 obtained from fitting rota-
tion curves to be lowered, as it provides additional pressure
forces to support DM halos–the present results instead suggest
that overly large orbital decay rates due to strong dynamical fric-
tion may arise. This is the opposite of what one would naively
expect if the superfluid had been treated as a conventional ther-
mal fluid, because an increased pressure generally leads to a
smaller maximum dynamical friction. Instead, the superfluid
essentially ignores the thermal contribution, and responds to a
perturber as if it were at T = 0, which can yield a much stronger
friction force.

8. Conclusion

We investigated the dynamical friction acting on an object due
to a superfluid background, starting with steady-state linear per-
turbation theory. The well-known issue of discontinuities in the
friction force as the perturber’s velocity crosses the fluid sound
speed was encountered. We therefore also employed a finite-
time formalism, which removed these discontinuities, agreeing
with previous studies that the dynamical friction increases with
the velocity of the perturber until the sound speed is reached,
after which the force decreases with the same V−2 dependence
as the steady-state result. Both approaches predict the force in
the superfluid phase to be very similar to the T = 0 limit,
even when there are large thermal contributions, yielding a much
stronger friction force than one might naively expect when com-
pared to a conventional fluid at the same temperature. This
happens because counterflow conspires against thermal pertur-
bations, allowing the superfluid to respond to a perturbation as
if it were at zero temperatures. However, the counterflow is only
effective as long as it does not exceed the critical velocity vc,
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 8. Decay time of GC3 and GC4, as listed in Table 2, in the LC and WC models for the Fornax dSph density profile from Table 1 (solid line).
Permitted parameter space; the left side is from the constraint on the halo core radius in hydrostatic equilibrium, Eq. (82); the upper right side from
the constraint from galaxy cluster collisions, Eq. (84); and the lower right side from the minimum relaxation rate needed to thermalize the fluid
across the halo, Eq. (86) (dotted line). Criterion for linear perturbation theory to be properly valid, with δρ/ρ0 < 1 satisfied on left side (dashed
line). Limit due to a hydrostatic halo with thermal pressure included, with resulting core radii smaller than the core of the Fornax dSph as modeled
by Eq. (80) to the right. Changing the temperature only changes the decay time of the normal fluid phase, as well as the crossover from superfluid
to normal fluid. However, for the temperatures shown and lower, the normal phase is well outside the parameter space where perturbation theory
is valid. (a) GC3 LC, T/Tc = 10−2. (b) GC3 LC, T/Tc = 10−4. (c) GC3 LC, T/Tc = 10−6. (d) GC3 WC, T/Tc = 10−2. (e) GC3 WC, T/Tc = 10−4. (f)
GC3 WC, T/Tc = 10−6. (g) GC4 LC, T/Tc = 10−2. (h) GC4 LC, T/Tc = 10−4. (i) GC4 LC, T/Tc = 10−6. (j) GC4 WC, T/Tc = 10−2. (k) GC4 WC,
T/Tc = 10−4. (l) GC4 WC, T/Tc = 10−6.
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Table 3. Minimum orbital decay time τDF,min of GC3 and GC4 in the LC and WC models for the Fornax dSph, found in the region V > c− and
δρ/ρ0 < 1 (for which perturbation theory is properly valid), with the CDM result given by Eq. (87) for comparison.

GC label and model τDF,min τDF,CDM V > c− δρ/ρ0 < 1 Equation (82)
[Myr] [Myr]

GC3 & LC 122 883 g/m2 < 1.8 × 10−4 g/m2 > 1.2 × 10−6 g/m2 < 1.0 × 10−3

GC3 & WC 197 1327 g/m2 < 2.5 × 10−4 g/m2 > 2.7 × 10−6 g/m2 < 2.0 × 10−4

GC4 & LC 67 515 g/m2 < 5.4 × 10−5 g/m2 > 4.0 × 10−7 g/m2 < 1.0 × 10−3

GC4 & WC 97 635 g/m2 < 2.5 × 10−4 g/m2 > 5.5 × 10−7 g/m2 < 2.0 × 10−4

Notes. The listed values are essentially constant for all temperatures for which the assumptions made are valid, T/Tc � 0.1. For V < c−,
perturbation theory instead predicts the dynamical friction to quickly vanish, causing τDF to become infinite. The criterion on g/m2 due to the
hydrostatic core radius, Eq. (82), is also listed. The values for g/m2 are given in units of eV−4.

which acts as an upper limit. For flows where the counterflow
would normally exceed, but is limited by, the critical velocity, the
superfluid instead behaves as a normal fluid. Therefore, decreas-
ing vc essentially causes a transition from a superfluid to a nor-
mal fluid, interpolating the dynamical friction from about the
value at T = 0 to the value of the normal fluid, which can dif-
fer by several orders of magnitude. Numerical simulations were
also used to investigate dynamical friction, confirming the gen-
eral dependence of the force on the critical velocity and the mass
of the perturber, which was found using linear perturbation the-
ory. However, the linear theory failed to reproduce the shape of
the superfluid-normal fluid transition for velocities smaller than
the smallest sound speed, V < c−.

Finally, the superfluid dynamical friction was applied to the
Fornax dSph and two of its GCs. It was found that the rele-
vant parameter space in which, among other things, perturbation
theory is valid gives orbital decay times for these GCs that are
much smaller than the age of the dSph, except in the region pre-
ferred in the literature (Crǎciun & Harko 2020). The present
work therefore suggests that there is no timing problem for
Fornax GCs in the SIBEC-DM model for the values of g/m2

obtained by Crǎciun & Harko (2020) by fitting rotation curves at
T = 0. For a finite-temperature SIBEC-DM, on the other hand,
for which the preferred parameter space of g/m2 is likely low-
ered, very large decay rates of Fornax GCs pose a problem.

The use of linear perturbation theory made it possible to
probe a large region of parameter space that is difficult to explore
with numerical simulations. The main limitations of the numer-
ical scheme used in this work are the low order of the Godunov
scheme used; the absence of entropy production, both when the
critical velocity was enforced and in shock waves, which leads to
the total energy not being strictly conserved; and the large differ-
ence between the superfluid sound speeds and dynamics, which
results in very small time-stepping and hence excessive diffusion
of the numerical solution. All of these limit the parameters for
which we can be confident that the numerical solution is correct,
and therefore limits the range within which perturbation theory
can be tested. Ideally, superfluid dynamical friction would have
also been explored using simulations with realistic models for
both the DM halo and perturber, as has been done for galaxies
with standard CDM and gas (Chapon et al. 2013; Tamfal et al.
2020), but such a study requires an improved scheme for solving
the superfluid hydrodynamics equations.
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