
The original MVC reports 
Trygve Reenskaug 

Dept. of Informatics 
University of Oslo 

I made the first implementation and wrote the original MVC reports while I 
was a visiting scientist at Xerox Palo Alto Research Laboratory (PARC) in 
1978/79. MVC was created as an obvious solution to the general problem of 
giving users control over their information as seen from multiple perspectives. 
MVC has created a surprising amount of interest. Some texts even use 
perverted variants for the opposite purpose of making the computer control the 
user.  

MVC was conceived as a general solution to the problem of users controlling a 
large and complex data set. The hardest part was to hit upon good names for 
the different architectural components. Model-View-Editor was the first set. 
They are described in my first note of May 12, 1979: THING-MODEL-VIEW-
EDITOR -.an Example from a planningsystem. A scanned version is included 
below.  

After long discussions, particularly with Adele Goldberg, I ended with the 
terms Model-View-Controller as described in my second note of December 10, 
1979: MODELS - VIEWS – CONTROLLERS. A scanned version is included at 
the end of this document.  

Jim Althoff and others implemented a version of MVC for the Smalltalk-80 
class library after I had left Xerox PARC; I was in not involved in this work.  

Oslo, February 12, 2007 
Trygve Reenskaug 



THING-MODEL-VIEW-EDITOR 12 May 1979 page 1 of 11

THING-MODEL-VIEW-EDITOR
an Example from a planningsystem

To LRG

From Trygve Reenskaug

Filed on [IVY]<Reenskaug>SMALL> TERMIN0LOGY2.DOC

Date 12 MAY 1979

The purpose of this note is to explore the thing-model-view-editor metaphors through a
coherent set of examples. The examples are all drawn from my planningsystem, and illustrate
the above four notions. All examples have been implemented, albeit not within the clean class
structure described here. The metaphors correspond to real world-Model-view-Tool as
proposed in A note on DynaBook requirements ([Ivy]<Reenskaug>DynaBook.doc).

THING

DESCRIPTION OF TERM

Something that is of interest to the user. It could be concrete, like a house or an integrated
circuit. It could be abstract, like a new idea or opinions about a paper. It could be a whole,
like a computer, or a part, like a circuit element.

EXAMPLE: A LARGE PROJECT

The Thing is here a large project. It could be the design and construction of a major bridge, a
power station or an off-shore oil production platform.

Such projects represent complex tasks with a very large number of interdependent details.
Those responsible for a project have to keep track of all these details and their dependencies
in order to understand the consequences of various real or proposed situations that may arise.

A great variety of different abstractions are used as aids in controlling large projects. Each
abstraction highlights particular aspects of the total project, and are used alone or together
with other abstractions for the control of those aspects. Examples of abstractions are ways of
thinking about the requirements for materials; cost estimating; and various budgeting and
accounting theories.

One particularly useful abstraction is the notion of activity networks or Pert diagrams. This
abstraction links together what should be done with who should do it and when it is to be
done.

In the network abstraction, every task that has to be performed in the project is mapped into a
simple element called an activity. Basically, an activity is characterised by its duration and its
predecessors. The duration specifics the time needed to perform the corresponding task, and



THING-MODEL-VIEW-EDITOR 12 May 1979 page 2 of 11

the predecessors are the activities that have to be completed before the present activity can be
started.

This simple abstraction is usually extended in a nummber of ways. Based upon the activities'
predecessors, it is easy to find the successors of each activity. The start activities of the
network are all activities that have no predecessors, and the end activities are the activities
that have no successors. Other information may be tacked on to each activity. The activity's
resource requirements is one example, the cost and cash flow associated with the activity is
another.

MODEL

DEFINITION

A Model is an active representation of an abstraction in the form of data in a computing
system

COMMENTS

As mentioned above, there are in general many different ways of abstracting the same Thing,
and it is therefore often useful with several, coexisting Models of a given 'Thing.
Alternatively, one may think of the project as having one, large Model that is subdivided into
a number of sub-Models.

The models are represented in the computer as a
collection of data together with the methods
necessary to process these data.

Ideally, all models should be totally consistent. This
ideal is not attainable in practice because it would
require an overwhelming bureaucracy and stifling
rigidity. One should therefore accept some
inconsistencies, the aim being that the total set of
models should be a reasonabely accurate
representation of the project without spending too
much effort on trivialities.

In our example, a given network Model is
represented in the Smalltalk system as an instance of class NetworkModel. Each activity in
the network Model is represented as an instance of class Activity.

One of the fields defined for class NetworkModel is activities, a Dictionary connecting
activity names (a UniqueString) and instances of Activity. Three of the fields defined for class
Activity are network, predecessors and successors. network contains a pointer to the
relevant instance of NetworkModel, and predecessors and successors are Vectors of pointers
to instances of Activity.



THING-MODEL-VIEW-EDITOR 12 May 1979 page 3 of 11

The overall structure of our Model (= the Smalltalk representation of a network model of a
project) is thus as follows: .

Within this general framework, we may now add information about our project that may be
connected to the network as a whole, and to each of its activities. To the network, we may for
example add the fields plannedStart and plannedFinish. To the definition of class Activity
we may add the fields duration, earlyStart, lateStart, and resourccRcquirements. We may
also add fields for late start and late finish, but decide to compute these quantities whenever
needed. (From duration and earlyStart or lateStart).

Note that the network Model with its sub-Models for each activity contains no information
about how the information may be shown on the screen, it is a clean representation of the
abstract project model.

VIEW
DEFINITION

To any given Model there is attached one or more Views, each View being capable of
showing one or more pictorial representations of the Model on the screen and on hardcopy. A
View is also able to perform such operations upon the Model that is reasonabely associated
with that View.

COMMENT

The implementation of all Views would be simplified if they were based upon the Form-Path-
Image metaphors.

EXAMPLE 1: List of networks

This View belongs to a super-network, i.e. a collection of networks. It is
thus slightly outside the scope of the Models discussed so far, but is
included for completeness. The appearance of a list of networks is
shown to the left.

A list of networks is an instance of class NetworkList, which is a
subclass of ListView.



THING-MODEL-VIEW-EDITOR 12 May 1979 page 4 of 11

A ListView has fields where it remembers its frame, a list of textual items and a possible
selection within the list. It is able to display its list on the screen within its frame, and reacts to
messages asking it to scroll itself. It understands a message asking it for an item that is
positioned at a given point within its frame, and a message asking it to select a given item.

A ListView is thus somewhat similar to a ListPane in the present system, but it is not a
subclass of Window and cannot be scheduled. It must therefore depend upon an Editor to tell
it where its frame is and to arrange for scrolling. One possible sequence for selection is that
the Editor reacts to redbug and asks the ListView for the item that is pointed to. The Editor
then asks the ListView and any other Views to select that item. This separation of user
interface and actual command execution provides for great flexibility in the Editor.

The class NetworkList builds on the general facilities of the ListView. It must know that the
list in question is a list of networks, and it must know how to hold of such a list. Further, it
must be able to execute commands that might be of interest in connection with its View. We
will only consider two such commands: give the name of selected network, and tell the Editor
to edit a given network.

EXAMPLE 2: List of activities within a network

A list of activities within a network is an instance of class
ActivityList, which is a subclass of ListView (see above for
description of this general class).

An instance of lass ActivityList must know which network it belongs
to, and how to get hold of a list of all the activities in that network.
'There are no special commands other than the general selection
mechanisms provided by ListView.

EXAMPLE 3: View of activity attributes

This is a textual presentation of all the attributes of an
activity. It is an instance of class ActivityText, which is a
subclass of TextView.

Class TextView has fields where it remembers its frame and
a paragraph of text. It is able to display the text within its
frame with wrap-around, and understands messages that ask
it to scroll the text within the frame. It is also able to link
given coordinates to positions within the text, and to select

text between given positions. It further understands messages asking it to perform various
manipulations based upon the selection like replace, cut, paste, again, etc.

Class TextView is thus similar to the present ParagraphEditor, but each direct user interface is
changed into one or more messages so that it may work together with other Views through an
Editor, and with a variety of different Editors.

Class ActivityText must know how to get hold of the text for a given activity. This operation
may usefully be triggered by a select message, usually from an Editor. It must further be able



THING-MODEL-VIEW-EDITOR 12 May 1979 page 5 of 11

to react to messages about the activity that are initiated by the user through an Editor. One set
of such messages apply to modification of the data presented in the View, this is taken care of
by the superclass TextView. The probably most important command to ActivityText itself is
accept, requsting the View to check its present contents and to pass the information on to the
network Model as an update of the attributes of the activity.

This View could be greatly improved if the class was made subclass of a tabular View rather
than the present running text

EXAMPLE 4: Network diagram

The diagram above is an instance of class DiagramView. It is the only example where the data
in the View cannot be fully deduced from its Model, and it must have fields containing the
shape and position of all the symbols, since this information is not part of the Model itself.
(Programs exist for the automatic positioning of symbols within a diagram. but we assume that at least some
manual editing will be required). The placement of the arrows may be deduced from the
dependencies between the activitities, this information may be fetched from the
NetworkModel whenever needed for the display. Such a procedure will be very slow,
however, and we assume that the Diagram View keeps a copy of that information for
efficiency reasons.

Just as all the other views, a Diagram View will need to supply the two operations needed to
select an activity, and the operations needed for scrolling (this time in two dimensions). In
addition, it will need some operations on the View itself, they have to do with the positioning
of the symbols in the diagram. Other operations have to do with network Model, for example
modify dependencies of an activity and transfer activity from one network to another.



THING-MODEL-VIEW-EDITOR 12 May 1979 page 6 of 11

EXAMPLE 5: A variation on the network diagram

This View provides an alternative to the previous example. The symbols are smaller, and it
therefore possible to present a larger part of the network on the screen. The small symbol size
makes it impractical to print the activity name in the symbol, and the user must get this
information by some other means.

The network diagram is presented on a gridded background. This is used when the user is
laying out the diagram, and the dots define the permissible positions of the activity symbols.

This View could be implemented as a subclass of DiagramView, or both could be subclasses
of some common View. In the present implementation, however, both Views may be
generated alternately by the same object: class Diagram View has has a field displayType that
may take the values #large or #small, and the various display methods are controlled by that
field. The gridding is displayed in the diagram through a separate method.



THING-MODEL-VIEW-EDITOR 12 May 1979 page 7 of 11

EXAMPLE 6: Gantt diagram

This View shows the activities along the vertical axis and time along the horizontal axis. In
this particular view, only one time schedule for each activity is shown. Through varying the
shading, it is quite easy to extend the presentation to include how much each activity may
float in time without upsetting the overall project schedule.

The diagram is an instance of class GanttView, which is a subclass of ChartView. ChartView
knows about the diagram background: axis with legend, gridding etc. It does not know
anything about the information to be put into the diagram, in this case the horizontal bars. It
aids its subclasses in presenting this information, however, through providing methods for
conversion from whatever coordinate system is used externally to the frame coordinates of the
diagram.

Class GanttView understands a number of messages from the user, most commonly given
through an Editor. One such message is viewNetwork:, this message provides the name of
the current NetworkModel. It will also be able to answer a question about which activity
belongs to the bar under a given point in the diagram, and to select the bar belonging to a
given activity. It is also able to pass on operations on the network and its activities that are
related to this particular View. Typical operations have to do with modifying the current
schedule. Operations should be provided for planning the network as a whole (backload: and
frontload:), for modifying the schedule of a single activity (plannedStart: and
planncdFinish:), and for letting the consequences of such a modification work its way
towards the front or back end of the network.

The NetworkModel must be able to answer a few questions rom a GanttPane giving a list of
all activities, the schedule of the network as a whole, and the schedule of each individual
activity.



THING-MODEL-VIEW-EDITOR 12 May 1979 page 8 of 11

EXAMPLE 7: Resource diagram

This diagram shows the sum of the resource requirements for the activities as a function of
time. (In general, there will be one such diagram for each resource type.)

The diagram is an instance of class ResourceView, which is another subclass of
DiagramView. The comments about the Gantt-diagram apply to this one as well, but the
concept of selection needs elaboration. The views answer to who:point? could be the set of all
activities that need resources at the time cooresponding to the point's x-value. The reaction to
the message select: activity could be to highlight the resource requirements of that particular
activity. For symmetry, it would be nice to combine the two, and open the possibility for
multiple selections in all NetworkModel Views.

EDITOR

DEFINITION
An Editor is an interface between a user and one or more views. It provides the user with a
suitable command system, for example in the form of menus that may change dynamically
according to the current context. It provides the Views with the necessary coordination and
command messages.

COMMENT
A user task may commonly be better performed with several Views present on the screen at
the same time. The user will want to manipulate these Views through pointing at them,
through selection in menus, or through some other means. Commands like selection typically
apply to several Views at the same time. The purpose of an Editor is to establish and position
a given set of Views on the screen, to coordinate them and to provide the user with a suitable
command interface.



THING-MODEL-VIEW-EDITOR 12 May 1979 page 9 of 11

EXAMPLE 8: UserView workspace

This is a very general Editor, providing
a user interface to any part of the
running Smal1talk system that can be
reached from a global variable. It can
therefore be used as an interface to the
Views of the planningsystem, but it
leaves most of the work to the user.

Since this Editor is always available, it
is used to start up more specialized
Editors and to perform commands that
are not used sufficiently frequently to
warrant such editor. One example of the
latter is a command for the fileout of the
complete data base.

EXAMPLE 9: An imaginary planning Editor

This Editor is very similar to the previous one, but it
has been created in the environment of a
demonstration network. Messages to that network and
all its activities may therefore be typed in and
executed directly through the doit command. The
complete protocols of the network and the activities
are therefore available through this Editor.

The Editor has not been implemented in this form, but
as a part of a larger Editor shown in the next example.

EXAMPLE 10: A sub-Editor belonging to the



THING-MODEL-VIEW-EDITOR 12 May 1979 page 10 of 11

demonstration Editor.

This Editor is part of the larger demonstration Editor (see
next example), and is designed to work within its context.
(The illustration of example 9 was actually the same Editor scrolled to
its top.)

The Editor is an instance of class DemoEditor, which is a
subclass of TextEditor. General texts may therefore be
typed in, stored and edited in this Editor. Further, since
DemoEditor knows about the demonstration network anet
and all its activities, any message understood by these
objects may be typed in and executed through a doit
command.

Since this Editor is part of the larger demonstration Editor
(see next example), we may execute the more general
expressions like activity duration, where activity is
interpreted as the currently selected activity.

A variation on this sub-Editor could talk to a an instance of
a subclass of ListView, limiting the user's possibilities to executing predefined commands
through prohibiting any editing of the text shown.

EXAMPLE 11: A demonstration Editor.

The appearance of this Editor on the screen is shown on the next page. The Editor is used to
demonstrate that one given Model may be displayed through many different Views.

The demonstration Editor is implemented as an instance of class DemoEditor, which is a
subclass of PanedWindow. Each of its panes is a sub-Editor that communicates with its
particular View. It also gives commands to the demonstration Editor and receives commands
from it.



THING-MODEL-VIEW-EDITOR 12 May 1979 page 11 of 11



MODELS-VIEWS-CONTROLLERS 10 December 1979 page 1 of 2

From: Trygve Reenskaug

Date: 10 December 1979

MODELS - VIEWS - CONTROLLERS

MODELS

Models represent knowledge. A model could be a single object (rather uninteresting), or it
could be some structure of objects. The proposed implementation supports knowledge
represented in something resembling semantic nets (If I understand Laura correctly)

There should be a one-to-one correspondence between the model and its parts on the one
hand, and the represented world as perceived by the owner of the model on the other hand.
The nodes of a model should therefore represent an identifiable part of the problem.

The nodes of a model should all be on the same problem level, it is confusing and considered
bad form to mix problem-oriented nodes (e.g. calendar appointments) with implementation
details (e.g. paragraphs).

VIEWS

A view is a (visual) representation of its model. It would ordinarily highlight certain attributes
of the model and suppress others. It is thus acting as a presentation filter.

A view is attached to its model (or model part) and gets the data necessary for the presentation
from the model by asking questions. It may also update the model by sending appropriate
messages. All these questions and messages have to be in the terminology of the model, the
view will therefore have to know the semantics of the attributes of the model it represents. (It
may, for example, ask for the model's identifier and expect an instance of Text, it may not
assume that the model is of class Text.)

CONTROLLERS

A controller is the link between a user and the system. It provides the user with input by
arranging for relevant views to present themselves in appropriate places on the screen. It
provides means for user output by presenting the user with menus or other means of giving
commands and data. The controller receives such user output, translates it into the appropriate
messages and pass these messages on .to one or more of the views.

A controller should never supplement the views, it should for example never connect the
views of nodes by drawing arrows between them.

Conversely, a view should never know about user input, such as mouse operations and
keystrokes. It should always be possible to write a method in a controller that sends messages
to views which exactly reproduce any sequence of user commands.



MODELS-VIEWS-CONTROLLERS 10 December 1979 page 2 of 2

EDITORS

A controller is connected to all its views, they are called the parts of the controller. Some
views provide a special controller, an editor, that permits the user to modify the information
that is presented by the view. Such editors may be spliced into the path between the controller
and its view, and will act as an extension of the controller. Once the editing process is
completed, the editor is removed from the path and discarded.

Note that an editor communicates with the user through the metaphors of the connected view,
the editor is therefore closely associated with the view. A controller will get hold of an editor
by asking the view for it - there is no other appropriate source.


