
Errata list:

Page vi, figure 2.6

Original text: 2.6 Illustration a K-D tree in R2 space where the nodes are
inserted in alphabetical . 11

Corrected text:
2.6 Illustration of a K-D tree in R2 space where the nodes are inserted in

alphabetical order 11

Page vii, figure 5.5, 5.6, 5.7, 5.8

Original text:

5.5 Shows time in seconds needed to complete all necessary cublasHgemm calls
needed to multiply 106 query points with 1010 reference points, where the num-
ber of query points per call is in the range 40 - 400000
. . . 60

5.6 Shows time in seconds needed to complete all necessary cublasHgemm calls
needed to multiply 106 query points with 1010 reference points, where the num-
ber of query points per call is in the range 40 - 29729
. . . 61

5.7 Shows time in seconds needed to complete all necessary cublasHgemm calls
needed to multiply 104 query points with 1010 reference points, where the num-
ber of query points per call is in the range 40 - 10500
. . . 61

5.8 Shows time in seconds needed to complete all necessary cublasHgemm calls
needed to multiply 104 query points with 1010 reference points, where the num-
ber of query points per call is in the range 1500 - 2000, and we average run time
over 100 runs . 62

Corrected text:

5.5 Shows time in seconds needed to complete all necessary cublasHgemm calls
needed to multiply 106 query points with 104 reference points, where the num-
ber of query points per call is in the range 40 - 400000
. . . 60

5.6 Shows time in seconds needed to complete all necessary cublasHgemm calls
needed to multiply 106 query points with 104 reference points, where the num-
ber of query points per call is in the range 40 - 29729
. . . 61

1

5.7 Shows time in seconds needed to complete all necessary cublasHgemm calls
needed to multiply 104 query points with 104 reference points, where the num-
ber of query points per call is in the range 40 - 10500
. . . 61

5.8 Shows time in seconds needed to complete all necessary cublasHgemm calls
needed to multiply 104 query points with 104 reference points, where the num-
ber of query points per call is in the range 1500 - 2000, and we average run time
over 100 runs . 62

Page 13, 14

Original text:

To take advantage of the cuBLAS library, the calculation of the squared
Euclidean distance p2 from point x to y is done:

p2(x, y) = (x− y)T (x− y) = ||x||2 + ||y||2 − 2xT y

where the T is the transpose. If we rewrite it for two matrices, R which is a
d×m matrix and Q which is a d× n matrix, we get the equation:

p2(NR, NQ) = NR +NQ − 2RTQ

here N stands for the norm, and the resulting matrix p2(NR, NQ) would be
a m × n matrix. The GPU brute force algorithm which uses 8 kernels with
cuBLAS and CUDA, goes as follows:

1. Kernel 1 calculates NR using CUDA (coalesced read/write)

2. Kernel 2 calculates NQ using CUDA (coalesced read/write)

3. Kernel 3 uses cuBLAS to calculate −2RTQ we call the resulting matrix A

4. kernel 4 adds all elements in NR to A we call the new matrix B. this is
done with CUDA threads and shared memory.

5. kernel 5 sorts the B matrix in parallel with n threads. giving us the matrix
C

6. kernel 6 adds the jth element of NQ to the k first elements of the jth

column of the matrix C. this is done using CUDA (coalescedread/write).
We call the new matrix D

7. Kernel 7 computes the square root of the first k elements in D, this gives us
the k smallest distances, this is done using CUDA (coalesced read/write).
We call the new matrix E

2

8. The last kernel extracts the k × n-submatirx from E. This is the matrix
of the distances for each query point.

Corrected text:

To take advantage of the cuBLAS library, the calculation of the squared
Euclidean distance d2 from point x to y is done:

d2(x, y) = (x− y)2(x− y) = ||x||2 + ||y||2 − 2xy

If we rewrite for two matrices, R which is a d×m matrix and Q which is a d×n
matrix, we see that we can find the squared distance between any point in R
and Q by doing:

d2(Rx, Qy) = ||Rx||2 + ||Qy||2 − 2RxQy

We see that the squared distance is calculated from the squared norm of the two
points, and the dot product between them multiplied by 2. To do the latter we
can perform the matrix multiplication −2RTQ. This can be done with one call
to cuBLAS. The GPU brute force algorithm which uses 8 kernels with cuBLAS
and CUDA, goes as follows:

1. Kernel 1 calculates the squared norm of every vector in R using CUDA
(coalesced read/write)

2. Kernel 2 calculates the squared norm of every vector in Q using CUDA
(coalesced read/write)

3. Kernel 3 uses cuBLAS to calculate −2RTQ we call the resulting matrix A

4. kernel 4 adds the squared norms of every vector in R (calculated in kernel
1) to the corresponding values in A we call the new matrix B. This is done
with CUDA threads and shared memory.

5. kernel 5 sorts the B matrix in parallel with n threads. giving us the matrix
C

6. kernel 6 adds the jth element of the vector we got from kernel 2 to the k
first elements of the jth column of the matrix C. this is done using CUDA
(coalesced read/write). We call the new matrix D

7. Kernel 7 computes the square root of the first k elements in D, this gives us
the k smallest distances, this is done using CUDA (coalesced read/write).
We call the new matrix E

8. The last kernel extracts the k × n-submatirx from E. This is the matrix
of the distances for each query point.

3

Page 32

Original text:

d(X,Y)2 = (X − Y)2(X − Y) = ||X||2 + ||Y ||2 − 2XTY

Here || · || represents the Euclidean norm, and XT is the transpose of X. To
rewrite for sets of vectors, we think of Q and R as two sets of vectors, e.g.
Q = {v1, .., vi} and R = {w1, .., wj}. v1, ..., vi and w1, .., wj are vectors in a
D-dimensional Euclidean space. Dist is the vector of squared distances between
any vector in Q to any vector in R. We can then write Dist as:

Dist = ||Q||2 + ||R||2 − 2QTR

3.1.2 cuBLAS for SIFT vector matching

Here an important thing to note is that we are dealing with SIFT vectors,
not arbitrary data. SIFT vectors are normalized, in our case to 1. This means
that we already know both ||Q||2 and ||R||2 as this it the distance from the zero
vector to the vector. For matrices of size D×i like Q, the norm || · || is defined as
||Q|| = QTQ, which is an i-dimensional vector. The definition means that each
row vn in QT is multiplied with the same column vn in Q, which is the same
as vn · vn = ||vn||2, which we know is 1. We can therefore reduce our problem
even more giving us the equation

Dist = 2− 2QTR

−2QTR is a matrix multiplication and can be done extremely well with one call
to the cuBLAS library. We only need the 2NN, meaning we can simplify what
we do into 2 steps:

1. Calculate −2QTR

2. Find the two smallest values for each query vector

Corrected text:

1. d(X,Y)2 = (X − Y)2(X − Y)

2. d(X,Y)2 = (x2
1 + x2

2 + ...+ x2
D) + (y21 + y22 + ...+ x2

D)− 2(x1y1 + x2y2 +
...+ xDyD)

3. d(X,Y)2 = ||X||2 + ||Y ||2 − 2X · Y

Here || · || represents the Euclidean norm. To rewrite for sets of vectors, we
think of Q and R as two sets of vectors, e.g. Q = {v1, .., vi} and R = {w1, .., wj}.
v1, ..., vi and w1, .., wj are vectors in a D-dimensional Euclidean space. The

4

squared distance between any vector in Q to any vector in R can then be written
as:

d(Qx, Ry)
2 = ||Qx||2 + ||Ry||2 − 2Qx ·Rr

The distance is calculated by adding the squared norm of the 2 vectors, and
subtracting the dot product multiplied by 2. The dot product between every
vector in 2 matrices can be calculated with one matrix - matrix multiplication
e.g

QRT = {{v1 ·w1, v1 ·w2, ..., v1 ·wj}, {v2 ·w1, v2 ·w2, ..., v2 ·wj}, ..., {vi ·w1, vi ·
w2, ..., vi · wj}} This can be done with one call to cuBLAS.

3.1.2 cuBLAS for SIFT vector matching

Here an important thing to note is that we are dealing with SIFT vectors,
not arbitrary data. SIFT vectors are normalized, in our case to 1. This means
that we already know both ||Qx||2 and ||Ry||2 for every value of x and y, as
12 = 1.

We can therefore reduce our problem even more giving us the equation:

d(Qx, Ry)
2 = 1 + 1− 2QxRy

We see that to find the distance between every point in Q and every point
in R we need to perform the matrix multiplication −2QTR, this can be done
extremely well with one call to the cuBLAS library. We only need the 2NN,
meaning we can simplify what we do into 2 steps:

1. Calculate −2QTR

2. Find the two smallest values from each row of the matrix from step 1

Page 75, Table 5.14

Original text:
Results

Time in seconds used on the ANN SIFT1M data set to achieve 0.8 recall
Recall @ 1 Recall @ 100

Total time used 12.728130s 1.897476s
Short-list brute-force 10.543828s, 0.82% 1.427292s , 0.75.2%

Thrust sort index array 1.435962s, 0.11% 0.286857s, 0.15.1%
Setting bits in hash value 0.242682s, 0.019% 0.04392s, 0.023%
Dot product with cuBLAS 0.207879s, 0.016% 0.037911s, 0.019%

CPU and data movement/allocation 0.297779s, 0.023% 0.101496s, 0.053%

Table 5.14: Shows approximately the time used by the different parts of the
LSH algorithm

5

Corrected text:
Results

Time in seconds used on the ANN SIFT1M data set to achieve 0.8 recall
Recall @ 1 Recall @ 100

Total time used 12.728130s 1.897476s
Short-list brute-force 10.543828s, 82% 1.427292s , 75.2%

Thrust sort index array 1.435962s, 11% 0.286857s, 15.1%
Setting bits in hash value 0.242682s, 1.9% 0.04392s, 2.3%
Dot product with cuBLAS 0.207879s, 1.6% 0.037911s, 1.9%

CPU and data movement/allocation 0.297779s, 2.3% 0.101496s, 5.3%

Table 5.14: Shows approximately the time used by the different parts of the
LSH algorithm

6

