Errata list:

Page vi, figure 2.6

Original text: 2.6 Illustration a K-D tree in R^{2} space where the nodes are inserted in alphabetical

11

Corrected text:

2.6 Illustration of a K-D tree in R^{2} space where the nodes are inserted in alphabetical order 11

Page vii, figure 5.5, 5.6, 5.7, 5.8

Original text:

5.5 Shows time in seconds needed to complete all necessary cublasHgemm calls needed to multiply 10^{6} query points with $10^{1} 0$ reference points, where the number of query points per call is in the range $40-400000$
. . . 60
5.6 Shows time in seconds needed to complete all necessary cublasHgemm calls needed to multiply 10^{6} query points with $10^{1} 0$ reference points, where the number of query points per call is in the range $40-29729$
. . . 61
5.7 Shows time in seconds needed to complete all necessary cublasHgemm calls needed to multiply 10^{4} query points with $10^{1} 0$ reference points, where the number of query points per call is in the range $40-10500$
. . . 61
5.8 Shows time in seconds needed to complete all necessary cublasHgemm calls needed to multiply 10^{4} query points with $10^{1} 0$ reference points, where the number of query points per call is in the range 1500-2000, and we average run time over 100 runs

Corrected text:

5.5 Shows time in seconds needed to complete all necessary cublasHgemm calls needed to multiply 10^{6} query points with 10^{4} reference points, where the number of query points per call is in the range $40-400000$
. . . 60
5.6 Shows time in seconds needed to complete all necessary cublasHgemm calls needed to multiply 10^{6} query points with 10^{4} reference points, where the number of query points per call is in the range $40-29729$
. . . 61
5.7 Shows time in seconds needed to complete all necessary cublasHgemm calls needed to multiply 10^{4} query points with 10^{4} reference points, where the number of query points per call is in the range 40-10500
. . . 61
5.8 Shows time in seconds needed to complete all necessary cublasHgemm calls needed to multiply 10^{4} query points with 10^{4} reference points, where the number of query points per call is in the range 1500-2000, and we average run time over 100 runs

Page 13, 14

Original text:

To take advantage of the cuBLAS library, the calculation of the squared Euclidean distance p^{2} from point x to y is done:

$$
p^{2}(x, y)=(x-y)^{T}(x-y)=\|x\|^{2}+\|y\|^{2}-2 x^{T} y
$$

where the T is the transpose. If we rewrite it for two matrices, R which is a $d \times m$ matrix and Q which is a $d \times n$ matrix, we get the equation:

$$
p^{2}\left(N_{R}, N_{Q}\right)=N_{R}+N_{Q}-2 R^{T} Q
$$

here N stands for the norm, and the resulting matrix $p^{2}\left(N_{R}, N_{Q}\right)$ would be a $m \times n$ matrix. The GPU brute force algorithm which uses 8 kernels with cuBLAS and CUDA, goes as follows:

1. Kernel 1 calculates N_{R} using CUDA (coalesced read/write)
2. Kernel 2 calculates N_{Q} using CUDA (coalesced read/write)
3. Kernel 3 uses cuBLAS to calculate $-2 R^{T} Q$ we call the resulting matrix A
4. kernel 4 adds all elements in N_{R} to A we call the new matrix B. this is done with CUDA threads and shared memory.
5. kernel 5 sorts the B matrix in parallel with n threads. giving us the matrix C
6. kernel 6 adds the $j^{\text {th }}$ element of N_{Q} to the k first elements of the $j^{\text {th }}$ column of the matrix C. this is done using CUDA (coalescedread/write). We call the new matrix D
7. Kernel 7 computes the square root of the first k elements in D , this gives us the k smallest distances, this is done using CUDA (coalesced read/write). We call the new matrix E
8. The last kernel extracts the $k \times n$-submatirx from E . This is the matrix of the distances for each query point.

Corrected text:

To take advantage of the cuBLAS library, the calculation of the squared Euclidean distance d^{2} from point x to y is done:

$$
d^{2}(x, y)=(x-y)^{2}(x-y)=\|x\|^{2}+\|y\|^{2}-2 x y
$$

If we rewrite for two matrices, R which is a $d \times m$ matrix and Q which is a $d \times n$ matrix, we see that we can find the squared distance between any point in R and Q by doing:

$$
d^{2}\left(R_{x}, Q_{y}\right)=\left\|R_{x}\right\|^{2}+\left\|Q_{y}\right\|^{2}-2 R_{x} Q_{y}
$$

We see that the squared distance is calculated from the squared norm of the two points, and the dot product between them multiplied by 2 . To do the latter we can perform the matrix multiplication $-2 R^{T} Q$. This can be done with one call to cuBLAS. The GPU brute force algorithm which uses 8 kernels with cuBLAS and CUDA, goes as follows:

1. Kernel 1 calculates the squared norm of every vector in R using CUDA (coalesced read/write)
2. Kernel 2 calculates the squared norm of every vector in Q using CUDA (coalesced read/write)
3. Kernel 3 uses cuBLAS to calculate $-2 R^{T} Q$ we call the resulting matrix A
4. kernel 4 adds the squared norms of every vector in R (calculated in kernel 1) to the corresponding values in A we call the new matrix B. This is done with CUDA threads and shared memory.
5. kernel 5 sorts the B matrix in parallel with n threads. giving us the matrix C
6. kernel 6 adds the $j^{\text {th }}$ element of the vector we got from kernel 2 to the k first elements of the $j^{\text {th }}$ column of the matrix C. this is done using CUDA (coalesced read/write). We call the new matrix D
7. Kernel 7 computes the square root of the first k elements in D , this gives us the k smallest distances, this is done using CUDA (coalesced read/write). We call the new matrix E
8. The last kernel extracts the $k \times n$-submatirx from E . This is the matrix of the distances for each query point.

Page 32

Original text:

$$
d(X, Y)^{2}=(X-Y)^{2}(X-Y)=\|X\|^{2}+\|Y\|^{2}-2 X^{T} Y
$$

Here $\|\cdot\|$ represents the Euclidean norm, and X^{T} is the transpose of X. To rewrite for sets of vectors, we think of Q and R as two sets of vectors, e.g. $Q=\left\{v_{1}, . ., v_{i}\right\}$ and $R=\left\{w_{1}, . ., w_{j}\right\} . v_{1}, \ldots, v_{i}$ and $w_{1}, . ., w_{j}$ are vectors in a D-dimensional Euclidean space. Dist is the vector of squared distances between any vector in Q to any vector in R. We can then write Dist as:

$$
\text { Dist }=\|Q\|^{2}+\|R\|^{2}-2 Q^{T} R
$$

3.1.2 cuBLAS for SIFT vector matching

Here an important thing to note is that we are dealing with SIFT vectors, not arbitrary data. SIFT vectors are normalized, in our case to 1 . This means that we already know both $\|Q\|^{2}$ and $\|R\|^{2}$ as this it the distance from the zero vector to the vector. For matrices of size $D \times i$ like Q, the norm $\|\cdot\|$ is defined as $\|Q\|=Q^{T} Q$, which is an i-dimensional vector. The definition means that each row v_{n} in Q^{T} is multiplied with the same column v_{n} in Q , which is the same as $v_{n} \cdot v_{n}=\left\|v_{n}\right\|^{2}$, which we know is 1 . We can therefore reduce our problem even more giving us the equation

$$
\text { Dist }=2-2 Q^{T} R
$$

$-2 Q^{T} R$ is a matrix multiplication and can be done extremely well with one call to the cuBLAS library. We only need the 2 NN , meaning we can simplify what we do into 2 steps:

1. Calculate $-2 Q^{T} R$
2. Find the two smallest values for each query vector

Corrected text:

1. $d(X, Y)^{2}=(X-Y)^{2}(X-Y)$
2. $d(X, Y)^{2}=\left(x_{1}^{2}+x_{2}^{2}+\ldots+x_{D}^{2}\right)+\left(y_{1}^{2}+y_{2}^{2}+\ldots+x_{D}^{2}\right)-2\left(x_{1} y_{1}+x_{2} y_{2}+\right.$ $\left.\ldots+x_{D} y_{D}\right)$
3. $d(X, Y)^{2}=\|X\|^{2}+\|Y\|^{2}-2 X \cdot Y$

Here $\|\cdot\|$ represents the Euclidean norm. To rewrite for sets of vectors, we think of Q and R as two sets of vectors, e.g. $Q=\left\{v_{1}, . ., v_{i}\right\}$ and $R=\left\{w_{1}, . ., w_{j}\right\}$. v_{1}, \ldots, v_{i} and $w_{1}, . ., w_{j}$ are vectors in a D-dimensional Euclidean space. The
squared distance between any vector in Q to any vector in R can then be written as:

$$
d\left(Q_{x}, R_{y}\right)^{2}=\left\|Q_{x}\right\|^{2}+\left\|R_{y}\right\|^{2}-2 Q_{x} \cdot R_{r}
$$

The distance is calculated by adding the squared norm of the 2 vectors, and subtracting the dot product multiplied by 2 . The dot product between every vector in 2 matrices can be calculated with one matrix - matrix multiplication e.g
$Q R^{T}=\left\{\left\{v_{1} \cdot w_{1}, v_{1} \cdot w_{2}, \ldots, v_{1} \cdot w_{j}\right\},\left\{v_{2} \cdot w_{1}, v_{2} \cdot w_{2}, \ldots, v_{2} \cdot w_{j}\right\}, \ldots,\left\{v_{i} \cdot w_{1}, v_{i}\right.\right.$. $\left.\left.w_{2}, \ldots, v_{i} \cdot w_{j}\right\}\right\}$ This can be done with one call to cuBLAS.

3.1.2 cuBLAS for SIFT vector matching

Here an important thing to note is that we are dealing with SIFT vectors, not arbitrary data. SIFT vectors are normalized, in our case to 1 . This means that we already know both $\left\|Q_{x}\right\|^{2}$ and $\left\|R_{y}\right\|^{2}$ for every value of x and y , as $1^{2}=1$.

We can therefore reduce our problem even more giving us the equation:

$$
d\left(Q_{x}, R_{y}\right)^{2}=1+1-2 Q_{x} R_{y}
$$

We see that to find the distance between every point in Q and every point in R we need to perform the matrix multiplication $-2 Q^{T} R$, this can be done extremely well with one call to the cuBLAS library. We only need the 2NN, meaning we can simplify what we do into 2 steps:

1. Calculate $-2 Q^{T} R$
2. Find the two smallest values from each row of the matrix from step 1

Page 75, Table 5.14

Original text:

Results

Time in seconds used on the ANN_SIFT1M data set to achieve 0.8 recall		
	Recall @ 1	Recall @ 100
Total time used	12.728130 s	1.897476 s
Short-list brute-force	$10.543828 \mathrm{~s}, 0.82 \%$	$1.427292 \mathrm{~s}, 0.75 .2 \%$
Thrust sort index array	$1.435962 \mathrm{~s}, 0.11 \%$	$0.286857 \mathrm{~s}, 0.15 .1 \%$
Setting bits in hash value	$0.242682 \mathrm{~s}, 0.019 \%$	$0.04392 \mathrm{~s}, 0.023 \%$
Dot product with cuBLAS	$0.207879 \mathrm{~s}, 0.016 \%$	$0.037911 \mathrm{~s}, 0.019 \%$
CPU and data movement/allocation	$0.297779 \mathrm{~s}, 0.023 \%$	$0.101496 \mathrm{~s}, 0.053 \%$

Table 5.14: Shows approximately the time used by the different parts of the LSH algorithm

Corrected text:

Results

Time in seconds used on the ANN_SIFT1M data set to achieve 0.8 recall		
	Recall @ 1	Recall @ 100
Total time used	12.728130 s	1.897476 s
Short-list brute-force	$10.543828 \mathrm{~s}, 82 \%$	$1.427292 \mathrm{~s}, 75.2 \%$
Thrust sort index array	$1.435962 \mathrm{~s}, 11 \%$	$0.286857 \mathrm{~s}, 15.1 \%$
Setting bits in hash value	$0.242682 \mathrm{~s}, 1.9 \%$	$0.04392 \mathrm{~s}, 2.3 \%$
Dot product with cuBLAS	$0.207879 \mathrm{~s}, 1.6 \%$	$0.037911 \mathrm{~s}, 1.9 \%$
CPU and data movement/allocation	$0.297779 \mathrm{~s}, 2.3 \%$	$0.101496 \mathrm{~s}, 5.3 \%$

Table 5.14: Shows approximately the time used by the different parts of the LSH algorithm

