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Abstract

Scale-invariant feature transform (SIFT) is a computer vision algorithm
which is able to detect the same features in differing pictures despite
2D rotation, image scaling, translation, and to some degree 3D rotation.
SIFT has been shown to be accurate, fast and reliable. Matching of SIFT
feature points is still a very compute-heavy task, with no obvious solution
fast enough for real-time applications when dealing with high definition
images. We implement two algorithms to match SIFT points on GPU with
the GPU programming interface CUDA, and the libraries cuBLAS and
Thrust, and explore using CUDA’s half-precision (16 bit) for the values in
the SIFT vectors. The first implementation is of Locality-sensitive hashing
(LSH). LSH is an approximate nearest neighbor (ANN) algorithm, which
reduces the search space by hashing values which are close in proximity
into the same buckets, at a higher probability than values that are further
apart. We show that on GPU for SIFT feature point matching at 0.8
recall, this implementation can get a 1.23X speed up when looking for
the nearest neighbor (NN) and a 10.48X speed up when looking for any
of the 100NNs compared to a naive CUDA brute-force when matching on
the ANN_SIFT1M data set. The second implementation is a brute-force
using CUDA’s cuBLAS library where we use the dot product, achieving
a 86X speed up over the naive CUDA brute-force on the ANN_SIFT1M
data set. On an RTX 3060 12 GB it can match 104 query vectors and 106

reference vectors in 177ms, and can match SIFT points in real time at 45k
query points and 45k reference points at 27 fps. We also show that using
halfs as compared to floats in CUDA gives a speed up of up to 5X, while
only reducing recall by 0.0056 on the ANN_SIFT1M data set when used in
a brute-force.
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Chapter 1

Introduction

Typically, mobile phone Augmented Reality (AR) applications just render
virtual objects into space at the intended position. If anyone walks in front
of that intended position, these applications will render the scene as if the
person is behind the object. For a mobile phone that may be acceptable, but
it is very irritating when you watch an AR scene through a head-mounted
display (HMD). Knowing the depth of the objects would be a good starting
point to solving this problem. To get the depth of objects in a image
using two cameras (stereo vision) and Scale-invariant feature transform
(SIFT) [11] feature points has been shown to be a viable solution [14]. SIFT
is a computer vision algorithm which is able to detect the same features
in differing pictures despite 2D rotation, image scaling, translation, and to
some degree 3D rotation [11]. SIFT features from two cameras could be
used to identify the same feature points in two given frames. Given the
x and y cords of these points and the location of camera one in relation
to camera two, one is able to calculate the Euclidean distance between
the cameras and the object. Knowing the depth, it should be possible
to occlude objects when necessary. To do this in real time, being able
to perform the computations fast is an absolute necessity. SIFT has been
shown to be accurate, fast and reliable. Furthermore, a GPU-accelerated
implementation of SIFT has been shown to be able to locate and extract key
points in real time [6]. However the matching of SIFT feature points is still
a very compute-heavy task, with no obvious solution fast enough for real
time applications when dealing with high definition images.

1.1 Purpose of thesis

In this thesis we explore two solutions for matching SIFT feature points
on a graphics processing unit (GPU). General computation on GPUs have
gained a lot of traction lately, one interface to do this is Compute Unified
Device Architecture (CUDA) which is what we use in this thesis. The first
solution for matching SIFT feature points we look at is the approximate
nearest neighbour (ANN) algorithm Locality-sensitive hashing (LSH) [8].
LSH works by hashing close points into buckets, reducing the search space
of the brute-force to points which land in the same buckets, i.e have hash

1



values which collide. The second approach for matching we look at, is a
brute-force using the dot product with matrix - matrix multiplications [5].
The biggest motivation here being the cuBLAS library, which has very fast
matrix - matrix algorithms. GPUs excel at tasks which require work which
can be done in parallel. Both LSH and the brute-force with the dot product
have parts which can be done well in parallel making them suitable for
GPU. CUDA offers 2 libraries we use, cuBLAS and Thrust. cuBLAS is
CUDA’s Basic Linear Algebra Subroutine (BLAS) implementation and is
very optimized. Thrust is a CUDA library designed for productivity,
it is easy to use in the sense that the user does not need to have any
understanding of the underlying architecture of the GPU or CUDA. Thrust
offers much of what C++ STL offers like sort, reduce and the ability to
use vectors in much the same way we use them in C++. CUDA on newer
architectures also offers using 16 bit floating points referred to as half-floats
or just halfs. Because CUDA offers two-way Single instruction multiple
data (SIMD) for half-precision, using halfs should give a at least a 2X
speed up over using floats, in theory. However this is at the cost of some
accuracy as we go from 32 bit floating points to 16 bit floating points. If
using halfs is viable for our two implementations is also something we
look at.

1.2 Research questions

The research questions we aim to answer are:

• Can locality sensitive hashing be efficiently implemented with CUDA
to match SIFT vectors with good recall, and how will such an
implementation compare to a brute-force CUDA implementation in
terms of speed?

• Can Thrust and cuBLAS be used when implementing LSH, and how
will using these CUDA libraries affect performance and complexity?

• CUDA is optimized for half-precision (16 bit), is using halfs instead
of floats when dealing with SIFT vectors viable, and how does using
halfs when matching SIFT vectors affect recall and performance?

• Can an efficient brute-force for SIFT vectors be implemented with the
help of cuBLAS in CUDA, and will such an implementation be able
to perform SIFT vector matching in real time?

1.3 Research methodology

According to the ACM Task Force on the Core of Computer Science in
the paper "Computing as a discipline" [3] and Amnon H. Eden in "Three
Paradigms of Computer Science" [4], computer science in general has 3
paradigms. Both Eden and ACM describe three more or less identical
paradigms, as follows:

2



• The rationalist paradigm Eden [4] or theory ACM [3]. This paradigm
seeks a priori knowledge of objects or systems by deductive reason-
ing. This paradigm is rooted in mathematics and can be defined to
have the following 4 steps [3]:

1. characterize objects of study (definition);

2. hypothesize possible relationships among them (theorem);

3. determine whether the relationships are true (proof);

4. interpret results.

This is an iterative process where if inconsistencies are found,
revision is necessary.

• The technocratic paradigm Eden [4] or design ACM [3]. This
paradigm seeks probable, a posteriori knowledge about programs
or systems through implementation/prototyping and testing. This
paradigm is rooted in engineering and can be defined to have the
following 4 steps [3]:

1. state requirements;

2. state specifications;

3. design and implement the system;

4. test the system.

This is an iterative process where if the tests results do not satisfy the
requirements, the implementation must be revised.

• The scientific paradigm Eden [4] or abstraction ACM [3]. This
paradigm is based on the scientific method where we use both a priori
and a posteriori knowledge to say something about a model/system.
This paradigm can be defined to have the following 4 steps [3]:

1. form a hypothesis;

2. construct a model and make a prediction;

3. design an experiment and collect data;

4. analyze results.

This is an iterative process where if the results of the experiment
do not confirm the hypothesis/prediction, the hypothesis/prediction
must be revised.

Choosing a research methodology

To decide on a research methodology, we need to understand what metrics
we need to answer the research questions. The questions revolve around
two things, firstly efficiency in terms of time to complete (as in the time
needed by one of our implementations to match all query and reference
SIFT vectors), and secondly recall (as in the number of relevant matches
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we find). More precisely, we want to see how fast our implementations
can get good recall (we define good recall as over 0.8) when matching SIFT
vectors. Measuring time to complete and recall is fairly straightforward.
For time measurement we can use the CPU system time, and for recall a set
of true values found with a brute-force will suffice. We also need some sort
of benchmark since judging the efficiency of any approach is hard without
drawing a comparison. As a benchmark we use a naive CUDA brute-force
2NN implementation.

While ACM notes that all 3 paradigms are intrinsically intertwined, the
paradigm most suitable for our problem given the metrics we use is The
technocratic paradigm or design. We would not be able to know how well
our implementations could meet our requirements with a priori knowledge
alone (The rationalist paradigm/theory), nor does it seem fitting to form a
hypothesis which predicts how well our implementation could meet our
requirements (The scientific paradigm/abstraction). Rather we want to
implement a prototype, test to see how well, said prototype meets our
requirements, then make changes to our implementations according to the
test results.

Our approach

More formally our approach is:

• Write a design which works as an outline or base for our implement-
ations.

• When implementing we use this design as a base, but as we test, we
change the implementation according to the test results if we find that
this gives better results.

This is an iterative process where as we continuously test we want to
both keep good recall and minimize time used by the implementations on
different test data.

1.4 Structure of thesis

This paper has 5 main chapters. They are Background, Design, Implement-
ation, Evaluation and test results and lastly Conclusion and future work.
In chapter 2 (Background) we introduce the background and related topics
of our thesis. In chapter 3 (Design), we look at how we can implement LSH
on GPU, a brute-force using the dot product and cuBLAS on GPU, and we
discuss using halfs instead of floats for SIFT vectors. In chapter 4 (Im-
plementation) we go over how we implemented our prototypes, both LSH
and the brute-force with cuBLAS. In Evaluation and test results which is
(chapter 5) we show the test results and compare our solutions. In chapter
6 (Conclusion and future work), we sum up the answers to our research
questions, reflect on the thesis as a whole, and lastly talk about some pos-
sible future work.
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Chapter 2

Background and related work

In this chapter we introduce the background and related work for this
thesis. This includes Scale-invariant feature transform (SIFT) (section
2.1), the k-nearest neighbors (kNN) problem and some kNN algorithms
(section 2.2), The curse of dimensionality (section 2.3), approximate nearest
neighbors (ANN) (section 2.4), Fast Library for Approximate Nearest
Neighbors (FLANN) (section 2.5), Locality-sensitive hashing (LSH) and
some LSH variants (section 2.6), and lastly we introduce the basics of
CUDA (section 2.7) and the two CUDA libraries cuBLAS (section 2.8) and
Thrust (section 2.9).

2.1 Scale-invariant feature transform (SIFT)

Scale-invariant feature transform (SIFT) is a feature detection algorithm.
The features found by SIFT are shown to be invariant to 2D rotation, image
scaling and translation. In addition, they are to some degree invariant to
3D rotation. The algorithm was introduced by David G. Lowe in the paper
“Distinctive Image Features from Scale-Invariant Keypoints” [11]. The SIFT
algorithm consists of two main stages: key point detection and feature
point extraction. This summary of how SIFT works is based on David
G. Lowe’s 2004 paper “Distinctive Image Features from Scale-Invariant
Keypoints” [11] and “Anatomy of the SIFT Method” [20] by Ives Rey-Otero
and Mauricio Delbracio.

2.1.1 SIFT algorithm

The SIFT algorithm starts by upscaling the input image; this is usually done
with bilinear interpolation. The upscaling factor is normally set to 2, which
gives us a new image with twice the width and height of the original image.
This is somewhat optional where the trade-off for not upscaling is speed
at the cost of accuracy. Gaussian blur is applied to the upscaled image,
usually by a factor of σ = 1.6. We repeat the blur, giving us a number of
more and more blurred images, we then take the third to last of this row
and downscale it and repeat the process. We continue this process until
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we can no longer downscale the image, as illustrated in figure 2.1. Each
downward row of downscaled images is called an octave.

Figure 2.1: Illustration of SIFT steps: Initial upscaling, add blurring and
downscaling

We are now left with a scale space that simulates the different scales
of observation. We then think of our scale space as a continuous three-
dimensional space. Given the x, y coordinate of the pixel and σ, we
then calculate the Difference of Gaussians between the adjacent pictures,
leaving us with a new set of images. On this new set, we find the extrema
by comparing a pixel with its 26 neighbours. All the extrema we find
are potential key points. As the extrema we have found have discrete
coordinates. We try to refine this by approximating the Taylor expansion
of the scale-space function for each extremum. During the process, we are
sometimes not able to refine the location in the number of iterations we
want to, in which case we either discard or keep the extrema as is.

Figure 2.2: Illustration of SIFT steps: Find DoG, check for extrema
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We then try to identify edges, as they are not ideal key points. To do
this, we find the edge extrema by comparing the principal curvatures of
the projection onto the picture plane created by the scale-space function.
We can now discard more low-contrast points as we have a better
understanding of the position. We then assign a reference orientation to
the remaining key points. This is done by approximating the gradients
of the pixels in a square-shaped patch around the keypoint. The 360° are
divided into 36 bins, each representing 10°. Before the size of the gradient
is added, it is multiplied by the Gaussian weight. We are now left with a
histogram, which will be smoothed with box filtering before the extremum
is identified and selected if the threshold is met. Then a better reference
orientation is calculated using quadratic interpolation on the extrema and
the two neighboring bins. Key points with more than one dominating
orientation may be turned into new keypoints, one for each dominating
orientation (at most 3 orientations).

Figure 2.3: Illustration of SIFT steps: Find dominant gradient/s, assign
reference orientation

Lastly, we compute 16 more histograms where each histogram has 8
bins. This time, the histograms are computed from a circular patch around
the keypoint. Before we do so, we rotate the coordinate system to match
the orientation. Each of the new histograms corresponds to a point near
the center of the newly made coordinate system. The bins are normalized
and we are now left with our key point descriptor, which is represented
with 128 float values.
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Figure 2.4: Illustration of SIFT steps: 16 regions around a keypoint are used
to create 16 histograms with 8 bins each

2.1.2 SIFT descriptors

This descriptor is shown to be largely invariant to 2D rotation, image
scaling and translation. In addition, 3D rotation works up to some
degree [11]. The invariance to 2D rotation is caused by computing the
key points relative to an orientation reference. It is Illumination-invariant
because the vectors are normalized, saving only the relation between the
gradients. It is invariant to scaling because the key points are extracted
at different blur and scales. It is to some degree invariant to rotation in
3D because of the way in which the gradient weights are distributed over
the histograms for the 16 cells. The gradient’s weight is determined by its
distance from the keypoint itself, following a Gaussian distribution. This
weight is then distributed over up to 4 cells, where the gradient’s distance
from the cells’ centers is used for a linear distribution of the weight between
the cells.

SIFT vectors are usually stored as 128 float long vectors. As the SIFT
descriptors have a norm of 1, each float value is in the range [0, 0.5].
However they are often represented as 128 element long arrays of unsigned
chars. This is done by multiplying every value in the vector by 512. This
can done as we are not interested in the values alone, but rather the relation
between the values between the descriptors. This relation will not change
as long as we perform the same actions on all vectors.

2.1.3 SIFT feature-point matching

After the SIFT algorithm is done, we have set of 128-dimensional vectors,
we now usually want to match our vectors with another set of SIFT
vectors. By matching, we mean finding the points that are the closest using
Euclidean distance. When matching SIFT vectors to reduce wrong matches,
we often check if the nearest neighbor is sufficiently close compared to the
second nearest neighbor. Because of this we need to find the 2 nearest
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neighbours. This is a classic k-Nearest Neighbor (kNN) problem (or to be
more specific in SIFT’s case, it’s a 2-Nearest Neighbor (2NN) problem).

2.1.4 SIFT distance ratio threshold

As mentioned, when matching SIFT feature-points we have a somewhat
optional step where we see if the closest neighbour is close enough,
compared to the second closest neighbour. If this is the case we considered
the closest neighbour a match. This is done by looking at the distance ratio,
where if the distance ratio is above some threshold we count it as a match
and if not we don’t. Assuming d1 is the distance from the query point to
the closest neighbour, d2 is the distance from the query point to the second
closest neighbour, and the distance ratio is dr then we can get the distance
ratio by:

dr =
d1

d2

According to Lowe [11] rejecting all matches where the distance ratio
is above 0.8 will lead to removing 90% of all false matches, while only
removing 5% of true matches.

2.2 k-Nearest Neighbor (kNN)

The k-Nearest Neighbor (kNN) problem can be defined as follows.
If we have a metric space S in a D-dimensional lP space, and a data base
A where A ⊆ S. Given a query point q where q is a vector in the D-
dimensional space i.e q = (q1, ..., qD) and q ∈ S. The k-nearest neighbors
algorithm kNN(q) will return the k nearest points to our query point q for
some norm Lp from the database A.
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Figure 2.5: Illustration of the kNN problem in a R2 space with k = 7 using
Euclidean distance

A naive brute-force approach for kNN(q, k, A) could look like this:

1. Initialize a dist array of same size as data set A.

2. Loop through all elements in A while filling up the dist array with
the distance between q and A[i].

3. Initialize the output array which is an array of length k.

4. Iterate though the dist array k times, for each iteration choose the
smallest element, add the index to the output array and remove it
from the dist array.

5. Return the output array

The complexity of this naive approach would be O(nd + nk). This is
because for step 2 we need to iterate thorough n elements, then for each
iteration we need to calculate the distance d, giving us O(nd). For step 4
we need to iterate over all n elements k times giving us O(nk). Add step
2 and 4 and we get O(nd + nk). A still naive but slightly better approach
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could achieve O(nd) by using for example quick select at step 4. Quick
select can find the k smallest element/s in O(n) time, which would give us
O(nd + n) which we write as O(nd).

2.2.1 K-dimensional trees

There are more efficient approaches for kNN in lower dimensions, one
such approach is the k-dimensional tree. The k-dimensional tree was first
introduced by Jon Louis Bentley in the paper "Multidimensional binary
search trees used for associative searching"” [1].

Figure 2.6: Illustration a K-D tree in R2 space where the nodes are inserted
in alphabetical

A k-dimensional tree is a binary tree data structure used to store k-
dimensional data points. Each non-leaf node can be seen as a hyperplane
splitting the data.
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Figure 2.7: Illustration of how the k-d tree illustrated in 2.6 partitions R2

space

When inserting a data point, you iterate between the dimensions at the
different levels of the tree. Whether the node goes to the left or the right is
only dependent on the value in the dimension for the level of the tree you
are at. When doing a nearest neighbour search on a k-dimensional tree, the
algorithm goes as follows:

1. Start at the root node, do as when you insert a node, compare the
first dimension with the root node, go left or right depending on the
value. In the next level of the tree you compare the next dimension.
Continue this until you reach a leaf-node.

2. Check if the distance to the leaf node is better than the current best
distance.

3. We then unwrap the recursion and do the following things at each
node

(a) Check if the current node is closer than current best. If closer set
new current best.

(b) Check if there could be any closer points than the current best
on the opposite branch of the route we originally took. This is
done by checking if a hypersphere around our search point with
radius of current best is intersecting the hyperplane splitting the
branch.

(c) If this is not the case, we can discard that branch and all its nodes
as we know none of them can be better than our current best. (If
we were to use this algorithm for kNN we would have to check
with the radius of our k-nearest neighbour instead)
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(d) If it is intersecting, there may be a point closer than the current
best so we have to repeat the algorithm for the branch.

4. When we return to the root node, we are done and should have the
NN.

The average Big O complexity of a k-dimensional tree search is
O(log nd) where n is the number of points in the k-dimensional tree and
d is the time it takes to calculate the distance to one point in n. The worst
case will be the same as brute force O(nd).

2.2.2 kNN on GPU

As there are a lot of calculations that can take place independently, the kNN
problem is highly parallelizable and would thus benefit greatly from a GPU
implementation. One such implementation using CUDA is proposed by
authors Vincent Garcia, Eric Debreuve, Frank Nielsen and Michel Barlaud
in the paper “k-nearest neighbor search: fast gpu-based implementations
and application to high-dimensional feature matching” [5] and works as
follows:

1. Use two kernels, the first kernel calculates the distance matrix from
Q query points to the R reference points. This is done completely in
parallel as the distances between points are independent. Each thread
calculates the distance between a given query point q and reference
point r.

2. The second kernel sorts the distance matrix. One thread is run for
each query point q, this thread sorts the distance matrix correspond-
ing to q

This GPU implementation was shown to give up to a 25X speed-up
compared to FLANN [13] a highly optimized C++ ANN implementation
on high-dimensional SIFT feature matching [5].

Another brute force GPU implementation of the kNN problem using
matrix operations with the CUDA library cuBLAS is also proposed [5].
cuBLAS is a highly optimized linear algebra vector/matrix library (see
section 2.8). To take advantage of the cuBLAS library, the calculation of
the squared Euclidean distance p2 from point x to y is done:

p2(x, y) = (x − y)T(x − y) = ||x||2 + ||y||2 − 2xTy

where the T is the transpose. If we rewrite it for two matrices, R which is a
d × m matrix and Q which is a d × n matrix we get the equation:

p2(NR, NQ) = NR + NQ − 2RTQ

here N stands for the norm, and the resulting matrix p2(NR, NQ) would be
a m × n matrix. The GPU brute force algorithm which uses 8 kernels with
cuBLAS and CUDA, goes as follows:
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1. Kernel 1 calculates NR using CUDA (coalesced read/write)

2. Kernel 2 calculates NQ using CUDA (coalesced read/write)

3. Kernel 3 uses cuBLAS to calculate −2RTQ we call the resulting matrix
A

4. kernel 4 adds all elements in NR to A we call the new matrix B. this is
done with CUDA threads and shared memory.

5. kernel 5 sorts the B matrix in parallel with n threads. giving us the
matrix C

6. kernel 6 adds the jth element of NQ to the k first elements of the
jth column of the matrix C. this is done using CUDA (coalesced
read/write). We call the new matrix D

7. Kernel 7 computes the square root of the first k elements in D, this
gives us the k smallest distances, this is done using CUDA (coalesced
read/write). We call the new matrix E

8. The last kernel extracts the k × n-submatirx from E. This is the matrix
of the distances for each query point.

This method is shown to be up to 62X faster than FLANN [13] when
testing with SIFT feature matching [5].

2.3 The Curse of dimensionality

For lower dimensions the kNN problem can be solved efficiently using
methods like k-dimensional trees, however when the dimensions increase
the efficiency of such approaches quickly degrade. This is due to
something often referred to as "The Curse of dimensionality". The curse
of dimensionality is a phenomena which occurs with the increase of
dimensions in data. The degrade in approaches such as k-d trees are
caused because the relevance of one dimension for the Euclidan distance
decreases with the increase of dimensions [2]. Therefore when the
dimensionality increases k-d trees and k-d tree like approaches will often
have to check all possible points to find the NN. This gives us equal or
worse performance than we would get from a naive brute-force. Therefore
in higher dimensions finding the approximate nearest neighbour (ANN)
and not the nearest neighbour is often necessary to out-perform brute force.

2.4 Approximate nearest neighbour

As mentioned in section(2.3) most sophisticated kNN solutions will with
the increase of dimensions degrade to naive brute force, therefore we often
need to use approaches which find the approximate nearest neighbour
(ANN) instead of the nearest neighbour (NN) to outperform a naive brute
force implementation. There exists many approximate nearest neighbour
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algorithms with various trade-offs, some trade accuracy for speed while
others are very task/data dependent.

2.5 Fast Library for Approximate Nearest Neighbors
(FLANN)

FLANN or "Fast Library for Approximate Nearest Neighbors" is a known
C++ library for ANN that uses a variant of k-dimensional trees. It
was introduced in the paper “Fast approximate nearest neighbors with
automatic algorithm configuration” [13] by Marius Muja And David G.
Lowe. The paper introduces the 2 main ANN algorithms used in the library
while also showing results from different experiments. Which of the 2
algorithms are best suited for a given query is dependent on the input and
on a few parameters decided by the user. In the paper it is shown that the
two algorithms that give the best result depending on the input and desired
accuracy are hierarchical k-means tree or multiple randomized kd-trees. In
this section we introduce the 2 main algorithms in the paper.

2.5.1 Randomized kd-trees

Pure kd-trees are efficient in low dimensions, but the performance quickly
degrades in higher dimensions. Therefore finding the approximate
nearest neighbour is necessary to out-perform brute force. One of the
two algorithms Muja and Lowe chose to use is randomized kd-trees.
A randomized kd-tree will at random choose the dimensions used for
splitting out of a set of the dimensions that give the biggest variance. Muja
and Lowe state that using the 5 dimensions that give the biggest variance
is sufficient and that there is little to no point in using more [13]. The
precision is decided by how many leaf nodes you want to check. This is
not decided by the user but rather the user will specify a desired accuracy
and the algorithm will train on the data to see how many leaf nodes it needs
to visit to achieve said accuracy.

2.5.2 K-means trees

The second algorithm Muja and Lowe use is hierarchical k-means trees.
This algorithm works by splitting the data into K distinct clusters using
k-means clustering. This is then repeated recursively on each cluster until
the number of points in each is smaller than K. To traverse the k-means
tree, the algorithm uses a best bin first approach where it first traverses the
tree once, adding all unexplored branches into a priority queue. It then
selects the branch with the center closest to the query point and repeats the
same process from said branch. The accuracy is decided in the same way
as with the randomized kd trees where the user supplies the accuracy and
the algorithm trains on data to see how many nodes need to be traversed
to achieve it.
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2.5.3 How FLANN chooses ANN algorithm

Which of the two algorithms is the most efficient is highly dependent on
a few different factors: memory usage, build time (if it is relevant) and
accuracy. Also, the parameters for each individual algorithm is fine tuned
by the library. This is an optimization problem which (just as with choosing
the number of leaf nodes to traverse for a certain accuracy ) will be done
by training on the data set. How much of the data set you want to train on
is up to the user, but it is stated that training on 1/10 of the training set is
sufficient to get close to optimal parameters [13]. However, this will vary
somewhat on the data sets.

2.5.4 Notes on Randomized kd-trees

The experiment results for multiple randomized kd-trees shows that by
increasing the number of trees, we can increase the performance, however
when we reach over 20 trees, there is no benefit from increasing the number
anymore. Also the more trees used the more memory is used, therefore
even though using around 20 trees is shown to give the best accuracy, in
some cases when memory is important, the optimization algorithm may
choose a lower number.

2.5.5 Notes on k-means trees

The biggest problem with the hierarchical k-mean trees is the build time.
However, the build time can be reduced drastically by setting a max
number of iterations for k-means rather than running to convergence. The
experiments show that by running 7 iterations, we still get 90% of the
performance of the nearest neighbor algorithm, however the build time is
reduced to 10%.

2.5.6 Test results

The paper also shows test results for tests with SIFT feature points. It shows
that for SIFT, k-means trees seem to work best on a 100k data set, but when
the set goes up to 31M, rand trees seem to be a bit better. It also shows
that the larger the set of features points, the bigger the speedup over brute-
force is. It also shows that the performance is better on a set that has true
matches vs one where there are no true matches. The paper clearly shows
that there is a speed-up to be achieved by implementing an ANN algorithm
over linear search on CPU, and that this is true even when we want high
accuracy.

2.6 Locality-sensitive hashing

Locality-sensitive hashing (LSH) was first introduced by Piotr Indyk and
Rajeev Motwani in the paper “Approximate Nearest Neighbors: Towards
Removing the Curse of Dimensionality” [8]. LSH is an ANN algorithm
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which uses hashing. Hashing is a great way to lookup items in O(1) time,
however this is really only possible if we are looking for exact matches. In
SIFT feature matching and other kNN problems this is not the case, rather
we have to find the closest match in an often extremely large set of points.
LSH (Locality-Sensitive Hashing) solves this by hashing points in the same
proximity into buckets. Buckets will in this context mean a hash value, and
all points mapped to the same bucket will be points who cause a collision
after being hashed.

2.6.1 Locality-sensitive hashing intuitively

This explanation of LSH is inspired by the paper "Locality-Sensitive
Hashing for Finding Nearest Neighbors" [21] by Malcolm Slaney and
Michael Casey. A very intuitive way of thinking about how LSH works
is by picturing a 3D sphere with points inside of it. When you project the
sphere onto a 2D surface some points inside the sphere will appear close in
proximity. If you rotate the sphere randomly and project the sphere onto
a 2D surface again, chances are “true” close neighbours will appear close
to each other again, while “false” close neighbours will not. This is true
for any dimension projected into a lower dimension. There will obviously
be a lot of false neighbours for a big set of points. However, if you repeat
the process multiple times and keep a list of the results, chances grow with
the number of times you project into the lower dimension that you end
up with a list of “true” close neighbours. You then search this list for the
nearest neighbour instead of the whole data set. This is the essence of how
LSH works.

2.6.2 LSH hash functions

For any hash function to be of use in LSH, it must have the property that
it is more probable to put close neighbours into the same buckets rather
than not so close neighbours. This is often referred to as (r1, r2, p1, p2) −
sensitive [8]. Given some metric space S with some metric for distance d,
two distances r1 and r2 where r1 < r2, and two probabilities p1 and p2
where p1 > p2. For a hash family H to be (r1, r2, p1, p2)− sensitive in S for
d it must fulfill: For any x, y ∈ S

• if d(x, y) ≤ r1 then PrH [h(x) = h(y)] ≥ p1

• if d(x, y) ≥ r2 then PrH [h(x) = h(y)] ≤ p2

Meaning that, the probability of 2 close points d(x, y) ≤ r1 being
hashed into the same bucket has to be higher than the probability of 2
faraway points d(x, y) ≥ r2 being put in the same bucket. There are
many (r1, r2, p1, p2) − sensitive hash-families, the by far most used for
hash function for LSH is the dot product. Intuitively the dot product is
(r1, r2, p1, p2)− sensitive because a bigger part of the Gaussian distribution
for a random vector will lead to two close points vs two not so close
points ending up in the same proximity after the dot product. This is true
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because of the linearity of the dot product, meaning the difference between
two points ||h(x) − h(y)|| will have a distribution whose magnitude is
proportional to ||x − y|| which means that when we use the dot product
as hash (p1 > p2) [21] .

2.6.3 LSH accuracy

When using the dot product as hash function in high-dimensional space,
p1 (the probability that the hash function h hashes 2 close point to the
same value) will in all probability not be that much higher than p2 (the
probability that the hash function h hashes 2 not so close point to the same
value). To make this difference bigger, LSH is often run for k rounds with
different random vectors for the dot product. This changes the chance of
ending up with true neighbours vs the chance of ending up with false
neighbours from (p1/p2) to (p1/p2)k. One downside to this is that the
true closest neighbour now has a pk

1 chance of ending up in the same
bucket. This is because it now has to end up in the same bucket k times.
To increase the chances and make up for an unlucky dot-product, we can
run the algorithm independently multiple times. Doing this lets us adjust
what accuracy we want.

2.6.4 Short list search

When the points are divided into buckets, the search space is greatly
decreased. This is because you only search for the closest neighbour within
the bucket your query point ends up in. This can be done by brute-force
or any other kNN algorithm and is often referred to as a "short list search".
Also this is usually the main bottleneck of the LSH algorithm.

2.6.5 Formal LSH definition

Basic LSH in Euclidean space can be defined as: Given a metric space S in
a D-dimensional Euclidean space, and a data base A where A ⊆ S. Given a
query point q where q is a vector in the D-dimensional space q = (q1, ..., qD)
and q ∈ S. Then we can show our LSH hashing function as:

H(q) = ⟨h1(q), h2(q), ..., hm(q)⟩

The hash function can hash any given value in S into some M-dimensional
hash space. Elements that end up in the same cell (hash value/bucket)
or close cells are potential closest neighbors. Each hash function hi()
corresponds to a dimension in the space. And the most common function
for hi() is:

hi(q) = ⌊ xi · q + bi

w
⌋

Here xi is a random D-dimensional vector where each value is drawn
from a Gaussian distribution e.g N(0, 1). bi is drawn from the uniform
distribution U(0, W). W is width of the quantization bin, ⌊·⌋ is the floor
operator and · is the dot product.
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2.6.6 LSH variants and improvements

Many improvements and variants of the LSH algorithm have been
proposed. Using lattices especially the E8 lattice as hash function is
proposed as an improvement over the dot product (random projections to 1
dimension) for Euclidean spaces as shown in the paper "Query-Adaptative
Locality Sensitive Hashing" [10]. Another improvement proposed is Multi-
Probe LSH.

Multi-Probe LSH

Multi-Probe LSH was introduced in the paper "Multi-Probe LSH: Efficient
Indexing for High-Dimensional Similarity Search" [12] by Qin Lv, William
Josephson, Zhe Wang, Moses Charikar and Kai Li. Multi-probe LSH works
by also searching buckets which are considered "close" up to +1 -1 away
where the metric for closeness depends on the hash space. If we use
hamming space, the neighbours will be the bit values which are one bit flip
away, i.e has a hamming distance of 1. Searching buckets with a distance
of 1 away from the query point, can lead to reducing the number of hash
tables needed to achieve some recall by 14X - 18X. Meaning we can greatly
reduce the needed memory.

2.7 CUDA

General computation on GPUs has gained a lot of traction lately, and
Compute Unified Device Architecture (CUDA) is an interface used for
this purpose. GPUs excel at tasks which can be done well in parallel. In
this section we will give a brief overview of the main aspects of CUDA
programming. The information is based on NVIDIA’s documentation.
especially "CUDA C++ Best Practices Guide - Design Guide" [16] and
"CUDA C++ Programming Guide - Design Guide" [17].

2.7.1 CUDA memory hierarchy

The most important thing to keep in mind when using CUDA is the
memory hierarchy, since this is where most of the performance can be
gained or lost. In CUDA we refer to the GPU as the "device" and the CPU as
the "host". Both the host and device usually have their own memory spaces,
although on some laptops and devices this can be shared. This means that
if our host/device do not share the same memory space, and we want the
device to work on something that is in host memory, it has to be explicitly
transferred from host to device. However, this can be hidden from the user
by using CudaMallocManaged in which case the compiler will transfer the
data for us.
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Figure 2.8: Illustration of CUDA’s memory hierarchy

The device memory hierarchy is as follows:

• Global memory is the device’s DRAM and the largest memory space.
All data from the host has to be made available in global memory
(one exception to this is the use of zero copy) if it is to be used in a
device thread. The contents of global memory can be copied back and
forth from host to device. Every thread on the device in any running
kernel can read/write to global memory. The best case scenario for
any kernel is that it only has to read any individual chunk of memory
it needs from global memory once. Global memory on newer devices
is by default cached in the L1 and L2 cache, however this can be
changed.

• Register memory is the smallest but also the memory with the lowest
latency a thread has access to. Each thread has their own part of
the register memory, which only they can read/write to. When all
registers are used the thread will write to local memory.

• Shared memory is the on chip memory of the GPU. This memory
is significantly smaller but as it is on chip it has both higher
bandwidth and lower latency compared to global memory. The same
shared memory is accessible by all threads on the same Streaming
Multiprocessor. The main purposes of shared memory is reducing
redundant access to global memory and sharing values with other
threads within the same block. The lifetime of shared memory is the
same as the block which uses it.

• Local memory. If a thread uses up all its available registers it will use
local memory. Local memory is in reality only cached global memory,
which means that in the worst case scenario a thread will have to read
from global memory leading to a significant loss of performance.
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• Constant memory is global memory but cached on chip in the
constant cache. This is read only memory. The cache algorithm
is suited for reads which are close together or the same. On some
devices L1 and constant cache are the same.

• Texture memory is global memory but cached on chip in the texture
cache. The cache algorithm is suited for texture like objects where we
often read addresses close in horizontal or vertical directions.

2.7.2 CUDA thread hierarchy

The CUDA thread hierarchy is spilt into three dimensions: threads, blocks
and grids as seen in figure 2.9.

Figure 2.9: Illustration of CUDA’s thread hierarchy, figure from [16]

• Threads and warps: CUDA threads can be thought of as normal
threads in that they can (theoretically) work as normal threads with
their own unique paths of execution and data. However, a CUDA
thread is a part of a warp. Warps are groups of 32 (on current NVIDIA
GPUs) threads which share the same instruction pointer and execute
in lock step. This is referred to as single instruction multiple thread
(SIMT). The warp or instruction pointer will have to go through every
possible path any of the 32 threads take, which is also what every
thread has to do where threads that do not belong to said path will
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be idle. When threads within the same warp take different paths it is
referred to as thread divergence, see section (2.7.4).

• Block: Blocks are groups of warps/threads. All warps/threads in the
same block share the same shared memory. Also all threads in a block
are scheduled on the same Streaming Multiprocessors.

• Grid: Grids are all the blocks which belong to the same kernel.

2.7.3 Synchronization

As we saw in section (2.7.2) CUDA’s thread hierarchy is three-dimensional.
We also have different levels of barriers/synchronizations.

• Warp wide: Synchronization is achieved with the syncwarp function
or any warp-level primitive. What threads within the warp you want
to synchronize can be defined by a mask which is given as input to
syncwarp.

• Block wide: Synchronization is achieved with the syncthreads
function. It is also possible to only synchronize a subgroup of the
threads/warps in the block. This can be done with Cooperative
Group.

• Grid wide: Synchronization can be achieved by the use of CUDA
Cooperative Groups. If we start, and try to synchronize more blocks
than we have SMs we may end up in a deadlock.

• Host/Device: the device and host can be synchronized with
cudadevicesynchronize. Host and device are also synchronized at
various CUDA calls such as cudaMemCpy.

2.7.4 Thread divergence

Thread divergence is an important thing to keep in mind while writing
kernels. Thread divergence occurs when there is branching within a warp.
Branching means one or more threads will take a different path of execution
at for example an if statement. This leads to a drop in performance as the
threads not in the current branch will be idle. To maximize efficiency of
the SIMT architecture we want every thread in the same warp to stay in
the same execution branch. However this is not always possible and you
will often end up with some degree of thread divergence, nevertheless the
compiler is very good at optimizing and simple divergence is some times
dealt with. Thread divergence can be calculated by the number of different
paths the threads within a warp take. The worst case scenario will be when
every thread takes a different path, if we are working with 32 threads per
warp, this will lead to a slowdown of 32X.
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2.7.5 CUDA kernel

Kernel is the term we use for functions we run on the GPU. They are
defined by adding __global__ to a normal C++ function. When launching
a kernel you can specify the number of blocks, threads and the size of
shared memory. The blocks in the kernel will be scheduled over the
different multiprocessors on the GPU.

2.7.6 Data transfer host - device

The bandwidth between device and host is very low (if they do not use
the same DRAM), because of this one wants to minimize data transfer
between device and host. Thus, at times it can be faster to do tasks which
are not suited for the GPU on the GPU, rather than moving the data
back to the host only to have to move it back to the device again. The
host and device are asynchronous, this gives us some different approaches
for copying/reading data. One approach is simply copying all the data
we need from host to device while the GPU is idle. In CUDA you can
do this with cudamemcpy, and in some cases this approach is necessary,
but performance wise it means the GPU will be idle for however long it
takes to copy the data. Another approach would be to do both copying
and computing concurrently. One way of doing this would be starting a
kernel with data we already have on the device, and then start copying
data with cudamemcpy. This could give us some overlap, but how much
overlap will vary. To maximize concurrency between copying data and
the GPU working on data there are two things we need to be aware of:
streams and pinned memory. A stream is a context which can call CUDA,
therefore multiple streams give us the freedom to schedule multiple
kernels, copies, etc. at the same time. Pinned memory in this context is
unpageble host memory. In CUDA we can allocate pinned memory with
cudaHostMalloc, this is necessary to make sure that cudaMemcpyAsync is
actually asynchronous. cudaMemcpyAsync lets you specify the stream you
want to perform the copy with. This gives the ability to copy data between
device and host, while also running kernels on the GPU as illustrated in
figure 2.10.
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Figure 2.10: Illustration of Sequential and Concurrent execution

Zero copy (reading directly from host memory in a kernel as threads)
is also possible, which lets us achieve concurrent execution as long as we
have run enough threads to hide the latency of the reads from host. Unified
Memory between device and host is also possible, but this only serves to
improve the readability of the code, and as far as we know is does not
contribute to better performance. However if your device and host use
the same DRAM this will most likely lead to better performance and let
us avoid having to store the same data in 2 different locations. Manged
memory can be allocated with cudaMallocManged.

2.7.7 Data transfer global memory - warps/threads

Coalesced access to global memory is one of if not the most important thing
to keep in mind when using CUDA. While the compiler will generally
be able to optimize the reads/writes, there are some things which should
always be done, if possible. The most efficient possible reads from global
can be achieved with coalesced reads. What this means is that if threads in
the same warp access sequential memory addresses, we can fetch the data
with one memory transaction depending on the size which each thread
wants to read. On newer devices this generally works as longs as the
threads in the same warp access the same 32 or 128 byte memory bank,
where one big read will be made including the bytes no one requested.
Coalesced writes work in much the same way, where as long as the threads
write to sequential memory addresses the writes will be done in fewer
transactions.

2.7.8 Data transfer shared memory - warps/threads

For shared memory there is no performance loss if threads in the same
warp do not access sequential memory addresses. As with all other
memory, two threads writing to the same address at the same time leads
to unspecified behavior. When reading from shared memory there is
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one thing to be aware of namely bank conflicts. Shared memory is split
into multiple banks (memory modules), and each bank can be accessed
concurrently. This lets us read/write to and from multiple banks at
the same time leading to a speed up equal to the number of banks we
read/write to. However, if multiple threads want to access the same banks
the requests are serialized. One exception to this however is when multiple
threads in the same warp want to access the same banks, in which case each
bank broadcast is coalesced into a multi cast.

From a software perspective there are two types of shared memory
available, static and dynamic. To use static shared memory the size needs
to be known at compile-time, while dynamic lets you decide at run-time.

2.7.9 Data transfer thread - thread with Warp-level Primitives

The fastest way to transfer data between two threads in CUDA is with the
warp-level primitives. Warp level primitives work within the warp and
lets us transfer data between threads in the same warp. To do this all the
threads which want to partake in the exchange have to be synchronized.
This is usually done by giving the primitive a mask which specify which
threads will partake.

2.7.10 CUDA atomics

CUDA atomics are functions offered by CUDA which allow us to read,
write, increment values, change values which exist in in a critical section
without having to worry about race conditions. This works for both shared
and global memory. However using atomics can be costly if there are many
threads constantly trying to write to the same values, it should therefore be
avoided when possible.

2.7.11 Double, single and half-precision

In CUDA there are three main levels of precision, double (64 bit), single
(32 bit) and half (16 bit). CUDA is optimized for single (32bit) operations,
however on newer GPU architectures NVIDIA introduced a 2 way Single
instruction, multiple data (SIMD) for half precision [7]. This speeds up
the use of half-precision to 2X compared to single if used correctly. This is
because it gives us the ability to perform two 16 bit operations at the cost
of one 32 bit operation. It also leads to better performance because of the
reduced size leading to less data having to to be read. However this is only
suitable if the precision of the values are not that important as there is a loss
in accuracy.

Using half-precision correctly for max performance

To achieve two-way SIMD when using half (16-bit floats) in CUDA, both
the halfs have to be written to the same 32-bit register. The easiest way of
doing this is by by using the __half2 type which can be used by including
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cuda_fp16.h. To do two-way SIMD with __half2 we use the arithmetic
and comparison functions from the CUDA math API [18].

2.7.12 Occupancy

Occupancy is a metric for how many warps we are running compared to
the theoretical max number of warps we can run over all the multipro-
cessors. This is often a good metric to look at when optimizing. It shows
to what degree we are actually utilizing the GPU, and if we are solving the
problem in a way that does a good job dividing the work over all the mul-
tiprocessors. Furthermore, when a warp/thread executes some arithmetic
instructions or reads from global memory, it will have to wait for the results
before continuing. The only way to hide this latency is by scheduling more
warps/threads. However, max or high occupancy does not necessarily cor-
relate to good performance. Usually there is a threshold above which, in-
creasing occupancy no longer affects performance. There are also cases
where the problem is simply better suited for kernels that cannot achieve
high occupancy, for example when one block needs all the shared memory.

Conditions which determine what occupancy we can reach

Conditions which determine how many blocks and threads we can run on
a multiprocessor:

• Max number of threads the hardware allows

• Max number of blocks the hardware allows

• Shared memory available

• Registers available

A multiprocessor obviously has a finite amount of resources, so for any
block to run on the multiprocessor it needs the required resources available
before it can run. For example, if each block in the kernel uses 60% of
the total shared memory on the multiprocessor it is running on, we would
only be able to run one such block at a time, however if it only used 50%
we could possibly run two.

Concurrent Streams

Streams lets us schedule multiple kernels at once, which gives us more
options for occupancy. We no longer necessarily need to make sure the
kernels get good occupancy alone, but we can now write kernels which
utilize the GPU well when run concurrently. For example if each block in
the first kernel uses 60% of the total shared memory on the multiprocessor
it is running on, and the second uses 40%.
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2.8 The cuBLAS library

cuBLAS is CUDAs BLAS (Basic Linear Algebra Subroutine) implementa-
tion. BLAS is a specification on how to perform linear algebra operations.
This cuBLAS introduction is based on NVIDIAS documentation "cuBLAS
Library - User Guide" [15]. BLAS has three levels where each level deals
with its own type of problems:

• Level 1 deals with vector and vector-vector operations. Some
examples are the dot product of two vectors, and the Euclidean norm
of a vector. In cuBLAS they are respectively referred to as dot and
nrm2.

• Level 2 deals with matrix and matrix-vector operations. One such
operation would be the vector - matrix multiplication. vector - matrix
multiplication is in cuBLAS and in most BLAS libraries referred to as
GEMV (General matrix-vector multiply).

• Level 3 deals with matrix - matrix operations. One such operations
is the matrix - matrix multiplication. This is referred to as GEMM
(General matrix-matrix multiply) and is one of the more widely used
BLAS operations (especially with the rise of machine learning). This
it true to the extent to where NVIDIA introduced a new type of core
optimized for this problem called the tensor core.

cuBLAS is highly optimized, fairly easy to use and is supported on
most NVIDIA GPU architectures. Therefore if we need to do some BLAS
operation we are in most cases better of using cuBLAS versus trying to
implement our own kernels.

2.8.1 Using cuBLAS

The cuBLAS library is called from the host, and as with other CUDA
kernels it can be called from different streams. A cuBLAS call from host is
not asynchronous, meaning the CPU will not continue its execution before
the call is finished. However, it can be asynchronous if you specify a stream.
To use cuBLAS the first thing you need to do is initialize a cuBLAS context,
referred to as a handle. Handles can and should be reused as there is an
overhead when initializing one. One thing to note however, is that while
you need different handles for different CPU threads, different streams
can share the same handle. Probably the most notable thing when using
cuBLAS is that it operates in column-major while C and C++ works in
row-major. This leads to some complexity. A row-major matrix in column-
major will be read as a transpose of a row-major matrix (and vice versa
for a column-major matrix in row-major). By understanding this, we can
deal with the problem either by doing the opposite in terms of transposing,
or by changing the order of the matrices. When we are only dealing with
vectors reading in column-major vs row-major does not make a difference.
When using cuBLAS the input for the calls has to be in either the device
memory or in unpageble host memory allocated with cudaMallocHost.
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2.8.2 cuBLAS GEMM example

Here we go through an example of how we can perform the dot product
with cuBLAS GEMM on two row-major matrices. GEMM is defined as
C = αop(A)op(B) + βC here op is a functions which either transposes, con-
jugates or does nothing to the matrix. C is the resulting matrix, while A
and B are the input matrices. α and β are two scalars giving us the abil-
ity to scale the matrices. If all we want to do is compute the multiply of
the matrices we set α = 1 and β = 0. The GEMM function for floats in
cuBLAS is called cublasSgemm and takes the following input:
cublasSgemm(cublasHandle_t handle,

cublasOperation_t transa,
cublasOperation_t transb,
int m, int n, int k,
const float *alpha,
const float *A, int lda,
const float *B, int ldb,
const float *beta,
float *C, int ldc)

A matrix in CUDA and C/C++ in general will be stored in a
continuous array. Given a matrix with 3 vectors of length 3 it could
be stored as an array of length 9 where we can write it as A[9] =
{a1, a2, a3, a4, a5, a6, a7, a8, a9}. If we were to write this array as a matrix it
would look like this: a1 a2 a3

a4 a5 a6
a7 a8 a9


In C++ we work in row-major, meaning that if we were to read the first
vector we would read in the horizontal direction i.e A[0], A[1], A[2] which
would be {a1, a2, a3}. cuBLAS on the other hand works in column-major,
meaning it would read in the vertical direction giving us A[0], A[3], A[6]
which is {a1, a4, a7}. Assuming we also have a matrix B of the dimensions
4 × 3 4 rows 3 columns stored as a 12 element long array B[12]. As a row-
major matrix we could write it as:

b1 b2 b3
b4 b5 b6
b7 b8 b9
b10 b11 b12


For our example we want every row-major vector in A to be dotted with
every row-major vector in B. This would give us the 3 × 4 matrix C. C[0 →
3] would be the dot product between the first row vector in A and every
row vector in B, C[4 → 7] would be would be the dot product between
the second row vector in A and every row vector in B, and C[8 → 11]
would be the dot product between the third row vector in A and all the
row vectors in B. Assuming that cuBLAS GEMM worked in row-major i.e.
multiplies every row vector in the first matrix with every column vector in
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the second one, then we would want to transpose the second matrix giving
us A ∗ BT = C. However as cuBLAS works in column-major it would read
this as AT ∗ B which is every column vector multiplied with every column
vector which would not be the C matrix we want. To fix this we could
rewrite our function to AT ∗ B which cuBLAS would then read as A ∗ BT,
however while this would give us the correct values it would give us the
output in column-major. To circumvent this we change the order of the
matrices giving us BT ∗ A, cuBLAS would read this as B ∗ AT = CT. CT

will when read in row-major be C which is the 4 × 3 matrix we want. In
cuBLAS we would write this as:

float alpha = 1.0f;
float beta = 0.0f;
int m = 4;
int n = 3;
int k = 3;
int ldA = 3;
int ldB = 4;
int ldC = 3;
cublasSgemm(handle, CUBLAS_OP_T, CUBLAS_OP_N,

m, n, k, &alpha, B, ldB, A, ldA, &b, A, ldC);

2.8.3 Best performance for GEMM when using tensor cores

When using cuBLAS GEMM we want to utilize our GPUs tensor cores if
it has any. To get the best performance possible when using tensor cores
NVIDIA provides a few conditions which must be met:

1. m % 8 == 0

2. k % 8 == 0

3. op_B == CUBLAS_OP_N || n % 8 == 0

4. intptr_t(A) % 16 == 0

5. intptr_t(B) % 16 == 0

6. intptr_t(C) % 16 == 0

7. intptr_t(A+lda) % 16 == 0

8. intptr_t(B+ldb) % 16 == 0

9. intptr_t(C+ldc) % 16 == 0

As long as we use a CUDA function to allocate our arrays A, B and C
we will not have to worry about condition 4, 5 or 6. This is because of how
CUDA allocates memory. The rest of the conditions however are things
we should keep in mind, and when plausible for example use padding to
make sure that they are met.
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2.9 The Thrust library

Thrust is a CUDA library designed for productivity. This short introduction
to Thrust is based on NVIDIAs documentation "Thrust Quick Start
Guide" [19]. It is easy to use in the sense that the user does not need
to have any understanding of the underlying architecture of the GPU or
CUDA. Blocks, warps, threads are all decided by Thrust removing much of
the complexity which comes with programming in CUDA. It offers much
of what C++ STL offers. Some examples are sort, reduce and the ability
to use vectors in much the same way we use them in C++. We can also
change these algorithms for our own custom values and classes in much
the same way we would in C++. Thrust is called from the host, and we can
use both device and host pointers as long as we specify it in the thrust calls.
Thrust vectors let us use dynamic allocation, and while this comes with a
loss in performance it also significantly simplifies the implementation of
many algorithms.
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Chapter 3

Design

In this chapter we go over the design of the brute-force SIFT feature point
matching algorithm which uses the dot product and cuBLAS (section 3.1),
and the design for LSH on GPU (section 3.2). We also talk about using
halfs instead of floats to represent the values in the SIFT vectors (section
3.3). The designs we present act as a baseline for how we plan to implement
the algorithms, and reflections about what problems we may face.

3.1 Design of the brute-force SIFT feature point
matching algorithm which uses the dot product
and cuBLAS

A kNN cuBLAS implementation is introduced in the paper "K-nearest
neighbor search: Fast GPU-based implementations and application to high-
dimensional feature matching"[5] which we introduced in section 2.2. In
our design and implementation we have used this paper as inspiration,
however as we do not need to solve the kNN problem but the 2NN
problem, and our input is SIFT vectors, our solution is much simpler. For
the implementation see section (4.1)

3.1.1 kNN with cuBLAS

Our goal is an algorithm that with the help of cuBLAS calculates the 2
nearest neighbors (2NN), and checks if the 1 nearest neighbor is a valid
SIFT match. For distance we use Euclidean. If we assume that X and Y are
2 vectors in a D-dimensional Euclidean space, e.g. X = (x1, x2, ..., xD) and
Y = (y1, y2, ..., yD). Then we know that to calculate the distance between X
and Y we can use the formula.

d(X, Y) =
√
(x1 − y2)2 + (x2 − y2)2 + ... + (xD − yD)2

As we only want to find the 2NN and are not really interested in the exact
distance, we can drop the square root as it does not change the 2NN. This
gives us d(X, Y)2 = (x1 − y1)

2 + (x2 − y2)2 + ... + (xD − yD)
2. Moreover,

as we want to use cuBLAS as much as possible we want to rewrite our
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equation to be more suited for matrix operations. We can do this by seeing
that [5]:

d(X, Y)2 = (X − Y)2(X − Y) = ||X||2 + ||Y||2 − 2XTY

Here || · || represents the Euclidean norm, and XT is the transpose of X. To
rewrite for sets of vectors, we think of Q and R as two sets of vectors, e.g.
Q = {v1, .., vi} and R = {w1, .., wj}. v1, ..., vi and w1, .., wj are vectors in
a D-dimensional Euclidean space. Dist is the vector of squared distances
between any vector in Q to any vector in R. We can then write Dist as:

Dist = ||Q||2 + ||R||2 − 2QTR

3.1.2 cuBLAS for SIFT vector matching

Here an important thing to note is that we are dealing with SIFT vectors,
not arbitrary data. SIFT vectors are normalized, in our case to 1. This means
that we already know both ||Q||2 and ||R||2 as this it the distance from the
zero vector to the vector. For matrices of size D × i like Q, the norm || · ||
is defined as ||Q|| = QTQ, which is an i-dimensional vector. The definition
means that each row vn in QT is multiplied with the same column vn in Q,
which is the same as vn · vn = ||vn||2, which we know is 1. We can therefore
reduce our problem even more giving us the equation:

Dist = 2 − 2QTR

−2QTR is a matrix multiplication and can be done extremely well with one
call to the cuBLAS library. We only need the 2NN, meaning we can simplify
what we do into 2 steps:

1. Calculate −2QTR

2. Find the two smallest values for each query vector

While step 1 is perfect for cuBLAS, step 2 is as far as we know best suited
to a self written CUDA kernel. Thrust could also be used, but as this is a
fairly straightforward reduction problem we believe a self written kernel
would be best.

3.2 Locality-sensitive hashing for SIFT on GPU Design

LSH has many versions but the shell or outline will for the most part
remain the same. To test as many different versions of LSH as possible with
minimal coding, we will try to design our algorithm on the GPU in a way
that allows us to change different parts without too much work. Our goal is
to implement LSH in a way which runs efficiently on a GPU. Therefore the
first step would be to see how and where we can parallelize the algorithm.
Basic LSH for SIFT can have 3 main steps:

1. Make hash values for query and reference SIFT vectors by hashing
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2. Order/index the data by the hash value

3. Do a short list 2NN search where we compare every query point with
every reference point which has the same hash value

These 3 main steps will also most likely have to be done multiple times
independently to achieve the desired accuracy. Doing independent runs
of step 1 to 3 in parallel will be the out-most point where we can achieve
parallelism. To do this we can use C++ threads and concurrent streams.
Also each of the 3 steps can be parallelized.

3.2.1 Hash function and hashing in parallel on GPU

Using the dot product as the hash function seems the most reasonable, this
is mostly due to the fact that it means we can use cuBLAS. This somewhat
simplifies the process, and it also guarantees good performance. cuBLAS
lets us perform multiple dot products in parallel for all the SIFT points
using a matrix - matrix multiplication.

Using the dot product results to make hash values

To make our hash value we first need to decide what our hash values
should be stored as. As we want to be efficient using a 32 bit integer as hash
value seems the best choice. This means we will have up to 232 buckets we
can divide the data in. Notably using all 232 buckets will most likely not be
necessary. There are many ways of setting the 32 bits with the dot products,
but the most basic one will be seeing if the value is over or under 0.

Here is a quick example of how we create a hash value for one SIFT
vector using cuBLAS and 1 - 32 random vectors:

1. First we dot the SIFT feature point with 1 - 32 random vectors (when
we take the dot product we are projecting the SIFT feature point onto
a 1 dimensional line i.e to some number)

2. We look at the value from each of the 1 - 32 dot products and assign a
bit according to if the value is over or under 0

Some iteration of this could be using more than one bit for each dot
product. For example we could use 2 bits meaning we would want every
dot product to be mapped to the range 0 to 3 or some range where we get
a good split over 4 values.

Random vectors

Every value in a SIFT vector is between 0 and 0.5 also the norm of the vector
will be 1. Meaning the data is spread over a hyperplane in distance 1 from
the zero vector. To split SIFT vectors with random vectors, if we were to
split on 0 as described above, we would have to make sure that some of
the values in the random vectors are negative. Preferably every value has a
50% chance of being either negative or positive. We could for example put
every value to 1 or -1.
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Kernels for Hashing

We will need at least 2 kernels to create hash values for each query and
reference SIFT vector. The cuBLAS call, and a self written CUDA kernel.
The CUDA kernel will read in the dot products and set the bits for each
SIFT vectors hash value according to the hash scheme and dot product
value.

3.2.2 Order/sort by hash value

When every query point and reference point has a hash value we have
to somehow sort or link the points in a way which we can easily and
efficiently perform a 2NN search. The two main approaches for this we
came up with were:

• Make an index array and sort the indexes by hash value

• Create an empty array, equal in length to the range of the hash values,
insert into said array by using the hash value as index and using a
linked list when collision occurs.

Making an index array and sorting it by the hash values seems the most
plausible. The biggest problem with the empty array linked list approach is
that it means we will have to limit the number of buckets we can use as an
array of size 232 alone will use more memory than we have available on the
GPU. There could be better solutions for doing this (hashing schemes etc.),
even so this will be complicated and hard to optimize for memory accesses.

Sorting index array by hash value

This can be done with the Thrust library. Implementing our own sorting
algorithm seems very complicated, and will probably not be worth the
effort. We will have to implement a sorting class to use with thrust.

3.2.3 2NN short list search

While we wanted to use the same approach as described in 3.1 this will
most likely not be a good approach as our points will be spread in memory,
meaning using cuBLAS will require moving data. As this is supposed to be
a short list search, simply using shared memory to reduce redundant reads
will probably be faster, which is why this is what we will try. However as
it will be very hard to implement a short list search kernel which gets high
occupancy (because we do not know the sizes of the different lists we have
to match), we will use concurrent streams. This means using an CUDA
atomic will most likely be necessary as many warps may try to write to the
same address when setting the index and value for the 2NNs.
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3.2.4 Using C++ threads and concurrent streams

One of the bigger problems we will probably face when trying to
implement LSH on GPU is low occupancy. The problem arises from how
unpredictable the algorithm quickly becomes. The main problem being the
short list search. The problem is simply that we have no way of knowing
how "short" each list will be, and as we will schedule each short list search
as a block, and CUDA will not start the next kernel in the same stream as
long as all blocks are not done. This means we may end up with one block
blocking the next steps only utilizing a small part of the GPU. To counter
this we can use concurrent streams and maybe C++ threads. Also using
the CPU for certain parts of the algorithm, may be necessary, in which case
streams are necessary to hide the overhead of our GPU waiting for the CPU.

3.3 SIFT vectors in CUDA as halfs

As mentioned in section 2.1.2 we know that we can represent SIFT values
as unsigned chars, however as CUDA is not optimized for single byte
operations this would not be the best choice. Half-precision or 2 byte
floats on the other hand is something which CUDA is optimized for. As
we already know we can reduce our float SIFT vectors to unsigned char
vectors, reducing to halfs should also work. This should be more accurate
than using unsigned chars. The motivation for using half-precision in
CUDA is that we can get a guaranteed speed up of 2X. This is because as
long as 2 halfs are in the same 32-bit structure, we can perform the same
action on both for the cost of performing it on one 32-bit float. On top of
that we will be able to reduce the transfer time from global GPU memory
and the threads as we do not need to read as many bytes as before.
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Chapter 4

Implementation

In this chapter we present the implementations of brute-force SIFT vector
matching using cuBLAS (see section 4.1), LSH on GPU (see section 4.2), and
a naive CUDA brute-force (see section 4.4).

4.1 Implementation of brute-force SIFT vector match-
ing using cuBLAS

Overview of how we implemented the 2 nearest neighbour brute-force for
SIFT vectors using cuBLAS and halfs. For design see section 3.1. For
results and reflections see 5.4.

4.1.1 Assumptions

We assume that the query SIFT vectors Q, references SIFT vectors R and the
output array matches where we write the results all fit in device memory
at the same time. We also assume that the SIFT vectors are normalized as
this is how we define the problem in the design part.

4.1.2 half vs float

As mentioned in section 3.3 we know that using halfs gives the best
performance in terms of speed when using CUDA. However if the loss
of precision is justifiable or not, we can only known through testing. When
testing on real data (see 5.4.1) we see that there is not much of a difference
in the recall between using floats vs using halfs. However, there is much
to be gained in terms of run time (see 5.4.6). Based on this. the version we
really focus on in this implementation is the version using halfs. We did
also implement a version using floats, however we did not optimize to
the same degree.

4.1.3 Input

The input is 2 arrays, Q and R, which are arrays of SIFT vectors. The
SIFT vectors can be of type float or half, and in device or host memory
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(however if in host memory we assume that the input is of type float).
For best performance one would use halfs which are already in device
memory. We also take in an array of unsigned ints. This is where we
write the matches if there are any and UINT32_MAX if there are none,
i.e the distance ratio between the 2NNs for the query point, do not satisfy
the threshold. The matches array needs to be on device or allocated with
cudaMallocManged. For the rest of the input we also need a cuBLAS handle,
the type of the input arrays, the number of warps used by the reduction
kernel, number of streams to use and the size the array we write our matrix-
matrix multiplication results to.

4.1.4 Moving data to device, and converting to halfs

If the data is not already in device memory, we have to transfer it from
host to device, and as we assume that data not in device memory, is of type
float we will also have to convert to half. This will be different for the
query vectors in Q and the reference vectors in R. For the reference vectors
we need to transfer and convert the whole array at once, this is because of
how we use batching in the algorithm (see 4.1.7). This will be done by using
zero copy, meaning we read directly from host in the kernel which converts
to halfs. This both lets us use less memory as we do not need to have an
intermediate array, and it is what we found to give the best performance
(see 5.3 for tests). On the other hand the query vectors do not need to be
moved all at once, therefore we have 2 options:

1. Transfer and convert only the vectors we need for the current batch

2. Transfer and convert the whole array at once in the same way we did
the reference array

When testing we found that the first option worked best.

4.1.5 Algorithm overview

As mentioned in the design we use two main kernels for this algorithm.
One is the cuBLAS GEMM call and the other one is the reduction kernel.
For the reduction kernel implementation see 4.1.10, for how we use cuBLAS
GEMM see 4.1.9. We do sometimes have to transfer data and convert to
halfs, this is also done with a very simple kernel see 4.3. Because of how
memory intensive the algorithm is, and how cuBLAS works we need to
use batching. For how we implemented batching see 4.1.7. Using batching
means that on top of letting us process bigger queries, it also gives us the
chance to use concurrent streams to reduce overhead, for how we do this
see 4.1.8.

The main algorithm will look like this where every bathed run executes
this algorithm on some subset of Q and all of R:

1. Dot every SIFT vector in Q with every SIFT vector in R (using
cuBLAS), write the results to the half array we call Dist
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2. Call the reduction kernel on Dist with number of blocks equal to the
number of Q vectors in the batched run.

3. The reduction kernel will when done fill up the unsigned int array
called matches with the index of the nearest neighbour in R for the
query vector point at the same index in the matches and Q array.

Figure 4.1: Simplified illustration of how the algorithm will work with one
stream

4.1.6 Memory usage

This algorithm is extremely memory heavy, due to the fact that we need to
allocate the array where we write the output of the cuBLAS GEMM call.
The size of this array in bytes if we did not batch would be: (number of
query points) * (number of reference points) * 2 (this is an array of halfs
where the size of a half is 2 bytes). The GPU we test on only has 12 GB
of memory, meaning that we would not be able to test on higher numbers
than: Reference SIFT vectors = 100k and Query SIFT vectors = 50k where
100k ∗ 50k ∗ 2byte = 10GB. Therefore we need to batch our algorithm to test
on reasonably large sets of SIFT vectors. Another motivation for batching
is that cuBLAS seems to be more efficient on smaller queries.

4.1.7 Batching

We batch by seeing how many query points we can dot with the whole
reference point array at a time, while still fitting the whole output array
into the size we want to use for our cuBLAS GEMM results array. The size
of the cuBLAS GEMM results array is changeable.
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Figure 4.2: Simplified illustration of how we use batching for our cuBLAS
SIFT feature matching brute force algorithm

For how changing the size of this array effects the performance see 5.4.2.
For our GPU (RTX 3060) on the ANN_SIFT1M cuBLAS is the most effective
when we restrict one stream to 0.766 GB of the total GPU memory space,
meaning we would dot 383 query points at a time. We are not quite sure
why this is the case, but it is probable that it has something to do with
how cuBLAS handles shared memory when called on very big matrices.
However we were not able to implement a formula which atomically let’s
us choose the best possible size for the results array.

4.1.8 Concurrent streams and occupancy for cuBLAS 2NN

As mentioned in the algorithm overview (4.1.5), we use batching because
of how memory heavy our algorithm is, and because cuBLAS is better at
smaller queries. This also means we have the option of using concurrent
streams, which could give us better performance by increasing occupancy.
That being said, cuBLAS calls, (especially GEMM calls on big matrices)
will almost always occupy the whole GPU, meaning running other kernels
concurrently will most likely not be very helpful. On the other hand, both
the conversion kernel (used when converting to half) and the reduction
kernel can probably benefit from concurrent streams, to some degree.
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Figure 4.3: Simplified illustration of how our algorithm will run with 2
concurrent streams

When testing, we found that we only benefit from using concurrent
streams when the number of query points is very high. See 5.4.5 for the
tests and reflections.

4.1.9 Matrix matrix multiplication for cuBLAS 2NN

As mentioned in the design part, we need to perform the matrix-matrix
multiplication −2QTR. This is done with cuBLAS. We use the cuBLAS call
cublasHgemm which is the GEMM call for halfs in cuBLAS. This function
takes 3 matrices and some scalar values as input. The 3 matrices will be
the two input arrays of SIFT vectors Q, R and an output array we call
dist. The dist can be thought of as a 2 dimensional array in the form
dist[Q_size][R_size]. We also feed in two scalars: alpha and beta. By setting
alpha to -2 we no longer need to negate or multiply the results ourselves.
We set beta to 0. To negate the fact that cuBLAS works in column-major
while C++ (and our data) is written in row-major, we do −2RTQ instead
of −2QTR (see section 2.8.2 for a detailed explanation on why this works).
This call will look like this:

cublasHgemm(handle, CUBLAS_OP_T, CUBLAS_OP_N, r_n, q_n,
128, &a, (half *)R, 128, (half *)Q, 128, &b, (half *)dist, r_n);
Here q_n is the number of query points and r_n is the number of reference
points.

Using tensor cores

To achieve the best possible performance when using cuBLAS with tensor
cores we have to remember the conditions which must be met (see section
2.8.3). Conditions 4 - 6 are already met as we allocate the arrays with a
CUDA function. 7, 8, 2 and 3 are also already met as lda, ldb and k are
equal to 128 and 128 % 16 == 0. This leaves 1, 3 and 9. However, as we
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use the CUBLAS_OP_N for op_B, condition 3 is also met no matter the input
size. This leaves conditions 1 and 9, which in our case are more or less the
same condition, as they are both dependent on the number of SIFT points
in the reference array R.

• Condition 1: m % 8 == 0

• Condition 9: intptr_t(C+ldc) % 16 == 0

Here both m and ldc are equal to the number of SIFT points in R, therefore
the solution becomes fairly simple. As we already know that intptr_t(C)
% 16 == 0 (condition 6), we only need to make sure that ldc % 16 == 0. In
doing so we inherently also solve m % 8 == 0 as ldc == m, and if ldc % 16
== 0 is true, then ldc % 8 == 0 must also be true. We do this by padding
the reference point array so that size % 16 == 0.

Padding

If the number of SIFT points in the reference array does not already fulfill
number % 16 == 0, then we have to pad the array with 1 to 15 (depending
on size % 16 == 0 ) new SIFT points, where each value is set to 0. If our
input is of type float, all we have to do is allocate and write an extra 1 to
15 SIFT vectors when we convert from floats to halfs. However when the
input is of type half, we have to allocate space in device memory, set the
extra vectors to 0, then copy the data from the old array to the new. This
obviously takes time, but nevertheless it does improve overall performance
significantly despite the overhead as shown in 5.4.3.

4.1.10 Reduction kernel for cuBLAS 2NN brute force

This is a reduction on multiple n element long arrays, where we want to
find the 2 smallest values in each array and keep the index of the smallest
value. The size of n will be the same as the number of SIFT vectors in R,
and the number of such arrays will be the same as the size of the subset of
Q we are working on. The kernel we wrote solves this problem using one
block per sub-array.
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Figure 4.4: Simplified illustration of how we use one block per sub-array
for our cuBLAS SIFT feature matching reduction kernel

The reduction

The number of warps per block is changeable (for how this changes
performance on the ANN_SIFT1M data set, see 5.4.4). Each thread in the
block reads 8 halfs at a time in a for loop, which it scans for the 2 smallest
elements while keeping the index of the smallest element. The reads in the
for loop are done in such a way that they will always be done coalesced.
After scanning the whole array we do a warp wide reduction with CUDAs
__shfl_down. Now the first thread of each warp has the 2 smallest values
and the index of the smallest. Then we do a block wide reduction by using
shared memory. We initialize 2 shared memory arrays, one of 32 ints, and
one of 32 half2s. Now the thread of each warp with id = 0 writes both
the index and 2 smallest values to shared memory. Each thread in the first
warp reads the values in the shared memory arrays corresponding to their
thread id within the warp. The we perform another warp reduction in the
first warp only. The first thread in the first warp now has the 2 smallest
values and the index of the smallest value.

Optional SIFT threshold step

The first thread can now check if the values are sufficiently different to
be considered matches. To do this, we first need to get the true distance.
This is done by adding 2 and taking the square root. Our original equation
was dist2 = (2 − 2QTR) and we have already done −2QTR. If they are
sufficiently different we write the index of the smallest element into the
matches array, if not we write the max value of an unsigned int signaling
that there were no suitable matches.

42



4.2 LSH for SIFT on GPU implementation

Overview of how we implemented the LSH algorithm for GPU. For design
see Section 3.2.

4.2.1 Assumptions

We assume that the input problem is of a size where we do not need to
worry about a out of core scenario i.e we will have enough memory on
both device and host for what ever input we get.

4.2.2 half vs float

We started out by trying to implement a version using floats, but found
that the overall performance could be improved substantially by using
halfs, which we ended up doing.

4.2.3 Input

The input is 2 arrays (Q and R) which are the query SIFT points and the
reference SIFT points. We also take a matches array where we write the
index of the match we find for each query point. The rest of the input
arguments are: a cuBLAS handle, input type of the SIFT points, number
of iteration to run the algorithm, number of bits to use per bucket and the
number of streams to use.

4.2.4 Moving data to device, and converting to halfs

If the input arrays are not already in device memory, we have to transfer
them from host to device. We assume that if the data is not in device
memory it is of type float. We will therefore also have to convert to half.
This will be done in the same way for both the query vectors in Q, and
the reference vectors in R. We need to transfer and convert the whole
arrays before we can start our LSH algorithm. We do this by using zero
copy, meaning we read directly from host in the kernel which converts to
halfs. This both lets us use less memory as we do not need to have an
intermediate array, and it is what we found to give the best performance
(see 5.3) for tests. This will be done with streams where we use one stream
for each of the arrays.

If the arrays are in device memory but of type float we allocate a new
half array and call the kernel which converts the data.

4.2.5 Memory usage

How much memory we use will depend on the number of streams and
the number of query and reference SIFT points. Our implementation is
not that memory heavy in general, but for very big input arrays memory
will be a problem. However, it was not a problem for the data set we did
most of the testing on. The main array used to keep track of the distance to
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the 2NN and the index of the NN is the min2_index array. This array will
be accessed by multiple kernels in different streams simultaneously, which
is why each min2_index element is a 64 bit value usable with the CUDA
atomic compare and swap.

4.2.6 LSH on GPU algorithm overview

For our implementation we use C++ threads and streams. One iteration of
the algorithm implementation will have these steps:

1. Main thread will make random vectors, schedule the dot product
between the random vectors and query/reference points, this will be
done in 2 streams.

2. Main thread will then start a new thread which will be in charge
of this iteration, the main thread will pass the 2 streams it used to
schedule the dot product calls onto this thread. We call this thread
the iteration thread.

3. The iteration thread will then start 2 new threads giving them one
stream each.

4. Each of the 2 threads will then be in charge of either the reference
points or the query points for this iteration. We call theses threads the
query thread and the reference thread.

5. The query and reference thread will schedule the kernel which sets
the bit values (see 4.2.9), then sort the index array by hash value with
thrust (see 4.2.10).

6. The query/reference threads will then make buckets with the index
array and hash value array (see 4.2.11), then they will terminate.

7. The iteration thread will then match the buckets made by the
query/reference threads (see 4.2.12).

8. The iteration thread will then schedule a brute-force 2NN short list
search (see 4.2.13) for each pair of buckets it found in both the query
buckets and reference buckets.

9. After this the iteration thread will synchronize to the stream it
scheduled the brute-force on and then terminate.

The movement of the different arrays between device and host will be
done asynchronously. The above mentioned steps will be repeated as many
times as needed to achieve the desired accuracy. We will also run multiple
of these iterations simultaneously, in order to hide the latency of using the
CPU, and to maintain high occupancy. The reason we schedule the dot
product in the main thread, is that we had problems when we scheduled
them in different C++ threads with the same cuBLAS context handle.

44



Figure 4.5: Illustration of how the different CPU threads work in
conjunction

4.2.7 Random vectors

We make the random vectors on the CPU, and then transfer them to GPU
with cudaAsyncMemcpy. This may not be the best solution, but for testing
this was very helpful. We did try a few different types of random vectors,
but we found that simply setting every value in the random vector to either
1 or -1 worked best. This splits the dot product values between negative
and positive meaning we can split on 0.

4.2.8 Dot product using cuBLAS

To make the hash value for each query point and reference point, we need
to dot every query and reference point with every random vector. This
can be done with cuBLAS. cuBLAS is extremely efficient and we have
therefore chosen to use it instead of making our own dot product kernel. To
perform the dot product we use cublasHgemm, which is the matrix-matrix
multiplication functions for halfs in cuBLAS. We want to perform the dot
product, i.e given 2 vectors a and b we want abT, we want to do this
pairwise between all points in the Q and R matrices and each vector in
our random vector array. We have explained how to do this in section
2.8.2. Our input array will be the SIFT points (either the reference points
or query points) and the random vectors. The output will be an array of
arrays where each sub array contains 1 to 32 (depending on how many bits
we use for the hash value) dot product values for each query/reference
point.

Padding

We will pad the random vectors to meet the conditions mentioned in 2.8.3,
as just as with the brute-force with cuBLAS, padding seems to be beneficial
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as seen in 5.5.4.

4.2.9 Setting the bits in the hash values

The dot products using cuBLAS will leave us with 1 to 32 long arrays of
half values for each SIFT point. Theses values are what we will use to
form the hash values. There are a many different ways we can use these
values to form the hash value, however how we read and write the data
will be the same.

The kernel

For setting the bits of the hash values we wrote a CUDA kernel. This kernel
reads each dot product value once, the reads are coalesced, and each thread
will write one value to the output array, meaning we get coalesced writes
as well. We use dynamic shared memory where the size will be equal to
the number of dot products the block will have to read in. The kernel will
have 2 main steps:

• Read in the values from the dot product array to shared memory.
Here each warp will have its own part of shared memory which it
will fill up. This is done with coalesced reads.

• Every thread in the warp will use the values from shared memory to
set the bits of a 32 bit unsigned integer, after which the thread will
write this value to the hash value array for the SIFT point it is in
charge of, the writes will be coalesced. We also set the index in the
index array for said SIFT point to use it when we sort.

We can change the number of warps, but we have to keep in mind that if
we set this number too high we will end up using all of the shared memory.
We found that 4 warps per block gave the best results.

Using dot product to make a hash value

After we have read in the values, each thread reads 1 to 32 values from
shared memory and sets the bit of a 32-bit integer according to the values
and the scheme we use for the hash values. We only implemented 2 such
schemes:

• If the dot product value is above or below 0, set the bit in the hash
corresponding to the same index as the dot product to 0 or 1.

• If the dot product value is in the range of 1-4, set the 2 bits in the hash
corresponding to the same index as the dot products to 0 - 3.

We ended up using the first scheme, mostly due to the fact that it lets us be
more precise, which made it easier to choose the number of bits to use.
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4.2.10 Sort index array by hash value

We have 2 arrays, the array with the hash values, and the array with the
index. The index array will return the same value as the value we access
it with before we sort, e.g index[2] = 2. We sort with Thrust, utilizing a
custom operator we made that lets us sort the index array by the values in
the hash value array. This sorts the index array so that using the index array
to access the hash value array will give us the hash values in ascending
order, e.g hash[index[0− > n]] = [hash_min, ...., hash_max].

4.2.11 Making Query/Reference buckets

For both the query points and reference points we have the following:

• Hash values for each point.

• Index array, which when used to access the hash value will give us
the values in ascending order.

We now want to make the buckets in the form of an int2 array, where we
want the start and size of each bucket. The size will be how many points
collide on this value, and the start will be the index of the first element
which has this hash value when we access the hash values with the index
array. Since a GPU is not well suited for this problem, we do it on the CPU.
We do this on the CPU with a basic for loop that iterates through the hash
value array with the index array, i.e hash_value[index[0− > n]] and does:

• If the new value is equal to the value before we increase the size of
the bucket by 1

• If not we set the current index as the start of a new bucket and set the
size to 1

We do this for both the reference points and the query points. We should
now have an array of type int2 where the first int will contain the start of
the bucket in the index array and the second int will contain the size of the
bucket.

4.2.12 Matching query buckets and reference buckets

We now want to match buckets with query points to buckets with reference
points to create an array of type int4 which contains:

• Start index of bucket in index array for query points

• Number of query points in the bucket

• Start index of bucket in index array for reference points

• Number of reference points in the bucket
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This is done on the CPU, by using a while loop where we have two counters
and iterate though the reference and query point int2 arrays. If we find
2 buckets with the same value we write the int2 values from the query
bucket array and reference bucket array to the new int4 array. This gives
us an array matching the buckets including the start index and size of these
buckets. We now have everything we need to perform the short list brute-
force search.

4.2.13 "Short" list 2NN brute-force search

Because of how unpredictable this problem is, the kernel we have created
is far from a perfect solution. The short list search will search for the 2NNs
for the points in the given query bucket in the given reference bucket. It is
given the index to where the two buckets start, and the size of each of these
buckets in an array of type int4. For this kernel the most time consuming
part will be redundant reads, therefore we want to minimize the amount
of times we need to read any value from global memory. To do this we use
shared memory. However, as there is no way of knowing how big a list
in the "short" list search will be, we have to decide on a shared memory
size which will not be optimal for all problem sizes. Using more shared
memory than we utilize can lead to bad occupancy and on the other hand
using too little will lead to very bad performance since the same values
will be read from global memory multiple times. In the end we decided to
compromise, using shared memory equal to the number of warps we run
for each block. This is far from an optimal solution especially for the data
set we use to test on.

2NN brute-force kernel

Our kernel can be thought of as a double for loop:

• In the outer loop we will read in the query points, we read in one
point for each active warp in the block, the reads will be coalesced
where each thread in the warp is in charge of 4 half values.

• Then in the second loop we first read in reference points equal to the
number of active warps, each warp reads in one reference point and
writes this to shared (this will be done in the same way as with the
query point). Every warp then calculates the distance for the query
point it is in charge of to every reference point in shared memory. This
is done by using warp level primitives and half vector operations.

To minimize the amount of times we need to read/write to the global
array which holds the 2NNs (min2_index) values for the query points, we
will save up to 32 values before updating. We do this by letting each
thread in the warp in charge of the query point hold one value, then using
indexing to figure out which threads already have values. After all 32
threads have a value we do a warp wide reduction to get the 2NN and
the index of the NN. We then write this to the min2_index array which
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holds the 2NN and the index of the NN in global memory. However as this
is an array which every thread will be able to read/write to, we have to
use CUDA atomics to ensure that undefined behaviour does not occur. We
explain how this is done in section 4.2.14

4.2.14 Atomic update of the min2 array

As we are running multiple streams which can all access the min2_index
array, we face the problem of how to make sure that undefined behavior
(such as when 2 threads attempt to update the same value) does not occur.
To do this we use the CUDA compare-and-swap atomic. This atomic
lets us define our own compare function and then safely swap, (or try to
swap) the value in device global memory. We wrote a function (called
atomic_min2_update in our code) which does this. The min2_index struct
is made of one half2 value where x is the distance to the NN and y is the
distance to the second NN, it also holds one 32 bit unsigned int which is the
index of of the NN. We made this value specifically to use it in our compare-
and-swap atomic, as this atomic only works for 32 or 64 bit structs.

4.2.15 Writing to the output array

When we are done with our algorithm, we run a kernel which reads from
the min2_index array and writes the results to the output matches array.
The reads and writes will be coalesced and it is a fairly simple kernel. This
is also where we can apply the distance ratio if we want to. We chose not
to, since we can never be sure if our points are true NN or not, making it
hard to say how efficient this would be.

4.3 Converting from float to half on device

This kernel will be used to convert float values to halfs. To convert we
use a simple kernel where each block has 64 threads and each thread does
the following:

• Reads 2 floats from the input array

• Converts to a half2

• Writes to the output array

Both the reads and writes are coalesced.

4.4 Naive CUDA 2NN brute-force

As a metric for testing the efficiency of our LSH on GPU and brute-force
with cuBLAS, we compare it to a 2NN naive CUDA brute-force. This is a
fairly straight forward brute-fore consisting of 2 kernels.
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1. Kernel 1 Each block has one warp and is in charge of calculating the
Euclidean distance between one query point and one reference point.
Both points will be read with coalesced reads. Then the warp will
use warp level primitives to reduce the distance to the first thread,
which will then write this distance to the distance array belonging to
the query point.

2. Kernel 2 Each block will scan a distance array for the 2NNs of the
query point, this will be done with coalesced reads and warp/block
wide reductions. When done it will write the results to the matches
arrays.

This is a fairly naive implementation because we barely use shared memory
at all, leading to a very high number of redundant reads of the same
reference/query points.
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Chapter 5

Evaluation and test results

In this chapter we test and evaluate the 2 algorithms we implemented. For
brute-force with cuBLAS see section 5.4, for LSH on GPU see section 5.5.
We mostly test on the ANN_SIFT1M data set, which we look closer at in
section 5.2. We also test to see how to best transfer the SIFT vectors from
host to device, when we want to use half values section see 5.3. We also
compare our 2 implementations in section 5.6.

5.1 Testing environment used

When testing, the GPU is also used to run the screen so 100% accurate
measurements are impossible, however the effects of this should be
minuscule. We also often run multiple times and take the average making
this even less noticeable. We test in Windows Subsystem for Linux (WSL)
with Ubuntu. The CPU used for testing is a amd ryzen 5 5600x 6-core 3.7
ghz, and the GPU is a GeForce RTX 3060 with 12GB memory.

5.2 A closer look at the ANN_SIFT1M data set

For most of the tests we perform we use the ANN_SIFT1M data set
introduced in the paper "Product Quantization for Nearest Neighbor
Search" [9] by Hervé Jégou, Matthijs Douze and Cordelia Schmid. This
is a data set which contains 104 query points and 106 reference points. It
is a somewhat known data set, often cited when testing ANN algorithms.
Also it is of a suitable size for what we want to test, we were not able to find
other sets of similar sizes. To make sense of the results we get, we decided
to run a number of tests on the data set itself. To do this we use a naive
brute-force 2NN algorithm implemented with CUDA (see section 4.4 for
implementation). As SIFT has an optional threshold step (see 2.1.4), we test
for varying thresholds. For each of the 104 query points when matching
we get 3 possible outcomes, wrongly matched, correctly matched and no
match (the 2NNs for the query point do no satisfy the SIFT threshold).
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Results

Matches using Naive CUDA brute-force, no threshold
Wrongly matched 73
Correctly matched 9927

No match 0
Matches using Naive CUDA brute-force, 0.8 threshold
Wrongly matched 0
Correctly matched 706

No match 9294
Matches using Naive CUDA brute-force, 0.9 threshold
Wrongly matched 0
Correctly matched 1643

No match 8357
Matches using Naive CUDA brute-force, 0.95 threshold
Wrongly matched 0
Correctly matched 3470

No match 6530
Matches using Naive CUDA brute-force, 0.99 threshold
Wrongly matched 0
Correctly matched 7820

No match 2180
Matches using Naive CUDA brute-force, 1 threshold

Wrongly matched 0
Correctly matched 9854

No match 146

Table 5.1: Shows how well a CUDA naive brute-force matches SIFT
vectors from the ANN_SIFT1M data set, with differing SIFT distance ratio
thresholds

Reflections

We see that with no threshold, the brute-force does not get all the 104

matches correct, however this is likely due to some of the 2NNs for some
of the query points being equal. This can be seen in the last test, where we
have a threshold of 1, meaning all solutions where the 2NNs are equal will
be rejected. We see that there are 146 matches where this is the case, and
73 matches which are wrongly matched in the no threshold test. This is
most likely caused by the order of which the points are compared. This
can also be seen as using different number of warps in our brute-force
when comparing would lead to different numbers of wrong matches for the
no threshold test, because the order of which we compare the points will
change. For the 0.8 threshold test which is what Lowe [11] recommends
in his paper, we see that very few matches (706 of 10000) pass this test.
We also see that for a threshold of 0.99 there are still 2180 points where no
matches are found. As we can see from the tests the data is very clustered
meaning we could probably be a bit more forgiving when testing maybe
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even counting either one of the 2NN as a correct match when testing for
LSH.

5.3 Copying data from host to device when using
halfs

Copying float data from host to device, and converting to halfs is
something we have to do for both our LSH implementation and brute-force
with cuBLAS implementation. As in this case we need to copy all the data
at once before we can continue working, we have 2 choices:

1. Use zero copy to read directly from host in the float to half
conversion kernel

2. Allocate a float array, copy to device with cudaMemcpy, call float to
half conversion kernel

We know that when moving data from host to device using cudaMemcpy
is the fastest way. However we do not only need to move the data we also
need to convert it to halfs. We test the difference in performance between
choices 1 and 2 on arrays of varying sizes:

Results

Figure 5.1: Shows the time used to copy and convert the float SIFT vectors
from host to device using zero copy and using cudaMemCpy
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Reflections

We clearly see that when there is a need to convert the data, reading directly
from host using zero copy in the float to half CUDA conversion kernel is
faster.

5.4 Evaluation of brute-force with cuBLAS for SIFT
feature matching

In this section we test and evaluate the brute-force with cuBLAS imple-
mentation. For most of the test we use the ANN_SIFT1M data set, see
section 5.2 for a short look at the data set. As this is a brute-force were the
data does not affect the performance, we also test on pseudo data made
with the C++ rand function. We test the recall with differing thresholds,
and look at how using floats compares to using halfs in terms of recall
(5.4.1). We test the cublasHgemm cuBLAS calls performance with differ-
ent input sizes (5.4.2), and look at how padding affects the performance
(5.4.3). We also evaluate the reduction kernel (5.4.4), test how using con-
current streams affects the performance for different problem sizes (5.4.5),
and lastly we look at the overall performance in terms of time to complete
on the ANN_SIFT1M data set averaged over 100 runs when using different
levels of precision (5.4.6).

5.4.1 Recall

While this implementation is a brute-force, we have made an assumption,
and that is that the norm of the input vectors will be the same for every
vector. While this is the case on the pseudo random data we produce, it
was not the case for the real data set ANN_SIFT1M. The average norms for
both the query points and reference points are:

104 query points 106 reference points ANN_SIFT1M data set
Average norm query points Average norm reference points

508.637939 512.592285

Table 5.2: ANN_SIFT1M data set norms

As we can see from table 5.2 the average norm on the real test data set
ANN_SIFT1M does not meet our assumption of equal norms on all vectors.
To also see how our implementation does when our assumption is true, we
also test on pseudo data. The norms for the pseudo data are:

104 106 pseudo data set
Average norm query points Average norm reference points

1.0 1.0

Table 5.3: pseudo data set norms
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Recall on real and pseudo data with and without thresholds

As we have implemented both a version using halfs and a version using
floats we will test the recall on both. Also as cuBLAS gives us the choice
to specify what precision we want the GEMM calculation to be done in, we
test both 16 and 32 bit calculations. When testing for each query point we
have 3 possible outcomes:

• Correct match, we find the right reference point.

• Wrong match, we find the wrong reference point.

• No match, the distance ratio for the 2NNs found does not satisfy
the distance ratio threshold, and we do therefore have no suitable
solutions.

The recall when we use a threshold will be calculated out of the total
number of query points minus the number for which we found no match.

On the ANN_SIFT1M data set we did 6 different tests with varying
thresholds. These thresholds are, no threshold, 0.8, 0.9, ,0.95, 0.99 and
1. For the pseudo data set we did also do one test with threshold of 0.8,
but as not a single point passed the threshold test we decided not to do
anymore testing. This is after all pseudo random data which means it will
be evenly distributed, leading to the distance between points being almost
equal. Therefore the only data from the pseudo random data tests we have
decided to include is the no threshold test. For the pseudo random data we
use the naive CUDA brute-force 4.4 as the true values. For the real data we
use the given true values, we only consider the query a correct match if we
find the NN according to the true values.

Test results on the ANN_SIFT1M data set

Recall using halfs, no threshold
16 bit calculations 32 bit calculations

Wrongly matched 1229 1186
Correctly matched 8771 8814

No match 0 0
Recall 0.8771 0.8814

Recall using floats, no threshold
16 bit calculations 32 bit calculations

Wrongly matched 1173 1173
Correctly matched 8827 8827

No match 0 0
Recall 0.8827 0.8827

Table 5.4: Recall on the ANN_SIFT1M data set using halfs and floatss
with no threshold
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Recall using halfs, 0.8 threshold
16 bit calculations 32 bit calculations

Wrongly matched 6 6
Correctly matched 720 719

No match 9274 9275
Recall 0.991735537 0.991724137

Recall using floatss, 0.8 threshold
16 bit calculations 32 bit calculations

Wrongly matched 0 0
Correctly matched 487 487

No match 9513 9513
Recall 1.0 1.0

Table 5.5: Recall on the ANN_SIFT1M data set using halfs and floats with
0.8 threshold

Recall using halfs, 0.9 threshold
16 bit calculations 32 bit calculations

Wrongly matched 23 27
Correctly matched 1825 1832

No match 8152 8141
Recall 0.9875541125541125 0.9854760623991393

Recall using floatss, 0.9 threshold
16 bit calculations 32 bit calculations

Wrongly matched 0 0
Correctly matched 1256 1256

No match 8744 8744
Recall 1.0 1.0

Table 5.6: Recall on the ANN_SIFT1M data set using halfs and floats with
0.9 threshold

Recall using halfs, 0.95 threshold
16 bit calculations 32 bit calculations

Wrongly matched 113 107
Correctly matched 4004 4015

No match 5883 5878
Recall 0.9725528297303863 0.9740417273168365

Recall using floatss, 0.95 threshold
16 bit calculations 32 bit calculations

Wrongly matched 6 6
Correctly matched 2910 2910

No match 7084 7084
Recall 0.9979423868312757 0.9979423868312757

Table 5.7: Recall on the ANN_SIFT1M data set using halfs and floats with
0.95 threshold
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Recall using halfs, 0.99 threshold
16 bit calculations 32 bit calculations

Wrongly matched 561 523
Correctly matched 7792 7813

No match 1647 1664
Recall 0.9328385011373159 0.9372600767754319

Recall using floatss, 0.99 threshold
16 bit calculations 32 bit calculations

Wrongly matched 268 268
Correctly matched 7247 7247

No match 2485 2485
Recall 0.964337990685296 0.964337990685296

Table 5.8: Recall on the ANN_SIFT1M data set using halfs and floats with
0.99 threshold

Recall using halfs, 1 threshold
16 bit calculations 32 bit calculations

Wrongly matched 945 905
Correctly matched 8558 8593

No match 497 502
Recall 0.9005577186151742 0.9047167824805222

Recall using floatss, 1 threshold
16 bit calculations 32 bit calculations

Wrongly matched 1100 1100
Correctly matched 8760 8760

No match 140 140
Recall 0.9842696629213483 0.9842696629213483

Table 5.9: Recall on the ANN_SIFT1M data set using halfs and floats with
1 threshold

Recall using halfs on pseudo random data set, no threshold
16 bit calculations 32 bit calculations

Wrongly matched 554 263
Correctly matched 9446 9737

Recall 0.9446 0.9737
Recall using floats on pseudo random data set, no threshold

16 bit calculations 32 bit calculations
Wrongly matched 36 0
Correctly matched 9964 10000

Recall 0.9964 1.0

Table 5.10: Recall on a 104 query points, 106 reference points pseudo
random data set using halfs and floats with no threshold
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Reflections

We see that with no threshold on real data (table 5.4) there is very little
variance in recall no matter if we use floats, half, 16 bit or 32 bit calculations.
Also there is an almost identical number of wrong matches, which makes
us believe that the points we fail to find the true NN of either have a bad (
in terms of our assumption that all norms should be equal ) norm them self,
or the NN has a bad norm. For the no threshold tests (table 5.4) 981 of the
wrong matches were shared between all the tests, which at least suggests
that these points are not easy to correctly match with our approach which
uses the dot product. When using a threshold on the real data (tables 5.5
5.6 5.7 5.8 5.9), we see that the recall is over 0.9 for all tests, even when
the threshold is 1 (meaning we only reject solutions when the 2NNs are
equal). On the pseudo data (table 5.10), we see that the recall varies a lot
more depending on the precision of the calculation and the type used, with
variance from best recall at 1.0 to worst at 0.94. However we still see that
even when we use halfs with 16-bit calculation we get a recall of over 0.94.
This suggests that even when the data is uniformly distributed we can get
good recall with halfs and 16 bit calculation, meaning it should be able
to get very good recall when the data is real and meets the 0.8 threshold.
Also if good recall is crucial one could always calculated the norms, but
this would obviously be slower.

5.4.2 cublasHgemm evaluation with differing problem sizes

For how we use the cublasHgemm call see section 4.1.9. As we are
performing matrix - matrix multiplications, the data we use when testing
performance will have absolutely no effect over the results, therefore we
use pseudo random data. As the cuBLAS GEMM call is the the most time-
consuming part of our algorithm we test the cublasHgemm call on 3 problem
sizes:

1. 104 query points and 106 reference points

2. 106 query points and 104 reference points

3. 104 query points and 104 reference points

By testing we mean looking at the amount of time in seconds it takes to
perform the matrix-matrix multiplications needed to dot every query point
with every reference point. When testing there is only one thing we can
change to affect the the overall performance, and that is the number of
query points we use per cublasHgemm call. Having a low number of query
points will obviously lead to more calls needing to be done and vice versa.
This is partly what made us decide what sizes we wanted to test on. For
problem size 1 we will not be able to increase the number of query points
per call to higher than around 4200, as we do not have memory for more.
This means the minimum amount of cublasHgemm calls we can do is 3. For
problem size 2 we will be able to increase the number of query points per
call up to around 400k. For problem size 3 we will be able to do the whole
query in one call.
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Test results for problem size 1

Figure 5.2: Shows time in seconds needed to complete all necessary
cublasHgemm calls needed to multiply 104 query points with 106 reference
points, where the number of query points per call is in the range 40 - 4200

Figure 5.3: Shows time in seconds needed to complete all necessary
cublasHgemm calls needed to multiply 104 query points with 106 reference
points, where the number of query points per call is in the range 100 - 1000,
and we average run time over 10 runs
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Figure 5.4: Shows time in seconds needed to complete all necessary
cublasHgemm calls needed to multiply 104 query points with 106 reference
points, where the number of query points per call is in the range 360 - 400,
and we average run time over 100 runs

Test results for problem size 2

Figure 5.5: Shows time in seconds needed to complete all necessary
cublasHgemm calls needed to multiply 106 query points with 1010 reference
points, where the number of query points per call is in the range 40 - 400000
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Figure 5.6: Shows time in seconds needed to complete all necessary
cublasHgemm calls needed to multiply 106 query points with 1010 reference
points, where the number of query points per call is in the range 40 - 29729

Test results for problem size 3

Figure 5.7: Shows time in seconds needed to complete all necessary
cublasHgemm calls needed to multiply 104 query points with 1010 reference
points, where the number of query points per call is in the range 40 - 10500
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Figure 5.8: Shows time in seconds needed to complete all necessary
cublasHgemm calls needed to multiply 104 query points with 1010 reference
points, where the number of query points per call is in the range 1500 -
2000, and we average run time over 100 runs

Reflections

We see that the performance is extremely dependent on the on the number
of query points we use per call, this is true for all of the problem sizes. We
see that the time used can in the worst case be up to 5 times slower as seen
in figure 5.5, where the best case is approximately 0.1s and the worst case
is 0.5s. One of the main purposes of doing these tests was trying to find a
formula which gives us the optimal performance for any query. However
from the data we have here this seems very hard. Also most likely cuBLAS
is optimized differently for different GPUs, so how much meaning would
be in finding such a formula we are not sure. What we can see very clearly
from the data however is that the best performance is not achieved when
we use the maximum number of query points possible per cublasHgemm
call. On the contrary the best performance is usually achieved more or less
within the first 20% of the possible max, this is true even when we can do
the whole query in one cublasHgemm call as seen in figure 5.7. It seems that
if performance is of importance, testing with the approximate problem size
on the GPU which is to be used, is the only way to find the a suitable size
for the number of query points per call.

5.4.3 Padding for cuBLAS cublasHgemm

We test to see if it is beneficial to use padding to make sure our
cublasHgemm call meets all the conditions which should be met for
maximum performance when using cuBLAS with tensor cores see (2.8.3).
The conditions in question are:
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• Condition 1: m % 8 == 0

• Condition 9: intptr_t(C+ldc) % 16 == 0

The conditions can both be met by padding the reference point array.
However to do this when our input is of type half in device memory it
would mean we would have to allocate a new array, set the part of the
array we need to pad to zero, and then copy from the old array to the new
one. We test to see if this time loss is worth it or not. We test by comparing
the overall time it take to complete the algorithm on a data set with 104

query points and 7 - 1040007 reference points.

Figure 5.9: Shows the difference in execution time when using padding vs
when not using padding on data which does not meet cuBLAS’s conditions
for maximum performance if we do not pad

Reflections

We see that despite the time loss caused by having to pad the reference
array we still get better performance when the number of reference points is
of any significant size. We also see that padding will save us more time the
bigger the reference points array is, this is despite the fact that this would
mean a bigger overhead from padding.

5.4.4 Reduction kernel evaluation

We test to see how varying the number of warps per block will affect the
outcome in terms of time used for our reduction kernel, for implementation
see 4.1.10. As what number of warps work best will vary according to
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the problem size etc. we will only test for the real data set we have i.e
ANN_SIFT1M. For the number of query points per batch we use 383 as
this is what gave us the best performance when testing cublasHgemm for
this test size.

Figure 5.10: Shows how varying the number of warps per block affect time
used for the query when testing on the ANN_SIFT1M data set, we average
over 100 runs

Reflections

We see that the best performance is achieved with 17 warps per block. We
also see that the variance is minuscule, with a maximum variance of around
7ms. This suggests that the number of warps used is less of a priority when
optimizing.

5.4.5 Concurrent streams for cuBLAS brute-force

As we have made it possible to use concurrent streams (see 4.1.8) we test
to see how using concurrent stream affect the overall performance on 3
different problem sizes:

1. 104 query points and 106 reference points

2. 106 query points and 104 reference points

3. 104 query points and 104 reference points

We test when the data is either in device or host memory and of type float
or type half.

64



Results

Figure 5.11: Shows how the number of concurrent streams affects
performance when testing with 104 query points and 106 reference points

Figure 5.12: Shows how the number of concurrent streams affects
performance when testing with 106 query points and 104 reference points
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Figure 5.13: Shows how the number of concurrent streams affects
performance when testing with 104 query points and 104 reference points

Reflections

We see that we only benefit from streams on problem 2 (figure 5.12). In
hindsight this is somewhat expected as we saw that cuBLAS in general
works best when we are only using 1 stream. It is however a bit surprising
that we get a speed up from using 2 streams even when the input is of
type half and in device memory. Our original thought was that we would
get a speed up because we would get better occupancy when converting
from float to half and when reading from host memory. Two plausible
causes are: the reduction kernel benefits from concurrent streams, or that
simply scheduling in concurrent streams helps reducing the overhead from
starting a kernel/calling a cuBLAS function.

5.4.6 Best results achieved on the ANN_SIFT1M data set

Considering all the results from the above tests, the best results in terms
of time used averaged over 100 run we were able to achieve on the
ANN_SIFT1M data set were:

ANN_SIFT1M data set, halfs and 16-bit calculations
input type float host float device half device

time in seconds 0.208720 0.184456 0.177090

Table 5.11: Shows time in seconds used on the ANN_SIFT1M data set with
halfs, with differing input types and locations, we take the average over
100 runs
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Time in seconds used on the ANN_SIFT1M data set
16 bit calculations 32 bit calculations

float 0.446409 0.903390
half 0.184456 0.212507

Table 5.12: Shows time in seconds used on the ANN_SIFT1M data set, with
differing types and levels of precision used (16-bit and 32-bit), input is type
float in device memory, we take the average over 100 runs

Reflections

We see that using halfs over floats gives us 5X speed up, when we use
32-bit calculations for the floats and a 2.4X speed up when we use 16-bit
calculations for the floats (table 5.12). We also see that there is a 1.17X
speed up of having the input vectors in device memory and of type half
compared to floats in host memory. Note that the float test times can most
likely be improved, as we did not do the same amount of testing to reach
the optimal configuration in the same way we did for halfs. However a
minimum of at least a 2X increase in speed is to be excepted.

5.4.7 Overall reflections and real time matching of SIFT points

Having to test to find the best configuration for the input is not optimal.
Using concurrent streams does not seem to be a good idea when we
are using a brute-force like approach as it is very easy to get good
occupancy with one stream, however not using the default stream i.e
calling everything in stream 1 instead of 0 is important especially when
using cuBLAS so we can get asynchronous calls.

Real time

One of our goals was to create an algorithm which would let us match SIFT
vectors in real time so that it could be used to calculate depth. On a RTX
3060 12GB GPU we can achieve real time when at 27 fps with 45k query
points and 45k reference points ( 0.036530s per frame ).

5.5 LSH GPU Evaluation

For our LSH on GPU implementation we only test on the ANN_SIFT1M
data set. As the data set contains values for up to the 100 nearest
neighbours and LSH is an ANN algorithm we will also see how our
implementation does if we count up to the 1 - 100 NN as a true match.
Also we will look at the difference in performance when we only count
points which pass the 0.8 SIFT threshold test. In the tests we will write this
as follows:

• Recall @ 1, means we only count the NN

• Recall @ 100, means we count any of the 100NNs as a true match.
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• Recall @ 1 0.8 threshold, means we only count the values where the
0.8 threshold is met, we use a naive brute force as a base for what
points pass or not. For the 0.8 threshold there are 706 points which
pass, as shown in (5.2).

We refer to this as different levels of precision.
For LSH on GPU we run 7 tests. In section 5.5.1 we test to see how good

recall we can get in under 4 seconds. In section 5.5.2 we test to see how long
it takes to get 0.8 recall. In section 5.5.3 we look at how the number of bits
affects the number of iterations needed to get 0.8 recall. In section 5.5.4 we
look at how padding the cuBLAS call affects performance. In section 5.5.5
we look at how running concurrent streams affects performance. In section
5.5.6 we look at the time each kernel in the LSH algorithm uses. And lastly
in sections 5.5.7 we reflect on our LSH implementation.

5.5.1 Best recall under 4 seconds on the ANN_SIFT1M data set

As LSH is an ANN algorithm, how high recall we want becomes a
balancing act with time used. One of the tests we do is to see how high
recall we can get under 4 seconds. LSH has 2 components we can change
to affect the performance, number of bits and number of iterations. We will
see how changing these will affect the overall performance when trying to
get the maximum recall possible in under 4 seconds.

How we test

We run the algorithm in a double for loop where we increase iterations in
the inner loop and number of bits in the outer. Every time the algorithm
takes over 4 seconds 3 times in a row, we break the inner for loop and
increase the number of bits used in the buckets by one (meaning we
double the number of buckets). We do however not change the number
of iterations again as the number of buckets just doubled. There is no
particular reason for choosing 4 seconds as the max time, however any
more would take very to long to test.
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Best recall in under 4 seconds by number of bit and iterations run

Figure 5.14: Shows the best recall in under 4 seconds by number of bits,
and iterations run on the ANN_SIFT1M data set, recall @ 1, 10, 100

Figure 5.15: Shows the best recall in under 4 seconds by number of bits,
and iterations run on the ANN_SIFT1M data set, recall @ 1, 1 0.8 threshold,
100
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Reflections

As we pick the best single runs from our test results, this is a more
optimistic view rather than the average. This is especially true for test
with lower number of bits, as we will only have time to do a few iterations
meaning the whole algorithm becomes a lot more chance based. When the
number of bits increase however the variance is much smaller giving us
much more stable and realistic results. We see that the best recall we get
when only the NN counts is about 0.47 (figure 5.14), on the other hand
when we use a the 0.8 threshold we get 0.65 (figure 5.15), this suggests that
LSH would work bettor on SIFT data which follows the 0.8 distance ratio
rule. We see that in general for this data set around 20-22 bits seems to
give the best performance. For recall @ 100 we get a recall of 0.899 which is
almost the double of what we get when we only count the NN as the true
value (figure 5.14).

5.5.2 Best time for recall of 0.8 on the ANN_SIFT1M data set

Getting around a 0.8 in recall is desirable if we were to use this algorithm.
We test to see how much time it would take to reach this recall.

How we test

We test by ruining the algorithm in a double for loop where we increase
iterations in the inner loop and number of bits in the outer. Every time we
get over 0.8 recall we add 1 to a flag, when the flag is 3 we break the inner
loop and go the the next. We want to get 0.8 recall at least 3 times as this
is a probability based algorithm. We only test up to 27 bits, as going any
higher requires a lot of time and when testing the performance seems to
peak around 20-22 bits anyway.
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Results

Figure 5.16: Shows best time in seconds for 0.8 recall on the ANN_SIFT1M
data set, recall @ 1, 10, 100

Figure 5.17: Shows best time in seconds for 0.8 recall on the ANN_SIFT1M
data set, recall @ 1, 1 0.8 threshold
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Reflections

We see that the best results in terms of time used for all levels of precision
is in the range 19 - 22 bits. The time for getting 0.8 recall when only the NN
counts is about 4X slower than when we only need to find one of the 10NN
(figure 5.16). This suggests that LSH is much better at finding the ANN vs
the NN. We also see that it takes about half the time to get 0.8 recall when
we use the 0.8 threshold vs when we don’t (figure 5.17).

5.5.3 Number of bits vs number of iterations needed to reach 0.8
recall

We look at how the number of bits used for hash values change how
many iterations we need to do to get over 0.8 recall for different levels of
precision. The data we use is the same as for the test at 5.5.2 where we
show the number of iterations instead of time used.

Results

Figure 5.18: Shows how changing the number of bits change the number of
iterations needed to achieve 0.8 recall on the ANN_SIFT1M data set

Reflections

We see that around 27 bits the recall @ 1 needs around 3000 iterations, while
the recall @ 100 needs around 250, this is a 12X increase. The difference
between recall @ 1 with and without the threshold is probably the most
notable here, as it shows that LSH is better at finding the matches where
the SIFT points pass the SIFT distance threshold test.
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5.5.4 Padding

As with the brute-force with cuBLAS we have the choice of padding our
random vectors to meet all the conditions required for best performance
possible when using tensor cores. In doing so however, as the random
vector array is only 1-32 vectors long it means we may end up doubling
the length. If for example we want to use 17 bits, in which case we would
pad so that it is of length 32. This would approximately double the amount
of operations needed to be done. We test by seeing if there is any difference
in performance over 10 runs on on the ANN_SIFT1M data set with 450
iterations and 19 bits, with and with-out padding.

Results

Testing on the ANN_SIFT1M data set
Padding No padding

12.531182s 12.784333s

Table 5.13: Shows time in seconds used on the ANN_SIFT1M data set with
and without padding for the random vectors, average over 10 runs

Reflections

The results will most likely vary depending on the number of iterations
and bits and the data set, but we see that for 19 bits and 450 iterations on
the ANN_SIFT1M data set padding gives us slightly better performance.
If this is pure coincidence by the randomness of the vectors or if this is
because of the padding is a bit hard to say as we only took the average over
10 runs. We can however be fairly certain that the padding does not lead to
significantly worse performance even though it means we go from having
to dot our query/reference vectors with 19 random vectors to dot with 32
for each iteration.

5.5.5 Concurrent streams

To avoid the overhead caused by doing some parts of the algorithm on
CPU and to keep the GPU occupied at all times we use concurrent streams.
To see how the number of concurrent streams we run affects our run-time
we run our algorithm with 2 - 16 streams. We do this with 19 bits and 450
iterations and take the average over 10 runs for each number of concurrent
streams.
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Figure 5.19: Shows how changing the number of concurrent streams affects
performance on the ANN_SIFT1M data set

Reflections

The results are more or less what we expected them to be, we see an
increase in performance until around 8 concurrent streams. This is most
likely because at around 8 streams we will get the best occupancy we can,
in other words increasing the number of streams any more will just make
it harder for CUDA to schedule. Obviously the number of streams needed
to achieve the best performance will be dependent on the problem size,
desired recall, number of bits used and number of iterations we run the
algorithm.

5.5.6 Time used by the different kernels and the overhead

To understand better where the bottleneck in our implementation is we
look at the time used by the different parts of our algorithm. As we are
running multiple concurrent streams, and as LSH is a somewhat random
algorithm it is very hard to get 100% accurate measurements. The results
will also change depending on our desired recall, we test for 0.8 recall @
100 and 0.8 recall @ 1.

How we test

We run the algorithm 20 times and take the average time, we then
remove one kernel and take the average over 20 runs again. We keep
removing kernels and taking the average time until only CPU and data
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movement/allocation is left. For this to work however the first kernel we
need to remove is the brute force. To know approximately how much time
each part used, we can now for each kernel take the difference from the
total time without the kernel and the time with the kernel. While this will
not give us the most accurate results possible it will give us a clear image
of what parts are the most time consuming.

Results

Time in seconds used on the ANN_SIFT1M data set to achieve 0.8 recall
Recall @ 1 Recall @ 100

Total time used 12.728130s 1.897476s
Short-list brute-force 10.543828s, 0.82% 1.427292s , 0.752%

Thrust sort index array 1.435962s, 0.11% 0.286857s, 0.151%
Setting bits in hash value 0.242682s, 0.019% 0.04392s, 0.023%
Dot product with cuBLAS 0.207879s, 0.016% 0.037911s, 0.019%

CPU and data movement/allocation 0.297779s, 0.023% 0.101496s, 0.053%

Table 5.14: Shows approximately the time used by the different parts of the
LSH algorithm

Reflections

We see that the by far most time consuming part of our algorithm is the
short list brute-force, this it true for both when we look at recall @ 100
and @ 1, where the short list search uses respectively 75% and 82% of the
total time. That the brute-force is the bottle neck is what you would expect
and what most papers on LSH note. In addition the short list brute force
we have written is not really suited that well for the ANN_SIFT1M data
set. This is because it is optimized for the case where there are an equal
number of query and reference points, however the ANN_SIFT1M data set
has a 1 to 100 ratio between query and reference points. The second most
time consuming part is the sorting of the index array by hash values. As
we mentioned in the design 3.2.2 we had 2 obvious choices here, sort, or
use a big empty array with linked lists. We chose to sort, if this was the
best choice or not we are not sure as we only had time to implement with
sort, we do however see that sorting is quite time consuming which may
hint that using a different approach could be beneficial. We see that using
cuBLAS to perform the dot product is very fast, even faster than actually
setting the bits in the hash value.

5.5.7 Reflections LSH on GPU

Testing is very hard because of how we have implemented our solution. A
kernel may work well on its own, but it needs to work well with the other
kernels in the different steams. Writing a good short list brute-force search
in CUDA for LSH is hard as we would have to know approximately what
the data sizes would be, or write something extremely complicated. Testing

75



to find to optimal configurations i.e number of bits used for hash values,
and number of iterations we run the algorithm, is a very time consuming
process. LSH is a ANN algorithm and not a NN algorithm, while we can
get good recall fast if we only look at recall @ 10 or recall @ 100 we will
need to do many times the work to get good recall @ 1.

5.6 Comparison between the brute-force for SIFT
vectors with cuBLAS, Naive CUDA brute-force
and LSH on GPU

We look at how the different implementations compare on the ANN_SIFT1M
data set. Where LSH gets a recall of around 0.8.

Figure 5.20: Shows time used for LSH on GPU, brute-force using cuBLAS
and Naive CUDA brute force on the ANN_SIFT1M data set. Time is in
seconds and is represented by the y value, the lower the better. The brute-
force approaches are represented as straight lines, while LSH on GPU
shows the best results at different number of bits used for hash value, at
different levels of precision. The brute-force with cuBLAS bit stands for the
level of precision used for the cuBLAS GEMM call, 16 or 32 bit

5.6.1 Reflections

We see that LSH does out perform CUDA naive brute force, even when we
only count the NN as a true match, getting a 1.23X speed up. However it
is 69.844X slower than the brute-force with cuBLAS. Even when we count
any of the 100NNs as a true match it is 8.286X slower. On a much bigger
data set LSH would in theory be able to outperform the brute-force with
cuBLAS as the big O complexity of a matrix-matrix multiplication is much
worse than that of LSH (if this is the case even for our implementations
on the other hand we are not sure). For real-time and on a data set of this
size however, we would most likely have to rethink our approach if we
want LSH to outperform the brute-force with cuBLAS (using the CPU to
do certain parts is to expensive because of the memory transfers). We see
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that the brute-force with cuBLAS has a 86X speed up over the naive CUDA
brute-force.
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Chapter 6

Conclusion and Future work

In this chapter we sum up the answers to the research questions and note
some reflections (section 6.1), we reflect around how efficient our research
approach was (section 6.2), talk about some limitations we met (section 6.3),
talk about some overall reflections (section 6.4), and lastly go over some
possible future work (section 6.5).

6.1 Research questions

We had 4 main research questions we aimed to answer in this thesis. Here
we go over how well we answered them and reflect on what we found.

6.1.1 LSH on GPU with CUDA

Question:

• Can locality sensitive hashing be efficiently implemented with CUDA
to match SIFT vectors with good recall, and how will such an
implementation compare to a brute-force CUDA implementation in
terms of speed?

We have shown that implementing LSH with CUDA will indeed grant
better results in terms of time used to match (when testing on the
ANN_SIFT1M data set), compared to the naive CUDA brute-force we used
as a benchmark, while also keeping around 0.8 recall as shown in figure
5.20. We get a speed up of 1.23X when looking at only the NN with no SIFT
threshold, a 2.56X speed up when only looking at points which pass the 0.8
SIFT distance ratio threshold, and a 10.48X speed up when we accept any
of the 100NNs as the true nearest neighbour.

Reflections

While we do get a speed up of 1.23X when looking for the NN, we also
see quite clearly that there is a significant difference in performance when
we look for the NN compared to any of the 100NNs, or when we only
look for points which pass the SIFT distance ratio threshold. This strongly
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suggests that LSH is much better suited to finding the ANN rather than the
NN. The difference in the amount of work in terms of iterations of the LSH
algorithm we need to do to find the NN vs finding one of the 10 NNs is
well over doubled as seen in figure 5.18. However, even when looking for
the ANN we do not come close to the brute-force which uses cuBLAS, and
we believe that it is almost impossible without changing our approach on
a data set of this size ( we can not use the CPU in the way we have, because
the transfers between host and device are simply too expensive ). We also
see that even on GPU the bottleneck of the LSH algorithm is the brute force,
using over 75% of the time as shown in table 5.14. For LSH the brute-force
seems to be where we can gain the most from further optimization.

6.1.2 Using Thrust and cuBLAS for LSH on GPU

Question:

• Can Thrust and cuBLAS be used when implementing LSH, and how
will using these CUDA libraries affect performance and complexity?

We have shown that we can use both the Thrust and cuBLAS libraries
when implementing LSH in CUDA. We use cuBLAS for calculating the
dot products used for the hash values. We do this with a matrix - matrix
multiplication with great success. We use Thrust to sort the index arrays
used when indexing the query and reference points for the short list search.
As we have seen that cuBLAS is very fast, it is safe to assume that using
cuBLAS gives us an increase in performance. However, if this leads to less
complexity depends on the desired performance. If we were to actually
implement a CUDA kernel for the dot product, we could do so without
too much complexity. However, we would not be able to get even close to
the performance the cuBLAS library gives us, without making the kernel
much more complex than using cuBLAS. So while using the cuBLAS library
can be fairly complicated, it is absolutely worth using if performance is of
importance. In the end we did not use the Thrust library as much as we
expected. However, it is safe to assume that not having to implement a
sorting algorithm significantly reduced the workload, as implementing a
good sorting algorithm in CUDA is very complicated and time consuming.

Reflections

Using libraries in CUDA seems to be very beneficial in general, both in
terms of performance and reducing the complexity of the implementations.
This is especially true if we want to implement something that performs
well on other NVIDIA GPUs as well.

6.1.3 Using halfs over floats when matching SIFT vectors

Question:
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• CUDA is optimized for half-precision (16 bit), is using halfs instead
of floats when dealing with SIFT vectors viable, and how does using
halfs when matching SIFT vectors affect recall and performance?

We have show that using halfs is indeed a viable choice. For the brute-
force with cuBLAS it gave us a 5X speed up compared to floats with 32-bit
calculations, and an approximate 2.4X speed up compared to floats with
16-bit calculations (see table 5.12), while only leading to a 0.0056 loss in
recall on the ANN_SIFT1M data set (see table 5.4), and a 0.0554 loss in
recall on a pseudo random data set of the same size as the ANN_SIFT1M
data set (see table 5.10).

Reflections

When using halfs we do however need to be aware of what form the SIFT
vectors are in, since if it is the case that the values are in the range 0 - 255 (if
the norm is 512) we will have to divide by 512 to prevent overflow when
using cuBLAS. Also one important thing to note here is that using halfs
is more complex, exemplified by the fact that every half value has to be
stored in a pair for best performance, and that we have to use the CUDA
math API to perform any actions on the half values.

6.1.4 Brute-force 2NN SIFT matching algorithm with cuBLAS

Question:

• Can an efficient brute-force for SIFT vectors be implemented with the
help of cuBLAS in CUDA, and will such an implementation be able
to perform SIFT vector matching in real time?

We have shown that using cuBLAS to implement a very fast brute-force
SIFT point matching algorithm is possible, giving us a 86X speed up on
the ANN_SIFT1M data set compared to a naive CUDA brute-force. Using
a RTX 3060 12GB, this implementation can match 104 Query vectors with
106 reference vectors in approximately 177ms, as shown in table 5.11. This
implementation gets good (0.8771) recall on the ANN_SIFT1M data set,
despite the data in the data set being far from ideal for our solution using
the dot product. We have also shown that real-time SIFT feature point
matching is possible at 45k query points and 45k reference points, where
we can achieve 27 fps (0.036530s per frame) on a RTX 3060 12 GB.

Reflections

Since this is a brute-force it was fairly straightforward to implement. Most
of the complexity came from using cuBLAS and batching. While it was
not 100% accurate on the ANN_SIFT1M data set, this was because the data
was both very compact (only 706 of 10000 query points had a match which
passed the SIFT distance ratio threshold when at 0.8, as seen in 5.2), and
the data was not normalized precisely enough. We believe that it would
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get much better recall on a data set where every SIFT vector has the same
norm, and probably even better recall if we only count points which pass
the SIFT distance threshold.

6.2 Research method reflections

We chose to use the technocratic paradigm Eden [4] or design ACM [3], as
our research methodology. We worked in iterations, implementing, testing,
looking for probable improvements, implementing, testing and so on. In
hindsight we believe this was the right approach, especially as optimizing
in CUDA can also be an iterative process. When working in CUDA, the
more things you consider (memory transfers, shared memory, occupancy,
etc.), the more complex writing the programs becomes, however the
performance you can achieve also increases. When implementing we
started by considering the things we believed to be most important, such as
memory transfers from global memory to the individual threads (coalesced
reads), and occupancy. Towards the end of the process we started looking
more into the use of CUDA streams and memory transfers between host
and device.

6.3 Limitations

While we were able to achieve most of what we set out to do, time and
complexity was a big limitation for our LSH implementation. While there
were undoubtedly things we could have done to circumvent this it is also
a part of what makes GPU programming so hard.

The problem with testing different versions of LSH

LSH has many variants, and knowing which of these variants works best
on GPU is hard. To say with any certainty we would have to implement
and test them, however with CUDA being as complex as it is, and LSH
also being a fairly complex algorithm, the amount of work we need to do
to test any other version suddenly increases by a lot, when we start to
optimize for one version of LSH. As mentioned in our design, we aimed
at implementing our LSH on GPU in a way that would allow us to test as
many different LSH variants as possible. However, this turned out to be
much more difficult than we initially believed. Because of this we were
only able to test using different random vectors. In hindsight, we believe
we should have started by implementing less optimized versions to test,
ideally by using libraries instead of coding in CUDA ourselves. In that
scenario, only after we have tested and found what works best, would we
optimize it in CUDA. However this would still be a very time consuming
process, and it is hard to say how much of a difference it would have made.

81



6.4 Conclusion

In this paper we have shown one way of implementing LSH on GPU with
CUDA. This implementation achieves better performance in terms of speed
over a naive CUDA brute-force, while also keeping recall above 0.8. This
implementation makes use of halfs, and the CUDA libraries cuBLAS and
Thrust. We have also shown how to use cuBALAS and halfs to implement
a very fast brute-force for SIFT vector matching, which is 86X faster than
a naive CUDA brute-force on the ANN_SIFT1M data set. We have show
that using half values instead of floats when dealing with SIFT vectors in
CUDA is viable, and that it leads to an increase in performance of up to 5X
while only losing 0.005 recall when used in a brute-force implementation
tested on real data. We show how cuBLAS works better on smaller queries,
and that for LSH the bottleneck is still the brute-force even on the GPU.
For real-time, brute-force with cuBLAS is probably the go-to solution, at
least it is more suited to the task than LSH the way we implemented it.
For very big data sets LSH could probably be better, but as the goal is real-
time, cuBLAS brute-force is most likely the better solution. One if not the
biggest downside with LSH on GPU is how hard it is to optimize, while a
brute-force is fairly straightforward.

Optimization on GPU

When programming and optimizing on GPUs with CUDA, you often want
to solve a problem in a way where you achieve the best performance
possible, or close to it. If the problem is well defined this can be fairly
straightforward. However, this is rarely the case. When optimizing in
CUDA, things can quickly become very complicated if the problem is
vague in any way, because of the abundance of options. To combat the
complexity we often have to make assumptions or compromises. For
instance in our brute-force with cuBLAS and LSH implementations we
assumed that all SIFT vectors would fit in device memory, and in doing
so we made the implementations more manageable, as we did not need
to consider the out of core case. One of the more complex things we
need to consider when using CUDA is where and when we need our
data on device or host. One tool CUDA offers to solve this is unified
memory with cudaMallocManged. However, while using an approach
like cudaMallocManged may reduce the complexity, it can also reduce the
performance (when using cudaMallocMangedwe can not be sure that we are
getting asynchronous copies). Still, for most problems making assumptions
and compromises is necessary. This is especially the case if we want
to implement something which works well on multiple GPUs. Different
GPUs and CPUs will mean different optimal optimizations making it
virtually impossible to optimize for all cases. Meaning no matter how
much you optimize for a certain GPU, there is no guarantee that it will work
well on any other GPU. Using libraries like cuBLAS lets us to some degree
circumvent this. This is because they often offer different implementations
depending on the GPU, leading to less complexity while still having good
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performance.

6.5 Future work

There are a few things which we believe to be worth looking at in more
depth.

6.5.1 Brute-force for SIFT vector matching with cuBLAS

For the cuBLAS brute-force for SIFT point matching there are a few things
we would have done if we had more time. For example, we could
implement an out of core version capable of matching SIFT feature points
even when they do not fit in device memory. This can be done with
zero copy for memory transfers for the first batch, then cudaMemcpyAsync
for the later batches. If all of the reference points fit in memory, a
slight modification in how and where we store the output would suffice,
however, how efficient this would be is hard to say and testing different
ways of batching would probably be necessary. Another thing we would
look at is how to automatically optimize the configurations, i.e the size
of the array used for the output of the cuBLAS call. When testing we
saw that optimizing this gave us a big increase in performance. However,
optimizing this manually is time consuming. Since we have seen that this
brute-force works efficiently and gives very good recall, trying to use it in
real-time applications for measuring depth etc. seems like the logical next
step.

6.5.2 LSH on GPU for SIFT vector matching

For LSH on GPU, time was a major limiting factor. There are many things
we would have liked to test if we had had more time. For example using
CUDA atomics to implement a linked list type hashing table, so we no
longer need to sort. If this would be more efficient than our approach to
sorting is hard to say, but it seems plausible as around 10% - 15% of the time
used by the algorithm is spent sorting. For the LSH brute-force short list
search we could program tensor cores (CUDA has an API for programming
tensor cores) and use the dot product to measure distance (rather than
the Euclidean distance), also using shared memory more would most
likely give much better performance. There are many other versions and
improvements of the LSH algorithm we would have liked to test on the
GPU if we had more time, such as using lattices for the hash function and
multi-probe hashing. Finding vectors which split the SIFT points better
would also be worth looking into.
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