
Path Management for Consistent
Reliable Communication in a

Multipath mmWave Proxy

Tine Margretha Vister

Thesis submitted for the degree of
Master in Programming and System Architecture

60 credits

Department of Informatics
Faculty of Mathematics and Natural Sciences

UNIVERSITY OF OSLO

Spring 2022

Path Management for
Consistent Reliable
Communication in a

Multipath mmWave Proxy

Tine Margretha Vister

© 2022 Tine Margretha Vister

Path Management for Consistent Reliable Communication in a
Multipath mmWave Proxy

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract

mmWave is a wireless technology that can achieve a speed of multiple
gigabits per second, but it is sensitive to blockages. If the signal is
blocked, the capacity can drop from Gbit/s to Mbit/s. To mitigate this,
multiple connections, i.e. multipath, can be used. A high data rate can
be achieved by simultaneously sending traffic over multiple paths. If
one path experiences a blockage, a new path can be added to achieve a
consistently high data rate.

One way to achieve multipath in a mmWave network is to add a
proxy between the sender and the receiver that can provide reliable
consistent communication. The proxy will have one connection to the
sender and multiple mmWave connections to the receiver. A proxy that
supports multi-connectivity has to provide functionality that supports
this. One of these functionalities is path management, which is
responsible for maintaining the paths in the system.

This thesis will focus on path management. Two new path
management schemes are proposed, which are an extension of the two
predictive-based path managers proposed in [3]. The new models use a
hybrid approach, where both a predictive and reactive control is used.
A prediction-based path manager predicts how the queue in the proxy
will behave and act accordingly. For example, if it predicts that the
queue will increase, a path will be added to prevent the queue from
growing. By adding a reactive control, unexpected queue growth can
be mitigated by allowing the proxy to add a path sooner, thus draining
the queue. To evaluate the performance gains of using the proposed
schemes, a comparative simulation study is done first. After this, an
emulation study is done.

A proxy is developed to test the different path management schemes
in an emulated environment. The proxy contains multiple modules,
with path management being one of them. The original schemes from
[3] plus the two new models are implemented in the Julia programming
language. Multi-threading is an essential part of the proxy, hence a lot
of effort is put into making the different modules run concurrently. The
proxy is evaluated in a simple testbed.

The evaluations of the path management schemes proposed in this
thesis show that they perform better than other path management
schemes when tested in a simulated environment. Results from
emulation experiments confirm the observations from the simulation
study.

i

Acknowledgments

I would like to thank my supervisors Özgü Alay, David Hayes and
David Ros, for their great guidance and support while working on this
thesis.

To my family who has always supported and motivated me every
day. Your reassuring words has meant a lot to me.

Finally, to my friends at the university. Without you, this process
would not have been the same. I am grateful that we have been in this
together.

Tine Margretha Vister
May 27, 2022

ii

Contents

1 Introduction 1
1.1 Problem statement . 4
1.2 Research Questions . 4
1.3 Structure . 4

2 Background 7
2.1 Relevant technologies . 7

2.1.1 mmWave . 7
2.1.2 Proxies . 8
2.1.3 Multipath . 9

2.2 Related Work . 10
2.2.1 Transport Layer Proxies 10
2.2.2 Multipath protocols 12
2.2.3 Multipath management 13
2.2.4 Packet scheduling in multipath protocols 14

3 Path manager models 17
3.1 Reacting to queue changes 17
3.2 Prediction based models . 19
3.3 Prediction based models with a backup plan 22

4 Simulation-based performance evaluations 27
4.1 Implementing the models in the simulator 27
4.2 Simulation characteristics 28
4.3 Results . 28

4.3.1 First impressions of the new models 29
4.3.2 The more steady performance 31
4.3.3 What should the reactive control interval be? 32

4.4 Beyond simulations . 36

5 Design and Implementation of the proxy 37
5.1 The Design of the Proxy . 37

5.1.1 Packet handling . 38
5.1.2 Packet scheduling . 38
5.1.3 Path management . 40
5.1.4 Additional components: Operator and LoS/NLoS

switcher . 40
5.2 Implementation . 42

iii

5.2.1 Parallelization . 42
5.2.2 A shared data structure 44
5.2.3 The queue . 45
5.2.4 Message passing between the modules 45
5.2.5 Accurate timing in the proxy 46
5.2.6 Path management . 48
5.2.7 Packet scheduling . 49
5.2.8 Operator . 52
5.2.9 LoS/NLoS switcher 52
5.2.10 Garbage collection . 52

6 Test environments 55
6.1 A virtual test bed . 55
6.2 A hardware-based testbed 56

6.2.1 The network topology 56
6.2.2 Hardware used in the testbed 56
6.2.3 Sending traffic to the proxy 59
6.2.4 Communicating between the machines 61
6.2.5 Changing the capacity of the interfaces 61

7 Testing the proxy implementation on an emulated mm-
Wave network 65
7.1 Time between each predictive control 65
7.2 How long do the predictions take? 67
7.3 Proxy’s CPU utilization . 68
7.4 Testing the proxy using different models 69

7.4.1 CDF of the delay . 74
7.4.2 Comparing simulations results with emulation

results . 74
7.5 Summary . 76

8 Conclusion 77
8.1 Future work . 79

8.1.1 Multi-threading in Julia 1.7 79
8.1.2 Packet scheduler . 80
8.1.3 Reacting to other things in the network 80
8.1.4 Different ways to deploy a multipath proxy 80
8.1.5 Decoupling the proxy and the path manager 81
8.1.6 Security . 81

iv

List of Figures

1.1 A mmWave scenario . 2

3.1 Queue dynamics when using a reactive model 18
3.2 Queue dynamics when using a predictive control model . . 19
3.3 Markov model for full state 21
3.4 Markov model for WQx . 21
3.5 Queue dynamics when using a predictive control model

with a reactive control . 23
3.6 SDL of a predictive based control system with reactive

control . 24

4.1 Comparing different path management schemes in the
simulator . 30

4.2 Delay CDF from 100 simulations 32
4.3 Comparing queue results from different values of TR 33
4.4 Comparing delay results from different values of TR 34
4.5 Delay CDF from 100 simulations with different TR values 35

5.1 SDL of proxy . 38
5.2 SDL of packet handling . 39
5.3 SDL of path management 41

6.1 The testbed . 57
6.2 Configuring IP addresses in the testbed 62

7.1 Control Intervals . 66
7.2 CPU consumption of the proxy 69
7.3 Running the proxy with different path management

schemes . 72
7.4 Delay CDF from a single-run experiment 75

v

vi

List of Tables

4.1 Number of path changes caused by a reactive control . . . 36

6.1 Specifications for machine that runs the proxy 58

7.1 Execution time for the predictions in the testbed 68
7.2 Emulation parameters . 70

vii

viii

Acronyms

4G 4th-generation.

5G 5th-generation.

ACK acknowledgements.

BLEST BLocking ESTimation based scheduler.

BS base stations.

CDF cumulative distribution function.

CWND congestion window.

FCT fast concurrent transfer.

FEC forward error correction.

FIFO First-In First-Out.

FPT first passage time.

GSO Generic segmentation offloading.

HoL Head-of-Line.

IDS Intrusion Detection System.

IETF Internet Engineering Task Force.

IPsec internet protocol security.

LoS Line of Sight.

LTE Long-Term Evolution.

LwPEP Lightweight Performance Enhancing Proxy.

MACT Multipath Based Adaptive Concurrent Transfer.

minRTT minimum RTT.

ix

MKL math kernel library.

ML machine learning.

mmPEP mmWave Performance Enhancement Proxy.

mmTCP mmWave TCP.

mmWave millimeter wave.

MPQUIC Multipath QUIC.

MPTCP Multipath Transmission Control Protocol.

MTU maximum transmission unit.

NAT Network Address Translation.

NIC network interface card.

NLoS Non-line of Sight.

NR New Radio.

OBR Offloading by Restriction.

PEP Performance Enhancement Proxies.

PL path loss.

QoS Quality of Service.

QUIC Quick UDP Internet Connection.

RCT reliable concurrent transfer.

RR Round-Robin.

RTT Round-trip time.

SDL Specification and Description Language.

SNMP Simple Network Management Protocol.

SPEP Splitting Performance Enhancement Proxies.

TCP Transmission Control Protocol.

UDN Ultra Dense Network.

UE user equipment.

x

Chapter 1

Introduction

The world has become more connected since the advancement of the
Internet in the 90s, and even more so now that everyone has at least
one connected device on them at all times. How they are connected
to the Internet may vary, but most probably it is through a WiFi
connection or a cellular connection. As more users connect and more
applications demand higher data rates, the load on existing wireless
technologies increases. Traditionally, wireless technologies are much
more limited by the medium they operate in than wired technologies
are, resulting in that they cannot achieve as high data rates as a wired
connection can. To achieve a bandwidth of several gigabits, a cabled
connection that can offer a consistently high speed had to be used. A
new wireless technology called millimeter wave (mmWave) mitigates
this by providing gigabit data transfer with low delays [1]. This is made
possible by the short wavelengths and high frequencies. Applications
that aim at running on mobile devices (e.g. a smartphone) that need
high bandwidth to function properly will benefit significantly from
mmWave capacity. This can, for instance, be augmented/virtual reality
media, emergency communications, or 360-degree streaming video, i.e.
applications that require high data rates with low delay.

Operating at mmWave frequencies does bring some challenges that
need to be addressed before becoming a useful technology. First,
mmWave suffers from path loss (PL) to a much higher degree than
other wireless communications [1, 2]. This can be mitigated by
using beamforming technologies. Another problem with mmWave
links is their sensitivity to blockages. If a person or a wall comes
between the end-user and the antenna, the signal strength will decrease
dramatically. This will lead to wide fluctuations in the capacity because
when there is no blockage, the data rate can be gigabit high, but when
there is a blockage, the data rate can drop to megabit or lower. This is
very challenging for communication protocols, especially the ones that
need reliable consistent communication, i.e. steady transmission rate
with low delay. A solution to the blockage problem can be to use multiple
mmWave paths to reduce the possibility of complete unavailability. If
one of the paths experiences some blockage, the other paths are likely

1

to be in Line of Sight (LoS).
Two ways of implementing a multipath solution exist: Above-the-

Core and Core-Centric [2]. In Above-the-Core integration, the multipath
is implemented at each end system without impacting the network. In
Core-Centric integration, the connection between the server and the
client is split, with a proxy deployed in the network being between them.
A single path connection is used between the server and the proxy, and
multiple connections are used between the proxy and the client. The
Core-Centric approach is more likely to be adopted in 5G systems since
it enables more control of the multi-connectivity.

Figure 1.1 depicts a mmWave scenario where the multipath solution
uses a Core-Centric integration to implement multi-connectivity. The
proxy is placed at the edge of the Internet cloud, where the user connects
to the internet via five mmWave connections to the proxy. The proxy
consists of multiple components that deal with packets’ transmission
and the management of the paths.

Internet
splitting
multipath
proxy

i
s <

M
> Data-Center

system
measurements

QoS
agreement

MMFQ
model

Sender

action
optimization

path
manager

P�(t)M(t)C(t)F (t)
A(t) P[F (t + T) < Fth]{+P/ − P, Fth, A}
QoS

upath(t + T)

urate(t + T)

Figure 1.1: System architecture overview of mmWave scenario with five
base stations connected to the multipath proxy. Figure taken from [3].

A multipath proxy deployed in a 5G network that splits the
connection between the sender and the receiver has to work with
minimal overhead, i.e. the Quality of Service (QoS) should not degrade
but rather be improved. To do this, the proxy has to deal with the
potential of wide fluctuations in the capacity due to the intermittent
availability of the links to the client. A way of dealing with this is to let
the proxy store packets coming from the server, and then sending them
when the links towards the client are available again. However, there
is a tradeoff between storing too many packets in the proxy and having
low delay. The proxy must sustain the high capacity while keeping the
delay at a minimum.

2

Multipath protocols typically have four key functionalities: path
management, packet scheduling, congestion control, and reliable
transfer [2]. The path manager is responsible for managing the
paths, the packet scheduler is responsible for sending packets over
the different paths, the congestion control is responsible for detecting
congestion in the network and adjusting the sending rate accordingly,
and finally, the reliable transfer is in charge of loss detection and loss
recovery. All of these have to be optimized in a mmWave proxy for it to
be as little overhead in the proxy as possible.

Out of the four core functionalities that a multipath proxy has to
provide, path management will be the focus of this thesis. One way
of reducing the need for a large buffer in the proxy is to manage the
different paths in a smart way. A path manager that can add and
remove paths dynamically as the available capacity of the different
mmWave links changes will yield higher performance in terms of higher
bandwidth since it can add a new path if a path is in Non-line of
Sight (NLoS), i.e. the capacity decreases dramatically since there is
a blockage between the base station and the user equipment (UE).

[3] proposes two new path management models that are prediction-
based. Since a mmWave network can achieve a sending rate of several
Gbit/s if the paths are in LoS and down to Mbit/s or even kbit/s when the
paths are in NLoS, the queue will quickly fill up if a server is sending
traffic with a speed of Gbit/s when the paths are in NLoS. The idea is
to predict how the queue will look in the near future and, based on this,
add/remove a path. If it predicts that the queue will grow, it can add a
path before the queue starts to fill up, and hopefully, the queue will not
grow as much.

This thesis proposes two new path management models that are
based on the models proposed in [3]. They are prediction-based but have
a backup plan in case the predictions of the queue do not correspond
with reality. The predictions of the queue happen periodically. But, if
the queue suddenly fills up between these intervals, a reactive control
can be triggered that will add a path immediately to prevent the queue
from filling up.

The path managers proposed in this thesis will be tested in a
simulator written by the authors of [3]. After this, they will be tested
in an emulated environment. For them to be tested in an emulated
environment, a proxy has to be implemented. A way of implementing
such a proxy is presented in this thesis. The proxy aims to operate in
a mmWave network, where the data rates are high. It has to deal with
wide fluctuations in the available capacity toward the receiver. For the
proxy to be able to handle this, running things in parallel is required,
hence multi-threading is an essential part of the proxy. Furthermore,
how to optimize the proxy so that it can handle the high data rates going
in and out is discussed.

The proxy’s goal is to provide reliable consistent communication with
high bandwidth and low latency to applications. It is important to
note that the applications of interest are not necessarily TCP-based,

3

hence, the proxy has not been designed as a TCP-centric performance-
enhancing proxy. The proxy will run on a testbed that was created
in collaboration with one of the supervisors of this thesis, David
Hayes. A lot of effort was put into making the testbed as similar to
a mmWave network as possible. This includes changing the capacity
of the connections, to simulate a moving person in an urban landscape
where the LoS/NLoS characteristics of a link change as the user moves
around.

1.1 Problem statement

A mmWave connection can reach a capacity of multiple Gbit/s when
it is in LoS, but only Mbit/s or lower when it is in NLoS. This will
impact the queue in a multipath proxy to a very high degree if not dealt
with properly. One way of dealing with this is to manage the different
subflows smartly to reduce the possibility of a growing queue.

1.2 Research Questions

The goal of this thesis is to answer the following research questions:

RQ1: How can a path manager with both a reactive and a predictive
control be designed?

RQ2: How can a proxy be implemented to work in a mmWave network?

RQ3: Is the Julia programming language an adequate choice for
implementing a real-world proxy?

RQ4: How do different path managers perform in a proxy that operates
in an emulated environment?

1.3 Structure

This thesis is constructed as follows:

Chapter 2 – Background This chapter gives an introduction to
the most relevant technologies that this thesis will use, as well as
a walk-through of related work to get a better understanding of the
research field that this thesis is related to.

Chapter 3 – Path manager models In this chapter, five differ-
ent path manager models are presented, where two of them are new
models presented in this thesis. The models presented here are the
ones that will be tested later.

4

Chapter 4 – Simulation-based performance evaluations This
chapter includes a comparative simulation study, where the different
path manager models are tested in a simulated environment. The
models will be compared to get a first overview of how the models
proposed in this thesis perform differently from other models. Parts of
this chapter have been submitted for publication in section 5.4 of [4].

Chapter 5 – Design and Implementation of the Proxy This
chapter goes through the design of the proxy that will be placed in a
more realistic scenario, an emulated environment. First, the proxy
design will be explained, then how it was implemented with regard to
the design.

Chapter 6 – Test environements In this chapter, the virtual
and the real testbed are described. A thorough explanation of how
the real testbed is built to emulate a mmWave network will be provided.

Chapter 7 – Testing the proxy implementation on an emu-
lated mmWave network This chapter goes through the results of
testing the proxy in the testbed. The proxy’s performance and how the
different path managers affect the performance of the proxy will be
included.

Chapter 8 – Conclusion This chapter wraps up this thesis by
stating the major findings from the results. The research questions will
be answered, and a discussion of what future work can consist of is
provided.

5

6

Chapter 2

Background

In this section, the three main technologies that are relevant to this
project will be presented. First of all, this thesis will look into wireless
communication using the new up-and-coming mmWave technology.
Secondly, the proxy developed in this project will be deployed between
the wireless mmWave medium and the wired internet. The most
prominent type of proxy used in such a scenario is Performance
Enhancement Proxies (PEP), thus PEP will be presented. Lastly,
multiple mmWave paths will be used between the proxy and the UE,
hence multipath is a crucial technology for this master thesis.

2.1 Relevant technologies

This thesis will implement a multipath proxy in a mmWave network,
hence mmWave, proxies and multipath are relevant technologies that
will be discussed in this section.

2.1.1 mmWave

5th-generation (5G) cellular networks are being designed to have
low latency and high capacity. 5G offers much higher bandwidths
than earlier cellular networks (for example 4th-generation (4G)), thus
achieving a much higher data rate than ever before. mmWave is seen as
the key enabler for 5G [5]. It is a term used for electromagnetic waves
with a wavelength between 1 mm and 10 mm and with frequencies
above 28 GHz [1]. With such high frequencies, mmWave can offer
gigabit data throughput since it can take advantage of rich spectrum
resources [6, 7]. In addition, since mmWave communications operate
above 28 GHz, and other wireless communications (for example 4G)
operate below 6 GHz, applications that earlier had to share an already
congested medium with others [8], now, with mmWave communications,
can get a large portion of the medium all for themselves.

Even though the advantage of mmWave is that it can offer such
a high throughput because of its high frequency, the high frequency
does come with a disadvantage [1, 7]. Radio waves that have high

7

frequency suffer from PL to a much higher degree than radio waves that
have lower frequencies. This is because the signal loses its strength
quickly when traveling through the air. Beamforming techniques can
compensate for this by steering the signal toward the receiver. Still, the
beamforming technology is not yet able to realize its potential, but it is
expected that it will once the technology matures [9].

In addition to this, since mmWave cannot penetrate through objects
like humans or walls, LoS is required to have a connection that
reaches the full potential of the mmWave signal. It can function in
an NLoS environment if the surroundings are highly reflective, but
at the expense of a significant decrease in received power and thus
available capacity [8]. The wide fluctuations in received power from
LoS to NLoS are also a challenging aspect of mmWave communications.
This is one of the critical problems the transport layer has to deal
with. One way to cope with the characteristics of mmWave links is
to use multiple channels [1]. [7] investigates how tuning different
Transmission Control Protocol (TCP) parameters affects the throughput
and delay. They found out that implementing a larger buffer will
increase the throughput but at the cost of higher latency.

2.1.2 Proxies

Most wireless networks today consist of many different types of
middleboxes that are deployed in the middle of an end-to-end connection
and perform functions on the packets that are being transmitted [10].
Examples of these middleboxes can be Network Address Translation
(NAT) or proxies like firewall and Intrusion Detection System (IDS). A
proxy is an intermediate server between the end-user and the remote
server. One type of proxy that is mainly used for enhancing wireless
links is PEP. A network that performs poorly due to characteristics
the network paths have can get improved performance when using a
PEP [11]. Such characteristics can be high error rates, links with low
bandwidth, or links with asymmetric bandwidth.

There are many types of PEPs, for instance, Splitting Performance
Enhancement Proxies (SPEP). SPEP are proxies that split a TCP
connection between the mobile terminal and the remote host, ending
in one TCP connection from the mobile terminal to the SPEP,
and one from the SPEP to the remote host [5]. This allows the
creation of two optimized connections for two very different links by
tuning appropriate TCP parameters and performing data caching and
local retransmissions. This can be especially useful for mmWave
communication, where the connection is split between a wired and
wireless part. The two types have very different characteristics,
for instance, availability. There exist several novel TCP SPEPs for
mmWave links [12–14] (which will be discussed in subsection 2.2.1),
but it is found that current 4G Long-Term Evolution (LTE) SPEPs do
significantly increase the performance of a transmission, if the transfer
is small [5]. This will be of great importance when transitioning to 5G,

8

where a heterogeneous network will include both 4G and 5G traffic.
An argument against using PEPs is that they break the end-to-end

semantics of a connection [11]. This means that certain required end-to-
end functions cannot be correctly performed since only the end system
can execute them. An example of such a function is the internet protocol
security (IPsec), which provides secure communication by encrypting
the packets. By breaking the end-to-end semantics, the use of end-to-
end IPsec is disabled because only the end-systems can encrypt and
decrypt the packets. The packets have to be visible for the PEP so that it
can do its job. When the PEP cannot examine the header of the packets
being transmitted, since IPsec is hiding the content, it will function
poorly or not at all. One downside to PEP is therefore that IPsec cannot
be used since the end system has to trust the proxies in the network
to use it, which it generally cannot do. To have a secure connection
while using a PEP, it must be implemented at a higher level, e.g. the
application layer. This will mean that the transport layer headers will
be exposed, but the data would be secured if measures are taken at the
application layer.

Another issue with PEP is scalability [11]. Since PEPs operates
above the IP layer, it requires more processing power than a router.
In addition, since PEPs requires a per-connection state, it needs more
memory than a router. All of this leads to that a PEP can not have
as many connections, thus reducing its scalability. A solution to this
can be to add several PEPs, where the combination of them results in a
higher number of possible connections. This will, however, increase the
system’s complexity, making it less feasible.

2.1.3 Multipath

A client or a server connected to several interfaces can gain higher
throughput and/or reliability by using several of the interfaces simul-
taneously. To increase the throughput, a client that is connected to
several interfaces (e.g. mmWave and 4G) can get higher performance
by sending and receiving traffic over all the available interfaces. To in-
crease reliability, the host can send all traffic over the main channel,
and the other channels can be used to send corrections packets. Cor-
rection packets can either be a copy of already sent packets or a coded
packet that can be used to recover the lost packets. It is also possible
to dynamically change from one method to the other (from increased
throughput to increased reliability and vice versa), as done in [15].

Another benefit multipath has is that the host gets increased
resilience towards failure in the network. This is because the
availability increases when there are several paths that traffic can be
sent over. If a link on one path fails, the traffic can be redirected to other
operational paths.

Four different components are needed when implementing a mul-
tipath protocol: a path manager, a packet scheduler, congestion control,
and reliable transfer [2]. The path manager’s job is to keep track of all

9

the paths, including their availability and metrics like the available ca-
pacity. The packet scheduler then uses this information to decide which
path the traffic should be sent over. The congestion control is respons-
ible for detecting congestion in the network and adjusting the sending
rate. The reliable transfer is responsible for detecting any losses and
recovering them.

The most dominant multipath protocol over the transport layer
today is the Multipath Transmission Control Protocol (MPTCP).
MPTCP was standardized in 2013 and in 2020 an updated version was
published by the Internet Engineering Task Force (IETF) [16]. MPTCP
operates over TCP, where it creates a new TCP connection for every
available interface.

The goal of MPTCP is threefold [2, 17]. 1. Improve the throughput,
meaning that it should perform at least as well as a single path TCP.
2. It should not use more resources than the standard TCP under
similar conditions. 3. Steer packets toward less congested paths. It
has been proven that MPTCP performs better than original TCP when
using paths with similar characteristics, but it fails to outperform it in
heterogeneous networks [18].

Another multipath protocol that is gaining popularity is Multipath
QUIC (MPQUIC), which utilizes multiple Quick UDP Internet Connec-
tion (QUIC) paths. QUIC is an emerging transport layer protocol that
offers encrypted, multiplexed low-latency data transfer [19]. In contrast
to MPTCP, MPQUIC does not require changes to the operating system,
making it easy to deploy. In addition, it does not have the three-way
handshake TCP has, but a faster setup phase. This will decrease the
time it takes to set up new paths. Lastly, MPQUIC can differentiate the
different flows so that if a packet gets lost in one of the paths, the other
paths will be unaffected. This will eliminate the Head-of-Line (HoL)
blocking problem that MPTCP suffers from. All considered, MPQUIC
gives higher performance compared to MPTCP [19].

2.2 Related Work

This section will go through related work, to get a better understanding
of the research field that this thesis is related to.

2.2.1 Transport Layer Proxies

Several published papers focus on designing proxies used for high-
bandwidth and low latency networks, such as 5G. In [12], the authors
present mmWave Performance Enhancement Proxy (mmPEP), which
is a novel TCP design for mmWave communications. The proxy
is placed between the wired and wireless network and sends early-
acknowledgements (ACK) to the server, thus breaking the end-to-end
TCP semantics of the connection. Furthermore, it performs batch
retransmission, meaning that it sends the lost packets, but it also sends

10

a certain number of following packets since they are expected to be lost.
mmPEP tries to take advantage of the short period between LoS and
NLoS, hoping that LoS will come soon and not slow down the TCP
sender. In the evaluation of mmPEP, they only considered data rates
up to 100 Mbps, which is normally obtained during NLoS. In addition,
they did not look at latency, only the throughput and the delivery ratio,
hence not considering the bufferbloat problem (high latency because of
excessive use of buffers).

Another proxy is proposed in [13], which is called milliProxy.
milliProxy aims to fully utilize mmWave communications’ capacity
while being transparent to the end-users and respecting the end-to-
end semantics of a TCP connection. It includes three different modules:
flow buffer, flow window management, and ACK management. The flow
buffer is used to store the packet’s payload before it can be forwarded to
the client. The flow window management module controls the amount
of data sent to the receiver. Finally, the ACK management module is
used to inspect incoming ACKs and clear the corresponding packets in
the buffer so that new packets can be transmitted. In the evaluation of
milliProxy, one can see that it successfully reduces the sending rate of
the TCP receiver, thereby overcoming the bufferbloat issue. Moreover,
the results show that milliProxy can faster reach full utilization after
an NLoS period, resulting in higher goodput. On the other hand,
milliProxy focuses on a single-UE case, but the proxy should likely be
able to serve multiple UE’s simultaneously.

The novel TCP framework from paper [14] called mmWave TCP
(mmTCP) focuses on achieving the full potential of mmWave communic-
ations by forwarding packets from the server to multiple UE’s as fast as
possible. To do this, two functions are used: batch retransmissions and
online cache management. Batch retransmission works the same way
here as it did in mmPEP, i.e. sends multiple packets at once if a packet
is lost. The online cache management algorithm is a cache that adapt-
ively adjusts depending on the current cache and the channel status
of each UE. This means that if one UE is in an NLoS period, mmTCP
can automatically reallocate some of the cache allocated to this UE to
another UE that is in LoS. Another mechanism the cache has is called
cache reservation and ensures that new UE’s that connect to mmTCP
get a small portion of the cache. The simulation on mmTCP shows that
it improves the end-to-end TCP throughput in various scenarios, both in
single-user cases and in multiple-user cases, compared to conventional
TCP and cache-enabled TCP (the same as mmTCP, but without batch
retransmissions).

All of the above papers presented novel protocols that work over
TCP. It is a well-known problem that TCP is hard to extend, and there
exist many harmful middleboxes that intercept the transmission and
can obtain the unencrypted TCP header [20]. Google’s QUIC is a new
transport protocol aimed at overcoming this issue by encrypting both
the payload and the header. This means that middleboxes, like PEP,
will become useless as is. The authors of [21] therefore present their

11

prototype implementation of their Lightweight Performance Enhancing
Proxy (LwPEP), which aims at supporting both TCP and QUIC traffic.
It checks incoming packets and determines if it is TCP traffic or QUIC
traffic. Based on the type of traffic, different actions are taken. If it
is TCP traffic, the LwPEP can forward packets to the client and ACKs
to the server. If it is QUIC traffic the LwPEP does not have access
to the packets nor the ACKs. They propose that instead of sending
sequence numbers in the form of ACKs back to the server, the proxy can
instead send parts of the original server message back to the server. The
server can then use this sliced payload and look it up in a table where a
mapping from the sliced payload to the sequence number is stored. The
author’s measurements show that LwPEP adds a 0.06 ms delay to the
end-to-end connection for TCP and as much as 0.2 ms for QUIC. The
delay can be further decreased by implementation in hardware.

All of the proxies mentioned above are built on TCP (one supports
QUIC as well), however, the proxy implemented in this thesis is not
tailored for TCP traffic. Furthermore, as the proxy aims at providing
reliable consistent communication, keeping the delay at a minimum is
essential. To do this, the buffer in the proxy can not be too big, as this
will increase the delay. Finally, the proxies mentioned use only one path
from the proxy to the receiver, thus, they only need to consider flow
control. However, the proxy developed in this thesis considers multiple
paths toward the UE. This means that in addition to implementing a
flow control mechanism, also path management has to be included. In
the next section, several multipath protocols are presented to explain
the possibilities and challenges of multipath.

2.2.2 Multipath protocols

As mentioned earlier, multipath can increase the throughput and reli-
ability. Several papers have introduced multipath protocols especially
designed for 5G communications. In paper [15], they introduce Mul-
tipath Based Adaptive Concurrent Transfer (MACT), which is designed
for transmission of real-time video streaming, which is a similar applic-
ation that the proxy developed in this thesis aims at serving. MACT
tries to maximize the transmission rate and the reliability by dynamic-
ally switching between fast concurrent transfer (FCT) and reliable con-
current transfer (RCT). In FCT the packets are sent over all the avail-
able paths, while in RCT the packets are sent over one path, and copies
of the packets are sent over the other paths. However, the authors did
not use 5G links in the evaluation of MACT. They tested it using two
other wireless technologies: WiFi and cellular.

In [22] the authors looked at the possibility of using multipath where
both 5G New Radio (NR) links and LTE links are used. The scheme
they propose is a new MPTCP offloading scheme, called Offloading by
Restriction (OBR). The goal of OBR is to offload data from the NR path
to the LTE path when the NR path experiences a long NLoS period.
This scheme is not suitable for applications that require an overall high

12

data rate since the transition from using a NR path to a LTE path will
lead to a significant drop in bandwidth, however taking action when a
path experiences an NLoS period is similar to what the proxy proposed
in this thesis does.

The proxy developed in this thesis will operate in a mmWave
network, thus the challenges of using multiple wireless technologies at
once will not be addressed. Furthermore, the proxy aims at dynamically
changing the number of operational paths based on their capacity. This
will be possible if there is a dense deployment of mmWave base stations
(BS), ultimately creating a Ultra Dense Network (UDN). The user will
then likely be connected to one or more BSs, and as the user moves
around, new BS will appear as others are blocked. In [23] the authors
investigate several possible backhaul schemes that can handle the large
data flow coming from the UE going to the internet. This is out of
scope for this thesis but is something that needs to be addressed before
deploying a mmWave-based UDN.

2.2.3 Multipath management

When using multiple paths simultaneously, paths must be selected and
established by a path manager. The path manager decides when and
how new additional paths will be established, as well as how paths
are being torn down [3]. There are many different path managers, and
which one to select generally depends on the application’s requirements.
MPQUIC has a path manager where both hosts can negotiate the
multipath capabilities. This enables hosts to tell the state of a path
or claim a preference for a path. For example, a host can communicate
the state of a path to another host, i.e. tell if the path is available, on
standby or abandoned.

The other multipath protocol that is widely used, MPTCP, uses an-
other approach. It has three different path management implement-
ations available: default, ndiffports and full-mesh [2, 3, 24]. default
does nothing else than to accept the creation of new subflows passively.
ndiffports uses the same IP-address pair for all of its paths, but differ-
ent TCP ports. This will enable the connection to be perceived as sev-
eral TCP connections instead of only one, thus preventing bandwidth-
limiting middlebox interference. Finally, full-mesh is a path manager
that establishes all possible sub-flows. This is especially useful in Inter-
net scenarios where applications that want to increase the reliability or
throughput choose to use all available paths.

In [25] they present MPTCP-MA, which aims at improving the
performance of MPTCP during intermittent path connectivity. MPTCP-
MA estimates the status of a subflow by using MAC-layer information.
This can be used to manage the different subflows of an MPTCP
connection and direct traffic over the subflows with higher signal
strength, thereby increasing the throughput. The concept of managing
the paths based on their signal strength is similar to the way the proxy
in this thesis manages its paths based on LoS/NLoS characteristics,

13

however, it is not based on TCP traffic.
Path management can, in addition to deciding how to create and tear

down paths, also include choosing the best available path [3]. Handover
management is one type of algorithm that fall under this domain. When
only one path is active, and the other paths are on standby, a handover
manager is needed to change the active path. This handover can be
between a 5G and 4G link or between only 5G links.

2.2.4 Packet scheduling in multipath protocols

Packet scheduling is a central task in a multipath protocol. The
scheduler’s job is to forward packets over the different available paths.
This section presents several multipath schedulers that can be applied
to any multipath protocol. The most basic algorithm is Round-Robin
(RR). It cyclically sends packets over each path, but only if there is space
in the congestion window (CWND). The CWND indicates how much
the sender can send before receiving an ACK. RR do not consider the
characteristics of each path before sending a packet over. This means
that if one path is in an NLoS period, this algorithm will still try to
send packets over that path until the CWND is adjusted. This can lead
to many packet drops, which will yield low performance.

Another path scheduler scheme is minimum RTT (minRTT). min-
RTT takes the Round-trip time (RTT) characteristics into account, along
with the CWND availability, when choosing a path for a packet. First,
it sends packets over the path with the lowest RTT until the CWND
is full, then it sends packets over the path with the second-lowest RTT
[26]. This scheme takes better into consideration the heterogeneity of
the paths, compared to RR, by sending packets over the fastest path,
minRTT reduces the out-of-order packet delivery at the receiver. This
will reduce HoL blocking, thus achieving higher throughput.

In [26] the authors proposed a new scheduler called BLocking
ESTimation based scheduler (BLEST). It works almost the same way
as minRTT, but BLEST tries to reduce the HoL blocking problem even
further by estimating if sending more packets over a path will cause
HoL blocking. It determines if it is best to send packets on the path
with larger RTT or wait to send packets on the path with lower RTT
until it becomes available again. In the evaluation of BLEST, they
compared it with minRTT among others, and the result was that BLEST
outperformed all the other schedulers with better application goodput
and lower packet delay.

The schedulers presented above are all non-learning based sched-
ulers. They have a predefined policy they run. However, learning-based
schedulers are promising to use in a challenging environment, such as
5G. Peekaboo [27] is a learning-based scheduler. It uses the same logic
as the two previous schemes, that is, choosing the path with the low-
est RTT. The difference from before is how to choose another path if the
path with the lowest RTT has a full CWND. Peekaboo applies a machine
learning (ML) algorithm to take this decision, which learns at runtime

14

the best decision to make. This approach works well when the paths
are heterogeneous, i.e. the RTT differs from path to path. However, in
5G communication, the RTT over the different paths typically has the
same average RTT [28].

In [28] the authors present a modified version of Peekaboo: M-
Peekaboo, that combat the issue of similar average RTT over the
different paths by selecting a path based on several metrics, like
throughput, loss rate, and RTT. The evaluation done in [28] shows that
M-Peekaboo performs better than the non-learning based algorithms
RR, minRTT and BLEST. One reason is that a scheduler using a
learning-based approach can learn the dynamics of the 5G network over
time, making it better at making good scheduling decisions.

15

16

Chapter 3

Path manager models

A proxy placed between the internet and the end-user needs several
features to function correctly (e.g. path manager and packet scheduler).
The scope of this thesis is on path management. In this section, five
different path managers are presented:

• Reactive control

• CDF-based prediction

• FPT-based prediction

• CDF-based prediction with reactive control

• FPT-based prediction with reactive control

The first three models come from previous work, and the last two are
new models proposed in this thesis.

This section will answer the first research question: How can a path
manager with both a reactive and a predictive control be designed?.

3.1 Reacting to queue changes

The main job of a path manager is to decide how many paths that should
be operative. This includes adding and removing paths as needed. For
instance, if the queue starts to fill up in the proxy, adding a path can
help drain the queue to keep the delay at a minimum. One way of
implementing a path manager is to take a reactive approach. If the
queue starts filling up, the path manager reacts to this and will add
a path. This leads to very accurate decisions, but only if changing the
number of paths is a faster process than there are significant changes
in the network. If the network condition changes more rapidly than
the path manager can change the number of paths, it can lead to low
performance.

Figure 3.1 shows a simple scenario where the sending rate is higher
than the capacity of one path and how the queue behaves when a
reactive control is used. Whenever the queue surpasses the high

17

Q
ue
ue

Time
Figure 3.1: Queue dynamics when using a reactive model. This is meant
only as an illustration to show how a reactive control model can affect
the queue.
The red line is the high queue threshold (add a path if the queue is more than this),
and the green line is the low queue threshold (remove a path if the queue is less than
this). The blue dots indicate when a reactive control is triggered and the yellow dots is
when a path change is performed.

threshold, the red line, then a reactive control will be triggered, marked
as a blue dot in the figure. A path gets added by sending a signal to the
operator, telling it to add a path, then the operator has to make a path
operational. This process takes some time, therefore a path change, the
yellow dot, happens some time after the decision to add a path is made,
the blue dot. This gives the queue a chance to grow even more. When
a path is added, the queue will drain. When the low queue threshold
is reached, a path will be removed. Whenever a path is removed, the
queue will increase again. The spikes in the queue will be higher as the
sending rate increases since more packets will be transmitted. Since
mmWave is a network that can reach gigabit capacity, using a reactive
control is too slow, since the queue will fill up quickly when it gets a
chance to do so.

Moreover, it is not possible to change the number of paths too often,
as it is costly for the operator to set up and tear down paths for multiple
users simultaneously. Another path management scheme must be used
to meet the high data rates that a mmWave network gives.

18

3.2 Prediction based models

A predictive approach can be used to mitigate the challenges a reactive
model has in a mmWave network. This has been done in [3], where
the authors present two new path management models. Both are
prediction-based, which means that they do not react to changes in
the network but rather predict how the network will behave and act
accordingly. By trying to foresee the future, instead of responding to
the past, a prediction-based path manager can prepare for changes
rather than always being a step behind by reacting to changes. This
is more suitable for a high data rate mmWave network where changes
can happen very suddenly and impact the proxy.

Q
ue
ue

Time
Figure 3.2: Queue dynamics when using a predictive control model.
This is meant only as an illustration to show how a predictive control
model can affect the queue.
The red line is the high queue threshold (add a path if the queue is more than this),
and the green line is the low queue threshold (remove a path if the queue is less than
this). The pinks dots indicate when a predictive control is triggered and the yellow dots
is when a path change is performed.

Figure 3.2 shows how a predictive-based model may affect the queue.
The pink dots indicate that a predictive control is triggered, and is
done periodically. When the first predictive control is triggered, the
predictions will show that using one path will with high certainty make
the queue surpass the high threshold, the red line, thus a path is added
to mitigate this. For the next predictive controls, no action is taken,
since a path less will make the queue grow, and a path more is not
necessary. However, an unexpected queue growth can happen, and
since the predictive control is triggered independently from the queue

19

occupancy, a predictive control may not be triggered before the queue
reaches, and surpasses, the high threshold. A path will eventually be
added so that the queue can be drained.

The authors of [3] suggest that the predictive control is triggered
every 150 ms. Whenever a predictive control is triggered, how the queue
occupancy will be for the next time horizon, set to 200 ms, is predicted.
The predictions will go toward a steady-state queue distribution as one
increases the time horizon. This is not useful for control purposes, thus
keeping the time horizon not too long is essential.

The LoS/NLoS characteristics of the paths affect the proxy’s capacity
to send packets to the receiver. Predicting the availability of the
different paths, i.e. when a path will be in LoS, will therefore
significantly impact the performance of the proxy. If one can predict
that a path will be in NLoS, then a path can be added to compensate for
the capacity drop when a path gets in NLoS. [3] uses a two-state Markov
model for each path to do this. This type of model has been used to model
human movement and, in particular, mmWave blocking. Each path
will have a 2-state LoS/NLoS continuous-time Markov model, which
models the transitions between LoS and NLoS for the given path. When
knowing which paths that will be in LoS, and for how long, one can
model how the queue will behave in the future. This can predict future
queue distributions and find the probability that the queue reaches a
certain threshold.

Two different Markov models are used in [3]: the full state Markov
model (see Figure 3.3) and a Weighted Queue model with starting
state, WQx (see Figure 3.4). The full state Markov model models the
LoS/NLoS dynamics for all the operational paths. In Figure 3.3 three
paths are operational, where all the different variations of LoS/NLoS
dynamics are modeled. λi represents the rate of path i moving from
NLoS to LoS, and µi represents the rate of path i moving from LoS
to NLoS. The number of states increases exponentially as the number
of paths increases. This also means solving this model will increase
rapidly as the number of paths increases, thus it is only used when
there are only a few paths.

For control purposes, it is essential that it does not take too long to
solve the Markov model. Solving the full Markov model is too time-
consuming if the number of paths is high. WQx is used when the
number of paths is higher than two. The state of the different paths
greatly influences the system’s short-term dynamics, thus, knowing the
starting state in the full model and a few "hops" from the starting state
will be enough to calculate the LoS/NLoS dynamics for the next time
horizon. This is done in the WQx model. Figure 3.4 depicts this by
having a starting state which determine which path, K, to start at.

Two prediction-based models were presented in [3]. The first one
is a distribution-based predictive control: CDF-based prediction.
This model looks at the probability that the proxy queue distribution,
found by using the cumulative distribution function (CDF), is more/less
than a particular threshold. This means that an action will be taken

20

000 010
100

001

110
101
011

111
�1 �1�2�2�3�3

�2�2
�1�3�3
�1

�1
�3�1

�2�2
�3

�2�2
�3�3

�1 �1
Figure 3.3: Full state Markov model of LoS/NLoS state when there is
three operational paths. Each node represent if the path is in LoS - 1,
or in NLoS - 0. λi is the rate path i change from NLoS to LoS, and µi
from LoS to NLoS. Figure taken from [3].

⋯ k−2 k−1 k k+1 k+2 ⋯
��−1 �+1

�̄k−3�̄k−2 �̄k−2�̄k−1 �̄k−1�̄k �̄k�̄k+1 �̄k+1�̄k+2 �̄k+2�̄k+3

�̄��̄�
�̄�−1 �̄�−1 �̄�+1 �̄�+1

WQx
extra
states

Figure 3.4: Weighted Queue model with starting state, WQx, which has
an additional starting state. Figure taken from [3].

if the queue distribution is over/under a threshold. The other path
management model that is presented in the paper is one based on
first passage time (FPT): FPT-based prediction. If the queue crosses
a particular threshold within the time horizon, an action will be
taken. Both models are probabilistic, which means that some level of
randomness is involved when finding a decision to take. For example,
the model based on the cumulative distribution function (CDF) will only
add a path if there is a more than 1% chance that the queue is over 500
packets and only remove a path if there is more than 99% chance that
the queue is under 250 packets. Neither of the models presented was
optimized, as the paper’s primary goal was to illustrate the feasibility
and potential benefits of a predictive control method over a reactive
control method.

When to use each of the predictive control mechanisms depends on
the QoS requirements the application has. If the application requires
a stable network connection but does not mind some delay occasionally,

21

using the CDF predictive control is a good choice. If the application
requires only very low delay and consistently high bandwidth, using
the first passage time (FPT) is the best choice. This is because it reacts
faster than the CDF predictive control since the queue only has to reach
the threshold once for something to happen, while the CDF predictive
control mechanism has to look at the queue distribution for the whole
time horizon.

3.3 Prediction based models with a backup
plan

A prediction can never be 100% accurate, and it is bound to be wrong
sometimes. A model that solely uses predictions to make decisions can
lead to bad decisions. mmWave is a type of network that can quickly fill
up the buffer; thus, a path manager taking a wrong decision can quickly
increase the delay since the queue can grow at a fast pace. Therefore,
two new path managers are presented:

• CDF-based prediction with reactive control

• FPT-based prediction with reactive control

The first one is based on the CDF-based predictive control model, and
the second one is based on the FPT-based predictive control model from
[3]. The new models are very similar to the old ones. They use the same
Markov model to make the predictions, and they have a control interval
every 150 ms where the decision is made based on either CDF or FPT.

The difference from the models presented in [3] is that instead of
only relying on the predictions, an additional control instance is added
to compensate for unexpected events that will increase the queue and
lead to higher delay. If something unexpected happens between the
control intervals, the new models will react to this and change the
number of paths. They do not need to wait until the next control
interval, which makes the path manager more robust to sudden changes
in the network. This is illustrated in Figure 3.5, where the same
scenario as Figure 3.2 is shown, but because a reactive control can be
triggered in between the predictive controls, a path will be added sooner
when the queue starts to grow quickly which will prevent the spike from
becoming as high.

Figure 3.6 is a Specification and Description Language (SDL) [29]
diagram of a predictive control model with a reactive control. In Predict,
either CDF- or FPT-based predictive control can be used. Adding a
reactive control to a predictive-based model adds some complexity. A
path change can be triggered in two different ways in the new models.
The main way of changing the number of paths is by a predictive control.
When a predictive control is triggered, a decision will be found by
executing the prediction. The decision can be to add a path, remove
a path or do nothing. Another way a path change can be initiated

22

Q
ue
ue

Time
Figure 3.5: Queue dynamics when using a predictive control model with
a reactive control. This is meant only as an illustration to show how a
predictive control model with a reactive control can affect the queue.
The red line is the high queue threshold (add a path if the queue is more than this),
and the green line is the low queue threshold (remove a path if the queue is less than
this). The pink dots indicate when a predictive control is triggered and the blue dots
indicate when a reactive control is triggered. The yellow dots are when a path change
is performed.

is by reactive control. Reactive control is only triggered in the most
critical scenario when there are insufficient resources and adding a path
is necessary. When a reactive control is triggered, a check is done to
ensure that there is another path to add. If so, the path with the highest
capacity gets added. If there is no new path to add, the reactive control
that was triggered will only be ignored.

The predictive control is periodically performed every 150 ms. And
after any path change, a new predictive control is scheduled. When a
reactive control is triggered, and a path gets added, a new predictive
control will be scheduled, effectively shifting all following predictive
controls some milliseconds forward. This ensures that a predictive
control is not triggered too soon after a path change following a reactive
control.

Alg. 1 is the pseudo-code for the new models. Several states are
introduced to keep track of when different things are done. First, t_IC
and t_PC are used to know when the last control was and when the next
predictive control will be triggered, respectively. Q_HT is the higher
queue threshold, so a reactive control will be triggered to add a path if
the queue is over this. The reactive control interval, TR, is a time limit
used to prevent a reactive control from being triggered too soon after

23

Process: ProxyCtl
Idle

Predictive
control triggered

Add path

Reactive control
triggered

Predict

None

Remove Add or
remove?

Yes Is there a

path to add?

Schedule new
predictive control

Idle

Decision

Remove path with
lowest capacity

Add path with
highest capacity

No
Add

Figure 3.6: SDL of a predictive based control system with reactive
control

another path change. Changing the number of paths too often is costly
for the operator; thus, there must be a limit to prevent changing the
number of paths too often. PC_min_T is the predictive interval. This is
set to 150 ms so that a predictive control is triggered every 150 ms.

Control() is the function that will be called every time a predictive
or reactive control is triggered so that a path change can be initiated.
Predictive control is triggered every 150 ms, thus Control() will be called
every 150 ms. Additionally, Control() will be called every time a reactive
control is triggered. Reactive control is triggered if both checks are true:
1. ensure that it has gone enough time since the last control. 2. the
queue size must be larger than the high queue threshold Q_HT. If both
are true, then a reactive control will be triggered and t_IC will be set to
now and Control() will be called.

To differentiate if a predictive or a reactive control has been
triggered in the Control() function, t_IC and t_PC are used. Addition-
ally, since a reactive control will schedule a new predictive control, a
way of knowing which predictive controls are still valid is needed. Con-
trol() handled the three scenarios in the following way:

24

Algorithm 1: Predictive control with reactive control
1 Every Arriving packet
2 if now > t_IC + TR then

// only do reactive control if we want to increase the

number of paths

3 if QueueSize > Q_HT then
4 t_IC = now
5 Control()

6 Every Control
// reactive control was triggered

7 if now == t_IC then
8 decision = add path

// trigger a predictive control

9 else if now == t_PC then
10 decision = Predict()

// ignore a predictive control

11 else
12 return;
13 if decision == add or remove path then
14 Send a signal to change paths
15 t_IC = now
16 t_PC = now + PC_min_T
17 Schedule Control() in t_PC time

1. If now equals to t_IC, a reactive control was triggered, and the
decision will be to add a path.

2. If now equals to t_PC, a predictive control is triggered. In
Predict(), either CDF- or FPT-based prediction can be used. The
decision of this prediction can be one out of three: add a path,
remove a path or do nothing.

3. If now equal to neither t_IC nor t_PC, a predictive control was
supposed to be triggered but will instead be ignored. This
occurs when a reactive control has been triggered, consequently
scheduling a new predictive control so that the former predictive
control scheduled is ignored when it is activated.

After a decision is found, and it is to either add or remove a path,
a signal will be sent to the operator so that the number of paths can
change. t_IC and t_PC will be updated, and a new predictive control
will be scheduled in t_PC time.

25

26

Chapter 4

Simulation-based
performance evaluations

The first step in developing a new path manager scheme is implement-
ing it and testing it in a simulated environment. A simulated environ-
ment gives maximum control without any interference from unknown
sources (e.g. congestion in the network). The chosen simulator for
this first study is an event-based simulator. The five different mod-
els presented in chapter 3 are implemented in the simulator and tested.
Using a simulator to test the models enables an easy way to check for
bugs in the code and see if the models work as intended. Furthermore,
the different models can be compared to each other. However, the res-
ults from this comparison can not be used to conclude that one model is
better than another confidently. To do this, the models have to be tested
in a more realistic scenario, which is done in chapter 7.

4.1 Implementing the models in the simulator

To simulate a 5G mmWave network, an event-based simulator (also
called a discrete-event simulator) is used. An event-based simulator
operates by first placing events in a queue and then executing these
events chronologically [30]. An event is a change in the simulation
environment. For example, sending or receiving a packet is an event.
This results in a highly accurate simulation environment. The speed of
the execution depends on the complexity of the design and the level
of activity within the simulation. Using an event-based simulator
can be slow for simulations with many events. However, it brings
the simplicity and the repeatability required for this study and the
possibility of testing new models.

The new models presented in this thesis are a continuation of
previous work done in [3]. The models they presented were tested in a
simulator they had written in Julia. The same simulator will be used to
test the two new models proposed in this thesis. As the same simulator
is used, the reactive model, the CDF-based prediction model, and the
FPT-based prediction model were already implemented.

27

When implementing a model into a simulator, some action must
be taken to ensure that the simulation is as realistic as possible. For
example, the time it takes to perform actions in a real-world system
must be added as a cost in a simulator. This can be the time it takes for
the predictive control to do the predictions or the time it takes to change
the number of paths.

The two new models presented in this thesis – a predictive control
model with reactive control – were implemented in the simulator based
on Alg. 1. However, since it is a simulator, some changes had to be made
to make the simulations as realistic as possible. One of these things is
adding calculation time for the predictive models. Every time Predict()
is called, a time penalty must be added to simulate a real-world proxy
that needs a little time to run the calculations and get a result.

4.2 Simulation characteristics

Five different models are tested in the simulator:

• Reactive control

• CDF-based prediction

• FPT-based prediction

• CDF-based prediction with reactive control

• FPT-based prediction with reactive control

The three first is written by the authors of [3], while the last two are
the new models proposed in this thesis. The simulation setup when
testing the models is the same as was used in [3]. This means that the
simulation will try to simulate a mobile scenario in an urban landscape,
where a user moves around.

The goal is to achieve a steady data rate of 2 Gbps through the
system while keeping the delay at a minimum. Throughout the
simulation, the channel capacity of each path will vary to simulate
the shadow fading effect, i.e. that the capacity fluctuates as objects
block and the signal strength vary, as experienced in a real system. In
addition, the paths will go from LoS to NLoS and vice versa; this to
simulate a moving person moving in a city.

4.3 Results

Different things are tested out in the simulator to get a good overview
of how the two new models perform compared to the others. First,
the simulator is run once for each of the five models. The results of
each of these runs are then compared. Next, the models are tested by
running the simulations multiple times, in total 100 times, to get a more
accurate comparison between the different models. Finally, the reactive

28

control interval, i.e. how soon after a previous path change a new path
change can be triggered by a reactive control, will be explored to see
how it impacts the results.

4.3.1 First impressions of the new models

Each model is run through the simulator once, to see if any improve-
ments by using one of the new models can be seen. The reactive control
interval, TR, is set to 25 ms, so that it must go 25 ms before a new path
change, initiated by a reactive control, can be initiated after the last
path change. This will prevent the reactive control from being triggered
too soon, which may be costly for the operator. Figure 4.1 shows the
result after one simulation run.

For each model, four different plots are created: the number of paths
used, the available capacity based on which paths are in use, the queue
size, and the delay (the time a packet is delayed due to queueing). These
plots are plotted the same way as was done in [3], with the addition of
plotting the delay. In the Paths used graph, the total amount of paths
used throughout the run can be seen. Eight is the maximum number
of paths. In models with both a predictive and a reactive control, the
reactive controls are marked as a red dot, so it is possible to see how
often the reactive control was triggered. The Capacity graph shows the
available capacity by adding up the capacity for all the used paths at
a certain time, taking into account if the path is in LoS or not. The

0 10 20 30 40 50 60 70

Pa
th

s
us

ed

0
1
2
3
4
5
6
7
8

C
ap

ac
it

y
(G

b p
s)

0
2
4
6
8

10
12
14

Qu
eu

e (
10

3 pk
ts)

0

2

4

6

8

10

Time (s)
0 10 20 30 40 50 60 70

D
el

ay
 (s

)

10⁻⁶
10⁻⁵
10⁻⁴
10⁻³
10⁻²
10⁻¹
10⁰

(a) Reactive control

29

0 10 20 30 40 50 60 70
Pa

th
s

us
ed

0
1
2
3
4
5
6
7
8

C
ap

ac
it

y
(G

b p
s)

0
2
4
6
8

10
12
14

Qu
eu

e (
10

3 pk
ts)

0

2

4

6

8

10

Time (s)
0 10 20 30 40 50 60 70

D
el

ay
 (s

)

10⁻⁶
10⁻⁵
10⁻⁴
10⁻³
10⁻²
10⁻¹
10⁰

(b) CDF-based prediction

0 10 20 30 40 50 60 70

Pa
th

s
us

ed

0
1
2
3
4
5
6
7
8

C
ap

ac
it

y
(G

b p
s)

0
2
4
6
8

10
12
14

Qu
eu

e (
10

3 pk
ts)

0

2

4

6

8

10

Time (s)
0 10 20 30 40 50 60 70

D
el

ay
 (s

)

10⁻⁶
10⁻⁵
10⁻⁴
10⁻³
10⁻²
10⁻¹
10⁰

(c) CDF-based prediction with reactive control

0 10 20 30 40 50 60 70

Pa
th

s
us

ed

0
1
2
3
4
5
6
7
8

C
ap

ac
it

y
(G

b p
s)

0
2
4
6
8

10
12
14

Qu
eu

e (
10

3 pk
ts)

0

2

4

6

8

10

Time (s)
0 10 20 30 40 50 60 70

D
el

ay
 (s

)

10⁻⁶
10⁻⁵
10⁻⁴
10⁻³
10⁻²
10⁻¹
10⁰

(d) FPT-based prediction

0 10 20 30 40 50 60 70

Pa
th

s
us

ed

0
1
2
3
4
5
6
7
8

C
ap

ac
it

y
(G

b p
s)

0
2
4
6
8

10
12
14

Qu
eu

e (
10

3 pk
ts)

0

2

4

6

8

10

Time (s)
0 10 20 30 40 50 60 70

D
el

ay
 (s

)

10⁻⁶
10⁻⁵
10⁻⁴
10⁻³
10⁻²
10⁻¹
10⁰

(e) FPT-based prediction with reactive control

Figure 4.1: Running the simulation with different path management
schemes.

30

Queue and the Delay graphs are plotted as a band for the range (min
and max) of the queue size and delay experienced by the system over
200 ms intervals. Packet loss is marked as black dots in the Queue and
the Delay plots. The average is plotted as a dashed red horizontal line.

As expected, the purely reactive control (see Figure 4.1a) has the
highest queue levels and the most delay out of the five algorithms. This
is because the reactive control cannot react fast enough, thus the queue
is allowed to increase, and the delay goes up. Next, the improvements
when adding a reactive control to a predictive-based algorithm are
clearly seen. Comparing the CDF-based algorithms, the queue spikes
that come at the end of the simulation run in the purely predictive
model (see Figure 4.1b) are almost completely gone when adding a
reactive control (see Figure 4.1c). This performance boost is also visible
in the new FPT-based algorithm, where the queue is overall smaller,
and the delay spikes are not as high.

Figure 4.1c and Figure 4.1e shows how often a path change was
triggered due to a reactive control. This is marked as a red dot in the
Paths used plot. A path change was not often triggered by a reactive
control. Twelve times for both the CDF- and the FPT-based model.
Compared to how often a predictive control is triggered in the purely
predictive ones – which is around 470 times – this is good. It reveals
that the purely predictive-based models can adequately capture the
queue so that the reactive control does not need to correct things that
often.

4.3.2 The more steady performance

After the first impression of the performance of the two new models, a
new test is conducted to find out how the models perform after running
them 100 times in the simulator. For each simulation run, the packet
delay for each packet is collected to increment the corresponding bin in
an array to ultimately create a histogram, which is used to create a CDF
of the delay distribution. The packet delay is the time a packet spends in
the proxy, from arriving in the proxy to departing. The most prominent
task of the proxy is to ensure that the high data rates passing through
do not get delayed while being in the proxy; thus the time each packet
spends in the proxy should be as little as possible. From Figure 4.1d
to Figure 4.1e the queue is decreased, but the difference in delay is not
that prominent. Running the simulation 100 times for each model will
better show the difference between the different models.

Figure 4.2 show the results of this experiment. The delay has
significantly decreased when going from a purely reactive approach to a
proactive one. As for the four predictive models, the difference between
them is fairly small. This is because the queue is mostly empty, as
seen previously, thereby preventing the delay from becoming very high.
When using the reactive control, the delay is much more notable, as
the draining of the queue goes slower than with the other models. This
results in a much higher delay than the predictive control models have.

31

Pkt Dly (s)
10⁻⁴ 10⁻³ 10⁻² 10⁻¹

C
D

F

0.0

0.5

1.0

CDF-based prediction FPT-based prediction
CDF-based w/reactive FPT-based w/reactive
Reactive

Figure 4.2: Delay CDF from 100 simulations

One important aspect when implementing a reactive control mech-
anism into the predictive control is limiting when a reactive control is
allowed to be triggered. This is limited by the reactive control interval,
TR (see section 3.3). Next, this value is explored to see how it affects the
results.

4.3.3 What should the reactive control interval be?

The reactive control interval, TR, is a value that is important to set
correctly, as it is used to tell how soon after a path change, another path
change can be initiated because of reactive control. If TR is too big, the
benefit of adding the reactive control to a predictive-based algorithm
will go away. If the predictive control is triggered every 150 ms, the
reactive control will never be triggered if the reactive control interval
is higher than this. Too small TR is not good either. As simulated in
the simulator, a path change does take some time. If TR is smaller than
the times it takes to change the number of paths, a new reactive control
will have time to be triggered before a previous path change is set into
effect. This is not something an operator would want and maybe do not
accept altogether.

Three different values of TR are chosen: 25 ms, 50 ms, and 100 ms.
They are all higher than the time it takes to change paths (20 ms in the
simulator) and lower than how often the predictive control is triggered
(150 ms). First, each algorithm is run once, and the queue size and
the delay are collected. Figure 4.3 shows the queue, and Figure 4.4

32

0 10 20 30 40 50 60 70

0

2

4

6

8

10

0

2

4

6

8

10

0

2

4

6

8

10

Time (s)
0 10 20 30 40 50 60 70

0

2

4

6

8

10

Q
ue

ue
 (1

00
0

p k
ts

)

TR=25ms

TR=50ms

TR=100ms

Only prediction

(a) CDF-based prediction

0 10 20 30 40 50 60 70

0

2

4

6

8

10

0

2

4

6

8

10

0

2

4

6

8

10

Time (s)
0 10 20 30 40 50 60 70

0

2

4

6

8

10

Q
ue

ue
 (1

00
0

p k
ts

)

TR=25ms

TR=50ms

TR=100ms

Only prediction

(b) FPT-based prediction

Figure 4.3: The queue occupancy during one run of the simulation. In
the three upper plots a predictive control with reactive control is used
with different values of TR. In the bottom plot, purely predictive-based
control is used.

shows the delay after one run of the simulation with different values of
TR. In Figure 4.3a and Figure 4.3b the queue clearly increases as TR
increases. This is expected, as it takes a longer time before a path gets
added as TR gets bigger, thus more time for the queue to fill up. These
figures also portray that the queue has spikes in different places. This is
because the following predictive controls get shifted some milliseconds
forward whenever a reactive control is triggered. This means that the
predictions will be a little different than the original. Thus the queue
will spike at different times.

In Figure 4.4 shows the delay throughout one simulation run. In
Figure 4.4a, the delay seen between 50 and 60 seconds after the start
of the simulation in the purely predictive based control in the bottom
plot is strongly reduced when adding a reactive control interval. What
is not very clear from these plots is how the performance improves, in
terms of smaller delay, as TR decreases. There is a minor increase in the
delay as TR increases, but to highlight this, the simulations are rerun
100 times to make the difference more noticeable.

The same simulation is run 100 times for each of the values of TR =
{25, 50, 100} ms. Figure 4.5 shows the result of this. Note that the figure

33

0 10 20 30 40 50 60 70

10⁻⁶
10⁻⁵
10⁻⁴
10⁻³
10⁻²
10⁻¹
10⁰

10⁻⁶
10⁻⁵
10⁻⁴
10⁻³
10⁻²
10⁻¹
10⁰

10⁻⁶
10⁻⁵
10⁻⁴
10⁻³
10⁻²
10⁻¹
10⁰

Time (s)
0 10 20 30 40 50 60 70

10⁻⁶
10⁻⁵
10⁻⁴
10⁻³
10⁻²
10⁻¹
10⁰

D
el

ay
 (s

)

TR=25ms

TR=50ms

TR=100ms

Only prediction

(a) CDF-based prediction

0 10 20 30 40 50 60 70

10⁻⁶
10⁻⁵
10⁻⁴
10⁻³
10⁻²
10⁻¹
10⁰

10⁻⁶
10⁻⁵
10⁻⁴
10⁻³
10⁻²
10⁻¹
10⁰

10⁻⁶
10⁻⁵
10⁻⁴
10⁻³
10⁻²
10⁻¹
10⁰

Time (s)
0 10 20 30 40 50 60 70

10⁻⁶
10⁻⁵
10⁻⁴
10⁻³
10⁻²
10⁻¹
10⁰

D
el

ay
 (s

)

TR=25ms

TR=50ms

TR=100ms

Only prediction

(b) FPT-based prediction

Figure 4.4: The delay during one run of the simulation. In the three
upper plots a predictive control with reactive control is used with
different values of TR. In the bottom plot, purely predictive-based
control is used.

is zoomed in on the very top of the CDF because the delay, which is being
minimized, is very low (see Figure 4.2), so to see the difference among
them, the scale has to be changed. The effect that TR have on the delay
is clearly seen when using both the CDF-based control in Figure 4.5a
and when using the FPT-based control in Figure 4.5b.

If there is not any packet loss, then the CDF of the delay will reach
one. However a small amount of packet loss is detected in Figure 4.5a
and Figure 4.5b for the purely predictive based models when zoomed in
on the top 3% of the CDF. This packet loss is reduced when adding a
reactive control to the purely predictive-based models.

Table 4.1 shows how many times the reactive control, on average,
was triggered for the different values of TR. When using a purely
predictive-based control method (using either CDF- or FPT-based
prediction), the number of times the predictive control is triggered is
around 470 times. This means that during the simulation time of 70
seconds, a path change can potentially happen 470 times. How often a
path change does happen depends on how the queue looks. If the queue
is steady and the capacity of the paths in use does not change, a path
will neither be added nor removed. That a reactive control does not

34

Pkt Dly (s)
10⁻⁴ 10⁻³ 10⁻² 10⁻¹

C
D

F

0.97

0.98

0.99

1.00

TR=25ms
TR=50ms
TR=100ms
Only
prediction

(a) CDF-based prediction

Pkt Dly (s)
10⁻⁴ 10⁻³ 10⁻² 10⁻¹

C
D

F

0.97

0.98

0.99

1.00

TR=25ms
TR=50ms
TR=100ms
Only
prediction

(b) FPT-based prediction

Figure 4.5: Delay CDF from 100 simulations, testing different values of
TR and comparing them to a purely predictive one.

35

Table 4.1: Average number of path changes caused by a reactive control
after 100 runs of the simulation. In the purely predictive control models,
around 470 predictive control actions are performed in each run.

Prediction Reactive control interval TR
25 ms 50 ms 100 ms

CDF-based 9.14 6.72 5.43
FPT-based 8.86 6.59 5.26

trigger a path change frequently is a good thing. This tells us that the
predictions are mostly correct, and the reactive control does not have to
react to abrupt changes in the queue. What is also possible to see from
Table 4.1 is that as TR increases, the number of path changes triggered
by a reactive control decreases.

4.4 Beyond simulations

Testing the models proposed in this thesis in the simulator shows that
incorporating a reactive control backup into a predictive-based model
yields better performance. Parts of the results from this simulation
study are reported in section 5.4 of [4].

The next step is to test the new models in a more realistic scenario.
Since mmWave is not widely deployed yet, testing it in a real-world
setup is impossible. The next best thing is to use an emulator. An
emulator is like a simulator, except where you can control everything
in a simulator, an emulator has some elements that you cannot control.
This makes an emulator more realistic; thus the results from comparing
them will be of higher significance.

In the simulations, only path management is considered. A more
realistic scenario would be emulated when going over to an emulator.
This means that more than just path management must be included. A
full working proxy must be implemented, including path management
and packet scheduling. In addition, costs that need to be considered
in the simulation (e.g. calculation time for the predictive control) are
automatically included in an emulation.

36

Chapter 5

Design and Implementation
of the proxy

After implementing the two new models in a simulated environment,
where they could be tested and compared to other path management
models, testing them in a more realistic scenario is necessary. This
is because a simulation cannot validate the models, only instantiate
them. Before running any tests, the models must be converted
from the simulated environment to an emulated one. A proxy needs
to be developed to test the path manager models in an emulated
environment. In this section, the design of the proxy and how it is
implemented are explained.

This chapter will answer two of the research questions defined in
this thesis:

• How can a proxy be implemented to work in a mmWave network?

• Is the Julia programming language an adequate choice for
implementing a real-world proxy?

5.1 The Design of the Proxy

Parallelization is an essential step in developing a high-performance
proxy that is to be used in a demanding network with very high
data rates. Doing the different tasks sequentially will take too long.
The proxy is divided into three main modules, which is illustrated
in Figure 5.1 with the main task that each module has. They run
concurrently and are loosely connected.

The first main module is packet handling, which deals with incoming
packets. The second is path management, which deals with the
management of the paths, i.e. deciding which path should be operative.
Lastly, the module responsible for handling the outgoing packets is
called the packet scheduling module.

37

Packet handling Path Management Packet scheduling

Packet arrives Predictive control
triggered

Reactive control
triggered

Packets in
queue

Handle incoming

packets

Packet handling

Decide if adding or
removing a path is

necessary

Path Management

Handle outgoing

packets

Packet scheduling

Process: Proxy

Figure 5.1: An SDL [29] of the proxy showing an overview of the three
modules it consists of, with their main task.

5.1.1 Packet handling

The first task that the proxy consists of is packet handling. Figure 5.2
is an SDL of the packet handling module. The main job of this module
is to receive incoming packets from the internet and place them in a
First-In First-Out (FIFO) queue. This is a type of queue where the first
element that arrives is the first element that leaves the queue.

When an incoming packet arrives, the queue is inspected to ensure
that it is not full. If the queue is full, the packet gets dropped, and
the task goes back to being idle while waiting for a new packet. If
there is room for a new packet in the queue, the packet gets added,
and the packet scheduling module is notified that a packet has arrived
that needs to be sent to the receiver. Next, if adding a packet into
the queue made the queue level reach a high threshold, Q_HT, then
a reactive control will be triggered in the path management module.
Lastly, the module will go back to being idle while waiting for a new
packet to arrive.

5.1.2 Packet scheduling

Packet scheduling is the module responsible for sending the packets
in the queue to the receiver. As packet scheduling is not the scope of
this thesis, no scheduling algorithm is used for selecting which path a
packet should be sent over. Whenever a packet is in the queue, one
of the available paths will take it out and transmit it to the receiver.
An available path is a path that is operational and is not busy sending

38

Process:

Packet handling Idle

Packet arrived

Yes
Is queue

full?

Packet in queue

NoDrop packet

Put packet in
queue

To Packet
scheduler

Trigger reactive
control

To Path
manager

Yes

No
Queue > Q_HT

Idle

Idle

Figure 5.2: SDL [29] of packet handling

39

packets.
That no specific packet scheduler is used in the proxy, but rather

each available path being greedy by taking out the first packet they
can, can give a bad performance. For example, packets can be delivered
out of order at the receiver. Furthermore, packets can be transmitted
over a path that is in NLoS, which will increase the possibility of packet
loss.

5.1.3 Path management

The path management module is responsible for maintaining the paths.
This means that it should decide how many paths should be operative to
keep the desired QoS. This is done in two ways, illustrated in Figure 5.3.

The first approach to maintaining the paths to achieve a desired QoS
is the predictive approach. The predictive control is triggered every 150
ms, as in the simulator. Once triggered, a new predictive control is
scheduled. This ensures that the next predictive control happens 150
ms after the previous predictive control was triggered. After that, the
calculations start, where it predicts how the queue will look in the next
200 ms, called the time horizon. What type of calculation is performed
is based on the control method used. It can either be CDF-based or FPT-
based, as described in chapter 3. When the calculations are complete,
a check is performed to ensure that a reactive control did not happen
while the calculations ran. This will ensure that a new path change
does not occur too soon after a previous path change.

The results of the calculations can be to add a path, remove a path,
or do nothing. If it is to remove a path, a check is performed to ensure
that removing a path is OK. This check includes running the prediction
again, but with a path less. This check is only performed if less than
five paths are in use. The fewer paths there are, the more critical it is
to remove one. A signal is sent to the operator to tell it to remove a path
if it is OK to remove a path. Suppose the decision was to add a path, a
signal is sent to the operator right away, telling it to add a new path.

The second way of changing the number of paths is if a reactive
control is triggered. Reactive control is triggered when the packet
handling module signals to the path management module that a
reactive control is to be triggered. This will happen if the queue reaches
a predefined threshold. When triggered, the first thing that happens is
that a new predictive control is scheduled in 150 ms. Then a signal is
sent to the operator to request the addition of a path. If there are more
paths to add, the operator will add a path.

5.1.4 Additional components: Operator and LoS/NLoS
switcher

The three main modules described so far are what the proxy will
consist of in a real system. However, this proxy will not be tested in
a real system but in an emulated one. Two additional components are

40

Process: Path Management
Idle

Predictive
control triggered

Reactive control
triggered

Predict

None

Remove Add or
remove?

Schedule new
predictive control

Idle

Decision

Remove path

Add

Add path To Operator

To Operator

Schedule new
predictive control

Yes

NoOK to

remove?

No

Yes
Was reactive

control triggered

while calculations

was running?

Figure 5.3: SDL [29] of path management

41

introduced to deal with things that are not the proxy’s responsibility:
an operator and LoS/NLoS switcher of the paths.

The operator and the LoS/NLoS component are not part of the proxy
in a real system, but these modules are necessary to keep the system as
realistic as possible in an emulated one. The operator has the function
of adding/removing a path according to what the path manager decides,
and the LoS/NLoS component changes the capacities for the different
paths to emulate a mmWave network.

Operator

The operator is responsible for adding and removing paths. It receives
a signal from the path management module that a path is either to be
added or removed. When a signal arrives, the operator needs to first
wait PathChangeDelay time before doing anything. This is included to
emulate a real system where adding/removing a path takes some time.
After waiting, the operator finds out if the signal it received was to add
or remove a path and acts accordingly.

LoS/NLoS switcher

The LoS/NLoS switcher changes the capacity for the different paths to
simulate a moving person in an urban environment where the LoS to
the different base stations change as the person moves around. Both
the shadowing fading effect and the LoS/NLoS dynamics of the paths
are simulated in the simulator in chapter 4. This is not done in the
emulator. Only the LoS/NLoS dynamics of the paths are emulated since
emulating the shadowing fading effect will imply changing the capacity
of the paths too often. On average, emulating the LoS/NLoS dynamics
of the paths will mean changing the capacity every third second.

5.2 Implementation

The proxy is, as the simulator, written in Julia 1.7 [31]. This was chosen
for two distinct reasons. The first is that since the simulator is already
written in Julia, transferring the code used in the simulator to the proxy
is easier. Second, Julia is a programming language that is supposed to
be fast and efficient, which is suitable for the proxy since it should run
fast. This section explains how the proxy is implemented with regard to
the design.

5.2.1 Parallelization

The proxy consists of, in total, five modules that must run concurrently:
packet handling, path management, packet scheduling, operator and
LoS/NLoS switcher. This makes parallelization an essential step in
implementing the proxy. In Julia, four different parallelization mech-
anisms exist: coroutines, multi-threading, distributed computing, and

42

GPU computing [32]. Coroutines are not strictly parallel computing
but allow suspending and resuming computation for I/O, event hand-
ling, etc. Julia’s multi-threading allows to schedule tasks on multiple
threads or CPU cores concurrently, where the tasks share memory. Dis-
tributed computing can start numerous processes, where each process
has its own memory space, and finally, GPU computing allows the pro-
grammer to run Julia code natively on GPUs.

Initially, distributed computing was used in the proxy, where each
module would run on different processes with different memory spaces.
Having separate memory space is easier to work with, and initially,
there was not much that needed to be shared between the modules.
But, as the system’s complexity evolved, what needed to be shared
between the different modules also changed. There are some data
structures in Julia that support multi-processing, like SharedArray and
RemoteChannel [33]. However, they do come with their limitations. For
example, SharedArray can only store elements of bit type. This limits
to mainly storing numbers, which is too limiting to be used in the proxy.

After initially trying to implement the proxy using distributed
computing, using multiple threads was chosen instead, as I found it
easier for this proof-of-concept prototype. As mentioned, threads share
memory space; thus, there are no limitations to what type of data
structure that can be used. However, another problem arises when the
memory space is shared: thread safety. Keeping code thread-safe means
ensuring that only one thread can modify or read the shared data at a
time. Suppose multiple threads access the same data element, where
one writes, and another reads; unexpected things can happen. Locks
can be used to ensure that only one thread can access an element at a
time. Locking and unlocking is a way to ensure that reading and writing
to an element are done securely.

There are different ways of solving the locking of elements. One
solution is to have one global lock that each thread must try to acquire
when it wants to read/write an element. This, however, has the effect of
limiting parallel execution and can slow down the system. If one thread
wants to use the lock to retrieve the information about a path, it will
block another thread that may wish to access a different element. This
is unnecessary blocking and can give a lower performance. Another
solution, which is the one that is in use in the proxy, is to have a
different lock for each element that different threads may modify. This
will reduce the blocking that could happen when using one global lock.
However, it is important to remember that locking and unlocking are
not trivial, with regard to the time it takes to acquire a lock, and should
be kept at a minimum.

The different threads in the proxy

The proxy consists of nine main threads that run concurrently: one
thread to handle incoming packets, four threads for handling outgoing
packets (one thread per path), one thread for the path management,

43

one thread for the operator, and one thread for the LoS/NLoS switcher.
Some additional threads are also used, which will be explained later.

To start one of the modules in a new thread, the build-in macro
@spawn [34], which comes from the Threads module, can be used.
For example: @Threads.spawn packet_handling(). Here the packet
handling module will start in one of the available idle threads. The
disadvantage of using @spawn is that there is no guarantee that a new
thread will be used. An already working thread can be picked if it
is incidentally idle. To avoid two modules (e.g. packet handling and
path management) running on the same thread, ThreadPools is used
[35]. The macro @tspawnat in ThreadPools can be used in the same
way as @spawn but have one more argument: the thread id, which
specifies which thread the task should start on [36]. An example of
how it is used: @tspawnat 2 packet_handling(). When this is called,
the packet handling module will start on the thread with id 2. This
can then be used to start the different modules on different threads and
ensure that they run concurrently.

When using ThreadPools, the scheduling is manually done since the
different modules are forced to run on the assigned thread. However,
this is not done for all of the threads in use in the proxy. Every time the
calculations for the predictions are made, the work will be distributed
on four threads by the math kernel library (MKL) [37]. Which threads
that are selected are not something that is chosen beforehand, thus a
thread that is assigned to one of the modules can be selected so that that
module can not do its work while the calculations are running. How
significant a disadvantage this is depends on how long time it takes to
finish the calculations.

5.2.2 A shared data structure

One shared struct is used to store information about the system, called
PathSystem. This is shared between all the threads, i.e. the modules.
In PathSystem, the queue, the list of paths, and several variables are
stored.

The list of paths is a Vector that stores elements of the type Path. A
Path is a structure where all information about a path is stored. This
includes to-address, from-address, the sockets used to send packets over,
if the path is active or not, if it is in LoS or not, the available capacity,
and the average time in LoS and NLoS. The addresses are stored as a
Sockets.InetAddr, which is a type that can hold both the IP address
and the port number. The socket used to send packets over is of type
UDP.

PathSystem also stores values like which control method is in use
(eg. reactive control, CDF-based prediction, CDF-based prediction with
reactive control, etc.). The thresholds used for the queue are also stored:
Q_HT, Q_HT_prob, Q_LT, Q_LT_prob. They are used to decide if it is
necessary to add a path, remove a path, or do nothing. t_IC is the last
time a change was initiated, and PC_token is the next predictive control

44

token.

5.2.3 The queue

The data structure used for the queue has to support multiple
threads adding and removing elements from the queue at a fast rate.
Two different data structures were tested: Julia’s Channel [38] and
DualLinkedConcurrentRingQueue [39] from the ConcurrentCollections
package.

A Channel is a FIFO queue, which is optimized for multi-threading
since multiple threads can read and write to it. It is fast and efficient,
making it a good choice for the queue where it is expected that the two
threads will put and take elements in and out of the queue at a high
rate. However, when using the Channel data structure, it was found
that it did not perform as required. Every time something is put in
the queue or something is taken out, a lock is needed. When looking
at the source code for Julia’s Channel, the lock is held unnecessarily
long, making it slow down the process of adding/removing packets from
the queue. It is stated in the documentation that a Channel is efficient
at adding and removing elements to and from the queue, but not as
efficient as needed for the proxy.

DualLinkedConcurrentRingQueue (DLCR queue) is a new data
structure that implements an almost non-blocking queue [40]. By re-
ducing the number of locks needed and reducing the time a lock has to
be held for, adding and removing elements from the queue can be done
quicker. A difference between a DLCR queue and Julia’s Channel is that
the DLCR queue is boundless. When creating a Channel, how many ele-
ments it maximum can have can be specified. This is not something that
can be specified when creating a DualLinkedConcurrentRingQueue.

Another difference is that in Julia’s Channel how many elements
the Channel currently has can be accessed by a function call. This is not
supported in a DLCR queue. An atomic counter [41] is used to always
know how many packets there are in the DLCR queue. This means that
every time a packet gets put in the queue or removed from the queue,
a lock has to be used to increment/decrement the atomic queue length
counter. However, holding a lock to only add or subtract a number by
one does not take a long time.

5.2.4 Message passing between the modules

Julia’s Channel [38] is used to pass signals between the different
threads in the proxy. Using a Channel as the proxy’s queue was not
fast enough, since it is expected that taking elements in and out of the
queue is done at a very fast rate. However, a Channel is very suitable
as a way to send signals between different threads, where elements will
not be added and removed at a high rate. Furthermore, a Channel is
thread-safe and optimized to work with threads.

45

One example is the signal to the operator. Whenever a path change
is initiated, the operator has to be notified that it should add or remove
a path. This is done by placing an action signal (add or remove) in a
Channel by the path manager thread, which is then read by the operator
thread.

5.2.5 Accurate timing in the proxy

For all of the different modules that the proxy consists of, all of them
have to sleep either periodically or sporadically. One way of sleeping in
Julia is to use sleep() [42]. However, the minimum sleep time this
function accepts is one millisecond. Furthermore, when testing this
sleeper, the accuracy was not good, as it often slept for a longer time
than it should. Another function that can be used is systemsleep()

[43]. This function blocks the Julia thread that it is running on, thereby
preventing other tasks from using this thread while it is idle. This
may give a lower performance since one thread can only be used for
one task, consequently having one available thread less to use for the
proxy. Moreover, the accuracy of this sleeper did not suffice to be used
in the proxy.

Both sleep() and systemsleep() has too high granularity (1 ms),
which prevents sleeping for microseconds at a time with high accuracy.
Linux has a function called clock_nanosleep [44], which allows the
calling thread to sleep with nanoseconds precision. It can be accessed
using a system call to libc [45]. As the proxy aims for microsecond
precision, this is more than adequate to be used in the proxy. To call
a C function in Julia, a ccall to the appropriate C function, in this
case clock_nanosleep, has to be made. This C call is implemented in a
function called nanosleep!(), which takes two arguments: a timespec
structure used as starting time and how many nanoseconds from this
starting time the sleep should last. For measuring the time a monotonic
clock is used, which is a clock that measures the time since some
unspecified point in the past and will not change after system startup.

nanosleep!() uses absolute time when measuring how long the
sleep should last. nanosleep!() works as follows. First, a timespec
structure, ts, is made, and what the time is now, found by looking up
the monotonic clock of the system, is filled into the timespec structure.
Then, a call to nanosleep!(ts, sleep_time) is made, where ts is the
time structure created and sleep_time is how long the sleep should
last. ts will then be added with sleep_time, and when the time is more
than ts+sleep_time the sleep should quit.

Repeated calls to nanosleep!(ts, sleep_time) will continue to
add sleep_time to ts. This means that if a call to nanosleep!()

returns late one time, the next time nanosleep!(ts, sleep_time) is
called, the sleep will not last sleep_time amount of time, but less. This
means that if nanosleep!(ts, sleep_time) is called repeatedly, the
sleep time will on average be sleep_time, but sometime it will be more
and sometime less.

46

This behavior can be useful in some cases and useless at other times.
An example of where this behavior is useful is when sending packets to
the proxy, where the goal is to send at a certain rate. If the goal is
to send a packet every second, sending two packets with half a second
interval and two other packets with two seconds intervals do not make a
huge difference. As long as the average interval between the packets is
one second, it is fine. However, there is a use case in the proxy where the
sleep function should not expire before sleep_time amount of time has
past, and that is in the path manager. The path manager should trigger
the predictive control every 150 ms, but not less than this. To ensure
that a call to nanosleep!(ts, sleep_time) does not sleep less than
sleep_time amount of time, finding the time by checking the monotonic
clock and setting ts accordingly before the call to nanosleep!() needs
to be made. This will prevent that a late sleep previously does not affect
the following sleep by sleeping less.

Using nanosleep!() in the proxy every time microseconds accuracy
is needed gives good results, in terms of the accuracy of the sleep.
However, calling a blocking C function is problematic because of how
multithreading is done in Julia 1.7. Calling Julia’s sleep() will handle
multithreading nicely by allowing the thread where the sleep() call
was made on to be used by other tasks in the running program. Calling
nanosleep!() will not be handled the same way, as it is a blocking C
function that is being called. Furthermore, Julia uses a scheduling
algorithm that is called static [46], which means that a new task is
iteratively assigned to one of the threads, regardless of the workload.
This means that if many threads are blocked because of a call to
nanosleep!(), the possibility of a task being scheduled on one of these
threads increases. This can block the whole system so that nothing is
able to run.

A way to come around this is to only call nanosleep!() from one
thread. David Hayes, one of the supervisors for this thesis, implemented
TimeQueue, which is a priority queue, that can be used by tasks to
sleep. A new thread is introduced, that will run TimeQueue, so that only
this thread will be calling nanosleep!(). TimeQueue has an ingoing
queue where it accepts tasks that want to sleep and multiple outgoing
channels to notify a task that a sleep is done. The idea is that every
50 microseconds (will use a while-loop with nanosleep!() to sleep for
50 microseconds at a time), it will check the ingoing queue (uses a
ConcurrentDict [47] from ConcurrentCollections for this, where the
key is the time the sleep should finish and the value is the channel
that is used to notify the task that the sleep is finished) to see if any
tasks are finished with their sleep. If any are, they will be notified by a
signal sent via a Channel, so that they can wake up and continue their
execution.

Whenever a module needs to sleep it will call the blocking function
ClockedNanoSleep(), which takes four arguments: the priority queue
for TimeQueue that is shared between all tasks, a Channel that is specific
for each task which is used to signal that a sleep is done, and the same

47

two arguments passed to nanosleep!() (a timespec structure used as
starting time and how many nanoseconds from this starting time the
sleep should last). By using a Channel in the sleeping task to wait to
wake up, a nice blocking will be done, so that other tasks are able to run
on that thread. However, the accuracy of this sleeper is based on how
quick the task that is waiting for a sleep to finish will be scheduled on
one of the threads when a signal is sent to its Channel that a sleep is
done.

Furthermore, since the TimeQueue has to traverse all elements put
in its ConcurrentDict every 50 microseconds, the timing might be off
if it has to loop through many elements, i.e. many tasks want to sleep
at the same time. This will however sort itself out as explained earlier
because an absolute time is used so if the time ts+sleep_time, which
are arguments sent to ClockedNanoSleep(), is more than the actual
time, then it will return immediately without sleeping sleep_time first.
A more sophisticated priority queue would make this more efficient but
was not currently available.

5.2.6 Path management

Every time a predictive control is triggered, the Markov model will be
solved by running various calculations. What type of calculations that is
done depends on the chosen model, i.e. if it is CDF-based or FPT-based
prediction. After the model has been solved, P_H and P_L are returned.
These numbers reflect whether the prediction resulted in the desire to
add or remove a path. If P_H is less than P_InSu f f icient, adding a path
is necessary. If P_L is more than P_MorethanSu f f icient, then removing
a path is necessary. When adding a path, a signal is sent immediately
to the operator to tell it to add a path.

When removing a path, and the number of paths is higher than five,
a signal is sent to the operator so that a path can be removed. If the
number of paths is five or less a check needs to be performed before
signaling the operator, to ensure that removing a path is fine. This is
because the impact of removing a path will be higher the fewer paths
there are. The check includes of rerunning the calculations with a path
less (without actually removing it). If this results in the desire to add a
path, then removing a path was not a good idea and nothing is done.

To track when the last control was done, t_IC is used so that t_IC is
set to now each time a control (predictive or reactive) is performed. This
will prevent two controls from being triggered too soon after each other.
Predictive control is triggered every 150 ms, given that no reactive
control is triggered. A reactive control can be triggered no sooner than
the reactive control interval, TR, allows. This is set to be 50 ms in the
proxy. Whenever a reactive control is triggered, t_IC will be updated.
This will affect the predictive control in that it has to be shifted some
time forward so that there are 150 ms between the reactive control and
the next predictive control.

Since the proxy does not know if a reactive control will be triggered

48

or not, a predictive control will be scheduled every 150 ms. However, if
a reactive control is triggered, a previously scheduled predictive control
will be discarded, and a new predictive control will be scheduled in 150
ms. To know which predictive controls to execute and which one has
been discarded, a PC_token is used. This is a number that reflects the
number given to the latest scheduled predictive control. Whenever a
new predictive control is scheduled, PC_token will increment by one.
When the predictive control is triggered, a check is done to see if that
specific predictive control has the same number as PC_token. If it is
the same, then the predictive control is executed. If it is not the same,
a reactive control has happened, which incremented the PC_token, and
the predictive control comes too soon after, so it gets ignored.

Scheduling a predictive control can be done in various ways. One
way is to use a Timer [48], which is a built-in function in Julia that
will call a callback function when it expires. This can be used to
trigger the predictive control in 150 ms. When a predictive control
is triggered, a new predictive control is scheduled immediately (see
Figure 5.3). This ensures that there are 150 ms between each predictive
control. However, while testing the proxy, it was found that the Timer

in Julia is heavily affected by other things going on in the proxy,
consequently delaying the timer, i.e. increasing the time between each
predictive control. The predictions try to foresee the queue for the
next time horizon, set to 200 ms. This means that the time between
each prediction should be no longer than 200 ms, preferably smaller.
When using Julia’s Timer, the time between two predictive controls was
sometimes more than 200 ms.

Another way of scheduling the predictive control is to use a while-
loop and a sleep function that will sleep for 150 ms before triggering
the predictive control. As the accuracy of the sleep function increases,
the interval between each predictive control will be closer to 150 ms. As
discussed in the previous section, subsection 5.2.5, sleeping in the proxy
is done by calling ClockedNanoSleep(), which gives accurate sleeping
results.

5.2.7 Packet scheduling

Whenever a packet is placed in the queue, it will activate the packet
scheduler so that the packet can be transmitted over one of the available
paths. Availability in this context is based on two things: 1 – the path
has status as active, i.e. it is operational. 2 – the outgoing buffer for
the path’s socket has less than a couple of packets in it. A while-loop is
used so that it first checks if a path is active, then if there is a packet
in the queue, and finally if the path is ready to send. If one of the
above checks is false, then it will sleep for 100 microseconds by using
ClockedNanoSleep() before checking again, otherwise, a packet will be
taken out of the queue and transmitted to the receiver.

The packet scheduler needs to be optimized to deal with the high
number of packets it has to process in a short amount of time. An

49

efficient way of checking the outgoing buffer for the path’s socket and
sending packets needs to be implemented to decrease the per-packet
processing.

Optimizing sending packets

The proxy has to deal with very high data rates, up to several gigabits.
To achieve this high rate of incoming packets, the proxy also has to take
packets out from the queue and send them over a path quickly. If the
queue starts to fill up because the paths are in NLoS, then the proxy
has to be able to drain the queue when the paths are in LoS by sending
packets faster than it receives them. That means that if the proxy is
going to operate at a multigigabit data rate, it should be able to send
packets at an even higher rate.

The available capacity will increase as the queue fills up and the
proxy adds paths. As the available capacity increase, the possible
outgoing speed increase, and the interval in which the packets needs to
be sent to achieve that speed will decrease. For example, if the total
available capacity is 1 Gbps, then a packet needs to be transmitted
every 12 microseconds to achieve that rate. If the total available
capacity increases to 3 Gbps, then a packet must be sent every fourth
microsecond. To call the send function every fourth microsecond is
demanding for the CPUs and will take too long. Instead of sending
a packet at a time, one can send a larger package, including multiple
packets, and then let the lower layers handle splitting that into the
appropriate size that can be sent over the network (in this case 1500
bytes (B), as this is the maximum transmission unit (MTU) size of
Ethernet connections).

Generic segmentation offloading (GSO) is a mechanism that enables
this by letting the network interface card (NIC) segment the packets
into the appropriate size using its own processor, instead of letting
the OS use the CPUs to segment the packets. NIC is a hardware
component that allows the machine to connect to a network. It has a
driver, where the software is installed, and it is this component that
can segment packets it receives from the OS. This will allow the proxy
to send multiple packets with one call to send, thereby decreasing the
CPU’s load and increasing the possible outgoing sending rate.

The proxy takes advantage of GSO by taking ten packets out of
the queue and storing the content of each packet in a larger packet,
which NIC will fragment into appropriate sized packets to be sent to
the receiver. However, since the capacity of a path can fluctuate greatly,
sending ten packets in one go over a path with low capacity will yield
low performance. To mitigate this, ten packets are only taken out of the
queue if the path they will be sent over is in LoS. If it is not, only one
packet is sent.

While testing the proxy, the thread assigned to sending packets to
the receiver ran at around 100% CPU power. This means that it was
working as hard as it could. However, the sending rate did not meet the

50

requirements, which means that even though the power of the kernel’s
CPU was maxed out, the sending rate did not suffice. To mitigate this,
a sending thread is used for each of the paths, i.e. four threads are used
for the four paths. Each of the four paths has access to the queue, and
will greedily take packets out from the queue whenever the paths are
available and there are packets in the queue.

When using multiple threads to send packets, using Julia’s send

to send packets is not the best way. Julia’s send uses Libuv [49]
underneath to send packets. However, this does not cope well with
multithreading, in that having multiple threads sending things does
not speed up the sending. So there is no benefit to adding a thread. To
send packets on the different interfaces, a direct call to the C function
sendto [50] is made. When sending packets this way, the benefit of
using multiple threads to send packets is seen, and the proxy is able to
send packets faster than it received them, hence it is able to drain the
queue.

Checking the buffer

If the buffer for the path’s sockets has more than a couple of packets
in it, it is probably because the path is in NLoS; thus, sending more
packets over this path will likely lead to packet loss (unless the path
gets in LoS). To check the buffer for a path’s socket, a lookup is done
in the /proc/net/udp file, which is a file available on Linux. This file
contains information about the UDP sockets that are in use by the
system, such as the address and port number of the socket and how
many bytes are in the outgoing and incoming queues for the socket.
The outgoing queue is the field of interest, and a check is performed to
ensure that there are no more bytes than two worth of packets in the
queue, i.e. 3000 B, before transmitting any packet over that socket.

However, checking the buffer for every packet is too time-consuming
and will prevent the sending rate from reaching gigabit speed. The
capacity for a path is known when sending packets over it, and thereby
it is also known how quickly the packets will be sent over that path.
This means that how long the buffer will be occupied before all the
packets transmitted over that path is known and can be used to prevent
sending packets over the same path too soon, consequently keeping the
buffer of that path’s socket low.

Each time a packet, or a collection of packets, is sent over a
path, how long the path is estimated to be busy with sending those
packets is calculated. Suppose the path has a capacity of 1 Gbps
and wants to transmit one packet. In that case, it will take 12
microseconds before the path is ready to send a new packet (the packet
will be sent immediately, while the second packet can be sent after 12
microseconds); hence the estimated busy period for that path will be 12
microseconds, plus a few microseconds to compensate for this being a
real system, where things do not happen at exact times. The task will
be put to sleep, by using ClockedNanoSleep(), for the time calculated.

51

This will prevent other packets to be transmitted over that path.
The busy period only estimates how long the socket’s queue will

have something in it. To ensure that the estimates are correct, for
every 100th packet transmitted over a given path, a lookup in the
/proc/net/udp file is done. Since this file reflects how much there is in
the queue, a lookup will ensure that the proxy does not keep sending
over a path with a full outgoing buffer.

5.2.8 Operator

The operator is responsible for making paths operational and tearing
them down. It receives a signal to either add a path or remove a path.
After a signal is received, it first needs to wait for PathChangeDelay
seconds. Changing the number of paths takes some time in a real
system, as this tries to emulate. PathChangeDelay is set to 20 ms, which
is the same as was used in the simulator in chapter 4.

If the operator receives a add path signal, then it first needs to check
whether there are any paths to add or if all of the available paths are
already in use. If there is a path to add, the path with the highest
capacity will be activated. If the operator receives the remove path
signal, it has to check if the proxy uses more than two paths. If the proxy
only has one path, removing it will make the proxy have no operational
paths. This will give a bad performance and is therefore prevented.
If there are at least two operational paths, the path with the lowest
capacity will be set to inactive.

5.2.9 LoS/NLoS switcher

As the user moves around, the capacity will fluctuate for each path
between the proxy and the receiver. An LoS/NLoS switcher is used to
simulate this in the emulator. This module will switch the capacity
for each path independently, simulating that a path goes from LoS to
NLoS and vice versa. To change the capacity for each of the paths
independently, coroutines are used (see subsection 5.2.1). This enables
each path to change its capacity autonomously.

Each path in the proxy has two sockets; one is used when the path
is in LoS, and the other is used when the path is in NLoS. The reason
for using two sockets per path is to be able to emulate a path that has
a fluctuating capacity (see subsection 6.2.5 for details on how changing
the capacity in the testbed is done). When a path switches from being
in LoS to being in NLoS, and vice versa, the socket used to transmit the
packets will also change, consequently changing the capacity for that
path.

5.2.10 Garbage collection

Garbage collection is the process of freeing unused data objects so that
the memory they are using can be reused by the running program

52

[51]. The garbage collector in Julia uses the mark and sweep algorithm,
which has two phases: a mark phase and a sweep phase. In the mark
phase, every object still in use is marked. In the sweep phase, every
object that is not marked will be cleaned, i.e. the memory can be
overwritten by someone else.

Every time the garbage collector does a cleanup in Julia, all other
threads will be paused while the garbage collector goes through the
heap and mark used data objects [52]. If the garbage collector uses a
lot of time going through the heap, this will negatively affect the proxy’s
performance, since all the threads will be blocked while waiting for the
garbage collector to finish.

Some garbage collection can be avoided by using pre-allocated data
structures rather than dynamically allocated ones. For example, every
time a packet is retrieved from the queue, it is temporarily stored in a
variable. This variable has been pre-allocated, which will prevent a new
memory allocation every time a packet is taken out of the queue.

However, some allocations will be performed during runtime, and
the garbage collector will have to clean up every once in a while. As
mentioned, every time the garbage collector does a cleanup, all threads
are blocked and cannot execute. A smaller cleanup is performed more
regularly, every 150 ms, to prevent the garbage collector from doing a
big cleanup periodically. This means that the garbage collector will use
less time on the cleanup, thus the threads will be blocked for a smaller
amount of time, consequently increasing the performance of the proxy.

53

54

Chapter 6

Test environments

When developing the proxy, a way to test it is essential. To test the
proxy, two different testing environments are used. A virtual testbed,
which consists of a virtual machine, is used in the early phases of the
proxy development. When the proxy had been tested enough in the
virtual testbed, a hardware-based testbed was built so that the proxy
could be tested under more realistic conditions. This section describes
the virtual testbed and the hardware-based testbed.

6.1 A virtual test bed

While implementing the proxy, a virtual testbed is used for debugging.
The testbed consists of a VM, where the proxy run, and a laptop, where
the sender and the receiver run. A virtual testbed is used because it is
easy to set up, making it easy to start developing the proxy. In addition,
the virtual testbed can simulate that the proxy and the sender/receiver
are running on different machines, which is helpful while implementing
the proxy.

The testbed consists of one laptop and a VirtualBox [53] VM running
Manjaro over Arch Linux 64-bit. The proxy runs on the VM, and the
sender/receiver runs on the laptop. For one VM in VirtualBox, four
different interfaces are available. One interface is used to connect the
VM to the internet via NAT [54]. The three other interfaces use host-
only mode, which allows the VM to be connected to the host, i.e. the
laptop the VM is running on, in an isolated network. Eight interfaces
are available between the proxy and the receiver in the simulator and
later in the testbed. This is not achievable in the virtual testbed.
However, as the VM’s goal is to test if the code works, having a smaller
number of paths will not affect the testing. In addition to adding
network interfaces in the VM, multiple processors are added. This
enables the proxy to run on multiple threads, which is an essential part
of the design of the proxy as explained in chapter 5.

The laptop that runs the VM runs the sender and the receiver. The
sender sends packets to the proxy, while the receiver receives packets
from the proxy. Since the sender and the receiver is running on the

55

same machine, the packets will go from the laptop (the sender) to the
VM (the proxy) and back again to the laptop (the receiver). Since there
are only three interfaces between the laptop and the VM, one of them
is used for both sending and receiving data. This means that the proxy
has one interface for incoming packets and three interfaces for outgoing
packets, where one interface has to both receive and send packets.

Using the virtual testbed is a good approach in the early phases
of proxy development. However, as the proxy grew and the number
of threads increased, the proxy could no longer run in the virtual
testbed. The reason for this is the number of processors available.
At the beginning of the proxy development, only three threads were
used. Thus four processors were enough. However, when this number
increased, the limited number of processors became a problem. At this
point, it was also time to set up the hardware-based testbed. The proxy
implementation was not completely done when the transition to the
hardware-based testbed was made. Nevertheless, the proxy got tested
in the virtual testbed, which resolved many bugs under development.

6.2 A hardware-based testbed

After the initial testing using a virtual testbed is done, the proxy is
tested in a real testbed, using real hardware. Before any tests could be
done on the testbed, it must be built. One of the supervisors for this
thesis, David Hayes, helped build the testbed. This section explains
all the testbed’s components and how they were set up to work for our
needs.

6.2.1 The network topology

The main goal of the testbed is to test the path manager used in the
proxy. There needs to be a proxy connected to a receiver through
multiple connections to test this. Figure 6.1 depicts the testbed, which
consists of two machines and a switch between them. The proxy runs in
one machine, while the receiver runs in the other machine.

A switch enables multiple ethernet connections between the proxy
and the receiver, where each connection will emulate a mmWave link.
This is done because the receiver does not have numerous interfaces
that the proxy can directly connect to; hence a switch is used where the
proxy can have eight connections to the switch, and the switch can set
up one high-speed connection to the receiver.

To test the proxy’s path manager, it needs to receive packets. This is
done by placing the sender in the same machine as the proxy, and then
letting the machine generate packets.

6.2.2 Hardware used in the testbed

The testbed will be emulating a mmWave network, which operates with
data rates of several gigabits. This makes the demand for the hardware

56

Figure 6.1: The setup of the hardware-based testbed. It consists of a
machine that runs the proxy, another machine that runs the receiver,
and a switch between them.

particularly challenging, as every component has to be able to deal
with such speeds without slowing down the traffic. The machine that
runs the proxy needs to run a multi-threaded program efficiently. The
switch between the devices has to be able to forward packets from the
proxy to the sender without packet drops, and the cables used must
operate at gigabit speed. In the following section, each of the hardware
components used in the testbed will be explained and why they were
chosen for this testbed.

The Proxy machine

The machine that runs the proxy needs to be able to run as many
threads as the proxy needs. As mentioned in chapter 5, the proxy
runs numerous threads. The specifications of the machine used to
run the proxy are shown in Table 6.1. It has a processor with six
CPU cores and two threads per core. That means that it can run 12
threads concurrently, which is less than what is used by the proxy.
Furthermore, the network cards used between the proxy and the switch
are Intel X710-T4L. This is a network adapter that can operate with
very high data rates, up to 10 Gbps [55]. Two such adapters are used
in the proxy, with four interfaces available per adapter, enabling eight
outgoing interfaces from the machine.

57

Table 6.1: The relevant specifications for the machine used to run the
proxy.

Processor AMD Ryzen 5 2600 Six-Core Processor (2
threads per core)

Kernel 5.17.1-3-MANJARO
Operating system Manjaro over Arch Linux (64 bit)
Network cards Intel X710-T4L
Memory 8 GB

The speed of the CPU will make an impact on how well the proxy will
perform. A CPU that runs on a higher frequency will be able to execute
more operations. Thus it can handle more load. The processor used
in the machine that runs the proxy, see Table 6.1, has three different
CPU frequencies that it can run at: 1.55 GHz, 2.8 GHz, and 3.4 GHz.
Which frequency each of the 6 CPU cores uses depends on what the
governor for the CPU chooses. Different types of governors can be
used. There are governors that either select a frequency for the CPU
statically (performance, powersave and userspace) or dynamically select
it as the load changes (ondemand, conservative and schedutil). The
default governor is schedutil which uses CPU utilization information
provided by the scheduler to make its decisions. We decided to use
the governor that is called performance, which is a static governor that
selects the highest possible frequency for the CPU.

The Receiver machine

The receiver machine is only receiving packets from the proxy. Nothing
is done with the content it receives, and no messages are sent back to
the proxy to do flow control, i.e. tell the proxy to reduce its sending rate.
The point of this machine is only to serve as an external machine that
the proxy can send its data. Having a separate device is essential in this
context because we want to set up multiple real connections between the
proxy and the receiver to emulate a wireless mmWave network.

Switch

A switch is used to have multiple paths between the proxy and the
receiver. The switch we use in this testbed is NetGears’ 8-port multi-
gigabit ethernet smart switch MS510TX [56]. This switch has eight
ports for incoming packets and one uplink port for outgoing packets.
This means we can have eight interfaces between the proxy and the
switch and one interface between the switch and the receiver.

The switch support different data rates for the various interfaces it
has. Four of the ports support up to 1 Gbps, two of them can handle data
rates up to 2.5 Gbps, and the last two of the ports support traffic with
speeds up to 5 Gbps. All of them support traffic down to 100 Mbps. For
the uplink port, which is connected to the receiver machine, traffic up to

58

10 Gbps is supported. However, the receiver machine does not support
traffic speeds up to 10 Gbps, it only supports traffic up to 1 Gbps. This
means that the switch may need to drop packets it receives from the
proxy if the proxy tries to send packets at a faster rate than 1 Gpbs. As
the goal of the testbed is to test the proxy and how the different path
managers perform in the proxy, we do not care that packets get dropped
in the switch.

The MS510TX switch is considered to be an intelligent switch, where
not only switching can be performed but also routing. This can be set
up using the graphical user interface (GUI) that comes with the switch.
This is not useful for our use case, but the GUI did make it easier to
verify that everything on the switch was configured correctly.

Cables

To support traffic with the data rates we need to operate on, the choice
of cables is important. This is because we do not want the wires to be the
bottleneck. Two types of cables are used: two of type Cat6a and seven of
type Cat6. Type Cat6a cables can support 10 Gbps network connections,
and one of them is used between the switch and the receiver, and the
other is used between one of the high-speed ports on the switch to the
proxy. For the remaining seven connections between the switch and the
proxy, cables of type Cat6 are used. They support traffic up to 1 Gbps.

6.2.3 Sending traffic to the proxy

The sender will send packets to the receiver via the proxy in a real
system. However, in the testbed, the sender is not an external machine
that sends packets but rather placed in the same machine that runs the
proxy. We did not have access to three computers, thus the sender and
the proxy had to be placed on the same machine.

Generating traffic to be sent to the proxy is not a trivial task when
we want to achieve a sending rate of 2 Gbps (the sending rate used
in the simulation experiments in chapter 4). Multiple iterations were
needed to set up a sender that can send packets to the proxy at a gigabit
rate. The first approach in setting up the sender was introducing a
new thread that will send packets to the sender via localhost. This
means that the proxy will be receiving packets via localhost, i.e using
IP address 127.0.0.1.

To achieve a sending rate of 2 Gbps, the sender must send a packet
every sixth microsecond. This means that the sender has to send a
packet, then sleep for six microseconds before sending a new packet.
The challenge is to be able to sleep for only six microseconds. As
discussed in subsection 5.2.5 different ways to sleep exist in Julia. When
using sleep() [42], where the minimum sleep time is one millisecond,
a sending rate of 6 Mbps is achieved. This is too slow, as a mmWave
network operates in hundreds of megabit or gigabit speeds.

59

Another function that can be used is systemsleep() [43], which
yields a speed of 116 Mbps when used. This is much better than the
other one but still very much less than the goal of 2 Gbps. Furthermore,
using this function call increases the consumption of CPU power spent
on running the kernel, from 20% (used when running sleep()) to
53% (this was found by running Listing 6.1 while running the proxy,
and then taking the mean of the %system column). As discussed in
subsection 5.2.7, using a lot of the CPUs to run kernel-level code will
decrease the performance of the proxy since less CPU will be available
to run it.

Listing 6.1: Used to find the procentage of CPU used to run the kernel
for different sleep-functions. 38257 is the process ID for the Julia
program running the code.� �

$ pidstat -p 38257 -u -I -l 1� �
Since sleep() and systemsleep() has too high granularity, which

prevents the sender from sending packets with an interval of six
microseconds, nanosleep!() can be used, which can sleep with
nanoseconds precision. When switching out the sleep function used
previously with nanosleep!(), which uses C’s clock_nanosleep, a
sending rate of 555 Mbps is achieved. The sending rate is dramatically
increased by changing how the sender sleeps between sending the
packets, but it is still not at the desired rate of 2 Gbps. This can be
explained by looking at the CPU consumption again and how much the
CPUs execute things at the kernel level. By running Listing 6.1 while
running the proxy with the sender using nanosleep!(), 74% of the total
CPU power is used to run kernel-level code. This will mean that less
CPU power is available to run the proxy, thus it is not able to receive at
a higher rate than 555 Mbps.

Another way of generating traffic is not to send over sockets at all,
but to let the proxy generate the packets itself. Since the primary
focus is on multipath and getting the proxy working in a multipath
environment, having a sender that sends packets to the proxy via a
socket is unnecessary. The important thing is that packets get placed
in the queue at a specific rate. Removing the overhead of sending over
localhost will also reduce a lot of the processing associated with it since
we can avoid processing every packet twice (sending to localhost and
receiving from localhost).

To let the proxy generate the traffic itself means that the same thing
will be done as before, but rather to have a sender send a packet every
sixth microsecond, the proxy will put a packet in the queue every sixth
microsecond. As this is done in the proxy, ClockedNanoSleep() (see
subsection 5.2.5) can be used. By running Listing 6.1 again, the total
percentage of CPU power used went down to 26%, which is similar to
the first approach where sleep() was used. This is very good, as it
shows that doing it this way is less demanding on the CPU, thus giving

60

more available CPU power to run the proxy.
However, it did not yield a sending rate similar to 2 Gbps. A

rate of 1.3 Gbps was achieved. This is far better than the other
approaches mentioned, but it is still not the same rate as used in the
simulator. We could not achieve a higher rate because of the limits the
hardware used for this testbed has. We chose to test the proxy with
a sending rate of 1 Gbps to keep it simple. Since TimeQueue sleeps
for 50 microseconds between each time it checks its ingoing queue, as
described in subsection 5.2.5, it is not necessary to sleep less than 50
microseconds. This means that a packet is not placed in the queue every
12 microseconds (which is the interval needed to send at 1 Gbps), but 5
packets are placed in the queue every 60 microseconds. This will give
an average sending rate of 1 Gbps. The proxy will not be tested with the
same sending rate used in the simulator, however, 1 Gbps is still very
high, so the proxy will still be tested in a challenging environment.

6.2.4 Communicating between the machines

For the proxy to be able to communicate with the receiver, IP addresses
need to be set up. Each interface in the proxy and the interface in the
receiver are assigned an IP address. This is done manually to have
maximum control over the addresses and set it up correctly. The IP
addresses are set by using the GUI interface on Manjaro, where one
can see all the network interfaces one has and edit them. In Figure 6.2
the interface enp6s0f0 is getting the IP address 192.168.0.1.

Routes need to be set up to ensure that the different interfaces are
treated like different connections and not as one connection. This will
lock a specific IP address to a specific interface, which will ensure that
sending packets from different IP addresses also means sending them
over the different interfaces. This was done by first creating a route (see
Listing 6.2) and then adding it as a rule (see Listing 6.3) for all of the
eight interfaces.

Listing 6.2: Adding a IP route� �
$ sudo ip route add default via 0.0.0.0 dev enp6s0f0 tab 1� �

Listing 6.3: Adding a IP rule� �
$ sudo ip rule add from 192.168.0.1/32 tab 1 priority 500� �

6.2.5 Changing the capacity of the interfaces

To emulate a mmWave network the same way as was done in the
simulator in chapter 4, changing the capacities of the different paths is
essential. Since mmWave is a wireless technology that is very sensitive

61

Figure 6.2: Setting up the IP addresses to be used in the proxy and the
receiver.

to blockages, the capacity of the connection will also vary a lot. This we
wanted to emulate in the testbed by periodically changing the capacity
of the paths.

To change the capacity for a given interface is not as trivial as we
initially thought. First, we tried using ethtool, which can be used to
query and control network and hardware devices. Listing 6.4 shows
how it can be used to change the speed on interface enp6s0f0 to 100
Mbps. However, when we tried to do this, we got an error telling us that
we did not have permission to change it.

Listing 6.4: Chaning the capacity by using Ethtool� �
$ sudo ethtool -s enp0s3 speed 1000� �
Next, we tried changing the capacities of the interfaces between the

proxy and the switch using the switch’ GUI. For each switch’s interface,
the speed can be manually set. However, it can only be set to a few
predefined values. We also found out that setting a link to have a
speed of 100 Mbps was not possible, even though it should be able to
run at that speed. Furthermore, manually setting the speed for each
interface is not a viable solution. A solution to this could be to use
Simple Network Management Protocol (SNMP). SNMP enables sending
simple commands to the switch. However, changing the speed is not

62

one of the supported commands that can be sent over SNMP to this
particular switch.

The last attempt to change the speed was to use a traffic controller
[57] that can change the queuing discipline of an interface. We chose
to set every interface to the MQPRIO qdisc [58], which is a queuing
discipline that maps traffic flows to a hardware queue, where several
options can be set, where the most important option is the max_rate
option. With this, we can set the maximum bandwidth rate limit for a
particular interface.

With Listing 6.5 we can assign interface enp6s0f0 a MQPRIO qdisc,
and with Listing 6.6 we can change the speed to be 100 Mbps.

Listing 6.5: Insert a qdisc of type mqprio� �
$ sudo tc replace dev enp6s0f0 root mqprio num_tc 1 hw 1 mode channel

shaper bw_rlimit min_rate 0Mbit max_rate 1Gbit map 0 0 0 0 0 0 0 0
queues 1@0� �

Listing 6.6: Changing the speed to 100 Mbps� �
$ sudo tc change dev enp6s0f0 root mqprio num_tc 1 hw 1 mode channel

shaper bw_rlimit min_rate 0Mbit max_rate 100Mbit map 0 0 0 0 0 0 0 0
queues 1@0� �

However, a bug in the Intel driver made this change impossible.
Intel was notified about this bug, and they are working on resolving
it, but the fix is not released in time for it to be used in this thesis.

Furthermore, we tried to set up two traffic classes for each interface
so that each traffic class could be assigned different data rates. Then,
packets sent from the proxy would be given different priorities based
on the path’s availability. However, another bug in the Intel driver
prevented us from assigning multiple traffic classes to one interface.

After testing out various ways to change the capacity of the eight
interfaces between the proxy and the switch, where none of them
worked, we ended up using four paths, where each path is gives two
interfaces. By using Listing 6.5 to set the speed of an interface, we could
set up one LoS speed and one NLoS speed for four paths. Whenever a
paths switch from LoS to NLoS, or vice versa, the interface used to send
packets will also change. This enables us to test the proxy under a more
realistic scenario, than if all the path’s capacites were static, though
with fewer paths than we wanted.

63

64

Chapter 7

Testing the proxy
implementation on an
emulated mmWave network

In this chapter, the results from testing the performance of the proxy
and testing how the different path management models affect the
performance of the proxy are presented. How accurate the timing is in
the proxy will heavily affect how often the predictive control is triggered,
thus this will be tested. Next, how long it takes to do the predictions
once a predictive control is triggered will decide if a prediction-based
path management scheme is a feasible solution or not. It is also
important to investigate how the proxy utilizes the CPUs available on
the testbed machine, as it can indicate how efficiently the proxy has
been implemented. Lastly, how the different path management models
presented in chapter 3 affect the performance of the proxy is presented.

This section will answer the final research question defined for this
thesis: How do different path managers perform in a proxy that operates
in an emulated environment?.

7.1 Time between each predictive control

A path management model that uses a reactive approach in managing
the different paths will trigger a control every time the queue surpasses
a given threshold. This means that changes in the queue will trigger
a reactive control so that a path can either be added or removed.
This is not the case when using a predictive approach since the goal
is to act before the queue gets the chance to surpass the threshold.
Therefore, the predictive control is triggered periodically by the proxy
itself, regardless of how the queue evolves. The goal is to trigger the
predictive control every 150 ms.

To trigger something periodically in a real system can be challenging
because no timer can guarantee that it will trigger something precisely
at a given time. It will probably never do that. However, the goal
is to reduce this overhead as much as possible. As described in

65

Time (s)
0 10 20 30 40 50 60 70

T
im

e
si

nc
e

la
st

 c
on

tr
ol

 (m
s)

140

150

160

170

180

190

200

(a) CDF-based prediction

Time (s)
0 10 20 30 40 50 60 70

T
im

e
si

nc
e

la
st

 c
on

tr
ol

 (m
s)

140

150

160

170

180

190

200

(b) FPT-based prediction

Figure 7.1: The time between each control interval during one run of
the proxy using the purely predictive based control models.

66

subsection 5.2.6, different ways of scheduling the predictive control
were tested out. The most important thing is that the time between
each predictive control is shorter than the time horizon, i.e. the amount
of time in the future that the prediction is trying to predict the queue.
If the predictive control is triggered more rarely, there will be gaps in
between where the path manager has no prediction of the queue, hence
it has no clue of what is happening with the queue. This will yield low
performance as the queue may grow without the path manager being
able to add a path.

The proxy uses a while-loop with the sleep function
ClockedNanoSleep() to periodically trigger the predictive control
(see subsection 5.2.6). Figure 7.1 shows the time interval between each
time a predictive control is triggered. Figure 7.1a shows the results
when using purely CDF-based prediction and Figure 7.1b shows the
results when using purely FPT-based prediction.

The results show that the predictive control is not triggered any
earlier than 150 ms after the last predictive control. Furthermore, for
the most part, it is triggered no later than 150 ms either. This is good
because it demonstrates that utilizing TimeQueue delivers millisecond-
level accuracy. There are occasional spikes in both figures, where the
duration between two predictive controls is higher than 150 ms. As
this is a real system, the proxy will be working on multiple things
simultaneously, where the load will switch between the CPU cores. This
can affect the timing because a thread that is waiting for a timer to
expire can be blocked so that it takes longer before it can be executed,
i.e. the predictive control is triggered later. However, the predictive
controls are not triggered any later than 200 ms, and there are few
spikes.

7.2 How long do the predictions take?

The path manager triggers the predictive control periodically. Each
time the predictive control is triggered, it must predict how the queue
will look for the next time horizon. This prediction includes running
calculations using multiple threads. Using multiple threads will
decrease the overall time it takes to finish the calculations, i.e. a result
will come faster. If it takes too long to run the calculations, using a
predictive approach for control purposes will not be the best approach.

How long the calculations take is tested by running the calculation
1000 times, with different numbers of paths. This is done with both
the CDF-based and the FPT-based prediction. Table 7.1 is the result of
these tests.

As seen in Table 7.1, the more paths used, the longer the calculations
take. This is reasonable since the Markov model that needs to be solved
will have more states as the number of paths increases, thus the matrix
to be solved will increase. The full state model gets solved when there
are 1 or 2 paths, else the simple weighted model gets solved (the models

67

Table 7.1: Execution time of the prediction showing the 90% percentile
results after 1000 runs. When there are 1 or 2 paths, the FULL model
is used, when there are 3 or 4 paths, the weighted model, WQx, is used.
4 threads are used for the calculations.

Number of paths Prediction
CDF-based FPT-based

1 2.3 ms 1.8 ms
2 5.2 ms 4.2 ms
3 5.3 ms 4.4 ms
4 9.0 ms 7.6 ms

are explained in section 3.2). The result from this is similar to the fixed
costs that were used in the simulator in chapter 4. They are within
reasonable time for what can be spent on control. However, suppose the
number of paths gets higher, the time spent on solving the model will
also increase. Therefore, it is important to be mindful of this so that the
path management does not spend all its time solving the calculations,
thereby losing the advantage of a predictive approach.

7.3 Proxy’s CPU utilization

How much CPU the proxy utilizes indicates how efficient the code is. If
the proxy uses a lot of the CPU, the proxy is probably doing something
wrong. Using too much CPU can also lead to the proxy freezing.
Keeping the CPU load as minimal as possible is therefore preferable.

Figure 7.2 is the results of running the proxy with two different
path management schemes (CDF-based prediction and FPT-based pre-
diction) and sampling the CPU load every second by using Listing 7.1.
The proxy will put packets in the queue, send packets over the different
paths, do path management, activate and deactivate paths, and switch
the LoS dynamic of each path simultaneously, as described in chapter 5.

Listing 7.1: Find CPU load of proxy by sampling every second. 38257 is
the process ID for the Julia program running the proxy.� �

$ pidstat -p 38257 -u -I -l 1� �
The results show that the proxy uses around 50% of the total CPU

capacity available on the testbed machine. This tells us that the proxy
does not overuse the CPU, thus we can be more confident about the
proxy’s implementation. However, the proxy implemented in this thesis
is not deployable as is. For example, the proxy supports only uni-
directional flows and only one user. A real-world proxy has to support
traffic going in both directions, and it probably has to support multiple
users. This will increase the CPU load. However, the hardware that

68

Time (s)
0 10 20 30 40 50 60 70

C
PU

 (%
)

0

20

40

60

80

100

CDF-based prediction
FPT-based prediction

Figure 7.2: The CPU consumption of running the proxy with two
different path management models: CDF-based prediction and FPT-
based prediction.

will be used to run a proxy in a real-world deployment will be a more
powerful machine that can handle the proxy’s load.

7.4 Testing the proxy using different models

The main goal of implementing a proxy to be used in a mmWave
network is to test the different path management schemes introduced
in chapter 3, thus this will be tested next. The experiment setup (see
Table 7.2) is similar to the setup used to test the different models in the
simulator. Packets will be put into the queue at a rate of 1 Gbps. A
total of four mmWave paths are available, where each path has an LoS
capacity of 900 Mbps and an NLoS capacity of 100 Mbps. Each path will
on average be in LoS for 3 seconds and in NLoS for 2.5 seconds. The
path change delay, i.e. the time it takes for the operator to add/remove
a path, is set to 20 ms. The high queue threshold, Q_HT, is set to 500
packets, and the low queue threshold, Q_LT, is set to 250 packets for
the CDF-based models and 1 packet for the FPT-based models and the
reactive model.

Figure 7.3 shows the results of running the experiment with the five
different path management models:

• Reactive control (Figure 7.3a)

69

Table 7.2: Emulation parameters

Sending rate 1 Gbps
Number of paths 4
LoS capacity 900 Mbps
NLoS capacity 100 Mbps
Average time in LoS 3 s
Average time in NLoS 2.5 s
Path change delay 20 ms
Q_HT 500 packets
Q_LT 250 or 1 packet 1

Packet size 1500 B
Predictive control interval (PC_min_T) 150 ms
Reactive control interval (TR) 50 ms

1250 when CDF-based prediction is used, otherwise 1.

• CDF-based prediction (Figure 7.3b)

• CDF-based prediction with reactive control (Figure 7.3c)

• FPT-based prediction (Figure 7.3d)

• FPT-based prediction with reactive control (Figure 7.3e)

For each experiment, four different metrics are collected: the number
of paths being used, the available capacity of the used paths, the
queue size (show a band of max and min queue values achieved over
a timespan of 200 ms), and the packet delay within the proxy (show
a band of max and min delay values achieved over a timespan of 200
ms). The packet delay is the time each packet spends in the proxy,
i.e. delay caused by queuing. Packets drops are marked as black dots
in the Capacity plot and the Delay plot. Whenever a reactive control
is triggered when CDF-based prediction with reactive control or FPT-
based prediction with reactive control is used, this is marked as a red
dot in the Paths used plot.

As the sending rate is 1 Gbps, it is expected that the queue will
increase as the total available capacity is below 1 Gbps. In Figure 7.3a
where a reactive control model is used, spikes in the queue appear as
the total available capacity drops below 1 Gbps. When this happens, the
proxy will try to add a path. If there are no more paths to add, the queue
will start to fill up with packets, and the proxy will eventually need to
drop packets when the queue is full. This happens twice in Figure 7.3a:
after 10 seconds and 25 seconds.

The reactive control model struggles to keep the queue consistently
low. This is because it will remove a path when the queue only has 1
packet and add a path when the queue has more than 500 packets. So
when one path is used, the queue will increase since one path in LoS has
a lower capacity than the sending rate. When the queue has more than
500 packets, a path will be added so that the total available capacity is

70

1.8 Gbps (if both paths are in LoS). However, since a path change delay
of 20 ms is added, a path will not be added right away, so the queue
will continue to grow till a path gets added. When a path is activated,
the queue will drain, and eventually, when the queue is empty, a path
will be removed. When this happens repeatedly, the queue will have
spikes. This happens multiple times in Figure 7.3a, where the number
of paths switches between one and two, consequently creating spikes in
the queue.

A predictive-based model will mitigate this by not removing a path
if the likelihood of the queue increasing when a path is removed is high.
This is seen in Figure 7.3b, Figure 7.3c, Figure 7.3d and Figure 7.3e,
where the number of paths is never less than two. This has an effect on
the queue, in that the queue does not have the spikes seen when using
a reactive control model, but is on a consistent level.

That the queue is seemingly not empty when the sending rate is
lower than the total available capacity can have numerous explana-
tions. First of all, packets are put in the queue and taken out of the
queue in batches, and not at a constant rate (subsection 6.2.3 explains
how packets are put in the queue and section 5.2.7 explains how packets
are taken out from the queue). This can lead to the queue having more
bursty behavior, which can be the reason why the queue level is more
than expected.

Another reason can be how packets are being scheduled on the

0 10 20 30 40 50 60 70

Pa
th

s
us

ed

0

1

2

3

4

C
ap

ac
it

y
(G

bp
s)

0

1

2

3

4

Qu
eu

e (
10

3 pk
ts)

0

2

4

6

8

10

Time (s)
0 10 20 30 40 50 60 70

D
el

ay
 (s

)

0.0

0.1

0.2

0.3

0.4

0.5

(a) Reactive control

71

0 10 20 30 40 50 60 70
Pa

th
s

us
ed

0

1

2

3

4

C
ap

ac
it

y
(G

bp
s)

0

1

2

3

4

Qu
eu

e (
10

3 pk
ts)

0

2

4

6

8

10

Time (s)
0 10 20 30 40 50 60 70

D
el

ay
 (s

)

0.0

0.1

0.2

0.3

0.4

0.5

(b) CDF-based predictive control

0 10 20 30 40 50 60 70

Pa
th

s
us

ed

0

1

2

3

4

C
ap

ac
it

y
(G

bp
s)

0

1

2

3

4

Qu
eu

e (
10

3 pk
ts)

0

2

4

6

8

10

Time (s)
0 10 20 30 40 50 60 70

D
el

ay
 (s

)

0.0

0.1

0.2

0.3

0.4

0.5

(c) CDF-based prediction with reactive control
0 10 20 30 40 50 60 70

Pa
th

s
us

ed

0

1

2

3

4

C
ap

ac
it

y
(G

bp
s)

0

1

2

3

4

Qu
eu

e (
10

3 pk
ts)

0

2

4

6

8

10

Time (s)
0 10 20 30 40 50 60 70

D
el

ay
 (s

)

0.0

0.1

0.2

0.3

0.4

0.5

(d) FPT-based predictive control

0 10 20 30 40 50 60 70

Pa
th

s
us

ed

0

1

2

3

4

C
ap

ac
it

y
(G

bp
s)

0

1

2

3

4

Qu
eu

e (
10

3 pk
ts)

0

2

4

6

8

10

Time (s)
0 10 20 30 40 50 60 70

D
el

ay
 (s

)

0.0

0.1

0.2

0.3

0.4

0.5

(e) FPT-based prediction with reactive control

Figure 7.3: Running the proxy with different path management
schemes.

72

various paths. As explained in subsection 5.2.7, a path greedily takes
packets out from the queue to send them, without regard for their
capacity, hence, many packets can be transmitted over low-speed paths.
This will slow down the proxy, in that packets in the queue will need to
wait longer before they are taken out and transmitted.

A third reason for the high queue levels can be of how timing is done
in the proxy (see in subsection 5.2.5). As the sending threads sleeps
when they are not taking packets out of the queue, as explained in
subsection 5.2.7, how accurate the timing is will affect how efficiently
packets are taken out of the queue. A more accurate sleep will give
a shorter sleep time, which enables sending packets over that path
quicker, which can prevent the queue from growing as much.

The accuracy of TimeQueue depends on two things: how accurate
nanosleep!() is and how accurate Julia’s Channel is. nanosleep!()

was found to be very accurate when testing different ways to do timing
in the proxy (see subsection 5.2.5). Julia’s Channel on the other hand,
was found to be a bit slow when elements were put in and out of
it at a fast rate (see subsection 5.2.3). Elements are not necessarily
put in and out at a fast rate in this use case (unless a task call
ClockedNanoSleep() repeatedly after each other with a short sleep
time). A call to ClockedNanoSleep() will block because the waiting task
is calling take!(), effectively blocking until TimeQueue put something
in the channel by calling put!(). The task will not finish its sleep before
it sees an element in the channel and can take it out. How soon after
something is put in the channel before the waiting task can take it out,
depends on how soon that task is scheduled in an available thread,
i.e. it depends on how Julia 1.7 schedule its tasks to its threads. As
explained in subsection 5.2.5, Julia 1.7 do not have the most efficient
way of scheduling tasks to the various threads, which can lead to a call
to take!() use a longer timer to take something out of the queue than
it should have.

The reason for the seemingly high queue levels is most probably
a combination of all the above. It is also important to note that the
queue and the delay graphs are a band of max and min values achieved
over a timespan of 200 ms. This means that the queue can be empty
most of the time, without showing it. If the queue has a small spike,
then the max value will be updated, which will be reflected in the plot.
Furthermore, the emulator runs on a real system, thus some noise has
to be expected since the machine has to maintain its own system while
running the proxy. And since packets are going through the proxy
at a very high rate, where microsecond precision is required, things
happening on the machine can affect the proxy.

Packet drops will be inevitable when all of the paths are in NLoS
simultaneously. As there are only four paths used in these experiments,
the possibility of all of them being in NLoS is greater than if eight paths
were used (as in the simulator). It is seen that the proxy is able to drain
the queue after a period of continuous packet loss. This is very good, as
it shows that the proxy is able to send packets quicker than it receives

73

them.
Figure 7.3c and Figure 7.3e shows the results when using CDF-

based prediction with reactive control and FPT-based prediction with
reactive control, respectively. The reactive control is triggered 17 times
in Figure 7.3c and 8 times in Figure 7.3e. Compared to how often the
predictive control is triggered in the purely predictive-based models –
around 470 times – this is good. It shows that the reactive control does
not have to be triggered that often since the predictions of the queue are
generally correct.

When comparing Figure 7.3b with Figure 7.3c and Figure 7.3d with
Figure 7.3e, it is seen that spikes in the purely predictive-based figures
are lessened when a reactive control is added. This shows that a
predictive-based path manager with reactive control is better at coping
with unforeseen spikes in the queue than a purely predictive-based path
manager.

7.4.1 CDF of the delay

The primary goal of the proxy is to provide reliable consistent
communication, i.e. a steady transmission rate with low delay, hence
looking at the delay is important. Plotting a CDF of the delay will better
illustrate the difference between the delays found in Figure 7.3, hence
this is done in Figure 7.4. From this figure, we can see that the reactive
control has the highest delay of them all. Furthermore, using FPT-based
prediction gives a lower delay than using CDF-based prediction. When
FPT-based prediction is used, an action will be taken if the likelihood of
the queue surpassing a threshold once is high. This means that a path
might get added sooner, compared to when a CDF-based prediction is
used where the whole queue distribution must be over/under a certain
threshold for a path to be added/removed. Figure 7.4 also shows a small
performance boost, in terms of smaller delay, when adding a reactive
control to a predictive-based path manager.

7.4.2 Comparing simulations results with emulation res-
ults

Comparing the simulation results in section 4.3 with the results from
the emulation experiments has to be done carefully. The simulator
has no noise since everything is controlled, so comparing the different
path management schemes with each other can be done, since running
an experiment with the same parameters will give the same results.
This is also why the first evaluation of the path manager was done
in a simulator. Repeatable experiments are easier to compare. When
evaluating the proxy in the emulator, things are a little different.
Emulation experiments are only approximately repeatable. Since
emulations aim at controlling some things while keeping other things
out of the programmer’s control, a more realistic scenario can be
simulated. However, it also means that two experiments in an emulator

74

Pkt Dly (s)
10⁻⁴ 10⁻³ 10⁻² 10⁻¹

C
D

F

0.0

0.5

1.0

CDF-based prediction
CDF-based w/reactive
FPT-based prediction
FPT-based w/reactive
Reactive

Figure 7.4: Delay CDF from the same experiment as Figure 7.3, where
different path management schemes are used.

will never be equal, hence, when comparing two emulation results one
needs to be mindful of this.

Even though comparing the simulation results in section 4.3 with
the emulation results in section 7.4 are more challenging, does not mean
that it cannot be done, it just has to be done carefully. The simulation
results show that a predictive-based path manager does perform better
than a reactive control. Furthermore, adding a reactive control to
a predictive-based control performs even better, as unforeseen queue
spikes can be dealt with quicker. This is also seen in the emulation
results. The difference between a reactive control and a predictive-
based control is not as distinct as they were in the simulator but can
be seen in Figure 7.4.

Figure 4.1 is the equivalent of Figure 7.3, where the first is the
results from running the experiments in the simulator and the second
one is the results from running the experiments in the emulator.
Both are single-run experiments. They are not exactly the same
experiment. In the simulator, eight paths and a target rate of 2 Gbps
were used. In the emulator, only four paths were used and only the
LoS/NLoS dynamics were captured (not the shadowing fading effect).
The effect of this is seen in the Capacity plots in the figures, where the
capacity fluctuates much more in Figure 4.1 than it does in Figure 7.3.
Furthermore, a sending rate of 2 Gbps was not achieved in the testbed,
as the proxy only received at a rate of 1 Gbps.

A noticeable difference between Figure 4.1 (simulation results) and

75

Figure 7.3 (emulation results) is the delay, where running the proxy
in the emulator gives a higher delay than running the experiments in
the simulator. Note that the scale of the delay plots is different in the
two figures. In Figure 4.1 a log-scale is used, while Figure 7.3 uses a
linear scale to show the delay. Nevertheless, running the emulations
gives higher delay than running the simulations. This is also seen
when comparing Figure 4.2 with Figure 7.4 (the first is the results
from running the simulation 100 times and plotting the delay CDF
and the second is the delay CDF of a single-run emulation experiment),
where the emulation results have a much higher delay, especially for
the predictive-based models than what is seen in the simulation results.
Given that the simulator has a higher sending rate than the emulator,
this might be surprising. However, as the emulator is a real system,
everything takes some time. This is not something that is considered in
the simulator. Furthermore, as explained in subsection 5.2.5, the proxy
has some problems with how multi-threading is handled in Julia 1.7,
which affects the timing. This means taking packets out of the queue
can be slowed down, i.e. the delay goes up. This also explains why the
queue occupancy is generally higher in the emulated experiments than
in the simulated ones.

7.5 Summary

Even though comparing the simulation results with the emulation
results is challenging, they do show the same tendencies, i.e. a reactive
control performs worse than a predictive-based control, and adding a
reactive control to a predictive-based path manager does give some
performance boost. However, the results from this emulation study are
based on single-run experiments. For future work, a more extensive
emulation study should be done, where the implementation could be
tested under more realistic mmWave conditions, once this functionality
is available in the testbed.

76

Chapter 8

Conclusion

This thesis investigates how different path management models affect
the performance of a multipath mmWave proxy.

To mitigate the challenges a mmWave network faces (high fluctu-
ations in the achieved capacity due to the mmWave link’s sensitivity
to blockages) a multipath proxy can be deployed in the network. The
proxy splits the end-to-end connection at the Internet edge so that
one connection is used between the server and the proxy, and multiple
mmWave connections are used between the proxy and the client.

When introducing a proxy that supports multi-connectivity, multiple
functionalities have to be implemented, with path management being
one of them. The path manager is responsible for establishing new
paths and tearing down unavailable or unneeded paths. How the path
manager decides which paths should be operative and not can heavily
affect the performance of the proxy.

This thesis proposes two new path manager schemes that combine
a predictive and a reactive approach. The primary method is to use a
predictive control, which predicts how the queue will look periodically.
If the queue starts to fill up between these intervals, a reactive control
can be triggered to add a path immediately instead of waiting until the
next predictive control is triggered. This will ensure that a path will
be added sooner if the queue quickly starts to fill up, thus the queue
will drain more quickly. To evaluate the performance gains of using the
proposed schemes, a comparative simulation study was done first, then
the schemes were tested in an emulated environment.

A proxy has been developed to test how different path management
schemes affect the performance of the proxy when running it in a simple
testbed that emulates a mmWave network. The proxy has to be efficient
and fast, as it has to deal with high data rates going in and out.
Furthermore, it has to do multiple tasks simultaneously, thus multi-
threading is an important aspect of the proxy. The proxy does suffer
from Julia 1.7’s inefficient thread handling, which has been attempted
to minimize by reducing the number of blocking C-calls. However, since
multi-threading is an essential part of the proxy’s design, it will be

77

affected by it.
The results from testing the various path management schemes

show that using a reactive control model yields the lowest performance,
in terms of a higher queue and higher delay. The reason for this is
that a reactive approach is too slow, as the queue has time to fill up
before a path gets added. Using a predictive-based control mitigates
this by predicting that the queue will rise if another path does not get
added, so it will add a path before the queue has a chance to fill up.
This will give an overall lower queue, and lower delay. Furthermore,
a small improvement in the performance is seen when comparing the
results of using CDF-based prediction with reactive control and pure
CDF-based prediction and comparing the results of using FPT-based
prediction with reactive control and pure FPT-based prediction. It is
expected that only a small improvement is seen when adding a reactive
control to a predictive-based model since the purely predictive-based
model should be able to predict the queue accurately most of the time.

Despite the limitations of the proxy, the emulation experiments
show that using a predictive approach is better than a reactive one.
Furthermore, as this is only a proof-of-concept study, continuing the
work with the proxy, and overcoming the limitations of the testbed, can
further strengthen the results.

To wrap up this thesis, I will summarise the answers this thesis
provides to the research questions defined in section 1.2:

RQ1: How can a path manager with both a reactive and a
predictive control be designed?
The path management schemes proposed in this thesis combine
a predictive and a reactive control by using the predictive control
as the main way of changing the number of paths, as explained
in section 3.3. The reactive control is only triggered in the most
critical scenario, which is when there are not enough paths so
that the queue will increase. A limit, called the reactive control
interval, prevents the reactive control to be triggered too soon after
another path change, as it can be costly for the operator to change
the number of paths too often.

RQ2: How can a proxy be implemented to work in a mmWave
network?
When implementing the proxy, multiple things are important
to consider to get a high-end proxy that aims to operate in a
demanding network with mmWave links that have intermittent
availability. One key element is multi-threading, which will allow
multiple things to run concurrently in the proxy. Various modules
exist in the proxy (see section 5.1), where each module runs
simultaneously. The three main modules are packet handling,
which puts incoming packets in the queue, the path manager
responsible for the paths, and the packet scheduler, which takes
packets out from the queue and sends them over an available path.

78

RQ3: Is the Julia programming language an adequate choice for
implementing a real-world proxy?
Yes, Julia can be used to implement a real-world proxy, as
explained in section 5.2 and tested in chapter 7. However, using
Julia 1.7 to implement the proxy did impose some challenges,
mainly due to the premature thread handling in Julia 1.7.
Reducing the number of blocking C-calls (see subsection 5.2.5),
and reducing the amount of kernel-level executions by sending
packets more efficiently (see section 5.2.7) did reduce the overhead
of thread scheduling sufficiently, enabling a fast-running proxy
that can work in a gigabit-speed network.

RQ4: How do different path managers perform in a proxy that
operates in an emulated environment?
Testing the proxy using different path manager models (see
section 7.4) show that a reactive approach is not able to add a
path quickly enough, thus the queue fills up. When using a
predictive approach, the number of paths never drops below two,
consequently keeping the queue levels lower. This is because it
predicts that using one path will make the queue grow, thus it
will not remove a path if there are only two operational paths.
Furthermore, Figure 7.4 show a small performance boost of adding
a reactive control to a predictive-based model. However, the
results are based on single-run experiments, so a more extensive
emulation study should be done to strengthen the results.

8.1 Future work

This section will first go through the proxy’s limitations, which should
be addressed in future work. Moreover, ideas on studying other things
than what has been studied in this thesis are discussed.

8.1.1 Multi-threading in Julia 1.7

To enable the proxy to do all of the different tasks, multi-threading
is used. However, as discussed in subsection 5.2.5, Julia 1.7 does not
handle multi-threading in the best way. It statically assigns a thread to
a task without regard to the load. This means that a task that executes
a bad blocking call, like calling a blocking C-function, on a thread, will
consequently block all execution on that thread. Suppose another task
is assigned the same thread, then both will be blocked. This can lead to
system freezing.

A new version of Julia, Julia 1.8 beta, uses a dynamic scheduling
policy, which may resolve this issue [59]. Dynamically scheduling tasks
to available working threads, instead of iteratively selecting threads,
will prevent that busy threads are selected. This can help the issues
regarding multi-threading found when developing the proxy for this

79

thesis, as calls to blocking C-functions did make a static scheduler
insufficient.

8.1.2 Packet scheduler

The scope of this thesis was to look into path management. However,
in a multipath protocol, a packet scheduler is equally important. The
packet scheduler is responsible for scheduling the different packets to
the different paths. Which path that a packet should be sent over is an
important decision because it can affect the application’s performance
negatively if done inefficiently.

Head-of-Line (HoL) blocking is when packets get delivered out of
order at the receiver and the receiver requires in-order-delivery so it
has to store packets while waiting for the first packet to arrive. This
can be a big problem in a mmWave network where multiple mmWave
connections are used. As the capacity of the different links may vary
greatly (because of the LoS/NLoS dynamics of the different links),
sending a packet over a low-capacity link will be delivered to the
receiver much later than packets sent over a high-capacity link. This
is something a packet scheduler can try to minimize, by selecting paths
that are in LoS more often than selecting paths that are in NLoS.

A packet scheduler can also try to minimize the overhead of needing
to resend packets due to packets being lost by using forward error
correction (FEC). FEC is a technique where the proxy will send packets
and repair packets so that the receiver can use the repair packets to
recover lost packets [2].

Moreover, the packet scheduler can receive signals from the network
that can be used when it decides where to send a packet. For instance,
information about congestion in the network can be used by the proxy
to prevent sending over certain links.

8.1.3 Reacting to other things in the network

Adding a reactive control interval to a prediction-based system is one
way of compensating for unforeseen changes. However, there are other
things that the proxy can react to. For instance, there may be a way for
the network to signal the proxy that a link is going from LoS to NLoS.
If the proxy knows that a path will be in NLoS in a short time, a new
path can be added to prevent the drop in the capacity.

8.1.4 Different ways to deploy a multipath proxy

The proxy developed in this thesis is built to work in this particular
setup, where there is a sender that sends packets, and a proxy
that receives them and forwards them to the receiver using multiple
mmWave links. However, this is not how a real system works. First, a
real system will accept packets from both the sender and the receiver.
Bi-directional transmission is not supported in the proxy developed in

80

this thesis, as only packets from the sender are accepted. In the process
of developing a deployable proxy, this must be included.

Furthermore, the setup used in this thesis assumes that the proxy
has access to the outgoing queue of the various mmWave links. This
is not given, and it depends on where the proxy will be deployed in
the network and where the mmWave base stations will be deployed.
If the proxy is connected to the different mmWave base stations by
an ethernet cable, as in the testbed in this project, then this proxy
would be similar to a proxy in a real system. However, if the different
mmWave base stations are not placed in the same place that the
proxy is placed, the proxy would not have direct access to their queue,
consequently making the proxy developed in this thesis undeployable
without alterations.

8.1.5 Decoupling the proxy and the path manager

When developing the proxy for this thesis, the path management
module was placed inside the proxy. However, it does not need to be
placed here. The path manager has to have access to information about
the queue and the capacity of the different links. This information can
be forwarded to the path manager placed elsewhere, and the results
from the path manager can be sent back to the proxy. This also makes
sense with regard to the time scale the path manager work in compared
to the rest of the proxy. Since receiving and sending packets in the
proxy are done with microsecond precision, and the path manager only
has to do things with millisecond precision, decoupling the two would
make sense. Separating a very time-sensitive task and a not-so-time-
sensitive task would mean that the hardware each run on can be more
optimized for a particular use case. This can give more accurate results
and can be something to investigate in the future.

8.1.6 Security

Security is one thing that has not been considered while developing
the proxy. Nonetheless, it is a critical aspect of anything that is to
be deployed in any network today. Ideally, the proxy should be able
to support multiple users and separate the different flows entirely.
Encryption should also be supported, though not at the expense where
the proxy can not do its work.

81

82

Bibliography

[1] Yongmao Ren, Wanghong Yang, Xu Zhou, Huan Chen and
Bing Liu. ‘A survey on TCP over mmWave’. eng. In: Computer
communications (2021). ISSN: 0140-3664.

[2] Hongjia Wu, Simone Ferlin, Giuseppe Caso, Özgü Alay and Anna
Brunstrom. ‘A Survey on Multipath Transport Protocols Towards
5G Access Traffic Steering, Switching and Splitting’. In: IEEE
Access 9 (2021), pp. 164417–164439. DOI: 10.1109/ACCESS.2021.
3134261.

[3] David A. Hayes, David Ros, Özgü Alay and Peyman Teymoori. ‘Re-
liable Consistent Multipath MmWave Communication’. In: Pro-
ceedings of the 24th International ACM Conference on Modeling,
Analysis and Simulation of Wireless and Mobile Systems. MSWiM
’21. Alicante, Spain: Association for Computing Machinery, 2021,
pp. 149–158. ISBN: 9781450390774. DOI: 10 . 1145 / 3479239 .
3485684. URL: https://doi.org/10.1145/3479239.3485684.

[4] David A. Hayes, David Ros, Özgü Alay, Peyman Teymoori and
Tine Margretha Vister. ‘Investigating Predictive Model-Based
Control to Achieve Reliable Consistent Multipath mmWave Com-
munication’. Elsevier Computer Communications, ACM MSWiM
2021 Special Issue, Submitted, under review. Mar. 2022.

[5] D. A. Hayes, D. Ros and Ö. Alay. ‘On the importance of
TCP splitting proxies for future 5G mmWave communications’.
In: 2019 IEEE 44th LCN Symposium on Emerging Topics in
Networking (LCN Symposium). Oct. 2019, pp. 108–116. DOI: 10.
1109/LCNSymposium47956.2019.9000661.

[6] George R MacCartney, Theodore S Rappaport and Sundeep Ran-
gan. ‘Rapid Fading Due to Human Blockage in Pedestrian Crowds
at 5G Millimeter-Wave Frequencies’. eng. In: GLOBECOM 2017
- 2017 IEEE Global Communications Conference. IEEE, 2017,
pp. 1–7. ISBN: 1509050191.

[7] Reza Poorzare and Anna Calveras Augé. ‘How Sufficient is
TCP When Deployed in 5G mmWave Networks Over the Urban
Deployment?’ In: IEEE Access 9 (2021), pp. 36342–36355. DOI:
10.1109/ACCESS.2021.3063623.

83

https://doi.org/10.1109/ACCESS.2021.3134261
https://doi.org/10.1109/ACCESS.2021.3134261
https://doi.org/10.1145/3479239.3485684
https://doi.org/10.1145/3479239.3485684
https://doi.org/10.1145/3479239.3485684
https://doi.org/10.1109/LCNSymposium47956.2019.9000661
https://doi.org/10.1109/LCNSymposium47956.2019.9000661
https://doi.org/10.1109/ACCESS.2021.3063623

[8] Michele Polese. ‘End-to-End Design and Evaluation of mmWave
Cellular Networks’. PhD thesis. University of Padua, Nov. 2019.
URL: http://paduaresearch.cab.unipd.it/12134/.

[9] Ehab Ali, Mahamod Ismail, Rosdiadee Nordin and Nor Fadzilah
Abdulah. ‘Beamforming techniques for massive MIMO systems
in 5G: overview, classification, and trends for future research’.
In: Frontiers of Information Technology & Electronic Engineering
18.6 (2017), pp. 753–772. ISSN: 2095-9230. DOI: 10.1631/FITEE .
1601817. URL: https://doi.org/10.1631/FITEE.1601817.

[10] A Botta and A Pescapé. ‘Monitoring and measuring wireless
network performance in the presence of middleboxes’. eng. In:
2011 Eighth International Conference on Wireless On-Demand
Network Systems and Services. IEEE, 2011, pp. 146–149. ISBN:
9781612841892.

[11] Jim Griner, John Border, Markku Kojo, Zach D. Shelby and
Gabriel Montenegro. Performance Enhancing Proxies Intended to
Mitigate Link-Related Degradations. RFC 3135. June 2001. DOI:
10.17487/RFC3135. URL: https://rfc-editor.org/rfc/rfc3135.txt.

[12] M. Kim, S. Ko and S. Kim. ‘Enhancing TCP end-to-end perform-
ance in millimeter-wave communications’. In: 2017 IEEE 28th
Annual International Symposium on Personal, Indoor, and Mo-
bile Radio Communications (PIMRC). Oct. 2017, pp. 1–5. DOI:
10.1109/PIMRC.2017.8292745.

[13] Michele Polese et al. ‘milliProxy: A TCP proxy architecture
for 5G mmWave cellular systems’. eng. In: 2017 51st Asilomar
Conference on Signals, Systems, and Computers. IEEE, 2017,
pp. 951–957. ISBN: 9781538606667.

[14] M. Kim, S. Ko, H. Kim, S. Kim and S. Kim. ‘Exploiting Caching
for Millimeter-Wave TCP Networks: Gain Analysis and Practical
Design’. In: IEEE Access 6 (2018), pp. 69769–69781. ISSN: 2169-
3536. DOI: 10.1109/ACCESS.2018.2880774.

[15] S. Song et al. ‘Multipath Based Adaptive Concurrent Transfer
for Real-Time Video Streaming Over 5G Multi-RAT Systems’. In:
IEEE Access 7 (2019), pp. 146470–146479. ISSN: 2169-3536. DOI:
10.1109/ACCESS.2019.2945357.

[16] Alan Ford, Costin Raiciu, Mark J. Handley, Olivier Bonaventure
and Christoph Paasch. TCP Extensions for Multipath Operation
with Multiple Addresses. RFC 8684. Mar. 2020. DOI: 10.17487/
RFC8684. URL: https://rfc-editor.org/rfc/rfc8684.txt.

[17] Michele Polese, Rittwik Jana and Michele Zorzi. ‘TCP and MP-
TCP in 5G mmWave Networks’. eng. In: IEEE internet computing
21.5 (2017), pp. 12–19. ISSN: 1089-7801.

[18] Delia Rico and Pedro Merino. ‘A Survey of End-to-End Solutions
for Reliable Low-Latency Communications in 5G Networks’. eng.
In: IEEE access 8 (2020), pp. 192808–192834. ISSN: 2169-3536.

84

http://paduaresearch.cab.unipd.it/12134/
https://doi.org/10.1631/FITEE.1601817
https://doi.org/10.1631/FITEE.1601817
https://doi.org/10.1631/FITEE.1601817
https://doi.org/10.17487/RFC3135
https://rfc-editor.org/rfc/rfc3135.txt
https://doi.org/10.1109/PIMRC.2017.8292745
https://doi.org/10.1109/ACCESS.2018.2880774
https://doi.org/10.1109/ACCESS.2019.2945357
https://doi.org/10.17487/RFC8684
https://doi.org/10.17487/RFC8684
https://rfc-editor.org/rfc/rfc8684.txt

[19] Tobias Viernickel, Alexander Froemmgen, Amr Rizk, Boris Kolde-
hofe and Ralf Steinmetz. ‘Multipath QUIC: A Deployable Mul-
tipath Transport Protocol’. In: 2018 IEEE International Confer-
ence on Communications (ICC). 2018, pp. 1–7. DOI: 10.1109/ICC.
2018.8422951.

[20] Adam Langley et al. ‘The QUIC Transport Protocol: Design and
Internet-Scale Deployment’. In: Proceedings of the Conference
of the ACM Special Interest Group on Data Communication.
SIGCOMM ’17. Los Angeles, CA, USA: Association for Computing
Machinery, 2017, pp. 183–196. ISBN: 9781450346535. DOI: 10 .
1145/3098822.3098842. URL: https://doi.org/10.1145/3098822.
3098842.

[21] Z. Krämer, S. Molnár, M. Pieskä and A. Mihály. ‘A Lightweight
Performance Enhancing Proxy for Evolved Protocols and Net-
works’. In: 2020 IEEE 25th International Workshop on Computer
Aided Modeling and Design of Communication Links and Net-
works (CAMAD). Oct. 2020, pp. 1–6. DOI: 10.1109/CAMAD50429.
2020.9209304.

[22] Changsung Lee, Sooeun Song, Hyoungjun Cho, Goeun Lim and
Jong-Moon Chung. ‘Optimal Multipath TCP Offloading Over 5G
NR and LTE Networks’. eng. In: IEEE wireless communications
letters 8.1 (2019), pp. 293–296. ISSN: 2162-2337.

[23] Salman Saadat, Da Chen and Tao Jiang. ‘Multipath multihop
mmWave backhaul in ultra-dense small-cell network’. eng. In:
Digital communications and networks 4.2 (2018), pp. 111–117.
ISSN: 2352-8648.

[24] Kun Wang et al. ‘On the Path Management of Multi-path TCP
in Internet Scenarios Based on the NorNet Testbed’. In: 2017
IEEE 31st International Conference on Advanced Information
Networking and Applications (AINA). 2017, pp. 1–8. DOI: 10.1109/
AINA.2017.29.

[25] Yeon-sup Lim, Yung-Chih Chen, Erich M. Nahum, Don Towsley
and Kang-Won Lee. ‘Cross-layer path management in multi-path
transport protocol for mobile devices’. In: IEEE INFOCOM 2014 -
IEEE Conference on Computer Communications. 2014, pp. 1815–
1823. DOI: 10.1109/INFOCOM.2014.6848120.

[26] Simone Ferlin, Özgü Alay, Olivier Mehani and Roksana Boreli.
‘BLEST: Blocking estimation-based MPTCP scheduler for hetero-
geneous networks’. In: 2016 IFIP Networking Conference (IFIP
Networking) and Workshops. 2016, pp. 431–439. DOI: 10 .1109/
IFIPNetworking.2016.7497206.

[27] Hongjia Wu, Özgü Alay, Anna Brunstrom, Simone Ferlin and
Giuseppe Caso. ‘Peekaboo: Learning-Based Multipath Scheduling
for Dynamic Heterogeneous Environments’. In: IEEE Journal on

85

https://doi.org/10.1109/ICC.2018.8422951
https://doi.org/10.1109/ICC.2018.8422951
https://doi.org/10.1145/3098822.3098842
https://doi.org/10.1145/3098822.3098842
https://doi.org/10.1145/3098822.3098842
https://doi.org/10.1145/3098822.3098842
https://doi.org/10.1109/CAMAD50429.2020.9209304
https://doi.org/10.1109/CAMAD50429.2020.9209304
https://doi.org/10.1109/AINA.2017.29
https://doi.org/10.1109/AINA.2017.29
https://doi.org/10.1109/INFOCOM.2014.6848120
https://doi.org/10.1109/IFIPNetworking.2016.7497206
https://doi.org/10.1109/IFIPNetworking.2016.7497206

Selected Areas in Communications 38.10 (2020), pp. 2295–2310.
DOI: 10.1109/JSAC.2020.3000365.

[28] Hongjia Wu, Giuseppe Caso, Simone Ferlin-Reiter, Ozgu Alay
and Anna Brunstrom. ‘Multipath Scheduling for 5G Networks:
Evaluation and Outlook’. In: IEEE Communications Magazine
(Mar. 2021).

[29] Recommendation ITU-T Z.100 (2021), Specification and Descrip-
tion Language – Overview of SDL-2010. International Telecom-
munications Union. URL: https://www.itu.int/rec/T-REC-Z.100-
202106-I/en.

[30] Henry Zárate Ceballos et al. Wireless Network Simulation: A
Guide using Ad Hoc Networks and the ns-3 Simulator. Apress.

[31] Julia 1.7 Highlights. URL: https://julialang.org/blog/2021/11/
julia-1.7-highlights/.

[32] Parallel Computing. Mar. 2022. URL: https://docs.julialang.org/
en/v1/manual/parallel-computing/.

[33] Multi-processing and Distributed Computing. Apr. 2022. URL:
https : / / docs . julialang . org / en / v1 / manual / distributed -
computing/.

[34] Base.Threads.@spawn. Apr. 2022. URL: https : / /docs . julialang.
org/en/v1/base/multi-threading/#Base.Threads.@spawn.

[35] ThreadPools.jl. Apr. 2022. URL: https : / / tro3 . github . io /
ThreadPools.jl/build/.

[36] ThreadPools.@tspawnat. Apr. 2022. URL: https://tro3.github.io/
ThreadPools.jl/build/#ThreadPools.@tspawnat.

[37] MKL.jl. Apr. 2022. URL: https://juliapackages.com/p/mkl.

[38] Base.Channel. May 2022. URL: https://docs. julialang.org/en/
v1/base/parallel/#Base.Channel.

[39] ConcurrentCollections.DualLinkedConcurrentRingQueue.
May 2022. URL: https : / / juliaconcurrent . github . io /
ConcurrentCollections . jl / dev / #ConcurrentCollections .
DualLinkedConcurrentRingQueue.

[40] ConcurrentCollections.jl: "lock-free" dictionary, queue, etc. for
Julia 1.7. May 2022. URL: https : / / discourse . julialang . org / t /
concurrentcollections- jl - lock- free-dictionary-queue-etc- for-
julia-1-7/72501.

[41] Base.Threads.Atomic. May 2022. URL: https://docs.julialang.org/
en/v1/base/multi-threading/#Base.Threads.Atomic.

[42] Base.sleep. Apr. 2022. URL: https://docs. julialang.org/en/v1/
base/parallel/#Base.sleep.

[43] Base.Libc.systemsleep. Apr. 2022. URL: https : / / docs . julialang .
org/en/v1/base/libc/#Base.Libc.systemsleep.

86

https://doi.org/10.1109/JSAC.2020.3000365
https://www.itu.int/rec/T-REC-Z.100-202106-I/en
https://www.itu.int/rec/T-REC-Z.100-202106-I/en
https://julialang.org/blog/2021/11/julia-1.7-highlights/
https://julialang.org/blog/2021/11/julia-1.7-highlights/
https://docs.julialang.org/en/v1/manual/parallel-computing/
https://docs.julialang.org/en/v1/manual/parallel-computing/
https://docs.julialang.org/en/v1/manual/distributed-computing/
https://docs.julialang.org/en/v1/manual/distributed-computing/
https://docs.julialang.org/en/v1/base/multi-threading/#Base.Threads.@spawn
https://docs.julialang.org/en/v1/base/multi-threading/#Base.Threads.@spawn
https://tro3.github.io/ThreadPools.jl/build/
https://tro3.github.io/ThreadPools.jl/build/
https://tro3.github.io/ThreadPools.jl/build/#ThreadPools.@tspawnat
https://tro3.github.io/ThreadPools.jl/build/#ThreadPools.@tspawnat
https://juliapackages.com/p/mkl
https://docs.julialang.org/en/v1/base/parallel/#Base.Channel
https://docs.julialang.org/en/v1/base/parallel/#Base.Channel
https://juliaconcurrent.github.io/ConcurrentCollections.jl/dev/#ConcurrentCollections.DualLinkedConcurrentRingQueue
https://juliaconcurrent.github.io/ConcurrentCollections.jl/dev/#ConcurrentCollections.DualLinkedConcurrentRingQueue
https://juliaconcurrent.github.io/ConcurrentCollections.jl/dev/#ConcurrentCollections.DualLinkedConcurrentRingQueue
https://discourse.julialang.org/t/concurrentcollections-jl-lock-free-dictionary-queue-etc-for-julia-1-7/72501
https://discourse.julialang.org/t/concurrentcollections-jl-lock-free-dictionary-queue-etc-for-julia-1-7/72501
https://discourse.julialang.org/t/concurrentcollections-jl-lock-free-dictionary-queue-etc-for-julia-1-7/72501
https://docs.julialang.org/en/v1/base/multi-threading/#Base.Threads.Atomic
https://docs.julialang.org/en/v1/base/multi-threading/#Base.Threads.Atomic
https://docs.julialang.org/en/v1/base/parallel/#Base.sleep
https://docs.julialang.org/en/v1/base/parallel/#Base.sleep
https://docs.julialang.org/en/v1/base/libc/#Base.Libc.systemsleep
https://docs.julialang.org/en/v1/base/libc/#Base.Libc.systemsleep

[44] clock_nanosleep(2) - Linux manual page. Apr. 2022. URL: https :
//man7.org/linux/man-pages/man2/clock_nanosleep.2.html.

[45] libc(7) — Linux manual page. URL: https://man7.org/linux/man-
pages/man7/libc.7.html.

[46] Base.Threads.@threads. URL: https://docs.julialang.org/en/v1/
base/multi-threading/#Base.Threads.@threads.

[47] ConcurrentCollections.ConcurrentDict. URL: https : / /
juliaconcurrent . github . io / ConcurrentCollections . jl / dev /
#ConcurrentCollections.ConcurrentDict.

[48] Base.Timer. Apr. 2022. URL: https://docs.julialang.org/en/v1/
base/base/#Base.Timer-Tuple%7BFunction,%20Real%7D.

[49] Libuv. URL: https://github.com/libuv/libuv.

[50] sendto(3p) — Linux manual page. URL: %5Ccite%7Bman-tc%7D.

[51] Paul R. Wilson. ‘Uniprocessor garbage collection techniques’. In:
Memory Management. Ed. by Yves Bekkers and Jacques Cohen.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1992, pp. 1–42.
ISBN: 978-3-540-47315-2.

[52] julia/src/gc.c. May 2022. URL: https://github.com/JuliaLang/
julia/blob/master/src/gc.c.

[53] VirtualBox. Apr. 2022. URL: https://www.virtualbox.org.

[54] Introduction to networking Modes. Apr. 2022. URL: https://www.
virtualbox.org/manual/ch06.html#networkingmodes.

[55] Intel® Ethernet Network Adapter X710-T4L. Apr. 2022. URL:
https : / /ark . intel .com/content /www/us/en/ark/products /
189464/intel-ethernet-network-adapter-x710t4l.html.

[56] 8-Port Multi-Gigabit Ethernet Smart Switch with 2 Dedicated 10-
Gigabit Uplink Ports. Apr. 2022. URL: https : / / www. netgear.
com/business/wired/switches/smart/ms510tx/.

[57] tc(8) — Linux manual page. URL: https://man7.org/linux/man-
pages/man8/tc.8.html.

[58] tc-mqprio(8) - Linux manual page. Apr. 2022. URL: https://man7.
org/linux/man-pages/man8/tc-mqprio.8.html.

[59] Multi-threading changes. URL: https://github.com/JuliaLang/
julia/blob/v1.8.0-beta1/NEWS.md#multi-threading-changes.

87

https://man7.org/linux/man-pages/man2/clock_nanosleep.2.html
https://man7.org/linux/man-pages/man2/clock_nanosleep.2.html
https://man7.org/linux/man-pages/man7/libc.7.html
https://man7.org/linux/man-pages/man7/libc.7.html
https://docs.julialang.org/en/v1/base/multi-threading/#Base.Threads.@threads
https://docs.julialang.org/en/v1/base/multi-threading/#Base.Threads.@threads
https://juliaconcurrent.github.io/ConcurrentCollections.jl/dev/#ConcurrentCollections.ConcurrentDict
https://juliaconcurrent.github.io/ConcurrentCollections.jl/dev/#ConcurrentCollections.ConcurrentDict
https://juliaconcurrent.github.io/ConcurrentCollections.jl/dev/#ConcurrentCollections.ConcurrentDict
https://docs.julialang.org/en/v1/base/base/#Base.Timer-Tuple%7BFunction,%20Real%7D
https://docs.julialang.org/en/v1/base/base/#Base.Timer-Tuple%7BFunction,%20Real%7D
https://github.com/libuv/libuv
%5Ccite%7Bman-tc%7D
https://github.com/JuliaLang/julia/blob/master/src/gc.c
https://github.com/JuliaLang/julia/blob/master/src/gc.c
https://www.virtualbox.org
https://www.virtualbox.org/manual/ch06.html#networkingmodes
https://www.virtualbox.org/manual/ch06.html#networkingmodes
https://ark.intel.com/content/www/us/en/ark/products/189464/intel-ethernet-network-adapter-x710t4l.html
https://ark.intel.com/content/www/us/en/ark/products/189464/intel-ethernet-network-adapter-x710t4l.html
https://www.netgear.com/business/wired/switches/smart/ms510tx/
https://www.netgear.com/business/wired/switches/smart/ms510tx/
https://man7.org/linux/man-pages/man8/tc.8.html
https://man7.org/linux/man-pages/man8/tc.8.html
https://man7.org/linux/man-pages/man8/tc-mqprio.8.html
https://man7.org/linux/man-pages/man8/tc-mqprio.8.html
https://github.com/JuliaLang/julia/blob/v1.8.0-beta1/NEWS.md#multi-threading-changes
https://github.com/JuliaLang/julia/blob/v1.8.0-beta1/NEWS.md#multi-threading-changes

	Introduction
	Problem statement
	Research Questions
	Structure

	Background
	Relevant technologies
	mmWave
	Proxies
	Multipath

	Related Work
	Transport Layer Proxies
	Multipath protocols
	Multipath management
	Packet scheduling in multipath protocols

	Path manager models
	Reacting to queue changes
	Prediction based models
	Prediction based models with a backup plan

	Simulation-based performance evaluations
	Implementing the models in the simulator
	Simulation characteristics
	Results
	First impressions of the new models
	The more steady performance
	What should the reactive control interval be?

	Beyond simulations

	Design and Implementation of the proxy
	The Design of the Proxy
	Packet handling
	Packet scheduling
	Path management
	Additional components: Operator and LoS/NLoS switcher

	Implementation
	Parallelization
	A shared data structure
	The queue
	Message passing between the modules
	Accurate timing in the proxy
	Path management
	Packet scheduling
	Operator
	LoS/NLoS switcher
	Garbage collection

	Test environments
	A virtual test bed
	A hardware-based testbed
	The network topology
	Hardware used in the testbed
	Sending traffic to the proxy
	Communicating between the machines
	Changing the capacity of the interfaces

	Testing the proxy implementation on an emulated mmWave network
	Time between each predictive control
	How long do the predictions take?
	Proxy's CPU utilization
	Testing the proxy using different models
	CDF of the delay
	Comparing simulations results with emulation results

	Summary

	Conclusion
	Future work
	Multi-threading in Julia 1.7
	Packet scheduler
	Reacting to other things in the network
	Different ways to deploy a multipath proxy
	Decoupling the proxy and the path manager
	Security

