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Abstract

The scale-invariant feature transform (SIFT) algorithm is an algorithm
for matching distinctive points of interest between pictures of the same
item but from different angles. The algorithm came out in a paper titled
“Distinctive Image Features from Scale-Invariant Keypoints” published by
David Lowe in 2004 [9]. The algorithm is used for computer vision, and
there exists many different implementations of it.

The SIFT algorithm can be used for depth estimation, that is finding
out how far away objects are, typically so one can figure out what objects
should be in front of other objects.

Depth estimation can in turn be used for Mixed Reality applications.
One of the goals of Alice Vision is to achieve Mixed Reality results in real-
time so that the results of a dataset can be shown as it’s being worked with,
the problem is of course the computation time.

A major bottleneck in depth estimation is in trying to match SIFT
feature descriptors (each describing the local area around that point). There
is one feature descriptor for every point of interest in the image, and each
feature descriptor consists of 128 floating point values. When comparing
two images, every feature descriptor in the first image needs to be matched
(or attempt to be matched) with a feature descriptor in the other image.
In order to match a feature descriptor with another feature descriptor, one
needs to make sure that there is no better match for the feature descriptor,
for a naive nearest neighbor algorithm this means we have to compare our
feature descriptor to every feature descriptor in the other image.

Needless to say, for large and feature rich images with many points of
interest, this computation can be very slow. The idea of this master’s thesis
is to implement an alternative algorithm to find nearest neighbors using a
Locality Sensitive Hashing (LSH) approach, then optimizing implementa-
tions of this algorithm using the OpenACC GPGPU! programming inter-
face.

The goal of this thesis is to create code that can potentially be used down
the line in an already existing implementation of SIFT called PopSift [3].

Since the programs created are optimized using OpenACC, a very
general GPGPU programming interface, the program will not be geared
towards any specific CPU or GPU architecture. However, as I will point

IGPGPU stands for General-Purpose Graphical Processing Unit, I will sometimes use
the terms GPGPU and GPU interchangeably, but to be precise interfaces such as CUDA is
made to program GPGPUs. Most modern GPUs are GPGPUs.



out in Section 4.1, the program will be tested on an "Intel(R) Xeon(R) Gold
5120 CPU @ 2.20GHz" CPU and a "NVIDIA RTX2080Ti" GPU.

After the short chapter covering the various research questions relevant
to this thesis, the thesis will start introducing various subjects. Chapter
2 will cover GPGPU programming in general, as well as two different
GPGPU programming interfaces: CUDA and OpenACC. The CUDA
programming interface will be introduced in order to gain important
insight into how GPGPUs are programmed. CUDA is a lower level
interface than OpenACC, and therefore gives a more in-depth view into
the inner workings of GPGPUs. OpenACC will then be introduced as a
simpler, more general, GPGPU programming interface. One can program
OpenACC without knowing how CUDA works, but knowledge of CUDA
leads to a deeper understanding as to how OpenACC directives actually
translate serial code into code that can run on GPGPUs.

Chapter 3 will be about feature descriptor matching. This chapter starts
out with a section covering how the features are created using the SIFT
algorithm. The next section covers Nearest Neighbor algorithms used to
match multi-dimensional vectors. The last section in this chapter is both
the longest and perhaps most important introductory section, it covers the
Locality Sensitive Hashing algorithm, an Approximate Nearest Neighbor
(ANN) algorithm which will be used to match SIFT feature descriptors and
optimized using OpenACC in this thesis.

After introducing the LSH algorithm, the next couple of chapters cover
two different versions of the LSH algorithm, how they can be implemented,
how they can be optimized, and how well they perform.

At the end of the thesis there will be a conclusion chapter with some
final remarks, analyses, and suggestions of further research.
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Part1

Introduction



Ordering and Relation of Introductory Sections

Within this introductory part of the thesis I will first present the research
questions that this thesis seeks to address.

After having written about the research questions I will introduce two
programming models for GPGPU computing 2 then I will introduce the
problem at hand that is feature descriptor matching.

I will present the topics in this order as it is good to be familiar with
the concepts of GPGPU computing before diving into the problem we are
trying to solve. This should help the reader bear those concepts in mind
while being presented with the problem we're trying to optimize.

Another advantage of presenting the topics in this order is that the
section on feature descriptor matching naturally leads to the main problem
of this thesis. If the topics were presented in the opposite order a large
chapter about GPGPU computing could be perceived as a major detour.

Towards the end of the section on feature descriptor matching I
will cover Locality Sensitive Hashing (LSH), an algorithm for efficiently
matching features in a large feature space.

2GPGPU computing is covered in Chapter 2



Chapter 1

Research Questions

Before I begin introducing the various subjects that this thesis covers I will
tirst present the various research questions guiding this thesis.

Research questions regarding OpenACC:

1.

How suited is OpenACC to accelerate a Locality Sensitive Hashing
(LSH) algorithm, and how well is it able to do so? What challenges
occur when using OpenACC? Does the OpenACC interface have any
limitations?

How does OpenACC deal with more complicated program behavior,
such as the case where loop iterations are only semi-independent?
How does one best utilize data movement in OpenACC?

Research questions regarding Locality Sensitive Hashing (LSH):

1.

What are the different ways one can implement LSH? Which portions
of LSH are best parallelizable, and are they parallelizable using
GPGPUs?

. What are the advantages of LSH over other nearest neighbor or

approximate nearest neighbor algorithms?

Are there any preprocessing steps that could be taken to make LSH
more effective? LSH uses hyperplanes to partition the search space.
What are good types of hyperplanes, and how can they be generated?

. Each LSH table adds to the time and resources that are required by

the algorithm, what are different ways to reduce the number of tables
needed? Semi-related (as it turns out): LSH does not guarantee a
match within any range, is there any way to remedy this?

Is LSH useful for matching SIFT descriptors for the purpose of depth
estimation? If not, can LSH still be useful for other purposes?



Chapter 2

GPGPU Computing

2.1 Introduction

Ever since the development of increasingly faster single-core architectures
started to slow down there has been more and more focus on multi-core
solutions. The concept of GPGPUs, together with the families of GPGPU
architectures, is one of these multi-core solutions.

“GPU” stands for “Graphical Processing Unit” and GPUs were orig-
inally developed specifically to handle computer graphics. Computer
graphics problems typically involve performing many similar, but largely
independent tasks that can be done efficiently in parallel, and GPUs were
made to optimize this. Coincidentally, the multi-core architecture designed
specifically to more efficiently solve problems in computer graphics turns
out to also be effective at solving other more general types of problems.
After this became apparent, GPU manufacturers started working on de-
signs and interfaces directed more towards general purpose programming
giving us “General Purpose Graphical Processing Units” or “GPGPUs” for
short.

Since most modern GPUs are also GPGPUs, I will henceforth often refer
to "GPGPUs" as simply "GPUs", since this is shorter and more convenient.

2.1.1 CPU Parallelism

CPUs have themselves evolved to further exploit parallelism over the
years. Some forms of parallelism can be seen as kind of improving latency
depending on how one looks at it!, this is the case for pipelining and Single

IThe difference between a latency optimization and a throughput optimization can be
a bit blurred in the cases where very fine-grained parallelism is used. By the strictest
definition of latency, both pipelining and SIMD instructions are viewed as increasing
throughput and not shortening the latency since they don’t shorten the time of a single
instruction but rather increase speed by performing multiple instructions or operations at
once; by this definition, almost no form of parallelism can increase latency. This definition
of latency is a bit too strict for my purposes here, and seems more relevant if one is
speaking about CPU microarchitecture or some other similar subject. The reason I refer to
them as kind of almost improving latency is that they can only perform a small number
of operations at a time and are often useful to optimize serial programs; pipelining in
particular improves performance of what is considered completely serial programs.



Instruction Multiple Data (SIMD) instructions, which use parallelization
but only operate on a very limited scale. Modern CPUs are also divided
into multiple cores used to increase throughput and to better facilitate
multitasking.

Most computer programs are single threaded, so naturally these are the
types of programs that the CPUs are made to optimize. We say that the
CPU uses a latency-oriented design, meaning it tries to minimize latency
by making single threaded programs run as fast as possible. CPU cores use
all kinds of sophisticated techniques to minimize latency: they maintain a
high clock frequency; they use branch prediction, instruction reordering,
and data forwarding for more effective pipelining and less waiting time for
data; they also use large caches to avoid cache misses.

CPUs also use data prefetching to fetch data before it is needed in the
program, putting it into cached memory much closer to the processor. This
way, CPUs manage to hide the latency by doing other useful work while
waiting for data.

As a result of their latency oriented design, modern CPUs typically use
most of their surface area for control and caching, and dedicate only a small
amount of their surface area to actual computation using Arithmetic Logic
Units (ALUs).

2.1.2 GPU Parallelism

GPUs take a completely different approach. While CPUs are designed to
minimize latency, GPUs are designed to maximize throughput (i.e. they
use a throughput oriented design). A GPU splits computation into many
semi-independent threads, each running on their own small and semi-
independent core. The cores are grouped together into larger groups
where each group cooperates on running the same program in a Single
Instruction Multiple Threads (SIMT) manner. SIMT was originally only
a user-friendly abstraction on top of SIMD, but the latest architectures
have added new features such as a program counter for every SIMT
thread, making SIMT now somewhat distinct from SIMD not just from a
programming perspective, but also from a hardware perspective.

While CPUs use most of their on-chip surface area for control and
caching, GPUs instead dedicate most of their on-chip surface area to ALUs.
Though memory accesses can be slower due to smaller caches, GPUs try
to hide this latency by coalescing memory accesses?, and also doing work
while waiting for data to arrive; if the GPU does not have enough work to
do in the meantime however, the latency becomes noticeable.

GPUs dedicate fewer resources to minimize latency than CPUs, they
also maintain a lower clock frequency. Still, thanks to the incredible amount
of cores available to them, GPUs are able to massively outperform CPUs for
parallel tasks in which throughput is the bottleneck. On the flip-side, CPUs

2The GPU "coalescing memory accesses” means it groups sequential (or mostly
sequential) memory accesses of mostly contiguous memory areas together and fetches them
simultaneously instead of fetching them one by one.



massively outperform GPUs on serial tasks in which latency becomes the
bottleneck.

The terminology here can be confusing as performing tasks in paral-
lel, thus increasing throughput, also reduces the latency of the entire pro-
gram. When we say that CPUs are designed to minimize latency, we gen-
erally mean they are designed to minimize the average latency of every
instruction. In other words, CPUs are designed to optimize programs that
are inherently serial in nature, incidentally programs for which GPUs per-
form very poorly. We can therefore say that CPUs prioritize minimizing real
time interaction latency (at least to some degree), whereas GPUs largely ig-
nore that type of latency and instead prioritize minimizing completion time
latency, which it may achieve by increasing throughput for a throughput
constrained problem.

Besides running a handful of fully independent threads, the other way
CPUs use parallelism is through fine-grained parallelism such as pipelining
and single threaded SIMD. This increases the throughput of only a few
instructions at a time, so the effects are similar to optimizing the latency
of every instruction, however they do this by technically focusing on
throughput within a very fine-grained context. Since these optimizations
work well also for more serial programs I referred to them as latency
optimizations earlier.

2.1.3 Granularity

It should be mentioned that, due to the SIMT model as well as other
factors, the cores used by a GPU employ a somewhat fine-grained form
of parallelism compared to the cores used by a CPU. So one cannot, or at
least should not, run many individual, single-threaded programs each on
their own GPU core; this is what multi-core CPUs are for. Instead, GPUs are
typically used for cases where you have one large parallelizable task, and
where every thread will, most of the time with some exceptions, perform
the same instructions; i.e. the threads run the same program on separate
data.

On the other hand, when compared to single-threaded SIMD instruc-
tions the way they are deployed on CPUs, the parallelism on GPUs is more
coarse-grained. It would therefore be a bad idea to start offloading work to
a GPU for performing only a few operations on relatively small amounts of
data, the overhead involved in parallelization would quickly overtake the
amount of parallelizable work.

On the spectrum from coarse-grained to fine-grained parallelism, the
GPU programming model lies somewhere in the middle.



2.2 GPGPU Programming Models

There are many different GPGPU programming models, interfaces and
standards out there. In this project we are only going to be discussing two
of them: CUDA and OpenACC.

2.2.1 Brief Introductions

CUDA is a GPGPU programming model created by NVIDIA. It is specially
designed to program GPUs produced by NVIDIA, and because of this it
will not work for GPUs provided by other manufacturers.

CUDA offers a lower level programming experience than OpenACC.
It introduces a few extra programming paradigms to the language it is
working with, along with an extensive API which the programmer can use
to get a program running on a suitable NVIDIA GPU.

CUDA is typically used with C/C++, but also works with Fortran.
It is compiled with a special compiler called nvcc. Programming in
CUDA involves low level practices such as explicitly designing GPU
kernel functions, and the programmer directly controlling the use of GPU
resources such as shared memory.

OpenACC on the other hand is a more general, cross-platform, parallel
programming standard developed by Cray, NVIDIA, and PGI . It is used
to program a multitude of hardware accelerators, produced by a variety of
different companies.

OpenACC is a high level interface consisting of a number of compiler
directives that can be added to programs written in one of its supported
languages. OpenACC directives are added to the program as comments
in Fortran, or as so-called pragmas in C. It offers portability and ease of
programming as its main features.

At the time of writing OpenACC can only be used with C/C++ or
Fortran, other languages can only use it indirectly through libraries written
in one of these languages. Many different compilers support OpenACC;
those that don’t are free to ignore the compiler directives, and compile the
program as if it was a serial program instead.

2.2.2 How CUDA and OpenACC Be Presented

There will first be a section on CUDA since knowledge about CUDA
will give valuable context regarding how OpenACC works behind the
scenes. Though CUDA is created specifically for NVIDIA GPUs, a lot of the
abstract concepts carry over to other GPGPU programming models such
as OpenCL; the semantics are different, but the overall concepts remain the
same.

After having presented the CUDA programming model and some
of its features, I will start a new section where I turn our attention to
OpenACC. While describing OpenACC I will compare it with CUDA, and

3PGI was acquired by NVIDIA in 2013



I will sometimes draw parallels between the two interfaces when covering
OpenACC'’s features.

In this thesis I will only present how these programming models work
in C.



2.3 CUDA

This section is mostly based on the CUDA programming guide on
NVIDIA’s web page, as well as the book "Programming Massively Parallel
Processors Programming Massively Parallel Processors: A Hands-on
Approach" by David Kirk and Wen-mei Hwu [8].

CUDA (Compute Unified Device Architecture) is a GPGPU program-
ming model developed by NVIDIA and used to program NVIDIA GPUs.
CUDA is not a language in and of itself but rather an extension to other
languages such as C/C++, the CUDA variant of which is called CUDA C.
CUDA programs generally use the “.cu” extension and are compiled us-
ing the nvcc compiler. A CUDA C program is written with normal C/C++
code, the only parts of a C program that needs to change are parts of the
program you wish to parallelize using CUDA concepts.*

2.3.1 Programming Model

In the parlance of CUDA the CPU is called the host, and the GPU is
called the device. CUDA distinguishes between CPU memory and GPU
memory, which are called host memory and device memory respectively.
Traditionally, the CPU and GPU memories are separate, and memory on
the CPU has to be transferred through a dedicated PCI-express bus before
it can be used by the GPU and vice versa; transferring the memory is
here the job of the programmer. Alternatively, we also have the unified
memory model in which the CPU and GPU are able to seemingly use
the same memory as long as they don’t try to access it at the same time.
Some architectures are better adapted to using unified memory than others;
that is, on many laptop designs as well as on the motherboards of a few
supercomputers, the CPU and GPU share memory, which provides true
unified memory.

CUDA gives the programmer the ability to create parallel functions
that, when called with some additional parameters passed through special
syntax specifying the number and organization of threads, start to execute
in parallel on the GPU using those provided threads. This type of function
is called a global function or a kernel, and starting the parallel execution
of that function on the aforementioned provided threads is referred to as
launching the kernel. Because global functions execute on the GPU they
have to be written in a special way in order to be effective.

CUDA divides the computation of the kernel into blocks which are
further divided into threads; the blocks themselves are part of a greater grid
of blocks. The grid and block dimensions directly determine the amount
of blocks and threads that will run on kernel launch. The decision of what
grid and block dimensions to use and consequently how many blocks and
threads should be launched is up to the program that launches the kernel.

4Parts of the program heavily related to the parts one wishes to parallelize sometimes
also have to be changed. Sometimes the program must be redesigned slightly in order to
make it more parallelizable, though this has little to do with CUDA itself and more to do
with parallelization of programs in general.



The blocks are executed on a Streaming Multiprocessor (SM) each of
which can run a handful of blocks at a time. The number of blocks that can
be run on a single SM depends on both a predefined maximum value as
well as the size of the blocks (since the SM is also restricted in terms of the
total number of threads it can run concurrently). Threads run on so-called
“CUDA Cores”, each SM will contain a large number of these CUDA cores.

Cuda threads cannot run fully independently at the same time. In
today’s GPUs they are grouped together into groups of 32 threads called
warps; each warp will run the same instruction at the same time for
all its threads. One warp can only run a single instruction at the same
time, however it can perform this instruction for all its threads; threads
can of course branch away from each other even if they are in the same
warp, but in this case the threads will have to wait for each other. The
fact that warps can run only one instruction at the same time, and that
this instruction is run by multiple threads that each operate on one piece
of data is why CUDA is often referred to as a SIMT (Single Instruction
Multiple Threads) programming model. SIMT is similar to regular SIMD,
but it achieves SIMD functionality through the use of threads ° , which is
distinctly different from how CPUs achieve SIMD functionality and thus
it is given its own name. In newer architectures, a warp can run the same
instruction for all threads even when the threads are not in the same place
in the program. Since threads are grouped into warps it is generally a good
idea, when launching a kernel, to specify the number of threads per block
to be a multiple of the warp size, which is 32 for most current NVIDIA GPU
architectures.

2.3.2 Memory Hierarchy

In order to program efficiently in CUDA one needs to be aware of the
CUDA memory model. I will present the different types of memory in
the order from fastest to slowest in the beginning, however the last three
items have roughly equal performance:

1. Register memory is accessible within a single clock cycle and is the
fastest type of memory, however there are only a few registers for
every thread. It is important for efficiency to not use up more than
the available register space since this will cause the extra memory to
spill into local memory. Registers are individual to each thread.

2. Shared memory is the second fastest type of memory, almost as fast as
register memory. This memory is shared between threads in a single
block. Just like register memory, shared memory is stored on-chip.

3. Texture and constant memory are stored outside the chip, but
performance is vastly improved by caching. Which one of these is

5Originally, the SIMT model only existed from a programmer’s perspective; it was
simply an abstraction achieved by the nvcc compiler and the JIT compiler in the device
driver. For modern hardware however it is actually distinctly different from SIMD with the
introduction of per-thread program counters.

10



faster depends on the details of the particular implementation. These
types of memories are read-only. Since these types of memories are
stored outside the chip they will be significantly slower than register
and shared memory.

4. Global memory used to be the slowest type of memory together
with "local" memory, as it didn’t have an L1 cache. For modern
architectures however, global memory does make better use of
caching, and its performance is now comparable to that of texture
and constant memory.

5. Local memory is only called local because it is individual to each
thread. Despite its name, local memory is actually just global
memory, but reserved by the compiler for an individual thread.
Local memory is therefore, just like global memory, incredibly slow
compared to register and shared memory. Newer architectures
sometimes have registers spilling over to shared memory instead of
off-chip memory to reduce this devastating effect on performance.

2.3.3 Function Identifiers

A function in CUDA needs to be identified as either a host function that runs
on the CPU, a global function that launches a kernel when called and runs
on the GPU, or a device function that runs on the GPU and is called by either
a global function or another device function.

A function that runs on the CPU is called a host function, just as the
CPU is called the host. Declarations of such functions may optionally be
preceded by the __host__ keyword, but this is also the default behavior
of functions in CUDA so in the event where no such function identifier
is given it will default to __host__, therefore when creating normal host
functions you don’t need to specify a function identifier at all.

A function that, when calling it, involves starting up more blocks and
threads (by launching a kernel) is referred to as a global function. Calling
global functions requires a few extra parameters, passed through special
syntax, specifying the dimensions of the grid and the dimensions of the
block. Typically kernels are launched from a host function, but on newer
versions of CUDA, ever since the introduction of dynamic parallelism,
kernels can now also be launched from another GPU program.

A function that runs on the GPU and is called from other functions that
run on a GPU is referred to as a device function, just as the GPU is called
the device. Declarations of such functions are preceded by the __device__
identifier. These functions work similarly to how regular host functions
work except that they execute on GPUs, calling them will not launch a new
kernel.

In the event you want to create a function that can run on both the CPU
and the GPU, you can put both the __host__ and __device__ identifiers
before the function. Two versions of the function will then be generated
by the compiler, one for the host, and one for the device. Such a function

11



can be programmed like any regular function as long as it only utilizes
instructions and functionality available for both host and device functions.

2.3.4 Host Programming
Kernel launches

Kernels are launched, typically by a host function, using the following
format:

kernelFunctionName <<< NUM_BLOCKS, NUM THREADS >>> ( args );

Or if one wants multidimensional block and thread indices one can use the
dim3 type:

dim3 dimGrid (N_BLOCKS_X, N_BLOCKS_Y, N_BLOCKS_Z);

dim3 dimBlock (N_THREADS_X, N_THREADS_Y, N_THREADS Z);
kernelFunctionName<<< dimGrid, dimBlocks >>>(args);

Memory Management

Memory needs to be allocated on both the host and the device, it must be
copied over to the device before the device can use that data, and copied
back before the host can access it again. CUDA offers a multitude of
functions for allocating and copying memory to the device.

cudaMalloc(void** devPtr, size_t size) allocates memory on the
device and works in a similar way as the normal malloc function in C
except it returns an error code instead of a pointer. Therefore, the address
of the pointer we wish to assign memory to has to be the first parameter
in the function. One can ‘free’ the memory with a call to cudaFree (void*
devPtr).

cudaMemcpy is used to transfer memory between host and device. When
using cudaMemcpy, one has to give as parameters to the function: the
destination, source and size of the array, and an indicator of whether you
currently want to copy memory from the host to the device or vice versa.

cudaMemcpy automatically synchronizes execution between the host and
device. If one needs to synchronize execution without copying memory
one can call cudaDeviceSynchronize() to wait until computation on the
device is finished. This is often necessary after a kernel launch if you're
using managed / unified memory (using cudaMallocManaged) where the host
and device seemingly share the same global memory, and the moving of
memory between host and device is handled by CUDA instead of the
programmer.

In the following pseudo-code example we use cudaMalloc and
cudaMemcpy for the allocation and movement of memory for the device:
int+ a = some_array; // some array of size a_SIZE
int =d_a;
cudaMalloc ((void=++) &d_a, A_SIZE);
cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);
kernelFunctionName<<< SIZE / 1024 , 1024 >>>(d_a);
cudaMemcpy(a, d_a, size, cudaMemcpyDeviceToHost)
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cudaFree(d_a);

There are many more advanced functions, but I will not describe all of
them here.

Streams

Lastly (for the host side), there is also the concept of streams, which dictates
the order of memory transfers and kernel launches. By default all memory
transfers and kernel launches use a single default stream. Sometimes we
wish to launch several kernels at the same time; if only one stream is used
these kernels will have to wait for each other to complete; by using several
streams we can start two streams at the same time, we can also transfer the
memory for the use of one stream while the other is executing.
Example of streams:

cudaStream_t s1;
cudaStream_t s2;
cudaStreamCreate(&sl);
cudaStreamCreate(&s2);

cudaMemcpyAsync(d_a, a, size, cudaMemcpyHostToDevice, sl1);
kernelFunctionName<<< GRID_DIM , BLOCK DIM >>>(d_a, sl);
cudaMemcpyAsync(a, d_a, size, cudaMemcpyDeviceToHost, sl);

cudaMemcpyAsync(d_b, b, size, cudaMemcpyHostToDevice, s2);
kernelFunctionName<<< GRID_DIM , BLOCK DIM >>>(d_b, s2);
cudaMemcpyAsync(b, d_b, size, cudaMemcpyDeviceToHost, s2);

cudaStreamDestroy (sl);
cudaStreamDestroy (s2);

2.3.5 Device Programming
Indexing

Threads need to figure out their place in the function using their block and
thread indices which they will use to index into arrays or as input into if-
statements.

Block indices are found in the following way:

bx = blockldx.x; by = blockldx.y; bz = blockldx.z;
Thread indices within blocks are found in a similar way:
tx = threadldx.x; ty = threadldx.y; tz = threadldx.z;

It’s also often necessary to find the dimension of the grid or block inside
of a CUDA thread. Finding number of blocks in a grid:

n_blocks_x gridDim . x;
n_blocks_y = gridDim.y;
n_blocks_z = gridDim.z;

Finding number of threads in a block:
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block_size_x = blockDim.x;
block_size_y = blockDim.y;
block_size_z blockDim . z;

Absolute thread indices are found like this:

my_x = blockldx.x * gridDim.x + threadldx.x
my_y = blockldx.y * gridDim.y + threadldx.y
my_z = blockldx.z * gridDim.z + threadldx.z

Shared memory

Sometimes we need to use shared memory, either because it is useful or
necessary for the CUDA threads to share data, or because we don’t want to
run out of register space (forcing the threads to use the slow local memory).
To use shared memory one can simply put the __shared__ identifier in
front of the variable or array that you want to be in shared memory. Using
shared memory means that all threads in a single block will be able to use
the same memory. Example of initializing shared memory on a global or
device function:

__shared__ int arr[ARR_SIZE];

If there is significant reuse of a portion of memory between threads,
meaning the same portion of memory is accessed by a large number of
threads in the same block, then that memory should probably be loaded
into shared memory for faster memory accesses. The threads should share
the job of transferring the memory so that one thread does not end up doing
all the work. The time required for moving data to shared memory depends
to a large extent on the accessing pattern.

One should also be aware that there is a limited amount of shared
memory per SM, so using too much shared memory can result in a
reduction of the amount of cores that can be run at the same time. If this is
the case one may consider using less shared memory.

Synchronizing threads

There might also be a need for synchronizing threads within a block, we
can synchronize all threads within a block by putting this statement in our
code:

syncthreads ();

Parallelizing for-loop example

A common feature of parallelizable programs is the use of for-loops. Say
we have a double for-loop:
for (int i = 0; i <M; i++) {
for (int j = 0; j <N; j++) {
out[i * M+ j] = in[i * M+ j] * 2;
}
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If we're inside a device function and we have (when adding together all
the blocks) one thread for each loop iteration, we can parallelize this double
for-loop the following way:

// Find thread position

M = gridDim.x * blockDim.x;

int i = blockldx.y * gridDim.y + threadldx.y;
int j = blockldx.x * gridDim.x + threadldx.x;

// Do the calculation
out[i * M+ j] = in[i =M+ j] = 2;

Note that the same operations happen for multiple threads, this causes
the calculation to be done for all correct values for the indices i and j.

Reduce

It is typical in parallel programs that one wants to combine the results of
many threads into a single value using some reduce procedure. CUDA
offers resources such as __shfl_down_sync() which can be used to
implement this efficiently. One might also decide to implement reduce
from scratch using shared memory and synchronization though for very

simple reduction logic this will likely be less effective.
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24 OpenACC

OpenACC is a higher level interface used for GPGPU programming. It
can be used either together with or as a replacement for other GPGPU
programming interfaces such as CUDA.

OpenACC is very similar to another programming standard called
OpenMP, but it is primarily targeted towards programming hardware
accelerators like GPUs, whereas OpenMP is targeted towards multi-core
programming on CPUs. They are still very similar and there is much
communication between both teams working on these interfaces, and
several people who are working on OpenACC have or are also working
on OpenMP.

This section is mostly based on the OpenACC programming guide
from June 2015 [10], as well as the OpenACC chapter of "Programming
Massively Parallel Processors Programming Massively Parallel Processors:
A Hands-on Approach" by David Kirk and Wen-mei Hwu [8, pp. 414—441].

241 Issues with CUDA Addressed by OpenACC

While CUDA is a very effective way to optimize programs for NVIDIA
GPUs it has a couple of challenges, it is probably best to just list them
outright:

e Writing CUDA code is challenging and requires experienced pro-
grammers to do efficiently.

¢ CUDA programming requires a lot of changes to the code and thus
takes a lot of time, even for experienced programmers.

* CUDA is architecture specific, it only works on NVIDIA GPUs, and
even then some optimizations that make the code faster on one GPU
might make it slower on another GPU.

¢ CUDA requires a separate source code for the parallel version of the
code. Since a computer without a NVIDIA GPU can’t run CUDA
code it’s going to need a separate version of the code that can run on
the CPU or another type of GPU.

* CUDA code is hard to maintain. Changes to a program’s functional-
ity might manifest in complicated changes for CUDA.

¢ Older code might become deprecated with time. Someone must
manually change the code to take advantage of newer features and
remove usage of older features if they are no longer supported or,
more likely, just no longer as effective as they used to be.

 Experimentation can require a lot of rewriting. ©

®By experimentation I mean changing aspects of how the program is parallelized by
changing the granularity of different loops etc. It could also mean experimenting with
changing the function itself, though this is also related to maintainability.
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Many parallel programs are similar in nature even if they are different
in implementation. It would be better if one could work more abstractly,
i.e. work more on parallelizing the actual problems and less on making
the program work well on a specific architecture, this is what OpenACC
is trying to achieve. OpenACC is made to work on a multitude of high
performance computing systems, whether it be multiple CPU cores, or built
in acceleration devices like GPGPUs, though it seems to focus mainly on
GPGPUs.

OpenACC addresses all the issues detailed above:

Using OpenACC requires only the addition of compiler directives
indicating what parts of the program should be parallelized and how
they should be parallelized. Using these directives is often only
as challenging as you want it to be, if you want better results you
will need to give the compiler more information. One might see
speedup with very little effort in comparison to that with CUDA.
Using OpenACC should therefore be feasible even for programmers
with less experience in performance computing.

Writing OpenACC code is fast.

OpenACC is made to be as general as possible, therefore when using
OpenACC the code will not be architecture specific.” OpenACC
offloads work onto the compiler, if you have already specified enough
information about how the program should be parallelized all you
have to do is just recompile it for another architecture and it will run
on that architecture.

One does not need two versions of the source code to run the
program on OpenACC. The OpenACC directives will be ignored if
the compiler doesn’t know what to do with them or if the architecture
doesn’t have any parallelization abilities.

A program that uses OpenACC should be simpler to maintain since
OpenACC directives do not significantly alter the source code.

OpenACC better facilitates maintainability for changes in hardware.
Recompilation of the code with a new compiler for a new architecture
should automatically take advantage of the new technology available
to it.

Since writing OpenACC requires very little code, experimentation is
quick and painless.

7OpenACC does have the ability to manually specify architecture specific behavior, but
doing so is completely optional. If one does choose to specify architecture specific behavior,
this specified behavior will be followed when the program is compiled for the architecture
in question, and will be ignored when the program is compiled for other architectures.
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24.2 Downside with OpenACC

The downside to using OpenACC is of course that you have less control,
which limits the potential of optimization, and can lead to the program
being slower than what would be possible when programming in CUDA.
OpenACC typically works best for more common types of problems,
and with some extra directives and clauses it works well for other more
complicated problems too. However, if the code you're trying to optimize
has a very strange or complicated behavior then the compiler might not be
able to find an efficient parallelization of that problem.

If you're an experienced programmer working with a more implemen-
tation specific parallelization interface such as CUDA you might very well
tigure out a better way to parallelize the program for your given program-
ming model than what you would be able to achieve using OpenACC.
Given enough time an experienced CUDA programmer will typically be
able to write more efficient code in CUDA than in OpenACC, particularly
when focusing on a specific GPU architecture, but this will come at the cost
of portability, and will also lead to additional time spent programming.

It should be said however that OpenACC compilers are always
improving, so a perceived large gap in performance today might be smaller
a few years from now. However, since OpenACC is just a higher level
interface, it will never surpass in performance what you can potentially
achieve using a lower level programming model, but it can provide a very
feasible alternative.

2.4.3 Programming OpenACC

When using simple compiler directives, OpenACC will guess how to best
optimize the program given the problem at hand, the programmer is
welcome to override these decisions using more advanced directives and
clauses.

OpenACC’s programming model assumes a separation between host
and device, each with their own memory, where large amounts of
parallelizable computation can get off-loaded to the acceleration device.
This does not mean that OpenACC does not work well on unified
architectures where the host and device share memory, or where the
host and device are in fact physically the same entity. The OpenACC
programming model assumes that the host and device are separated since it
is easier to adapt from a program assuming a separated model to a program
assuming a unified model than the other way around. The programmer is
forced to assume that the host and device are separate entities to ease the
job of the compiler.

OpenACC treats the data as if it exists exclusively on either the host or
the device at any point in time. Whenever computation is off-loaded to the
acceleration device, memory has to be copied over, then copied back when
the host needs to access the results. The programmer is given additional
API functions that can be used to control the movement of data, this is
important if one wants to program OpenACC efficiently.
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When OpenACC off-loads work onto the acceleration device the work
is split into gangs, which are further split into workers, which in turn
operate on vectors. Gangs work independently of each other, meaning
there is no communication between them except through global memory.
Gangs are analogous to blocks in CUDA. Workers are a similar concept
to smaller groups of CUDA threads working together in a block, and so
they can communicate through shared memory and synchronization. A
vector is an instruction performed by several workers at the same time,
all operating on the same block of data, and the number of elements the
workers work on simultaneously is the vector length. In the case where the
vector length is one, a worker is completely analogous to a thread; in the
case where the vector length is more than one, a worker is analogous to a
group of threads working in unison.

The number of workers multiplied by the vector length is in reality how
many threads run in a block. The proportion of the number of workers to
the vector length determines how large groups that work together within
a gang are. In other words, the proportion of the number of workers to the
vector length determines the granularity of the program.

Let’s say two nested loops are parallelized, the outer loop is executed in
parallel by several workers, and the inner loop is executed in parallel using
"vectors" of execution, then prioritizing a high number of workers will lead
to a more coarse-grained program, and prioritizing a high vector length
will lead to a more fine-grained program (Parallelizing the outer loop is a
more coarse-grained approach than parallelizing the inner loop). Exactly
what relation between vector size and number of workers is optimal
depends on the particularities of the algorithm and the particularities of
the underlying architecture; since adjusting such parameters in OpenACC
is quick and straight-forward, one can experiment with these parameters
until one finds a proportion that works well. One must also keep in mind
that if the number of workers and the vector length are both smaller, then
the number of threads in a gang is smaller, this might allow the program
to run more gangs simultaneously, so there is another trade-off there.
This will make more sense in Section 2.4.8, there I will explain how to
optimize loops using OpenACC by explicitly delegating work to workers
and vectors (specify if a loop should be parallelized by workers or vectors,
and how many of them should be used).

In this introductory section on OpenACC I will present how different
concepts in OpenACC works in general with very generic pseudocode
examples. Later I will use the directives to optimize real programs, this will
give a more detailed look into how OpenACC directives work in practice.
This will be covered in Section 4.3 and Section 6.7.

2.4.4 Kernels Directive

The kernels directive is the simplest way of parallelizing loops. When
using this directive you're essentially handing the majority of the work
over to the compiler. The compiler will try to optimize the code as best
as it can, however it will not be able to make any assumptions about the
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code that it considers unsafe i.e. it will not make changes it thinks can
alter the outer behavior of the program from what was specified by the
programmer.

The kernels directive is able to do optimizations by itself if it deems it
as safe. The kernels directive alone will work well on simpler problems,
but might perform slowly on more complicated problems in which case it
would be a good idea to give further instructions using more directives and
clauses.

To get started using the kernels directive all one has to do is put the
kernel directive before the part of the code you're trying to optimize, then
cover that entire area in a set of curly brackets:

#pragma acc kernels {
// parallelizable code i.e. loops

}

One can also specify further clauses to help the compiler parallelize
the code. Providing hints to the compiler is often necessary to further
increase performance, or to convince the overly cautious compiler that
parallelization is safe.

2.4.5 Parallel Directive

While the kernels directive suggests that loops might be parallelizable,
only indicating that the compiler should parallelize them, the parallel
directive commands it. When using the parallel directive it is the
programmer’s responsibility to ensure that the loops are parallelizable,
and if required they should also specify how they are parallelizable. As
opposed to the kernels directive, where the responsibility of preserving
the correctness of the program lies with the compiler, for the parallel
directive that responsibility instead lies with the programmer.

The parallel directive does what it is told to do, and it does not
perform optimizations by itself to the same degree as the kernels directive.
This is useful when testing the program for different levels of optimizations
since I will know how much of the program is optimized in each step.
The parallel directive is therefore the one that I use in this thesis. T will
therefore focus mainly on how to optimize a program using the parallel
directive in this section.

The parallel directive specifies a parallel section of the program (this
is the part of the program that would need to be rewritten into a global
function in CUDA), in this parallel section the program should run in
parallel.

The parallel directive will indicate the part of the program where
the compiler should start a parallel kernel, it is often paired with a loops
directive that indicates specific parts of the program that can be performed
in parallel (this generally means for-loops). These two directives are often
combined into one single line.

#pragma acc parallel loop
// for—loop
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But they can also be separate:

#pragma acc parallel |
#pragma acc loop

// for—loop

#pragma acc loop
// for—loop

24.6 OpenACC Clauses

One must remember to also use the loop directive for the loops when using
the parallel directive, otherwise the loop will not be parallelized, instead
the OpenACC compiler might decide that the entire loop should be run
independently by all workers.

We can use the collapse clause to indicate to the OpenACC compiler
that a specified number of loops should be collapsed into a single loop and
parallelized together.

#pragma acc loop collapse (NUMBER OF NESTED_LOOPS)
// mested for—loops

Without extra information the parallel directive only works for loops
in which the iterations are completely independent of each other. However,
there are many common operations in parallel programs, if one of these is
used in the code that we are trying to optimize then we can specify this for
the compiler. One such operation is the reduction clause, where we need
to specify an operation to reduce by and the variable to store the reduced
value in.

#pragma acc loop reduction(op:var)
// for—loop

An example of a typical reduction might be an accumulation of array
elements into a single variable:

acc = 0;
#pragma acc loop reduction(+:acc)
for (int i = 0; i <N; i++) {

acc += arr[i];

)

Sometimes private variables are also used, for the parallel directive
we have to specify a variable as private if it is declared outside the loop but
should still be considered private by each iteration of the loop:

int x;
#pragma acc loop private (x)
// for—loop

Specifying private variables in this way is often unnecessary however
since any variable declared inside a loop will automatically be private for
each iteration of the loop.

One can of course use multiple of these OpenACC clauses for a single
loop:
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int acc = 0;

int x;
#pragma acc loop private(x) reduction(+:acc)
// for—loop

2.4.7 Optimize Data Locality

One can optimize the data locality of a parallel program in OpenACC by
using data regions. Data regions consist of OpenACC data clauses, and
they are used to specify at what point in the program arrays of data should
be moved between host and device.

A program optimized with OpenACC directives is supposed to work
without data regions included (though sometimes it doesn’t), however,
the program is likely to run very slowly without using data regions since
in that case data movement often ends up being a bottleneck for the
program. Data regions are therefore a critical part of optimization with
OpenACC, and before data regions are included one is unlikely to see any
improvements in the speed of the program using OpenACC.

The data clauses and their explanations are summarized well in
the OpenACC programming guide, including these explanations here
would be redundant, however I can include an even shorter less detailed
summary:

¢ copy - Copy memory between host and device.
* copyin - Copy memory from host to device.
* copyout - Copy memory from device to host.

® create - Reserve memory on the device, but do not copy it between
host and device.

* present - Indicate that the memory is already present on the device
(used when memory has been copied over in a higher level routine /
earlier part of the program).

There are also clauses that checks if the memory is already moved over
at an earlier point before copying it, these are called present_or_copy,
present_or_copyin, and present_or_copyout respectively. The shorthand
for these commands are pcopy, pcopyin, and pcopyout, these are the data
directives for copying data that I will actually be using. In the OpenACC
programming guide [10, p. 30] it is said that the functionality of all data
directives will be "present or" in the future, and it is recommended to use
these directives to ensure correctness with future versions of OpenACC.

Here is an admittedly silly example of how to use four of the data
directives:

#pragma acc data \

pcopy (a[N]) \
pcopyin(b[N]) \
pcopyout(c[N]) \
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present (d[N])
{
#pragma acc parallel loop
for (int i = 0; i <N; i++) {
c[i] = 4+a[i] + sqrt(b[i]) + 2xd[i];
a[i] = c[i] = c[i];

The program doesn’t really do anything useful, but is created here for
illustrative purposes. In addition to showing how to use data directives it
also shows the use of a multi-line pragma, where the pragma continuing
on the next line is marked by a backslash.

In this program the ’a’ array is used both for input and output, and
therefore needs to be copied from the host to the device and then back
again.

The 'b” array is only used for input, so it only needs to be copied to the
device. After execution is done this memory can simply be thrown away
on the device side since the same data already exists on the host side.?

The ‘¢’ array is only used for output, therefore it only needs to be copied
from the device to the host.

The 'd” array is used as input, however it is assumed that the data is
already located on the device. This means that the array was either copied
over or created on the device, in some earlier part of the program, likely
in a calling function. The array is marked as present to make its presence
known to the compiler.

One can also copy over parts of the array instead of the whole array by
specifying an interval inside the square brackets during a copy operation:

#pragma acc data pcopy(a[(N/2):N])
{

}

Finally, I will also give an example of what context the present clause
might be used in:

void funcl (...) {
int+ arr = (int*) malloc(M * N = sizeof(int));

#pragma acc data pcopy(arr[M = NJ)

for (int i = 0; i <M; i++) {
func2(N, arr + i=N, ...);
}

8As far as I know, in the case where this array is changed by the device inside the data
region despite memory only being copied in, the array should theoretically be unchanged
on the host side, though this might be unspecified. OpenACC is generally used to optimize
working serial code however, where the optimization does not alter the behavior of the
program in other ways, I would therefore be careful with taking full advantage of this.
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void func2(int N, int arr, ...) f{
#pragma acc data present(arr[N])
{

#pragma acc parallel loop
// for loop that does something with arr

Here, instead of moving memory in every call of func2, the program
instead moves the entire block of memory beforehand, then copies it back
once all the GPU computation from calling func2 is over. This example is
only pseudocode, but it is analogous to what is done in the last stage of
LSH optimization presented in Section 4.3.3.

2.4.8 Optimize Loops

Earlier I touched upon the trade-offs related to the different proportions
for the number of workers vs the vector length, as well as the trade-offs
of larger gangs (more threads per gang) vs more gangs able to be run
concurrently (fewer threads per gang). The conclusion I made was that
these values can be experimented with until one finds a good balance.

This section will be about how to optimize the loops by specifying the
number of workers and the number of vectors in a gang, and explicitly
delegating work to be performed on the worker or the vector level of
granularity.

In order to specify whether the loop should be partitioned among
gangs, workers, or vectors, one can use the following loop optimization
clauses:

* gang - Partition the loop among gangs.
¢ worker - Partition the loop among workers.
* vector - Vectorize the loop

* seq - Run the loop sequentially (don’t partition the loop).

These clauses are used before for loops. The gang, worker, and vector
clauses must appear in order, with the gang being used for the outer loop,
worker being used in a middle loop, and vector being used for the inner
loop. The seq clause can be used at any level.

Ilustrated examples of how to use these clauses:

#pragma acc parallel loop gang

for (int i = 0; i < imax, i++) {
#pragma acc loop worker
for (int j = 0; j < jmax; j++) {

#pragma acc loop vector

for (int k = 0; k < kmax; k++) {
#pragma acc loop seq
for (int 1 = 0; I < Imax; 1++) {
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}

#pragma acc parallel loop gang

for (int i = 0; i < imax, i++) {
#pragma acc loop seq
for (int j = 0; j < jmax; j++) {

#pragma acc loop worker

for (int k = 0; k < kmax; k++) {
#pragma acc loop vector
for (int 1 = 0; I < Imax; 1++) {

}

In these cases, specifying that one of the loops should be sequential
should be optional. Since the gang, worker, and vector clauses are already
used there is no way to partition the last remaining loop anyway.

One can also use several of these loop optimization clauses for a single
loop:

#pragma acc parallel loop gang worker

for (int i = 0; i < imax, i++) f{
#pragma acc loop vector
for (int j = 0; j < jmax; j++) |

}

Finally, one can also specify how many threads should be used on
workers and vector length respectively, one should be aware however that
the product of the two values should be below a certain threshold. The
product of the number of workers and the length of vectors are the number
of threads actually used in a single gang. The number of threads that can
be used in a gang is analogously limited as the number of threads that can
be used in a block in CUDA. Therefore the number of workers multiplied
by the vector length will typically have to be below 1024 for most NVIDIA
GPUs at the time of writing; for some newer GPUs the limit might be 2048
instead, it depends on how many threads can run in a single block for that
GPU.

Since the underlying hardware is still the same when using a different
interface for parallelization, one should still use the same rule of thumb
regarding the dimensionality of the gangs/blocks. The total number of
threads running in a gang should be a multiple of 32, since this is the size
of a warp in CUDA which are groups of threads that work in unison and
are more tightly coupled to each other than they are to other threads in the
block. In general one tends to use a power of two for both the number of
workers and the vector length.
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For the parallel directive one can use additional clauses to explicitly
specify the degree to which each level should be partitioned (gangs vs
workers vs vectors).” The clauses used are the num_workers and the
vector_length, the program will generate gangs of this dimensionality
then run as many gangs as possible given the hardware capabilities.

An example of specifying the number of workers and vectors:

#pragma acc parallel loop gang \
num_workers(64) vector_length (16)

for (int i = 0; i < imax, i++) {
#pragma acc loop worker
for (int j = 0; j < jmax; j++) |

#pragma acc loop vector
for (int k = 0; k < kmax; k++) {

}

9For the kernel directive one can simply add a parameter to the existing clauses in order
to specify this which is arguably simpler, but I mostly just cover the parallel directive in
this introduction.
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Chapter 3

Feature Descriptor Matching

3.1 SIFT

As I previously stated in the abstract of this thesis, the SIFT algorithm
(developed by David Lowe [9]) finds keypoints in an image, then calculates
highly distinctive and invariant feature descriptors from those key points.
A feature descriptor is really just a collection of values, typically an array,
that are used to describe a local feature in an image, like a key-point. We
will explore the sift algorithm in broad strokes in this paper.

The features found using SIFT are entirely invariant to scaling and
rotation, and partially invariant to change in illumination and change in
3D viewpoint.

Generally, there are two separate steps to the SIFT algorithm (as well as
most other algorithms used for the same purpose):

1. Find keypoints. (keypoint detection)

2. Make distinctive and invariant feature descriptors from those key-
points. (descriptor extraction)

These two steps can each be further divided into more steps, Lowe’s
paper chooses to divide it into four major stages, some with sub-steps of
their own. I myself am going to describe the algorithm in six steps as it is
summarized in “Digital Image Processing 4. etd” by Gonzales and Woods
[4]. I will however skip a lot of the math and try to describe it verbally in
broad strokes instead. Much of the actual information presented will come
from the aforementioned book by Gonzales and Woods.

Step 1. Construct Scale Space

The first step of the SIFT algorithm is to construct a scale space of the image.
Scale spaces are used by SIFT to find edges as well as to provide invariance
to scale changes. Creating a scale space involves creating many different
versions of the image, these versions are split across two dimensions:
octaves and scales.

Going from an image to an image of one higher octave involves down-
sampling the image by a factor of 2 then smoothing the image. In SIFT the
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image is smoothed such that the standard deviation of the image is twice
that of the previous image.

Each octave is further divided into many scales. Scales are simply dif-
ferently smoothed versions of the same image ordered by their smoothness
i.e. the standard deviation of the Gaussian filter applied, from least smooth
(lowest standard deviation) to most smooth (highest standard deviation).

Note that changing an octave involves both down-sampling and
smoothing, whereas changing the scale only involves a smoothing oper-
ation. If one is clever with choosing the value of the smoothing factor for
the scales one can avoid some extra smoothing operations required when
changing octaves and thus save some valuable time.

Step 2. Obtain Initial Keypoints (Scale-Space Extrema Detection)

The next step is to take the Difference-of-Gaussians, that is to take the
difference between pairs of differently smoothed images; this will reveal
corners, edges, and other interesting parts of the image.

The differently smoothed images used to find the Difference-of-
Gaussians is the scale space from Step 1. For each octave we must go
through each scale except the first one and take the difference between that
image and the one before it. If we have (n) scales per octave we will have (n-
1) difference images computed from those scales. The resulting collection
of images is a collection of difference-of-Gaussians.

We then have to search for local maxima in the difference-of-Gaussians.
This simply means we have to choose pixels from the difference images
with more extreme values than all their neighbors, not only neighbors in
the x and y axes, but also neighbors in scale (the ones around the same
point, but one scale above or below). For one pixel there are 8 neighbors on
the same scale, and 9 on both the one below and the one above respectively,
totaling in 26 neighbors. If the pixel is either higher than all its neighbors
or smaller than all its neighbors, we choose it as an initial keypoint.

The fact that pixels in the difference images have to be compared with
neighbors directly above and below them means we have a problem for
the first and last difference image, they are lacking 8 neighbors each. In
order to combat this we are going to need two extra difference images, for
which we need two extra scale images. This combined with the fact that
the number of difference images are naturally one less than the number of
scales in an octave, means we need three extra scale images if we want to
cover a complete octave of difference images. So if we want (s) number of
difference images, we are going to need (s+3) number of smoothed images.

Step 3. Improve Keypoint Location Accuracy

After finding the initial keypoints, SIFT uses interpolation to try to find a
better keypoint location that, unlike the initial location, does not have to
have a discrete x and y location but can instead be somewhere in between
the actual pixels.
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Step 4. Delete Unsuitable Keypoints

When looking for features we are generally looking for corners and small
dots or blobs in the image, small singular points that are characteristic to
the object they are captured from. One problem is that a lot of redundant
potential points of interest get picked up along edges, cluttering our data.
If everything goes as it should this shouldn’t happen since a pixel on an
edge should be roughly equal in intensity to its neighbors along that edge;
however, because there are only a few pixels of roughly equal intensity, this
approach is very vulnerable to noise and other irrelevant intensity changes
along the edge.

An edge is characterized by a sharp change in intensity in one direction
and a low change in intensity in the orthogonal direction. We can use
the 2x2 Hessian matrix evaluated at that point in order to estimate the
intensity change along the two dimensions. Specifically, if we were to take
the eigenvalues of the 2x2 Hessian matrix we should be able to determine
whether or not the point is located along an edge by measuring the ratio of
the two eigenvalues: if the ratio is close to 1, then it is likely that the point is
not located along an edge and we should therefore keep it; however, if the
ratio is very high or very close to 0, then it is likely that the point is located
on an edge and we should discard it.

Calculating eigenvalues of the Hessian for each initial keypoint would
be unnecessarily computationally intensive, and there is a better way: we
can find the equivalent of a function of the ratio using the trace and the
determinant of the Hessian and check if it is too high, this should save some
computation, and serve the same purpose. What we do here is that we
specify a ratio limit that we find acceptable, evaluate the aforementioned
function using that ratio, then this function value can be used for all
comparisons instead of the actual ratio.

Step 5. Compute Keypoint Orientations

This step is very much related to the next step, the order of operation
between the two steps is also slightly blurred. The feature descriptors are
calculated from the gradient magnitudes and directions in the local area
around the keypoint; the problem with this is that we want the feature
descriptors to be rotation invariant. In order to achieve rotation invariance
we have to assign an orientation to each keypoint, store that information
separate from the feature descriptor, then adjust the feature descriptor to be
relative to that orientation instead of whatever orientation it gets by default
when searching the image.

When the histogram is formed from the local gradients we assign the
orientation of the feature descriptor based on the location of the highest
peak in the histogram, that is the direction with the highest magnitude in
the local gradient. SIFT sometimes chooses to assign multiple orientations
if there are several peaks of similar sizes.
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Step 6. Compute Keypoint Descriptors

We mentioned before that we calculate feature descriptors from the
gradients in the surrounding area around the keypoint. We use pixel
differences to estimate the local gradient in a 16x16 region centered on
the selected keypoint, and thereby end up with a 16x16 matrix of local
gradients (likely actually stored as one matrix of magnitudes and one
matrix of angles). The magnitudes of the gradients are weighted by a
Gaussian function whose values decrease as it gets further away from the
center. The standard deviation of this weighting function is half the size
of our region, in this case (when using a 16x16 region) it would have a
standard deviation of 8 in both the x and y directions.

Mostly for the ease of comparing features later on, but also for the ease
of storing the features, we need to quantize the gradient directions into
discrete values, all multiples of 45 degrees apart and covering the entire 360
degree spectrum. This will result in 8 bin histograms where the bins are
indexed according to the gradient direction they represent, each holding
their respective cumulative gradient magnitude for each 4x4 sub-region of
the 16x16 region'. In order to fill these histograms, SIFT goes through each
of the sixteen 4x4 sub-regions and interpolates the gradient values, splitting
the magnitude value of each gradient into the two boxes it falls between, in
proportion to which box it is closer to.

After quantizing all the values, accumulating the local gradient values
into histograms of 8 bins for every 4x4 sub-region in our 16x16 region
around our keypoint, we should then have 8 bins per histogram and 1
histogram per 4x4 sub-region of which there are 16 in total. This gives
us a total of 8- 16 = 128 bins. All of those 128 bins will be combined into
one single data structure and that will be our feature descriptor.

In order to compare these feature descriptors, all you have to do is
take the euclidean distance (or some other norm) between two feature
descriptors, and given that value you will have to decide whether they
are a good match or not. To decide whether two features are essentially the
same one might set a tolerance and see if the distance between two feature
vectors falls below this tolerance, though typically this is only useful for
excluding bad matches. The typical approach for finding a match is to
simply find the best fit for the feature descriptor in a data set of other
feature descriptors, then perhaps compare the best match distance with a
threshold or with the distance to the second best match to determine if the
match is significant.

When using SIFT one is generally interested in matching a set of
descriptors with another set of descriptors, really what we want to do is
to find the nearest neighbor, and we want to do this fast. This brings us
to our next section about the nearest neighbor problem and the curse of
dimensionality.

1The 4x4 sub-regions of the 16x16 region are not overlapping, meaning there are 16 sub-
regions in total

30



Location of feature descriptors in feature space

Though this information does not seem to come from any particular source,
it seems that values in feature descriptors all seem to be located in the first
quadrant (all values are positive), and on the surface of a hyperbolic sphere
around the origin. This will be relevant when discussing how one should
most efficiently divide the search space.

3.2 Nearest Neighbor for Feature Matching

The nearest neighbor problem is really a problem of its own, separate from
SIFT, but it might also be described as the last stage of SIFT as the ultimate
goal of extracting features from an image will be to match them with
features extracted from a different image in order to recognize similarities
between them.

When discussing the time complexity of the nearest neighbor algo-
rithms I am assuming that one tries to match a set of M points with an-
other set of N points. I will use the variables M and N for that meaning
throughout this chapter.

3.2.1 Brute Force

In many ways, efficiently finding the nearest neighbors between a data
point and a set of similar data points is a solved problem. There is the
brute force method in which you simply iterate through every point in
the array, calculate the difference between a point and all the points in the
other dataset, and all the while keep track of the minimum difference value
and the point corresponding to that minimum difference value. Matching
a single point with the dataset will have a time complexity of O(N),
matching every single point will have a time complexity of O(M - N)

3.2.2 Binary Search

If the points only exist in a single dimension, one can sort the points using
a sorting algorithm with time complexity O(NlogN), then use binary
search for each point. This has a time complexity of O(log N) per point.
We then have to do that for M points resulting in a time complexity of
O(Mlog N) for matching the two datasets once one of them is sorted. In
conclusion, first sorting one dataset, then matching every data point using
binary search only has a time complexity of O(Nlog N + Mlog N).

Our feature descriptors however do not only have one dimension each,
they have 128 dimensions, so using simple binary search is out of the
question as they only work for one dimensional data points.

3.2.3 K-d Trees

When dealing with only a handful of dimensions one could use other
slightly more advanced methods for efficiently finding the exact nearest

31



neighbor. One such method is using K-d trees. K-d trees were introduced
by John Louis Bentley in 1975 [2] and were described as multi-dimensional
binary search trees. A K-d tree is a data structure that works sort of like
a normal binary tree, but is more complicated in functionality, particularly
when searching which requires an extra backtracking phase.

When putting a node into the tree, each level will only compare one
of the dimensions of the node with its stored value (a value in the same
dimension, taken from a previously added node), generally each level will
compare dimension (level [mod] number of dimensions). The idea is that
each level splits the feature space in one of the dimensions into two, thus
halving the entire feature space, the issue being that a point that is just
a little too far away in one dimension might be very close in many other
dimensions, and thus we might miss potential matches.

The issue of missing potential matches is solved for K-d trees through
the use of a somewhat intricate backtracking phase. During the backtrack-
ing phase of the search, the algorithm will, for each level, take both the
value of the node that we're splitting our feature space by on this level in
the tree, as well as one of the dimensions in the data point we're trying to
match with, corresponding to the dimension that this level is splitting. The
algorithm will then take the difference between the aforementioned values
and check if that difference is smaller than the difference corresponding to
our current best fit; if it is smaller, the algorithm will check the other branch
of this node as well; if not, the algorithm can carry on up the tree knowing
that it has the best match from the branch in which it is located.

For a handful of dimensions K-d trees perform quite well, and are able
to maintain the same time complexity as binary search trees with O(log N)
for matching a single point and O(M log N) for matching an entire dataset.

3.2.4 The Curse of Dimensionality

While K-d trees work excellently for a smaller number of dimensions, the
algorithm begins to break down when the number of dimensions increases
to larger numbers.

In general, exact nearest neighbor algorithms with smaller time com-
plexities than O(N) to match a single point start to break down with the
increase of dimensions in the feature space (number of dimensions for each
data point). This rapidly increasing breakdown of performance as dimen-
sions are added is referred to as “the curse of dimensionality”.

If we want to match data with higher dimensionality for each data
point we essentially have two choices: accept O(M - N) time complexity
and solve the problem using brute force; or we can resort to using
an approximate algorithm that uses less time but does not guarantee
correctness.

These algorithms that trade correctness for efficiency are usually called
greedy- or approximate algorithms, an approximate algorithm for finding
nearest neighbors is called an Approximate Nearest Neighbor (ANN)
algorithm.
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3.2.5 Best-Bin-First (BBF)

Best-Bin-First is one approximate nearest neighbor algorithm, and it is
presented in Lowe’s paper on SIFT [9] as a possible algorithm to choose for
matching feature descriptors. It is also explained in more detail in another
paper published by Beis and Lowe in 1997 [1].

Basically what Best-Bin-First does is that it cuts the backtracking search
for K-d trees short, and thus relinquishes the guarantee of correctness
in favor of significantly faster execution time when searching in larger
dimensions.

BBF backtracks up the tree and notes down the other branches where
the distance from our point to the line that we’re splitting by is lower than
the distance from our point to the current best fit. It puts these branches
into a priority queue sorted by that distance.

BBF then searches the lowest one of these branches, then backtracks
again up to the branch it started from, adding new branches to the priority
queue if they might contain points closer than the current best fit. It repeats
this either for a set number of leaf nodes or until the distance from the
current best fit to the closest line dividing up the feature space is below a
certain threshold.

In their paper on the BBF algorithm [1] Beis and Lowe showed that
BBF worked very well for dimensionality of at least up to 25. They also
showed that BBF outperformed the most popular hashing method at the
time, though other hashing based algorithms have since entered the scene,
such as Locality Sensitive Hashing (LSH), which was introduced by Indyk
and Motwani in 1998 [6].
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3.3 Locality Sensitive Hashing (LSH)

The presented algorithm for Locality Sensitive Hashing was introduced by
Piotr Indyk and Rajeev Motwani in 1998 [6].

Instead of using trees, LSH uses a hashing approach, specifically a
variant of hashing that is sensitive to a datapoint’s location in the feature
space. For each point in a data set, the LSH algorithm finds a value that
represents the location of this point in the feature space and groups the
points by these values.

In LSH, similar data correspond to similar hash values. Unlike many
other hashing functions, where collisions between similar data is to be
avoided, in LSH we actually want collisions between similar data. The hash
functions are generated using hyperplanes which we use to divide up the
feature space. Points falling on the same side of all the hyperplanes have a
high probability of being close to each other and are therefore mapped to
the same group.

LSH hopes for collisions between similar data, and it tries to bring
about collisions between similar data, but it does not guarantee collisions
between similar data. Sometimes similar data is mapped to different values
because of bad luck; to minimize the chance of this happening LSH repeats
the process several times with different hash functions using different
groups of hyperplanes.

3.3.1 How the Algorithm will be Presented

In order to intuitively describe the algorithm I will begin by introducing
the general behavior of the algorithm by giving a short implementation
abstract in Section 3.3.3.

After describing the rough outline of the algorithm I will then move on
to the heart of the LSH algorithm, namely the point hashing itself, where
I will describe how the algorithm partitions the search space into smaller
groups/boxes ? using hyperplanes.

There will then be a simplified analysis of the time complexity in Section
3.3.7.

In the last two subsections I will then describe in words what the
algorithm has to do after finding these hash values. Section 3.3.9 covers
how the LSH tables are represented. Section 3.3.10 gives an overview of
the final details of LSH.

3.3.2 Terminology

Matching two sets of points is typically done by iterating through the
elements of one of the sets, and matching each element with a point in
the other set. The set that we are iterating through during the search phase
will be referred to as the query set, the points in which are referred to as the

2T will use the terms "group" and "box" interchangeably; the points that fall into the same
box belong to the same group.

34



query points or the query vectors. The query set is the set of points that we
are finding a match for.

The other set, the set that is searched each time, will be referred to as
the base set, the points in which are referred to as the base points or the base
vectors, the base set can sometimes also be referred to as the search space.
The points themselves are located in a so-called feature space.

One can say that the name Locality Sensitive Hashing (LSH) indicates
that it only refers to the hashing itself, but I will also use the term for the
entire algorithm used for point matching using such hash functions.

3.3.3 Implementation Abstract

A table in the LSH algorithm splits the feature space into many different
regions, and maintains a box of points or point references for each separate
region in the feature space. LSH goes through every point in the base
set and adds it to the correct position in the table, it will check which
region it falls into using a locality sensitive hash function and adds it to the
corresponding box in a fitting data structure. It will repeat this for every
base point.

After putting all the base points into the table it should be clear that
the points are roughly grouped by their location in the feature space. This
allows LSH to potentially find the nearest neighbor of a query point with
reasonable chance by searching through only a subset of the base set.

Once an LSH table data structure is created for the base set, one can try
to find matches for a query point by hashing it into the correct box in the
data structure according to its location, then comparing it with every base
point located in that box.

When matching the query points with points in the same box for only
one LSH table the chance of false matches or no matches will be fairly high.
A point close to the border might very well match better with a point in
the neighboring region than one in its own. In order to reduce the chance
of this happening LSH creates several tables, all splitting the feature space
in different directions. If a query point is located close to the border of a
region in one table, and thus finds a bad match, it will get the chance to
find a better match in one of the other tables, where the feature space is
divided in a very different way using very different hyperplanes.

3.3.4 Partitioning the Search Space

In Figure 3.1 I have drawn the feature space being split in half by a
hyperplane going through the unit circle. The figure is drawn in 2D, but
the mathematics related to it that I will present will naturally generalize to
higher dimensions.

On the figure I have drawn the feature space as a unit circle. The feature
space is cut in half by a hyperplane represented by a vector orthogonal to
it, the vector that represents said hyperplane is denoted as h.

I have introduced a "positive" and "negative" side of the hyperplane,
where the "positive" side contains all points that are further out in the
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Figure 3.1: Figure showing a hyperplane splitting the feature space in two.
h is a vector perpendicular to the hyperplane which we use to represent
the hyperplane, and a is the point/vector we’re currently analyzing.

'+’ indicates the "positive" side of the hyperplane, i.e. the part of the feature
space further out in the direction of h than h itself.

’-" indicates the "negative" side of the hyperplane.
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direction h than h itself, and the "negative" side contains all points were this
is not the case. The terms "positive" and "negative" are arbitrarily chosen
so as to more easily refer to each side of the hyperplane.

In the figure I also drew a second vector which I named a. This vector
was drawn on the positive side of the hyperplane, but could just as well
have been drawn on the negative side, the purpose of this is to show how
one can determine which side of the hyperplane an arbitrary vector in the
feature space falls on.

In order to understand how to partition the feature space using
hyperplanes one must be familiar with the idea of vector projections. I
will not give a complete explanation of projections in this thesis, but I will
quickly derive a formula. One technically doesn’t need the entire formula
for projections, only the scaling factor, but I will introduce it anyway for
context.

The euclidean length of the vector a in the direction of h can be derived
from vector multiplication (dot product):

The symbol 0 is here the angle between the two vectors a and h. The

formula a|1-1T1 is equal to |a| - cos § which simple trigonometry tells us is

equal to the euclidean length of a in the direction of h. This is the scaling
factor we need for the projection formula, and also the value we will use
to find out which side of the hyperplane a falls on (this is a signed value,
the value will be negative if the projection of a onto h goes in the opposite
direction of h).

(Length of a in the direction of h) = a|-h‘h (3.1)
s . N . a-h .

By multiplying the length of a in the direction of h (i.e. W) with a
unit vector going in the direction of h, (i.e. ‘i:‘) one arrives at the following
formula for the projection of a onto h:

a-h h
Pysh = v =+ (3.2)
Y

Now that I have covered the formula for projections (and specifically
pointed out that it is divided in two parts, namely a direction and a
length /scaling factor) we can now introduce a formula that tells us which
side of the hyperplane a lands on.

Note that a vector a is on the positive side of the hyperplane represented
by h if the length of a in the direction of h is greater than the euclidean
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length of the vector h itself. Le. a is on the positive side if

a-h

Th[ > |h| (3.3)

otherwise it is on the negative side.
Some further calculations:

a-h>
|h|
a-h> |hJ

[

Which in turn gives a simple expression to check if a is on the positive
side of the hyperplane denoted by h:

a-h>h-h (3.4)

One can also find the distance from the vector a to the hyperplane
represented by h by subtracting the length of a in the direction of h from
the length of h itself:

-h
distance from hyperplane = ‘a|h| — ]h[‘ (3.5)

Because of how we chose to represent hyperplanes, equation 3.4 comes
with the caveat that it does not work for hyperplanes going through the
origin. For a feature space consisting mainly of points of similar lengths
(similar distances away from the origin) it might be worthwhile to split the
feature space exclusively using hyperplanes going through the origin.

If we want to split the search space using a hyperplane that goes
through the origin we can do that by modifying equation 3.4 only slightly,
where a is on the positive side of the hyperplane if:

a-h>0 (3.6)

For this equation we're only using the direction of h and checking
whether a is mostly in the same direction or not. It is in a way the same
formula as 3.4 with h being infinitely close to zero. However, now that
we’re comparing the dot product with a constant, the length of h no longer
affects the equation.

Equation 3.6 is a bit simpler than equation 3.4. When representing the
hyperplane in this way the equation for finding the difference between
vector a and the hyperplane is given by:

distance from hyperplane = 'a\hH (3.7)
With equation 3.6, the vector h can now be of any length. However,

if one wants to more easily find the distance between a vector and a
hyperplane then there is an advantage to normalizing h by dividing it by
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its length, effectively setting its euclidean length one. Doing this we can
derive an even simpler formula for the distance from the hyperplane:

distance from hyperplane when h is normal = |a - h| (3.8)

One can also use analogous equations for arbitrary hyperplanes with
an arbitrary distance from the origin, including a possible zero distance,
by storing the distance from the origin in a separate value, which we can
denote r.

That gives the following equation for finding which side point a lands
on:

a-h>r (3.9)

And the following equation for finding the distance from the hyper-
plane:

distance from hyperplane = |a-h — 7| (3.10)

In my application of LSH for matching feature descriptors I found
it most useful to simply use hyperplanes going through the origin, but
implementing a version of LSH that uses hyperplanes with random
distances from the origin is quite straight-forward.

The distance from the hyperplane is used if one wants to improve LSH
by checking the other side of the hyperplane if the distance is below a
certain threshold. This can be very useful for improving the recall of the
algorithm without increasing the number of tables or reducing the number
of hyperplanes used.

I created Figure 3.2 in an attempt to show how one partitions the search
space using hyperplanes that go through the origin where the vector h
simply gives the direction of the hyperplane. On the figure, I drew h as
a normal vector; h could really be of any length, but in that case one needs
to divide by |h| when measuring a point’s distance from the hyperplane
as we do in equation 3.7. If one does not care about the distance from the
hyperplane, the only thing that matters from the vector multiplication a - h
is the sign.

Note that all the mathematics presented here holds for general vectors
in any dimensions, nothing of what was covered here is specific to two
dimensions except for the figures.

3.3.5 Hyperplanes Going Through the Origin: Pros & Cons

Splitting the feature space using only hyperplanes that go through the
origin has one major advantage and one major disadvantage.

The advantage is that if the mean of the points is very close to the origin,
having a hyperplane go through the origin has a high chance of dividing
the search space in two even parts.

The disadvantage is that this will limit the types of hyperplanes that are
possible, such that many hyperplanes used in combination to partition the
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Figure 3.2: Figure showing a hyperplane splitting the feature space in two
through the origin. h is a vector perpendicular to the hyperplane which we
use to represent the direction of the hyperplane.

The hyperplanes distance from the origin is set to zero regardless of the
length of h.

p+ and p_ represents two arbitrary points/vectors where p happens to
fall on the positive side of the hyperplane and p_ happens to fall on the
negative side.

"+ indicates the "positive" side of the hyperplane, i.e. the part of the feature
space that goes in the direction of h.

’-" indicates the "negative" side of the hyperplane, i.e. the part of the feature
space that goes in the opposite direction of h
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search space may not partition the search space as efficiently as they would
have if they were allowed to be more diverse.

The disadvantage will be particularly severe if the points are located
at radically different distances from the origin, as this will lead to points
close to the origin being matched with points very far from the origin just
as often as they are matched with other points close to the origin. This is
due to the fact that if all points go through the origin, the hyperplanes will
technically only divide the search space by the angle between themselves
and the point in question, if points are equally far from the origin, this
doesn’t matter, but if they vary in length then this is not optimal.

For the application of matching SIFT feature descriptors, the disadvan-
tage is negated by the fact that the feature vectors are all of equal length,
i.e. they have an equal distance from the origin. They will all be located
on the surface of a sphere around the origin in the first quadrant with only
positive elements. Meanwhile, the number of dimensions in a feature de-
scriptor is very high compared to the number of hyperplanes used for a
single table, there should therefore be enough dimensions for the hyper-
planes to be very diverse even with some restrictions on their directions.

The locations of the feature descriptors also seem to negate the
advantage that I listed. Because the feature descriptors only contain
positive elements and are located away from the origin, the mean of the
feature descriptors can obviously not be zero. The best way to fix this is to
create hyperplanes that are specifically designed to cut the first quadrant
of the feature space such that the feature vectors can keep their position
in the feature space (the feature vectors being equally far away from the
origin is an advantage that should be kept if possible). One can create
such hyperplanes by restricting them such that their elements sum to zero,
ensuring that all hyperplanes will always split the first quadrant of the
feature space in two equal halves. I will discuss this further in Section 3.4.2.
When such hyperplanes are used, having the hyperplanes going through
the origin can be beneficial also for matching feature descriptors.

For my implementation of LSH I will therefore use hyperplanes that
only go through the origin, as this is beneficial when matching feature
descriptors.

3.3.6 Calculating Hash Codes

Now that I have explained how to calculate what side of a hyperplane a
point falls on, it is time to explain how to use this information to construct
hash codes which we can use to group the points in a dataset together.

In order to divide the feature space we use several hyperplanes, each
splitting the space in two in separate directions, then only points that are
on the same side of every one of those hyperplanes are given the same hash
value and are thus grouped together. The hyperplanes are combined into a
list, where h; is hyperplane number i in the list, starting from 0.

The number of hyperplanes can generally be of any number, but they
are often set to log,(N) where N is the number of base points. The reason
for this is that when setting the number of hyperplanes to log,(N) one can
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show that the time complexity of the search algorithm for finding the best
match for a single query point will be logarithmic.

One does not have to use exactly log,(N) hyperplanes when running
an LSH algorithm, but if the number of hyperplanes is set to log,(N)
then the algorithm should theoretically have a logarithmic time complexity
assuming the hyperplanes are effective at partitioning the search space.

Constructing hash codes using the aforementioned hyperplanes is
pretty straight forward. For a single point a we can calculate which
side of each hyperplane the point falls on using vector multiplication as
I explained in the previous section. For every hyperplane h;, if a is on the
"positive" side of h; we represent this as a 1, on the other hand if a is on the
"negative" side of h; we represent that event as a 0.

We can then combine those ones and zeros into a single integer by using
them as bits, starting from the least significant bits. We can generate this
hash code by doing the following: first we initialize the hash code to zero,
then for every hyperplane h;, if a lands on the "positive" side of h;, the i"th
bit is set to 1; if a lands on the "negative" side of h; the i"th bit remains 0.

hashcode = 0;
for all i

{
if (dot_product(a,h[i]) > 0)

{
}

hashcode = hashcode | (1 << i);

By calculating the hash-code we have effectively assigned a to some
group that corresponds roughly to where a is located in the feature space.

These hash-codes can later be used to group the points together so they
can be matched much faster with points from other datasets. The points
are grouped into tables, and the hash codes are used to find the correct box
in a table to store the point in for a given base point, or to search in for a
given query point.

One nice property of LSH is that the closer a query point is to its best
match in the base set, the higher the probability is for those two points to
be matched. Therefore, if two points are more likely to actually be a true
match then they are also more likely to be matched together by LSH. It also
means that if a query point is not very similar to any of the base points, then
the probability of finding the best possible match among them decreases,
this is not so important however, since in this case the best match in the
base set was not a very good match anyway.

3.3.7 Time Complexity: Simplified

In the paper on LSH [5], different aspects of the algorithm such as the time
complexity and the error probability are covered in great detail. In this
thesis however, I will only present a smaller, perhaps simplified, example
heavily based on information that I found in an online lecture by Victor
Lavrenko.
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To find the computational cost of the algorithm, let us say there are N
points. Each point is in D dimensions, and the hashing algorithm uses H
number of hyperplanes. Finally the number of tables is denoted by T.

In order to calculate a hash code of a single point, we need to, for
each hyperplane, calculate which side of the hyperplane the point falls on,
which is done using vector multiplications. A locality sensitive hash code is
created by H vector multiplications between the point and the hyperplanes.
Each vector multiplication requires D multiplications and D — 1 additions,
or just D multiply and accumulate operations. We therefore say that
calculating a hash code for a single point requires something on the order
of D - H primitive operations.

Since there are N points divided between 2H boxes, if one assumes the
points are evenly split between the boxes® there will be (N /2!) points in
each box.

The number of base points that a query point has to be compared with
when using a single LSH table will then be something on the order of
(N/2M). Comparing a point requires D subtractions and multiplications,
as well as D — 1 additions, but let’s pretend for simplicity that it is D
primitive operations. The number of operations to match a single point
once it is grouped into the correct box will then be D - (N/2H) primitive
operations, this is the time used for comparisons.

Both the hashing and the comparisons for a point will have to be
repeated for each table T. The time complexity for finding a match for a
point will therefore be multiplied by T.

Time complexity for finding a match for a single query point:

T-(D-H+D-(N/2H)) = TDH 4 TDN /2"

The first component of the time complexity is only a multiplication
of the number of tables, the number of dimensions, and the number of
hyperplanes; all those factors can be controlled so that the total cost is
fairly low. The last component of the time complexity depends on N and
therefore grows linearly, but the expression is divided by 2/ . To make
the time complexity logarithmic one sets the number of hyperplanes to be
equal to the logarithm of N such that the N factor gets canceled out.

Set number of hyperplanes, H := log,(N)

One can then show that the time complexity of the algorithm becomes
logarithmic:

3The points being close to evenly divided between the boxes is highly unlikely, which is
actually a problem when using LSH, and a reason why creating good hyperplanes is such
a big undertaking in and of itself. It is assumed here however, since it makes it possible to
reason about the time complexity of the algorithm.
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Time complexity = TDH + TDN /2%
= TDlog, N + TDN/2'°82N
=TDlog, N+ TD
= TD(log, N +1)
= O(log, N)

The number of dimensions and the number of tables were here treated
as constants.

One big caveat of increasing the number of hyperplanes to reduce the
time complexity, is that increasing the number of hyperplanes does not only
reduce the time taken by the algorithm, it also reduces the probability of
finding the best match for a given query point. Each hyperplane added
has a certain probability of coming between a query point and its closest
match, thus dividing them into two different groups. That being said,
the algorithm is still very effective, and the closer a query point is to its
best match, the more effective it is, since the probability of a hyperplane
dividing the two points into different groups becomes lower the closer the
query point is to its best match in the base set.

In addition to creating mathematical models for the time complexity,
one can also create mathematical models for the probability of error given
a certain number of tables and assumptions about the input points. I
will stop the algorithm analysis here however, with this simplified view
of the time complexity, as an in-depth analysis quickly becomes very
complicated, and therefore falls out of scope for this thesis.

3.3.8 Number of tables

One thing that has to be decided when running LSH is the number of LSH
tables to use. Choosing the number of tables involves a very important
trade-off, using more tables leads to a higher probability of finding a point’s
nearest neighbor, but using more tables also results in more computation
since the search has to be repeated for each table.

The exact number of tables to choose thus depends on balancing the
importance of speed vs. accuracy; however, you cannot simply choose
the speed and accuracy that you require. The speed of a single search
depends not only on the number of LSH tables, but also on how many base
points fall into the same tables as the query point, this in turn depends
on how well the feature space is partitioned and how our point datasets
are distributed around this search space. Meanwhile, the accuracy of the
algorithm cannot be predetermined either since it depends both on the
distance of our point from its closest match, and also on just random
chance. If one makes assumptions about the data, one might use advanced
mathematical models to make some presumptions about the performance
of the algorithm based on probability, but these presumptions might not be
valid if the data deviates sufficiently from what was assumed.
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Since the number of tables is only one parameter however, one can just
experiment with a few different numbers until one finds a number of tables
that provides the right combination of speed and accuracy for some typical
input.

3.3.9 How To Represent LSH Tables
Direct or Indirect Pointers

One important design decision that has to be made when implementing the
LSH table data structure is whether to use indirect pointers to the points in
an original list, or copy the points directly into each LSH table. There are
advantages and disadvantages with both approaches.

Using indirect pointers has the following advantages:

¢ There is much less memory used. Because we use a large number of
LSH tables for a single dataset, and the points or point references have
to be repeated for every table, when using indirect pointers we will
only need one memory address for each point instead of 128 floating
point values as would be the case if points were stored directly in
each LSH table.

¢ Since only the indirect addresses must be stored separately for each
table, and the base points themselves remain constant in memory,
much of the same data will be reused when matching a point with
each table. This memory reuse will likely be good for caching,
which improves the performance of the algorithm. (Though an extra
level of indirection itself is bad for caching which might reduce the
performance for the same reason.)

* Another advantage is that creating the LSH tables will be slightly
faster. This is also because the LSH tables are using less memory.
It is faster to assign an indirect address than it is to move an entire
feature descriptor with 128 values. (We also won't need to actually
look up the addresses while creating the tables, this will save some
time when creating the tables, however it may or may not lead to
more time taken during matching.)

¢ Finally, and perhaps most importantly, using indirect pointers for
the feature descriptors allows for an optimization of the program
by finding potential matches for each query point before the actual
matching, which enables us to ignore duplicate point comparisons
across tables.

I will discuss this optimization in detail later in this thesis, but it
makes it possible for the algorithm to avoid comparing the same
points more than once if a query point matches with the same base
point in several tables, something that is particularly important when
using many tables since points that are grouped together in one table
are likely to be grouped together in other tables as well.
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Finding possible matches before actually comparing the points also
makes the program easier to parallelize, as functionality can more
easily be split into separate, much simpler functions.

The potential advantage of using direct pointers is mainly during
matching, given that we are comparing it with the "naive" matching routine
where we do not check for potential matches beforehand. We don’t want
the program to go through levels of indirections unnecessarily. Accessing
memory takes a lot of time, particularly if that memory is not cached.
Chasing pointers is very likely to decrease performance, particularly if it
occurs within an inner loop.

While there is an argument to be made for storing the points directly in
the LSH table, I believe this argument is less convincing than the arguments
listed for using indirect pointers instead. I therefore opted for using indirect
pointers for the advantages of using indirect pointers that I listed above.

LSH Table Organization

Each LSH table consists of a collection of the following arrays: an array
of group indices, an array of point references sorted by groups, the
points themselves, and optionally, an array of group sizes (though this
information is implicit from the indices and the number of groups).

First we need an array containing the points themselves, or in our case
where we use indirect pointers, this array instead consists of pointers to the
points in our matching dataset. The point references * in this array are not
sorted by their original order, instead they are sorted by their groups with
points belonging to the same group grouped together. Because the point
references are ordered in terms of their groups I decided to call this array
groupArray.

We also need an array storing the indices used to index each group in
groupArray given its corresponding hash code, for this I created an array
called groupIndexMap. groupIndexMap is indexed by LSH hash codes of
points and returns an index for the correct group in groupArray, or rather
the first element of that group. In order to search the group we also need to
know how many points are in that group.

In order to keep track of the number of elements for each group we can
use an array storing the sizes of each group, I decided to call that array
groupSizeMap. groupSizeMap is useful for creating groupIndexMap, but
once groupIndexMap is created one technically doesn’t need groupSizeMap
anymore since one can instead subtract the current index from the next
index (or max index for the last element) and get the size that way. One can
make this work even for the edge case by adding an element to the end of
groupIndexMap which contains the size of groupArray.

In my implementation of the normal LSH algorithm I kept the
groupSizeMap array, mostly because of path dependency of my codebase
since the program was already implemented in that way and changing
it would require extra effort with little change in performance. 1 will

4'references” in the normal meaning of the word, not C++ terminology.

46



also present another implementation of LSH that only uses one table,
but achieves an acceptable accuracy by checking neighboring boxes; that
version discards groupSizeMap after creating the LSH tables.

I created Figure 3.3 in order to visualize how one can represent LSH

tables using
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Figure 3.3: This figures visualizes the organization of a set of two LSH
tables. Note that the last element of groupIndices points to the address
after the last element of the corresponding group array, this way the size of
each group can easily be found by subtracting the current index from the

next index.
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3.3.10 LSH Algorithm Overview

The LSH algorithm can be split into two main parts: constructing LSH
tables, and looking up points in the table. While not strictly necessary, it
is convenient to keep these two functionalities separate for the user so they
can reuse the LSH tables if they want to search the same base set using
another set of query points later on.

Both parts of the algorithm, table construction and matching, will have
to calculate hash values in order to find a point’s group mapping.

When constructing the LSH tables one of course needs to use a set of
base points, likewise, it can be a good idea to group together the query
points into their own dataset before matching so that the task of matching
them becomes more parallelizable.

Constructing LSH Tables

In order to construct the hash table one first needs to calculate the hash
value for every point in the base set and store the hash values in an array
which I decided to call indexGroupMap.

I created a function that I called organize_points_into_groups. This
function takes indexGroupMap for a single set of hyperplanes as in-
put and uses it to create the arrays necessary to represent a single
LSH table. organize_points_into_groups is called by another func-
tion named construct_lsh_tables which first calculates the hash values
for every base point using the hyperplanes in the LSH table, then calls
organize_points_into_groups for each LSH table to organize the points
into groups and thus create LSH tables.

Among other things, organize_points_into_groups sorts the points
by the group they are mapped into, usually such a sorting operation has
a time complexity of at least O(NIogN), but due to the upper and lower
limits for the hash values, organize_points_into_groups can do it in
linear time, this would not be possible if the interval of possible hash values
was impractically large.

organize_points_into_groups is a fairly simple function and it is split
into three parts.

First it constructs an array to store the size of each group (named
groupSizeMap), this is done by going through the indexGroupMap array,
checking which group each element falls into, then it increments the size
counter for that group.

After creating groupSizeMap, the function uses that data to create
groupIndexMap. groupIndexMap is simply just an exclusive scan of
groupSizeMap and is therefore very easy to create. The function also creates
a copy of groupIndexMap called groupTailsMap which allows us to more
easily add elements to the end of the group when creating the array with
pointers to the actual points which I called groupArray.

groupArray is created by simply going through each point one by one,
checking which group it falls into, then pushing it onto that group using
groupIndexMapTails to keep track of the last element of each group.
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Once groupArray is created, groupIndexMapTails no longer contains
any useful information and can be discarded. As mentioned earlier,
contents of groupSizeMap is also implicit from groupIndexMap and the
number of points, groupSizeMap can therefore also be discarded if one
chooses to do so.

Matching Points

In order to more easily parallelize the algorithm, while also avoiding
duplicate point comparisons when a query point matches with the same
points over multiple tables, I decided to split the matching process into
two parts.

The first phase of point matching is to find potential matches, i.e. go
through each table for every query point and add the the base point indices
that are found inside the LSH table to a set of potential matches where
duplicates are excluded. These sets should be individual for every query
point.

In order to check whether or not a point is already inside the potential
matches set I use an integer array where an element is equal to the index of
the current query point if the point at that index in the base set is already
in the set of potential matches. I decided to use an integer array instead
of a bitmap; the integer array uses a bit more memory but also comes
with the advantage that the algorithm won’t have to reinitialize the map
for every single query point, this is important for the performance of the
algorithm. I decided to call the function that finds the potential matches
find_potential_matches.

All of this is done serially since parallelizing the function using GPUs is
impractical. This can be parallelized, though it would probably need to be
done in a more coarse-grained fashion. More details as to how this function
is implemented is found in Section 4.3.5.

The advantages of finding potential matches separately from doing the
point comparisons are two-fold:

1. The matching phase can avoid duplicate comparisons between the
same two points which would otherwise occur frequently.

2. It simplifies the job of actual point matching, making that part of the
algorithm easier to program for GPUs.

Inversely, the disadvantages of skipping this part of the program by
combining this functionality with the functionality of the "match_points"
function:

1. When many tables are used, the chances for duplicates point
comparisons in the match phase will be very high, and there will
be very many of them, this will significantly increase the time taken
during matching.
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2. It becomes much harder to divide the work-load fairly among the
threads during parallel execution in the matching phase since some
boxes in the LSH table will be much more populated than others
which can lead to an unpredictable amount of work for each thread
depending on how the program is parallelized.

Once find_potential_matches is finished running we should have
many sub-arrays stored contiguously in a large array. The array is
called potentialMatches and it is indexed using another array called
potentialMatchesIndices. Each sub-array contains indices of base points
in the base set, these are the potential matches for each query point stored.

Finally, after we know the potential matches for each query point we
can call a function to compare each point with its potential matches, I
decided to call this function match_points.

match_points works in a very straightforward way. First, it iterates
through every query point, for every query point it will find its potential
matches by looking up indices in groupArray, then go and compare each
of the potential matches one by one. The function keeps track of the best
and second best matches for each point as well as its distances which will
be stored as output in an output array.

3.4 Good Hyperplanes

In this section I will go discuss various problems that can occur when trying
to split the search space using hyperplanes. I will also discuss some loose
ideas as to how to solve these problems. The last two subsections are not as
important as the rest of the thesis, but they are included since they provide
some relevant discussion.

In addition to the subjects presented in this section there is also an
algorithm presented in Section 6.6 about creating a good set of orthogonal
hyperplanes. That algorithm is presented in Chapter 6 and not here
since orthogonal hyperplanes pertains particularly to the single table LSH
algorithm presented in that chapter.

3.4.1 Problem of Clustered Input

A challenge one can run into when splitting the feature space might arise
if the points in the matching set are clustered together; this is particularly
common for real applications with images of many similar objects. Points
being clustered together might lead to very many points being assigned to
the same group.

The worst case scenario of this is if all points in the matching set falls
into the same group, in this case LSH will do the same thing as a normal
linear search just less efficiently. All the points falling into the same box is
of course highly unlikely, but the fact that points clustered together might
make some boxes overpopulated is an indication of a bigger issue.
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For random hyperplanes, the more clustered the points are, the more
time the hashing algorithm will use as there are more potential matches
that each point will have to be compared with.

If all the input data is clustered around a single point, one can
easily solve this problem by simply subtracting the mean of the base
set (performing mean normalization) before constructing the tables, then
storing that mean so it can also be subtracted from the query points before
trying to match them with the base points in the LSH table. Once the mean
is subtracted a hyperplane is more likely to actually split up the cluster.

Mean normalization should solve the problem if the points are all
clustered around the same area, if however, there are two clusters on
opposite sides of the origin, mean normalization won’t help as neither of
the two clusters will move.

When using SIFT feature descriptors however, the points are not evenly
divided around the unit surface, but are rather located on the surface of a
hypersphere in the first quadrant of feature space (containing only positive
elements). If the hyperplanes are properly adapted for it, having the points
be positioned like this can actually be a big advantage for LSH, particularly
when using hyperplanes that all go through the origin, as there will then
be no points located close to the origin, and thereby also close to all the
hyperplanes. For SIFT features it is therefore likely a bad idea to perform
mean normalization if it’s part of a greater procedure that might produce
other benefits in return.

Having only a few larger clusters can be bad for performance, but on the
other hand, if there are very many clusters, and each of them are relatively
small, and the clusters themselves are evenly distributed throughout the
feature space, then the algorithm will do exactly as it should, it will
partition the feature space, and points within the same clusters will likely
end up in the same group. In this case the algorithm is working as it should.
In fact, dividing the search space into smaller clusters is exactly the type of
functionality we want the algorithm to achieve, it is only a major problem
when those clusters are too large.

In other words, all the elements of a cluster falling into the same group
is only a problem if the sizes of those clusters are very large compared to
the number of boxes we’re hashing points into.

When we partition the search space using hyperplanes, the hope is that
the search space is spread as evenly as possible between the boxes. The
other goal is that the points are not located along the border, i.e. that their
distance is as far away from the hyperplanes themselves as possible.

In the case where there are a few very large clusters, the most important
task will still be to separate the clusters from each other. After that it will
be important to separate the clusters themselves to avoid having to linearly
search through the entire cluster.

Finally, when it comes to dividing the search space efficiently, the
hyperplanes chosen may have a large impact on the result, there might
therefore be some advantage in trying to choose more fitting hyperplanes
that more effectively partitions the search space so that the points are
spread more evenly between the boxes.
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3.4.2 Problem of Finding Good Hyperplanes

Finding a new set of hyperplanes that partitions the search space well for
every new dataset would be computationally intensive, and it would only
really be worth it if the LSH tables would be reused a large number of
times. If one wants to avoid finding new hyperplanes for every new set
of base points one can instead try to find hyperplanes that partitions the
search space really well for some typical input and then applying those
hyperplanes to new data.

There are many ways to try to most effectively partition the search space
for a typical type of input. Generally, what one would be looking for are
hyperplanes that split the dataset into groups such that each group has a
similar amount of elements, while doing this it is also good if the LSH tables
partition the search space in ways as different from each other as possible,
meaning the hyperplanes used by one LSH table should be very different
from the hyperplanes used by all the other LSH tables. That would help
the LSH tables to better compensate for each others’ faults such that nearby
points that are not grouped together in one table still have a high chance of
being grouped together in another table.

There are many ways of finding hyperplanes that are good at partition-
ing the search space for some example dataset. If one decides to generate
hyperplanes specialized for every individual dataset during run-time, then
one needs to be very conscious of the time used to generate those hyper-
planes. However, as long as the hyperplanes are precomputed and not
decided during run-time, a program can generate these hyperplanes using
almost as much time as it likes (within reason of course).

As mentioned several times in this thesis, the SIFT feature descriptors
are located on the surface of a hyperbolic sphere in the first quadrant
of the feature space. This means that every SIFT feature descriptor
has approximately the same distance from the origin, and all the vector
elements of the feature descriptors are positive numbers. Since all the
vector elements are positive, it is clear that a hyperplane with, for example,
an overabundance of positive elements will yield results where the feature
descriptors are all much more likely to be mapped to the positive side of
the hyperplane than the negative side. Likewise, for hyperplanes with an
overabundance of negative elements, the feature descriptors will be much
more likely to be mapped to the negative side of the hyperplane than the
positive side.

For random vectors that contain positive or negative elements with
roughly equal probability, completely random hyperplanes will split the
search space efficiently. When we want to split feature descriptors where
all the elements are positive however, one has to think a little differently,
a hyperplane going through the origin represented by a vector with all
positive elements will simply put all the points into the same group, and
therefore not split the search space at all, the hyperplane does not split
the first (all positive) quadrant. If one moves the hyperplane away from
the origin, it will start to split the points into two groups, but since the
points are located on the surface of the all positive section of a hyperbolic
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sphere, the hyperplane will not divide the search space in a way that is
very locality-sensitive when it comes to points on the negative side of the
hyperplane.

In order to better divide the search space for SIFT feature descriptors,
where all elements are positive, it is a better idea to guarantee that the
hyperplanes will cut through the first (all positive) quadrant, at least to
some substantial degree. One way to do this is to make sure that the vector
representing the hyperplane will have roughly equal positive and negative
weights, in other words, that its elements will sum to a value that is not
too far from zero, exactly how far away from zero depends on a trade-off
between how well each hyperplane will be able to split the all-positive part
of the feature space, vs. the degree of freedom to which the hyperplanes
are allowed to vary from each other. In short, the trade-off is between
individual effectiveness and diversity of hyperplanes.

What I decided to do was to, for each hyperplane, make its elements
sum exactly to zero, as that gives each hyperplane the best chance of
splitting a search space with all positive elements into equal parts. This
means deprioritizing some possibility of extra hyperplane variability in
favor of individual effectiveness. I was comfortable making this trade-off
because SIFT features have 128 dimensions, such high degrees of freedom
allows for plenty of variability between hyperplanes even with certain
restrictions.

The best way to create a random hyperplane that sums to zero is to
create two random hyperplanes, calculate the sums of both, calculate the
multiplication factor that would make the sum of the second hyperplane
equal to that of the first hyperplane, then subtract that factor times the
second hyperplane from the first hyperplane, then finally discard the
second hyperplane. The final hyperplane is then made to be of length 1.
There are a few very rare cases where this doesn’t work, such as if the final
hyperplane only contains 0 elements, or the sum of the second hyperplane
starts off as 0, but these cases are extremely unlikely.

lustration of how to create a random hyperplane with elements that
sum to 0, h3:

hy := random hyperplane
hy := random hyperplane

h32=h1—27hl'h2

L ho
This subsection has mostly been about how to most effectively divide
the all-positive feature space into equally sized parts using random
hyperplanes. In the next subsection there will be some more discussion on
more effectively dividing the search space of the feature descriptors which
are generally not at all evenly divided around the feature space.
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3.4.3 PCA for LSH

Principal Component Analysis (PCA) is an algorithm used for dimension-
ality reduction, very commonly used in statistics and data science. I will
not describe in detail how PCA works in this thesis, but I will describe the
goals of PCA, and why it might be useful for the point matching problem in
general, and more specifically why it might be useful in combination with
LSH.

As covered in the chapter on SIFT, individual dimensions of the
SIFT feature descriptors all directly represent some specific aspect of the
image relating to the local gradient of a perceived point of interest. This
representation provides very distinct features, and the features themselves
represent something concrete that can be found in the image. There might
however, be a great deal of redundancy in this representation, when data
for example is clustered around certain regions or certain lines there is
reason to believe there might be some redundancy in the data.

One can imagine that, instead of using the standard basis vectors of
these feature descriptors, one can instead represent those same feature
descriptors using a combination of a smaller number of basis vectors by
performing a change of basis into a lower dimensionality space, thereby
approximating the feature descriptors and reducing the dimensionality for
faster vector comparisons and multiplications.

What PCA tries to do is essentially finding the directions that contain
the most information in the existing high dimensional space, then using
vectors along these directions as basis vectors instead of the standard basis.

The principal components of a dataset is found by first subtracting the
point mean from all the points in the dataset (mean normalization), then
finding the direction of maximum variance and creating a unit vector in
that direction; that vector is the first principal component. After that it
will iteratively first subtract from each point in the dataset their projection
onto the last found principal component, then find the next direction of
maximum variance, create a unit vector in that direction, and make that
the next principal component.

After using PCA to find the principal components one then has a set
of vectors that are all orthogonal to each other, and each of them points in
the direction of maximum variance, under the constraint that each of these
vectors must be orthogonal to all the other vectors before it in the list.

Each principal component also comes with a scalar indicating the
amount of variance in their direction, this scalar indicates the importance of
the principal component in question and will decrease in value the further
down the list of principal components one goes.

One has to be aware however that the first step of PCA is mean
normalization, as the theory behind PCA doesn’t work without mean
normalization. Therefore if one applies PCA on feature descriptors, the
points will no longer be located on the surface of a subset of a hypersphere,
but will instead be more evenly spread out throughout the space around
the origin, and elements of the feature descriptor vectors may have either
positive or negative values.
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Calculating PCA for each new set of base points that one receives as
input is probably way too computationally intensive to be worthwhile.
Since different large sets of feature descriptors often seem to resemble
each other in their placements in the feature space however, it might be
worthwhile to calculate the principal components of some large typical set
of input, then use those principal components for dimensionality reduction
for new points before applying LSH or other matching algorithms.

One also has to remember that for every change one makes to the base
points, one must make equivalent changes for the query points such that
they can be matched.

For application specific circumstances, where similar images with
similar features need to be matched over and over again, reducing the
dimensionality of the data to work better for these specific features can be
very useful in order to improve speed.

There are two different ways, I believe, that one can use PCA for
improving LSH. One is for dimensionality reduction, and the other is
using the first few principal components directly as hyperplanes (for both
methods one has to perform mean normalization on the training, base, and
query sets).

Dimensionality reduction is probably the best way to use PCA before
applying LSH, particularly if one wants to use several tables. If one
uses a single table one might simply use the principal components
as hyperplanes, which allows for bypassing an entire dimensionality
reduction phase of the program prior to calculating hash values, a major
disadvantage being that some of the hyperplanes in the list being more
important than others while still only representing a single bit in the hash
code.

Dimensionality reduction for LSH

One way to reduce the amount of work of point matching might be to
reduce the dimensionality of the data before applying a point matching
algorithm. The presence of fewer dimensions alone will make point
comparisons faster, for LSH it will also make the hashing faster.

One can also argue that reducing dimensionality beforehand might
make the hashing algorithm more efficient since the points are then likely
to be more evenly spread out in the remaining space, i.e. if there is a
dimension along which all the points are clustered together and the points
don’t change much, this dimension will likely be considered as redundant
by PCA and discarded. Completely random hyperplanes might therefore
in fact better divide the search space than before.

When using dimensionality reduction for LSH it is therefore clear that
one should use the reduced data for the hashing part, which will reduce
the time taken for hashing, and perhaps even improve the hashing. If
one decides to reduce the data too much however, then dimensionality
reduction might start having a negative effect instead, as more meaningful
information is thrown out.

While dimensionality reduction might be beneficial for hashing, it could
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also reduce the accuracy of point comparisons, though exactly how much
accuracy would be lost depends on how much information is thrown
out which in turn depends on how much one is willing to reduce the
dimensionality of the data.

One then has two choices if one wants to use dimensionality reduction
for LSH. One can either reduce the data and use the reduced data both for
hashing and for matching, or one can use it only for hashing and not for
matching (in theory one can use it only for matching and not for hashing as
well, though it is likely not beneficial to do so). It would really be a trade-
off between accuracy and speed, and the trade-off might in some situations
be worth it for hashing but not for matching.

Principal components as hyperplanes

For hyperplanes, it is generally beneficial that the points in the dataset
are both somewhat equally distributed between the two sides of the
hyperplane, and also that the distance of the points from the hyperplane
is as large as possible.

As stated earlier, principal components are orthogonal vectors that
point in the direction of maximum variance under the constraint that
each principal component must be orthogonal to the principal components
before it in the list. Before taking the principal components, mean
normalization is performed.

What principal components achieve is therefore very similar to what
one is trying to achieve when creating hyperplanes. The mean normaliza-
tion first makes the points somewhat equally distributed on both sides of
the origin in all dimensions. Finding the direction of maximum variance
also means finding the direction in which the average squared distance of
points to the hyperplanes is large. There is therefore reason to believe that
principal components would make excellent hyperplanes.

One can store the mean of the training set separately so that the same
vector can be subtracted from the base points and the query points. Then
one can use the principal components as hyperplanes.

One disadvantage of using PCA to generate hyperplanes would be that
one can only get one set of hyperplanes that way, this is a problem if one
wants to use several tables.

There is also the case where some principal components will be much
more important than others. To a certain extent, this is a strength, the most
important principal components will then always be used, and the less
important principal components are added later only if they are needed.
However, it is also a problem, the first principal component might be much
more significant than others down the line, yet they will all represent the
same amount of bits in the hash code. One could try to remedy this by
letting some hyperplanes represent more bits in the hash codes than others,
but it would probably be more trouble than it’s worth.

Finally, using principal components as hyperplanes doesn’t actually
bring any other functionality than what can easily be achieved by
dimensionality reduction. What is achieved by using principal components
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as hyperplanes is the same as performing dimensionality reduction using
those principal components, then setting the hyperplanes as splitting
the space by whether points are positive or negative along each of
these dimensions, then comparing the query points with the base points
using their original form before dimensionality reduction. If one wants
this functionality however, then using using principal components as
hyperplanes is probably the more natural way of implementing it.

3.4.4 Lower Dimensional Hyperplanes

One can attempt to shorten the time spent on hashing by allowing
hyperplanes to only exist in a subset of the 128 dimensions used for the
feature descriptor vectors. Since the hyperplanes are 128 element arrays of
floating point values this would mean using only a subset of those elements
to represent the hyperplanes.

For example, one can use the first 16 bits for the first and ninth
hyperplane, then the second 16 bits for the second and tenth hyperplanes,
etc. Reducing the dimensionality of hyperplanes like this will reduce the
amount of time required by the hashing phase since one no longer has to
perform a vector multiplication in 128 dimensions (and thereby having to
multiply 128 numbers to see which side of a hyperplane a point lands on).
Instead, one would only need to multiple the relevant 16 elements of the
feature vector with a 16 element hyperplane vector.

While reducing the dimensionality of the hyperplanes in this way does
reduce the amount of computation needed for hashing, it also might reduce
the effectiveness of the hashing. In general, since we are using random
hyperplanes, we want to give the hyperplanes a free hand in terms of
the possible forms they can take on, the hyperplanes splitting the feature
space across a large multitude of dimensions is one of the strengths of the
algorithm, as well as the hyperplanes being substantially different from
each other both within and between LSH tables.

The randomness of the hyperplanes is more important when a large
number of tables are used than when only a few are used, but there may
be another important benefit of allowing the hyperplanes to take up all 128
dimensions. When a query point and its best match among the base points
deviate from each other, it is reasonable to believe that they will differ more
in some dimensions while remaining very similar in other dimensions;
according to this logic, the more dimensions that are used for a hyperplane,
the less sensitive the algorithm will be to random differences along only a
small number of dimensions.
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Part 11

Implementation, Results,
Discussion

58



Chapter 4

GPGPU Programming for LSH

4.1 Testing Environment

When testing this algorithm I will be using a publicly available dataset of
SIFT feature descriptors. The dataset consists of 1 million base vectors, 10
000 query vectors, and a ground truth table containing the correct matches
between the query vectors and the base vectors. The dataset also contains a
learning set of 100 000 feature descriptors that can be used to train or tune
the algorithm in any number of ways, in the case of LSH they can be used to
tit hyperplanes i.e. precomputing the hyperplanes to partition the training
data well in the hope that they will perform equally well on new data.

In order to cite this dataset I will cite the paper where the dataset
was formally introduced in 2011 called "Product Quantization for Nearest
Neighbor Search" [7], written by Hervé Jégou, Matthijs Douze and Cordelia
Schmid.

For compiling the code I used the Portland Group Inc. (PGI) C++
compiler: pgc++. Specifically this version of the pgc++ compiler is part
of the NVHPC 21.5 package. Profiling was done mainly using NVIDIA’s
nvprof compiler. The "nvToolsExt" library was used to get some extra
insight into the performance of particular parts of the program. The
pgc++ compiler often improves the code in various ways even without any
OpenACC directives (particularly using SIMD instructions).

The CPU model that the program is tested on is "Intel(R) Xeon(R) Gold
5120 CPU @ 2.20GHz", the GPU model is a "NVIDIA RTX2080Ti".

4.2 Main Phases of LSH Overview

Before showing how I optimized my implementation of LSH using
OpenACC it is important that I cover some details about how the program
works, in particular what parts of the program are computationally
intensive, and also point out which of the computationally intensive parts
are more suitable for GPGPU parallelization using OpenACC.

As mentioned in the introductory chapter, LSH consists of two major
phases: constructing LSH tables for the base points, and matching the
query points to the base points using those LSH tables. These two phases
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can further be split up into several steps, the resulting five stages of my
LSH implementation are the following;:

1. Calculate hash values for the base points.

2. Organize base vector references into LSH tables according to their
hash values.

3. Calculate hash values for query points.

4. For each table, find the base points that had fallen into the same group
as the query point and store them in a separate list (I named this
stage as finding "potential matches" to the query points). This stage is
mainly added to avoid duplicate comparisons, and to simplify stage
5.

5. Compare the query points to all their "potential matches", i.e. all the
base points they got grouped with.

We need to calculate the hash values for both the base points and the
query points, this is split into two different steps in the outline above,
however they use the same function.

As mentioned earlier, when testing the implementation I will be using a
dataset of 1 million base points and 10 000 query points. The hashing of the
base points will therefore be significantly more computationally intensive
than the hashing of the query points during testing, and the hashing of the
query points will thus be largely negligible in comparison.

4.3 Function Explanation and Optimization

In this section of the thesis I will quickly present each function one by one,
discuss to what extent they are parallelizable, and present parallelization
and optimization of the two most time consuming and most parallelizable
functions using OpenACC.

The two functions that will be parallelized using OpenACC are
calculate_hash_values and match_points, used for calculating hash
values and doing the raw point comparisons respectively. I will describe
the steps I took to parallelize these two functions using OpenACC,
and describe the speedup for each step. I will also quickly cover
organize_points_into_groups and find_potential_matches since these
functions provide insight to how the algorithm works

As covered in the section dedicated to OpenACC there are two types of
OpenACC directives: the parallel directive, and the kernels directive. I
decided to accelerate the program using the parallel directive as that gives
more direct control over what happens in the program which makes it
easier to document exactly what each step does since the program will not
automatically make optimizations that I have not specified.
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4.3.1 LSH Parameters

When testing the program, 32 LSH tables and 16 hyperplanes were used,
there is no particular reason why the numbers were chosen to be powers
of 2, but I chose these numbers since it gave decent results for the scale of
the problem (and because they are round numbers), there may potentially
be some advantage for the number of hyperplanes to be a multiple of eight
due to how the hashing function ends up being parallelized, though from
the results of different numbers of hyperplanes it does not seem to make
much of a difference.

If one wants to make the time complexity of the algorithm strictly
logarithmic, one technically has to set the number of hyperplanes equal to
the log of the base points; however, the number of hyperplanes can really
be any number, so I chose 16 as I found it to produce appropriate results.
Using more hyperplanes should significantly reduce the search time, but it
also reduces the chance of success and makes the algorithm require more
memory for the LSH tables.

When running the algorithm with 32 LSH tables and 16 hyperplanes,
the correct ratio (recall) was 83% and approximately 2.4% of the dataset was
checked. These two results will not change as the program is accelerated
using GPUs, the only thing that will change is the run-time.

4.3.2 Compiler Differences for the CPU Version

When compiling the program using the g++ compiler with 32 LSH tables
and 16 hyperplanes, the program used approximately 129 seconds for
matching the entire dataset for the serial version.

When switching to the pgc++ compiler the program uses 36.2 seconds
instead. This is because the pgc++ compiler, when given permission to do
so, automatically parallelizes the application on the CPU side using SIMD
instructions. The speed is increased by a factor of 3.56, meaning it is about
three and a half times as fast.

The parts of the algorithm that become faster when changing to the
pgct++ compiler (which uses SIMD) are the parts of the algorithm that
are most easily vectorized and able to be parallelized in a very fine-
grained manner. This is the case for calculating hash values where the
bottleneck mostly involve of vector multiplications, and it is also the case
when doing raw point comparisons where the bottleneck mostly involve
arithmetic operations on vectors (element-wise subtraction, multiplication,
and accumulation).

The functions calculate_hash_values and match_points are thus the
ones to increase in speed when the pgc++ compiler is used, these are also
the ones that I will parallelize using GPGPUs.

When switching from the g++ compiler to the pgc++ compiler the
computation time of the calculate_hash_values decreases from 61.9 to
7.93 seconds, which is a 7.81x speedup; meanwhile, the computation time
of the match_points function decreases from 64.6 to 26.0 seconds which
results in a 2.38x speedup.
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4.3.3 Calculating Hash Values

Original function

This is my function for calculating locality sensitive hash values for a single

set of hyperplanes:

[**

* Calculates the hash wvalues of the input points given its
* input hyperplanes , then stores those hash values into an
* array called indexGroupMap which will later map the point
* index into a group index used for indexing a second
*oarray .

* @param vectorLength : Number of dimensions for each point
* @param nPoints : Number of points to hash

* @param points : The points to hash

* @param nPlanes : Number of hyperplanes used

* @param hyperplanes : Array of hyperplanes of

* length nPlanes

* @param indexGroupMap : Output — Calculated hash values.

* May be used as indices.

*/

void calculate_hash_values(
// input
int vectorLength,
int nPoints, floatx __restrict__ points,
int nPlanes, floatx __restrict__ hyperplanes,
// output
int* __restrict__ indexGroupMap)

// — Calculate hash values,
// keep track of sizes of each group
for (int i = 0; i < nPoints; i++) {

float+ point
int hashcode

&points[i * vectorLength];
0;// hashcode will be the group index

// calculate hash value of the i’th point,
// store resut in indexGroupMap
for (int j = 0; j < nPlanes; j++) {
floatx hplane = &hyperplanes[j * vectorLength];
// calculate point = hplane
float vecMul = 0;
for (int k = 0; k < vectorLength; k++) {
vecMul += point[k] * hplane[k];
}
// set i’'th bit to one if point is on
// the "positive” side of hyperplane
if (vecMul > 0) {
hashcode = hashcode | (1 << j);
}

}
indexGroupMap|[i] = hashcode; // save the hashcode
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This function will be called in a loop with different arrays of hyper-
planes as input to calculate the hash values for each LSH table.

Using the g++ compiler, this function is able to hash all the base points
in approximately 61.9 seconds in real time. Using the pgc++ compiler, the
function was able to hash all the base points in about 7.93 seconds.

When parallelizing a program using GPGPU computing, what one
is looking for are loops with very many independent (or partially
independent) iterations. One also wants to avoid too much branching,
complex behavior, per thread memory requirements, etc. Those program
characteristics will make the program unsuitable for a single instruction
multiple threads (SIMT) model; if there is too much branching, then each
thread in a group will not be able to run concurrently; if each thread
requires huge amounts of private memory, then the GPU will likely run
out of memory.

The outer loop of the program iterates through each point in the point
dataset. Then, for each point, the body of the loop calculates a hash code
using the hyperplanes provided as arguments to the function.

In this particular program we can see that each iteration of the outer
loop is completely independent. Meanwhile, there is little branching and
no advanced function calls in the body of the loop. The outer loop should
be easily parallelizable using GPGPU computing. I therefore start a parallel
region at the beginning of this loop using the parallel OpenACC directive.

We will not stop here however, as there are more parallelizable parts of
the program which should be indicated to the compiler.

The second loop in the program creates the hash value for the point.
The hash value starts off as zero. The point’s position in relation to each
hyperplane is represented by a single bit in the hash variable, starting with
the least significant bit representing the first hyperplane.

The loop iterates through each hyperplane. For every hyperplane, the
vector multiplication between the hyperplane and the point is calculated.
If the vector multiplication corresponds to a positive number, the corre-
sponding bit in the hash variable is set to one, otherwise it remains zero.

One can thereby see that the second loop in the program is at
least partially independent, each vector multiplication is carried out
independently. When storing the result however, a reduce operation must
be performed, since the result is not stored in its own independent value,
but rather as a bit in an integer that is shared between each iteration of
the loop, where the bits correspond to different iterations of the loop. For
this type of reduce operation we can use the reduce clause in OpenACC;
specifically, this loop can be parallelized using an or-reduction.

The innermost loop simply calculates the vector product of the
hyperplane and the point. Since the loop is so short there may not be any
benefit of splitting the work among several threads (at least if one is also
parallelizing the middle loop). Still, one can inform the compiler of the
parallelizability of the loop using a plus-reduction. Here we want to specify
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that it should run serially however (i.e. the loop should not be divided
among threads). One can specify sequential execution of the loop using the
seq clause. Since I wanted the loop to be serial I technically didn’t have
to specify any parallel behavior at all and the execution of the program
would remain the same; I still did it in order to emphasize how one could
parallelize the loop if one chooses to do so, the way it is written now means
that if one were to simply remove the seq clause the compiler might try
parallelize the loop if that is considered as advantageous for performance
at compile time.

Instead of making the inner loop sequential, one can experiment with
making the middle loop sequential and the inner loop parallel, or one could
try to parallelize both loops, doing this will present different performance
trade-offs. One possible disadvantage of parallelizing the middle loop like
I did is that the number of workers may have to be fit to the number of
hyperplanes. If the number of hyperplanes is 6 for example, and using
8 workers, two of the threads may be without work. This would not be
a problem if one parallelized the inner loop instead since the number of
dimensions in a SIFT feature descriptor will always be 128 dimensions; that
solution might have other performance trade-offs so in some situations it
could also be less effective. The code presented in this section however, is
the one that I have written and tested, so those are the results I will present
in this thesis.

Another piece of information that I provide for the compiler at this
stage of optimization is memory movement between host and device.
Even though one usually doesn’t have to specify memory movement
before optimizing the code further, in this case (and also in the case of
the "match_points" function) I had to provide explicit memory movement
operations from the very beginning, otherwise the compiler would not
move the memory correctly and the program resulted in a run-time error.
These problems seem to occur to varying degrees on different computers, I
do not know the cause of this, though the data directives should be added
for a finished optimization of the program, so this is of little consequence.

I used the pcopyin and pcopyout OpenACC data directives in order
to move the memory regions between host and device before and after
running the parallel region.

The memory that needs to be explicitly moved from host to device are
the arrays used as input i.e. the ‘points’” array and the "hyperplanes’ array,
these arrays contain input for the function, but they are not altered, so
moving the memory back is not necessary.

"indexGroupMap’ is the output array that must be moved from device to
host. It stores group mappings for each point in ‘points’. Since the initial
values are not used by the function the memory does not need to be moved
from host to device.

Moving to GPU

Applying some basic OpenACC directives results in the following code.
// — Calculate hash wvalues,
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// keep track of sizes of each group

#pragma acc data \
pcopyin(points[nPoints*vectorLength]) \
pcopyin(hyperplanes[nPlanes+vectorLength]) \
pcopyout (indexGroupMap |[nPoints ])

#pragma acc parallel loop
for (int i = 0; i < nPoints; i++) {

floatx point
int hashcode

&points[i * vectorLength];
0;// hashcode will be the group index

// calculate hash value of the i’th point,
// store resut in indexGroupMap
#pragma acc loop reduction (|:hashcode)
for (int j = 0; j < nPlanes; j++) {
floatx hplane = &hyperplanes[j * vectorLength];
// calculate point =* hplane
float vecMul = 0;
#pragma acc loop reduction (+:vecMul) seq
for (int k = 0; k < vectorLength; k++) {
vecMul += point[k] * hplane[k];
}
// set i’th bit to one if point is on
// the "positive” side of hyperplane
if (vecMul > 0) {
hashcode = hashcode | (1 << j);

}

}
indexGroupMap[i] = hashcode; // save the hashcode

After moving computation from the GPU to the CPU, the new time
of the program is 4.19s resulting in a 1.89x (89%) speedup from the CPU
version compiled with pgc++.

The program now runs on the GPU, but how the work is delegated
among threads is still unclear. We did not specify, for example, how many
threads should be used for the reduction of the hash code (the middle loop).
With the directives given we could have one thread executing all the code
for every point (a very coarse-grained approach), or we can have up to
"nPlanes" number of threads working together to find hash codes for each
point (a more fine-grained approach).

OpenACC splits the threads into workers and vectors, the workers
do the more coarse-grained work, whereas the vectors do the more fine-
grained work. In OpenACC we can easily specify these values using
the num_workers and vector_length clauses. num_workers multiplied by
vector_length can be no higher than the highest possible number of threads
in a CUDA block, for the GPU I'm using for this thesis that limit is 1024.

It is difficult to know exactly what division of labor should take place to
achieve good results. The good thing about OpenACC is that one can easily
experiment with these values without changing the code substantially. All
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one has to do is change the values between number of workers and number
of vectors until one finds a balance that performs well.

Loop Optimization

// — Calculate hash values,

// keep track of sizes of each group

#pragma acc data \
pcopyin(points[nPoints*vectorLength]) \
pcopyin(hyperplanes[nPlanes+vectorLength]) \
pcopyout (indexGroupMap [nPoints ])

#pragma acc parallel loop gang worker \
num_workers(128) vector_length (8)
for (int i = 0; i < nPoints; i++) {

float+ point = &points[i * vectorLength];
int hashcode = 0;// hashcode will be the group index

// calculate hash value of the i’th point,
// store resut in indexGroupMap
#pragma acc loop reduction(|:hashcode) vector
for (int j = 0; j < nPlanes; j++) {
floatx hplane = &hyperplanes[j * vectorLength];
// calculate point = hplane
float vecMul = 0;
#pragma acc loop reduction (+:vecMul) seq
for (int k = 0; k < vectorLength; k++) {
vecMul += point[k] % hplane[k];

}
// set i’'th bit to one if point is on

// the "positive” side of hyperplane
if (vecMul > 0) {
hashcode = hashcode | (1 << j);

}
)
indexGroupMap[i] = hashcode; // save the hashcode

After optimizing the loops, the new time of the program is 3.68s
resulting in a 1.14x (14%) speedup from the last stage of optimization, a
2.15x total speedup from the CPU version compiled with pgc++ (utilizing
SIMD), and a 16.8x speedup from the CPU version compiled with g++.

The function copies the 'hyperplanes’ and ‘points’ arrays from the
host to device for each call to the function. Similarly the “indexGroupMap’
array is copied from the device to host for each time the function is called.
Since this function is called in a loop for each LSH table by another calling
function, this will trigger a memory movement phase for every iteration
in the loop of the calling function, i.e. there will be a memory movement
phase for each LSH table.

Starting and stopping the memory movement operations requires
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large amounts of overhead. An interesting fact however, is that in my
implementation of LSH these arrays are stored contiguously in memory,
this makes it very simple to move all this memory in bulk instead,
assuming the device has enough memory for all the points. There seems
to be a benefit of moving these arrays from host to device in their entirety,
then iteratively calling the function to operate on them, and finally, after
that is done, moving the results back in their entirety, this seems to avoid a
lot of overhead associated with memory movement.

Here is some profiling information for the hashing phase in the current
state of the program!:

NVTX result:
Range "Calculating hash values for base vectors"

Type Time (%) Time Calls Name
Range:
100.00% 3.50159s 1 Calculating hash values
GPU activities:
76.64%, 1.33689s 1024  [CUDA memcpy HtoD]
22.80% 397.67ms 32 calculate_hash_values_gpu
0.57%  9.9205ms 32  [CUDA memcpy DtoH]
API calls:
86.62), 8.0815ms 1024  cuMemcpyHtoDAsync
10.38%, 968.24us 32  culLaunchKernel
3.00%  280.12us 32  cuMemcpyDtoHAsync

In addition to the time spent directly on GPU computation and
memory movement there is also various other types of overhead. Here is
information of the most time consuming of those types of overhead taken
from the profile of the entire program:

Type Time(%)  Time Calls Name

OpenACC (excl):
71.23% 2.67870s 64 acc_enter_data@lsh_parallel_5.cpp:630
12.17% 457 .56ms 128 acc_wait@lsh_parallel_5.cpp:630
8.35% 314 .14ms 2 acc_wait@lsh_parallel_5.cpp:887
6.53% 245.73ms 1 acc_enter_data@lsh_parallel_5.cpp:887
1.26% 47.387ms 64 acc_wait@lsh_parallel_5.cpp:654

The hash function is located around line 630, therefore the first and
second line is the OpenACC overhead corresponding to the hash function.
At this point in optimization, this overhead is very large.

As we can see, an enormous portion of the program is spent on moving
memory between host and device. The cause of this can be seen in Figure
4.1.

In Figure 4.1 we can see that the point matching is executed in
a very orderly fashion: first, required memory is moved in; then,

1The profiling information is significantly shortened so that it has space to be presented
here
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the match_points_gpu kernel is launched and executes without any
disruption. The memory is moved between host and device for each time
match_points is called, this is effective largely because match_points is
only called a single time.

The calculate_hash_values function on the other hand is called by
calculate_indexGroupMap repeatedly, for each table, in a loop. This leads
to what we see in Figure 4.1 where phases of calculating hash values
are interspersed by phases where memory is moved. Changing between
phases of moving memory and performing calculations on the GPU is bad
for performance, and this is therefore something we want to avoid.
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Figure 4.1: Figure showing a visual profile of the LSH algorithm where
memory is moved before each call to calculate_hash_values. The top part
shows a "wide view" of the program, with point matching on the right side
and hashing on the left side. The middle part zooms in on the hashing.
The "close-up" zooms in even further on the hashing in the beginning of
the program. (Visual profiling is done on a different computer with some
different parameters, so the run-times are not relevant)

Moving Memory in Bulk

As suggested earlier, instead of doing many smaller memory movement
instructions, it turns out it is more effective to do a single large memory
movement instruction before and after all the iterations of the function.
The following code snippet shows how this is done by adding/changing
OpenACC data directives for two functions:
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~
¥
*

Calculates indexGroup for all tables by
calling “calculate_hash_values’ int a loop.

@param vectorLength : Number of dimensions for
each point.

@param numTables : Number of LSH tables .

@param nPoints : Number of points to hash.

@param points : The points to hash.

@param nPlanes : Number of hyperplanes used

@param hyperplanes : Array of hyperplanes of length
nPlanes

@param indexGroupMapTableLen : The length of a single

table in indexGroupMap

@param indexGroupMap : Output.
Calculated hash values,
may be used as indices

X ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥

5
void calculate_indexGroupMap (
// input
int vectorLength, int numTables,
int nPoints, floatx __restrict__ points,
int nPlanes, floatx __restrict__ hyperplanes,
int indexGroupMapTableLen,
// output
int* __restrict__ indexGroupMap)
{
#pragma acc data \
pcopyin(points[nPoints*vectorLength]) \
pcopyin (hyperplanes [numTables*nPlanes*vectorLength]) \
pcopyout (indexGroupMap [numTables*nPoints ])
{
const int hyperplanesTableLen = nPlanes * vectorLength;
for (int table = 0; table < numTables; table++) {
float+ hyperplanes2 =
hyperplanes + table * hyperplanesTableLen;
int* indexGroupMap2 =
indexGroupMap + table * indexGroupMapTableLen;

// — Match points —
calculate_hash_values(
vectorLength , nPoints, points,
nPlanes, hyperplanes2, indexGroupMap2);

}
}

void calculate_hash_values(

// input

int vectorLength,

int nPoints, floatx __restrict__ points,

int nPlanes, floatx __restrict__ hyperplanes,
// output
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int* __restrict__ indexGroupMap)

{
// — Calculate hash wvalues,

// keep track of sizes of each group
#pragma acc data \
present (points[nPoints*vectorLength]) \
present (hyperplanes[nPlanes+vectorLength]) \
present (indexGroupMap [ nPoints ])
{
#pragma acc parallel loop \
num_workers(128) vector_length (8)
for (int i = 0; i < nPoints; i++) {

float* point = &points[i * vectorLength];
int hashcode = 0;// hashcode will be the group index

// calculate hash value of the i’th point,
// store resut in indexGroupMap
#pragma acc loop reduction (|:hashcode)
for (int j = 0; j < nPlanes; j++) {
floatx hplane = &hyperplanes[j * vectorLength];
// calculate point * hplane
float vecMul = 0;
#pragma acc loop reduction (+:vecMul) seq
for (int k = 0; k < vectorLength; k++) {
vecMul += point[k] * hplane[k];
}
// set i’'th bit to one if point is on
// the "positive” side of hyperplane
if (vecMul > 0) {
hashcode = hashcode | (1 << j);
}

}
indexGroupMap[i] = hashcode; // save the hashcode

calculate_indexGroupMap is the function that calls the function
calculate_hash_values for each table. In order to reduce the number of
times the program must perform memory movement, the memory move-
ment directives are moved from the calculate_hash_values function to
the calculate_indexGroupMap function.

In calculate_hash_values the memory areas are instead marked as
present using the present directive. This makes it clear to the compiler
that the memory addresses are already copied over to the device, and the
memory pointers in question will point to device memory at the execution
of this function.

Optimizing data locality by moving memory in bulk increases the
performance of the function substantially. The time goes from 3.68 seconds
in the last optimization to 0.726 seconds. That is a 5.07x incremental
speedup from the last optimization, a 10.9x total speedup from the CPU
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version compiled with pgc++ (which utilizes SIMD), and an 85.3x speedup
from the serial CPU version compiled with g++.

We can also see from the profile that the time spent on memory
movement has been significantly reduced:

NVTX result:
Range "Calculating hash values for base vectors"

Type Time (%) Time Calls Name
Range:
100.00% 934.81ms 1 Calculating hash values
GPU activities:
89.09% 422.75ms 32 calculate_hash_values_gpu
8.86% 42.023ms 32  [CUDA memcpy HtoD]
2.06% 9.7546ms 32  [CUDA memcpy DtoH]
APT calls:
55.45% 380.47us 1024  cuMemcpyHtoDAsync
26.44%, 181.43us 32  culLaunchKernel
18.12% 124.31us 32  cuMemcpyDtoHAsync

The time spent on memory movement used to be approximately 1.3
seconds, now it is approximately 0.042 seconds.

We can also see that the time spent on OpenACC overhead throughout
the entire program has gone significantly down from what it was before:

Type Time (%)  Time Calls Name
OpenACC (excl):
36.737% 428.69ms 64 acc_wait@lsh_parallel_6.cpp:632

27.53% 321.39ms
21.13% 246 .66ms
10.17Y% 118.73ms
3.54Y% 41.275ms

acc_wait@lsh_parallel_6.cpp:895
acc_enter_data@lsh_parallel_6.cpp:895
acc_enter_data@lsh_parallel_6.cpp:712
acc_exit_data@lsh_parallel_6.cpp:712

NN =N

The time spent moving data in the hashing function has now decreased
substantially. The data movement directives have now been moved to line
712, which is inside the calculate_indexGroupMap. We can see that the
pure overhead related to hashing went from being the largest contributing
factor of OpenACC overhead to being the third largest contributor, and has
been reduced from taking approximately 2.68 seconds to 0.247 seconds.

And finally we can see that from Figure 4.2 that the program no longer
alternates between memory movement and calculation during calculation
of the hash values; instead, memory movement is done in bulk before
and after execution which significantly reduces the amount of overhead
involved in memory movement and shortens the run-time of the program.

Limitation of OpenACC

One limitation of OpenACC is somewhat noticeable when optimizing
the hashing function. In the loop optimization stage I experimented with
different ways to delegate work among gangs, workers and vectors, and I
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Figure 4.2: Figure showing a visual profile of the LSH algorithm where
memory is moved before each call to calculate_hash_values. The top part
shows a "wide view" of the program, with point matching on the right side
and hashing on the left side. The "close-up" zooms in on the hashing in the
beginning of the program. (Visual profiling is done on a different computer
with some different parameters, so the run-times are not relevant)

decided it was best to divide the outer loop among both gangs and workers.
As defined in this function by the directive "num_workers(128)": for every
gang there should typically be 128 workers, each worker handling one
iteration of the outer loop. These workers will iterate through the exact
same hyperplanes.

In the CUDA programming model, threads in a block should be able
to share memory. Ideally, for the hashing function, one would want the
threads to be able to load all the hyperplanes into shared memory, so
they can share the memory and use less space and lower the number of
load operations for each thread; OpenACC does not have a way to do
this. OpenACC does include a cache directive for utilizing shared memory
among workers and vectors; however, it can only be used in a more fine-
grained fashion, and to my knowledge it can not be used to solve this type
of problem.

4.3.4 Constructing LSH Tables

Another major part of the LSH algorithm is the construction of the LSH
tables itself. Though this part of the algorithm was itself not optimized
using OpenACC, it might be worth covering here as it gives perspectives
to how the other functions were optimized.

The function does not add the length as the last element of the
grouplndexMap array, but that functionality can very easily be added.

There may be some performance gain in using an optimized library for
the exclusive scan of groupSizeMap, but it makes little difference in this case,
since the exclusive scan is only a very small part of an already not very time
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consuming function.

/

¥ % % ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥
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*

*/

Takes as input an array of point—index to group mappings.
Turns this into a data structure which takes the hash
value of a point and returns a group index into a new
array called groupArray, which itself contains indices
into the original point array.

The arrays , groupSizeMap and grouplndexMap , are used

to easily index or iterate through specific groups

in the groupArray. This is handy when we want to

compare a point to other points in its group.

@param nPoints : The size of indexGroupMap, groupArray,
and in general the number of points

@param nGroups : The number of groups.

@param indexGroupMap : Mapping from indices to groups,
calculated by function

"calculate_hash_values’
@param grouplndexMapTails : Temporary array used when
creating groupArray.
Preallocated only for possible
increased efficiency .
@param groupArray : Output.
An arrvay with point indices sorted
by their group.
Maps into the original point array.
@param groupSizeMap : Output. Array of group sizes
@param grouplndexMap : Output.
Array of group indices , indexes
groupArray
void organize_points_into_groups(
// input
int nPoints, int nGroups,
int+ __restrict__ indexGroupMap,

// preallocated temporary storage

int* __restrict__ grouplndexMapTails,
// output

int+ __restrict__ groupArray,

int+ __restrict__ groupSizeMap,

int* __restrict__ grouplndexMap)

// find the size of each group

memset (groupSizeMap, 0, nGroups * sizeof(int));

for (int i = 0; i < nPoints; i++) {
groupSizeMap [indexGroupMap[i]]++;

}
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// Find group indices into the group array ’'groupArray’
// This is really just an exclusive scan
int cnt = 0;
for (int i = 0; i < nGroups; i++) {
grouplndexMap[i] = cnt;
groupIndexMapTails[i] = cnt;
cnt += groupSizeMap]|i];
}

// Fill groupArray

for (int i = 0; i < nPoints; i++) {
// what group did the point get hashed into
int hashcode = indexGroupMap]|i];
// start index of that group in groupArray
//  + number of elements currently inserted
int idx = groupIndexMapTails[hashcode]++;
// add the point to the group
groupArray[idx] = i;

The logic behind this algorithm was described briefly in words in the
introductory LSH section, Section 3.3.9. It is perhaps easier to understand
by simply looking at the code however.

Note that here we are in a way sorting the indices by their hash codes,
and combining points with equal hash codes into a single group. We are
doing this in linear time, this is possible since we are exploiting the fact that
the hashcodes can only take on values within a limited range with a clear
upper limit equal to 2H _ 1 where H is the number of hyperplanes, and a
lower limit of 0.

4.3.5 Finding Potential Matches

When beginning the matching phase of the algorithm, where matches for
query points must be looked for in an LSH table already created, the first
thing that must be done is hashing the query points.

The optimization of the hashing algorithm has already been covered.
I will therefore move to the next step, which consists of finding the box
associated with the query point for each LSH table and look for potential
candidates for the best match among the base points located in these
boxes. If a base point appears inside one of these boxes it will be added
to a separate set containing all the potential best-match candidates for the
current query point.

The algorithm uses a large array to keep track of whether or not a base
point is already represented in the set of potential matches for this query
point; if it is, then the algorithm simply moves on; if it is not, then the point
index is added to the set. This is done to avoid duplicate point comparisons
within the raw comparison phase of the program.

The final number of potential matches for all query points is unknown,
thus the final length of the potentialMatches array is unknown. In this
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program, that problem is solved by simply allocating a very large amount
of memory and quitting the program if more memory is needed. Therefore,
if one tries to run the program in a case where all the query points have
a large amount of potential matches each such that the total number of
potential matches exceeds this maximum limit, then the program will
simply print an error message and terminate.

One can experiment with other solutions to this issue: one could use
an array that expands if the number of potential is larger than expected,
perhaps a solution that even stores parts of the array in secondary memory
if there is not enough memory in primary memory (though this would
make the algorithm slower if this event triggers). For this implementation
I decided to just quit the program in case the program runs out of memory,
as that is a simpler solution that satisfies my goals with the implementation
for this thesis.

/

*

For every point, this function goes through all the
groups in groupArray it can get mapped into.

groupArray stores these points as indices into the
original point array; it does this for all tables.

Then the function puts indices it can get mapped to into
that point’s place in the potentialMatches array. After
that , the function creates two other arrays called
potentialMatchesIndices and potentialMatchesLengths ,
these two arrays are used to index and iterate the
potentialMatches array.

@param numTables : Number of LSH tables
@param nPointsl : Number of base points and size of
* groupArray
@param nPoints2 : Number of query points
@param indexGroupMap : Calculated hash values for points2
@param indexGroupMapTableLen : Length of indexGroupMap
per table
@param groupArray : Arrays with point indices sorted by
their group.
@param groupSizeMap : Arrays with sizes of each group in
groupArray .
@param grouplndexMap : Arrays with group indices ,
indexes into groupArray.
@param groupMapTableLen : Length of all the groupMaps,
(number of groups)
@param potentialMatchesMaxLen : The current max size of
potentialMatchesLen

¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥

@param potentialMatches : Output.
An array with indices into pointl containing the
indices of all possible matches for each point
in points2

@param potentialMatcheslndices : Output.
Indices for potentialMatches .

¥ OO¥ ¥ ¥ % X ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ x
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* @param potentialMatchesLengths : Output.

* Number of matches for each point in point2.
* Used to iterate through potentialMatches.
*

@return The total amount of matches
A
int find_potential_matches(

// inputs

int numTables,

int nPointsl,

int nPoints2,

int* __restrict__ indexGroupMap,
int indexGroupMapTableLen,

int* __restrict__ groupArray,
int+ __restrict__ groupSizeMap,
int* __restrict__ groupIndexMap,

int groupMapTableLen,
int potentialMatchesMaxLen,

// outputs

int*x __restrict__ potentialMatches,

int* __restrict__ potentialMatchesIndices,
int* __restrict__ potentialMatchesLengths)

{

const int groupArrayTableLen = nPointsl;

int* checkedArr = (int=)malloc(nPointsl = sizeof(int));
memset (checkedArr, -1, nPointsl x sizeof(int));
int totalMatchCount = 0;

// find possible matches
for (int i = 0; i < nPoints2; i++)
{
potentialMatchesIndices[i] = totalMatchCount;

for (int table = 0; table < numTables; table++) {
int* indexGroupMap2 = indexGroupMap
+ table * indexGroupMapTableLen;
int* groupSizeMap2 = groupSizeMap
+ table * groupMapTableLen;
int+ groupIndexMap2 = groupIndexMap
+ table * groupMapTableLen;
int+ groupArray2 = groupArray
+ table * groupArrayTableLen;

// Find the group of elements from

// groupArray to match with

int hashcode = indexGroupMap2[i];

int size = groupSizeMap2[hashcode];

int startldx = groupIndexMap2[hashcode |;

// Add points to potentialMatches

for (int j = startldx; j < startldx + size; j++) {

int idx = groupArray2[j];
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if (checkedArr[idx] != i) {
checkedArr[idx] = i;

if (totalMatchCount>=potentialMatchesMaxLen)

{
printf ("Not_enough _space\n");
exit (1),

}

(»potentialMatches)[ totalMatchCount] = idx;
totalMatchCount++;

}

potentialMatchesLengths[i] =
totalMatchCount - potentialMatchesIndices[i];

free (checkedArr);

return totalMatchCount;

This function was not parallelized on GPUs using OpenACC, and I will

outline a few reasons why.

¢ The program uses a very large amount of memory for a lookup table
to avoid duplicate point comparisons down the line. Such a large
table (or even a smaller bitmap) could not be maintained for every
single thread running on a GPU. This feature would therefore either
have to be implemented another way or abandoned.

The upper bound of possible matches for a single query point should
be very high, and the exact amount of memory needed for each point
is not known beforehand. Due to the law of large numbers it should
be easier to find a stable upper limit when matching the entire dataset,
since the total number of potential matches is more stable (relative to
its size) than the number of potential matches for individual query
points.

Very little actual computation takes place in this part of the program,
it mostly consists of reading and writing from memory.

While parallelizing find_potential_matches using GPUs is difficult

due to the reasons I outlined above, there might still be benefits to
parallelizing the function using multiple CPU cores or multiple CPUs
completely (since CPUs are considered to be generally better at logic tasks
and have more memory).

Each CPU thread could check the tables for potential matches for their

assigned sections of the query set. Then after all CPUs are done, the
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potential matches tables for each CPU can be combined into a single table
(or each of the CPU threads could run a matching routine for their own
table, that is also a possible solution). This would be a coarse-grained
approach to parallelization.

4.3.6 Matching Points

Next I will present the function for actually matching the points. This
function consists of going through each query point, looking up which base
points they should be compared with using the potentialMatches table,
then doing the raw point comparisons and saving the best and second best
match.

Original function

~
*
X

Uses results from find_potential_matches to match pointsl
and points2

@param vectorLength : Number of dimensions for each point
@param numTables : Number of LSH tables .

@param nPointsl : Number of points in pointsl.

@param nPoints2 : Number of points in points2.

@param pointsl : Array of points used to create the
LSH tables. (base points)

@param points2 : Array of points to be matched with
pointsl. (query points)

@param potentialMatches : An array with indices into
pointl containing the indices of all
possible matches for each query point
in points2.

(i.e. potential matches between points2
and pointsl)

@param potentialMatchesIndices : Indices used to index
into potentialMatches .

@param potentialMatchesLengths : Number of matches
for each point in points2.
Used to iterate through potentialMatches .

@param IshMatches : Output.
Index into pointsl representing the best match
between points2 and pointsl

XX ¥ ¥ X X ¥ X ¥ ¥ ¥ X ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥

@param bestMatchDists : Output.
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* Distances between points for every match in
* IshMatches .

* @param IshMatches2 : Output.
* Index into pointsl representing the 2nd
* best match between points2 and pointsl.
*
* @param bestMatchDists2 : Output.
* Distances between points for every match
* in IshMatches?2
*/
void match_points(
// inputs
int vectorLength, int nPointsl, int nPoints2,
float+ __restrict__ pointsl,
floatx __restrict__ points2,
int nPotentialMatches,
int* __restrict__ potentialMatches,
int+ __restrict__ potentialMatchesIndices,
int* __restrict__ potentialMatchesLengths,
// outputs
intx __restrict__ IlshMatches,
floatx __restrict__ bestMatchDists,
int* __restrict__ 1shMatches2,

float* __restrict__ bestMatchDists2)

for (int i = 0; i < nPoints2; i++) {
bool changed = false;
float bestMatchDist = bestMatchDists[i];
float bestMatchDist2 = bestMatchDist;
int match = -1;
int match2 = -1;
int jStart = potentialMatchesIndices[i];
int jEnd = potentialMatchesIndices|[i]
+ potentialMatchesLengths[i];

// Match the points
for (int j = jStart; j < jEnd; j++) {
int idx = potentialMatches[j];
//diff = sum((points2[i][:]-points][idx][:])."2)
float diff = 0;
for (int k = 0; k < vectorLength; k++) {
float tmp = points2[i * vectorLength + k]
- pointsl[idx * vectorLength + k];
diff += tmp * tmp;
}
// check if distance is lowest distance so far
if (diff < bestMatchDist) ({
// save old value as second best
bestMatchDist2 = bestMatchDist;
match2 = match;
// update best value
bestMatchDist = diff;
match = idx;
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changed = true;

}

if (changed) {
IshMatches[i] = match;
]

bestMatchDists[i] = bestMatchDist;
IshMatches2[i] = match2;
bestMatchDists2[i] = bestMatchDist2;

Using the g++ compiler this function used 64.6s to execute for the
testing data set. When using the pgc++ compiler (which speeds up parts
of the program using SIMD instructions) the time taken was 26.0s, which is
roughly a 2.48x speedup from the g++ compiled version.

Moving to GPU

Like when optimizing calculate_hash_values, the first thing we need to
do is recognize for-loops where the iterations of the loop are independent
from each other.

The outer loop finds the best and second best match for each query
point, since the iterations of this loop are independent from each other
we can simply start a parallel region there using the parallel and loop
directives.

The second loop iterates through the potential matches for the current
point, it calculates the differences between the point and each of its
potential matches, and stores the index of the best and second best match
separately.

In this particular loop the iterations are dependent on each other. If
this loop were to be parallelized one would need to reduce the best and
second best match with respect to the difference value. This is an advanced
reduction and to my knowledge there is no straight forward way to express
this reduction in OpenACC, therefore the second loop itself cannot be
parallelized using OpenACC; different sections inside body of the loop can
still be parallelized regardless. Another issue with parallelizing this loop is
that the number of iterations will be highly variable, thus there is no easy
way to find a good balance of threads to use in this loop in relation to other
loops.

The third loop however, the innermost loop, can be parallelized. This
loop simply finds the squared euclidean distance between two points using
vector subtraction and accumulating the squared elements. This loop can
be reduced by using the reduction clause, in full: reduction(+:diff).

#pragma acc data \
pcopyin(pointsl [nPointsl*vectorLength]) \
pcopyin(points2 [nPoints2+vectorLength]) \
pcopyin(potentialMatches[nPotentialMatches])\
pcopyin(potentialMatchesIndices[nPoints2]) \
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pcopyin(potentialMatchesLengths[nPoints2]) \
pcopy (IshMatches[nPoints2]) \

pcopy (bestMatchDists [nPoints2]) \

pcopy (IshMatches2[nPoints2]) \

pcopy (bestMatchDists2 [nPoints2])

#pragma acc parallel loop
for (int i = 0; i < nPoints2; i++) {
bool changed = false;
float bestMatchDist = bestMatchDists[i];
float bestMatchDist2 = bestMatchDist;
int match = -1;
int match2 = -1;
int jStart = potentialMatchesIndices[i];
int jEnd = potentialMatchesIndices[1i]
+ potentialMatchesLengths[i];

// Match the points
for (int j = jStart; j < jEnd; j++) {
int idx = potentialMatches[j];
//diff = sum((points2[i][:]-points][idx][:])."2)
float diff = 0;
#pragma acc loop reduction (+:diff)
for (int k = 0; k < vectorLength; k++) {
float tmp = points2[i * vectorLength + k]
- pointsl[idx * vectorLength + k];
diff += tmp * tmp;
}
// check if distance is lowest distance so far
if (diff < bestMatchDist) ({
// save old value as second best
bestMatchDist2 = bestMatchDist;
match2 = match;
// update best wvalue
bestMatchDist = diff;
match = idx;
changed = true;

}

if (changed) {
IshMatches[i] = match;
]

bestMatchDists[i] = bestMatchDist;
IshMatches2[i] = match2;
bestMatchDists2[i] = bestMatchDist2;

After moving computation from the CPU to the GPU the function uses
1.01s during the execution of the program. This is a speedup of 25.7x
speedup from the CPU version compiled using pgc++, and a 64.0x speedup
from the fully serial CPU version compiled with g++.
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Loop Optimization

Again, the program can be further optimized by explicitly specifying how
many threads should perform each part of the program. GPGPUs tend to
work best when the number of threads in a kernel is some multiple of 32;
I therefore used an OpenACC vector size of 32, i.e. the innermost loop is
always split among 32 threads. The vector size is not larger than 32 so that
as many kernels as possible can run concurrently.

#pragma acc data \
pcopyin(pointsl [nPointsl*vectorLength]) \
pcopyin(points2 [nPoints2+vectorLength]) \
pcopyin(potentialMatches[nPotentialMatches])\
pcopyin(potentialMatchesIndices[nPoints2]) \
pcopyin(potentialMatchesLengths[nPoints2]) \
pcopy (IshMatches[nPoints2]) \
pcopy (bestMatchDists [nPoints2]) \
pcopy (IshMatches2[nPoints2]) \
pcopy (bestMatchDists2 [nPoints2 ])

#pragma acc parallel loop gang worker \

for

num_workers(1) vector_length(32)
(int i = 0; i < nPoints2; i++) {
bool changed = false;
float bestMatchDist = bestMatchDists[1i];
float bestMatchDist2 = bestMatchDist;
int match = -1;
int match2 = -1;
int jStart = potentialMatchesIndices[i];
int jEnd = potentialMatchesIndices[1i]
+ potentialMatchesLengths[i];

// Match the points
for (int j = jStart; j < jEnd; j++) {
int idx = potentialMatches[j ];
//diff = sum((points2[i][:]—points][idx][:])."2)
float diff = 0;
#pragma acc loop reduction(+:diff) vector
for (int k = 0; k < vectorLength; k++) {
float tmp = points2[i * vectorLength + k]
- pointsl[idx * vectorLength + k];
diff += tmp * tmp;
}
// check if distance is lowest distance so far
if (diff < bestMatchDist) {
// save old value as second best
bestMatchDist2 = bestMatchDist;
match2 = match;
// update best value
bestMatchDist = diff;
match = idx;
changed = true;
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if (changed) {
IshMatches[i] = match;
]

bestMatchDists[i] = bestMatchDist;
IshMatches2[i] = match2;
bestMatchDists2[i] = bestMatchDist2;

After optimizing the loops the function uses 0.584s during execution of
the program, resulting in a 44.5x speedup from the CPU version compiled
with the pgc++ compiler, a 110.6x speedup from the serial CPU version
compiled with the g++ compiler, and a 1.73x iterative speedup from the last
optimization stage where the function executes on the GPU without loop
optimization.

There is a similar version of this function that is optimized in Section
6.7.3, that one can compare and contrast with this one. The two functions
have roughly the same behavior, but are implemented and optimized
slightly differently. This is mostly just due to certain design choices I made
when creating this implementation that I tried to change when I had the
chance to re-implement the function. The differences are minor however,
and they are almost the same function.
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Chapter 5

Normal (multi-table) LSH:
Results

5.1 Performance of Each Optimization

First, I will present some statistics that are the same for all optimization
stages of the program.

Average portion of search space searched is the average percentage of
the number of base points that had to be searched for each query point. For
the testing set and hyperplanes I am using, that portion of search space is
at about 2.4%.

The correct classification ratio as I called it can also just be called the
recall of the program. It is the percentage of all best matches made that
were correct. For the testing set and hyperplanes I am using, that portion
of matches that were correctly classified is roughly 83%.

The relation between the correct classification ratio and the average
portion of the search space that had to be searched is particularly
interesting. Here we can see that when comparing each query points to
only 2.4% of the base points on average, there is a roughly 83% chance of
successfully finding the closest match.

Potential matches found 239775018
Comparisons per query vector 23977.5018
Average portion of search space searched | 2.3978%
Correct classification ratio 83.03%

Table 5.1: Details (same for all optimization levels presented)

Performance when fully optimized:
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Time | % of total time
Total time 3.46s 100%
Calculating hash values for base vectors | 0.726s 21.0%
Constructing LSH tables 0.247s 7.14%
Calculating hash values for query vectors | 0.008s 0.231%
Finding potential matches 1.53s 44.2%
Matching potential matches 0.574s 16.6%

Table 5.2: Run-time for each phase after full optimization. Same table as
Table 5.8, but also shown here underneath the information in Table 5.1 to
increase readability of the final results.

Before moving on to the performance measurements of the algorithm
I feel obliged to present information about how the time of the program
is measured. Finding the time of each individual phase of the program is
done by measuring time before and after the execution of that phase, the
time is taken using functions from <sys/time.h>.

When taking the total time however, the time command in the bash
shell was used instead. This leads to various unrelated part of the program
being part of the total time presented (reading files, printing output, etc),
and this is why the percentages of the different phases of the program
don’t necessarily add up to the total time. Still, the important parts of the
program are really the performance of each of its major phases, and the
most interesting aspects of the program in relation to OpenACC is how
much each of these phases improve for each optimization stage, and how
much time they take in relation to each other.

5.1.1 CPU program, g++ compiler

When running the program on the CPU using the g++ compiler we get the
results in Table 5.3. We can see that the two most time consuming parts of
the program are calculating hash values for base vectors, and matching the
query points to their potential matches.

Time | % of total time
Total time 129s 100%
Calculating hash values for base vectors 61.9s 48.0%
Constructing LSH tables 0.221s 0.171%
Calculating hash values for query vectors | 0.583s 0.452%
Finding potential matches 1.54s 1.19%
Matching potential matches 64.6s 50.1%

Table 5.3: Run-time for each phase, compiled with g++, all running on CPU.
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Run-time for each phase, compiled with g+ +, all running on CPU.
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5.1.2 CPU program, pgc++ compiler

When changing from the g++ to the pgc++ compiler the time taken for
the parallelizable part of the program decreases substantially. Although
I am not adding any OpenACC directives and the program executes on a
single CPU core, the pgc++ compiler optimizes the program using SIMD
instructions.

We can see that the time required to calculate hash values for base
vectors reduces from 61.9 seconds to 7.93 seconds resulting in a 7.81x
speedup. Likewise, the amount of time required to find the best match
among potential matches reduces from 64.6 seconds to 26.0 seconds
resulting in a 2.48x speedup.

The execution time of the entire program went from 129 seconds to 36.2
seconds, which is a 3.56x speedup.

The reason why I introduced this step when measuring the results of
the algorithm was because I wanted to compare the different optimization
stages (when offloading work to the GPU) to the best single core CPU
version that was easily available to me.

I also presented the results when using the g++ compiler because I think
it might be interesting to see the differences in run-times when using the
two compilers. It is interesting to see how much the implementation is
accelerated by the pgc++ compiler using SIMD instructions.
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Time | % of total time
Total time 36.2s 100%
Calculating hash values for base vectors 7.93s 21.9%
Constructing LSH tables 0.234s 0.646%
Calculating hash values for query vectors | 0.084s 0.232%
Finding potential matches 1.63s 4.50%
Matching potential matches 26.0s 71.8%

Table 5.4: Run-time for each phase, compiled with pgc++, all running on

CPU.
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5.1.3 Parallelized hashing

After moving computation of the hashing part of the function from the CPU

to the GPU we end up with the run-times in Table 5.5.

As we can see the time spent on calculating hash values for base vectors

went from 7.93 seconds to 4.19 seconds, which is a 1.89x (89%) speedup.

The time taken for the entire program remains largely the same
however since the point matching remains the most time consuming part
of the program. The total time spent went from 36.2 to 33.0 which is a 9.7%
speedup. This speedup is still substantial however, since the matching of
points which are currently the bottleneck of the program will see a massive

speedup in the next optimization stage.
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Time | % of total time
Total time 33.0s 100%
Calculating hash values for base vectors | 4.19s 12.7%
Constructing LSH tables 0.263s 0.797%
Calculating hash values for query vectors | 0.054s 1.64%
Finding potential matches 1.83s 5.55%
Matching potential matches 26.3s 79.7%

Table 5.5: Run-time for each phase, hashing on GPU.

0 Run-time for each phase, hashing on GPU.
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5.1.4 Parallelized matching

Moving computation of the point matching from the CPU to the GPU
makes a massive difference on performance as one can see from the new
run-times in Table 5.6.

The point matching phase of the program went from taking 26.3
seconds to taking 1.01 seconds resulting in a 26.4x speedup. This phase
of the program went from taking up 79.7% of the time to only 24.6% of the
time. This turns this phase of the program from taking over three quarters
of the time to taking roughly a quarter of the time, which turns it from a
major bottleneck to simply a large time consuming portion.
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Time | % of total time
Total time 7.39s 100%
Calculating hash values for base vectors | 4.11s 55.6%
Constructing LSH tables 0.255s 6.20%
Calculating hash values for query vectors | 0.055s 1.34%
Finding potential matches 1.60s 38.9%
Matching potential matches 1.01s 24.6%

Table 5.6: Run-time for each phase, matching on GPU.

Run-time for each phase, matching on GPU.

secon

5.1.5 Loop optimization

Table 5.7 shows the run-times of parts of the program after performing loop
optimization for both the hashing and matching function.

The use of loop optimizations leads to a small but sizable improvement
in the time spent on calculating the hash values for base vectors. This part
of the program went from taking 4.11 seconds to taking 3.68 seconds and
received a 1.11x (11%) incremental speedup. This phase of the program
received a 2.15x speedup from the CPU version compiled with pgc++, and
a 16.8x speedup from the serial CPU version compiled with g++.

The point matching phase however previously took 1.01 seconds to
taking 0.584 seconds, resulting in a significant 1.73x (73%) incremental
speedup from the previous optimization stage. This phase of the program
received a 44.5x speedup from the CPU version compiled with pgc++, and
a 110.6x speedup from the serial CPU version compiled with g++.

89



The total time of the program improves from 7.39 seconds to 6.65
seconds, which is a 1.11x speedup (which happens to be the same amount
of speedup achieved by the hashing phase).

Time | % of total time
Total time 6.65s 100%
Calculating hash values for base vectors 3.68s 55.3%
Constructing LSH tables 0.269s 4.05%
Calculating hash values for query vectors | 0.044s 0.616%
Finding potential matches 1.63s 24.5%
Matching potential matches 0.584s 8.78%

Table 5.7: Run-time for each phase, loops optimized.

Run-time for each phase, loops optimized.
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5.1.6 Moving memory in bulk

By optimizing memory movement some more for the hashing function we
can see a substantial improvement in the run-time. The time spent on
hashing the base vectors decreased from 3.68 seconds to 0.726 seconds,
resulting in a 5.07x speedup from the previous optimization. This part
of the program had a 10.9x total speedup from the CPU version of the
program compiled with pgc++, and an 85.3x total speedup from the CPU
version compiled with g++.
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The time spent on the entire program is now 3.46 seconds (this includes
IO and other overhead), for the CPU version it was 129 seconds. This
means the entire program had a 10.5x speedup from the CPU version of the
program compiled with pgc++. Or a 37.3x speedup from the CPU version
compiled with g++.

One can see from Table 5.8 that the bottleneck of the program is no
longer the raw vector multiplications associated with the hashing of the
base vectors, nor the raw point comparisons associated with matching the
query point with its potential matches. The most expensive part of the
program is instead finding potential matches by looking up which base
points a query point should be compared to in the LSH tables. This function
is not optimized in this thesis.

Time | % of total time
Total time 3.46s 100%
Calculating hash values for base vectors | 0.726s 21.0%
Constructing LSH tables 0.247s 7.14%
Calculating hash values for query vectors | 0.008s 0.231%
Finding potential matches 1.53s 44.2%
Matching potential matches 0.574s 16.6%

Table 5.8: Run-time for each phase, data locality optimized further.
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The speedup acquired through the use of OpenACC demonstrates that
OpenACC was very effective in accelerating this algorithm. The reason for
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this is to a large extent designed to be easily parallelizable, if one wants to
make a program parallel it is usually best to have that in mind from the
start. In this case, much of the computation was based on operations on
vectors, these types of operations are easy to parallelize.

5.2 Performance of Each Optimization Summarized

In this section I present some tables that summarize the timing and
speedup for each stage of optimization.

Total time | Hashing | Finding matches
CPU program, g++ 129s 61.9s 64.6s
CPU program, pgc++ 36.2s 7.93s 26.0s
Parallelize hashing 33.9s 4.19s 26.3s
Parallelize matching 7.39s 4.11s 1.01s
Loop optimization 6.65s 3.68 0.584
Moving memory in bulk 3.46s 0.726 0.574

Table 5.9: Run-time results
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Time | Speedup Speedup Incremental
from from speedup
CPU (g++) | CPU (pgc++)
CPU, g++ 61.9s 1x - -
CPU, pgc++ 7.93s 7.81x 1x 7.81x
Parallelize 4.19s 14.8x 1.89x 1.89x
Loop optimization | 3.68s 16.8x 2.15x 1.14x
Moving memory 0.726s 85.3x 10.9x 5.07x
in bulk
Table 5.10: Hashing run-times and speed-ups
Time | Speedup Speedup Incremental
from from speedup
CPU (g++) | CPU (pgc++)
CPU, g++ 64.6s 1x - -
CPU, pgc++ 26.0s 2.48x 1x 2.48x
Parallelize 1.01s 64.0x 25.7x 25.7x
Loop optimization | 0.584s 110.6x 44.5x 1.73x

Table 5.11: Matching run-times and speed-ups

5.3 Different Numbers of Hyperplanes

From Table 5.12 we can see that the number of correct matches goes down
for each hyperplane added, this is because the chances of the query point
being separated from its best match in the base set increases with every
hyperplane splitting the search space.

The average portion of the search space searched also decreases for
every hyperplane added since every hyperplane splits the search space
further.

Likewise, in the beginning, when the portion of search space searched
goes down, the time required by the algorithm goes down with it, this
happens as long as the timing is dominated by the time spent on point
matching.

We see from Table 5.14 that with around 20 to 21 hyperplanes, that the
phases of calculating hash values and constructing LSH tables start to make
up a majority of the time taken by the algorithm. This is because adding
more hyperplanes will increase the overhead of the program, these two
functions in particular will start taking up more and more time for each
hyperplane added eventually becoming bottlenecks of the program as long
as the number of base points remain the same.
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Number of | Time taken | Correct ratio Average % of
hyperplanes search space searched

15 5.62s 87.1% 3.55%

16 4.20s 83.0% 2.40%

17 3.77s 79.6% 2.00%

18 3.11s 75.0% 1.30%

19 3.11s 71.8% 1.11%

20 3.00s 67.2% 0.770%

21 3.39s 62.9% 0.575%

22 4.45s 58.0% 0.443%

Table 5.12: Results with different numbers of hyperplanes and 32 tables

Number Calculating Constructing | Finding | Matching

of hash values LSH tables | potential | potential
hyperplanes | for base vectors matches | matches

15 0.739s 0.212s 3.001s 1.018s
16 0.746s 0.238s 1.954s 0.679s
17 0.831s 0.226s 1.570s 0.535s
18 0.854s 0.329s 1.006s 0.375s
19 0.838s 0.423s 0.904s 0.395s
20 0.901s 0.629s 0.669s 0.257s
21 0.867s 1.105s 0.601s 0.242s
22 0.925s 2.060s 0.636s 0.214s

Table 5.13: Time with different numbers of hyperplanes and 32 tables

Number Calculating Constructing | Finding | Matching

of hash values LSH tables | potential | potential
hyperplanes | for base vectors matches | matches

15 13.1% 3.77% 53.4% 18.1%
16 17.8% 5.66% 46.5% 16.1%
17 22.0% 5.99% 41.6% 14.2%
18 27.5% 10.6% 32.3% 12.1%
19 26.9% 13.6% 29.1% 12.7%
20 30.0% 21.0% 22.3% 8.57%
21 25.6% 32.6% 17.7% 7.14%
22 20.8% 46.3% 14.3% 4.81%

Table 5.14: Percentage of total time spent on each phase with different
numbers of hyperplanes and 32 tables
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5.4 Different Numbers of tables

The effects of increasing the number of tables are quite clear from looking
at Table 5.15:

* More of the search search space is searched.

¢ The time taken by the algorithm increases since more of the search
space is searched and every query point has to be hashed for each
table.

* The correct ratio increases as a result of each query point being
compared to even more nearby points

The time taken for each individual phase of the algorithm also increases
due to the scale of operations increasing as we see in Table 5.16.

I should mention again that the total time is taken with the time
command which includes some overhead, so the percentages in 5.17 does
not add up to 100%. This makes comparing the evolution of percentages
not ideal, and it should be kept in mind, particularly to explain what is
happening for the portion of time spent on "matching potential matches"
when more LSH tables are added.

We can see some different changes in the portion of time being spent
in each part of the algorithm in Table 5.17. While the time spent on
hashing increases for each table added it does so very slowly compared
to the other functions. When going from 2 to 4 tables the amount of
computation required for hashing the base points double, the time however
only increases from 0.290 to 0.322 seconds, which is only a 9% increase, this
is most likely due to a sort of "economics of scale" for GPUs, where time
required to do more work

When seeing the combined time as being the time for all these phases,
it uses 0.570 seconds with two LSH tables, and 3.599 seconds with 32 LSH
tables. We can see from the total time taken with the time command that
approximately half a second is used on different types of overhead not
related to the program.

When using this "combined time" instead of the time from the time
command, the portion of time spent on calculating hash values goes from
50.9% to 21.4%. For constructing LSH tables it goes from 2.46% to 6.72%.
For finding potential matches it goes from 21.8% to 53.7%. For matching
potential matches it goes from 26.5% to 18.1%.
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Number of | Time taken | Correct ratio Average % of
LSH tables search space searched

2 1.06s 20.5% 0.220%

4 1.12s 31.1% 0.324%

6 1.38s 40.4% 0.460%

8 1.57s 48.1% 0.625%

10 1.86s 53.8% 0.777%

12 2.12s 59.5% 0.994%

14 2.39s 63.7% 1.15%

16 2.54s 67.0% 1.31%

18 2.79s 69.8% 1.43%

20 2.95s 72.2% 1.54%

22 3.20s 74.3% 1.68%

24 3.41s 76.8% 1.84%

26 3.57s 78.6% 1.98%

28 3.71s 79.6% 2.04%

30 3.94s 81.3% 2.22%

32 4.16s 83.0% 2.40%

Table 5.15: Results with 16 hyperplanes and different number of LSH tables

Number Calculating Constructing | Finding | Matching

of hash values LSH tables | potential | potential
LSH tables | for base vectors matches | matches

2 0.290s 0.014s 0.124s 0.151s
4 0.322s 0.030s 0.191s 0.172s
6 0.363s 0.045s 0.281s 0.199s
8 0.404s 0.061s 0.391s 0.216s
10 0.450s 0.075s 0.504s 0.320s
12 0.476s 0.089s 0.673s 0.359s
14 0.517s 0.104s 0.800s 0.433s
16 0.532s 0.121s 0.902s 0.457s
18 0.573s 0.135s 1.059s 0.501s
20 0.591s 0.150s 1.143s 0.540s
22 0.602s 0.168s 1.284s 0.616s
24 0.633s 0.179s 1.436s 0.626s
26 0.687s 0.193s 1.550s 0.597s
28 0.700s 0.210s 1.649s 0.593s
30 0.722s 0.227s 1.841s 0.600s
32 0.771s 0.242s 1.934s 0.652s

Table 5.16: Time for each part of the program with 16 hyperplanes and
different number of LSH tables
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Number Calculating Constructing | Finding | Matching

of hash values LSH tables | potential | potential
LSH tables | for base vectors matches | matches

2 27.4% 1.32% 11.7% 14.5%
4 28.8% 1.24% 11.1% 13.5%
6 26.3% 3.26% 20.4% 14.4%
8 25.7% 3.89% 24.9% 13.8%
10 24.2% 4.03% 27.1% 15.2%
12 22.5% 4.20% 31.7% 16.9%
14 21.6% 4.35% 33.5% 18.1%
16 20.9% 4.76% 35.5% 18.0%
18 20.5% 4.84% 38.0% 18.0%
20 20.0% 5.08% 38.7% 18.3%
22 18.8% 5.25% 40.1% 19.3%
24 18.6% 5.25% 42.1% 18.4%
26 19.2% 5.41% 43.4% 16.7%
28 18.9% 5.66% 44.4% 16.0%
30 18.3% 5.76% 46.7% 15.2%
32 18.5% 5.82% 46.5% 15.7%

Table 5.17: Percentage of total time for each part of the program with 16
hyperplanes and different number of LSH tables

5.5 Different Hyperplanes

Just to show that the results are stable using different sets of hyperplanes, I
present the statistics shown in the tables in this section.

The hyperplanes are all random except for the fact that the vectors
representing them are all of length one with elements that sum to zero.

Hyperplane | Time taken | Recal Average % of
set nr. search space searched
1 4.31s 83.0% 2.40%
2 4.16s 83.1% 2.29%
3 3.96s 82.9% 2.27%
4 4.55s 85.2% 2.81%
5 3.93s 83.4% 2.29%
6 3.97s 83.6% 2.31%

Table 5.18: Results with 16 hyperplanes and 32 tables, the hyperplanes are
represented by vectors that are of length 1 with elements that sum to zero,
but are otherwise completely random. Each row represents different sets
of random hyperplanes.
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Hyperplane Calculating Constructing | Finding | Matching
set nr. hash values LSH tables | potential | potential
for base vectors matches | matches

1 0.776s 0.244s 1.925s 0.778s

2 0.801s 0.241s 1.814s 0.710s

3 0.756s 0.241s 1.791s 0.602s

4 0.753s 0.235s 2.245s 0.757s

5 0.770s 0.239s 1.729s 0.645s

6 0.756s 0.238s 1.793s 0.628s

Table 5.19: Time with 16 hyperplanes and 32 tables, the hyperplanes are
represented by vectors that are of length 1 with elements that sum to zero,
but are otherwise completely random. Each row represents different sets
of random hyperplanes.

Hyperplane Calculating Constructing | Finding | Matching
set nr. hash values LSH tables | potential | potential
for base vectors matches | matches

1 18.0% 5.66% 44.7% 18.1%

2 19.3% 5.79% 43.6% 17.1%

3 19.1% 60.9% 45.2% 15.2%

4 16.5% 5.16% 49.3% 16.6%

5 19.6% 6.08% 44.0% 16.4%

6 19.4% 5.99% 45.2% 15.8%

Table 5.20: Percentage of total time spent on each phase with 16
hyperplanes and 32 tables, the hyperplanes are represented by vectors that
are of length 1 with elements that sum to zero, but are otherwise completely
random. Each row represents different sets of random hyperplanes.

5.6 Small Dataset Results

For the most part this thesis examines results for a large dataset from the
paper called "Product Quantization for Nearest Neighbor Search"[7] with
one million base points and ten thousand query points. In this short section
however, I will examine some results for a smaller dataset associated with
the same paper. This dataset contains 10 000 base points and 100 query
vectors.

For the smaller dataset, the results are less stable since time measure-
ments for smaller programs tend to be more volatile in general. Addition-
ally, both the LSH algorithm and GPU computing are aimed at optimizing
large scale problems, so for very small datasets a linear CPU solution might
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do the trick better than locality sensitive hashing optimized with GPU com-
puting. Still, it might be interesting to highlight details about the algorithm
when working on a smaller dataset, and contrast these results with those
of one gets when applying the algorithm to a larger dataset.

This section only contains tables and no plots, this is because the results
for the small dataset are not very important compared to the results for
the large datasets. Plots and graphs are therefore not presented in order
to limit the space of these sections and not allow them to detract from the
more important sections.

When using a smaller dataset it is generally a good idea to also reduce
the number of hyperplanes used per table. First I will show results for
16 hyperplanes (which is the same number of hyperplanes as what was
used for the large dataset), then I will show the results for 8 hyperplanes.
Throughout this section, 32 tables will be used. For 16 hyperplanes we get
the results:

Potential matches found 26700
Comparisons per query vector 267

Average portion of search space searched | 2.67%
Correct classification ratio 81.0%

Table 5.21: Statistics about the program. Run on the small dataset. 16
hyperplanes. 32 tables. The details are the same for all optimization levels
presented.

Time | % of total time
Total time 0.618s 100%
Calculating hash values for base vectors | 0.577s 93.4%
Constructing LSH tables 0.018s 2.91%
Calculating hash values for query vectors | 0.006s 0.971%
Finding potential matches 0.001s 0.162%
Matching potential matches 0.004s 0.647%

Table 5.22: Run-time for each phase, compiled with g++, all running on
CPU. Number of hyperplanes = 16, number of tables = 32.
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Time | % of total time
Total time 0.110s 100%
Calculating hash values for base vectors | 0.074s 67.3%
Constructing LSH tables 0.018s 16.4%
Calculating hash values for query vectors | 0.001s 0.909%
Finding potential matches 0.001s 0.909%
Matching potential matches 0.001s 0.909%

Table 5.23: Run-time for each phase, compiled with pgc++ (using SIMD
parallelization), all running on CPU. Number of hyperplanes = 16, number
of tables = 32.

Time | % of total time
Total time 0.265s 100%
Calculating hash values for base vectors | 0.184s 69.4%
Constructing LSH tables 0.021s 7.92%
Calculating hash values for query vectors | 0.003s 1.13%
Finding potential matches 0.000s ~0%
Matching potential matches 0.003s 1.13%

Table 5.24: Run-time when "Calculating hash values" and "Matching
potential matches" are run on GPUs and the program is fully optimized.
Number of hyperplanes = 16, number of tables = 32.

For the large dataset we were able to get an 83.0% correct ratio while
only searching approximately 2.40% of the search space. For the smaller
dataset we get an 81.0% while searching 2.67% of the search space. The
correct ratio is here smaller compared to the amount of search space
searched, the results are still similar enough to be comparable with each
other however.

We can see that since there are only 10 000 base points, and we are using
32 tables with 16 hyperplanes each, the algorithm spends the vast majority
of its time hashing values. The number of hyperplanes (and maybe also the
number of tables) are thus way too large for this problem size.

We can also see that for this small dataset, the CPU version compiled
with the pgc++ compiler is the fastest of the three approaches, this is
because it accelerates the algorithm using SIMD operations making it faster
than the serial version. For smaller problems such as this, CPU SIMD
operations are generally faster than moving computation over to the GPU.

We do see however, that the GPU implementation outperforms the CPU
implementation when it is not allowed to use SIMD operations. Even on
this small problem scale therefore, the GPU implementation outperforms
the pure CPU implementation, though this is mostly due to the relatively
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high number of tables used which scales up the amount of computation
needed.

Most of the time spent on computation by the GPU is really spent on
various types of overhead associated with running programs on GPUs
such as moving memory. This overhead factors into the calculation of hash
values since that is the first program that uses the GPU. When the matching
phase starts, a lot of the memory that is needed is already located on the
GPU, much of the other overhead related to initialization has also already
taken place.

When using 8 hyperplanes:

Potential matches found 299127
Comparisons per query vector 2991.27
Average portion of search space searched | 29.9%
Correct classification ratio 99.0%

Table 5.25: Statistics about the program. Run on the small dataset. 8
hyperplanes. 32 tables. The details are the same for all optimization levels
presented.

Time | % of total time
Total time 0.350s 100%
Calculating hash values for base vectors | 0.290s 82.9%
Constructing LSH tables 0.001s 0.286%
Calculating hash values for query vectors | 0.003s 0.857%
Finding potential matches 0.004s 1.14%
Matching potential matches 0.042s 12.0%

Table 5.26: Run-time for each phase, compiled with g++, all running on
CPU. Number of hyperplanes = 8, number of tables = 32.

Time | % of total time
Total time 0.065s 100%
Calculating hash values for base vectors | 0.036s 55.4%
Constructing LSH tables 0.001s 1.54%
Calculating hash values for query vectors | 0.001s 1.54%
Finding potential matches 0.003s 4.61%
Matching potential matches 0.011s 16.9%

Table 5.27: Run-time for each phase, compiled with pgc++ (using SIMD
parallelization), all running on CPU. Number of hyperplanes = 8, number
of tables = 32.
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Time | % of total time
Total time 0.229s 100%
Calculating hash values for base vectors | 0.162s 70.7%
Constructing LSH tables 0.001s 0.437%
Calculating hash values for query vectors | 0.002s 0.873%
Finding potential matches 0.003s 1.31%
Matching potential matches 0.006s 2.62%

Table 5.28: Run-time when "Calculating hash values" and "Matching
potential matches" are run on GPUs and the program is fully optimized.
Number of hyperplanes = 8, number of tables = 32.

When using only 8 hyperplanes, the correct classification ratio increases
from 81.0% to 99.0%, meanwhile the average portion of the search space
that is searched increases rapidly from 2.67% to 29.9%. At this point, almost
a third of the search space is searched, and yet, the vast majority of the
time is always spent on calculating hash values for the base vectors, which
indicates that the problem is way too small in scale for locality sensitive
hashing to be effective (at least with such a large number of tables, it may
perform better if the number of tables is reduced).

For the versions of the program that ran on the CPU we can see that
the time spent on hashing went significantly down from when 16 tables
were used. In fact, the time spent halved, which makes sense since we
use exactly half the amount of hyperplanes. Meanwhile the time spent
matching potential matches went up by roughly a factor of 10, which
also makes sense since slightly over ten times the number of potential
matches had to be searched. It is clear however, that the time went down
significantly altogether (by almost a factor of 2) since calculating hash
values takes up the vast majority of time.

For the GPU implementation however, not much changed. The time
spent on hashing went down marginally, whereas the time spent on
matching doubled, however this is not very impactful on the performance
of the algorithm overall. The vast majority of the time that falls under
calculating hash values is overhead associated with OpenACC and not
spent on actual computation. The GPU implementation does in this case
still outperform the strictly serial version due to the scale of computation
involved in the hashing phase, due to the number of tables used.
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Chapter 6

Single Table LSH

6.1 Introduction

In the algorithm for LSH that I presented earlier, several LSH tables had to
be used in order to increase the probability of a correct match, i.e. this was
done to make up for the possibility that the query point and its best match
happens to get hashed into different boxes due to them falling on opposite
sides of a hyperplane in the LSH table.

Using several tables comes with a lot of extra resource requirements
and computation time, each table needs to be represented separately, and
one has to look for potential matches in all of them.

In Section 3.3.4, I discussed how one can divide the search space
using hyperplanes; within this explanation I also pointed out how one can
calculate not only which side of a hyperplane a point falls on, but also the
distance from the point to that hyperplane.

The time when finding the distance between a point and the hyperplane
might be useful is when one creates an implementation of LSH that checks
the other side of a hyperplane if the distance between the point and that
particular hyperplane is sufficiently low. When one finds the distance
between the point and the hyperplane one can set a maximum distance
allowed before checking the other side of a hyperplane, then compare the
distances to this threshold.

6.2 One Hash Bit Allowed To Change At A Time

One can check the other side of a combination of several hyperplanes, but
let us for simplicity discuss in this section what happens when one allows
the algorithm to check on the other side of only one hyperplane at a time,
i.e. only one bit in the hashcode is allowed to change at a time.

When only allowing one bit deviation from the hashcode this will limit
the accuracy of LSH using a single table, there will therefore still be a need
for multiple tables in order to get an acceptable accuracy when finding
matches for SIFT feature descriptors.

In this case there will also be an upper limit on the number of boxes
that can possibly be checked by a single query point which will be equal to

104



one plus the number of hyperplanes, such an upper bound is handy when
implementing the algorithm. As I previously pointed out however, this
restriction comes at the cost that when using this implementation several
tables are still needed, though perhaps not as many as before.

This method of checking several boxes per table increases the accuracy
at the cost of speed without having to add even more tables. One can
therefore get comparable results as with the original LSH implementation
using substantially fewer tables, and thus less memory. Creating this
version of the algorithm should also be straight forward once one has a
working implementation of LSH.

The creation phase for this version of LSH is the same as before,
however the searching phase will be a bit more complicated.

When calculating a hash value for a query point the algorithm must
store, not only the hash codes themselves, but also either the distances
between the query point and the hyperplanes, or some other piece of
information (in the form of bit-masks or arrays of bytes) that indicates
which hyperplanes came too close to the query point.

The program will then have to construct the hash code for the query
point and the hash code for neighboring boxes that are sufficiently close.
The hash codes for the neighboring boxes can be found using the xor binary
operation and bit-masks.

Finally, to find potential matches in the LSH table for a given query
point, the algorithm will have to search each group corresponding to all
the hash codes in the list for that query point; this also has to be repeated
for each table.

While all this sounds complicated, as long as one only allows a single
bit of the hash code to deviate from its original value then the algorithm is
only a small change from the original LSH algorithm.

6.3 Guaranteeing A Match Within Threshold

An interesting train of thought begins when one thinks about the possibil-
ity of checking all boxes within a given distance from the point, these boxes
may be separated from query point’s box by several hyperplanes, i.e. the
hash code for these boxes may differ by several bits from the hash code of
the query points.

One way to implement this might be to mark bits corresponding
to hyperplanes that are too close to the query point, then check all
combinations of these bits. For a reasonably high threshold however, this
can in many cases quickly lead to too many boxes being checked with
devastating effects on performance (in the case where all hyperplanes are
too close for example, all the boxes will have to be checked, which would
turn the algorithm into just a very ineffective linear search).

Instead of checking all possible combinations of bits corresponding to
particularly nearby hyperplanes, one can instead try to add the distances
for each hyperplane in order to potentially find the distance from the query
point to the nearest part of the intersection between the hyperplanes in
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question. For random hyperplanes this is hard to do, but if one uses
orthogonal hyperplanes instead then one can find the combination of
distances using an extended version of the Pythagorean Theorem.

On Figure 6.1 I describe how one can check if the intersection of
two hyperplanes are below a certain threshold using the distances from
orthogonal hyperplanes and adding them together using the Pythagorean
Theorem. Only two hyperplanes are used/shown, however one can use
almost the same formula to find the distance to the intersection of any
number of hyperplanes, as shown in Equation 6.1.

di, y=d+d5+...+dy 6.1)

Using this formula one can find the minimum distance of any combi-
nation of orthogonal hyperplanes. This distance can then be compared to a
threshold, and if the distance is lower than the threshold then the algorithm
will decide to check on the other side of that combination of hyperplanes
as well.

The hash code for the box in question is found by setting the bits
corresponding to each hyperplane in the combination of hyperplanes to
one in a mask where the other bits are zero, then xor’ing that result with
the original hash code.

The naive way of checking nearby boxes would be to repeat the
procedure outlined above for all possible combinations of hyperplanes.
This would understandably require a huge amount of time, and will
therefore not be practical in any real application since this will make
the algorithm’s overhead alone possibly rival that of naive matching
(depending on how many hyperplanes are used). Instead of naively
checking all possible combinations of hyperplanes, there are more efficient
methods, one of which I will cover in Section 6.5.

In theory, the threshold one sets for checking on the other side of a
combination of hyperplanes really represents a guarantee where if the
distance between the query point and its best match is below this threshold,
it will be found. I say in theory, since this is not always true likely due to
imperfect floating point operations and similar phenomena.

One would think that one can find the maximum distance of any of
the query points and each of their best matches, then use that maximum
distance as a threshold and thus find all the matches of the query points,
at least in theory. For the problem at hand however, matching SIFT feature
descriptors, this is not wise.

Due to the fact that hyperplanes in 128 dimensions are many-
dimensional objects with large border regions, whereas feature descriptors
are only 128 dimensional points in space, the distance from a feature de-
scriptor to a hyperplane is typically much lower that its distance to another
feature descriptor, even its best match. This means that even a threshold
equal to the average distance between a query point and its best match
would typically be much too high, leading to distances to almost all hyper-
planes being significantly lower than the threshold; this would lead to huge
amounts of boxes being checked and it would be very bad for performance.
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Figure 6.1: Figure showing how to check all possible boxes within a
threshold T. The approximate size of the threshold is indicated in the figure
on the top right. In this example, all boxes shown are within the threshold,
thus they are all checked. Which boxes are checked can be visualized by
drawing a circle with radius T around the query point as shown at the
bottom of the figure, all the boxes that the circle touches has to be checked.
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The good news is that, even without using a very large threshold
to guarantee finding a best match, when using a smaller threshold the
algorithm still gets good results, with accuracy and run-times that are
comparable to those where several tables were used.

6.4 Alternative: Replicating Base Points Across Boxes

Before moving on to explain how one can find combined distances lower
than the threshold in an efficient manner, it is also worth pointing out that
there is another possible implementation that achieves the same goal as the
one covered in the last section. The algorithm is very similar, but it does
things in a different order and it comes with different performance trade-
offs.

In Section 6.3 it was stated that one can check all boxes within a certain
threshold of the query point in order to theoretically guarantee that points
within that distance will be found; the logic being that one can combat the
bad case where a query point falls particularly close to a hyperplane by
checking on the other side of that hyperplane in these unfortunate cases. In
this algorithm, the issue of points falling close to a hyperplane was solved
by checking multiple boxes whose borders were sufficiently near the query
point during the search phase; another way of achieving similar results
would be to replicate references for base points to nearby boxes during
the LSH table creation phase if they are sufficiently close to individual
hyperplanes or certain combinations of hyperplanes.

Figure 6.2 attempts to show how this version of the algorithm would
work. The upper part of the figure illustrates the version of the algorithm
from the last section, where the algorithm checks distances from the query
point to combinations of hyperplanes during the search phase, then checks
neighboring boxes if the corresponding distances fall under a predefined
threshold.

The bottom part of Figure 6.2 illustrates how the algorithm works for
this alternative, second version. In this version, the algorithm takes the
distance from each base point to each combination of hyperplanes, then if
the distance is below the set threshold, the algorithm replicates the base
point reference, in the LSH table, from its own box to a neighboring box at
the other side of that combination of hyperplanes.

This can potentially provide a huge advantage during the search phase
of the LSH algorithm. The algorithm would, in the search phase, only have
to calculate a single hash value for each query point, and check only a single
box (in the single LSH table) for potential matches, this would therefore
make point look-ups faster compared to the case where multiple boxes
would have to be checked for each point look-up in the search phase.

In this version of the algorithm we are replicating base points during
the LSH table creation phase instead of searching multiple boxes for each
query point during the matching phase, following this course of action will
present different trade-offs than the implementation considered previously.
The most obvious trade-off would be that we move complexity from the
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Figure 6.2: Figure showing on the bottom which points are copied over
across the hyperplane to neighboring boxes. The circles should all be of
the same size, and the radius represents the threshold for the maximum
allowable distance to the hyperplanes. The algorithm will take the
distances from each base point to each hyperplane and combinations of
hyperplanes, then compare them to the threshold. The algorithm copies a
base point over to the neighboring box if the distance to the combination of
hyperplanes is below the threshold. One can see that the closest match
to the query point in this case would have been be copied over the
neighboring hyperplane to the same box as the query point is in.
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search phase to the table creation phase, therefore the search phase will
have the potential to be much quicker whereas the table creation phase
will likely be much slower.

A more important disadvantage with this method however is that the
amount of memory needed to store the LSH table becomes much larger
when the base point references are replicated, since these references for
each point will have to be replicated for each combination of hyperplanes
with a combined distance lower than the threshold, this means that each
point will have very many point references instead of just one and the
size of the LSH table will increase correspondingly. An example: for cases
where base points on average are closer than the threshold to 1000 different
combinations of hyperplanes, the size of the LSH table would increase by
a factor of 1000.

The number of correct matches will probably not be exactly the same
for the two versions of the functions even when the same hyperplanes are
used. A query point that is close to a hyperplane would be compared to
every point in the neighboring box in the first version of the algorithm, in
the second version however it would only be compared to the ones on the
same border as they would be replicated across, it would also have to be
compared to points that was copied over from other border regions even if
the query point was not particularly close to that border region itself. Still,
even if the number of correct matches will not be exactly equal for the two
matches, they should be comparable when using the same input, it’s just
that both methods will sometimes find matches that the other one doesn’t.

This version of the algorithm is presented since it offers very clear
distinctive advantages, such as the fact that all suggested matches for a
query point during the search phase can be found using only a single table
lookup. This makes the algorithm ideal for cases where a single base set
is searched a very large number of times (when the total number of query
points for all query sets used to match this specific base set are much larger
than the number of base points), i.e. the case where time spent creating
the LSH table is dwarfed by the total amount of time spent searching these
tables. The time spent creating the LSH table is probably not the greatest
disadvantage with this algorithm however, that would be the amount of
memory it requires.

To what extent the increased memory requirement would be an issue
depends on the particularities of the application. If the query points are
generally geographically close to their best match in the base set, this
allows for setting a lower threshold for copying base points and thus
makes the memory requirements much lower, increasing the viability of
this version of the algorithm (though it must be said that query points
being geographically close to their best matches in the base set increases the
viability of all versions of LSH). If the amount of memory used increases to
such an extent that one has to switch from storing the LSH table in primary
memory to storing it in secondary memory, then that is a typical thing that
can make this algorithm less effective.

When matching SIFT feature descriptors, the query points tend to be
relatively far away from their best matches in relation to how far away
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they are from the hyperplanes (the distance from hyperplanes tend to be
small due to the hyperplanes being many-dimensional objects making their
boundaries very large). The threshold for copying points across boxes
would therefore have to be quite high, meaning the algorithm will have to
use very large amounts of memory. When testing an early implementation
of this algorithm I found that it worked fine on a smaller dataset with 10
000 SIFT descriptors in the base set, however the algorithm quickly ran out
of memory when working on 1 000 000 SIFT descriptors in the base set.
In my tests I am not storing the LSH tables in secondary memory, therefore
this version of the algorithm was not viable for my use case. I will therefore
rather run and present results for the previous algorithm, which is effective
both for the smaller and larger dataset.

6.5 Finding Accumulated Distances

The naive way of finding all possible combinations of hyperplanes with an
accumulated squared distance less than a threshold! would be to try every
possible combination and save the combinations where this is the case. As
discussed previously however, while this approach is possible, it will take
an impractically large amount of time. Instead, in this section, I aim to
provide a more efficient alternative for doing this.

What I am essentially trying to do with this algorithm is combining
subsets of hyperplanes where their accumulated squared distance values
are lower than the threshold, then building a list of these sets such that all
sets with an accumulated squared distance below the threshold are in that
list.

First, I will describe how these sets of hyperplanes are represented. The
sets are represented by bit masks where each bit represents a hyperplane,
hyperplanes that are in the set are represented by "1’ bits, and hyperplanes
that are not in the set are represented by '0” bits. The combined distance
for a given set is represented by a single floating point number. An array
of bit masks (stored as integers) can therefore represent any collection
of hyperplane sets, and an array of floating point numbers are used to
represent the combined distances for every set in the list. It is important to
note that, when constructing these sets, the order in which the hyperplanes
are added to the sets will not matter, if one combines the set {1,2} with {3,4}
to make the set {1,2,3,4}, that will be the same set as when one combines
{1,3} and {2,4}; there is no order of hyperplanes included, this allows the
algorithm to save a lot of work.

Back to the question of how to find all combinations of hyperplanes
with a combined distance under the threshold. One way to try to solve
this problem would be to maintain a sorted array of sets, kick out the

I The threshold here would be the square of the maximum distance allowed from a point
to a hyperplane. This is the case since the threshold is compared to accumulated squared
distance values from the point to each hyperplane that, when accumulated, represent the
distance from the point to the intersection between these specific hyperplanes (using the
Pythagorean formula).
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elements with a squared distance above the threshold, then try to combine
elements in the set in some intelligent way keeping the array sorted. This
might provide some way of prioritizing finding the shortest distance sets
first in the case where one might want to cut the process short. However,
keeping a sorted algorithm requires a lot of extra overhead, so I therefore
decided against it since I figured it would not be effective enough (and such
a scheme seemed hard to work out).

Instead I decided to implement an algorithm that finds all combinations
under the threshold while letting the array stay unsorted throughout the
process. The algorithm starts by creating masks for every individual
hyperplane with a squared distance lower than the threshold, then adding
all those masks/subsets to a set/array. The algorithm then combines the
subsets iteratively using two for-loops and pushes them to the end of the
array.

In the outer loop, the algorithm iterates through the array starting at the
second to last element and moving backwards towards the first element.
In the inner loop, the algorithm will then attempt to combine the set at
the current index of the loop with the sets located at all indices that come
after it, i.e. combine the current set with all sets after it in the list. If the
accumulated squared distance is lower than the threshold, a new set is
created from the current set combined with the set it was compared with,
then the new set is added to the end of the list.

Each hyperplane will then have attempted to combine with all the
hyperplanes in the original list that comes after it, and also all combinations
of the hyperplanes after it in the list that together have an accumulated
squared distance below the threshold. This should ensure that by the
end all combinations of hyperplanes that together have an accumulated
squared distance below the threshold should have been added to the list.

The algorithm is perhaps best understood when looking at the code.
I will present the code how it was implemented both in matlab and C
so it can be best understood. The matlab code hopefully functions a bit
like pseudocode in this case, and contributes to the understanding of this
important algorithm:

function [setLen, combMasks, combDists] =
findNeighborMasks (sqrdDists , threshold , nPlanes)

% Masks and dists for combination of planes
% (the lengths can be much larger than 20,
% 20 is just the initial capacity)
combMasks = cell (1,20);

combDists = cell (1,20);

% Add single values below the threshold to lists
setLen = 0;
for i = 1:nPlanes
if (sqrdDists(i) < threshold)
setLen = setLen + 1;
combMasks{setLen} = bitshift(1,i-1);
combDists{setLen} = sqrdDists(i);
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end
end

% For every value starting with the last, try to combine
% the value with all other values in the list
underThreshLen = setlLen;
for k = (underThreshLen-1):-1:1
tmp = setlLen;
for i = (k+1):setlLen
if (combDists{k} < threshold)
dist = combDists{k} + combDists{i};
if (dist < threshold)
tmp = tmp + 1;
combMasks {tmp} =
bitor (combMasks{k}, combMasks{i});
combDists {tmp} = dist;
end
end
end
setLen = tmp;
end
end

The code below is how the algorithm is implemented in C.

[**

Takes squared distances as arguments and finds all
non—ordered combinations of those distances that are
still lower than the threshold. Returns the masks
representing the combinations in the combMasks array , and
the accumulated distances in the combDists array.

Have to reserve nGroups elements for both combMasks and
combDists for the function to be completely secure.
nGroups is the maximum amount of boxes that a point can
be mapped to.

@param sqrdDists : The squared dist for each hyperplane

@param nPlanes : The number of hyperplanes
(length of sqrdDists)

@param threshold : The maximum distance allowed squared

@param combMasks : Output.
Masks where the sum of distances for the sides
marked as 1 are lower than the threshold.

*
*
*
*
*
*
*
*
*
*
*
*
*
*
* @param combDists : Output.
* The accumulated sum of distances for each mask
* @return The length of combMasks
e
int findNeighborMasks(float* sqrdDists,

int nPlanes, float threshold,

113



int+ combMasks, floatx combDists)

// Add single values below the threshold to lists
int setLen = 0;
for (int i = 0; i < nPlanes; i++) {
if (sqrdDists[i] < threshold) {
combMasks[setLen] = 1 << i;
combDists[setLen] = sqrdDists[i];
setLen++;

// For every value starting with the initial setLen, try
// to combine the value with all other values that comes
// after it in the list can be combined
// if combDists[k] + combDists[i] < threshold
int underThreshLen = setlLen;
for (int k = underThreshLen - 2; k >= 0; k—--) {
int tmp = setLen;
for (int i = k + 1; i < setLen; i++) {
if (combDists[k] < threshold) {
int dist = combDists[k] + combDists[i];
if (dist < threshold) {
combMasks[tmp] =
combMasks[k] | combMasks[i];
combDists [tmp] = dist;
tmp++;

}
}

setLen = tmp;

}

return setlen;

}

Some last minute comments may be made about the efficiency of this
implementation.?

After execution is finished, each mask in the finished mask-array
‘combMasks’ represents combinations of hyperplanes whose border is closer
to the point than the given threshold. The indices for these boxes
themselves can be found by taking the bitwise xor for all the elements in
the set with the hashcode.

2] noticed this way too late to change it and still be able to re-test the code in time,
but the two implementations of the algorithm seem to be implemented inefficiently. In
the inner for-loop, the algorithm checks if the combined distance of the k’th iteration is
less than the threshold for every iteration; however, the value of neither combDists [k] nor
threshold changes inside the inner loop, so this only has to be done once per iteration of
the outer loop, and if the distance is greater than the threshold the entire inner loop can
be skipped. The algorithm should therefore have the same functionality, but likely better
performance, if the if-statement is moved outside the for-loop. The program was tested
with the implementation shown above however.
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6.6 Creating Good Orthogonal Hyperplanes

Since the method I have introduced in this chapter only requires a single
LSH table, investment into finding good orthogonal hyperplanes suddenly
becomes much more relevant and worthwhile. With only one LSH table,
one does not have to worry about the hyperplanes being sufficiently
different between tables (as they would have to be for the multi-table
solution), it is enough to find one good set of hyperplanes where the
hyperplanes together partition the search space as effectively as possible,
one does not need to make sure the LSH tables themselves partition the
search space in substantially different ways since there is only a single table;
this makes the task of finding "good" hyperplanes more manageable.

As mentioned earlier, for this algorithm to work one needs orthogonal
hyperplanes. The way I first implemented the algorithm to construct the
hyperplanes was that I made an algorithm that created many random
hyperplanes, made them orthogonal and made their elements sum to zero,
then I created a score based on how evenly a hyperplane split the search
space and how far away from each hyperplane each point was. This alone
did not create good hyperplanes, it seemed that if one chose hyperplanes
based on their performance to this cost criteria alone, the hyperplanes
tended to split the search space in similar ways (grouping the same points
together), this happened even though the hyperplanes were made to be
orthogonal, which indicates that the SIFT feature descriptors are likely
clustered in space along several dimensions (this is also an indication
that there may be something to be gained by performing dimensionality
reduction on the data, though I will not do so in this thesis).

The algorithm I instead decided to make is a bit more advanced. It
creates good hyperplanes by iteratively adding good hyperplanes that
correspond well to each other to a list. For each iteration, the algorithm
creates many candidate hyperplanes, then it measures how well each
new potential hyperplane helps split the search space. Each hyperplane
receives a score depending partially on how well it is able to split the
(already partially partitioned) search space in cooperation with the other
hyperplanes already added to the list of good hyperplanes. The score for
each new hyperplane also depends on the distance it has from all the points
in the training set.

The algorithm I came up with was the following:

nPoints = 100000;
vectorLength = 128;

% the points to fit the hyperplanes to
points = fvecs_read ("../ test_data/sift/sift_learn.fvecs",

nPoints);
points = points ’;
maxPlanes = 20;
hyperplanes = zeros(maxPlanes, vectorLength);

nAlternatives = 100;
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splitScore = zeros(l, nAlternatives);
absDists = zeros(1,nAlternatives);

groupSizes = zeros(1,1);

groupSizes (1) = nPoints;

groupArray = 1:nPoints;

groupArray2 = zeros(1l,nPoints); % Temporary array
whichSide = zeros(1,nPoints); % Temporary array

for nPlanes = 1:maxPlanes
fprintf ("Finding hyperplane %d of %d\n",
nPlanes, maxPlanes);

% Get alternatives as well as some extra to adjust them
alts = 2+rand(2+nAlternatives, vectorLength) - 1;

% Make them orthogonal to the hyperplanes
for i = 1:(2*nAlternatives)
for j = 1:(nPlanes-1)
alts(i,:) = alts(i,:) - ...
(alts(i,:) * hyperplanes(j,:)”)
+ hyperplanes(j ,:);
end
end

% Make them all sum to zero
% (Only a good idea if the points are all positive as is
% the case for the actual sift descriptors.
% It would not be mnecessary if one could try even more
% hyperplanes , but might shorten the search)
for i = l:nAlternatives
alts(i,:) = alts(i,:) .

— ((sum(alts(i,:)) / sum(alts(nAlternatives+i,:)))

* alts(nAlternatives+i ,:));
end

% Normalize vectors
for i = 1:nAlternatives
alts(i,:) = alts(i,:) ...
/ sqrt(alts(i,:) = alts(i,:)’);
end

% Create scores for how well it separates the search
% space and for average distance between point and
% hyperplane

nGroups = 2/~ (nPlanes -1);

for i = 1:nAlternatives
splitScore(i) = 0;
idx = 1;
for j = 1:nGroups
positiveSide = 0;
for k = idx:(idx+groupSizes(j)-1)
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prod = alts(i,:) + points(groupArray(k) ,:)’;
if (prod > 0)

positiveSide = positiveSide + 1;
end

absDists (i) = absDists(i) + abs(prod);
end
negativeSide = groupSizes(j) - positiveSide;
splitScore (i) = splitScore(i) +
min(negativeSide , positiveSide);

idx = idx + groupSizes(j);
end
end

splitScore = splitScore / max(splitScore);
absDists = absDists / max(absDists);

score = absDists + splitScore;

% Add hyperplane with best scores to the hyperplane list
[minimum_score, bestldx] = max(score);

hyperplanes(nPlanes ,:) = alts(bestldx ,:);

% Recreate groupSizes and groupArray
hplane = hyperplanes(nPlanes ,:);
nGroups2 = 2+nGroups;

groupSizes2 = zeros(1,nGroups2);

idx = 1;
for i = 1:nGroups
for k = idx:(idx+groupSizes(i)-1)
prod = hplane * points(groupArray(k),:)’;
if (prod <= 0)
groupSizes2(2+i-1) = groupSizes2(2+i-1) + 1;
whichSide (k) = 1;
else
groupSizes2 (2+i) = groupSizes2(2+i) + 1;
whichSide (k) = 2;
end
end
nextldx1l = idx;
nextldx2 = idx + groupSizes2(2+i-1);
for k = idx:(idx+groupSizes(i)-1)
if (whichSide (k) == 1)
groupArray2 (nextldxl) = groupArray(k);
nextldxl = nextldxl + 1;
else
groupArray2 (nextldx2) = groupArray(k);
nextldx2 = nextldx2 + 1;

[N

7

7

end
end
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idx = idx + groupSizes(i);

end

groupArray = groupArray2;

groupSizes = groupSizes2;
end

fprintf (" Finished finding hyperplanes\n");

Before any hyperplane is considered they will all be normalized and
their elements will be made to sum to zero.

The algorithm starts with an empty set of hyperplanes. For the first
hyperplane it is checked how well it partitions the search space alone,
measured by two criteria: how equal the number of points to either side
of the hyperplane is, and the average distance between the points and the
hyperplane.

The algorithm starts off with an LSH table without any hyperplanes,
corresponding to a single large box with all the points in it, then counting
how many points fall on the side of the hyperplane with the least amount
of points (this is a score which represents how equally the points are
distributed to both sides of the hyperplane), the other score is found by
simply combining the absolute distances from the points to the hyperplane.
The hyperplane with the best score is chosen.

When adding more hyperplanes, finding the average distance is still
done largely the same way. The algorithm does not measure how equally
the points in the training set are distributed to each side of only the new
hyperplane anymore, instead it measures how well the points that got
grouped together in the same group by all the previous hyperplanes are
now divided into different boxes by the current hyperplane. This is done by
experimenting with splitting each box in the existing LSH table in two, then
accumulating the number of points in the smallest subdivision for each of
the boxes and accumulating all these numbers into a single value.

The distances from the points to the hyperplane are still used and
combined with the other score that indicates how equally the points were
distributed. Again, these two scores are combined into a single score
which will measure how well the hyperplane splits the search space in
combination with the hyperplanes already in the table. The algorithm will
then choose the best hyperplane by who has the highest combined score.

After the best hyperplane is found, the algorithm will then actually
split every box in the LSH table into two smaller pieces, then combine all
these pieces to make an LSH table with a more finely partitioned search
space (now also partitioned by the new hyperplane in addition to the older
ones). As one can see from the code, there is some intricate logic to make
this happen, the algorithm creates two subdivisions of each individual
box in the LSH table and moves points into their respective subdivision
depending on which side of the hyperplane they fall on, these subdivisions
become the new boxes/groups of a more finely partitioned LSH table.
Alternatively, one can also recreate a new LSH table from scratch, this
would increase the time required by the algorithm, but the time difference
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might be negligible compared to the time taken to find a good hyperplane
in the first place.

What is different between this and simply measuring the hyperplanes
one by one is that the algorithm here makes sure that the performance of
each hyperplane is measured in relation to all the previous hyperplanes in
the LSH table, thus a hyperplane that correspond particularly well with
the other hyperplanes already in the list will be added. The idea is that
the hyperplanes will work better as a team, even though each individual
hyperplane might not optimally split the search space in two halves when
used in isolation (except perhaps the first one).
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6.7 Function Explanation and Optimization

The single-table version of the algorithm is split into the same general
steps as the multi-table version; how each step works however, is a little
different.

First, when calculating the hash values for the query points, the
distances also has to be calculated; other than that calculating hash values
is simplified as it only has to be done for a single set of hyperplanes. This
means that there is less to optimize from the memory movement side, since
the calculate_hash_values function is not called in a loop as it was for the
multi-table version of LSH.

Organizing points into groups is done roughly the same way as before,
except that this time I decided to discard the size array after creating the
index array and instead add the length of groupArray (the number of
boxes) as the last element in the index array. This was simply a different
design choice that re-implementing the algorithm allowed me to make.
This provides minor changes to the match_points function.

Finding potential matches is the main way that this algorithm deviates
from the previous one. The boxes to check are found the way I described
earlier: multiple tables are not used in order to check multiple boxes,
instead nearby boxes are checked using the same table. This way of finding
nearby boxes was described in Section 6.3.

The point matching phase could be exactly the same as before, but I did
make some changes to how it works. I changed the way the algorithm finds
the length of the boxes by comparing the current index to the next index in
the index array instead of checking the size of the box in a separate array.
There are also other changes, the arrays for storing the best and second best
matches, as well as the arrays for storing the corresponding distances, have
their default values filled in on the device side and are therefore not copied
from host to device as they were before. There are also other minor changes
to the program. The performance difference for all these changes should,
in theory, be relatively low.

The optimizing stages for the match_points function will be very
similar as before. 1 will therefore only show the last step of the
optimization, when everything is fully optimized.

The function for calculating hash values really is exactly the same as
before, except that the last optimization stage is cut out since it’s not
necessary anymore. I will therefore not explain the hashing part of the
algorithm here either.

The function for calculating hash values and distances for the query
point was not optimized at all, and the differences in how it is implemented
is small. That function will also not be covered.

6.7.1 Constructing LSH Tables

As previously mentioned, this part of the algorithm is almost the same as it
was for the multi-table implementation of LSH. The only major difference
is that only a single table is used. I also added a minor change where the
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number of points was added as the last element to groupIndexMap, which
makes it possible to discard the groupSizeMap array if one decides to do so.

6.7.2 Finding Potential Matches

/>F>(-

For every query point, the function goes through all the
groups in groupArray that said point can get mapped into.
groupArray already stores these points as indices into
the base point array, it does this for all tables.

Then the function puts the indices belonging to these
base points into the potentialMatches array.

¥ % % ¥ x

While creating the potentialMatches array, the function
creates and maintains two other arrays called
potentialMatchesIndices which is used to index

the potentialMatches array.

¥ % % % x

@param nPoints: Number of query points.

@param indexGroupMap : Calculated hash values for
query points.

¥ % % ¥ ¥ ¥

@param groupArray : Arrays with point indices sorted by
their group.

¥ % % ¥ x

@param grouplndexMap : Arrays with group indices ,
indexes into groupArray.

@param pPotentialMatches : Output.
Pointer to an arrvay with indices into the
base point array containing the indices of
all possible matches for each query point

¥ % % % x

@param pPotentialMatchesIndices : Output.
Pointer to array with indices into
potentialMatches

¥ % % ¥ ¥ ¥

* @return The total amount of potential matches
7
int find_potential_matches(

int nPlanes,

int nGroups,

int nPoints,

int* __restrict__ indexGroupMap,

floatx __restrict__ sqrdDists,

int+ __restrict__ groupArray,

int* __restrict__ groupIndexMap,

int*+ __restrict__ pPotentialMatches,

int*x __restrict__ pPotentialMatchesIndices)

int maxPotentialMatchesLen = 1e9;
int* potentialMatches =
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(int+) malloc(maxPotentialMatchesLen * sizeof(int));
int* potentialMatchesIndices =
(int*)malloc ((nPoints + 1) = sizeof(int));

// Masks and distances for all combinations of
// hyperplanes where the euclidean distance from the
// point to the intersection of the hyperplane is below
// a set threshold.
// nGroups is the theoretical upper limit of possible
// combinations , but in reality the number of potential
// matches will likely never be that high
int* combMasks = (int+)malloc((1+nGroups)*sizeof(int));
combMasks[0] = 0;
float+ combDists =(float=)malloc(nGroups+sizeof (float));
int cnt = 0;
for (int i = 0; i < nPoints; i++) {
// Set the index to the groups that the query point
// is mapped to
potentialMatchesIndices[i] = cnt;
// Get the hashcode for this query point
int hashcode = indexGroupMap][i ];
// Find all combinations of hyperplanes that is
// closer than sqrt(THRESHOLD)
int setLen = findNeighborMasks (
&sqrdDists[i * nPlanes],
nPlanes, THRESHOLD,
combMasks+1,
combDists ) ;
// Find potential matches by checking hashcode and
// all hashcodes within a certain distance
for (int j = 0; j < setLen+1; j++) |{
// get mnext hashcode
int hc = hashcode " combMasks[j];
// Find start and end index of the group
int kStart = groupIndexMap[hc];
int kEnd = groupIndexMap|[hc+1];
int groupSize = kEnd - kStart;
// Check if we have reserved enough memory
if (cnt + groupSize >= maxPotentialMatchesLen) {
fprintf (stderr , "Not_enough_memory.\n");
exit (1);
}
// Add point indices in group hc to
// potentialMatches
for (int k = kStart; k < kEnd; k++) {
potentialMatches[cnt] = groupArray[k];
cnt++;

}
}

potentialMatchesIndices[nPoints] = cnt;
free (combMasks ) ;

free (combDists);
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+pPotentialMatches = potentialMatches;
+pPotentialMatchesIndices = potentialMatchesIndices;

return cnt;

The function uses a huge 4GB (one billion integers) array to potentially
store up to a billion potential matches. It should be said that when
matching 10 000 query points with a million base points, each query points
only needs to check 10% of the base points (which results in 100 000 base
points) before the program runs out of memory, even when this much
memory is allocated.

The algorithm also reserves two arrays with a length of nGroups which
is equal to 2/ where H is the number of hyperplanes. These arrays,
combMasks and combDists, are used to store the masks related to sets of
hyperplanes and their accumulated squared distance to the query point
respectively. These arrays are refilled for every loop-iteration of the
program (for every call to findNeighborMasks which is done once per
query point).

Most of the memory reserved for combMasks and combDists is almost
never actually used; it is allocated for these arrays because it is the absolute
upper limit of how many boxes that can theoretically be checked for any
query point, and thereby also an upper limit for how much memory these
arrays require in a worst case scenario. combMasks also has an extra element
of value zero, which is added to simplify the program a little bit later on.

The for-loop then checks for potential values for each query point and
stores them in the potentialMatches array. The hyperplanes that are
crossed to find the boxes that need to be checked are found using the
findNeighborMasks function, this function was described in Section 6.5 on
finding accumulated distances.

The boxes that need to be checked are found by applying bi-
nary xor operations between the hashcode and each mask found by
findNeighborMasks. Each base point reference found in any of these boxes
are then added to the list of potential matches, in the box dedicated to po-
tential matches for this particular query point.

6.7.3 Matching Points

For the match_points function I also only made slight changes, I will
present that version of the function here.

J* %
* Uses result from find_potential_matches to match
* query points with base points

@param nQueryVecs : Number of query wvectors

*
*
* @param nBaseVecs : Number of base vectors
%
*

@param queryVecs : Query vectors
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*/

@param baseVecs : Base vectors (Array of points used to
create the LSH tables)

@param nPotentialMatches : Number of potential matches
@param potentialMatches : An array with indices into
pointl containing the indices
of all possible matches for
each query point
(i.e. potential matches between
query points and base points)
@param potentialMatchesIndices : Indices used to index
into potentialMatches
@param IshMatches : Output.
Index into base points representing

the best match between query points
and base points

@param bestMatchDists : Output.
Distances between points for
every match in IshMatches

@param IshMatches2 : Output.
Index into base points representing
the 2nd best match between the
query points and the base points

@param bestMatchDists2 : Output.
Distances between points for
every match in IshMatches2

void match_points(

{

int nQueryVecs,
int nBaseVecs,

floatx __restrict__ queryVecs,

float+ __restrict__ baseVecs,

int nPotentialMatches,

int* __restrict__ potentialMatches,

int* __restrict__ potentialMatchesIndices,
// outputs

intx __restrict__ IshMatches,

float* __restrict__ bestMatchDists,
int* __restrict__ IshMatches2,
float» __restrict__ bestMatchDists2)

#pragma acc data \

pcopyin(queryVecs[nQueryVecs+vectorLength]) \
pcopyin(baseVecs[nBaseVecs+vectorLength]) \
pcopyin(potentialMatches[nPotentialMatches])\
pcopyin(potentialMatchesIndices [nQueryVecs+1]) \
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pcopyout(lshMatches [nQueryVecs]) \
pcopyout(bestMatchDists [nQueryVecs]) \
pcopyout (lshMatches2 [nQueryVecs]) \
pcopyout(bestMatchDists2 [nQueryVecs])

#pragma acc parallel loop gang worker \
num_workers(1) vector_length(32)

for (int i = 0; i < nQueryVecs; i++) {
// Find the group of elements from groupArray to
// match with
float bestMatchDist = 1el0;
float bestMatchDist2 = 1el0;
int match = -1;
int match2 = -1;
int jStart = potentialMatchesIndices[i];
int jEnd = potentialMatchesIndices[i + 1];

// Match the points
#pragma acc loop seq
for (int j = jStart; j < jEnd; j++) {
int idx = potentialMatches[j];
//dif=sum((queryVecs[i][:]—baseVecs[idx][:])."2)
float diff = 0;
#pragma acc loop reduction(+:diff) vector
for (int k = 0; k < vectorLength; k++) {
float tmp = queryVecs[i * vectorLength + k]
— baseVecs[idx * vectorLength + k];
diff += tmp * tmp;
}
// check if distance is the lowest distance
// so far
if (diff < bestMatchDist) ({
// save old wvalue as second best
bestMatchDist2 = bestMatchDist;
match2 = match;
// update best value
bestMatchDist = diff;
match = idx;

}

IshMatches[i] = match;
bestMatchDists[i] = bestMatchDist;
IshMatches2[i] = match2;
bestMatchDists2[i] = bestMatchDist2;

I removed an if statement before changing the "best match" and "best
dist", this was not necessary in the last implementation either, but rather
a remnant of how the function used to work, there are however both pros
and cons in terms of performance, though these changes in performance
should not be very significant in reality.
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I also did not set the default best match distance values on the host side
to then copy them over to the device side, instead I set the default values
in the functions itself. Setting these values within the algorithm allows for
simply copying the the "best match" and "best dist" arrays from device to
host instead of having to copy these arrays both ways.

As mentioned previously this version of the function does not need the
potentialMatchesLengths array since it can calculate these values from
the indices stored in potentialMatchesIndices.

In this version I also specified that the second loop should be performed
sequentially, this is assumed by the compiler anyways, but one can specify
it if one wants to and for this function I decided to demonstrate this.
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Chapter 7

Single Table LSH: Results

7.1 Statistics About the Feature Descriptors

Before going into the results of the single table implementation I will first
present some statistics about the SIFT feature descriptors from the dataset
that I am using. I am covering these details here since it becomes relevant
when setting the threshold for checking the other side of a hyperplane, and
thereby becomes relevant in this chapter.

We have the following approximate statistics:

1. The average length of a feature vector is 508.6. The length of all the
feature vectors are approximately equal to each other with very little
variation.

2. The average distance from a feature vector to a random hyperplane
(of length one and whose elements sum to zero) is around 28 on
average, though this will of course vary substantially for different
feature vectors and hyperplanes. This is about 5.5% of the euclidean
length of the feature vectors.

3. The average distance from a feature vector to one of the improved hy-
perplanes is very high for the first hyperplane in the list, then rapidly
declines and does not vary too much for the other hyperplanes, likely
due to other priorities taking precedence over distance between vec-
tors and points when the improved hyperplanes were created. The
average distance from a feature vector to one of the improved hyper-
planes seems to be around 25 when many hyperplanes are used. The
average distance starts from 68 for the first hyperplane, 28 for the sec-
ond, then varies between 19 and 28 for the rest of the elements (this
is just one arbitrary set of the improved hyperplanes that I created).

4. The average distance between two random feature vectors seems to
be about 536 on average, which is slightly higher than the length of
the feature vectors.

5. The average distance from a feature vector to its best match seems to
be about 188, which is about 37% of the average length of the feature
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vectors. This distance is also approximately 35% of the average
distance between two arbitrary feature vectors, and it is 6.7 times the
average distance from a feature vector to a hyperplane when using
random hyperplanes whose elements sum to zero.

For most of the results in this chapter we choose the threshold for the
maximum distance from point to hyperplane before checking the other side
of the hyperplane to be 35, which is equal to a distance of 6.88% of the
euclidean length of the feature vectors.

This threshold will be larger than the majority of the distances from a
point to a hyperplane. However, it will also be lower than the majority of
the distances from a point to a greater combination of hyperplanes. As we
will see, the majority of the search space will not be searched for a single
query.

The threshold is also only 18.6% of the average length from a query
point to its best match in the base set. This means that the algorithm
will do little to guarantee correct matching for the vast majority of the
query points. While the threshold does not guarantee matches for most
reasonable distances, it still does a good job of searching boxes in the
general area of the query point which has a high probability of finding
the correct match. So even though the algorithm is theoretically capable
of solving the exact nearest neighbor problem, it is here used to find
approximate nearest neighbors instead as that is a more practical and
realistic use case.

7.2 Performance of Each Optimization

When measuring the performance of the algorithm, the improved hyper-
planes (created using the method outlined in Section 6.6) were used. For
all these results the threshold for checking the other side of a group of hy-
perplanes is set to 35 and the number of hyperplanes is 16. This chapter is
all tested on the large dataset, the smaller dataset is only used for the last
section.

Potential matches found 272585646
Comparisons per query vector 27258.5646
Average portion of search space searched | 2.7259%
Correct classification ratio 83.36%

Table 7.1: Details (same for all optimization levels presented)
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Time | % of total time
Total time 2.44s 100%
Calculating hash values for base vectors | 0.283s 11.6%
Constructing LSH table 0.008s 0.328%
Calculating hash values for query vectors | 0.005s 0.205%
Finding potential matches 0.658s 27.0%
Matching potential matches 1.01s 41.4%

Table 7.2: Real run-time for each phase after full optimization. Same table
as Table 7.7, but also shown here underneath the information in Table 7.1
to increase readability of the final results.

In comparison, for the multi-table LSH version, the correct classification
ratio was 83.03% and the average portion of search space searched was
only 2.3978%. The correct classification ratio and the average portion of
the search space cannot be compared directly, since these statistics will
also depend on the number of hyperplanes vs the number of tables for the
multi-table version of LSH, or the number of hyperplanes vs the threshold
for checking the other side of hyperplanes for the single-table version of
LSH. What matters when comparing these two versions of LSH is really
the time taken vs. the number of correct matches.

721 CPU program, g++ compiler

From Table 7.3 we can see that the vast majority of the time is now spent on
matching potential matches. For the serial version, calculating hash values
and constructing LSH tables are now only minor parts of the program due
to the fact that only a single LSH table is used.

Time | % of total time
Total time 81.9s 100%
Calculating hash values for base vectors 2.25s 2.75%
Constructing LSH table 0.009s 0.0110%
Calculating hash values for query vectors | 0.025s 0.0305%
Finding potential matches 0.625s 0.763%
Matching potential matches 78.6s 96.0%

Table 7.3: Run-time for each phase, compiled with g++, all running on CPU.
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7.2.2 CPU program pgc++ compiler

When using the pgc++ compiler the time spent on both calculating hash
values and matching potential matches are rapidly reduced. The time spent
matching potential matches had a 2.54x speedup. The time spent hashing

the base vectors had a 8.75x speedup.

Run-time for each phase, compiled with g+ +, all running on CPU.

Time | % of total time
Total time 33.5s 100%
Calculating hash values for base vectors | 0.257s 0.767%
Constructing LSH table 0.009s 0.0269%
Calculating hash values for query vectors | 0.002s 0.00597%
Finding potential matches 0.966s 2.88%
Matching potential matches 30.9s 92.2%

Table 7.4: Run-time for each phase, compiled with pgc++, all running on

CPU.
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Run-time for each phase, compiled with pgc++, all running on CPU.
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7.2.3 Parallelized hashing

Parallelizing the hash function seems to slightly increase the time spent
due to the gains from GPU acceleration not making up for the overhead
associated with it.

Time | % of total time
Total time 35.6s 100%
Calculating hash values for base vectors | 0.305s 0.857%
Constructing LSH table 0.009s 0.0253%
Calculating hash values for query vectors | 0.003s 0.00843%
Finding potential matches 1.015s 2.85%
Matching potential matches 33.7s 94.7%

Table 7.5: Run-time for each phase, hashing on GPU.

7.2.4 Parallelized matching

When parallelizing match_points we see that the time spent on matching
potential matches decreases significantly from 33.7 to 1.31 seconds, a 25.7x
speedup.
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Time | % of total time
Total time 2.67s 100%
Calculating hash values for base vectors | 0.304s 11.4%
Constructing LSH table 0.009s 0.337%%
Calculating hash values for query vectors | 0.003s 0.112%
Finding potential matches 0.620s 23.2%
Matching potential matches 1.31s 49.1%

Table 7.6: Run-time for each phase, matching on GPU.
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7.2.5 Loop optimization

The final optimization is loop optimization, the times for this is shown in
the table below (Table 7.7).

Matching points is now running at 1.01 seconds. This results in a 1.30x
(30%) speedup from the previous optimization, a 30.6x speedup from the
CPU version compiled with the pgc++ compiler (using SIMD instructions),
and a 77.8x speedup from the fully serial CPU version compiled with g++.

Calculating hash values for the base vectors now takes 0.283 seconds
which is a little more than it did when using the CPU version compiled
with the pgc++ compiler which uses SIMD instructions. The end version
is still 7.95 times faster than the serial CPU version compiled using the
g++ compiler that did not optimize the program with SIMD instructions.
One could say that, due to the scale of the problem being smaller, a SIMD
version of the program can perform better for this part of the algorithm
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than the GPU version. The hashing part of the algorithm seems to be of
such a medium scale that the time is similar between the CPU and GPU
versions (this is due to the algorithm using only one LSH table).

Time | % of total time
Total time 2.44s 100%
Calculating hash values for base vectors | 0.283s 11.6%
Constructing LSH table 0.008s 0.328%
Calculating hash values for query vectors | 0.005s 0.205%
Finding potential matches 0.658s 27.0%
Matching potential matches 1.01s 41.4%

Table 7.7: Real run-time for each phase hashing and matching on GPU.
Program is fully optimized using OpenACC.

Run-time for each phase, loops optimized.
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7.3 Performance of Each Optimization Summarized

In this section you can see the improvements in execution time for each
optimization stage. In Table 7.8 we see the total time spent by the entire
program, as well as the time spent for hashing and the time spent on
matching. As before, roughly 0.5 seconds of the total time is spent doing
work unrelated to the algorithm but is included since the total time was
measured using the time command.
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Total time | Hashing | Matching
base points
CPU program, g++ 81.9s 2.25s 78.6s
CPU program, pgc++ 33.5s 0.257s 30.9s
Parallelize 2.67s 0.304s 1.31s
Loop optimization 2.44s 0.283s 1.01s

Table 7.8: Run-time results for each optimization stage.

Total run-tim
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In Table 7.9 we can see the improvements by each optimization stage
of the match_points function. Each optimization stage shows what the
time of the function is, how much it improved from the CPU version of
the program compiled with pgc++ (both in percentage and speedup), as
well as the incremental speedup (how much faster the program runs in
this optimization stage than in the last optimization stage).

Time | Speedup Speedup Incremental
from from speedup
CPU (g++) | CPU (pgc++)
CPU, g++ 78.6s 1x - -
CPU program, pgc++ | 30.9s 2.54x 1x 2.54x
Parallelize 1.31s 60.0x 23.6x 23.6x
Loop optimization 1.01s 77.8x 30.6x 1.30x

Table 7.9: Matching run-times and speed-ups

7.4 Improved Hyperplanes vs Random Hyperplanes
In this section I will attempt to compare the improved hyperplanes created

using the algorithm presented in Section 6.6, with random orthogonal
hyperplanes whose elements sum to zero.
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For the comparison I used three sets of improved orthogonal hyper-
planes whose elements sum to zero, and three sets of random orthogonal
hyperplanes whose elements also sum to zero.

Table 7.10 and Table 7.11 are both using the random hyperplanes. Table
7.10 uses a threshold of 35 since it is the same as the threshold used for
the improved hyperplanes in Table 7.12. Table 7.11 uses a threshold of 30
since that makes the results more comparable to the results from using the
improved sets of hyperplanes from Table 7.12.

By contrasting the results in Table 7.12 with the results in Table 7.10
we can see that the improved set of hyperplanes does in fact partition
the search space more equally and effectively. The different sets used the
same number of hyperplanes and the threshold was the same, and yet the
improved hyperplanes in Table 7.12 partitioned the search space in a way
where a much smaller portion of the search space had to be searched.

Whether this indicates that the improved hyperplanes are actually
better is hard to compare using these two tables however, since while the
random hyperplanes result in having to search more of the search space,
they also result in more correct classifications. To make the results more
comparable I also added a table of the results for random hyperplanes with
a slightly lower threshold in Table 7.11.

By comparing the results from the improved hyperplanes in Table 7.12
with the random hyperplanes with a threshold of 30 in Table 7.11, we see
the improved hyperplanes is able to search less of the search space and
still get more correct results. This indicates that the improved hyperplanes
are generally better than the random hyperplanes, though the difference is
perhaps not quite as drastic as one might have hoped.

While the run-times from "finding potential matches" are very variable,
they are also quite similar between the two tables which indicates that
this increased efficiency does not come at any other cost. Since the
improved hyperplanes used in Table 7.12 partition the search space in
smaller, more equal pieces, and has to use a higher threshold in order to
get a comparable correct ratio, it is actually quite reasonable that it might
spend a similar amount of time searching for the boxes in the LSH table
for potential matches; each box that needs to be searched will have fewer
point references, meanwhile, more boxes will have to be searched since the
threshold for not checking a neighboring box is higher.

It seems that if the version using improved hyperplanes and the version
using random hyperplanes find the same amount of potential matches, the
one with the improved hyperplane will have to spend more time searching
boxes for potential matches. However, the version with the improved
hyperplanes can get away with searching fewer points overall, which
means that the time spent searching boxes for potential matches seems to
be similar for both versions to achieve similar correctness results.
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| [ 1 | 2 | 3 |

Correct ratio 88.2% | 87.1% | 87.8%
Average % of search space searched 7.44% | 6.02% | 6.65%
Total time 3.669s | 2.894s | 4.404s
Calculating hash values for base vectors | 0.274s | 0.266s | 0.275s
Constructing LSH table 0.007s | 0.006s | 0.008s
Calculating hash values for query vectors | 0.003s | 0.003s | 0.004s
Finding potential matches 1.098s | 0.798s | 1.581s
Matching potential matches 1.731s | 1.458s | 1.918s

Table 7.10: Statistics and run-times for different sets of random orthogonal
hyperplanes that sum to zero. The columns represent different sets of
hyperplanes and the rows represent time taken for different parts of the
program. Number of hyperplanes was 16, threshold was 35.

| | 1 | 2 | 3 |
Correct ratio 82.0% | 80.4% | 81.8%
Average % of search space searched 5.24% | 4.21% | 4.64%
Total time 3.534s | 2.822s | 2.407s
Calculating hash values for base vectors | 0.290s | 0.264s | 0.278s
Constructing LSH table 0.010s | 0.007s | 0.008s
Calculating hash values for query vectors | 0.005s | 0.002s | 0.004s
Finding potential matches 1.230s | 0.960s | 0.603s
Matching potential matches 1.423s | 1.046s | 1.004s

Table 7.11: Statistics and run-times for different sets of random orthogonal
hyperplanes that sum to zero. The columns represent different sets of
hyperplanes and the rows represent time taken for different parts of the
program. Number of hyperplanes was 16, threshold was 30.
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y | 1 2 3
Correct ratio 83.4% | 82.2% | 83.4%
Average % of search space searched 2.73% | 2.59% | 2.73%
Total time 2919s | 2.592s | 2.911s
Calculating hash values for base vectors | 0.274s | 0.266s | 0.267s
Constructing LSH table 0.010s | 0.009s | 0.009s
Calculating hash values for query vectors | 0.003s | 0.003s | 0.003s
Finding potential matches 0.967s | 0.881s | 0.945s
Matching potential matches 1.128s | 0.910s | 1.157s

Table 7.12: Statistics and run-times for different sets of improved orthog-
onal hyperplanes that sum to zero. The columns represent different sets
of hyperplanes and the rows represent time taken for different parts of the

program. Number of hyperplanes was 16, threshold was 35.

7.5 Different Numbers of Hyperplanes, Improved

Hyperplanes

In this section I present some statistics and run-times for the single table
LSH program with different numbers of improved hyperplanes, holding

the threshold constant.
Number of Total Correct ratio Average % of
hyperplanes | time taken search space searched
10 4.169s 86.0% 6.97%
12 3.089s 82.5% 4.33%
14 2.190s 78.7% 2.59%
16 1.961s 75.0% 1.66%
18 1.807s 71.8% 1.15%
20 1.642s 67.8% 0.761%

Table 7.13: Results for different numbers of hyperplanes using the

improved set of hyperplanes, and threshold = 30.
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Number Calculating Constructing | Finding | Matching

of hash values LSH table | potential | potential
hyperplanes | for base vectors matches | matches

10 0.271s 0.005s 1.140s 2.195s
12 0.272s 0.006s 0.953s 1.302s
14 0.300s 0.006s 0.468s 0.897s
16 0.265s 0.009s 0.546s 0.642s
18 0.262s 0.013s 0.577s 0.458s
20 0.265s 0.018s 0.619s 0.385s

Table 7.14: Run-times for each part of the program with different numbers
of hyperplanes using the improved set of hyperplanes, and threshold = 30.

Number Calculating Constructing | Finding | Matching

of hash values LSH table | potential | potential
hyperplanes | for base vectors matches | matches

10 6.50% 0.120% 27.3% 52.7%
12 8.81% 0.194% 30.9% 42.1%
14 13.7% 0.274% 21.4% 41.0%
16 13.5% 0.459% 27.8% 32.7%
18 14.5% 0.719% 31.9% 25.3%
20 16.1% 1.10% 37.7% 23.4%

Table 7.15: Percentage of total time for each part of the program with
different numbers of hyperplanes using the improved set of hyperplanes,
and threshold = 30.

7.6 Different Numbers of Hyperplanes, Random Hy-
perplanes

In this section I present some statistics and run-times for the single table
LSH program with different numbers of random hyperplanes, holding the
threshold constant.

In order to again compare the random hyperplanes to the improved
ones, one can compare the row with 18 random hyperplanes in Figure 7.16
with the row with 14 improved hyperplanes in Figure 7.13.

The two versions in that case have similar correct ratios, but different
times: the one with the 14 improved hyperplanes took 2.190 seconds,
searched 2.59% of the search space, with a correct ratio of 78.7%; the one
with the 18 random hyperplanes took 2.644 seconds, searched 3.51% of
the search space, and had a correct ratio of 78.6%. Again the program
with improved hyperplanes outperformed the program with random
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hyperplanes, as it had a slightly better correct ratio and finished executing
in a smaller amount of time.

Number of Total Correct ratio Average % of
hyperplanes | time taken search space searched
14 4.002s 84.0% 6.62%
16 3.353s 82.0% 5.24%
18 2.644s 78.6% 3.51%
20 2.462s 76.0% 2.60%

Table 7.16: Results for different numbers of hyperplanes using the random
set of hyperplanes, and threshold = 30.

Number Calculating Constructing | Finding | Matching
of hash values LSH table | potential | potential
hyperplanes | for base vectors matches | matches
14 0.269s 0.006s 1.391s 1.757s
16 0.271s 0.007s 1.137s 1.370s
18 0.267s 0.010s 0.921s 0.908s
20 0.268s 0.019s 0.884s 0.772s

Table 7.17: Run-times for each part of the program with different numbers
of hyperplanes using the random set of hyperplanes, and threshold = 30.

Number Calculating Constructing | Finding | Matching
of hash values LSH table | potential | potential
hyperplanes | for base vectors matches | matches
14 6.72% 0.150% 34.8% 43.9%
16 8.08% 0.209% 33.9% 40.9%
18 10.1% 0.378% 34.8% 34.3%
20 10.9% 0.717% 35.9% 31.4%

Table 7.18: Percentage of total time for each part of the program with
different numbers of hyperplanes using the random set of hyperplanes,
and threshold = 30.

7.7 Different Thresholds, Improved Hyperplanes

In this section I present some statistics and run-times for the single
table LSH program with different thresholds using improved hyperplanes,
holding the number of hyperplanes constant.
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Distance Total Correct ratio Average % of
threshold | time taken search space searched

0 0.913s 6.59% 0.0095%

5 0.862s 15.9% 0.0371%

10 0.956s 27.7% 0.104%

15 1.025s 40.3% 0.242%

20 1.197s 53.1% 0.502%

25 1.465s 65.1% 0.950%

30 1.992s 75.0% 1.66%

35 2.866s 83.4% 2.73%

Table 7.19: Results for different thresholds using the improved set of

hyperplanes, and number of hyperplanes = 16.

Distance Calculating Constructing | Finding | Matching
threshold hash values LSH table | potential | potential
for base vectors matches | matches

0 0.268s 0.010s 0.003s 0.091s
5 0.258s 0.009s 0.010s 0.101s
10 0.280s 0.008s 0.019s 0.147s
15 0.272s 0.009s 0.072s 0.165s
20 0.263s 0.010s 0.157s 0.261s
25 0.270s 0.009s 0.309s 0.367s
30 0.267s 0.009s 0.574s 0.625s
35 0.273s 0.009s 0.941s 1.117s

Table 7.20: Run-times for each part of the program with different thresholds

using the improved set of hyperplanes, and number of hyperplanes = 16.

Distance Calculating Constructing | Finding | Matching
threshold hash values LSH table | potential | potential
for base vectors matches | matches

0 29.4% 1.10% 0.329% 9.97%
5 29.9% 1.04% 1.16% 11.7%
10 29.2% 0.941% 1.99% 15.4%
15 26.5% 0.878% 7.02% 16.1%
20 22.0% 0.912% 14.3% 23.8%
25 18.4% 0.614% 21.1% 25.1%
30 13.4% 0.452% 28.8% 31.4%
35 9.52% 0.314% 32.8% 39.0%

Table 7.21: Percentage of total time for each part of the program with
different thresholds using the improved set of hyperplanes, and number

of hyperplanes

= 16.

141




7.8 Different Thresholds, Random Hyperplanes

In this section I present some statistics and run-times for the single
table LSH program with different thresholds using random hyperplanes,
holding the number of hyperplanes constant.

Distance Total Correct ratio Average % of
threshold | time taken search space searched

0 0.917s 10.4% 0.0940%

5 1.007s 22.2% 0.278%

10 1.171s 36.1% 0.630%

15 1.494s 49.9% 1.24%

20 1.890s 62.7% 2.16%

25 2.479s 72.6% 3.49%

30 3.336s 82.0% 5.24%

35 4.450s 88.2% 7.44%

Table 7.22: Results for different thresholds using the random set of
hyperplanes, and threshold = 35.

Distance Calculating Constructing | Finding | Matching
threshold hash values LSH table | potential | potential
for base vectors matches | matches

0 0.277s 0.006s 0.011s 0.126s
5 0.264s 0.007s 0.059s 0.182s
10 0.262s 0.007s 0.134s 0.266s
15 0.270s 0.006s 0.264s 0.447s
20 0.272s 0.006s 0.468s 0.619s
25 0.267s 0.008s 0.774s 0.894s
30 0.263s 0.008s 1.176s 1.330s
35 0.261s 0.007s 1.660s 1.943s

Table 7.23: Run-times for each part of the program with different thresholds
using the random set of hyperplanes, and threshold = 35.
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Distance Calculating Constructing | Finding | Matching
threshold hash values LSH table | potential | potential
for base vectors matches | matches

0 30.2% 0.654% 1.20% 13.7%
5 26.2% 0.695% 5.86% 18.1%
10 22.4% 0.598% 11.4% 22.7%
15 18.1% 0.402% 17.7% 29.9%
20 14.4% 0.318% 24.8% 32.8%
25 10.8% 0.323% 31.2% 36.1%
30 7.88% 0.240% 35.3% 39.9%
35 5.87% 0.157% 37.3% 43.7%

Table 7.24: Percentage of total time for each part of the program with
different thresholds using the random set of hyperplanes, and threshold
=35.

7.9 Small Dataset Results

Like what I did for the multi-table LSH solution, I will also test this solution
for smaller dataset. I will use the the same threshold (35) both when using
16 hyperplanes and when using 8 hyperplanes.

When using 16 hyperplanes:

Potential matches found 26369
Comparisons per query vector 263.69
Average portion of search space searched | 2.64%
Correct classification ratio 74.0%

Table 7.25: Statistics about the program. Run on the small dataset. 16
hyperplanes used. Threshold = 35. The details are the same for all
optimization levels presented.

For the large dataset we were able to get an 83.4% correct ratio while
only searching approximately 2.73% of the search space. For the smaller
dataset we get a 74.0% correct classification ratio while searching 2.64% of
the search space. For the smaller dataset, the correct ratio is quite a bit
lower, whereas the average portion of the search space searched is only a
little smaller (in theory these results should be the same since the chance
for a query point to be separated from its best match should be equal
for the two datasets, but differences in the datasets probably result in this
difference).
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Time | % of total time
Total time 0.045s 100%
Calculating hash values for base vectors | 0.028s 62.2%
Constructing LSH tables 0.001s 3.57%
Calculating hash values for query vectors | 0.000s ~0%
Finding potential matches 0.001s 3.57%
Matching potential matches 0.005s ~0%

Table 7.26: Run-time for each phase, compiled with g++, all running on

CPU. Number of hyperplanes = 16, threshold = 35.
Time | % of total time
Total time 0.018s 100%
Calculating hash values for base vectors | 0.002s 11.1%
Constructing LSH tables 0.001s 5.55%
Calculating hash values for query vectors | 0.000s ~0%
Finding potential matches 0.001s 5.55%
Matching potential matches 0.001s 5.55%

Table 7.27: Run-time for each phase, compiled with pgc++ (using SIMD
parallelization), all running on CPU. Number of hyperplanes =

threshold = 35.

16,

Time | % of total time
Total time 0.230s 100%
Calculating hash values for base vectors | 0.174s 75.6%
Constructing LSH tables 0.001s 0.435%
Calculating hash values for query vectors | 0.000s ~0%
Finding potential matches 0.001s 0.435%
Matching potential matches 0.002s 0.870%

Table 7.28: Run-time when "Calculating hash values for base vectors" and
"Matching potential matches" are run on GPUs and the program is fully
optimized. Number of hyperplanes = 16, threshold = 35.

In the fully serial version, see that the time spent by the program is
dominated by the hashing of the base points; however, this imbalance is
much smaller than what was the case when multiple tables were used, since

the hashing is only done for a single table.

When SIMD instructions are used we can see that the time spent
hashing points is almost the same in scale as that spent on other individual

phases of the program.
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Applying the GPU significantly increases the time spent for hashing
points, which is due to overhead.
When using 8 hyperplanes:

Potential matches found 142943
Comparisons per query vector 1429.43
Average portion of search space searched | 14.3%
Correct classification ratio 91.0%

Table 7.29: Statistics about the program. Run on the small dataset. 8
hyperplanes used. Threshold = 35. The details are the same for all
optimization levels presented

Time | % of total time
Total time 0.045s 100%
Calculating hash values for base vectors | 0.011s 24.4%
Constructing LSH tables 0.000s ~0%
Calculating hash values for query vectors | 0.000s ~0%
Finding potential matches 0.001s 2.22%
Matching potential matches 0.024s 53.3%

Table 7.30: Run-time for each phase, compiled with g++, all running on
CPU. Number of hyperplanes = 8, threshold = 35.

Time | % of total time
Total time 0.019s 100%
Calculating hash values for base vectors | 0.001s 5.26%
Constructing LSH tables 0.000s ~0%
Calculating hash values for query vectors | 0.000s ~0%
Finding potential matches 0.001s 5.26%
Matching potential matches 0.005s 26.3%

Table 7.31: Run-time for each phase, compiled with pgc++ (using SIMD
parallelization), all running on CPU. Number of hyperplanes = 8, threshold
= 35.
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Time | % of total time
Total time 0.258s 100%
Calculating hash values for base vectors | 0.183s 70.9%
Constructing LSH tables 0.001s 0.388%
Calculating hash values for query vectors | 0.000s ~0%
Finding potential matches 0.000s ~0%
Matching potential matches 0.005s 1.94%

Table 7.32: Run-time when "Calculating hash values for base vectors" and
"Matching potential matches" are run on GPUs and the program is fully
optimized. Number of hyperplanes = 8, threshold = 35.

When using only 8 hyperplanes, the correct classification ratio increases
from 74.0% to 91.0%, meanwhile the average portion of the search space
that is searched increases from 2.67% to 14.3%.

For the serial versions of the code, the time spent hashing roughly
halves (which is reasonable since the number of hyperplanes is also
halved). Meanwhile, the time spent matching potential matches increased
by roughly a factor of five, which also makes sense since the average
amount of the search space that had to be searched also increased by
roughly a factor of five.

For the GPU version, the time spent calculating hash values surpris-
ingly increases slightly (I'm assuming this is mostly random, since the tim-
ing is not completely stable). Meanwhile the time spent matching points
increases which is to be expected, it increases by roughly a factor of two.
For such a small scale problem like this the run-times are largely affected
by the overhead associated with GPUs, so the GPU version is much slower
than the other two versions both whether we are using many or few hyper-
planes.

For the single table version of LSH, and for this small computation
scale, the CPU versions outperform the GPU version, whether SIMD
operations are used or not. The problem has to be of a certain scale for GPU
computing to be effective, and when only a single table is used, the scale of
the problem effectively reduces even further for a small dataset, making a
GPU implementation less effective compared to CPU implementations.
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Part 111

Conclusion
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Chapter 8

Conclusion

8.1 Limitations

The way the fotal time was measured when measuring the run-times was far
from ideal. What I did in this thesis was taking the total run-time using the
time command, which made the total run-time include all of the program,
including IO operations and checking the results. I have estimated that
for the large dataset this typically added an extra 0.5 seconds to the total
run-times.

It is not a major issue, one can estimate the time for the entire program
without this extra overhead by adding together the times spent on each of
the main phases of the program. Additionally, since the most important
aspect of this thesis is optimizing the particular methods using OpenACC,
for this, the total amount of time spent on the entire program is much
less important than the specific run-time of each of the main phases
individually.

I experienced some path dependency where after finishing the graphs
and various calculations it would be very time consuming to change the
the total time where (if I were to do it right) I would also have to rerun
all the programs, or I could calculate it from each of the major phases, but
that would still require a lot of recalculation of the various percentages. I
decided, since it was not all that important, to leave it the way it was.

Another limitation is a possible inefficiency in the way the function
"findNeighborMasks" was implemented. This function was presented in
Section 6.5, and the inefficiency was described in a footnote after the
function was presented. The correctness of the program was not impacted
by this, though it might have added to the time spent on the "finding
potential matches" phase for the single table version of LSH.

8.2 Concluding remarks and result discussion

In this thesis I have touched upon many subjects. I have introduced
two versions of the Locality Sensitive Hashing (LSH) algorithm, and I
have shown how to program them and optimize them using the GPGPU
programming interface OpenACC.
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8.2.1 OpenACC

Different aspects of OpenACC programming have been covered. I
presented the use of data directives, as well as an example that even when
data directives are already present, changing the way the data directives
are used can improve the performance of the program.

I showed how one can parallelize certain loops with only semi-
independent iterations if the loop behavior is still conventional in specific
ways, specifically I showed how, using the OpenACC reduce clause, one
can parallelize loops that perform common types of reductions.

I briefly discussed one limitation of OpenACC that occurs due to its
more simple interface, namely the lack of control over shared memory.

Overall, I was able to see massive speedups using OpenACC. The final
program is able to be quickly recompiled for new architectures letting
the compiler do most of the code maintenance and architecture specific
optimizations. Some tuning of the loop optimization may in some cases
be beneficial when running on very different architectures however.

Finally, OpenACC is also incredibly easy to use once you get used to
it, what seems like the hardest part is the data movement, but even that
becomes relatively simple with only a little practice.

8.2.2 Locality Sensitive Hashing

In Section 5.1 I went through how the program improved for each step
of optimization using a standard LSH algorithm that uses multiple tables.
These improvements were summarized in Table 5.9 as well as the other
tables in Section 5.2. One can see from the results that the use of OpenACC
was very successful for optimizing the program, though as I pointed
out at the very end of Section 4.3.3 about optimizing the calculation
of hash values, there were some limitations about how one might use
shared memory, limitations that may or may not have prevented further
improvements to the program.

I also presented a version of LSH in Section 6 which, due to the way
it is designed, requires only a single table. In general, this version of the
algorithm seems to give similar results as the normal version of LSH which
uses several tables. This single-table version of the algorithm seems to
perform better than the multi-table version overall, though it spends some
more time on the actual point matching.

The two versions of LSH were very similar in terms of how they were
parallelized using GPUs. The largest differences between the two programs
were really about the serial part where potential matches were found. In
the multi-table version potential matches were found by searching one
box per table. In the single table version however, potential matches
were found by checking multiple boxes in a single table by calculating the
distances from the query points to the borders of the boxes they get hashed
to. Both versions of the algorithm were fairly easy to parallelize, though
they were designed to be parallelizable from the start.

Both versions of LSH were implemented from scratch.
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8.2.3 Algorithms Compared

When using the two versions of LSH on the large dataset we get similar
results. For the multi-table LSH I used 32 LSH tables; then, for each table
16 random hyperplanes were used each represented by a normal vector
whose elements sum to zero.

For the single table LSH some improved hyperplanes which were
orthogonal to each other and made to partition the search space better were
used, each hyperplane was represented by a normal vector whose elements
sum to zero.

The performance of the two algorithms was presented in detail in
Chapter 5 and 7, with many different tables for many different sets of
parameters. Here I will only compare the final results, and give a rough
estimate as to how they perform on the large dataset.

The final performance of the multi-table version of LSH is presented
by the two first tables in Section 5.1, Table 5.1 and Table 5.2. In short, this
version of LSH was able to get a correct ratio of 83.03% in 3.46 seconds, the
algorithm searched on average 2.40% of the search space per query point
to achieve this. The combined time from simply adding together the time
spent on each major phase is only 3.085 seconds however, as I explained in
the limitations section this might be more representative of the actual time
spent by the algorithm.

Likewise, the final performance of the multi-table version of LSH is
presented by the two first tables in Section 7.2, Table 7.1 and Table 7.2.
In short, this version of LSH was able to get a correct ratio of 83.36% in
2.44 seconds, the algorithm searched on average 2.73% of the search space
per query point to achieve this. The combined time from simply adding
together the time spent on each major phase is 1.964 seconds.

We can see that in terms of the time vs. the correct classification
ratio, the single table version of LSH wins out despite having to search
a larger amount of the search space. The reason for this is that the single
table version of the algorithm involves significantly less overhead, both for
hashing and for finding potential matches.

It is important to mention however, that these are far from the only
versions of LSH out there. I chose these two versions of LSH since I was
able to implement them, and since they were very different in nature and
interesting to contrast and compare. Using another version of LSH one can
probably get better results.

8.24 LSH Compared to Exhaustive Search

I will also compare the algorithms to exhaustive search using a normal
"naive” CUDA implementation, which simply compares all query points
with all base points without any shortcuts; this naive algorithm is
then optimized with CUDA without any algorithmic tricks to make the
algorithm go faster. This version of the algorithm had a run-time of 15.94
seconds with 100% correct classification. While one can argue that the LSH
performs better than this algorithm, this is not the best implementation of
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point matching using exhaustive search that is out there.

NVIDIA has developed their own algorithm for matching vectors using
exhaustive search, which is added to its CUDA Basic Linear Algebra
Subroutine library, called cuBLAS. This library contains many linear
algebra functions that are heavily optimized for NVIDIA GPUs. One of
these algorithms can be used to match many dimensional vectors like
feature descriptors.

One can use cuBLAS for input of differently sized datatypes, when
using smaller datatypes one can get faster results, but it comes at the
cost of some accuracy. Other optimizations made for increased speed also
sometimes come at the cost of accuracy. When storing the points using
arrays of floats (32 bit), matching using the cuBLAS library has an accuracy
of 88.3% finishing in roughly 0.903 seconds. When using halfs (16 bit) the
matching goes a bit quicker at the cost of some accuracy, the matching now
has an accuracy of 87.7% with a runtime of 0.188s.

When comparing the results from LSH to those from cuBLAS it
seems that LSH is less effective than a really well optimized version of
the exhaustive search algorithm, at least for the current dataset. But
whether LSH really can compete with a well optimized exhaustive search
implementation really depends on the use case.

LSH is an approximate nearest neighbor algorithm and it has some
different pros and cons. There are several things that can make LSH more
effective:

1. The closer the best match is to a query point, the greater the chance is
that LSH will find it. If the query point is closer to its best match in the
base set, this will increase its chance of finding said best match. When
the query point and the best match point are almost exactly the same,
a match will be very likely even with few tables for the multi-table
version, or a low threshold for the single table version.

2. If LSH does not find a best match, then another close match is likely
to be found. The results I have presented in this thesis are predicated
on the idea that the absolute best match is required since this is
important when the final goal of the application is depth estimation.
An application that allows for close matches to be found that are not
necessarily the best match will have much more use for LSH than an
algorithm that requires the best match where a second best match is
not only useless but problematic.

3. The LSH algorithm works better the better and more randomly
distributed in space the points are. If the points that should be
matched are well distributed, then LSH might provide some better
results. This seems like a small point compared to the previous two,
but it is worth mentioning.

For the purpose of depth estimation for Alice vision, finding the
absolute best match is crucial and anything else is undesirable, this is the
main issue that makes LSH ineffective for this use case. Meanwhile, the
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SIFT feature descriptors deviate enough from their best matches to not
make up for this problem.

There are other use cases for point matching where LSH might be more
useful however, such as if you wants to find any instance of an object in
a large database and do not care if the match is the absolute best, second
best, or the 12th best, as long as it is a good match. For the purpose of
depth estimation however, the results of my implementations of LSH, in its
current state, are not good enough.

8.3 Future research

8.3.1 Future research regarding Locality Sensitive Hashing

One idea discussed in the thesis that was not implemented yet had some
interesting aspects to it was dimensionality reduction before performing a
nearest neighbor algorithm such as LSH. Using PCA one can find a matrix
that performs dimensionality reduction on data, where the data is projected
along its principal directions. One can calculate a matrix that performs
dimensionality reduction onto the principal directions of some training
set in an attempt to reduce the dimensionality and get rid of redundancy
before applying LSH in order to find the nearest neighbors.

If one uses dimensionality reduction, one would of course have to
perform the same dimensionality reduction for the query points and the
base points, it would also be best to pre-compute this dimensionality
reduction for a training set rather than finding the principal directions of
the base set since it takes quite a lot of time.

Another idea might be to explore the use of LSH for other applications.
As discussed previously, LSH is an Approximate Nearest Neighbor
algorithm, both because it is not guaranteed to give the right answer, and
because it might give an answer that is close to a nearest neighbor but not
the actual nearest neighbor (such as the second or third nearest neighbor).
For some applications, a close match is almost as good as the best match,
LSH might therefore be more useful in these circumstances.

8.3.2 Future research regarding OpenACC

In this thesis I only covered how OpenACC was used when it was the only
GPU programming interface. An area of research that could be further
analyzed is the interplay of CUDA and OpenACC, specifically using both
CUDA and OpenACC for the same program and in combination with one
another.

Another area of research would be to explore how OpenACC can be
used for Field Programmable Gate Arrays (FPGA)s. What is possible in
this area is still changing as the OpenACC programming model is adapting
to these types of problems.

For this thesis the LSH algorithms were programmed in C/C++ using
OpenACC directives, compiled using the Portland Group C++ compiler
(pgct++). The OpenACC programming interface is supposed to work for
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other compilers however, one may also attempt to use different compilers
and compare the results to see how they differ.

This thesis also focused mainly on how to program OpenACC, and how
to apply OpenACC In order to optimize LSH. It would be interesting to try
to explore how the OpenACC directives together with the serial program
actually translates into real lower level code. For the pgc++ compiler for
instance, the -Minfo flag enables the compiler to give feedback to the
programmer about how the program is optimized, this could be useful if
one wanted to examine more carefully how OpenACC directives result in
code on the device.
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