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Abstract

Matroids are combinatorial objects that abstract the notion of independence in
mathematics. Motivated by the Chern classes of manifolds and non-singular
varieties, we define Chern numbers of an arbitrary matroid, even when the
matroid is not necessarily representable. These numbers are obtained when
intersecting appropriate matroid Chern-Schwartz-MacPherson cycles as defined
in [MRS20].

To a matroid M of rank 3, we associate two Chern numbers, namely
c2(M), and c21(M). We prove that both Chern numbers of matroids of rank
3 on a ground set of n elements are positive, and that their ratio is bounded:
(2n − 6)/(n − 2) ≤ c21(M)/c2(M) ≤ 3. If the matroid is orientable, the ratio
is bounded above by 5/2. Moreover, we perform computations for the Chern
numbers of matroids of rank 4. Finally, we give a formula for the Chern numbers
of the uniform matroid of any rank.
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CHAPTER 1

Introduction

Matroids are combinatorial objects that abstract the notion of independence
throughout several branches of mathematics. The Japanese mathematician
Takeo Nakasawa and the American mathematician Hassler Whitney independ-
ently developed the theory of matroids in the 1930s. While Nakasawa’s work
was forgotten for a long time, Whitney’s work was the first to be acknowledged
in the mathematical world [NK09].

Our take on matroid theory will be from an algebraic geometry perspective.
More specifically, given a hyperplane arrangement A ⊆ Pd+1

K , there is an
associated matroid MA which encodes the combinatorial properties of the
linear subspaces of A. Matroids that are constructed in this way are called
representable over a field K. Note that representable matroids constitute about
0% of all matroids [Nel16]. A natural question is: can we define invariants of a
general matroid, i.e., a matroid that is not necessarily representable, but that
also have a geometric meaning when the matroid is in fact representable?

In this thesis we introduce a new invariant of matroids, namely the Chern
numbers of a matroid, which are some weights that we obtain when intersecting
appropriate weighted polyhedral fans that are given by the matroid.

1.1 Background and contribution

We will now give a brief overview of the necessary prerequisites to give a
formal definition of the Chern numbers of matroids, as well as a motivation for
introducing this new invariant.

There are at least eight equivalent definitions for a matroid. The defini-
tion that is the most appropriate for our purposes is in terms of a rank function.
A matroid on a finite set E of rank d+ 1 is a function r : 2E → Z≥0 satisfying:

1. 0 ≤ r(S) ≤ |S|,

2. S ⊆ U implies r(S) ≤ r(U),

3. r(S ∪ U) + r(S ∩ U) ≤ r(S) + r(U).

Moreover, a flat F of a matroid M is a subset of E such that r(F ) < r(F ∪ {i})
for any element i ∈ E \ F . When the matroid arises from a hyperplane
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1.1. Background and contribution

arrangement, then the flats F are in one to one correspondence with the linear
subspaces LF ⊆ A, and the value r(F ) corresponds to the codimension of LF in
PdK . Moreover, to a matroid of rank d+ 1 we can associate a rational polyhedral
fan ΣM called the Bergman fan of the matroid, living in R|E|−1, having a cone
for each chain of flats of the matroid.

The Chow ring of a variety is a ring generated by the cycles of that vari-
ety, quotient by rational equivalence. For matroid M , the Chow ring A∗(M) is
a polynomial ring given by

A∗(M) = Z[xF : F is a flat of M ]
IM + JM

,

where IM , and JM are ideals encoding the inclusion properties of the flats. The
Chow ring of a matroid has some important properties. First of all, Feichter and
Yuzvinsky proved in [FY04] that when the matroid arises from a hyperplane
arrangement, then the Chow ring the matroid is isomorphic to the Chow ring of
the de Concini and Procesi wonderful compactification of the complement of the
arrangement WA [DP95]. In this case, if we let LF ( A be the linear subspace
corresponding to a flat F , then the generator xF ∈ A∗(MA) corresponds to the
strict transform L̂F ⊆WA of the linear subspace LF ⊆ A. Moreover, Adiprasito,
Huh, and Katz proved that the Chow ring of a matroid satisfies Poincaré duality
and linear duality [AHK18], which give us the following isomorphism

A∗(M) ∼= MW∗(ΣM ),
where MW∗(ΣM ) is the ring of Minkowski weights, i.e., the ring of weighted
k−skeletons of the Bergman fan ΣM satisfying a certain balancing condition.
The ring structure on MW∗(ΣM ) is given by a certain cap-product, moreover
there exists an isomorphism wt0 : MW0(ΣM ) → Z, naturally defined by the
weight assigned to the vertex of the fan.

López de Medrano, Rincón, and Shaw introduce in [MRS20] the Chern-
Schwartz-MacPherson (CSM) cycles of a matroid. A k-dimensional CSM
cycle csmk(M) ∈MWk(M) is a Minkowski weight, where the weight is given
according to some specific combinatorial rule, see Chapter 5. They prove
that the CSM cycles of a matroid are related to the CSM classes in algebraic
geometry. These classes are a generalization of the Chern class of the tangent
bundle over a non-singular compact variety, see Section 5.3. When the matroid
MA arises from an arrangement A, the authors in [MRS20] prove that

CSM(1C(A)) =
d∑
k=0

csmk(MA) ∈ A∗(WA) ∼= MW∗(ΣMA),

where CSM(1C(A)) is the CSM class of the group of constructible function on
the complement of the arrangement C(A).

The relation between CSM classes and representable matroids inspired us
to define a new invariant of matroids:

Definition 1.1.1. (Definition 5.4.1) Let M be a rank d+ 1 matroid. We define
the Chern numbers of a matroid c̄k1

1 c̄
k2
2 · · · c̄

kd
d (M) to be

c̄k1
1 · · · c̄

kd
d (M) = wt0(csmk1

d−1(M)csmk2
d−2(M) · · · csmkd

0 (M)),

2



1.1. Background and contribution

where
∑d
i=0 i · ki = d, and the map wt0 is the map in Equation (3.3).

We want to emphasize that the distribution of Chern numbers of algebraic
manifolds of general type is already an established field of study, called the
geography of manifolds, see for example [Hun89]. This field deals with problems
related to finding bounds, and possible values of Chern numbers. In this thesis
we will see that results in the field of geography of manifolds generalize to Chern
numbers of matroids.

Line arrangements A ⊆ P2, not all intersecting in the same point, give rise
to matroids of rank 3, see Example 2.2.6. In Chapter 6, we examine properties
of the Chern numbers of rank 3. Among other things, we prove that results
about Chern numbers of line arrangements defined in [EFU18], generalize to
hold for any matroid of rank 3.

Proposition 1.1.2 (Proposition 6.4.1). Let M be a simple matroid of rank 3 on
the ground set E = {1, . . . , n}, and let tm be the number of flats of rank 2 of
size m. If M has tn = tn−1 = 0, then its Chern numbers are positive.

Theorem 1.1.3 (Theorem 6.4.4). Let M be a simple matroid of rank 3 on
E = {1, . . . , n}, such that tn = tn−1. Then,

2n− 6
n− 2 ≤

c21(M)
c2(M) ≤ 3

Left inequality holds if and only if M is the uniform matroid U3,n, and right
equality holds if and only if M is the matroid of a finite projective plane.

In Chapter 7, we do computations for the Chern numbers of matroids of
rank 4. Among other things, we give a formula for the Chern numbers of the
uniform matroid of rank 4. Note that the uniform matroid Ud+1,n+1, which is
a central matroid throughout the whole thesis, is defined as follows, for S ⊆ E

r(S) =
{
|S| if|S| < d+ 1
d+ 1 otherwise.

Then, the Chern numbers of U4,n+1 are given by

c31(U4,n+1) = (3− n)3,

c1c2(U4,n+1) = −1
2(n− 3)2(n− 2),

c3(U4,n+1) = −
(
n− 1

3

)
,

see Example 7.0.5. In fact, we have also found a formula for the Chern numbers
of the uniform matroid of arbitrary rank, see Proposition 5.4.5. Moreover,
after deriving a formula for the Chern numbers of matroids arising from finite
projective 3-dimensional spaces, see Example 7.0.6, we prove the following
corollary.

Corollary 1.1.4 (Proposition 7.0.7). Let M be a matroid arising from the finite
projective 3-space PG(3, q) for a prime power q. Then

c31(M)
c3(M) = 16.

3



1.2. Outline

Finally, we have written a script in Macaulay2 to compute the Chern numbers
of matroids of both rank 3 and 4. This is particularly useful for computing
the Chern numbers of matroids without as nice combinatorial properties as the
uniform matroid and the finite projective space matroid.

1.2 Outline

The rest of the text is organized as follows:

Chapter 2 introduces matroids and objects related to them. We begin by
introducing the combinatorics of hyperplane arrangements, then we give
a rigorous definition of a matroid in terms of a rank function. Moreover
we introduce operations on matroids such as deletion and contraction.

Chapter 3 after a brief introduction to polyhedral geometry, we give the
definition of the Bergman fan a matroid. Then we introduce the de Concini-
Procesi wonderful compactification of the complement of a hyperplane
arrangement.

Chapter 4 introduces the Chow ring of a matroid A∗(M), a quotient polynomial
ring generated by variables corresponding to the flats of a matroid.
Moreover, we introduce the ring of Minkowski weights MW∗(ΣM ), which
is the ring of balanced weighted k-skeletons of the Bergman fan. Finally,
we show that A∗(M) satisfies linear and Poincaré duality, which induces
the isomorphism A∗(M) ∼= MW∗(ΣM ).

Chapter 5 introduces the Chern-Schwartz-MacPherson cycles (CSM cycles)
of a matroid, which are Minkowski weights given by the Beta invariant.
Then we show that the CSM cycles of a representable matroid A are
related to CSM classes. Finally we define a new invariant of matroids,
namely Chern numbers of matroids.

Chapter 6 presents computations and results on Chern numbers of matroids
of rank 3. We prove for example that the Chern numbers of matroids of
rank 3 are positive, and that their ratio is bounded by 3.

Chapter 7 presents computations and results on Chern numbers of matroids
of rank 4. Among other things, we compute the Chern numbers of the
uniform matroid of rank 4 of arbitrary size, and of the finite projective 3
space PG(3, q) for arbitrary q’s.

Chapter 8 presents questions for further investigation related to the geography
of Chern numbers of matroids.
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PART I

Matroid Theory
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CHAPTER 2

Matroid Theory

In this chapter we introduce the background needed for the rest of the thesis.
There exist several definitions for a matroid; for our purpose, defining a matroid
in terms of a rank function will be the most convenient. Before introducing
the rigorous definition of a matroid, we begin by introducing our motivation.
That is the study of the combinatorics of hyperplane arrangements, or dually,
of vector configurations, with the help of a rank function.

2.1 Hyperplane Arrangements

In this section we follow tightly Section 2 of [Kat14], and Chapter 4 of [MS15].

Let K be a field. Given some vectors v0, . . . , vn in Kd+1 spanning a sub-
space V ⊆ Kd+1, we investigate the combinatorics of the span of the subsets of
these vectors. We call E = {0, , . . . , n} the ground set, and we define a rank
function rvec : 2E → Z, by for S ⊆ E:

rvec(S) = dim(Span({vi | i ∈ S})).

Dually, each vector defines a hyperplane in PdK by setting

Hi = {z ∈ PdK : vi · z = 0} = V (fi =
d∑
j=0

vijxj),

where i indexes the vector, and j the entry. The set A = {Hi : 0 ≤ i ≤ n} is
called an arrangement of n+ 1 hyperplanes in PdK . We can define another rank
function rarr : 2E → Z, by, for S ⊆ E,

rarr(S) = codim(∩i∈SHi).

We use as a convention that dim(∅) = −1, and hence that codim(∅) = d + 1.
Note that rarr and rvec define the same function on the subsets of E. Given
a subset S ⊆ E, let AS be the matrix whose rows are the vectors {vi | i ∈ S},
then

⋂
i∈S Hi = kerAS . Moreover, the equality

d+ 1 = rank(AS) + nullity(AS)

implies that the following equality

rarr(S) = d+ 1− nullity(AS) = rvec(S)

6



2.1. Hyperplane Arrangements

holds. For example, if we let S = ∅ we obtain the following value

rarr(∅) = codim(∩i∈∅Hi) = codim(PdK) = 0,

or dually
rvec(∅) = dim(Span({vi | i ∈ ∅})) = dim(0) = 0.

Where the 0 in dim(0), is the 0-vector in Kd+1.

Example 2.1.1. Let

v0 =

1
0
0

 , v1 =

0
1
0

 , v2 =

0
0
1

 , and v3 =

 1
−1
0


be vectors in C3, and let E = {0, 1, 2, 3} be the corresponding ground set. The
map rvec : 2|E| → Z takes the following values on different subsets S ⊆ E:

rvec(∅) = 0,
rvec({i}) = dim(span(vi)) = 1 for i ∈ E
rvec({i, j}) = dim(span(vi, vj)) = 2 for i 6= j ∈ E
rvec({0, 1, 2}) = dim(span(v1, v2, v3)) = 3.

Dually, each vector defines a hyperplane in Pd. Hence we get the hyperplane

H1

H0 H2

H3

Figure 2.1: The arrangement of four lines in P2.

arrangement A ⊂ Pd consisting of the following hyperplanes

H0 = V (x0), H1 = V (x1), H2 = V (x2), and H3 = V (x0 − x1),

see Figure 2.1. Let us check that the map rarr : 2|E| → Z takes the same values
as rvec on different subsets S ⊆ E:

rarr(∅) = codim(Pd) = 0,
rarr({i}) = codim(Hi) = 1 for i ∈ E
rarr({i, j}) = codmi(Hi ∩Hj) = 2 for i 6= j ∈ E
rarr({0, 1, 2}) = codmi(H0 ∩H1 ∩H2) = codim(∅) = 3.

7



2.1. Hyperplane Arrangements

It is easy to check that the maps rvec and rarr take the same values on the
remaining subsets of E, and hence are the same rank function on the ground
set E. �

Now, we show that we can identify hyperplane arrangements not necessarily
intersecting in a single point of size n+ 1 with linear subspaces of PnK , we follow
the same construction as in [MS15, Chapter 4.1]. Assume that the vectors
{vi | i ∈ E} span Kd+1, so the following equality

rvec(E) = d+ 1 = rarr(E)

holds. Hence, the codimension of the intersection ∩i∈EHi ⊆ PdK of the
corresponding hyperplanes is d + 1, which implies that the intersection of
the hyperplanes is empty. Now, let ι : PdK → PnK be the inclusion map given by

z → [f0(z) : · · · : fn(z)] = [v0 · z : · · · : vn · z]. (2.1)

The map in Equation (2.1) is injective, since the vectors vi span Kd+1, the
0-vector is the only element in the kernel. Hence, the image L = ι(PdK) is
a d-dimensional linear subspace of PnK [MS15]. Moreover, the image of a
hyperplane Hi := ι(Hi) is a new hyperplane in the linear subspace L. Let
[x0 : · · · : xn] be the coordinates of PnK , then the hyperplane Hi is given by
Hi = L ∩ (xi = 0) ⊆ L for 0 ≤ i ≤ n. So the arrangement A in PdK maps
to the arrangement A = {Hi : 0 ≤ i ≤ n} in L, and the two arrangements
have equivalent combinatorial properties. Finally, we can describe the linear
subspace L as the vanishing of the ideal I constructed in the following way. As
they do in Chapter 4.1 in [MS15], let A be the (d+ 1)× (n+ 1) matrix with the
vectors vi as column vectors, and let B = (bij) be the matrix whose column
vectors are the basis of the null space of A. Then, the vanishing of the ideal

I = (fj =
n∑
i=0

bijxi | for 0 ≤ j ≤ n− d− 1)

corresponds to the linear subspace L ⊆ PnK .

Example 2.1.2. We continue with the previous example. Let the matrix A be
as follows

A =

1 0 0 1
0 1 0 −1
0 0 1 0

 ,
and as before let A ⊆ P2 be the hyperplane arrangement given by the column
vectors of A. Now, let ι : P2 → P3 be the embedding given by

[x0 : x1 : x2]→ [x0 : x1 : x2 : x0 − x1].

The null space of A is spanned by the single column vector in the matrix

B =


−1
1
0
1

 .

8



2.2. Rank function of a matroid

Then, the vanishing of the ideal I = (−x0+x1+x3) is the image ι(P2). Moreover,
the image of the hyperplane arrangement ι(A) is isomorphic to the arrangement
A ⊆ P3 given by

A = {Hi = V (xi) ∩ L | 0 ≤ i ≤ 3} ⊆ L.

�

Hence hyperplane arrangements A in PdK are in one to one correspondence
with linear subspaces L of PnK not contained in any hyperplane. In the
next example we encounter a well known line arrangement called the Braid
arrangement.

Example 2.1.3. Consider the homogeneous ideal

I = (x0 − x1 − x3, x0 − x2 − x4, x1 − x2 − x5)

in K[x0, . . . , x5], a linear ideal which defines the plane L = V (I) in P5. And
let A = {Hi : 0 ≤ i ≤ 5} be the arrangement of 6 lines in the plane given by
Hi = L ∩ V (xi), see Figure 2.2.

H2

H1 H4 H0

H3

H5

Figure 2.2: The Braid arrangement.

Let E = {0, . . . , 5} be the ground set. Then, the rank of any one-element
set is one, i.e., r({i}) = codim(Hi) = 1 for any i in E, since the codimension
of a line in a plane is one. The rank of any two-element set is two, i.e.,
r({i, j}) = codim(Hi∩Hj) = 2 for i 6= j in E, since any two lines in a projective
plane intersect in a point, and the codimension of a point in a plane is two. The
rank of any n−set for n ≥ 3, depends on whether the corresponding lines in the
set intersect. For example, r({0, 1, 3}) = codim(H0 ∩H1 ∩H3) = 2, whereas
r({0, 1, 2}) = codim(H0 ∩H1 ∩H2) = codim(∅) = 3. �

2.2 Rank function of a matroid

Finally, with the above discussion in mind, we are ready to define our main
object of study, namely matroids.

9



2.2. Rank function of a matroid

Definition 2.2.1 ([Kat14, Definition 3.1]). A matroid on a finite set E of rank
d+ 1 is a function

2E → Z

satisfying

1. 0 ≤ r(S) ≤ |S|,

2. S ⊆ U implies r(S) ≤ r(U),

3. r(S ∪ U) + r(S ∩ U) ≤ r(S) + r(U) and

4. r({0, . . . , n}) = d+ 1.

Proposition 2.2.2. The rank functions rvec, and therefore rarr, as defined in
the previous section, are matroids.

Proof. It is easy to check that rvec, and therefore rarr, as defined in the previous
section, satisfy the first two matroid axioms. For the last axiom, as noted in
[Kat14], if for U ⊂ E we let

VU = span(vi|i ∈ S),

then showing the third axiom is equivalent to showing

rvec(VU∩S) ≤ rvec(VU ∩ VS).

The inequality holds since VU∩S ⊆ VU ∩VS , moreover the inclusion can be strict
as there are not necessarily vectors in the set U ∩ S spanning the subspace
VU ∩ VS . Hence, the function rvec together with a finite set of vectors, or
equivalently, the function rarr together with a finite set of hyperplanes, are
examples of a matroid. �

We distinguish between representable and non-representable matroids.

Definition 2.2.3 ([Kat14, Definition 3.3]). A matroid is said to be representable
over a field K if it is isomorphic to a matroid arising from a vector configuration
in a vector space over K. A matroid is said to be representable if it is
representable over some field. A matroid is said to be regular if it is representable
over every field.

The rank function in Example 2.1.1 is an example of a matroid coming from
a hyperplane arrangement, or dually from a vector configuration, hence it is
representable. In fact, most matroids that we can think of, do come from a
vector configuration. However, almost no matroids actually do. In 2016, Nelson
proved that as n tends to infinity, the proportion of matroids on an n-element
set that are representable tends to zero [Nel16].
We will explore more this notion of representable and non-representable matroids
in Section 2.3 through some examples. We will see examples of matroids that
are representable over only some given field, and an example of a matroid which
is not representable over any field.

In the rest of the thesis, we often assume that the matroid is simple.
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2.2. Rank function of a matroid

Definition 2.2.4 ([Kat14, Definition 3.8]). A loop of a matroid is an element
i ∈ E with r(i) = 0. A pair of parallel points (i, j) of a matroid are elements
i, j ∈ E such that r(i) = r(j) = r(i, j) = 1. A matroid is said to be simple if it
has neither loops nor parallel points.

For hyperplane arrangements, a loop corresponds to a hyperplane V (fi = 0).
Moreover, two distinct hyperplanes in a projective space always intersect, and
hence for i, j ∈ E such that Hi 6= Hj , the rank r({i, j}) = 2. Hence, a pair of
parallel points is a pair of identical hyperplanes. In the rest of the thesis, when
we talk about a hyperplane arrangement A, we mean a hyperplane arrangement
with no repetition, and no degenerate hyperplanes. Moreover, hyperplane
arrangements A = {Hi | i ∈ E} ⊆ Pd such that the intersection ∩i∈EHi = ∅
are called essential hyperplane arrangements. Both in Example 2.1.1 and in
Example 2.1.3, we encountered essential line arrangements in P2 giving rise to
simple matroids of rank 3. We can generalize this result.

Proposition 2.2.5. An essential hyperplane arrangement A ⊆ Pd give rise to a
simple matroid of rank d+ 1.

Example 2.2.6. Essential line arrangements A ⊆ P2 give rise to simple matroids
of rank 3. In fact, line arrangements and simple matroids of rank 3 share similar
properties. For example, we know that two lines L1 and L2 in P2 intersect
in exactly one point. The matroid equivalent statement is that for a simple
matroid M of rank 3 on a ground set E, for any two flats {i} 6= {j} ⊆ E of
rank 1, there exists exactly one flat F of rank 2 containing both {i} and {j}.
First of all, there must exist such a flat F since 1 ≤ r({i, j}) ≤ 2 by the first
two axioms in Definition 2.2.1. And, since we have assumed no parallel points,
then r({i, j}) = 2. Moreover, assume by contradiction that there exists a flat
F ′ of rank 2 such that F ′ 6= F and such that F ′ contains both {i} and {j}.
Then, by the second axiom of Definition 2.2.9 (F ′ ∩ F ) is a flat. And since
(F ′ ∩F ) contains {i, j} it is of rank 2, and since, by definition, there can not be
a strict inclusion of flats of rank 2, the flats F ′, and F must be the same. �

At this point, it is maybe not clear yet why matroids are an abstraction of
the notion of independence. But, in fact, one of the equivalent definitions for a
matroid is in terms of independent subsets, i.e., subsets of E corresponding to
linearly independent subsets. These are subsets I ⊂ E such that r(I) = |I|.

Definition 2.2.7 ([Kat14, Definition 3.7]). A matroid is a collection of subsets
I of E such that

1. I is nonempty,

2. Every subset of a member of I is a member of I, and

3. If X and Y are in I and |X| = |Y |+1, then there is an element x ∈ X \Y
such that Y ∪ {x} is in I.

The simplest example of a collection as defined in Definition 2.2.7 is given
a finite set of vectors V the collection IV of subsets consisting of linearly
independent vectors. Proving that the collection IV satisfies axiom one and
two is quite straight forward, whereas proving that the collection IV satisfies
the last axiom requires a little bit more of work.
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There are at least five other equivalent definitions for a matroid. Depending
on the the context, or the purpose, other definitions can be better to apply.
However, what is common for all definitions, is that there are a couple of
straightforward axioms, and one which is harder to prove or to grasp. And,
as Katz puts it in [Kat14], it is this last axiom which ads the flavor to the subject.

We end this section by presenting another equivalent way of defining a
matroid, which is in terms of flats.

Definition 2.2.8 ([Kat14, Definition 3.4]). A flat of r is a subset S ⊆ E such
that for any j ∈ E, j /∈ S, r(S ∪ {j}) > r(S).

If the matroid M is representable, then the flats are in bijection with the
linear subspaces of the corresponding hyperplane arrangement MA.

Definition 2.2.9 ([Kat14, Definition 3.5]). A matroid is a collection of subsets
F of a set E that satisfies the following conditions

1. E ∈ F ,

2. F1, F2 ∈ F then F1 ∩ F2 ∈ F , and

3. if F ∈ F and {F1, F2, . . . , Fk} is the set of minimal members of F properly
containing F then the sets F1 \ F, F2, . . . , Fk \ F partition E \ F.

The set of flats form a partially ordered set by inclusion, the lattice of
flats that we denote by LM . We denote 0̂ the minimal flat, if the matroid
has no coloops, then 0̂ = ∅. Moreover, a flag of flats is a chain of flats
F1, F2 . . . , Fk ∈ F on the form 0̂ ⊆ F1 ⊆ F2 ⊆ . . . ⊆ Fk ⊆ E. If the matroid is
representable, then an inclusion of flats Fi ⊆ Fj corresponds to the reversed
inclusion of the corresponding subspaces LFj ⊆ LFi .

Example 2.2.10. The lattice of flats of the matroid in Example 2.1.3 is given
in Figure 2.3. The edges in the graph represent inclusion of flats. Moreover,
since the matroid is representable, the flats are in bijection with the linear
subspaces of the Braid arrangement A. Hence an inclusion of flats corresponds
to an inclusion of the corresponding subspaces. For example the flat inclusion
{0} ⊆ {0, 3} corresponds to the inclusion of the point H0 ∩H3 on the line H0
in the arrangement.

We end this section by giving two central definitions related to matroids
that will only be mentioned briefly in the rest of this thesis. These definitions
are also found in Chapter 3 in [Kat14].

Definition 2.2.11. Let M be a matroid of rank d+ 1 on a ground set E, then
we call a subset B ⊆ E a basis if |B| = d+ 1 and r(B) = d+ 1.

Definition 2.2.12. Let M be a matroid of rank d+ 1 on a ground set E, then
we call a subset C ⊆ E a circuit if C is a minimal subset of E that is not
contained in a basis.

2.3 Examples

In this section we introduce examples of matroids that will appear later in the
thesis.

12



2.3. Examples

∅

{0} {1} {2} {3} {4} {5}

{0, 2, 5} {0, 3} {0, 1, 4} {1, 5} {1, 2, 3} {2, 4} {3, 4, 5}

E

Figure 2.3: Lattice of flats of the Braid arrangement from Figure 2.2.

Example 2.3.1. The uniform matroid Ud+1,n+1 of rank d+ 1 on the ground set
E of size n+ 1 is defined to be the rank function r for S ⊆ E

r(S) :=
{
|S| if |S| < d+ 1
d+ 1 otherwise.

(2.2)

It is clear from the definition that any subset S of size |S| ≤ d is a flat. Hence,
there are

(
n
i

)
number of flats for each rank 1 ≤ i ≤ d.

Note that the uniform matroid is not necessarily representable over any
field k. It might be that the field is too small. For example the matroid U2,4 is
not representable over the field F2. That is because U2,4 is the matroid of rank
2 on the set of 4 elements, where each element is of rank 1. On the other hand,
the vector space V 2

F is only composed of the vectors

V 2
F2

=
{[

1
0

]
,

[
0
1

]
,

[
1
1

]
,

[
0
0

]}
.

Hence there are not enough non-zero vectors v ∈ V 2
F2

to represent the matroid.
In general, the uniform matroid Ud+1,n+1 is representable over a field k if
either k is infinite, or if the vector space |k|d+1 \ {0} has at least n+ 1 linearly
independent vectors. �

Definition 2.3.2 ([Sta+04, Section 1.1.]). A hyperplane arrangement A =
{H0, . . . ,Hd} ⊆ Pd is in general position if

{Hi0 , . . . ,Hip} ⊆ A, p ≤ d ⇒ codim(Hi0 ∩ . . . ∩Hid) = p

{Hi0 , . . . ,Hip} ⊆ A, p > d ⇒ Hi0 ∩ . . . ∩Hip = ∅.

Definition 2.3.2 looks suspiciously similar to the definition of the uniform
matroid. In fact, the uniform matroid Un+1,d+1 arises from a hyperplane
arrangement in Pd in general position.
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We have already seen that essential hyperplane arrangements A ⊆ Pd give
rise to simple matroids of rank d, see Proposition 2.2.5. Now, we will explore
more hyperplane arrangements arising from finite projective spaces, as these
arrangements have nice combinatorial properties. We follow tightly section 6.1.
in [Oxl06].

Let V = Fn+1
q be a vector space over the finite field Fq, where q is a prime

power. The finite projective geometry PG(n, q) associated to the vector space
V is the usual projective space PnFq arising from identifying points on lines
through the origin in V \ 0. Since a finite projective space PG(n, q) consists
of a finite set of points, the span of the vectors corresponding to these points
give rise to a finite set of hyperplanes in V . Hence, by Proposition 2.2.5, finite
projective spaces give rise to simple matroids of rank n + 1. From now on,
we denote by PG(n, q) the matroid arising from the finite projective space
PG(n, q), and so the flats of the matroid PG(n, q) correspond to the linear
subspace of the finite projective space PG(n, q). If n = 2, we call the finite
projective space PG(2, q) a finite projective plane.

Example 2.3.3. The finite projective plane PG(2, 2) is called the Fano plane,
and it can be represented as the point configuration in Figure 2.4.

Figure 2.4: Fano matroid. Figure 2.5: non-Fano matroid.

The points corresponds to the seven non-zero vectors in

F3
2 =

{1
0
0

 ,
0

1
0

 ,
0

0
1

 ,
1

1
0

 ,
1

0
1

 ,
0

1
1

 ,
1

1
1

 ,
0

0
0

},
and the seven lines correspond to the

(7
2
)

= 21 planes through the origin spanned
by pairwise non-zero vectors of V 3

F2
. Note that as every triple of vectors on

the form (x, y, x+ y) in F3
2 lie on the same plane, we are counting each plane(3

2
)

= 3 times, hence the number of distinct planes in V 3
F2
, and hence of distinct

lines in PG(2, 2), is 21/3 = 7. Hence, the Fano matroid is a simple matroid of
rank 3 consisting of 7 flats of rank 1, and 7 flats of rank 2. A related matroid to
the Fano matroid is the non-Fano matroid. It arises from the configuration in
Figure 2.5, where three of the points in the Fano plane are no longer collinear.
The non-Fano plane consists then of 6 flats of rank 2 of size 3, and 3 of size 2,
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and it is representable exactly over all fields whose characteristic is different
from 2 [Kat14]. �

In the next example, we need the Gaussian coefficient:[
r
k

]
q

= (qr − 1)(qr − q) · · · (qr − qk−1)
(qk − 1)(qk − q) · · · (qk − qk−1)

which is defined for all integers r and k with 0 ≤ k ≤ r see Section 6.1 in
[Oxl06].

Example 2.3.4. The smallest three-dimensional finite projective space is
PG(3, 2). The matroid PG(3, 2) is a simple matroid of rank 4, consisting
of [

4
3

]
2

= 15 rank 1 flats,
[
4
2

]
2

= 35 rank 2 flats,
[
4
1

]
2

= 15 rank 3 flats.

Moreover, every single plane in PG(3, 2) is isomorphic to the Fano plane
PG(2, 2). �

The following theorem is a central theorem in projective geometry.

Theorem 2.3.5 ([Oxl06, Theorem 6.1.11]). (Pappus’s Theorem) Let {1, 2, 3} and
{4, 5, 6} be triples of distinct points that lie on the lines L and L′, respectively,
of P2

K such that none of these six points is on both L and L′. Let 7, 8, and 9 be
the points on intersection of the pairs of lines, 15 and 24, 16 and 34, and 26
and 35, respectively. Then, 7, 8, and 9 are collinear.

Figure 2.6: Pappus. Figure 2.7: non-Pappus.

In the next example, we present an example of a matroid which is not
representable over any field.

Example 2.3.6. The simple matroid of rank 3 arising from the line arrangement
given in Figure 2.6 is called the Pappus matroid. It consist of nine flats of rank
1 (the nine lines), and 18 flats of rank 2 (the intersection points), there are
nine flats of rank 2 that are of size 2, and nine that are of size 3. If we call the
points on the top line 1, 2, and 3, and the points on the bottom line 4, 5, and 6,
it is easy to check that the line arrangement satisfies Pappus’s Theorem. The
non-Pappus matroid, see Figure 2.7, is obtained from the Pappus pseudoline
arrangement by bending the line in the middle such that the three points in the
middle are no longer collinear. Hence, the non-Pappus matroid still consists
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of 9 flats of rank 1, whereas the number of flats of rank 2 has increased to 20,
of which 12 are of size 2, and 8 of size 3. Note, that the non-Pappus matroid
violets Pappus’s Theorem, hence it is not representable over any field. �

We end this section by introducing another fundamental class of matroids,
namely the graphic matroids. Up until now, we have mostly seen matroids
arising from hyperplane arrangements, or dually from vector spaces. Thus, the
notion of independence that we have in mind is that of linearly independent
vectors. However, graph theory was also fundamental for Whitney’s development
of matroid theory. As mentioned in the introduction, a graph also defines a
matroid. We follow Section 1 in [Oxl06].

Proposition 2.3.7 ([Oxl06, Proposition 1.1.7]). Let E be the set of edges of a
graph G and let I be the set of edge sets that do not contain the edge set of a
cycle of G. Then I is the set of independent sets of a matroid on E.

A matroid arising from a graph G in the way explained in Proposition 2.3.7
is denoted by M(G). Equivalently, a matroid M(G) arising from a graph G is
the rank function r on the ground set E, returning the size of the spanning
forest of a subgraph of G. A matroid that is isomorphic to a matroid M(G) for
some graph G is called graphic, see the following definition.

Definition 2.3.8 ([Oxl06, Example 1.1.8]). Two matroids M1 and M2 are
isomorphic, written M1 = M2 , if there is a bijection ψ from the underlying
set E(M1) to the underlying set E(M2) such that, for all X ⊆ E(M1), the set
ψ(X) is independent in M2 if and only if X is independent in M1. We call such
a bijection ψ an isomorphism from M1 to M2.

Example 2.3.9. Let G be the graph in Figure 2.8 with edges E = {e0, e1, e2, e3},
and let M(G) be the corresponding matroid. Then, the independent sets of

e0

e2

e1

e3

Figure 2.8: The graph G.

M(G) are

I = {{ei}, {ei, ej}, {e0, e1, e3}, {e0, e2, e3}, {e1, e2, e3} | for i 6= j ∈ [0, 1, 2, 3]}.

Moreover, note that if we let V be the set consisting of the column vectors of
the matrix A over R

A =

1 0 1 0
0 1 1 0
0 0 0 1


by V = {v0, v1, v2, v3}, and let M(A) be the matroid arising from the matrix
A, it is easy to check that the map ψ : V → E defined by ψ(vi) = ei defines an
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isomorphism of matroids. Note that the independent sets in M(A) are exactly

I = {{vi}, {vi, vj}, {v0, v1, v3}, {v0, v2, v3}, {v1, v2, v3} | for i 6= j ∈ [0, 1, 2, 3]}.

Hence M(G) is representable over R. �

In Example 2.3.9 we saw that the matroid M(G) is representable over R. In
fact, we can say something even stronger.

Proposition 2.3.10 ([Oxl06, Proposition 6.1.4 (i)]). If G is a graph, then M(G)
is representable over any field.

The proof follows from the fact that from a graph G, we can always construct
a directed graph D(G) by assigning a direction to the edges of the graph.
Moreover, we can describe the directed graph D(G) with the help of an incidence
matrix AD(G). Finally, the matrix AD(G) is in fact a representation of the the
graph G, see [Oxl06] for details. We briefly review how the incidence matrix
can be constructed, we use the same notation as in [Oxl06]. Let V be the set
of vertices and E the set of edges of a graph G, then the incidence matrix
AD(G) = |V |× |E| of a directed graph D(G) is constructed in the following way:

aij =


1, if vertex i is tail of edge j
−1, if vertex i is head of edge j
0, otherwise.

Example 2.3.11. Let us see how we recovered the matrix A in Example 2.3.9.
Let D(G) be the directed graph of the graph G in Example 2.3.9 given in
Figure 2.9. Then the incidence matrix AD(G) is given by

e0

e2

e1

e3

Figure 2.9: The directed graph D(G).

AD(G) =


1 1 0 0
−1 0 1 0
0 −1 −1 1
0 0 0 −1

 ∼
1 0 1 0

0 1 1 0
0 0 0 1

 = A.

�

We will not explore graphic matroids much in depth, as our take on matroids
is mostly from an algebraic geometry point of view. The idea behind presenting
the above example is mostly to illustrate the diversity of matroids. But also, to
keep in mind, that a lot of the inspiration behind results in matroid theory comes
from graph theory. For example in Section 5.1 we will see that the characteristic
polynomial of matroids is a generalization of the chromatic polynomial of graphs.
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2.4. Operations on Matroids

2.4 Operations on Matroids

In this section we introduce three operations on matroids, namely deletion,
restriction and contraction. These operations will be useful to compute some
central invariants of the matroid that will be introduced later in this thesis.
We follow the conventions of Section 5 in [Kat14]. Let M be a matroid of rank
d+ 1 given by a rank function r on a finite ground set E.

Definition 2.4.1 ([Kat14, Section 5.]). For a subset X ⊆ E, the deletion M \X
is defined to be the matroid on the ground set E \X with rank function given
by: for S ⊆ E \X

rM\X(S) = r(S).
If the matroid is representable, i.e., arising from a hyperplane arrangement

A = {Hi | i ∈ E}, then the deletion M \X corresponds to the matroid arising
from the hyperplane arrangement

AM\X = {Hi | i ∈ E \X}.

Moreover, the lattice of flats LM\X of the matroid M \X can be obtained from
the lattice of flats LM of M by removing the set X. Then a flat F ∈ LM is
either disjoint from X, so that F ∈ LM\X . Or, the flat F ∈ LM intersects X,
then either r(F \X) = r(F ), so F \X ∈ LM\X , or r(F \X) < r(F ), and F \X
is no longer a flat of LM\X .

Example 2.4.2. Let M be the matroid arising from the line arrangement in
Figure 2.10. The lattice of flats of the matroid M is illustrated in Figure 2.11.
Now, the deletion matroid M \ {0} is the matroid on the ground set {1, 2, 3}
with rank function rM\{0} for S ⊆ E \ {0} given by

rM\{0}(S) = r(S). (2.3)

H2

H1 H0H3

Figure 2.10: A.

∅

{0} {1} {2} {3}

{0, 1} {0, 2} {0, 3} {1, 2} {1, 3} {2, 3}

E

Figure 2.11: Lattice of flats of M .

By applying the rank function rM\{0}(S) given in Equation (2.3), it is easy
to check that the lattice of flats of M \ {0} corresponds to the the flats in
Figure 2.13. Geometrically, the matroid M \ {0} corresponds to the matroid
arising from the hyperplane arrangement

A \H0 = {H1, H2, H3} ⊆ P2,

see Figure 2.12. �
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H2

H1H3

Figure 2.12: Arrangement A \
H0.

∅

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}

Figure 2.13: Lattice of flats of
M \ {0}.

As before, let M be a matroid of rank d+ 1 given by a rank function r on a
ground set E.

Definition 2.4.3 ([Kat14, Section 5.]). For a subset T ⊆ E the restriction M |T
is defined as the matroid

M \ (E \ T ).
If F ⊆ E is a flat, then the lattice of flats LM |F is [0̂, F ], i.e., flats between

0̂ and F . If the matroid has no loops, then 0̂ = ∅.

Definition 2.4.4 ([Kat14, Section 5.]). Let X ⊆ E, the contraction X/E is
defined to be the matroid on the ground set E \X with rank function rM/X

for S ⊆ E \X
rM/X(S) = r(S ∪X)− r(X).

From Definition 2.4.4 we easily deduce that the matroid M/X is of rank
d + 1 − r(X). If F is a flat, then the lattice of flats LM/F is isomorphic to
[F,E].

Moreover, if the original matroid M arises from a hyperplane arrangement A,
then, if we denote by HS̄ the subspace ∩i∈S̄Hi, the matroid M/S corresponds
to the matroid arising from the hyperplane arrangement

AM/S = {HS̄ ∩Hj | j ∈ E \ S̄} ⊆ HS̄ .

Note that when defining the arrangement AM/S we have taken the closure of S
because if j is an element of the set S̄ \ S, then HS̄ ∩Hj = HS̄ , and hence not
a hyperplane in HS̄ .

Example 2.4.5. Let M be the matroid given in Example 2.4.2. The contraction
matroid M/{0} is the rank 2 matroid on the ground set {1, 2, 3} with rank
function r(M/{0}) for S ⊆ {1, 2, 3}

r(M/{0})(S) = r(S ∪ {0})− r({0}). (2.4)
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By applying the rank function r(M/{0}) given in Equation (2.4), it is easy to
check that the lattice of flats of M/{0} corresponds to the flats highlighted in
green in Figure 2.11. Geometrically, the matroid M/{0} corresponds to the
matroid arising from the point arrangement

AH0 = {H01 = H0 ∩H1, H02 = H0 ∩H2, H03 = H0 ∩H3} ⊆ H0.

See Figure 2.14 for the point arrangement AM/{0}, and Figure 2.15 for the
lattice of flats of the matroid arising from the the point arrangement AM/{0}.
As expected, the lattice of flats given by the highlighted flats in Figure 2.11
and in Figure 2.15 are isomorphic. �

H02

H01

H03

Figure 2.14: Arrangement AH0 .

{0}

{0, 1} {0, 2} {0, 3}

E

Figure 2.15: Lattice of flats of
M/{0}.

Note that deletion and contraction commutes.

Definition 2.4.6 ([Kat14, Definition 5.1]). A matroid M ′ is said to be a minor
of M if it is obtained by deleting and contracting elements of the ground set of
M .

Note that both in Example 2.4.2, and in Example 2.4.5 the original matroid
is the uniform matroid U3,4. Moreover, the deletion matroid U3,4\{0} resulted in
the uniform matroid U3,3. Whereas, the contraction matroid U3,4/{0} resulted
in the uniform matroid U2,3. We can generalize the results in Example 2.4.2,
and in Example 2.4.5.

Example 2.4.7. Let Ud+1,n+1 be the uniform matroid on the ground set E, and
let i ∈ E. Then

Ud+1,n+1 \ {i} = Ud+1,n, and
Ud+1,n+1 / {i} = Ud,n.

First of all, both the deletion matroid and the restriction matroid are matroids
on a ground set with an element less. Moreover, the rank function of the
deletion matroid is still given by for S ⊆ E \ {i}

rUd+1,n+1\{i}(S) =
{
|S| for |S| ≤ d+ 1
d+ 1 otherwise.
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Whereas, the rank function of the contraction matroid is given by for S ⊆ E\{i}

rUd+1,n+1 / {i}(S) =
{
r(S ∪ {0})− r({0}) = |S| for |S| ≤ d
r(S ∪ {0})− r({0}) = d otherwise.

�

We end this section by briefly mentioning that a matroid can be decomposed
into connected components.

Definition 2.4.8 ([Kat14, Definition 5.2]). A matroid is connected if for every
i, j ∈ E, there exists a circuit containing i and j.

We will not explore this decomposition any further, as we only need
Definition 2.4.8 in the rest of the thesis, for more details see Section 5.2 in
[Kat14].
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CHAPTER 3

The Bergman fan of matroids

A matroid defines a rational polyhedral fan called the Bergman fan of the
matroid. After giving a brief introduction to polyhedral geometry we give
a rigorous definition of the Bergman fan. We will also see that there is a
correspondence between polyhedral geometry, and toric varieties, and that
the Bergman fan of a matroid is in fact a toric variety. We end this chapter
by introducing the de Concini and Procesi Wonderful compactification of the
complement of a hyperplane arrangement C(A) ( L, which is constructed by a
series of blow-ups on L.

3.1 Fans and toric geometry

In this section we give a brief introduction to toric varieties. The reason is that,
as we will see in Section 3.2, matroids define a toric variety, more specifically
a polyhedral fan constructed according to some rules. This section is purely
preparatory. Toric varieties are varieties having numerous nice properties. For
instance, there is a correspondence between toric varieties and the polyhedral
geometry of cones and polytopes, which makes computations far easier. We
begin by reviewing polyhedral geometry, and then give the correspondence to
toric geometry, which can be skipped. We follow the conventions of Chapter 1,
and Chapter 3 of [CLS11].

Let N and M be dual lattices with associated vector spaces NR = N ⊗ R and
MR = M ⊗ R.

Definition 3.1.1 ([CLS11, Definition 1.2.1.]). A convex polyhedral cone in NR is
a set on the form

σ = Cone(S) =
{∑
u∈S

λuu | λu ≥ 0
}
⊆ NR,

where S ⊆ NR is finite. We say that σ is generated by S. Also let Cone(∅) = {0}.

An example is the following cone

σ = Cone(e2, e1 − e2) ⊆ R2 ' Z2 ⊗ R. (3.1)
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3.1. Fans and toric geometry

Definition 3.1.2 ([CLS11, Definition 1.2.3.]). Given a polyhedral cone σ ⊆ NR,
its dual cone is defined by

σ∨ = {m ∈MR | 〈m,u〉 ≥ 0 for all u ∈ σ}.

The dual cone of the cone given in Equation (3.1) is the cone given by

σ∨ = Cone(e1, e1 + e2). (3.2)

Definition 3.1.3 ([CLS11, Definition 1.2.5.]). A face of a cone of the polyhedral
cone σ is τ = {u ∈ NR | 〈m,u〉 = 0}∩σ for some m ∈ σ∨, written τ � σ. Using
m = 0 shows that σ is a face of itself, i.e., σ � σ. Faces τ 6= σ are called proper
faces, written τ � σ.

The proper faces of the cone in Equation (3.2) are the rays e1, and e1 + e2,
and the origin {0}.

Proposition 3.1.4 ([CLS11, Proposition 1.2.12.]). Let σ ⊆ NR be a polyhedral
cone. Then σ is strongly convex if and only if {0} is a face of σ.

Since {0} is a proper face of the cone in Equation (3.2), the cone is strongly
convex.

Definition 3.1.5 ([CLS11, Definition 1.2.14.]). A polyhedral cone σ ⊆ NR is
rational if σ = Cone(S) for some finite set S ⊆ N .

So, since the cone in Equation (3.2) is generated by two rays it is rational.

Definition 3.1.6 ([CLS11, Definition 3.1.2]). A fan Σ in NR is a finite collection
of cones σ ⊆ NR such that:

1) Every σ ∈ Σ is a strongly convex rational polyhedral cone.

2) For all σ ∈ Σ, each face of σ is also in Σ.

3) For all σ1, σ2 ∈ Σ, the intersection σ1 ∩ σ2 is a face of each (hence also
Σ).

Furthermore, if Σ is a fan, then Σr is the set of r−dimensional cones of Σ which
we call the r-skeleton.

Definition 3.1.7 ([CLS11, Definition 3.1.18]). Let Σ ⊆ NR be a fan.

1) Σ is unimodular, if for every cone σ in Σ, the minimal generators of σ
form part of a Z-basis of N ,

2) Σ is simplicial if for every cone σ in Σ the minimal generators of σ are
linearly independent over R.

Next, we briefly give the correspondence of polyhedral geometry and toric
geometry.

Definition 3.1.8 ([CLS11, Definition 1.2.]). A complex toric variety is an
irreducible variety X containing a torus TN ' (C∗)n as a Zariski open subset
such that the action of TN on itself extends to an algebraic action of TN on V .
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3.2. Bergman fans and tropicalization

Given a rational polyhedral cone σ ⊆ NR, the lattice points

Sσ = σ∨ ∩M ⊆M

form a semigroup [CLS11]. For example the semigroup of the cone σ in
Equation (3.1) is Sσ ' N2 since it is generated by the linearly independent
lattice points e1 ∩M , and (e1 + e2) ∩M .

Theorem 3.1.9 ([CLS11, Theorem 1.2.18.]). Let σ ⊆ NR ' Rn be a rational
polyhedral cone with semigroup Sσ = σ∨ ∩M . Then

Uσ = Spec(C[Sσ])

is an affine toric variety. Furthermore,

dim Uσ = n⇐⇒ the torus of Uσ is TN = N⊗Z C∗ ⇐⇒ σ is strongly convex.

The affine toric variety associated to the cone in Equation (3.1) is then
Uσ = Spec(C[Sσ]) ' Spec(C[N2]) ' Spec(C[x, y]) = A2. We already know that
σ is strongly convex, and this fits well with the fact that dim(Uσ) = dim(A2) = 2.

We are finally ready to define the toric variety XΣ of a fan Σ.

Definition 3.1.10. The abstract toric variety XΣ associated to the fan Σ is
obtained by gluing the affine varieties Uσ for σ ∈ Σ, see Chapter 3 in ([CLS11])
for technical details.

Theorem 3.1.11 ([CLS11, Theorem 3.2.6]). (Orbit-Cone Correspondence) Let
XΣ be the toric variety of the fan Σ in NR. Then there is a bijective
correspondence

{cones σ in Σ} ←→ {TN -orbits in XΣ}
σ ←→ O(σ).

3.2 Bergman fans and tropicalization

Matroids are highly geometric objects. This is because the inspiration for
matroid theory often comes from algebraic geometry. But also because, even
when the matroid is not representable, i.e., the matroid does not come from
anything geometric, it still defines a toric variety. Specifically, the lattice of
flats of a matroid M can be represented by a polyhedral fan called its Bergman
fan, which was first introduced in [AK06]. We follow the notation of [Eur20]:

• {ei | i ∈ E} the standard basis of ZE and 〈·, ·〉 the standard dot-product
on ZE

• N := ZE/Z1 be a lattice where 1 denotes the vector
∑
i∈E ei ∈ ZE ,

• ui the image of ei in N for i ∈ E,

• uS =
∑
i∈S ui for a subset S ⊂ E.

Definition 3.2.1 ([Eur20, Definition 2.2.]). Let M be a loopless matroid of rank
r = d+ 1 on a ground set E. With the notations as above, the Bergman fan
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3.2. Bergman fans and tropicalization

Figure 3.1: The Bergman fan of U3,4

∑
M is the pure d-dimensional polyhedral fan in NR := N ⊗R that is comprised

of cones
σF := Cone(uF1 , uF2 , · · · , uFk) ⊂ NR

for each chain of flats F : ∅ ( F1 ( · · · ( Fk ( E in LM .

Note that, each k-dimensional cone σF is generated by k-linearly independent
vectors over R, hence the Bergman fan ΣM of a matroid M is simplicial. In
fact, some computations can show that the Bergman fan of a matroid is even
unimodular.

Example 3.2.2. The Bergman fan of the uniform matroid U3,4 is a 2-dimensional
polyhedral fan living in Z4/Z1⊗ R, see Figure 3.1. Let E = {0, 1, 2, 3} be the
ground set of U3,4. Then, the fan consists of 12 cones, corresponding to the
flags ∅ ( {i} ( {i, j} ( E, for each pair i 6= j ∈ E. The following script in
[polymake] generates the fan in Figure 3.1.
application "fan";

$fan = new fan::PolyhedralFan(INPUT_RAYS=>[
[1,0,0,0],
[0,1,0,0],
[0,0,1,0],
[0,0,0,1],
[0,-1,-1,-1],
[0,1,1,0],
[0,1,0,1],
[0,0,-1,-1],
[0,0,1,1],
[0,-1,0,-1],
[0,-1,-1,0]
],
INPUT_CONES => [[0,1,5],[0,1,6],[0,1,7],[0,2,5],
[0,2,8],[0,2,9],[0,3,6],[0,3,8],[0,3,10],[0,4,7],[0,4,9],[0,4,10]]);

$complex = new fan::PolyhedralComplex($fan);
$complex -> VISUAL;

�
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3.2. Bergman fans and tropicalization

Example 3.2.3. The Bergman fan of the matroid in Example 2.1.3 is a 2-
dimensional polyhedral fan living in Z6/Z1 ⊗ R. We can not imagine a 2-
dimensional fan living in a 5-dimensional space. However, we can imagine, and
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Figure 3.2: The Petersen graph

even draw, the intersection of the fan with the surface of a sphere containing
the fan. In this specific example, the graph given by the intersection of the fan
with the surface of the sphere is isomorphic to the Petersen graph see Figure 3.2.
The intersection points, labeled by the proper flats of the matroid, correspond
to the one dimensional rays in the Bergman fan. The edges correspond to the
two dimensional cones, which are spanned by two rays corresponding to proper
flats of which one is properly contained in the other. In general, the intersection
of the Bergman fan in Rn/R1 with a sphere is called is called the Bergman
Complex of the matroid, and there exist explicit formulas for computing it, see
[AK06]. �

When the matroid is representable, i.e., arising from some linear space,
the Bergman fan of the matroid can be achieved through something called
tropicalization. The field of tropical geometry aims at turning problems related
to algebraic varieties into problems related to polyhedral complexes. The
process of transforming an algebraic variety into a polyhedral complex is called
tropicalization, see for example [Bru+15] for a brief introduction to tropical
geometry. In 2002, Sturmfels proved that the Bergman fan of the matroid
arising from a linear space L corresponds to the tropicalization of L, see [Stu02]
for details.
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3.3. The wonderful compactification

3.3 The wonderful compactification

We will now introduce De Concini-Procesi wonderful compactification WA of
the complement of an arrangement A. The reason is that in the next chapter
we will see that to a matroid M we can associate a polynomial ring, namely
the Chow ring A∗(M). When the matroid M is representable, the ring A∗(M)
is in fact the Chow ring A∗(WA).

In this section L ⊆ Pn is a d-dimensional linear subspace, and

A = {Hi = V(xi) ∩ L | 0 ≤ i ≤ n} ⊆ L

is the corresponding hyperplane arrangement. Let C(A) ⊆ L be the complement
of the hyperplane arrangement. Moreover, recall that a k-dimensional subspace
LF of A corresponds to a flat F ∈ LMA of rank d−k of the matroidMA defined
by the arrangement. The following definition was first presented in [DP95], but
we choose to use [Eur20] conventions.

Definition 3.3.1 ([Eur20, Definition 2.3.]). The wonderful compactification WA
of the complement C(A) is obtained by a series of blow-ups on L in the following
way: First blow-up the points {LF }r(F )=d, then blow-up the strict transforms
of the lines {LF }r(F )=d−1, and continue until having blown-up strict transforms
of the hyperplanes {LF }r(F )=1.

We now review an explicit map for De Concini-Procesi wonderful compacti-
fication stated in Definition 3.3.1. In the original paper [DP95], the construction
is stated in terms of building set G. Building sets were first introduced in
[FS04], and are a generalization of the lattice of flats. For our purpose, we only
need the case where the building set is the lattice of flats, therefore, we state
the definition in terms of the latter. We follow the conventions of Section 5.4 in
[Den14].

With the notation as above, for each flat F ∈ LMA , the coordinate pro-
jection Cn+1 → CF induces a rational map pF : Pn 99K P|F |−1, and let

p : Pn 99K
∏

F∈LMA

P|F |−1 (3.3)

be the map whose F th coordinate is pF .
Let LF be the image of the linear subspace L under the map pF . The

following definition is equivalent to Definition 3.3.1. Note that the map p is
regular on C(A) ⊆ L, hence the following definition makes sense.

Definition 3.3.2 ([Den14, Definition 5.10.]). The De Concini-Procesi wonderful
compactifiaction (Definition 3.3.1) of A with lattice of flats LA is

WA = p(C(A)) ⊂
∏

F∈LMA

LF .

Note that since the ground set E is a flat, the image pE(C(A)) = C(A) is a
component of the product. Moreover, let LF be a linear subspace corresponding
to a flat |F | = k, i.e., the linear subspace LF is the locus V (xi, . . . , xj) ⊆ L, for
k distinct coordinates. And let TpF denote the graph of pF , i.e., the graph

TpF = {(x, pF (x)) | x ∈ C(A)} ⊆ C(A)× P|F |−1.
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3.3. The wonderful compactification

Then the closure of TpF in C(A)× P|F |−1 is the actual blow-up of L along the
linear space LF . And since the graph

TpF ⊆ C(A)× Pk−1

is a component of the image p(C(A)) for every flat F ∈ LMA , we can conclude
that the map p defines the blow-ups in Definition 3.3.1 all performed at once.

Example 3.3.3. Let L be the linear space V (−x0 + x1 + x3), and A be the
hyperplane arrangement from Example 2.1.1, and Example 2.1.2. Recall that
A consists of the four lines

A = {Hi = V (xi) ∩ L | 0 ≤ i ≤ 3} ⊆ L.

As before, we denote the corresponding matroid MA with lattice of flats LMA .
The map p given in Equation (3.3) is composed of the coordinate maps pF for
every flat F ∈ LMA . For example, the component p{0,2} : C(A)→ P1 given by
the flat {0, 2} is the projection:

[x0 : x1 : x2 : x0 − x1]→ [x0 : x2],

so the image p{02}(C(A)) = L{02} = [x0 : x2] for x0, and x2 different from 0.
On the other hand, the component p{0,1,3} : C(A)→ P2 is the projection:

[x0 : x1 : x2 : x0 − x1]→ [x0 : x1 : x0 − x1] ' [x0 : x1],

so the image p{013}(C(A)) = L{013} = [x0 : x1], again for x0, and x1 different
from 0. By similar computations, we get that the image p(C(A)) is the product

L{02} × L{12} × L{23} × L{013} × L{E} ⊆ P1 × P1 × P1 × P2 × P3,

given by the coordinates

([x0 : x2], [x1 : x2], [x2 : x1 − x0], [x0 : x1], [x0 : x1 : x2 : x1 − x2]).

And the wonderful compactification WA of the complement of the hyperplanes
C(A) is the closure

L{02} × L{12} × L{23} × L{013} × V{E} ⊆ P1 × P1 × P1 × P2 × P3.

This is in fact P2 blown-up at the 4 points {02}, {12}, {23}, and {013} �
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CHAPTER 4

Chow ring of a matroid

In this chapter we introduce the Chow ring of a matroid A∗(M). In algebraic
geometry, the Chow ring of a variety is the ring of equivalence classes of cycles
up to rational equivalence. The Chow ring of a matroid is given by a quotient
of a polynomial ring generated by variables corresponding to the flats of the
matroid, and the quotient is by two ideals that encode the inclusion properties
of the flats. We will see that the Chow ring of a matroid has in fact a geometric
meaning when the matroid is representable. Moreover, we will see that the
Chow ring of a matroid satisfies linear and Poincaré duality, which give us
the isomorphism A∗(M) ∼= MW∗(M), where the latter is the ring of balanced
weighted k-skeletons of the Bergman fan [AHK18].

4.1 Chow Ring of a matroid

As a rough simplification, the Chow ring of a variety encodes the intersection
properties of the cycles of that variety. We begin this section by reviewing the
general definition of the Chow ring, and then we review the analogy for the
Chow ring of a matroid.

The following definitions are taken from Chapter 1 in [EH16]. Let X be
an algebraic variety, the group of cycles on X, denoted by

Z(X) =
⊕
k

Zk(X),

is the free abelian group generated by the set of subvarieties of X, graded by
dimension. Two cycles Y1, Y2 ∈ Z(X) are rationally equivalent if there exists a
cycle of P1 ×X such that the restriction to two fibres {t0} ×X, and {t1} ×X
are Y1, and Y2. For example any two hyperplanes H0 = V (f0), and H1 = V (f1),
given by two linear polynomials f1 and f2, in Pn are rationally equivalent. Let
H ⊆ P1 × Pn be the cycle given by H = V (t0f0 + t1f1), then the restriction
to the two fibres {[0 : 1]} × Pn, and {[1 : 0]} × Pn are the two hyperplanes H0,
and H1.

Definition 4.1.1 ([EH16, Definition 1.3.]). The Chow group of X is the quotient

A(X) =
⊕
k

Zk(X)/Rat(X),
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4.1. Chow Ring of a matroid

the group of rational equivalence classes of cycles on X. The equivalence class
of a subvariety Y ∈ Z(X) is denoted by [Y ] ∈ A(X).

Let Y1 and Y2 be two subvarieties of X, such that all three are smooth at a
point p. Denote by TY1,p and TY2,p the tangent spaces of Y1, and Y2 respectively
at p. Then, if the span of TY1,p and TY2,p is the tangent space of X at p, then the
subvarieties Y1, Y2 of a variety X intersect transversely at the point p ([EH16]).
Moreover, if Y1, and Y2 intersect transversely at each point p ∈ Y1 ∩ Y2, then
the varieties Y1, and Y2 are said to be genererically transverse ([EH16]).

Theorem 4.1.2 ([EH16, Theorem-Definition 1.5.]). If X is a smooth quasi-
projective variety, then there is a unique product structure on A(X) satisfying
the condition: If two subvarieties Y1, Y2 of X are generically transverse, then

[Y1][Y2] = [Y1 ∩ Y2].

This structure makes

A(X) =
dimX⊕
c=0

Ac(X)

into an associative, commutative ring, graded by codimension, called the Chow
ring of X.

The above definition makes sense because of the moving lemma, which
says that if two subvarieties Y1, and Y2 are not generically transverse, then
there exists a rational equivalent subvariety Y ′1 ∈ [Y1] such that Y ′1 and Y2 are
generically transverse. Note also that since for a smooth quasiprojective variety
X of dimension n, the only cycle of dimension n is the variety X itself, the
n-component An(X) ' Z.

Theorem 4.1.3 ([EH16, Theorem 2.1.]). The Chow ring of Pn is

A∗(Pn) = Z[H]/(Hn+1),

where H ∈ A1(Pn) is the rational equivalence class of a hyperplane; more
generally, the class of a variety of codimension k and degree d is dHk.

The Chow ring of a matroid was first defined in [FY04], inspired by, and
based on the work of [DP95] who first introduced the combinatorics of the
wonderful compactification of the complement of a hyperplane arrangement,
see Section 3.3. The original definition of the Chow ring of a matroid is
stated in more general terms, namely in terms of any building set, see Defini-
tion 3 in [FY04]. We choose to state the definition in terms of the lattice of flats.

Let M be a (loopless) matroid on a ground set E, and let L̄M be the re-
duced lattice of flats of the matroid M .

Definition 4.1.4. The Chow ring A∗(M) of M is the quotient ring

A∗(M) := Z[xF : F ∈ L̄M ]
IM + JM

where the ideal IM is generated by

IM := (xFxF ′ | F, F ′ not comparable)
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4.1. Chow Ring of a matroid

and the ideal JM is generated by

JM := (
∑
F3i

xF −
∑
G3j

xG | i, j ∈ E).

Example 4.1.5. In this example we compute the Chow ring of the uniform
matroid of rank 3 on 3 elements U3,3. The lattice of flats of the matroid U3,3 is
given in Figure 4.1. Hence, the Chow ring of the matroid is given by

∅

{0} {1} {2}

{0, 1} {0, 2} {1, 2}

E

Figure 4.1: The lattice of flats of U3,3.

A∗(U3,3) = Z[x0, x1, x2, x01, x02, x12]
IM + JM

,

where the ideals IM , and JM are given by:

IM = (x0x1, x0x2, x1x2, x0x12, x1x02, x2x01, x01x02, x01x12, x02x12),
JM = (x0 + x02 − x1 − x12, x0 + x01 − x2 − x12, x1 + x01 − x2 − x02).

The relations IM , and JM give us that the Chow ring A∗(U3,3) is the direct
sum of the following groups:

A0(U3,3) ∼= Z

A1(U3,3) ∼= Z〈x0, x01, x02, x12〉
A2(U3,3) ∼= Z〈x0x01〉.

For example the linear monomial x1 is given by

x1 = −x12 − x01 + x0 + x01 + x02

= −x12 + x0 + x02,

whereas the squared monomials x2
0 and x2

01 are given by

x2
0 = x0(−x01 − x02 + x2 + x02 + x12)

= −x0x01,

x2
01 = x01(−x0 − x02 + x2 + x02 + x12)

= −x0x01.

�
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4.1. Chow Ring of a matroid

Note that for harder computations than the one given in Example 4.1.5, we
have used a Macaulay2 package which, among other things, gives a script that
computes the Chow ring of a matroid, see [Che].

The Chow ring of a matroid in Definition 4.1.4 is in fact a special case of the
more general definition of the Chow ring A∗(Σ) of any unimodular fan Σ in NR,
see Definition 5.4 in [AHK18], or [Dan78] for the original construction. Now,
we find a set of generators for the Chow ring A∗(Σ). We now use the same
construction as the one given in section 5.1 of [AHK18]. Let Σ be a unimodular
fan, and let PΣ be the set of primitive ray generators of Σ. Let SΣ be the
polynomial ring over Z with variables indexed by PΣ:

SΣ := Z[xe]e∈PΣ .

For each k−dimensional cone σ in Σ, we associate a degree k square-free
monomial

xσ :=
∏
e∈σ

xe.

The subgroup of SΣ generated by all such monomials xσ will be denoted

Zk(Σ) :=
⊕
σ∈Σk

Zxσ .

Let Z∗(Σ) be the sum of Zk(Σ) over all nonnegative integers k.

Proposition 4.1.6 ([AHK18, Proposition 5.5]). Let Σ be a unimodular fan. The
group Ak(Σ) is generated by Zk(Σ) for each nonnegative integer k.

In the case when the fan of interest is the Bergman fan ΣM of some
matroid M , the polynomial ring SΣ corresponds to the usual polynomial ring
Z[xF : F ∈ L̄F ] in Definition 4.1.4. Moreover, each k-dimensional cone σ of ΣM
corresponds to some flag Fσ = ∅ ⊂ F1 ⊆ . . . ⊆ Fk ⊆ E of length k + 2. Hence,
the square-free monomial xσ ∈ Zk(Σ) corresponds to

xσ = xF1 · · ·xFk ∈ Ak(M).

So, Proposition 4.1.6 says that the Chow group Ak(M) is generated by
Zk(ΣM ). For example, recall that in Example 4.1.5 we saw that the monomials
x2

0 = −x0x01 and x2
01 = −x0x01 in the ring A∗(U3,3).

When a matroid is representable over some field k, the Chow ring of the
matroid has a specific geometric interpretation. Let MA be the matroid arising
from some hyperplane arrangement A in Pdk, and let WA be the wonderful
compactification of the complement as defined in Definition 3.3.1, then we have
the isomorphism A∗(MA) ∼= A∗(WA) [FY04]. Moreover, if we let LF ( A be
the linear subspace corresponding to a flat F , then the generators xF ∈ A∗(MA)
correspond to the strict transforms L̂F ⊆WA of the linear subspaces LF ⊆ A.
Finally, products of generators in A∗(MA) correspond to intersections of the
corresponding strict transforms in WA.

Example 4.1.7. Note that a realization of the uniform matroid U3,3 is an
arrangement A ⊆ P2 consisting of three lines not intersecting in the same
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point. Hence, the Chow ring of the uniform matroid A∗(U3,3) computed in
Example 4.1.5 is isomorphic to the Chow ring of the wonderful compactification
WA of the arrangement, i.e., of the blow-up of P2 in the 3 intersection points
of the arrangement A. Then, if we let Ĥ be the pullback of the hyperplane
class H ⊆ P2 in WA, and L̂01, L̂02, and L̂12 be the strict transforms of the
intersection points of the arrangement A ⊆ P2, then

Z〈x0, x01, x02, x12〉 = A1(U3,3) ' A1(WA) = Z〈Ĥ, L̂01, L̂02, L̂12〉.

�

The autors of [FY04] presented another geometric interpretation for the
Chow ring A∗(M) of a loopless matroid M , even when the matroid is not
representable. The following theorem is a special case of Theorem 3 in [FY04].

Theorem 4.1.8. Let ΣM be the Bergman fan of a loopless matroid M , and let
XΣ be the toric variety associated the fan ΣM . Then, the assignment xσ to the
orbit closure O(σ) in XΣ, extends to an isomorphism

A∗(M) ' A∗(XΣ).

4.2 Minkowski Weights

In this section we introduce the ring of Minkowski weights of the Bergman fan
ΣM , and we see how the ring of Minkowski weights is related to the Chow ring
of the corresponding matroid M . Again, we use the same construction and
notation as in section 5.1 of [AHK18].

Denote by Σ a simplicial fan living in NR, a n−dimensional latticed vec-
tor space. As before, the group Σk consists of the k−dimensional cones in Σ. If
τ ( σ is of codimension 1, and σ is a simplicial cone, we write

eσ/τ := the primitive generator of the unique 1-dimensional face of σ not in τ.

Recall that a k-dimensional cone σ in a simplicial fan is generated by k linearly
independent vectors over R. Hence, the above definition makes sense. The
group of Minkowski weights on a simplicial fan was originally defined in [FS97]
in the study of intersection theory on toric varieties. Following we state the
definition reported in [AHK18], in order to be consistent with the conventions.

Definition 4.2.1 ([AHK18, Definition 5.1]). A k-dimensional Minkowski weight
on Σ is a function

ω : Σk → Z

which satisfies the balancing condition: For every (k − 1)-dimensional cone τ in
Σ, ∑

τ⊂σ
ω(σ)eσ/τ is contained in the subspace generated by τ.

The group of Minkowski weights on Σ is the group

MW∗(Σ) :=
⊕
k∈Z

MWk(Σ),
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where MWk(Σ) := {k − dimensional Minkowski weights on Σ} ⊂ ZΣk .

It is clear from the definition that:

1. There is a natural isomorphism

wt0 : MW0(Σ)→ Z. (4.1)

2. If k > dim(MW (Σ)), then the group MWk(Σ) = 0.

When the fan we study is the Bergman fan of some matroid M , we denote the
fan by ΣM . Recall that every cone σ ∈ ΣM corresponds to a flag of flats of
length k:

F = F1 ( F2 ( · · · ( Fk.

We can exploit the correspondence between cones and flags to rephrase the
sum in the balancing condition in Definition 4.2.1. Let τ ∈ ΣM be a cone of
dimension (k−1) and let F = F1 ( . . . ( Fk−1 be the corresponding flag. Then,
every cone σ ⊃ τ of dimension k, corresponds to a flag composed of the flag
F extended with a flat Fk which fits into the flag F . We denote σFk the cone
corresponding to the flag F extended with Fk. Then, the sum in Definition 4.2.1
corresponds to sum over all flats Fk that can fit into the flag for τ :∑

Fk fits into F
ω(σFk)Fk is contained in the subspace 〈uF1 , . . . uFk−1〉.

where uFk is the ray corresponding to the flat Fk in the Bergman fan ΣM .
Moreover, as in Section 3.1, we denote by {0} the vertex of the fan.

Hopefully, the following example will demystify the definition of a Minkowski
weight. The example is similar to [KV19, Example 6.2]

Example 4.2.2. The Bergman fan ΣM of the uniform matroid U3,3 is a 2-
dimensional fan living in NR = Z3/(e0 + e1 + e2)⊗ R, where e0, e1 and e3 are
the standard unit vectors of Z3. Moreover, recall that for a flat F the vector
eF =

∑
i∈F ei, and the vector uF is the image of eF in NR. The Bergman fan

ΣM is then composed of the following rays:

u0 = e0, u1 = e1, u2 = −e0 − e1,

u01 = e0 + e1, u02 = −e1, u12 = −e0,

and of the following cones:

σ0,01 = cone(u0, u01), σ0,02 = cone(u0, u02), σ1,01 = cone(u1, u01),
σ1,12 = cone(u1, u12), σ2,02 = cone(u2, u02), σ2,12 = cone(u2, u12).

A 1-dimensional Minkowski weight on ΣU3,3 is a function

ω : Σ1 → Z,

which has to satisfy the balancing condition. As the only 0-dimensional cone τ
in ΣM is the origin, we get the following condition:

ω0

(
1
0

)
+ ω1

(
0
1

)
+ w2

(
−1
−1

)
+ ω01

(
1
1

)
+ ω02

(
0
−1

)
+ ω12

(
−1
0

)
= 0. (4.2)
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4.3. Linear duality and Poincaré duality

The condition Equation (4.2) gives us the following relations:

ω0 − ω2 + ω01 − ω12 = 0,
ω1 − ω2 + ω01 − ω02 = 0.

The weights ω0, ω1, ω2, and ω01 determine the remaining two weights ω12, and
ω02, hence MW1(ΣU3,3) ∼= Z4.

A 2-dimensional Minkowski weight on ΣM , is a function

ω : Σ2 → Z,

which has to satisfy the balancing condition. The cones containing u0, are σ01,
and σ02, and the primitive generators are given by

eσ0,01/u0 =
(

0
1

)
, eσ0,02/u0 =

(
0
−1

)
.

Hence we get the following condition:

ω0,01

(
0
1

)
− ω0,02

(
0
−1

)
= 0.

Hence, the weight function must satisfy ω0,01 = ω0,02. Similar computations
give us

ω0,01 = ω0,02 = ω1,01 = ω1,12 = ω2,02 = ω2,12.

It follows that the group of 2-dimensional Minkowski weights MW2(ΣU3,3) ∼= Z.
Note that the group of Minkowski weights MW (ΣU3,3) is isomorphic to the
Chow group A∗(U3,3) calculated in Example 4.1.5. We will explore this relation
in more depth in the next section. �

The fact that MW2(ΣM ) ∼= Z, for a 2-dimensional Bergman fan is not a
coincidence. Let ΣM be the d-dimensional Bergman fan of some matroid of
rank d+ 1.

Proposition 4.2.3 ([AHK18, Proposition 5.2]). A d-dimensional weight on d-
dimensional Bergman fan ΣM satisfies the balancing condition if and only if it
is constant.

It follows that there is a canonical isomorphism given by:

weightd : MWd(ΣM )→ Z (4.3)
ω 7→ ω(σ). (4.4)

In the next section, we show that the isomorphism in Equation (4.3) implies
Ad(ΣM ) ' Z. But before, we need to introduce some preliminaries.

4.3 Linear duality and Poincaré duality

As noted in [AHK18], the group of k−dimensional Minkowski weights MWk(Σ)
on Σ can be identified with the dual of Zk(Σ) in the following way

tΣ : MWk(Σ)→ HomZ(Zk(Σ),Z), ω → (xσ → ω(σ)).

By Proposition 4.1.6, the image of tΣ contains HomZ(Ak(Σ),Z).
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4.3. Linear duality and Poincaré duality

Proposition 4.3.1 ([AHK18, Proposition 5.6.]). The isomorphism tΣ restricts
to the bijection between the subgroups

MWk(Σ)→ HomZ(Ak(Σ),Z).

In [AHK18] the bijection in Proposition 4.3.1 is used to define the cap
product

Al(Σ)×MWk(Σ)→MWk−l(Σ), ξ ∩ ω(σ) := tΣω(ξ · xσ).

It is worth lingering on the cap product defined in Proposition 4.3.1. Remark
that by Proposition 4.1.6, we can write elements in Ak(Σ) as elements of Zk(Σ),
i.e., as the sum of square free monomials of degree k. Hence for ξ ∈ Al(Σ), and
for σ ∈ Σk−l, the polynomial ξ · xσ is an element of Zk(Σ), i.e., of the form

ξ · xσ =
∑
σ′∈Σk

cσ′xσ′ ,

for some cσ′ ∈ Z. Then we get

tΣω(ξ · xσ) = tΣω
( ∑
σ′∈Σk

cσ′xσ′
)

=
∑
σ′∈Σk

cσ′ω(σ′).

The bijection in Proposition 4.3.1 makes the group MW∗(Σ) into a graded
module over the Chow ring A∗(Σ) [AHK18]. Note that because of the relations
in the Chow ring, the choice of representative for ξ is not unique. However,
the cap product is still well defined, since the Minkowski weight function is
constructed such that it is indifferent to the choice of representative for ξ. Let
us look at an example to demonstrate how the cap product works.

Example 4.3.2. We continue with Example 4.2.2, so ΣM is the Bergman fan of
the uniform matroid U3,3. Let us calculate the cap product

A1(ΣM )×MW1(Σ)→MW0(Σ), ξ ∩ ω(σ) := tΣω(ξ · xσ),

for ξ = x0 + x01 + x02 ∈ A1(ΣM ), and ω ∈MW1(Σ) taking the values:

ω(ui) = 1, ω(uij) = 0.

Then, the the cap product is an element of MW0(ΣM ):

ξ × ω → ω̂ = ξ ∩ ω ∈MW0(ΣM ),

so ω̂ is just a function on the origin {0} of the fan ΣM , which is given by

ω̂({0}) = tΣω(x0 + x02 + x02)
= ω(u0) + ω(u02) + ω(u02) = 1.

Now, let us calculate the cap product

A1(ΣM )×MW2(Σ)→MW1(Σ), ξ ∩ ω(σ) := tΣω(ξ · xσ),
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4.3. Linear duality and Poincaré duality

for ξ = x0 + x01 ∈ A1(ΣM ), and for the constant function ω ∈ MW2(ΣM )
taking the value 1 on all the top dimensional cones. Then the cap product is
an element of MW1(ΣM ):

ξ × ω → ω̂ = ξ ∩ ω ∈MW1(ΣM ),

so ω̂ ∈MW1(ΣM ) is a function on the one dimensional rays of the fan. Let us
check that ω̂ ∈MW1(ΣM ) actually satisfies the balancing condition:

ω̂(u0) + ω̂(u1) + ω̂(u2) + ω̂(u01) + ω̂(u02) + ω̂(u12) =
tΣω(x2

0 + x0x01) + tΣω(x1x01) + tΣω(x2
01).

We apply Proposition 4.1.6, and by Example 4.1.5, we rewrite the last line:

tΣω(−x0x02 + x0x01) + tΣω(x1x01) + tΣω(−x0x01) =
− ω(σ0,02) + ω(σ0,01) + ω(σ1,01)− ω(σ0,01) = 0.

Hence, ω̂ ∈MW1(ΣM ) satisfies the balancing condition. �

Definition 4.3.3 ([AHK18, Definition 5.7.]). To an element i of the ground set
E of matroid M , we associate the linear form

αM,i :=
∑
i∈F

xF ∈ A1(M)

Recall that when a matroid of rank d+ 1 is representable over some field k,
the matroid MA arises from some hyperplane arrangement A in Pdk. Moreover,
the generators xF ∈ A∗(MA), correspond to the strict transforms L̂F of the
linear subspaces LF ⊂ A in WA. Note that the polynomial αM,i is the sum of
the monomials xF , for F ⊆ Hi. It follows that the polynomial αM,i corresponds
to the strict transform of Hi plus the union of the strict transform of all
its subspaces LF ⊂ Hi, which is the total transform π−1(Hi) ⊂ WA of the
hyperplane Hi ⊂ A.

The divisor of αM,i is independent of the choice of i, hence it will be de-
noted by αM . In [AHK18], they show that Ad(ΣM ) is generated by the element
αdM , where d is the dimension of ΣM .

Proposition 4.3.4 ([AHK18, Proposition 5.8]). Let F1 ( F2 ( · · · ( Fk be any
flag of nonempty proper flats of M.

(1) If the rank of Fm is not m for some m ≤ k, then

xF1xF2 · · ·xFkα
d−k
M = 0 ∈ Ad(ΣM ).

(2) if the rank of Fm is m for all m ≤ k, then

xF1xF2 · · ·xFkα
d−k
M = αdM ∈ Ad(ΣM )

In particular, for any two maximal flags of nonempty proper flats F1 and
F2 of M,

xF1 = xF2 ∈ Ad(ΣM ).
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4.3. Linear duality and Poincaré duality

There is a geometric intuition behind the first result in Proposition 4.3.4. It
suffices to consider the case where the flag is of length 1, i.e., to consider the
monomial

xFα
d−1
M ∈ Ad(ΣM ),

to grasp the idea. So, let us understand why r(F ) > 1 implies xFαd−1
M = 0. We

begin by assuming that the matroid MA arises from an essential hyperplane
arrangement A ⊂ Pdk. And note that if the intersection LF ∩ H = ∅ in
A, it implies that L̂F ∩ π−1(H) = ∅ in WA. Moreover, the polynomial
αd−1
M corresponds to the total transform of Hd−1, i.e., of some hyperplane
H intersected with itself d− 1 times. Recall that α is independent of the choice
of H, hence we can choose d− 1 different hyperplanes H, and as these intersect
transversely, the codimension of Hd−1 is d− 1. Moreover, if dim(LF ) < d− 1,
we can always choose a hyperplane H such that H ∩ LF = ∅, which implies

Hd−1 ∩ LF = ∅.

It follows that xFαd−1
M = 0. By a similar argument, we can show that

xFα
l
M = 0 in Al+1(ΣM ) if r(F ) + l > d,

or equivalently that

H l ∩ LF = ∅ if codim(LF ) + l > d.

Definition 4.3.5 ([AHK18, Proposition 5.9]). The degree map of M is the
homomorphism obtained by taking the cap product

deg : Ad(ΣM )→ Z, ξ 7−→ ξ ∩ 1M ,

where 1M = 1 is the constant d-dimensional Minkowski weight on ΣM .

By Proposition 4.1.6, the homomorphism deg is uniquely determined by the
fact that deg(xσ) = 1 for all monomials xσ corresponding to a d-dimensional
cone in ΣM .

Proposition 4.3.6 ([AHK18, Proposition 5.9]). The degree map of M is an
isomorphism.

In 2020, Eur wrote an explicit formula for the degree map in Definition 4.3.5
applied to monomials of degree d, which will be of interest in later sections.

Theorem 4.3.7 ([Eur20, Theorem 3.2.]). Let M be a matroid of rank d+ 1 on
a ground set E. Let ∅ = F0 ( F1 ( · · · ( Fk ( Fk+1 = E be a chain of flats
in LM with ranks ri := r(Fi), and let d1, . . . , dk be positive integers such that∑

i di = d. Denote by d̃i :=
∑i
j=1 dj. Then

deg(xd1
F1
· · ·xdkFk) = (−1)d−k

k∏
i=1

(
di − 1
d̃i − ri

)
µd̃i−ri(M |Fi+1/Fi)

where µi(M ′) denotes the i-th unsigned coefficient of the reduced char-
acteristic polynomial χM ′(t) = µ0(M ′)tr(M ′)−1 − µ1(M ′)tr(M ′)−2 + · · · +
(−1)r(M ′)−1µr(M

′)−1(M ′) of a matroid M ′.
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4.3. Linear duality and Poincaré duality

The above degree map will be useful when computing the Chern numbers
of a matroid.

Theorem 4.3.8 ([AHK18, Theorem 6.19]). (Poincaré Duality). For any integer
k ≤ r, the multiplication map

Ak(M)×Ar−k(M)→ Ar(M)

defines an isomorphism between groups

Ar−k(M) ∼= HomZ(Ak(M), Ar(M)).

In particular, the groups Aq(M) are torsion free.

Let M be a matroid of rank d + 1, then, by Proposition 4.3.6, the Chow
group Ad(M) ∼= Z. So for r = d, the isomorphism in Theorem 4.3.8 is given by:

Ad−k(M) ∼= HomZ(Ak(M),Z).

Since the Chow group Ak(M) is a torsion free finitely generated Z-module, we
get that Ak(M) is isomorphic to its dual, hence

dim(Ak(M)) = dim(Ad−k(M)) = dim(Ak(M)),

where dim is the dimension of the Chow group as a Z-module. Moreover,
let ΣM be the Bergman fan of M , then by the linear duality given in
Proposition 4.3.1, and the Poincaré duality given in Theorem 4.3.8 we get
the following isomorphism:

MWk(ΣM ) ∼= HomZ(Ak(M),Z) ∼= Ad−k(M). (4.5)

The isomorphism in 4.5 gives a ring structure to the groups of Minkowski weights
MW∗(ΣM ). The product on the Chow ring induces a well defined product on

Ad−k1(M)×Ad−k2(M) Ad−k1−k2(M)

MWk1(M)×MWk2(M) MWk1+k2

Figure 4.2: Product structure on MW∗(ΣM ).

the Minkowski weights MW∗(ΣM ), see Figure 4.3. It is worth remarking that,
when the fan Σ is complete, a ring structure of MW∗(Σ) is given in [FS97].
Hence, we have the following ring isomorphism

MW∗(ΣM ) ∼= A∗(M). (4.6)

For later purposes, we denote the isomorphism in 4.6 by

ψ : MW∗(ΣM )→ A∗(M). (4.7)
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4.3. Linear duality and Poincaré duality

In particular, we denote the restriction of the isomorphism 4.6 on the 0-
dimensional Minkowski weights ΣM by

ψ0 : MW0(ΣM )→ Ad(M). (4.8)

Moreover, the restriction map ψ0 in Equation (4.8), the degree map deg in
Definition 4.3.5, and the map wt0 in Equation (4.1), give us the commutative
diagram in Section 4.3.

MW0(ΣM ) Ad(M)

Z

wt0

ψ0

deg

Figure 4.3: Commutative diagram.
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PART II

Chern numbers of matroids
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CHAPTER 5

The Chern–Schwartz–MacPherson
cycles of matroids

In this chapter we give an overview of the Chern-Schwartz-MacPherson cycles
(CSM cycles) of the matroid. The weights of the CSM cycles are assigned
to the underlying fan of the Chern-Schwartz-MacPherson cycles by the Beta
invariant, which we introduce in the first section. Next we review that, when
the matroid arises from a hyperplane arrangement, the CSM cycles are related
to the Chern-Schwartz-MacPherson (CSM) class of the complement of the
arrangement. Two different approaches to the CSM classes were developed by
M.H. Schwartz [Sch65] and McPherson [Mac74] independently, and proven to
coincide in [Bra81]. Finally, we define the Chern numbers of a matroid.

5.1 The beta invariant

The characteristic polynomial of a matroid is a generalization of the chromatic
polynomial of a graph. The chromatic polynomial χG(λ), first introduced in
[Bir12], is a function counting the number of ways of coloring the vertices a
graph G with λ ∈ Z≥1 different colors, given the condition that two adjacent
vertices are not to be given the same color. Note that a graph with a loop has
no coloring, and in fact, also the characteristic polynomial for a matroid with
loops is defined to be 0.

Let M be a loopless matroid of rank d+ 1 on a ground set E = {0, 1, . . . , n}.
The characteristic polynomial of M is

χM (λ) =
∑
S⊆E

(−1)|S|λcrk(S), (5.1)

where the sum is over all subsets S ⊂ E, and crk(S) = d+1−r(S). Furthermore,
we will see that the characteristic polynomial can also be defined in terms of
flats. First, we need to define the Möbius function.

Definition 5.1.1 ([MRS20, Definition 4]). Let LM be the lattice of flats F of
a matroid M . The Möbius function of LM is the function µ : LM × LM → Z
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5.1. The beta invariant

defined recursively by

µ(F,G) :=


0 if F * G,

1 if F = G,

−
∑
F⊆G′(G µ(F,G′) if F ( G.

Then, the characteristic function is

χM (λ) =
∑
F

µ(∅, F )λcrk(F ).

A fundamental property of the characteristic polynomial is the deletion/con-
traction property: If i is not a loop or a coloop of M then

χM (λ) = χM\i(λ)− χM/i(λ). (5.2)

To get an intuition for the deletion/contraction property, it is worth examining
the chromatic polynomial analogy. In graph theory, deleting an edge G \ e
corresponds to removing the edge e from the graph. Then, the two adjacent
vertices v1, v2 of e are no longer subject to the condition of having different
colors. Whereas, contracting an edge G/e, corresponds to identifying the two
adjacent vertices to e. Hence, the coloring of G/e corresponds to the coloring
of G with the additional condition on v1 and v2 to have the same color. In
particular, if e is not a loop or a coloop of G:

χG(λ) = χG\e(λ)− χG/e(λ).

Example 5.1.2. Let G be as in Example 2.3.9. The graphs G \ e0, and G/e0
are given in Figure 5.2.

e2

e1

e3

Figure 5.1: The graph G \ e0.

e1

e2
e3

Figure 5.2: The graph G/e0.

The chromatic polynomial χG\e0 is given by

χG\e0(λ) = λ(λ− 1)3,

since for the first central node there are λ different possible coloring, whereas
for the three adjacent vertices there are (λ−1) possible coloring. The chromatic
polynomial χG/e0 is given by

χG/e0(λ) = λ(λ− 1)2.
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5.1. The beta invariant

since for the first central node there are λ different possible coloring, whereas
for the two adjacent vertices there are (λ − 1) possible coloring. Hence, the
chromatic polynomial of G is given by

χG(λ)(G) =λ(λ− 1)(λ− 1)(λ− 2)− λ(λ− 1)(λ− 1)
=λ4 − 4λ3 + 5λ2 − 2λ.

�

We continue with some invariants of the matroid related to the characteristic
polynomial. The reduced characteristic polynomial of M is the polynomial

χ̄M (q) = χM (q)/(q − 1).

In [Cra67], Crapo proves that the beta invariant can be computed directly from
the lattice of flats, instead of over all subsets of E, see definition below.

Definition 5.1.3. Let M be a loopless matroid, then the beta invariant of M is

β(M) = (−1)d+1
∑
F∈LM

µ(∅, F )r(F )

= (−1)dχM (1).

If M has a loop then β(M) is defined to be zero.

Theorem 5.1.4 ([FLL87, Theorem 7.3.2. 4]). The beta invariant of a matroid
M satisfies:

1. β(M) ≥ 0.

2. β(M) > 0 if and only if M is connected and is not a loop

Example 5.1.5. Let us compute the characteristic polynomial χU3,3 for the
uniform matroid U3,3. By applying the formula in Equation (5.1) we compute
the characteristic polynomial.

χU3,3(λ) =(−1)|∅|λcrk(∅) + 3(−1)|{1}|λcrk({1})

+ 3(−1)|{1,2}|λcrk({1,2}) + (−1)|E|λcrk(E)

=λ3 − 3λ2 + 3λ− 1

Equivalently, we can compute the characteristic polynomial by applying
Equation (5.2). Note that in this particular example, the subsets of E and the
flats of M coincide, but keep in mind that this is absolutely not the case in
general. First, we calculate the values for the Möbius function

µ(∅, ∅) = 1,
µ(∅, {0}) = −1,
µ(∅, {0, 1}) = −(1− 2) = −1,
µ(∅, E) = −(1− 3 + 3) = −1.

Remark that, by symmetry, µ(∅, {0}) = µ(∅, {1}) = µ(∅, {2}), and that
µ(∅, {0, 1}) = µ(∅, {0, 2}) = µ(∅, {1, 2}). It follows that the characteristic
polynomial is

χU3,3(λ) =µ(∅, ∅)λcrk(∅) + 3µ(∅, {0})λcrk({0})
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+ 3µ(∅, {0, 1})λcrk({0,1}) + µ(∅, E)λcrk(E)

=λ3 − 3λ2 + 3λ− 1,

as expected. Moreover, the reduced characteristic polynomial is

χ(λ) = λ2 − 2λ+ 1.

And since χ(1) = 0, the beta invariant is β(M) = 0. �

In the next example we write an explicit formula for the beta invariant of
an arbitrary uniform matroid. We follow tightly Example 2 in [MRS20].

Example 5.1.6. Let F be a flat of the uniform matroid Ud+1,n+1. Then, the
values of the Möbius function are given by

µ(F ) =
r(F )−1∑
i=0

(−1)i+1
(
|F |
i

)
=
{

(−1)|F | for r(F ) < d+ 1∑d
i=0(−1)i+1(n+1

i

)
for r(F ) = d+ 1.

Since there are
(
n+1
i

)
number of flats of rank i for 0 ≤ i ≤ d, the characteristic

polynomial of Ud+1,n+1 is given by

χUd+1,n+1(λ) =
∑

F∈LUd+1,n+1\E

(−1)|F |λd+1−|F | +
d∑
i=0

(−1)i+1
(
n+ 1
i

)

=
d∑
i=0

(
n+ 1
i

)
(−1)iλd+1−i + (−1)i+1

(
n+ 1
d

)

=
d∑
i=0

(
n+ 1
i

)
(−1)i(λd+1−i − 1).

Moreover, by using that (λd+1−i−1)\(λ−1) =
∑d−i
i=0 λ

i, we get that the reduced
characteristic polynomial is given by

χUd+1,n+1
(λ) =

d∑
i=0

(
n

i

)
(−1)iλd−i.

Finally, by setting λ = 1, and by multiplying with (−1)d we get that the beta
invariant is

β(Ud+1,n+1) =
(
n− 1
d

)
.

�

With the help of the package [Che], we have implemented a function to
compute the beta invariant of a matroid in Macaulay2 [GS].
loadPackage "Matroids"

betaInvariant = Matroid -> (
d = rank(Matroid);
T:= characteristicPolynomial Matroid;
R = ring T;
Q = frac R;
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5.2. Chern-Schwarts-MacPherson cycles of matroids

lift (T, R);
g = T/(R_0 - 1);
beta = (-1)^(d-1)*sub(g, Q_0=>1);
return beta

)

U_33 = uniformMatroid(3,3);
betaInvariant(U_33)

FanoM = specificMatroid "fano";
betaInvariant(FanoM)

U_45 = uniformMatroid(4,5)
betaInvariant(U_45)

This generates the output:
ii22 : U_33 = uniformMatroid(3,3);
ii23 : betaInvariant(U_33)
oo23 = 0

ii26 : FanoM = specificMatroid "fano";
ii27 : betaInvariant(FanoM)
oo27 = 3

ii31 : U_45 = uniformMatroid(4,5);
ii32 : betaInvariant(U_45)
oo32 = 1

5.2 Chern-Schwarts-MacPherson cycles of matroids

The Chern-Schwarts-MacPherson cycles (CSM-cycles) of a matroid M were
first defined in [MRS20] as a collection of weighted rational polyhedral fans.
In Theorem 2.3 they prove that the CSM-cycles are balanced fans according
to Definition 4.2.1. We choose to state their definition directly in terms of
Minkowski weights.

Definition 5.2.1 ([MRS20, Definition 2.8.]). Suppose M is a matroid of rank
d + 1 on n + 1 elements. For 0 ≤ k ≤ d, the k-dimensional Chern-Schwartz-
MacPherson (CSM) cycle csmk(M) of M is a k-dimensional Minkowski weight
ω. If M is a loopless matroid, the weight of the cone σF corresponding to a
flag of flats F := {∅ = F0 ( F1 ( · · · ( Fk ( Fk+1 = {0, ..., n}} is:

ω(σF ) := (−1)d−k
k∏
i=0

β(M |Fi+1/Fi),

where M |Fi+1/Fi denotes the minor of M obtained by restricting to Fi+1 and
contracting to Fi. If M has a loop then we define csmk(M) := ∅ for all k.

Example 5.2.2. Let M be a loopless matroid of rank d+ 1. The 0-dimensional
Chern-Schwartz-MacPherson cycle csm0(M) of M is the origin {0} of ΣM

equipped with a weight equal to

ω({0}) = (−1)dβ(M).
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�

Example 5.2.3. Let Fi ( Fi+1 be two flats of the uniform matroid, and note
that

Ud+1,n+1|Fi+1/Fi = Ur(Fi+1)−r(F ),|Fi+1|−|Fi|,

by a similar argument as in Example 2.4.7. Then, the weight of a cone σF
corresponding to a flag of flats

F := {∅ = F0 ( F1 ( · · · ( Fk ( Fk+1 = {0, ..., n}}

is:

ω(σF ) = (−1)d−k
k∏
i=0

β(Ur(Fi+1)−r(F ),|Fi+1|−|Fi|)

= (−1)d−k
k∏
i=0

(
|Fi+1| − |Fi| − 2

r(Fi+1)− r(Fi)− 1

)
,

by Example 5.1.6. Note that if r(Fi+1) − r(Fi) ≥ 1 for a 0 ≤ i ≤ k, then
ω(σF ) = 0, otherwise we get that the weight is given by

ω(σF ) = (−1)d−k
(
n− k − 1
d− k

)
.

For example, for a top dimensional cone σ of ΣUd+1,n+1 the weight is given by:

ω(σF ) = 1.

�

Recall that, by linear and Poincaré duality, we have the following
isomorphism

ψ : MWk(ΣM )→ Ad−k(M),
see Equation (4.5). Hence, the k-dimensional CSM cycle csmk(M) of a matroid
M lives naturally in the Chow ring A∗(M) of the matroid. Tara Fife and Felipe
Rincón have conjectured an explicit formula for the CSM cycles in the Chow
ring. Let xE = −

∑
F3i xF , where we are summing over all flats containing i,

and note that the monomial xE is indifferent of the choice of i ∈ E. Moreover,
let

chk(M) = ψ(csmd−k(M))
denote the degree k polynomial in Ak(M) corresponding to the (d − k)-
dimensional CSM cycle.

Conjecture 5.2.4 ([FR22]). Let M be a matroid of rank d+ 1, then

chk(M) = (−1)k
∑

F1⊆F2⊆···⊆Fk⊆E

Cr(F1),r(F2),...,r(Fk)xF1xF2 . . . xFk ,

where S = {s1 ≤ s2 ≤ · · · ≤ sk} = {r(F1) ≤ r(F2) ≤ · · · ≤ r(Fk)} is a
multisubset of the set {1, . . . , d + 1}. Denote by mS(i) the multiplicity of the
number i in S (equal to zero if i is not in S), then the coefficients are given by

CS = (s1)(s2 − 1)(s3 − 2) . . . (sk − k + 1)
mS(1)!mS(2)! . . .mS(d+ 1)! .
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5.3. CSM classes

Theorem 5.2.5 ([FR22]). Conjecture 5.2.4 holds for ch1(M), and chd(M).

Example 5.2.6. Let M be a matroid of rank d+ 1 with lattice of flats LM , and
reduced lattice of flats L̂M . Then, by Conjecture 5.2.4

ch1(M) = −
∑
F∈LM

r(F )xF . (5.3)

We can use the identity xE = −
∑
F3i xF , to remove the flats of rank 1 from

the sum in Equation (5.3). Recall that, by the linear relation in the Chow ring,
the monomial xi is given by for F ∈ L̂M :

xi = −xE −
∑

F3i,r(F )≥2

xF .

Hence, we can rewrite ch1(M) as

ch1(M) = −
(∑
i∈E

(
− xE −

∑
F∈L̂M ,F3i,r(F )≥2

xF

)
+

∑
F LMF3i,r(F )≥2

r(F )xF
)

= −
∑

r(F )≥2

(r(F )− |F |)xF ,

where the last sum is over all flats F in LM . For example, for the uniform
matroid Ud+1,n+1, we have the following equality

ch1(Ud+1,n+1) = −(d+ 1− |E|)xE .

�

Example 5.2.7. Let M be a matroid of rank d+ 1, then if Conjecture 5.2.4 is
true, we have the following equality

ch2(M) = (−1)k
∑
F1⊆F2

C{F1,F2}xF1xF2 ,

where the coefficients are given by

C{F1,F2} = r(F1)(r(F2)− 1)
m{F1,F2}(r(F1))!m{F1,F2}(r(F2))! .

�

5.3 CSM classes

In [MRS20], the authors relate the CSM-cycles of matroids MA arising from
a hyperplane arrangement A to a well known geometric invariant, namely to
the CSM class of the complement of the arrangement C(A). CSM classes are a
generalization of Chern classes of a manifold. Usually, Chern classes of a variety
are defined for the tangent bundle over that variety, and hence can only be
defined over a non-singular variety. Whereas CSM classes are also defined for
singular and non-compact varieties. In this section we review [MRS20] results.
But first we review some definitions. We follow tightly section 3 of [MRS20].
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For an algebraic variety X over C, let C(X) denote the additive group

Z〈1Y 〉,

which is generated by the indicator functions 1Y , for all subvarieties Y ⊂ X.
The group C(X) is called the group of constructible functions on X. In fact C
defines a functor from the category of algebraic varieties over C to the category of
abelian groups. Moreover, the Chow group A(X) as defined in Definition 4.1.1,
also lives in the category of abelian groups. Let A define the functor from the
category of algebraic varieties over C to the category of abelian groups, which
sends X to A(X). Note that the functor A is only defined for proper morphisms.
Now, for a complete and non-singular variety X, let c(TX) ∈ A∗(X) denote the
Chern class of the tangent bundle over X. Robert MacPherson proved that
there is a natural transformation from the functor C to the functor A called
the Chern-Schwartz-MacPherson (CSM) class, which satisfies

CSM(1X) = c(TX) ∩ [X],

when the variety X is smooth and complete, see [Mac74].

There are two important properties of the CSM classes that we will mention.
First of all, the degree zero component of CSM(1X) corresponds to the usual
topological Euler characteristic χtop(X). In fact, for every subvariety Y ⊆ X,
and CSM class CSM(1Y ) ∈ A(X), the zero component CSM0(1Y ) = χtop(Y ).
Moreover, the CSM classes obey the inclusion-exclusion property, namely that
for two varieties Y1, Y2 ⊆ X, we have that

CSM(1Y1∪Y2) = CSM(1Y1) + CSM(1Y2)− CSM(1Y1∩Y2) ∈ A(X).

The above property is a powerful tool for computations. For example, if
we want to compute the CSM class of the constructible function 1C(A) of
the complement of a hyperplane arrangement A ( PdC, it is enough to know
CSM(1Pn) for 0 ≤ n ≤ d, which is a well known invariant. Let ζ ∈ A1(Pn) be
the hyperplane class, then

CSM(1Pn) = (1 + ζ)n+1 ∩ [Pn],

see Section 5.7.1 in [EH16]. Note that the cap product with [Pn] gives the
following isomorphism:

A∗(Pn)→ A∗(Pn)
ζ → [Pn−1],

and hence for every 0 ≤ k ≤ n

ζk → [Pn−k].

Example 5.3.1. Let A ( P2 be an essential arrangement of 3 lines. Then, since

CSM(1P2) = 3[P0] + 3[P1] + [P2],
CSM(1P1) = 2[P0] + [P1],
CSM(1P0) = [P0],
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then by using the inclusion-exclusion property we get that

CSM(1C(A)) = 3[P0] + 3[P1] + [P2]− 3(2[P0] + [P1]) + 3[P0]
= [P2].

�

Now we can finally state the results in [MRS20]. Recall first that, by
linear and Poincaré duality, we have the isomorphism MW∗(ΣM ) ∼= A∗(M),
see Section 4.3. Moreover, let MA be a matroid arising from a hyperplane
arrangementA, and letWA be the wonderful compactification of the complement
of the arrangement A, see Definition 3.3.1, then A∗(MA) ∼= A∗(WA), see [FY04].

Theorem 5.3.2 ([MRS20, Theorem 3.1.]). Let WA be the maximal wonderful
compactification of the complement of an arrangement of hyperplanes A in PdC.
Then

CSM(1C(A)) =
d∑
k=0

csmk(MA) ∈ A∗(WA) ' MW∗(ΣMA).

The above theorem shows that the CSM cycles of a matroid representable
over C, which are constructed completely combinatorially, in fact have a deeper
geometric meaning. An important ingredient of the proof is the following lemma,
see Section 1.4.5. in [Coh+09] for original reference.

Lemma 5.3.3. Let A ⊆ Pd+1
A be an essential arrangement, and let MA be the

corresponding matroid. Then the Euler characteristic of the complement of the
arrangement is given by

χtop(C(A)) = (−1)dβ(MA),

where β(MA) is the beta invariant of the corresponding matroid as defined in
Definition 5.1.3.

5.4 Chern numbers of matroids

We are finally ready to define Chern numbers of a matroid, a new geometric
invariant of a matroid. We define Chern numbers of a matroid to be multiplicities
associated to the vertex of the fan when intersecting appropriate CSM cycles of
a fixed matroid, in order to get a zero dimensional intersection.

Definition 5.4.1. Let M be a rank d+ 1 matroid. We define the Chern numbers
of a matroid c̄k1

1 c̄
k2
2 · · · c̄

kd
d (M) to be

c̄k1
1 · · · c̄

kd
d (M) = wt0(csmk1

d−1(M)csmk2
d−2(M) · · · csmkd

0 (M)),

where
∑d
i=0 i · ki = d, and the map wt0 is the map in Equation (3.3).

Note that the Chern numbers are indexed by codimension, while the csm
cycles by dimension. Moreover, note that the number of Chern numbers
associated to a given a matroid of rank d+ 1, is the number of partitions of d.
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5.4. Chern numbers of matroids

Example 5.4.2. Let M be a matroid of rank d+ 1 = 3, then as d = 2 partition
into 2, and 1+1, we get two Chern numbers associated to the matroid, namely
c̄2 and c̄21:

c̄2(M) = wt0(csm0(M)),
c̄21(M) = wt0(csm2

1(M)).

�

Example 5.4.3. Let M be a matroid of rank d+ 1 = 4, then as d = 3 partition
into 3, 1+1+1, and 1+2, we get three Chern numbers associated to the matroid,
namely c̄3, c̄1c̄2 and c̄31:

c̄3(M) = wt0(csm0(M)),
c̄1c̄2(M) = wt0(csm2(M)csm1(M)),
c̄31(M) = wt0(csm3

2(M)).

�

The following result follows immediately from the definition.

Proposition 5.4.4. Let M be a rank d+ 1 matroid. The Chern number

cd(M) = (−1)dβ(M).

Proof. See Example 5.2.2. �

Note that, by the commutative diagram in Section 4.3, we have that

weight0(csmk1
d−1(M) · · · csmkd

0 (M)) = deg(ψ(csmk1
d−1(M) · · · csmkd

0 (M))).
(5.4)

Note also that, as ψ is an isomorphism, we have that

ψ(csmk1
d−1(M) · · · csmkd

0 (M)) = chk1
1 · · · ch

kd
0 . (5.5)

The equalities Equation (5.4) and Equation (5.5) are useful when computing
the Chern numbers, as computation is usually easier in the Chow ring. However,
in some cases, for example for the uniform matroid, it is easier to compute the
Chern numbers by directly intersecting the CSM cycles, see the proposition
below.

Proposition 5.4.5. The Chern numbers of the uniform matroid Ud+1,n+1 are
given by

c̄k1
1 · · · c̄

kd
d (Ud+1,n+1) = (−1)d

d∏
i=1

(
n− (d− i)− 1

i

)ki
.

Proof. Let the fan C ∈ MW∗(ΣUd,n+1) be the Bergman fan of Ud,n+1 with
weight 1 on all its top dimensional cones. Then, by Example 15 in [MRS20], the
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5.4. Chern numbers of matroids

fan Ck ∈MW∗(ΣUd−k+1,n+1) is the Bergman fan of Ud−k+1,n+1 with weight 1
on all its top dimensional cones. Moreover, by Example 5.2.3, we have that:

csmk(Ud+1,n+1) = (−1)d−k
(
n− k − 1
d− k

)
Cd−k.

Then, by Definition 5.4.1. we get that the Chern number of Ud+1,n+1 are given
by

c̄k1
1 · · · c̄

kd
d (Ud+1,n+1) =wt0

(
d∏
i=1

(−1)ki(d−(d−i))
(
n− (d− i)− 1
d− (d− i)

)ki
Ciki

)

=(−1)d
d∏
i=1

(
n− (d− i)− 1

i

)ki
,

where the last equality follows from the fact that the fan Cd is just the vertex
of the fan with weight 1, and from the fact that

∑d
i=1 iki = d. �

In [Eur20], Eur defines an invariant of the matroid which is closely related
to the divisor ch1(M) ∈ A1(M).

Definition 5.4.6 ([Eur20, Definition 5.1.]). For a matroidM with reduced lattice
of flats LM , define its shifted rank divisor DM to be

DM :=
∑
F∈LM

r(F )xF ,

and define the shifted rank volume of a matroid M to be the volume of its
shifted rank divisor:

shRVol(M) := deg
( ∑
F∈LM

r(F )xF
)r(M)−1

.

For representable matroids, the volume measures how general the associated
hyperplane arrangement is [Eur20].

Theorem 5.4.7 ([Eur20, Theorem 5.5.]). Let M be a representable matroid of
rank d+ 1 on n+ 1 elements. Then

shRVol(M) ≤ shRVol(Ud+1,n+1) = nr−1 with equality iff M = Ud+1,n+1.

Proposition 5.4.8. Let M be a matroid of rank d+ 1 on a ground set E, then

ch1(M) = DM + (d+ 1)xE .

In Section 6.4, we will see that Theorem 5.4.7 can apply for the Chern
number c21(M), when M is a matroid of rank 3.
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CHAPTER 6

Chern numbers of matroids of
rank 3

In this chapter we investigate properties of the Chern numbers of matroids of
rank 3.

6.1 The Chern numbers of matroids of rank 3

Recall, by Example 5.4.2, that to a matroid M of rank 3 we can associate
two Chern numbers, namely c21(M) and c2(M). Now, let us write an explicit
formula for the Chern numbers c21(M) and c2(M) in terms of the size, and the
number of flats of rank 2.

Proposition 6.1.1. Let M be a simple matroid of rank 3 on a ground set E. If
we let |E| = n, and let tm be the number of flats F of rank 2 of size m, we get
that the Chern numbers of M are

c21(M) = (3− n)2 −
∑
m≥2

(2−m)2tm,

c2(M) = 3− 2n+
∑
m≥2

(m− 1)tm.

We use the following results to prove Proposition 6.1.1. As before, Let M
denote a simple matroid of rank 3.

Lemma 6.1.2. Let xi be the monomial corresponding to the rank 1 flat {i} ⊆ E
for 0 ≤ i ≤ |E|, and let xF be the monomial corresponding to the rank 2 flats
F ⊆ E, then the linear monomials in A1(M) are given by

xi = −
∑

F3i,F 6=i
xF + xj +

∑
F3j

xF , and

xF ′ = −
(
xi +

∑
F3i,F 6=F ′

xF

)
+ xj +

∑
F3j

xF ,

for an i ∈ F ′ and a j /∈ F ′.

Proof. Follows from the linear relation in the Chow ring A∗(M). �
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Recall, be Definition 4.3.5, and Proposition 4.3.6, that for a matroid M of
rank 3 we have the following isomorphism

deg : A2(M)→ Z, (6.1)

uniquely determined by the property that deg(xixF ) = 1, for a flat F of rank 2
containing i. In order to compute the Chern numbers, we need to know the
degrees of the quadric monomials, see proposition below.

Proposition 6.1.3. Let M be a simple matroid of rank 3 on a ground set
E, and let F denote a flat of rank 2 containing an i ∈ E. Moreover let
ki = |{F : F 3 i}. Then, the degrees of the quadric monomials are given in
Table 6.1.

Monomials xixF x2
i x2

F xixE xFxE x2
E

Degrees 1 1− ki -1 -1 0 1

Table 6.1: Degrees of the quadric monomials.

Proof. We prove the degrees of the monomials x2
i and x2

F in Table 6.1, by
applying Eur’s formula given in Theorem 4.3.7. For the monomial x2

i , we need
the following the following values for computations:

r1 = 1, d1 = 2, d̃1 = 2, k = 1.

Then, by inserting the above values in the formula given in Theorem 4.3.7, we
get the following equality

deg(x2
i ) = −µ1(M/i).

Recall, by Section 2.4 that the matroid M/i is the matroid arising from the
lattice of flats [i, E], which is the rank 2 matroid consisting of ki flats of rank 1.
Note that ki is the number of flats of rank 2 of the original matroidM containing
i. Then, the reduced characteristic polynomial χM/i(λ) = λ+ 1− ki, and the
unsigned coefficient µ1(M/i) = −(ki − 1). It follows that deg(x2

i ) = (1− ki).
For the monomial x2

F we need the following values

r1 = 2, d1 = 2, d̃1 = 2, k = 1.

Then, by inserting the above values in the formula given in Theorem 4.3.7, we
get the following equality

deg(x2
F ) = −µ0(M/F ).

Recall, by Section 2.4 that the matroid M/F is just the one element matroid of
rank 1. Hence the reduced characteristic polynomial is given by χM/F = 1, and
so the unsigned coefficient µ0(M/F ) = 1. It follows, that deg(x2

F ) = −1.
For the monomial x2

E , we apply directly the relations in the Chow ring. Let
i 6= j ∈ E, and denote by Fij the unique rank 2 flat containing i, and j. Then
we have the following equality

x2
E = (−

∑
F3i

xF )(−
∑
F3j

xF )
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= xixFij + xjxFij + x2
Fij .

Hence deg(x2
E) = 1. Finally, we find the degrees of the monomials xixE and

xFxE by applying Proposition 4.3.4. �

Now, we are finally ready to prove Proposition 6.1.1.

Proof of Proposition 6.1.1. We compute the Chern numbers c21(M) and c2(M)
by applying the formula in Conjecture 5.2.4. Recall by Theorem 5.2.5, that
the conjecture is proven for these Chern numbers. We begin with the first
statement. By Example 5.2.6, the Chern number c21(M) is given by

c21(M) =
(

(−1)
∑

r(F )≥2

(r(F )− |F |)xF
)2

=
∑

r(F )=2

(2− |F |)2x2
F +

∑
r(F )=2

2(2− |F |)(3− |E|)xFxE

+ (3− |E|)2x2
E .

Then, by the degrees of the quadric monomials given in Table 6.1, the Chern
number c21(M) is given by

c21(M) =(3− |E|)2 −
∑

r(F )=2

(2− |F |)2.

Finally, by letting |E| = n, and tm be the number of flats F of rank 2 of size
m, we get

c21(M) = (3− n)2 −
∑
m≥2

(2−m)2tm. (6.2)

Now we prove the second statement. By Example 5.2.7 and Definition 5.4.1,
we have the following equality

c2(M) =
∑
F1⊆F2

chSxF1xF2 ,

where the sum is over all chains F1 ⊆ F2, for flats F1, and F2 of rank at least 1.
Recall that the coefficients in the sum are given by

chS = r(F1)(r(F2)− 1)
mS(1)!mS(2)! . . .mS(d+ 1)! ,

where the multisubset S = {r(F1), r(F2)}. Hence, if we denote by F the flats
of rank 2, the Chern number c2(M) is given by

c2(M) =
∑
i∈F

xixF +
∑
i∈E

2xixE +
∑
F

x2
F +

∑
F(E

4xFxE + 3x2
E .

By applying the degrees of the quadric monomials in Table 6.1, we get the
following equality

c2(M) =
∑
F

|F | −
∑
i∈E

2−
∑
F

1 + 3.
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Finally, by letting |E| = n, and tm be the number of flats F of rank 2 of size
m, we get the following equality

c2(M) =
∑
m≥2

mtm − 2n−
∑
m≥2

tm + 3

=3− 2n+
∑
m≥2

(m− 1)tm.

�

Now, we want to point out that there is another way of computing the Chern
number c2(M). Recall, by Proposition 5.4.4, that if M is a loopless matroid of
rank 3, we have the following equality

c2(M) = β(M).

Let us check that the above equality agrees with the findings in Proposition 6.1.1.

Lemma 6.1.4. Let M be a loopless matroid of rank 3, then

β(M) = 3− 2n+
∑
m≥2

(m− 1)tm.

Proof. Recall that the Beta invariant of a loopless matroid M is

β(M) = (−1)r(M)−1χM (1).

To find the characteristic polynomial χM , we use the Möbius function, see
Definition 5.1.1. Particularly, we use that for flats F ∈ LM of rank 2

µ(F, ∅) = −(1− |F |),

hence, if we as usual let tm be the number of flats of size m, we get that∑
F∈LM

µ(∅, F ) =
∑
m≥2

(m− 1)tm.

Then, the characteristic polynomial is given by

χM (λ) = λ3 − nλ2 +
∑
m≥2

(m− 1)tmλ− (1− n+
∑
m≥2

(m− 1)tm).

Finally, the beta invariant is given by

χM (1) = 3− 2n+
∑
m≥2

(m− 1)tm,

which equals the Chern number c2(M).
�
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6.2 Chern numbers of line arrangemnts

Recall that essential line arrangements give rise to simple matroids of rank 3,
see Proposition 2.2.5. In this section we see that the Chern numbers of a line
arrangement A as defined in [EFU18] are related to the Chern numbers of the
corresponding simple matroid MA of rank 3.

Definition 6.2.1. [EFU18] Let A be an arrangement of n lines, and let tm be
the number of m-points of A, i.e., a point which belongs to exactly m lines. We
define the integers

c21(A) = 9− 5n+
∑
m≥2

(3m− 4)tm and (6.3)

c2(A) = 3− 2n+
∑
m≥2

(m− 1)tm. (6.4)

They are called the Chern numbers of A.

Example 6.2.2. Let A be a trivial arrangement, i.e., an arrangement consisting
of n lines intersecting at the same point. Then, the number of n-points tn = 1,
whereas the number of k-points tk = 0 for k 6= n. Moreover, the Chern numbers
are given by

c21(A) = −2n+ 5, and c2(A) = −n+ 2.

Now, let A be a quasi-trivial arrangement, i.e., an arrangement consisting of
n− 1 lines intersecting at the same point, and one other line intersecting the
first n− 1 lines in n− 1 distinct points, one for each line. Then, the number
of 2-points t2 = n− 1, and the number of (n− 1)-point tn−1 = 1, whereas the
number of k-points tk = 0 for all other k’s. Moreover, we get that the Chern
numbers of the quasi-trivial arrangement are

c21(A) = 0, and c2(A) = 0.

�

Proposition 6.2.3. Let A be a essential arrangement of lines, and let MA be
the corresponding simple matroid of rank 3. Then

c21(A) = c21(MA),
c2(A) = c2(MA),

where c2(MA) and c21(MA) are the Chern numbers defined in Definition 6.2.1.

Proof. The second statement follows directly from the definition of the Chern
number c2(A), see Definition 6.2.1, and from Proposition 6.1.1.

For the first statement, we use that

c21(MA)− c21(A) = n2 − n−
∑
m≥2

(m2 −m)tm,

and prove by induction on n the following equality

n2 − n =
∑
m≥2

(m2 −m)tm. (6.5)
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For n = 3, the arrangement must consist of three lines not all intersecting in
the same point, hence the corresponding matroid has three flats of rank 2 of
size 2, so the equality holds.

Now, let A be an essential line arrangement of size n, and let MA be the corres-
ponding matroid. We want to show that adding a line li to the arrangement A,
or equivalently a flat {i} of rank 1 to the corresponding matroid MA, changes
the left and right hand side of Equation (6.5) of the same quantity. First of all,
we easily compute that the change in the left hand side is 2n. For the right
hand side, we first denote by A′ the arrangement A with one line added, and
by MA′ the corresponding matroid.

Note that the rank 2 flats ofMA′ consist of those not containing i, which are
also rank 2 flats of MA, and those containing i. Now, let Fi be the set of rank
2 flats of MA′ containing i. The set Fi equals the disjoint union Fi = F1 ∪ F2,
where F1 consists of the flats F ∈ Fi such that F \ {i} is a rank 2 flat of MA,
and F2 consists of the flats F ∈ F2 such that F \ {i} is a flat of rank 1, hence
F is of size 2. Remark that, by the covering axiom of flats, the size of F is
|F2| = n−

∑
F∈F1

(|F |−1). Then, adding a flat {i} to the matroid MA changes
the right hand side of Equation (6.5) by∑

F∈F1

(|F |2 − |F |)−
∑
F∈F1

((|F | − 1)2 − (|F | − 1)) + 2(n−
∑
F∈F1

(|F | − 1))

= 2n.

This proves Equation (6.5), hence the first statement in Proposition 6.2.3. �

6.3 Examples

In this section we calculate some examples for the Chern numbers of simple
matroids of rank 3.

Example 6.3.1. We compute the Chern numbers of the uniform matroid U3,n+1,
which has n(n+1)/2 number of flats of rank 2 of size 2. Hence the multiplicities
are given by t2 = n(n+ 1)/2, and tk = 0 for all other k’s. It follows that the
Chern numbers are given by

c21(U3,n+1) = (n− 2)2,

c2(U3,n+1) = 1
2(n− 2)(n− 1),

by applying the formulas given in Proposition 6.1.1. Note that the above results
are consistent with the findings in Proposition 5.4.5, namely with the formula
for the Chern numbers of the uniform matroid of arbitrary rank. In Table 6.2
we have listed the Chern numbers of U3,n+1 for some n ∈ N. �

As mentioned in Section 2.3, hyperplane arrangements arising from finite
projective spaces PG(n, q) have nice combinatorial properties. In particular,
the finite projective plane PG(2, q) gives rise to a hyperplane arrangement
consisting of q2 + q+ 1 lines, and q2 + q+ 1 intersection points. Moreover, each
intersection point is on q + 1 distinct lines, see Section 6.1 in [Oxl06].
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6.3. Examples

M c21(M) c2(M)
U3,3 0 0
U3,4 1 1
U3,5 4 3
U3,7 16 10
U3,9 36 21

Table 6.2: Chern numbers of the uniform matroid U3,n+1.

Example 6.3.2. The finite projective plane matroid PG(2, q) is a matroid on a
ground set E of size q2 + q + 1 having q2 + q + 1 flats of rank 2 of size q + 1.
Hence, its Chern numbers are given by

c21(PG(2, q)) = (2− (q2 + q))2 − (q2 + q + 1)(2− (q + 1))2

= 3(q3 − q2 − q + 1),
c2(PG(2, q)) = 1− 2(q2 + q) + q(q2 + q + 1)

= q3 − q2 − q + 1.

For example, the Fano plane PG(2, 2) introduced in Example 2.3.3 has Chern
numbers

c21(PG(2, 2)) = 9,
c2(PG(2, 2)) = 3.

In Table 6.3 we have listed the Chern numbers of the projective plane matroid
PG(2, q) for different q ∈ Z≥0. �

M c21(M) c2(M)
PG(2, 2) 9 3
PG(2, 4) 135 45
PG(2, 8) 1323 441
PG(2, 9) 1920 640

Table 6.3: Chern numbers of the finite projective plane matroid PG(2, q).

We want to point out that there exists finite projective planes that are not
representable over a field. See definition below for the general definition of a
projective plane, we have used [Lam91] notation.

Definition 6.3.3. A finite projective plane of order q, with q > 0, is a collection
of q2 + q1 + 1 lines and q2 + q + 1 points such that

1. every line contains q + 1 points,

2. every point is on q + 1 lines,

3. any two distinct lines intersect at exactly one point, and

4. any two distinct points lie on exactly one line.
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6.4. The geography of rank 3 matroids

There exists finite projective planes of order 9 that are not representable
over any field ([HSK59]). But whether there exists projective planes of order
not a prime power is still an open question.

Proposition 6.3.4. Let M be the finite projective plane matroid PG(2, q), not
necessarily representable over a field, then the following equality holds

c21(M)
c2(M) = 3.

Proof. See Example 6.3.2, and Definition 6.3.3. �

Example 6.3.5. In this example we compute the Chern numbers of the Pappus
matroid MP , and of the non-Pappus matroid MNP , see Section 2.3. Recall that
the Pappus matroid MP is a matroid on a ground set of size 9 having 9 flats of
rank 2 of size 2, and 9 flats of rank 2 of size 3. Hence the Chern numbers are
given by

c21(MP ) = 27,
c2(MP ) = 12.

Whereas, the non-Pappus matroid is a matroid on a ground set of size 9 having
8 flats of rank 2 of size 3, and 12 flats of rank 2 of size 2. Hence its Chern
numbers are

c21(MNP ) = 28,
c2(MNP ) = 13.

�

6.4 The geography of rank 3 matroids

In this section we show that there are some bounds on the Chern numbers of
matroids of rank 3. The inspiration comes from results in the study of geography
of manifolds, which deals with the possible values of Chern numbers of algebraic
manifolds of general type [Hun89]. Specifically, we begin by generalizing two
propositions of [EFU18] on the Chern numbers of line arrangements, to hold for
Chern numbers of simple matroids of rank 3. The proofs follow the same lines
as in [EFU18], but are stated in terms of Chern numbers of matroids rather
than Chern numbers of line arrangements.

Proposition 6.4.1. Let M be a simple matroid of rank 3 on the ground set
E = {1, . . . , n}, and let tm be the number of flats of rank 2 of size m. If M has
tn = tn−1 = 0, then its Chern numbers are positive.

Proof. Recall that the Chern number c2(M) = β(M), moreover recall by
Theorem 5.1.4 that β(M) is non-negative, and that β(M) = 0 if and only if
M is disconnected of a loop. We have already assumed that M is not a loop.
Moreover, note that M disconnected implies that tn−1 = 1, which we have
assumed to be 0. Hence, the Chern number c2(M) is positive.

Now, we prove by induction on n, that c21(M) is positive. Assume that
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6.4. The geography of rank 3 matroids

n = 4, then tn = tn−1 = 0 implies t2 = 6; so the Chern number of the matroid is
c21(M) = 1. Assume now that M is a matroid on a ground set |E| = n+ 1 ≥ 5,
and that i ∈ E is such that it is contained in t ≥ 3 rank 2 flats. Such an
element must exist by the assumption that tn = tn−1 = 0. Let Fi = {F1 . . . Ft}
be the rank 2 flats of M containing i, and denote by M \ i the deletion matroid.
We partition Fi as in the proof of Proposition 6.2.3, i.e., we let Fi = F1 ∪ F2,
where F1 consists of flats F such that F \ i is a flat of rank 2 of M \ i, and F2
consists of flats F of rank 2 such that F \ i is a flat of rank 1 of M \ i. Recall
also that the size of F2 is |F2| = n−

∑
F∈F1

(|F |−1). Then, by Definition 6.2.1,
and Proposition 6.2.3 the Chern number c21(M) is given by

c21(M) =c21(M \ i)− 5−
∑
F∈F1

(3(|F | − 1)− 4) +
∑
F∈F1

(3|F | − 4)

+ 2(n−
∑
F∈F1

(|F | − 1))

=c21(M \ i)− 5 +
∑
F∈F1

1 + 2(
∑
F∈F1

1 + n−
∑
F∈F1

(|F | − 1))

≥c21(M \ i)− 5 + 2t
≥c21(M \ i) + 1
≥1.

The last inequality follows from the induction hypothesis, i.e., that the Chern
number c21(M \ i) ≥ 0 of the deletion matroid M \ i is positive, hence c21(M) is
positive as well. �

In the next lemma we want to relate the Chern number c21(M) to the shifted
rank volume of a matroid shRVol(M) defined in [Eur20].

Lemma 6.4.2. Let M be a simple matroid of rank 3 on a ground set E of size
n+ 1, then the Chern number

c21(M) = shRVol(M) + 3− 6n.

Proof. Denote by LM , and by L̂M the lattice of flats of M , and the reduced
lattice of flats of M respectively. Recall, by Definition 5.4.1 that the Chern
number c21(M) is given by

c̄21(M) = deg
( ∑
F∈LM\∅

r(F )xF
)2

= deg
( ∑
F∈L̂M

r(F )xF + 3xE
)2

= deg
( ∑
F∈L̂M

r(F )xF
)2 + deg(9x2

E) + 6deg
∑
F∈L̂M

r(F )xFxE

= shRVol(M) + 3− 6n.

Where the last equality follows from the degree values of the monomials listed
in Table 6.1. �
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6.4. The geography of rank 3 matroids

Hence, for a given matroid M , the Chern number ch2
1(M) and the shifted

rank volume value shRVol(M) differ only by a constant. Hence, the Chern
number c21(MA) of a representable matroids MA can also be understood as a
measure of how general the underlying line arrangement is. In fact, for simple
matroids of rank 3, we can even generalize Theorem 5.4.7, which only holds for
representable matroids, to hold for all simple matroids of rank 3.

Proposition 6.4.3. Let M be a simple matroid of rank 3 on a ground set E of
size n+ 1. If M has tn+1 = tn = 0, then the Chern numbers c21(M), and c2(M)
are bounded by

c21(M) ≤ c21(U3,n+1), and
c2(M) ≤ c2(U3,n+1).

Proof. We begin with the first statement. Recall that the Chern number c21(M)
is given by

c21(M) = (|E| − r(E))2 −
∑

r(F )=2

(|F | − r(F ))2,

and recall that for the uniform matroid U3,n+1, the Chern number c21(U3,n+1)
is given by

c21(U3,n+1) = (|E| − r(E))2

Then, since both the Chern number c21(M) and the sum
∑

r(F )=2(|F | − r(F ))2

are positive, we get the following inequality

c21(M) ≤ (|E| − r(E))2 = c21(U3,n+1).

Now, let fm(M) =
∑
m≥2 tm(m− 1). Then, for the second statement, we need

to prove that
fm(M) ≤ fm(U3,n+1). (6.6)

We begin by noting that

fm(M) =
∑

tm(m− 1) =
∑

tmm−
∑

tm,

which equals the number of edges minus the number of flats of rank 2 in the
reduced lattice of flats L̂M of M . We also note that we can always achieve
the lattice of flats of the uniform matroid U3,n+1 from the lattice of flats of an
arbitrary matroid M of rank 3, by relaxing the flats of rank 2 of size k ≥ 3
into flats of rank 2 of size 2. Every time we relax a flat of size k, we get

(
k
2
)

new flats of size 2, and one less flat of size k. Moreover, the number of edges
increases by 2

(
k
2
)
− k. If we denote by M ′ the matroid arising from relaxing a

flat of size k, we get that

fm(M ′)− fm(M) =2
(
k

2

)
− k −

((
k

2

)
− 1
)

=
(
k

2

)
− k + 1 ≥ 1,

which proves the Equation (6.6), and hence the right inequality of the second
statement. �
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6.4. The geography of rank 3 matroids

Following, we generalize Proposition 3.4 in [EFU18].

Theorem 6.4.4. Let M be a simple matroid of rank 3 on E = {1, . . . , n}, such
that tn = tn−1 = 0. Then,

2n− 6
n− 2 ≤

c21(M)
c2(M) ≤ 3

Left equality holds if and only if M is the uniform matroid U3,n, and right
equality holds if and only if M is the matroid of a finite projective plane.

Proof. Proving left inequality is equivalent to showing the inequality below

0 ≤ (n− 2)c21(M)− (2n− 6)c2(M). (6.7)

Recall from the proof of Proposition 6.2.3 that the following equality

−n2 + n =
∑
m≥2

(m−m2)tm

holds, when keeping the notation as in Proposition 6.2.3. Then, by inserting
for c21(M), and c2(M) in Equation (6.7) we get the following equality

(n− 2)c21(M)− (2n− 6)c2(M) =− n2 + n+
∑
m≥2

(mn− 2n+ 2)tm

=
∑
m≥2

(−m2 +m)tm +
∑
m≥2

(mn− 2n+ 2)tm

=
∑
m≥2

(−m2 +m(1 + n) + (2− 2n))tm.

Moreover, the inequality −m2 +m(1+n)+(2−2n) ≥ 0 holds for 2 ≤ m ≤ n−1
and the inequality −m2 +m(1 + n) + (2− 2n)) > 0 holds for all 3 ≤ m ≤ n− 2.
And since m is in fact less then n−1 by our assumption, the inequality in Equa-
tion (6.7) holds. Moreover, since the uniform matroid U3,n has n(n− 1)/2 flats
of rank 2 of size 2, the left equality in the theorem holds for the uniform matroid.

Proving the right inequality is equivalent to showing the following inequality

c21(M)− 3c2(M) = n−
∑
m≥2

tm ≤ 0.

The inequality follows from inserting p = 1, and r = 3, in Conjecture 1 in
[HW17], see [DW75] for original result. Moreover, recall from Example 6.3.2,
that for a finite projective plane PG(2, q) both the number of elements n and
the number of flats of rank 2 is q2 + q + 1, hence right equality holds. �

Next, we generalize a theorem in [EFU18] on line arrangements in the real
projective plane to hold for pseudoline arrangements. See for example Figure 2.7
for a pseudoline arrangement. First we need to introduce some definitions.

Definition 6.4.5. [Bjö+99, Definition 6.2.2.] A simple closed curve L in P2
R is

called a pseudoline if P2 \ L has one connected component. A collection of
pseudolines A = (Le)e∈E is called an arrangement of pseudolines if

⋂
A = ∅

and every pair of pseudolines Le and Lf in A, for e 6= f , intersect in exactly
one point.
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6.4. The geography of rank 3 matroids

A pseudoline arrangement decomposes the projective plane P2
R into 0-cells,

1-cells and 2-cells, which will be called vertices, edges, and polygons respectively,
as they do in [Bjö+99]. Moreover, we call r-gons the polygons bounded by
r edges. If every 2-cell is a 3-gone, the arrangement is called a simplicial
pseudoline arrangement.

Pseudoline arrangements are in fact related to a spacial type of matroids
which have some extra structure to them, namely oriented matroids, see for
example [Bjö+99] for an introduction to oriented matroids. The following result
is a special case of results due to Folkman, and Lawrence, see [FL78] for the
original reference.

Theorem 6.4.6. [Bjö+99, Section 1.3]] There is a one-to-one correspondence
between arrangements of pseudolines and simple rank 3 oriented matroids.

The following theorem is stated in terms of pseudoline arrangements, but
keep in mind the correspondence to oriented matroids. The next theorem is a
generalization of Theorem 3.5 in [EFU18].

Theorem 6.4.7. Let M be simple matroid of rank 3 on E = {1, . . . , n} with
tn = tn−1 = 0. If M arises from some pseudoline arrangement A = (Le)e∈E ,
then

c21(M) ≤ 5
2c2(M).

Equality is achieved if and only if the pseudoline arrangements of M are
simplicial.

Proof. We follow the conventions of Section 1.1 in [Hir83], and the proof of
[EFU18]. Note first that

5c2(M)− 2c21(M) = −3−
∑
m≥2

(m− 3)tm.

Let pm be the number of m-gons, and let f0, f1 and f2 be the number of vertices,
edges and 2-cells respectively. Then f0 =

∑
m≥2 tm, f2 =

∑
m≥3 pm, and note

that

f1 =
∑
m≥2

mtm = 1
2
∑
m≥2

mpm.

Then by the Euler characteristic formula, and by using that the Euler
characteristic of P2

R is 1, we get that

3f0 − 3f1 + 3f2 =3
∑
m≥2

tm − (
∑
m≥2

m · tm +
∑
m≥2

m · pm) + 3
∑
m≥2

pm

=−
∑
m≥2

(m− 3) · tm −
∑
m≥2

(m− 3) · pm

=3.

Finally we get the following equality∑
m≥2

(m− 3)pm = −3−
∑
m≥2

(m− 3)tm.
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6.4. The geography of rank 3 matroids

Since every pair of pseudolines intersect in exactly one point the multiplicity
p2 = 0, hence the sum

∑
m≥2(m− 3)pm ≥ 0. And the original inequality holds.

Moreover, if the pseudoline arrangement A is simplicial, then then multiplicity
pk = 0 for all k 6= 3. Hence, equality is achieved if and only if the matroid M
arises from a simplicial pseudoline arrangement. �

Corollary 6.4.8. If M is a simple orientable matroid of rank 3 with tn = tn−1 =
0, then

c21(M)
c2(M) ≤

5
2 .

Proof. Follows from Theorem 6.4.6, and Theorem 6.4.7. �

Finally, we end this section by computing the ratio c21(M)/c2(M) for some
specific matroids, see Table 6.4. Note that we have also included the matroid
arising from the Braid arrangement, see Example 2.1.3. Moreover, we have
plotted the Chern number pairs (c2(M), c21(M)) in Figure 6.1 for some specific
matroids of rank 3, see Table 6.4. The red line has slope 3, and the orange line
has slope 2.5.

M c21(M) c2(M) c21/c2(M)
U3,3 0 0 -
U3,4 1 1 1 A
U3,5 4 3 ≈ 1.33 B
U3,7 16 10 1.6 C
U3,9 36 21 ≈ 1.71
PG(2, 2) 9 3 3 D
PG(2, 4) 135 45 3
PG(2, 8) 1323 441 3
PG(2, 9) 1920 640 3
non-Fano 10 4 2.5 E
Pappus 27 12 2.25 F
non-
Pappus 28 13 ≈ 2.15 G

Braid 5 2 2.5 H
Table 6.4: Chern numbers of matroids of rank 3.
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c21(M)

c2(M)

A

B

C

D
E

F
G

H

Figure 6.1: Chern numbers of matroids of rank 3.
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CHAPTER 7

Chern numbers of matroids of
rank 4

In this chapter we investigate the Chern numbers of a simple matroid of rank
4. Recall that by Example 5.4.3 we can associate three Chern numbers to a
simple matroid M of rank 4, namely the Chern numbers c3(M), c1c2(M), and
c31(M), which are given by

c31(M) = deg(ch3
1(M)),

c1c2(M) = deg(ch1ch2(M)), and
c3(M) = deg(ch3(M)).

We begin by calculating the polynomials ch1(M) ∈ A1(M), ch2(M) ∈ A2(M),
and ch3(M) ∈ A3(M) by applying Conjecture 5.2.4. It is important to keep in
mind that the conjecture is proven for ch1(M), and ch3(M), but not for ch2.
Hence, the following corollary is true for ch2(M) only if Conjecture 5.2.4 is true.

Corollary 7.0.1. Let M be a simple matroid of rank 4 on a ground set E with
lattice of flats LM . Moreover, denote by F the set of flats of rank 2, and by G
the set of flats of rank 3, then assuming Conjecture 5.2.4 is true the polynomials
ch1(M), ch2(M), and ch3(M) are given by

ch1(M) =−
∑
F∈F

(2− |F |)xF −
∑
G∈G

(3− |G|)xG − (4− |E|)xE ,

ch2(M) =
∑

i∈E,F∈F
xixF +

∑
i∈E,G∈G

2xixG +
∑
i∈E

3xixE +
∑
F∈F

x2
F

+
∑

F∈F,G∈G
4xFxG +

∑
F∈F

6xFxE +
∑
G∈G

9xGxE + 6x2
E ,

ch3(M) =
∑

i∈E,F∈F,G∈G
xixFxG +

∑
i∈E,G∈G

xix
2
G +

∑
i∈E,F∈F

2xixFxE

+
∑

i∈E,G∈G
4xixGxE +

∑
i∈E

3xix2
E +

∑
F∈F,G∈G

x2
F2
xF3 +

∑
F∈F

2x2
FxE

+
∑

F∈F,G∈G
2xFx2

G +
∑
F∈F

6xFx2
E +

∑
F∈F,G∈G

8xFxGxE

+
∑
G∈G

6x2
GxE +

∑
G∈G

9xGx2
E +

∑
G∈G

x3
G + 4x3

E ,
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where we only sum over flags.

Proof. The proof follows from Conjecture 5.2.4, and Example 5.2.6. �

In order to compute the Chern numbers, we need to compute the values of
the degrees of the cubic monomials, as we did for matroids of rank 3. And, in
order to do so, we need the following result. We use the same notation as in
Corollary 7.0.1.

Lemma 7.0.2. The linear monomials in A1(M) are given by

xi =−
∑

F∈F,F3i
xF −

∑
G∈G,G3i

xG + xj +
∑

F∈F,F3j
xF +

∑
G∈G,G3j

xG,

xF ′ =−
(
xi +

∑
F∈F,F3i,F 6=F ′

xF +
∑

G∈G,G3i
xG

)
+ xj +

∑
F∈F,F3j

xF +
∑

G∈G,G3j
xG,

xG′ =−
(
xk +

∑
F∈F,F3k

xF +
∑

G∈G,G3k,G 6=G
xG

)
+ xj +

∑
F∈F,F3j

xF +
∑

G∈G,G3j
xG.

Proof. The proof follows from the linear relations in the Chow ring A∗(M). �

Recall, by Definition 4.3.5, and by Proposition 4.3.6, that there is an
isomorphism

deg : A3(M)→ Z

uniquely determined by the property that deg(xixFxG) = 1, for a chain
{i} ( F ( G. In the following proposition we compute the degree values
for the remaining cubic monomials.

Proposition 7.0.3. Let M be a simple matroid of rank 4, and F and G denote
the set of flats of rank 2, and 3 respectively. Moreover let the multiplicity
kF = |{G ∈ G : G ) F}| for a flat F ∈ F . Then, for some flats
∅ ( {i} ( F ( G ( E, the degrees of the cubic monomials are given in
Table 7.1.

Monomials xix
2
G x2

FxG xFx
2
G xix

2
F x3

F x3
G

Degrees -1 -1 0 1− kF 2kF − 2 1

Monomials xix
2
E xixFxE xixGxE xFx

2
E xFxGxE xGx

2
E x3

E

Degrees 1 -1 0 0 0 0 -1

Monomials x2
FxE x2

GxE
Degrees 1 0

Table 7.1: Degrees of the cubic monomials
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Proof. For the monomials in the first row of the table we have applied Eur’s
formula given in Theorem 4.3.7. We only show the computations for the
monomial xix2

F , since the other monomials are computed in a similar way. First
of all, recall by Section 2.4 that for two flats Fi ( Fi+1 the matroid M |Fi+1/Fi
is the matroid arising from the lattice of flats [Fi, Fi+1]. We keep the notations
as in Theorem 4.3.7. Then for the monomial xix2

F , we need the following values
for the computation:

r1 = r({i}) = 1, d1 = 1, d̃1 = 1,
r2 = r(F ) = 2, d2 = 2, d̃2 = 3.

Then, since d− k = 1, and by inserting the above values in the formula given
in Theorem 4.3.7, we get that

deg(xix2
F ) = −µ0(M |F/{i})µ1(M/F ).

The matroid M |F/{i} is just the matroid arising from the lattice of flats
[{i}, F ], hence a matroid of rank 1 consisting of one element. Note that the
reduced characteristic polynomial of a one element matroid is χM |F/{i}(λ) = 1.
Hence, the unsigned coefficient µ0(M |F/{i}) = 1. The matroid M/F is the
matroid arising from the lattice of flats [F,E], hence it is a rank 2 matroid,
where the rank 1 flats are the rank 3 flats of the original matroid M con-
taining F . Recall that we have denoted by kF = |{G : G ) F}|, then
the reduced characteristic polynomial χM/F = λ + 1 − kF , and hence the
unsigned coefficient µ1(M/F ) = kF−1. Finally we get that deg(xix2

F ) = 1−kF .

For the monomials in the third row we need to apply the relations in the Chow
ring, and the results in Lemma 7.0.2. We denote by L a flat in the reduced
lattice of flats. Moreover, it follows from the flat axioms that for a simple
matroid M of rank 4:

1. For every pair of elements i, j ∈ E there exists a unique flat Fi,j of rank
2 containing both i, and j.

2. For an element k ∈ E, and a flat F of rank 2 such that k /∈ F , there
exists a unique flat G{F,k} of rank 3 containing both k and F .

Now, choose i /∈ F , and let G{F,i} be the unique rank 3 flat containing F and i,
then the monomial x2

FxE ∈ A3(M) is given by

x2
FxE = x2

F

(
−
∑
L3i

xL
)

= −x2
FxG{F,i} .

Hence, we get deg(x2
FxE) = 1. Now, choose i /∈ G, then the monomial

x2
GxE ∈ A3(M) is given by

x2
GxE = x2

G

(∑
L3i

xL
)

= 0.
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Finally for i 6= j 6= k, such that r({i, j, k}) = 3, we have that

x3
E = −

∑
L3i

xL
∑
L3j

xL
∑
L3k

xL

= −xixFijxGijk ,

where Fij is the unique flat of rank 2 containing i and j, and Gijk is the unique
rank 3 flat containing i, j, and k. Hence deg(x3

E) = −1.

For the monomials in the second row of the table we have applied Pro-
position 4.3.4, and that deg(x3

E) = −1. �

We are finally ready to express the Chern numbers of a simple matroid M
of rank 4 in terms of the size and number of its flats.

Proposition 7.0.4. Let M be a simple matroid of rank 4 on a ground set
E. Let F and G be the sets of flats of rank 2, and 3 respectively, and let
kF = |{G ∈ G : G ) F}|. Then, assuming Conjecture 5.2.4 is true, the Chern
numbers c31(M), and c3(M) of M are given by

c31(M) =−
(

(|E| − 4)3 +
∑
F∈F

(|F | − 2)2
(

2(kF − 1)(|F | − 2) + 3(|E| − 4)
)

− 3
∑
F(G

(|F | − 2)2(|G| − 3) +
∑
G∈G

(|G| − 3)3
)
,

c3(M) =−
(

3|E| − 4 +
∑
F∈F

((|F | − 1)(kF − 2))−
∑
G∈G

(|G| − 1)
)
,

c1c2(M) =−
(
− 6(4− |E|) +

∑
F∈F

(
|F |
(

(2− |F |)((1− kF )− 3)− (4− |E|)
)

+ (2− |F |)(2kF − 2) + 6(2− |F |) + (4− |E|)
)

+
∑

F∈F,G∈G
|F |
(

(2(2− |F |) + (3− |G|)
)

− (4(2− |F |) + (3− |G|))
)

+
∑
G∈G

3(3− |G|)

+
∑

i∈E,G∈G
−2(3− |G|) +

∑
i∈E

3(4− |E|)
)

Proof. We begin with the first statement. We compute the cube of the
polynomial ch1(M) as given in Corollary 7.0.1:

ch3
1(M) =(−1)

( ∑
F∈F

(|F | − 2)3x3
F + 3

∑
F(G

(|F | − 2)2(|G| − 3)x2
FxG

+ 3
∑
F∈F

(|F | − 2)2(|E| − 4)x2
FxE +

∑
G∈G

(|G| − 3)3x3
G + (|E| − 4)3

)
,

then by applying the results in Proposition 7.0.3, we get the wanted result.
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For the second statement, we apply the results in Proposition 7.0.3 to the
formula given for ch3 in Corollary 7.0.1.

For the last statement, we need to assume that Conjecture 5.2.4 is true. We
begin by computing the polynomial ch1(M)ch2(M) with the results given in
Corollary 7.0.1.

ch1(M)ch2(M) =−
( ∑
i∈E,F∈F

((2− |F |)xix2
F ) + 3(2− |F |)xixFxE

+ (4− |E|)xixFxE) +
∑

i∈E,F∈F,G∈G
(2(2− |F |)xixFxG

+ (3− |G|)xixFxG) +
∑
F∈F

((2− |F |)x3
F + (4− |E|)x2

FxE)

+
∑

F∈F,G∈G
4(2− |F |)x2

FxG +
∑
F∈F

6(2− |F |)x2
FxE

+
∑
F∈F

6(2− |F |)xFx2
E +

∑
i∈E,G∈G

2(3− |G|)xix2
G

+
∑

F∈F,G∈G
(3− |G|)x2

FxG +
∑
G∈G

3(3− |G|)x3
G

+
∑
i∈E

3(4− |E|)xix2
E + 6(4− |E|)x3

E

)
Moreover, we get the formula for the Chern number c1c2(M) by computing the
degree deg(ch1ch2(M)) with the help of the results in Proposition 7.0.3. �

Example 7.0.5. Recall that, by Proposition 5.4.5, we already have a formula for
computing the Chern numbers of the uniform matroid. Let M be the uniform
matroid of rank 4 on n+ 1, then the Chern numbers of M are given by:

c31(M) = (3− n)3,

c1c2(M) = −1
2(n− 3)2(n− 2),

c3(M) = −
(
n− 1

3

)
.

Note that, if we denote by F the set of flats of rank 2, and by G the set of
flats of rank 3, then we have the following values for U4,n+1:

|F| =
(
n+ 1

2

)
, |G| =

(
n+ 1

3

)
,

and

|F | = 2 for F ∈ F , |G| = 3 for G ∈ G.

Moreover, let kF denote the number of flats of rank 3 containing F ∈ G, then
kF = n − 1, since, for every flat F ∈ F , the set F ∪ {i}, for an i ∈ E \ F , is
a flats of rank 3. If we insert the values above in the formulas given for the
Chern numbers for matroids of rank 4 in Proposition 7.0.4, we get the exact
same values for the Chern numbers as in Proposition 5.4.5.
In Table 7.2 we have listed the Chern numbers of U4,n+1 for some specific values
for n. �
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M c31(M) c1c2(M) c3(M)
U4,4 0 0 0
U4,5 -1 -1 -1
U4,6 -8 -6 -4
U4,8 -64 -40 -20
U4,15 -1331 -936 -286

Table 7.2: Chern numbers of the uniform matroid U4,n+1

What is particular interesting about Example 7.0.5, is that for the uniform
matroid U4,n+1, we know what the Chern number c1c2(U4,n+1) should be for all
n ≥ 4, see Proposition 5.4.5. And this coincides with the results when computing
c1c2(U4,n+1) by applying Conjecture 5.2.4. Hence, the above example strengthen
the likelihood of the conjecture to be true!

Example 7.0.6. In this example we compute the Chern numbers of the matroid
arising from the finite projective 3-space PG(3, q) for a prime power q. The
ground set E corresponds to the set of planes of PG(3, q), the set of rank 2 flats
F corresponds to the set of lines, and the set of rank 3 flats G corresponds to
the set of points. As before, denote by kF = |{G : G ⊇ F}|, then the matroid
PG(3, q) has

|E| = q3 + q2 + q + 1 number of elements,
|F| = (q2 + 1)(q2 + q + 1) number of flats of rank 2,
|G| = q3 + q2 + q + 1 number of flats of rank 3,
|F | = q + 1 sized flats F ∈ F ,
|G| = q2 + q + 1 sized flats G ∈ G,

Moreover, the multiplicity kF = q + 1 for all F ∈ F . For details on the above
results, see for example Section 6.1. in [Oxl06]. And keep in mind that the size
|F | corresponds to the number of planes through a line, the size |G| corresponds
to the number of lines through a point, and the multiplicity kF corresponds to
the number of points on a line.

Then, by inserting the above values in the formulas given in Proposition 7.0.4,
we get that the Chern numbers of the matroid arising from PG(3, q) are given
by

c31(PG(3, q)) = −16(q6 − q5 − q4 + q2 + q − 1),
c2c1(PG(3, q)) = −6(q6 − q5 − q4 + q2 + q − 1),
c3(PG(3, q)) = −(q6 − q5 − q4 + q2 + q − 1).

In Table 7.3 we have listed some values for the Chern numbers for different
prime powers q.

�
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M c31(M) c1c2(M) c3(M)
PG(3, 2) -336 -126 -21
PG(3, 3) -6656 -2496 -416
PG(3, 4) -45360 -17010 -2835

Table 7.3: Chern numbers of the finite projective 3-space matroid PG(3, q).

Proposition 7.0.7. Let M be a matroid arising from the finite projective 3-space
PG(3, q) for a prime power q. Then the following equalities

c31(M)
c3(M) = 16, and c31(M)

c1c2(M) = 8
3

hold.

Proof. See Example 7.0.6. �

For an arbitrary matroid M of rank 4 we have implemented a function in
Macaulay2 in order to compute the Chern number c31(M) with the help of the
Package [Che], see script below. In addition of having a test example for a
known value, we have included both the Vamos matroid V8, and the related
matroid V +

8 . The Vamos matroid is a non-representable matroid of rank 4 on a
ground set of 8 elements, whereas the matroid V +

8 is a matroid obtained from
V8 by relaxing a flat, see Example 2.1.25 in [Oxl06] for the construction of these
matroids.

loadPackage "Matroids";

c1_cubed = Matroid -> (
M = Matroid; Flats = flats M;
I = idealChowRing M; R = ring I; A = R/I; l = #Flats;
AVars = hashTable apply(gens ambient A, i -> (set last baseName i, sub(i,A)));
ch_1 = 0;
XE = 0;
-- Choose the generator for A^3(M)
x_sigma = AVars#(set {0});
n=#M.groundSet;
m=2;
while m < 4 do(

if rank(M, Flats#n)== m then if member(0, Flats#n) then (
x_sigma=x_sigma*AVars#(Flats#n);
m = 3;
F = Flats#n;

);
n = n+1;
if rank(M, Flats#n)== 3 then if isSubset(F, Flats#n) then (

x_sigma=x_sigma*AVars#(Flats#n);
m = 4;

);
);
-- Compute ch_1 and XE
j = 1;
while j < #Flats - 1 do(

ch_1 = ch_1 + rank(M, Flats#j)*AVars#(Flats#j);
if member(0, Flats#j) then XE = XE - AVars#(Flats#j);
j = j+1;
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);
ch_1 = -(ch_1 + rank(M, Flats#(l-1))*XE); ch1_3 = ch_1^3;
c1_3 = coefficient(x_sigma, ch_1^3);
return c1_3;

)

PG32 = projectiveGeometry(3,2)
c1_cubed(PG32)

vamos = specificMatroid "vamos"
c1_cubed(vamos)

V8_plus = specificMatroid "V8+"
c1_cubed(V8_plus)

This generates the output:
i17 : c1_cubed(ProjMat2)

o17 = -336

i23 : c1_cubed(V8_plus)

o23 = -58

i25 : c1_cubed(vamos)

o25 = -59

Hence, we get that the Chern number c31(PG(3, 2)) = 336 for the finite
projective 3-space PG(3, 2) as expected. Moreover we get that the Chern
numbers c31(V 8) = 59, and c31(V 8+) = 58 for the Vamos matroid, and the V 8+
matroid.

Moreover, recall by Proposition 5.4.4 that the Chern number c3(M) is given by
(−1)3β(M) for a simple matroid M of rank 4. Hence we can use the script in
Chapter 5 in order to compute c3(M). The following code
vamos = specificMatroid "vamos";
betaInvariant(vamos)

V8 = specificMatroid "V8+";
betaInvariant(V8)

generates the following output
i7 : betaInvariant(vamos)

o7 = 15

i9 : betaInvariant(V8)

o9 = 14

Hence, the Chern numbers c3(V 8) = −15, and c3(V 8+) = −14 respectively.
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CHAPTER 8

Further research

In this chapter we present some questions for further investigation. In Section 8.1,
and Section 8.2 we concentrate on matroids of rank 3 and 4 respectively. Finally,
in Section 8.3 we address general matroids.

8.1 Open questions for matroids of rank 3

In Chapter 6 we showed that both Chern numbers c21(M) and c2(M) of a simple
matroid of rank 3, as well as the ratio c21(M)/c2(M), are bounded. For simple
matroids of rank 3, we pose the following questions:

Question 8.1.1 (Geography of Chern number pairs in rank 3). For which pairs
(a, b) ∈ Z≥0×Z≥0 does there exists a matroid such that (c21(M), c2(M)) = (a, b)?

Question 8.1.1 is related to the study of the geography of Chern numbers
of surfaces in complex algebraic geometry, where more about these numbers is
known, see for example [Spr] for a brief overview, or [Hun89].

Question 8.1.2 (Representability of Chern numbers in rank 3). Given any
simple matroid M of rank 3 with Chern numbers (c21(M), c2(M)), does there
exist a representable matroid MA of rank 3 such that

(c21(MA), c2(MA)) = (c21(M), c2(M))?

For instance, consider the non-Pappus matroid.

Example 8.1.3. Recall that the non-Pappus matroid is the matroid arising
from the pseudoline arrangement given in Section 2.3. It is a simple matroid
of rank 3 consisting of 9 flats of rank 1, and 12 flats of rank 2 of size 2, and
8 flats of rank 2 of size 3. Recall also from Example 6.3.5 that the Chern
numbers of the non-Pappus matroid are (28, 13). Finding a representable
matroid MA of rank 3 such that (c21(MA), c2(MA)) = (28, 13) corresponds to
finding a line arrangement A consisting of 9 lines intersecting in 12 points with
multiplicity 2, and in 8 points with multiplicity 3. Such an arrangement exists,
see Figure 8.1. �

Finally, we want to point out the possible extent of Question 8.1.1 and
Question 8.1.2. Recall, from Theorem 6.4.4, that for a simple matroid of rank 3
c21(M)/c2(M) = 3 if and only if M is the matroid of a finite projective plane.
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8.2. Open questions for matroids of rank 4

Figure 8.1: Line arrangement A.

Recall also that the finite projective plane matroid of order q has Chern numbers

c21(PG(2, q)) =3(q3 − q2 − q + 1),
c2(PG(2, q)) =q3 − q2 − q + 1.

Hence, finding out for which values of q there exists a matroid M having Chern
numbers (c21(M), c2(M)) = (3(q3 − q2 − q + 1), q3 − q2 − q + 1), and if so if
the matroid is representable over a field, would in fact solve the prime power
conjecture.

8.2 Open questions for matroids of rank 4

We saw in Chapter 6 that the Chern numbers of matroids of rank 3 are positive.
From our calculations in Chapter 7 it seems plausible that the Chern numbers
of matroids of rank 4 are either zero, or negative. Let M be a matroid of rank
4, then by Proposition 5.4.4, the equality

c3(M) = −β(M)

holds, hence c3(M) is always zero, or negative.

Conjecture 8.2.1. Let M be a matroid of rank 4, then the Chern numbers
c31(M), and c1c2(M) are either zero, or negative.

If Conjecture 8.2.1 were to be true, it would be a generalization of a result
on Chern numbers of 3-folds under some assumptions, see [Hun89].

Moreover, it would be interesting to have some bounds for matroids of
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8.3. Open questions for matroids of any rank

rank 4 as we did for matroids of rank 3. Given some constrains on the size of
the flats, it may be possible to prove the following conjecture.

Conjecture 8.2.2. Let M be a simple matroid of rank 4 on E = {0, 1, . . . , n},
then we have the following inequalities

6(n− 4)2

(n− 3)(n− 2) ≤
∣∣∣∣c31(M)
c3(M)

∣∣∣∣ ≤ 16, and (8.1)∣∣∣∣ c31(M)
c1(M)c2(M)

∣∣∣∣ ≤ 8
3 . (8.2)

For the inequality (8.1), note first that 6(n − 4)2/(n − 3)(n − 2) ≤ 16, as
long as n ≥ 4, but this is always the case for matroids of rank 4. Moreover,
left equality is achieved for the uniform matroid U4,d+1, see Example 7.0.5,
and right equality is achieved for the finite projective 3-space matroids, see
Proposition 7.0.7. For the inequality (8.2), right equality is achieved for the
finite projective 3-space, see Example 7.0.5. It is also worth mentioning that
if the second inequality actually holds, it would also be a generalization of a
result on Chern numbers of 3-folds under some assumptions, see [Hun89].

Finally, for simple matroids of rank 4, we pose the following questions.

Question 8.2.3 (Geography of Chern number triples in rank 4). For
what triples (a, b, c) ∈ Z × Z × Z does there exist a matroid such that
(c31(M), c1c2(M), c3(M)) = (a, b, c)?

Question 8.2.3 is related to the study of the geography of Chern numbers of
threefolds of general type, see for example [Liu97].

Question 8.2.4 (Representability of Chern numbers in rank 4). Given any
simple matroid M of rank 4 having Chern numbers (c31(M), c1c2(M), c3(M)),
does there exist a representable matroid MA of rank 4 such that
(c31(MA), c1c2(MA), c3(MA)) = (c31(M), c1c2(M), c3(M))?

8.3 Open questions for matroids of any rank

Overall, it would be interesting to examine Chern numbers of matroids of any
rank. Specifically, we pose the following question.

Recall from Proposition 6.3.4, that for the finite projective plane matroid
M = PG(2, q), the equality c21/c2(M) = 3 holds, and from Proposition 7.0.7
that for the finite projective 3-space matroid M = PG(3, q) the equality
c31M/c3(M) = 16 holds. This leads us to pose the following question.

Question 8.3.1. Does the equality

cd1(M)
cd(M) = (d+ 1)d−1

hold for a matroid M arising from a finite projective d-dimensional space?

Finally, geography problems like the ones addressed in Question 8.1.1, and
Question 8.1.2 for matroids of rank 3, and in Question 8.2.3, and Question 8.2.4
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8.3. Open questions for matroids of any rank

for matroids of rank 4, regarding the geography and representability of the
Chern numbers, are interesting to consider for matroids of any rank, although
quite difficult.
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