
Reinforcement Learning and
Evolutionary Algorithms for Attitude

Control

A comparison for aerial vehicles

Eivind Brastad Dammen

Thesis submitted for the degree of
Master in Robotics and Intelligent Systems

60 credits

Department of Informatics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Spring 2022

Reinforcement Learning and
Evolutionary Algorithms for

Attitude Control

A comparison for aerial vehicles

Eivind Brastad Dammen

© 2022 Eivind Brastad Dammen

Reinforcement Learning and Evolutionary Algorithms for Attitude
Control

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract

In recent years, the use of Unmanned Aerial Vehicle (UAV) has increased
rapidly because of breakthroughs in relevant technology, such as efficient
power sources, software frameworks, smaller form factors and computa-
tional power. Quadrotors is a well studied airframe, that is known for its
high manoeuvrability and relevancy in multiple tasks, like search, surveil-
lance, monitoring, transport etc. However, this vehicle provide complex
dynamics, due to its underactuated nature and complicated aerodynam-
ics. At the same time, research in Artificial Intelligence (AI) has shown
impressive capabilities in optimization problems among others.

With increasing complexity and higher demand in UAVs, one could
see the need for new control systems that were faster and easier to
implement. and this is where AI, or more specific Reinforcement Learning
(RL) and Evolutionary Algorithm (EA) comes in, as potential assistants
in simplifying and optimizing the development of control systems for
complex vehicles, such as the quadrotor.

In this thesis, the performance of RL for attitude control on quadrotor
is shown, and its performance is compared to the classical Proportional
Integral Derivative (PID) controller. With the help of open source flight
controller software, an Evolutionary Algorithm is developed and used to
optimize the PID controller using the same environment as the RL model.

The results show that the combination of PID with a effective
optimization algorithm, unlocks a great performance from the classical
control system, but RL show some benefits in its behaviour, over the PID
system.

The tools used in this thesis show how relatively simple it can be
to create an accurate model of an aerial vehicle. The performance and
behaviour of the different control systems are concluded with a Monte
Carlo Simulation.

i

ii

Acknowledgments

This thesis was written during an odd period to say the least. With
restrictions that resulted in mostly digital lectures and exams, to mention
some. I would like to thank those that made it possible to finish this
thesis. My first thanks goes to my supervisors Kim Mathiassen, Tønnes
Frostad Nygaard and Christian Horn, which guided me and inspired me
to work hard. Furthermore, I want to thank my family for their support
and encouragement throughout these two years.

As I can hear the "Too long"-song starts playing and the bottom of this
dedicated page closing in. I would like to give a wholeheartedly shoutout
to the bois, which all wrote their thesis partly in the same period as me
and experienced the same restrictions.

iii

iv

Contents

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Previous Work . 2
1.2 Problem statement . 6
1.3 Thesis Outline . 7

2 Background and Theory 9
2.1 Unmanned Aerial Vehicle . 9

2.1.1 The control problem 10
2.1.2 Rigid-body dynamics and scaling laws 11
2.1.3 Aerodynamics . 13
2.1.4 Estimating the state . 16

2.2 Control Theory . 16
2.2.1 Proportional Integral Derivative 17
2.2.2 Ziegler Nichols . 18

2.3 Artificial Intelligence . 19
2.3.1 Evolutionary Algorithm 20
2.3.2 Artifical Neural Networks 21
2.3.3 Deep Learning . 22

2.4 Reinforcement Learning . 23
2.5 Proximal Policy Optimization 26
2.6 Digital Twin . 28
2.7 Monte Carlo Simulation . 29

3 Tools and Framework 31
3.1 GymFC . 31

3.1.1 PX4 Gazebo SITL motor model plugin 31
3.1.2 Simulation environment 32
3.1.3 Reward functions . 33
3.1.4 OpenAI Baselines . 35

3.2 Computer-aided Design . 35
3.3 Statistical analysis and visualization 36

v

4 Method and Implementation 39
4.1 Motor-modeling . 39
4.2 Rigid body modeling . 42

4.2.1 Airframe . 44
4.2.2 Mixing . 44

4.3 Training . 46
4.4 Software . 48
4.5 Reward-function . 48
4.6 Ziegler Nichols optimized PID 50
4.7 Optimizing PID-values with Evolutionary Algorithm 50
4.8 Monte Carlo Simulation . 52

5 Experiments and Results 55
5.1 Training . 55
5.2 Comparison and Evaluation 59

5.2.1 Evolutionary Algorithm optimized PID 59
5.2.2 Ziegler Nichols optimized PID 59
5.2.3 PPO Response and Error comparison 62
5.2.4 Mann Whitney U test (Wilcoxon Rank Sum Test) . . . 63

6 Discussion 69

7 Conclusion 73

8 Appendix 81

vi

List of Figures

2.1 Quadrotor body frame . 11
2.2 H-frame from [36] . 15
2.3 Cross-frame from [36] . 15
2.4 Wide-frame from [36] . 15
2.5 X-frame from [36] . 15
2.6 Hierarchical controller . 17
2.7 Block diagram of PID controller in time domain. Taken

from [37] . 18
2.8 Deep Neural Network with n hidden layers from [41] 23
2.9 500 players with an ave. balance of 995$ after 30 dice rolls. . 30
2.10 500 players with an ave. balance of 862$ after 800 dice rolls. 30

3.1 GymFC architecture for RL-based flight controller (taken
from [46]) . 33

3.2 Shows a simple model of a motor in CAD. Center of gravity
is seen in the center, and the properties with mass and
moment of inertia, is seen on the right. 36

3.3 The box plot . 37

4.1 Motor Response . 41
4.2 S500 Frame . 43
4.3 Propeller . 43
4.4 Top view of S500 x-frame . 46
4.5 Showing different responses 47
4.6 GymFC PID control tuning and SITL (taken from [46]) 50

5.1 Training session with S500 quadrotor 58
5.2 Fitness of the best agents after each generation 60
5.3 Boxplot from Monte Carlo simulation 61
5.4 Rain Cloud Plot, Roll comparison. 62
5.5 Response comparison of PPO 0, PPO 1, EA- and ZN-

optimized PID . 66
5.6 zoomed 1. part . 67
5.7 zoomed 2. part, w. error . 67

vii

8.1 Pitch error comparison from Monte Carlo sim. in a rain
cloud plot . 81

8.2 Yaw error comparison from Monte Carlo sim. in a rain
cloud plot . 82

8.3 Average error from all axes from Monte Carlo sim. in a rain
cloud plot . 83

8.4 Showing the parts of the vehicle configuration file. This is
only showing one motor. The other 3 are identical except for
their position which is mirrored since this is a symmetrical
x-frame. 84

viii

List of Tables

4.1 Motor/Propeller parameters for model.sdf file 42
4.2 Frame inertia . 43
4.3 Battery inertia . 43
4.4 Propeller nr. 1 inertia . 44
4.5 Motor nr. 1 inertia . 44
4.6 Motor Mixing . 45
4.7 Gyro noise (deg/s) . 47

5.1 Training Parameters . 57
5.2 Results from Monte Carlo simulation, showing median

error in deg/s. These are the same results as in figure 5.3 . . 61
5.3 Showing mean error as a % of setpoint from figure 5.5 62
5.4 MWU for Roll results . 64
5.5 MWU for Pitch results . 64
5.6 MWU for Yaw results . 64

ix

x

Acronyms

AI Artificial Intelligence.

ANN Artificial Neural Networks.

CAD Computer-Aided Design.

COM Center of Mass.

DF Ducted Fan.

DFMAV Ducted Fan Micro Air Vehicle.

DNN Deep Neural Network.

DOF Degrees Of Freedom.

DRL Deep Reinforcement Learning.

DT Digital Twin.

EA Evolutionary Algorithm.

ESC Electronic Speed Control.

FC Flight Controller.

FMU Flight Management Unit.

GPS Global Positioning System.

IMU Inertial Measurement Unit.

KF Kalman Filter.

MAV Micro Aerial Vehicle.

MDP Markov Decision Process.

ML Machine Learning.

xi

NN Neural Network.

PD Proportional Derivative.

PID Proportional Integral Derivative.

PPO Proximal Policy Optimization.

PSO Particle Swarm Optimization.

PWM Pulse-Width Modulation.

RL Reinforcement Learning.

RPM Revolutions Per Minute.

SE(n) Special Euclidean Group.

SITL Software In The Loop.

UAV Unmanned Aerial Vehicle.

VTOL Vertical takeoff and landing.

ZN Ziegler Nichols.

xii

1 | Introduction

The drone industry has seen massive growth in the last decade, both
for civilian, professional and military use, some of it due to the recent
advancements of micro electro mechanical sensors and batteries [1]. This
growth has led to the need for research and development in Unmanned
Aerial Vehicle (UAV) technology. While applications such as aerial
filming, mapping and inspection can be accomplished with the current
technology available on the market [2], the industry is pushing to break
barriers into the new markets, such as logistics, surveillance in though
conditions, e-commerce etc [3] [4]. Unmanned air vehicle with Vertical
takeoff and landing (VTOL) provide many advantages to their equivalent
fixed-wing counterparts. Being able to move in almost any direction and
have a relatively small frame, it can proceed in very challenging areas
where humans otherwise would not be able to.

Reinforcement Learning (RL) has gotten a lot of attention lately, with
promising results in a broad range of applications. RL has solved
very complex tasks in the past, some examples are robotic manipulator
grasping and stacking of Lego [5], playing various games like Chess
[6], Go [7] and StarCraft [8] with great results. Some of the reasons
for this recent rise in popularity has been because of the increasing
computational abilities in computers, and their availability to consumers.
With increasingly complex environments, the usefulness of this method
will rely on the computational power.

With all these previous success stories, one doesn’t have to look much
further for other interesting problems to tackle. One is if RL can be
applied to and be beneficial to the control of Micro Aerial Vehicle (MAV)
[9]. RL is an algorithm where an agent learns to perform actions in an
environment, to maximize a reward. The agent observes and takes actions
in the environment based on its policy, and receives a reward based on

1

what we want it to achieve in the environment. The simple goal is to
find the best action to each state, by improving the policy which in return
maximizes the sum of rewards [10].

The control of the different airframes of MAVs is a well studied
problem, and is typically achieved by modelling the equations of motion
for the aircraft. The challenging parts that remain are due to the
complexity of aerodynamics modelling and the many other uncertainties
that the aircraft holds [11]. Industry and academia are collaborating
on solving the associated challenges, which are all tightly linked to the
UAV flight controller hardware and software and has gotten support from
foundations like DroneCode, an open-source project under the Linux-
Foundation [12]. The quadrotor, which is the airframe of choice in this
thesis, is a six Degrees Of Freedom (DOF) aerial vehicle with four lift-and-
thrust producing propellers. It shares the hovering and VTOL capabilities
of the helicopter.

With the need for more complex UAVs and the demand for these
increasing, it is important that the control techniques used are set to a high
standard. This is essential since UAVs are almost always safety-critical
systems, due to the primary purpose of them being used in environments
where humans are present. These vehicles have also very complex
dynamics with high non-linearity, underactuation and uncertainties due
to the often unmodeled aerodynamic forces and moments in the controller
of the vehicle [13]. Reliable and precise controllers which are easily
implemented with high availability, is essential.

Deploying neural networks on a variety of problems has become an
easy task, with the help of dedicated frameworks [14]. The question is
if these algorithms can easily solve the complex control of a quadrotor.
By simplifying and speeding up the optimization processes, of the
constrained control problem. Ultimately, reducing the development time
and cost [15].

1.1 Previous Work

Machine Learning (ML) assisted control theory is a relatively recent
subject, even though the word "machine-learning" was invented in 1952
by Arthur Samuel from IBM [16]. The use of ML has gotten a lot of

2

attention the last decade, due to the new and promising RL algorithms
and the increased computational power in commercial computers.

The use of ML on control-problems is not a common subject. The first
article about machine learning in position control seems to have been in
1993 [17], but the subject didn’t see much development before the 2010s.
There has been multiple methods of implementing an ML-assisted control
system, one method is by utilizing Particle Swarm Optimization (PSO).
As demonstrated in [18], where a pendulum-like MAV-model is used in a
simulation, where the control system is using an online PSO-algorithm on
the gain-channels, to actively find the best values.

PSO is a computational method that optimizes a problem by iteratively
trying to improve a solution by having a population of candidate solutions
(particles), and letting them listen to each other, while moving towards
a common best solution while also exploring new ones. Imagine a
swarm of particles moving on a grid, where each position represents the
value for the tuning parameters of a control system. Other bio-inspired
algorithms such as genetic algorithm and ant-colony-optimization are
other promising methods to find good parameters and solving constrained
control problems in robotics [15].

Bio-inspired control has seen use in more than just robotics, [19] built
a control model for Maglev Transportations system (magnetic levitation
system for trains). Where each gain-channel on a classic Proportional
Integral Derivative (PID) control, was controlled by an online PSO
algorithm to perfectly balance the train with maglev technology. While
the problem here is very different, it’s still a type of position controller,
so the objective is not entirely different from robotics, from a lower level
point of view.

A common method when training models for control in robotics, is by
introducing random uncertainties to a dynamic model. This can involve
up to 20 percent of randomness in the mass, moment of inertia and the
stability and control derivatives. Letting the algorithm learn how to
respond to these changes, which results in a reasonably stable control in
real world testing [20].

Quadrotors have complex nonlinear behaviours and under-actuated
properties, which can make the flight control very challenging. The
classical PID feedback control method have been used in many aerial

3

vehicles and have shown acceptable performance in non demanding
scenarios provided that the parameters are sufficiently tuned [21].

With a cascaded controller that controls the attitude and position separ-
ately, one can see adequate results with well tuned parameters, but suffers
from rapidly changing environments [22]. More modern control methods
have been developed through the years, such as Adaptive control, Back-
stepping Control, Feedback Linearisation and Model Predictive control.
These are all nonlinear control methods, but the downside of these is that
they require accurate system models, which needs extensive amount of
research and tests to obtain a accurate physical model. This gives rise to
a limitation where some of these control methods can be tested only in
simulation [23].

A geometric method was also tested on a quadrotor MAV [24], but
since all these approaches ignore the aerodynamic effects and external
disturbances during the controller design, they are unable to be used on
MAVs that operate outdoors at high speed.

On more advanced MAVs, like a Ducted Fan Micro Air Vehicle
(DFMAV), where the vehicle is controlled by vanes beneath the propeller.
These heavily rely on real-time parameter adjustment according to flight
conditions when using PID controllers, since this airframe is actively
unstable [25]. [26] proposed a back stepping neural adaptive control law
to track the DFMAVs nonlinear dynamics. With individual controllers for
pitch, roll and yaw axis resulting in a smooth response in simulation for a
"bop-up" maneuver (taking off and landing straight down again).

[27] proposed an adaptive neural network approach to MAV tracking
control, where an outer loop would directly generate angular velocity
commands in the presence of unknown aerodynamics and disturbances,
like strong wind. Meanwhile the faster inner loop would handle the
angular rate control. The control method showed good performance but
suffered greatly in fast changing uncertainties.

Other researchers have also proposed Neural Network (NN) based
controllers for these DFMAVs. The same author as the adaptive neural
network approach above [26], proposed a Neural-Network-based control-
ler where the controller have been directly tuned on the real aircraft, or
pre-tuned on a mathematical model which is acquired through wind tun-
nel tests or computational fluid dynamics [28]. So the idea with this ap-

4

proach is to build a reference system, which is easy to tune, and use Neural
Network (NN) to learn and compensate for all the uncertainties between
the real system and the reference system. First, the system dynamics is
divided into two parts. One is completely known and formulated into a
reference system containing the reference inputs and the desired dynam-
ics. The other part consists of all the uncertainties. The neural networks
are introduced to reconstruct the unknown system dynamics, which are
the weight matrices in this instance. They conclude that the controller is
capable of steady hover under high-frequency disturbance and good ro-
bustness under high speed flight on real tests.

[9] came up with an RL-control approach, where they would use RL
to directly map states to the rotor speeds. In their approach, they would
ignore all drag forces acting on the body and use a simple floating body
model with four thrust forces acting on the body. Even using a simple
diagonal inertia matrix, a very simple model yet still achieving great
performance in real life experiments on a quadrotor drone.

This way of modeling is sometimes referred to as a "Blackbox"-
approach, where the model finds the entire dynamics by optimizing the
model to reality. A "Whitebox" model would mean that all the equations
are derived from physics and the constants are found through separate
tests. "Greybox" is placed somewhere in the middle, where some parts of
the dynamics are known while others are found by optimizing the model
to real measurements [29].

Two years later, the same author as [9] came up with a new method for
training neural net policy in simulations, and transferring to real tests [30].
Their idea is to collect data by trial and error in real tests and auto-tune the
controller. These tests were conducted on a quadrupedal legged robot, but
the principle can be used on MAVs too, though a little more challenging
with flying robots. Their methods uses partly randomized kinematics, this
is to insure that the policy will be more robust against system changes
and model inaccuracies, since it doesn’t solely rely on kinematics. This
new method is very cost-effective for data-generation and shows great
results with only a few hours of training (depending on the computational
hardware).

5

1.2 Problem statement

The problem in this thesis is mainly addressing the attitude control
problem or dynamic positioning of an MAV, with the quadrotor as the
airframe of choice. Motivated by training deep neural networks to learn
how to fly from simulation. Reducing the cost of developing control
systems by simplifying the control problem. Letting the algorithm learn to
compensate for the unknown parameters. Finding a cost-effective way for
tuning and optimizing the controllers, by using a well designed simulation
environment.

To get a better picture of how well the proposed RL controller stack
up against the control systems already available. There will be done a
comparison to a "conventional" controller, this being the PID controller.
This way, one will get an idea if the new controller is adequate, relative to
development time and cost. Analyzing the accuracy and potential of the
resulting controller under some kind of test.

The quadrotor is probably the most known and used MAV airframe, at
least in a consumer setting. There are other interesting airframes that one
could study that hasn’t seen nearly as much work, like the Ducted Fan
Micro Air Vehicle. However these airframes has less open-source contri-
butions available, and one could risk not getting a reasonable result within
the timeframe of this thesis. That is why the choice landed on the quad-
rotor. The controller will be simulated in a modified version of Gazebo
through the open source GymFC-framework.

Goals

1. Develop a position controller for a quadrotor by exploring the
possibilities of reinforcement learning, with the help of Open Source
material.

2. Analyze the stability of the resulting controller and the further
potential of this method.

3. See if the RL would act as an adequate controller compared to the
existing solutions, and relative to development time and cost.

6

1.3 Thesis Outline

The rest of this thesis is structures as followed: Chapter 2 explains the
background and theory on UAVs and some of the fundamentals used
in the design of an attitude-controller, together with an introduction to
AI and the subcategories used in this thesis. Chapter 3 includes the
tools and frameworks used for the implementation of the controllers in
chapter 4. For chapter 5, the experiments and results are shown, which
are then discussed in chapter 6. The conclusion and future work is found
in chapter 7, and lastly an appendix with some extra figures and code from
the implementation.

7

8

2 | Background and Theory

2.1 Unmanned Aerial Vehicle

It was not until World War 1, that Unmanned Aerial Vehicle (UAV)
were recognized systems [31]. Charles Kettering from General Motors
developed a biplane UAV for the army Signal Corps. It was called the
"Kettering Bug" and it took about 3 years to finish. It was designed to carry
high explosives to a predestined location and was controlled by preset
commands, that would detach the wings over a set location to plunge
toward its target.

UAVs was used extensively during the Vietnam-war but for reconnais-
sance missions only. The vehicle were usually launched from a C-130
bomber airplane and recovered by parachute. Although many UAVs were
flown, these vehicles didn’t really have a big effect on the war but the milit-
ary started to think of "what could have been" a potentially key weapon to
have in future wars, which assured their continuing development. How-
ever, the interest in these vehicles dwindled, as they simply weren’t that
reliable and the technology was not there yet. The UAVs at the time were
still using combustion engines and the data-link transmissions saw lots
of interference from other communication-systems. The UAVs built in this
era were mostly "fixed-wing", which look more like small airplanes. These
have less degrees of freedom compared to the multi-rotor vehicles that are
popular today. The war in Afghanistan and Iraq changed the status of the
UAVs, where they were valued as a key weapons system. They were espe-
cially good at night, locating and keeping track of insurgent forces, which
proved UAVs as a valuable weapon for the military [31].

Rotorcraft UAVs are attractive robotic platforms, with their low cost,
high maneuverability and simplicity of use. Thus many have contributed

9

to the field and several industries have taken usage of this type of vehicle.
A quadrotor is a subcategory under rotorcraft, where there are four rotors
connected to the body of the vehicle. These rotors control the orientation
by adjusting the speed of each rotor, usually in pair. Generally, it should
be classified as a rotary-wing aircraft according to its capability to hover,
horizontal flight and VTOL capabilities [32].

These days, a quadrotors size can vary greatly, from over 5kg to less
than 50g, although vehicles with a weight of less than 1kg is most often
referred to as a Micro Aerial Vehicle (MAV) [33]. With versatile forms,
come versatile application, like search and rescue, aerial photography
or even carrying payloads to hazardous areas. Since the quadrotor is
inexpensive and easily assembled, as well as complex dynamics which
makes for an excellent research platform for aerial robotics, for the
problems related to three-dimensional mobility and perception [13].

2.1.1 The control problem

Compared to control for other advanced autonomous manipulators,
the control of UAV presents two unique challenges. First, they have
constraints in terms of size, weight and power not found to the same
extent in robotics. Second, UAV control systems are in practice almost
always safety-critical systems, due to the primary purpose of them being
used in environments where humans are present.

It is clear that UAVs need a complex control system with high
reliability and precision. With its high non-linearity, strong inter-axis
vehicles dynamic coupling, under-actuation and uncertainty due to often
unmodeled aerodynamic forces and moments on the vehicles body, rotor
induced flow, ground effect, rotor-flapping etc [11].

The quadrotor consists of four individual rotors attached to a rigid
frame in a cross shape. The control is achieved by differential control of the
thrust generated by each rotor [33]. Pitch, roll and yaw control. As shown
in figure 2.1, rotor 1 and 3 rotates in the same direction (anticlockwise in
this case), while the even numbered rotors rotate the opposite direction.
Yaw control is obtained by adjusting the average speed of the clockwise
and anticlockwise rotating rotors. The system is underactuated, meaning
the remaining degrees of freedom (DOF) in the translational velocity in

10

Figure 2.1: Quadrotor body frame

x-y plane must be controlled through the system dynamics. The vehicle
uses roll and pitch to point the thrust vector in the desired translational
motion. There are several frame-designs for quadrotors, but figure 2.2 -
2.5 covers most of them.

2.1.2 Rigid-body dynamics and scaling laws

Roll angle (ϕ) is around x, pitch angle (θ) around y and yaw angle (ψ) is
around the z axis.
Equation 2.1 is the 6 DOF rotational matrix for a quadrotor.

R =

cψcθ − sϕsψsθ −cϕsψ cψsθ + cθsϕsψ

cθsψ + cψsϕsθ cϕcψ sψsθ − cψcθsϕ

−cϕsθ sϕ cϕcθ

 (2.1)

where c and s are short for cosine and sine.
Let v ∈ {A} (the inertial frame), denote the linear velocity of the body

11

frame {B} with respect to {A}. {A} is denoted by the unit vectors by
{a⃗1, a⃗2, a⃗3}, where a⃗1 = x⃗, a⃗2 = y⃗, a⃗3 = z⃗. Ω is the angular velocity of
{B} with respect to {A}. Let m be the mass of the rigid body object, and I ∈
R3×3 denote the constant inertia matrix expressed in {B}. The rigid body
equations of motion for the quadrotor are:

ζ̇ = v, (2.2)

mv̇ = mga⃗3 + RF, (2.3)

Ṙ = RΩx, (2.4)

IΩ̇ = −ω× IΩ τ (2.5)

where Ωx is the skew symmetric matrix, Ωxv = Ω × v for the vector
cross product × and any vector v ∈ R3. The vectors F, τ ∈ {B} combine
the principal forces and moments applied to the quadrotor airframe [33].

Changing the scale of the quadrotor has an effect on the inertia and
the achievable angular and linear acceleration. One might find it useful to
find a physics model to analyze a quadrotors ability to produce linear and
angular accelerations from steady hovering state. In equation 2.6, length
from center of drone to motor is d (as seen in figure 2.1), rotor radius r
and rotor speed ϖ. The lift/thrust and drag from the rotors scale with the
square of the rotor speed, ϖ2. Linear acceleration is denoted as a = v̇ and
angular acceleration as α = Ω̇. Then the moment arm and the moments of
inertia, scale as:

a ∼ ϖ2d4

d3 = ϖ2d (2.6)

α ∼ ϖ2d5

d5 = ϖ2

To explore the scaling of the rotor speed with length, one might use
two commonly accepted approaches within aerial vehicles. Mach scaling
and Froude scaling. Assuming r ∼ d, we get ϖ ∼ (1√

r),

Mach scaling predicts

12

a ∼ 1
d

, (2.7)

α ∼ 1
d2 .

Froude scaling leads to

a ∼ 1, (2.8)

α ∼ 1
d

.

One of the assumptions here is that the rotor blades are rigid, which
might be inaccurate and the blade designs themselves might also be
optimized differently and might change the scaling.

The biggest takeaway from Froude and Mach numbers is that smaller
quadrotors can produce faster angular accelerations while the linear
acceleration is at worst unaffected by scaling. This might not come as
a surprise that the smaller quadrotors are more agile than the bigger
versions [33].

2.1.3 Aerodynamics

The aerodynamics of rotors has been extensively tested and studied
during the mid 1900s with the development of the manned helicopters.
The design of these rotors are crucial to the design problem. Typically on
a robotic quadrotor, you’ll see only a few different rotor designs and only
the basic level of the aerodynamic modeling is required.

The thrust in free air is modeled by the rotor disk area Ari , radius ri,
angular velocity ϖi and thrust coefficient that depends on the geometry
and profile of the rotor CT. ρ is the air density. The thrust equation for a
rotor:

Ti = CTρArir
2
i ϖ2

i (2.9)

There are many aerodynamic and gyroscopic effects associated with

13

every rotor craft, the Thrust force mentioned above is just one of them.
Some of the effects that are worth considering are blade flapping and
induced drag [33].

Quadrotor vehicles are typically equipped with lightweight, plastic
rotors. These are not very rigid, and the aerodynamic and inertial forces
applied to a rotor in flight are quite strong, which can cause the rotor to
flex. Letting the rotor bend is actually an important property of the design
of a quadrotor. A too rigid rotor can lead to damage on the motors through
the aerodynamic forces or on the airframe.

Rotor flapping: The high angular momentum of
the rotor disk makes it act like a gyroscope, which
casues the rotor disk to tilt around the axis. Since
the motor shaft is vertical, the blade flaps up
as it advances into the wind. When the blades
change their angle of attack, it also changes the lift
coeffiecient. [34]

For a typical rotor, the flapping dynamics converge to a steady-state
after one rotation, so the modeling can be simplified to only the steady-
state response of the flapping dynamics need to be considered.

When using a simulator that derive the force and torque for a propeller
propulsion system using blade element theory. The performance can be
defined by two coefficients CT and CQ [35]. These are dimensionless and
are for the thrust and torque respectively. Thrust coefficient is defined as:

CT =
T

ρn2D4 (2.10)

where T is thrust, ρ is air density, n is the propeller speed in Revolutions
Per Minute (RPM), and D is the propeller diameter. The torque coefficients
is defined as:

CQ =
Q

ρn2D5 (2.11)

where Q is the torque.

The power coefficient is defined as:

14

CP =
P

ρn3D5 (2.12)

These coefficient is needed to predict how the thrust and torque
vary with RPM. These coefficients depend on the advance ratio J which
quantifies the effects of the propeller in forward motion with relation to
its angular velocity:

J =
V∞

nD
(2.13)

where V∞ is the freestream fluid velocity.

Figure 2.2: H-frame
from [36]

Figure 2.3: Cross-
frame from [36]

Figure 2.4: Wide-
frame from [36]

Figure 2.5: X-frame
from [36]

15

2.1.4 Estimating the state

When controlling the quadrotor or any other UAV, the required states for
controlling are its height, attitude, angular velocity and linear velocity.
The most important instrumentation of the quadrotor is the Inertial
Measurement Unit (IMU) with gyro, accelerometer and magnetometer
accomponied by a height measurement of some sort, like acoustic,
infrared, laser-based or barometric pressure. In some more advanced
cases, one might also see the need for cameras or Global Positioning
System (GPS) to get a position reference to the ground.

These sensors are selected to be able to estimate the orientation of the
drone and its altitude. Both the simulation and the real drones share the
same sensors. These sensors are usually placed together inside a unit
called the flight controller.These sensors gather info that forms the state
vector of the drone:

x =
[

x, y, z, ψ, θ, ϕ, u, v, ω, p, q, r
]T

(2.14)

Which represents, position, attitude, velocity and angular velocity.

2.2 Control Theory

The control problem is challenging for several reason. First, the system
is underactuated, four inputs while SE(3) is six dimensional. Second,
the aerodynamics are only approximate and finally, the motor controllers
must overcome the drag moments to generate the required speed and
realize the input thrust and moments.

The most common controller is a hierarchical control approach where
the lowest level with the highest bandwidth, controls the rotor rotational
speed. The next level controls the vehicle attitude and outer level is
in control of the position. The idea of separating the control into two
or more cascaded loops is seen in many applications. The benefits of
these separated loop structures is to simplify implementations, ease of
tuning, and satisfaction on input or state constraints [22]. For quadrotors,
the outer loop stabilizes translational variables like position and linear
velocity, and generates a reference signal that is further sent to the inner
loop, the attitude controller which controls the angle of the vehicle. This

16

is the part of the controller that we will be looking at in this thesis.

Figure 2.6: Hierarchical controller

2.2.1 Proportional Integral Derivative

Proportional Integral Derivative (PID) controllers are probably the the
most widely used industrial controller. It has a long history of use, even
surviving the changes of technology from the analogue to the digital
era [37].

A visual representation of the three terms of the PID controller is
shown in figure 2.7. Proportional control, denoted by the P-term gives
the proportional gain to the size of the error signal e(t) = r(t) − ym(t),
where e is error, r is reference and y is the measured output at time t. A
Proportional controller can be represented in the time domain as:

uc(t) = kPe(t)

The integral part denoted as the I-term, is used when there is need
to correct for a steady offset, from a constant reference signal value.
Representation in the time domain is given as:

uc(t) = kI

∫ t
e(τ)dτ

A derivative controller (D-term) uses the rate of change of an error
signal as an input. Time domain representations is given as:

uc(t) = kD
de
dt

When all the terms is combined, you get a PID controller. The formula
for the basic parallel PID controller is:

17

uc(t) =
[

kP + kI

∫ t
dt + kD

d
dt

]
e(t)

Figure 2.7: Block diagram of PID controller in time domain. Taken
from [37]

PID processes the error signal into input signal, with the aid of a
proportional factor kP, an integrative action kI and differential action kD.
The states are compared with their setpoints, where an error is calculated.
The error is amplified with kP, it is the present error term and will improve
the speed of the response. A accumulation of past error is integrated upon
with kI and differentiated with kD, which is the prediction of future error.

This controller is easy to implement but the tuning process can be time
consuming. There are many ways of tuning a PID system, usually by
starting with proportional gain, then the derivative gain, and lastly the
integral gain. These values are tuned until the user is satisfied with the
response from the controller, known as the "trial and error" method [38].

2.2.2 Ziegler Nichols

Ziegler Nichols method, which is a purely mathematical approach to
automatic control. The method was used to simplify the mathematics
involved when studying automatic control on any application [39]. This
method is meant to assist the designer when doing adjustments on
existing controller applications and in the design of new installation.

18

The method is based on finding the lowest Proportional-value Ku

where the controller outputs a steady oscillation. Then one would
measure the period of the oscillations Tu and insert the two values Ku and
Tu in the equations 2.15, 2.16, 2.17.

Kp = 0.6Ku (2.15)

Ki = 1.2
Ku

Tu
(2.16)

Kd = 3Ku
Tu

40
(2.17)

2.3 Artificial Intelligence

Artificial Intelligence (AI) has become a broad term that contains a long
list of statistical methods on data, so that a computer can "learn" a task or
find patterns. Within the subcategory Machine Learning (ML), we have
mainly three categories:

• Supervised Learning: learn with a direction

– An agent is given labelled data and is set to try to learn how
it’s categorized. Example what makes an apple, and how is it
different from a pear etc. It tries to generalize a rule by looking
at examples.

• Unsupervised Learning: learn without a direction

– Similar to Supervised, except the data is not labelled. It is up to
the agent to figure out the patterns for itself. There are several
methods within this category, like clustering where groups of
data which are similar are labeled together.

Another method is Principal component analysis, which takes
multidimensional data and reduces it. The result is a lower-
dimensional representation of the data, where one can see
correlations between the important components of the data.
This is also results in a visually better representation of data,
which can be more easily interpreted.

19

• Reinforcement Learning: learn interacting with an environment

– An agent is placed inside an environment without any idea
of what the task is. It will start by acting randomly on the
environment and receive a reward or punishment based on that
action. After a series of episodes, the agent will learn what
actions to make, based on how the reward-function is set up.

2.3.1 Evolutionary Algorithm

Another part of the Artificial Intelligence field is Evolutionary Algorithm
(EA). It is mainly used in tasks where search and optimization is needed.
The algorithm iteratively optimizes a problem, also known as a heuristic
procedure, designed to find, generate or select a sufficiently good solution
to an optimization problem. This algorithm simulates a population of
individuals which are the solutions, and uses operators like mutation
and recombination on these individuals. There are many different ways
of generating new individuals with evolutionary operators, the most
common methods are:

Mutation

A common mutation technique is the non-uniform mutation with a fixed
distribution. This operator takes one solution as input and generates a
new one. The genes of the individuals are in this case, a set of floating
point numbers. The genes have a mutation probability and are then
mutated by adding a value, from a specific distribution, like Gaussian.
This operator will most often let small mutations happen, while large
mutations occur less frequent.

Crossover

Crossover or recombination, where the offspring of the chosen parents is
given a chance to inherits some of its parents attributes. This operator can
take the solution between two individuals and calculate the average value
between them, to create a new offspring.

20

Further on, the algorithm needs a fitness of each individual, which
reflects the quality of their solution, and is used when choosing parents
for the next generation [40].

For this algorithm to work, one has to model the following:

• a method for representing problems as chromosomes

• a way to calculate the fitness of a solution

• a selection method to choose parents

• a way to generate offspring by breeding the parents

Algorithm 1 Evolutionary Algorithm
INITIALIZE population with random candidate solutions;
EVALUATE each candidate;

while (TERMINATION CONDITION is not satisfied) do

1 SELECT parents;

2 RECOMBINE pairs of parents;

3 MUTATE new candidates;

4 EVALUATE new candidates;

5 SELECT individuals for the next generation;

end while

The Evolutionary Algorithm has lots of possibilities, and it works very
well most of the time. This algorithm like many others has its drawbacks.
One main point is that it can be very slow. If the solutions of the
population reaches a local maximum, it can take a very long time before
a mutation is generated that can escape this maximum. A mutation great
enough to find another higher, local maximum. It is also not guaranteed
that the algorithm will always converge towards an optimal solution.

2.3.2 Artifical Neural Networks

Artificial Neural Networks (ANN) are called networks, because they
contain multiple neurons that are connected together, which is an attempt
to mimic the neurons of a brain. Each node has a number of inputs and an
output which can be further connected to a new node.

21

The node is simple, when a linear combination of the inputs exceeds a
value, the node "fires" and produces an output.

inj =
n

∑
i=0

wi,jai (2.18)

Here the index i are all the nodes connected from the previous layer, w
is the weight of each connection between the nodes. There is an activation
function g which tells when the neuron should "fire":

aj = g
(
inj
)
= g

(
n

∑
i=0

wi,jai

)
(2.19)

The neurons are arranged in different layers, their categories are "input
layer", "hidden layer" and "output layer".

How the network "learns" is by updating its weights between each
node, which starts out as one arbitrary value or is randomized. Usually
with a method called back-propogation, where one propogates the error
from the output layer, back to the hidden layer, then calculates the error in
the last hidden layer, then the previous and so on.

The rule for updating a weight at layer i, node j is:

wi,j ← wi,j + α× ai × ∆j (2.20)

∆j = ek × g
(
inj
)

(2.21)

where e is error, g is the activation function and inj is the weighted sum
of the inputs.

2.3.3 Deep Learning

Deep Learning is based on ANN but uses multiple layers of nonlinear
processing units in order to learn. Most often referred to as Deep Neural
Network (DNN). These have become very popular, and are responsible
for some very impressive abilities.

The definition of DNNs is simply a ANN which contains multiple
hidden layers between the input and the output layer, as long as there
is more than one layer. Figure 2.8 shows a deep neural network.

22

Figure 2.8: Deep Neural Network with n hidden layers from [41]

2.4 Reinforcement Learning

Reinforcement Learning (RL) problems involve learning what to do, how
to map situations to actions which maximize a reward. The learner in
this problem is called an agent, which is not told what actions to take,
as in some of the other forms of ML, but instead must discover which
actions gives the most reward by trial and error. An action may affect
the immediate reward but also the consequences of the next step. The
environment is where the agent makes its decisions, it is what the agent
try to manipulate or act upon, and where the goal can be achieved. To be
able to make any form of decision, the agent has to sense the environment
in some way, and sense that the state has changed after an action. Lastly,
it needs to be able to receive rewards based on the state it senses. The
formulation includes these three aspects: Sensation, action and goal [10].

The agent

The agent is the "player" that interacts with the environment in the hopes
of getting a reward. It can sense the environment in some way, this is
usually the inputs of the environment, also called observer-space, and the
agent can interact in some way with its outputs or "the action-space".

23

Reward-function

The reward or fitness defines the goal that an agent is trying to solve. At
each time step, the agent receives a reward from the environment. The
only objective for the agent, is to maximize the total reward over the long
run. So the agent also needs to learn actions that give a greater total
reward, and not just actions that give immediate reward, actions that give
direct and indirect effect on the reward.

Markov Decision Process

An RL problem which only uses the current action and state to choose its
next move, has the Markov Property. Markov Decision Process (MDP) is a
way to compute the next reward, and the next state, from only the current
state and action, based on previous experience [40]. The equation that
computes the probability of the next reward r’ and the next state s’ at time
t is shown in 2.22.

Pr
(
rt = r′, st+1 = s′|st, at

)
(2.22)

There is a set of states, which contains all the states of the environment,
and a set of actions which can be taken in each state. Pr denotes the
probability of reaching the next state s’ when performing action at in state
st. The amount of states available depends on how much the agent can
observe. It can be partially observable through the sensors that the robot is
given or it can be fully observable, like all the squares on a board of chess.
The action space are all the given action the agent can take. In chess, this
would include all the valid moves, at a specific state of the game.

Gradient Descent

If we have a function-value that we want to minimize, gradient descent
will help to find in which direction the variable should go. Meaning if we
should increase or decrease a variable x. In the context of neural networks,
this would be used to gradually reduce the error on the weights. Gradient
descent uses the gradient of the loss function of the neural network, to
progressively search for a minimum.

24

Value Function

The expected reward at the next action, is called the value. There are two
ways of computing this. We can consider the current state, and take the
average of all valid actions, leaving the policy to sort it out (state-value
function V(s)). Or we can take each action that can be taken separately, the
action-value function Q(s, a).

V(s) = E(rt|st = s) (2.23)

Q(s, a) = E(rt|st = s, at = a) (2.24)

where E(·) is the statistical expectation.

The second estimate is more accurate in the long run, since it has more
information.

The optimal value function when following policy π is:

V′(s) = maxπVπ(s) = maxπE(rt|st = s) (2.25)

The optimal action-value function when following a policy π is:

Q′(s, a) = maxπQπ(s, a) = maxπE(rt|st = s, at = a) (2.26)

These two functions can be linked. The first considers taking the
optimal action at each case, the second considers action a at this time, an
then following the optimal policy. Now we only considers the current
reward and the discounted γ estimate of the future rewards:

Q′(s, a) = E(rt+1) + γmaxat+1 Q(st+1, at+1)

= E(rt+1) + γV′(st+1|st = s, at = a) (2.27)

Exploration vs. Exploitation

At each stage of the learning process, the algorithm looks at the available
actions and computes a value for each. If the algorithm is set to always
pick the one with the highest value, we say it’s greedy. It chooses to always

25

exploit the current knowledge. If the algorithm is given a probability to
pick some other action at random, we say that the policy uses exploration
to gather more information about the environment.

Policy

Action selection is aiming maximize the expected reward by finding a
balance between exploration and exploitation. If a decision is made to
always pick the optimal choice at each stage, and not do exploration. This
is called a policy π. The agent wants to learn the best policy that is specific
to each state st. The essence of RL is to learn a policy from state to action.
In order to find this policy, one needs to know how much information is
needed for how we got to the current state. Second is how we give value
to the current state [40].

2.5 Proximal Policy Optimization

In Reinforcement Learning (RL), the algorithms have many moving parts
that may be hard to debug, and require high effort in tuning in order to get
good results. Proximal Policy Optimization (PPO) is built to be a balance
between ease of implementation, sample complexity and ease of tuning.
It was built when Deep Q-learning and Trust region Policy Optimization
(TRPO) were the leading contenders, were PPO was designed to fill the
gap were these algorithms were lacking. It is set to compute an update at
each step that minimizes the cost function while not deviating too far from
the previous policy [42].

The PPO algorithm is a state-of-the-art RL-algorithm based on an
actor-critic architecture. This means that an agent set doing actions in
an environment, receiving rewards based on how well it performed. In
addition to this actor, a critic is implemented, which calculates what other
actor’s action would have given as a reward, thereby showing what the
actor should have done and comparing it to what the actor did. This
makes the PPO algorithm learn quickly from its actions and adapts the
gradient descent based on how much better the critic calculated that the
agent could have done.

Policy gradient methods work by computing an estimator of the policy

26

gradient and putting it into a stochastic gradient ascent algorithm. This
has the following form:

ĝ = Êt
[
∇θ logπθ(at|st)Ât

]
(2.28)

πtheta is a stochastic policy, Ât is the estimator for the advantage
function at t time step. Êt is the expectation, the average over a given
batch of samples.

To make the gradients adjustable, a clipping method is used on the
advantage estimation function, thereby hindering too large optimization
steps. The clipping method is used to remove incentives for the policy
to get too far from the old policy. The epsilon used is a hyperparameter
determining how far away from the old policy a new policy is allowed to
be and is generally set to 0.1-0.2 or 10-20%.

LCLIP(θ) = Êt
[
min(rt(θ)Ât, clip (rt(θ), 1− ϵ, 1 + ϵ) Ât)

]
(2.29)

The first term inside the min is the conservative policy iteration.
The second term clip, modifies the surrogate objective by clipping the
probability ratio.This ensures that rt won’t move outside of the interval
[1− ϵ, 1 + ϵ]. The min of the clipped and unclipped objective, which
finds a lower bound on the unclipped objective. By clipping, we ensure
that results that are far away from the current policy are held within
this threshold, making sure that the algorithm is not too sensitive to
precise hyperparameter tuning and outlier data in training. The PPO
seeks to maintain smooth, gradual gradient updates to get continuous
improvement and avoid unrecoverable crashes.

The primary function that makes the PPO able to do all this improved
learning is the surrogate policy loss function. It is a ratio between the new
probabilities and the old probabilities times the advantage given by the
advantage function. This advantage function estimates the relative value
of a selected action by taking the discounted sum of rewards and subtract-
ing a baseline estimate (estimation of future reward) given the state that
the actor is in.

27

Algorithm 2 Proximal Policy Optimization
for iteration=1,2,... do

for actor=1,2,...,N do

Run policy πθold in environment for T time steps

Compute advantage estimates A1,...,AT

end for

Optimize surrogate loss L wrt θ,
with K epochs and minibatch size M ≤ NT

θold ←− θ

end for

2.6 Digital Twin

A Digital Twin (DT) is the combination of physical entities in the physical
world, the virtual models in the virtual world and the connected data
that the two together. There is no unique definition of a DT in literature,
but in present study, the DT model is considered as a detailed digital
representation of the physical components, in this case being an aircraft-
system. The physical data is taken from various sources like real sensor-
data for the propeller/motor combo, physical measurements on the
aircraft etc. This data can be combined and optimized to predict the
behavior of the system [43].

A common use of DT is to predict the life-span or maintenance-
schedule or degradation of a system. As in [43] where it is being used
to model the behaviour of a aircraft-engine over its lifespan. Taking data
from historical maintenance, and a wide range of real-time sensors. The
idea is to verify what a normal behaviour of each part of the engine is,
so that they can detect outliers associated to known failures. Thereby
preventing real failures by catching these abnormal behaviours ahead of
time.

NASA has developed a similar system for their vehicles. A ultra-high
fidelity simulation that mirrors the health management system of the real
rocket, which gives a major increase in levels of safety and reliability [44].

An important part of DT is ML, as it helps with finding correla-
tions in high-dimensional data, usually with unsupervised learning al-
gorithms [43].

28

2.7 Monte Carlo Simulation

Monte Carlo simulation is a type of computational algorithm that uses
repeated random sampling to estimate the possible outcomes of an
uncertain event. This Method was invented by John von Neumann
and Stanislaw Ulam during World War II to improve decision making
under uncertain conditions. It is one of the oldest and most widely used
statistical procedures.

In Monte Carlo computing, a random number generator is repeatedly
called which returns a real number within a set range, and the results are
used to generate a distribution of samples that gives a representation of
the target probability distribution [45].

An example for a Monte Carlo simulation in a game of dice at the
casino can be seen in figure 2.9. The first figure shows 500 outcomes from
a game after 30 dice rolls. The second figure 2.10 shows after throwing 800
dices. The game simulated is simple, a player starts out with a balance of
1000$. The player rolls a 6 sided dice and the house rolls another one. The
player has to give 1$ for each round but if he wins, the house pays out 4$.
In the first simulation, it is not obvious if the the casinos business model is
working. After many rounds with a game of dice however, one can clearly
see that the house always wins.

29

0 5 10 15 20 25 30
Dice roll nr.

970

980

990

1000

1010

1020

1030

Ba
la

nc
e

[$
]

Starting Balance (1000$)

Figure 2.9: 500 players with an ave.
balance of 995$ after 30 dice rolls.

0 100 200 300 400 500 600 700 800
Dice roll nr.

700

750

800

850

900

950

1000

1050

Ba
la

nc
e

[$
]

Starting Balance (1000$)

Figure 2.10: 500 players with an ave.
balance of 862$ after 800 dice rolls.

30

3 | Tools and Framework

3.1 GymFC

GymFC is a tool for flight control development, introduced in [46]. It
is a generic tool for flight controller development, not necessarily for
Neural Network-based flight but also traditional controllers like PID. To
synthesize a good flight controller, each controller must be trained for its
unique digital twin.

3.1.1 PX4 Gazebo SITL motor model plugin

The PX4 Gazebo motor model plugin is a flight simulator for multirotors,
VTOL, fixed wing and more. It is based on the RotorS simulator, but
in contrast to RotorS, PX4 is not dependent on Robot Operating System
(ROS).

The framework is designed to enable a quick start to perform research
on MAVs. The simulator includes control and state estimation and is
designed in a modular way, such that different controllers and state
estimators can be used. It provides controllers which can be adapted to
a custom vehicle by only changing a parameter file [47].

The simulator was developed with an emphasis on keeping the
structure as close as possible to the real system. This is to make the
transition of the code from the simulator to the code running on the actual
hardware as simple as possible.

The forces and moments acting on the MAV is split up into forces and
moments acting on each rotor, and the gravitational force acting on the
center of gravity of an MAV. The forces modeled on each rotor in this
simulator, is the thrust force FT, drag force FD, rolling moment MR, and
the moment originating from the drag of a rotor blade MD.

31

FT = ω2CT · ezB (3.1)

FD = −ωCD · v⊥A (3.2)

MR = ωCR · v⊥A (3.3)

MD = −ϵCM · FT (3.4)

where ω is the positive angular velocity of the rotor blade, CT is the
thrust constant, CD is the drag constant, CR is the rolling moment constant
and CM is moment constant of the rotor. ϵ tells the direction which the
rotor is turning (1 for counter clockwise and -1 for clockwise). eZB is the
unit vector in the z-direction. v⊥ denotes the projection of a vector v onto
the rotor plane.

3.1.2 Simulation environment

The environment in GymFC is different from other simulation-environments
because it uses a Digital Twin (DT), opposed to simulating only the
important parts of the agent, GymFC simulates the whole system.
Everything from the electrical noise from IMU inside the flight controller,
to the ramp-up speed of the propellers after it has gotten its PWM signals.
The simulation environment is specifically built for tuning of flight con-
trollers. It supports attitude control tuning and motor modelling. Upon
launch, the environment reads the XML-file which includes the configur-
ation for the aircraft. The environment then dynamically loads the aircraft
model into the simulator. From here, it waits on motor control messages
from the step_sim function. A visual representation of GymFC’s architec-
ture for training a model with RL is shown in figure 3.1. The step function
calls four functions: transform_input, transform_output, generate_command
and compute_reward. The first two functions support transforming the air-
craft state to the input of the neural network and from the network to the
control signal. Generate_command function generates the angular velocity
setpoints, that the agent must achieve. The compute_reward function calcu-

32

lates the reward at each time step for the agent.

Figure 3.1: GymFC architecture for RL-based flight controller (taken from
[46])

3.1.3 Reward functions

GymFC has some reward-functions developed that the user can choose to
use or build upon, for their fitness-function. The basic reward function is:

r = re + ry + r∆ (3.5)

where ry is the reward for minimizing the control output, and r∆ is the
reward for minimizing oscillations and re is:

re = −(e2
ϕ + e2

θ + e2
ψ) (3.6)

where eϕ is the roll error on each axis.

The next functions are present to help the agent learn how to fly more
stable and efficiently. These reward functions are:

Output Oscillation penalty:

• A penalty is given for high changes in control output.

r∆y = β ∑N−1
i=0 max{0, ∆ymax − (∆yi)

2}

33

Minimizing signal output reward:

• A reward is given for reducing their average control signal output
if they are in the error band, defined by the percent of the target
angular velocity. This reward helps with minimizing error and
output, which reduces oscillations. This is the main source of
reward.

ry = α(1− ȳ)

where ȳ is the average output ȳ ∈ [0, 1] and α is a scaling constant.

Change in error:

• Reward is given when error is reduced, while a penalty is given if
the error increases from the last timestep. re is from equation 3.6.

r∆e = ret − ret−1

Over saturation penalty:

• Penalizes the agent if they have saturated the control outputs.

rs = −β
[
∑4

i=1 yi

]
where rs is denotation for saturation, yi are motor outputs with
values above 1 and β is a scaling constant.

Doing nothing penalty:

• If more than two motor-outputs are zero and the target angular
velocity on all axes is not zero, a penalty is applied.

ry,null =

−β, if
[
∑4

i=1 yi,null >= 2
]

AND setpoint ̸= 0

0, otherwise

where β is a scaling constant, yi,null is motor output with value = 0.

All rewards and penalties are summed up and returned to the neural
network for each timestep.

34

3.1.4 OpenAI Baselines

GymFC uses OpenAI Baselines for its RL framework. Baselines is a set of
high-quality implementations of reinforcement learning algorithms [14].
The algorithms are meant for the research community, to further identify
new ideas and to build research on top of. The Baselines-version used in
this thesis was last updated in July 2018. Newer versions are available, but
GymFC is specifically made to work with this version of Baselines.

OpenAI Baselines were open-sourced in May of 2017. The initial
release included Deep Q-Network, a RL algorithm which combines Q-
learning and DNN. Resulting in a algorithm that can solve complex tasks,
such as video games and robotics. One of the the algorithms available in
Baselines is Proximal Policy Optimization (PPO), which is the one used in
this thesis.

3.2 Computer-aided Design

CAD is a technology for design and technical documentation. With
this, it’s possible to build an entire model in an imaginary space, letting
you view and measure properties like size, material, mass and more.
Fusion360 by Autodesk is a cloud-based CAD software for product
design and production. With plenty of features such as 3D design,
electronics, generative design and simulation. It is a popular CAD tool
with a free version for students [48]. Fusion360 was used in this thesis
for modeling the vehicles components and measurement of the inertial
matrices. Extracting the mass properties for a motor is seen in figure 3.2.

35

Figure 3.2: Shows a simple model of a motor in CAD. Center of gravity is
seen in the center, and the properties with mass and moment of inertia, is
seen on the right.

3.3 Statistical analysis and visualization

Seaborn is a library for making statistical graphics in python [49]. It is
built upon Matplotlib and integrates closely with pandas data structures.
Seaborn is designed to be useful throughout the lifecycle of a scientific
project. The library offers an interface to matplotlib that gives rapid
data exploration and prototyping of different plots, while having the
necessaries for producing publication-quality figures.

To visualize the data from this thesis, Boxplots and "Rain Cloud Plots"
are used with the help of Seaborn. The latter is a combination of "Violin
plots", "Jittered data points" and Boxplots. This gives an overview of the
raw data, the probability distribution, and statistical inference. The vilolin
plot, which in this case is split in half to give more room (and makes it
look like a cloud), shows the density of the data points. The jittered data
points is the raw data (rain), and lastly we have the boxplots [50]. The
boxplot shows a summary of the data including the minimum-value, the

36

lower quartile, median value, upper quartile and max value.

Figure 3.3: The box plot

• Minimum value

– The lowest value, excluding outliers

• Lower Quartile

– 25% of scores fall below the lower quartile value

• Median

– Marks the mid-point of the data. Half of the points are greater
than or equal to this value and half are less

• Upper Quartile

– 75% of the scores fall below the upper quartile.

• Max value

– The highest value, excluding outliers

• Whiskers

– The upper and lower whiskers represent values outside the
middle 50%.

Another statistical analysis used is Mann Whitney U test, also called
Wilcoxon Rank Sum test. It’s a technique for testing the equality of mean
in independent samples. A necessary assumption when using this test, is

37

that the continuous outcome was approximately normally distributed or
the samples were sufficiently large [51]. The Mann Whitney U test is used
to test the probability of two samples have been derived from the same
population. We have two hypotheses:

H0: The two populations are equal.

H1: The two populations are not equal.

Since we will use multiple comparisons, we should use the Bonferroni
method when choosing significance level. This method says to lower
the significance when there are multiple comparisons [52]. In a multiple
hypothesis testing, an increased number of samples, n, in a given family
increases the probability that false positives will arise. Therefor the
threshold α is lowered by the equation α/n.

38

4 | Method and Implementation

This chapter explains the method for modeling a quadrotor for the GymFC
environment. The changes to the training of the Reinforcement Learning.
The methods for the tuning of PID gains with Ziegler Nichols and
Evolutionary Algorithm is also explained, and how the Monte Carlo test
was implemented.

4.1 Motor-modeling

Modeling the behaviour of the aircraft usually starts by figuring out the
characteristics of the motors. How much thrust, torque and how they
scale with RPM. To calculate this, one would need to find data of the
motor/propeller combo that is being used. The only way to obtain this
data is to use a testbench where one can measure the thrust and torque
at different speeds. Fortunately there are researchers that has already
obtained this data for the most common motor/propeller combos on the
market and created a database [53].

GymFC uses PX4 Gazebo Software In The Loop (SITL) motor model
plugins. This motor model need the following parameters for the aircraft
configuration:

• Thrust constant (motor constant), KT

• Torque constant, KQ

• Motor response

We need to find the dimensionless parameters to be able to simulate the
varying forces and moments of the quadrotor. Propellers are commonly
designated by two numbers Din × pin, where Din is the diameter in inches

39

and pin is the pitch in inches. The pitch angle β is the angle between
the zero-lift of the propeller blade section and the plane of rotation.
p = πDtanβ. We use the database to look up the needed coefficients
for the motor/propeller combo used in this thesis.

• CT = T/ρn2D4, thrust coefficient

• CQ = Q/ρn2D5, torque coefficient

• CP = P/ρn3D5, power coefficient

With these we can calculate the needed parameters. The power and torque
coefficients are related by the equation CQ = CP/2π,

Proof:

P = Qω = Q(2πn)

CQ =
Q

ρn2D5

(n
n

)
=

P
2πρn3D5

CQ =
CP

2π
(4.1)

So if we have CP, we can calculate CQ:

CQ =
CP

2π
=

0.0352
2π

= 5.61 · 10−3 (4.2)

Motor Constant:

KT =
CT0ρD4

(2pi)2 =
0.098 · 1.2041 · 0.234

(2π)2 = 8.365 · 10−6 (4.3)

Moment Constant:

KQ =
CQ

CT
D =

0.00561
0.098

0.254 = 1.40 · 10−2 (4.4)

The last part needed is the step response. To find this the RPM
is plotted over different throttle percentages, to obtain the two degree

40

polynomial function. A simple way of doing this is making a python-
script and using Numpy "PolyFit" function on the motor-data, giving a
plot and second degree polynomial of the RPM over PWM output.

0.0 0.2 0.4 0.6 0.8 1.0
Throttle [PWM]

0

2000

4000

6000

8000

10000

RP
M

f(x)=-3316.98x²+13849.13x-11.41
f(x)
Linear reference

Figure 4.1: Motor Response

When everything is calculated, the values are placed inside the aircraft
configuration file. This file follows the gazebo format called Simulation
Descriptive Format or SDF. Table 4.1 shows the parameters names and their
values, that have been obtained. The full XML-code for the sdf-file can be
found in the appendix.

41

Parameter: Value:
maxRotVelocity 1096
motorConstant 8.365e-6
momentConstant 0.0140
rotorDragCoeff 1.75e-4
term1Coeff -3316.98
term2Coeff 13849.13
term3Coeff -11.41

Table 4.1: Motor/Propeller parameters for model.sdf file

4.2 Rigid body modeling

An important part of the behaviour of the aircraft is the inertia. How
the object turns in the different directions and the force needed to change
attitude. A good approach is by computing the moments of inertia using
a computer model of the object. A common way is to assume a uniform
mass distribution, but for a quadcopter, most of the mass is located in the
battery and in the motors at the end of each arm. To model a more accurate
aircraft, we will have do decompose the components of the aircraft and
create a rigid body for each. The downside to this is mainly the added
work and a higher need for computational power for the simulation.

The way that the aircraft-model in gymFC is set up is by dividing the
main components. This being the frame, battery, motors, propellers and
flight controller. The user can choose how many components that should
be modeled. One would have to either find the CAD files for each part
or model it yourselves. Then use the tools in the CAD software to find
the inertia-matrix, after choosing correct material and scaling the mass-
density, to get the correct weight of each component. The inertia-values
and measurements of each component is put into the aircraft configuration
file. Table 4.2 shows the parameters for configuring the frame of the
aircraft. How this looks like in XML-code for the configuration file, is
shown in the appendix.

The S500 quadrotor and 10x45 propeller was found on GrabCad [54]
and imported into the CAD tool Fusion360 as seen in figure 4.2, 4.3.
From there the real version of the vehicle is dismantled into the main
components. Now the weights can be measured individually. In CAD,
the correct material is chosen for the parts and the mass density is scaled

42

Parameter: Value (kg):
mass 0.514
Ixx 3.260e-3
Ixy 0.000
Ixz 1.819e-6
Iyy 3.632e-3
Iyz 2.050e-7
Izz 5.573e-3
Position: Value (m):
x 0.000
y 0.000
z 0.039

Table 4.2: Frame inertia

Parameter: Value (kg):
mass 0.490
Ixx 1.501e-4
Ixy 0.000
Ixz 0.000
Iyy 8.416e-04
Iyz 0.000
Izz 8.730e-04
Position: Value (m):
x 0.000
y 0.000
z 0.000

Table 4.3: Battery inertia

according to the measured weight. Lastly the inertial matrix of the main
components were extracted. One can place the origin in the Center of Mass
(COM) of the model, or specify where the COM is relative to the center of
the model, inside the aircraft configuration file. The battery and motors
were modeled by myself in CAD, as they have a very simple shape. Their
inertia-parameters can be seen in table 4.3 and 4.5.

Figure 4.2: S500 Frame Figure 4.3: Propeller

When every object is modeled, their position has to be specified in the
model.sdf file. This was done by using the measuring-tool in CAD and
on the real quad, to make sure everything is correct. The position of the
individual parts are measured from the center of thrust on the aircraft,
which is located in the center of the battery. Since our aircraft is a mirrored

43

Parameter: Value (kg):
mass 0.012
Ixx 4.0426-5
Ixy 5.1814e-7
Ixz 0.000
Iyy 3.3892e-7
Iyz 0.000
Izz 4.0665e-5
Position: Value (m):
x -0.16500
y -0.16500
z 0.12640

Table 4.4: Propeller nr. 1 inertia

Parameter: Value (kg):
mass 0.066
Ixx 8.8677e-06
Ixy 0.000
Ixz 0.000
Iyy 8.8677e-06
Iyz 0.000
Izz 6.3810e-06
Position: Value (m):
x -0.16500
y -0.16500
z 0.12465

Table 4.5: Motor nr. 1 inertia

X-frame, the placement of each motor is symmetric on each side of the
x and y-axis. The XML code for the model.sdf file can be found in the
appendix.

4.2.1 Airframe

The airframe of choice is the open source "S500" airframe. The specific
airframe in this thesis is made out of plastic, although a carbonfiber
version is also available. The airframe is a symmetrical x-frame quadrotor
as shown in figure 2.5 with a wheelbase of 480mm and a weight of 935g
without battery. Recommended specs are 880kv motors paired with a
4S 5000mAh LiPo battery, this configuration can hold a payload of up
to 1.8kg [55]. Choosing this frame came down to the design being open
source, making it easy to find a 3D model online and import it into
the Computer-Aided Design software for measuring and modeling. The
size is also attractive, as it isn’t overly compact which makes assembly,
troubleshooting and placing of components much more forgiving, if
chosen to put into the real world.

4.2.2 Mixing

Mixer configurations determine how the motors work together to control
the aircraft. The mixer used in the tuning platform of GymFC is ported
from BetaFlight, so to figure out what mixing configuration to use, we

44

Position Active Roll Pitch Direction
FL 1 1 -1 -1 (CW)
FR 1 -1 -1 1 (CCW)
RR 1 -1 1 -1 (CW)
RL 1 1 1 1 (CCW)

Table 4.6: Motor Mixing

look up their description on their GitHub Repository [56]. The vehicle
modeled in this thesis is a symmetrical X-frame, resulting in the mixing
seen in table 4.6.

The way the mixing-values are calculated is by measuring the distance
from motors to roll and pitch axis. We start with motor nr.1 (Front left)
and measure to the roll axis. This is the distance marked as C in figure 4.4
and measures 161mm. A measures also 161mm, which is the distance to
the pitch axis. The longest of the two distances is then set as denominator,
so the results are within the range of [−1.0, 1.0]. This is not something
we need to worry about since this is a symmetrical x-frame where B =
D, B = 2A and A = C. The roll mixing for front left is calculated by
161/161 = 1.0 and pitch as −161/161 = −1.0. The other motors have
the same calculations except for the +/- sign [57].

From table 4.6, the first motor is the front left. We tell the flight
controller that the motor is in use by giving it a non-zero value 1.0, then
we set roll axis to be positive 1.0, pitch axis is negative -1.0 and the motor
turns clockwise -1.0. When training with RL, the agent learns the mixing
itself. So configuration of the mixing is only used for the PID controller.

45

Figure 4.4: Top view of S500 x-frame

4.3 Training

The GymFC repository has a finished script one can use to train a model
with Proximal Policy Optimization in the Gazebo Environment. The only
change one have to make is to change the string that points to the folder
for the new digital twin if desired. If left standard, the example drone
called "NF1" will be used for the simulation.

This script works well out of the box on the example vehicle, without
any modifications. The rewards provided are tuned after a 250mm
wingspan racing drone, training with the same reward function resulted
in a very overdamped system on the S500 quadrotor. The characteristics
of an overdamped system is a high rise time, defined as the time it takes to
reach the desired value, it also never reaches the desired value, but settles
below. An example of an overdamped system is shown in figure 4.5. One
of the reasons for this was the very aggressive penalty for oscillations
and ESC-output in the reward-function. Since these penalties were so
excessive, the agent would settle below the desired velocity. Since the

46

rewards are optimized to be as smooth as possible, the agent would rather
loose some reward to velocity-error, than receiving the penalty for further
adjusting the motor velocities. After decreasing the penalty for oscillations
and motor-output, the agent would occasionally become underdamped.
This was compensated by implementing an overshoot-penalty.

ESC noise was also simulated while training. The sample noise was
taken from the example-vehicle in the GymFC repository. While it does
not use the same Flight Controller, it is still based on the same STM32F7
microcontroller with ARM Cortex M7 core. They also share the same IMU,
so it was assumed that the FC provided with the S500 would have similar
noise. The values used for noise on each axis is shown in table 4.7.

Axis: Mean: Variance:
Roll (ϕ) -0.2546 1.3373
Pitch (θ) 0.2419 0.9990
Yaw (ψ) 0.079 1.4516

Table 4.7: Gyro noise (deg/s)

Figure 4.5: Showing different responses

In the training environment, the gravity was disabled focusing on the
attitude of the vehicle. The agent would learn how to idle by starting every
episode with a desired angular velocity of 0 for a given period. There is
also set a minimal idle speed into the mixing, which should make the net
force greater or equal to zero if there was gravity present. After the vehicle

47

has settled, the desired angular velocity is given for each axis. The vehicle
will rotate about its center of mass for a given period, before settling back
to idle. The results for this method of training for attitude control, was
tested on real life quad vehicle and confirmed to be effective [46].

4.4 Software

Several scripts were made to be able to create plots from the tests,
response-comparisons etc. but the new features that were implemented,
were an Evolutionary Algorithm for optimizing of PID-gains and a Monte
Carlo simulation for testing the controllers. The EA optimization script
assists for an unbiased comparison of the potential of the RL-trained
model versus the PID-control system, since they are following the same
reward function. The two systems are tuned after a reward-function with
its preference of what a good response looks like. The advantage to this
is that one will get an objective comparison between the two. Since the
human factor of tuning a control system is eliminated. The "agent" that
control both systems has the same intuition of what a good response looks
like, because of the shared reward function. The disadvantage is that the
performance solely depends of how well the reward-system is tuned. A
poorly tuned reward-system will result in a poorly tuned control-system.

The Monte Carlo simulation is another method to get an objective
answer to how well each system behaves. It does not tell which system
is the fastest but it tells which had the least mean error to the desired
velocity, on each axis. By testing a large range of setpoints, one can study
the reliability of the controller. The control systems behave differently to
low and high velocities, so by looking at the spread of the results, one can
see how often a system would respond poorly and get an idea of its overall
accuracy.

4.5 Reward-function

The reward-function in use for the RL flight controller and Evolutionary
Algorithm is built up by several functions. The main reward comes from
the agent accurately following the desired angular velocity by changing

48

the motor-velocities. The inputs of the NN are the current and desired
angular velocities in 3 axis (roll, pitch yaw), while the outputs are the
ESC-signals that power the motors (4 outputs, one for each motor). But
the agent needs a more complex reward-system to learn how to behave
well in flight. One would also need to teach the agent how to responds
smoothly and minimize overshoot and oscillations.

The reward is built up by the following functions:

• Output oscillation penalty

• Minimizing signal output

• Change in Error

• Over saturation penalty

• Doing nothing penalty

• Overshoot penalty

The overshoot penalty is the only part of the reward, that were not
implemented. The rest was already available in the GymFC repository, al-
though the scaling of reward/penalty for each of them were tuned after
several training-sessions, to obtain a better response behaviour. The over-
shoot penalty works by giving a penalty for each axis experiencing over-
shoot, which is a set amount of degrees above the desired angular velocity.
The penalty increases by how many of the axis that are experiencing over-
shoot simultaneously.

Overshoot penalty:

• Penalizes the agent for going above the desired velocity, if the
setpoint on all axes is not zero. The penalty increases by the number
of axis with overshoot.

rO =

−β
(
(Oϕ + Oθ + Oψ)/3

)
, if setpoint ̸= 0

0, otherwise

where O is an axis experiencing overshoot O ∈ [0, 1] and β is a
scaling constant.

49

4.6 Ziegler Nichols optimized PID

To evaluate the performance of the RL-trained Flight Controller (FC), a
well known control design is chosen, the Proportional Integral Derivative
(PID). This control system has great potential as long as it’s tuned correctly.

GymFC can be used as a tuning platform for the PID-parameters, the
architecture of the tuning platform is shown in figure 4.6.

Figure 4.6: GymFC PID control tuning and SITL (taken from [46])

The first PID controller to be used for comparison, is tuned after
the classical Ziegler Nichols method. This is a well known and purely
mathematical approach to automatic control. Although this method is
known for not providing the greatest results, it is used as a baseline.
The calculations are executed for each axis independently, but since the
quadrotor in use is a symmetrical X-frame, we can use the same gains for
roll and pitch.

4.7 Optimizing PID-values with Evolutionary

Algorithm

Another method for finding PID gain values, is by introducing optimiz-
ation algorithms. For example an Evolutionary Algorithm (EA). A biolo-
gically inspired algorithm that mimics a population that slowly adapts to
the environment, by producing offspring with slightly mutated properties
from the previous best individuals, until the population has become well

50

fitted to the environment. An individual in this context, would be a set of
PID-gain values. The algorithm starts out with an all random population.
The top individuals with the highest score, meaning the gain-values that
had the best response in a PID-control test, is picked as the parents of the
next generation. A determined amount of offspring is made from the best
individuals of the last generation, but slightly mutated in hope that these
will be better than the last generation.

There are many ways of setting up an EA, but the one used here starts
with a population of 32 with randomly generated sets of PID gain values
ranging [2,70]. These values where chosen from simulation, where one
could see that the lowest Proportional-value that could make the drone to
change velocities in a reasonable way. The sets have 9 values, 3 PID-gains
for each axis [ϕ, θ, ψ].

[
Pϕ IϕDϕ, Pθ IθDθ, Pψ IψDψ

]
After each individual is tested and calculated its fitness-value from the

reward-function, the top 3 individuals are picked for the next generation.
The top 2 are the "elites" and are kept until the offspring gets a better
fitness. This is to make sure that the fitness always stays equal or better
from one generation to the next. This can be seen in figure 5.2. The next
generation contains 7 offspring from each of the previous top 3. The gain-
values are mutated by by adding a random float-value in the range [-2,2],
to each gain parameter. The last 9 individuals of the new generation are
made with recombination of the attributes from the top 3 parents. The
recombination showed great ability in increasing the exploration of the
algorithm. As the mutation with float-values alone, did not add enough
exploration to leave most of the local maximums.

• 2 Elites

• 21 mutated offspring

• 9 recombination offspring

• Results in a population of 32

The fitness of the individual is calculated from the same fitness
function used for RL. The sum from the reward-functions is sampled

51

from each time step in the simulation, same as for RL-training and an
average reward is calculated. The fitness of the best agents found through
a number of training sessions is plotted in figure 5.2.These parameters
for the EA where found through many tests, studying how often the
algorithm would converge and find great results.

Algorithm 3 GymFC EA tuning algorithm
INITIALIZE 32 agents with 3x3 random PID-values

while (TERMINATION CONDITION is not satisfied) do

1 SIMULATE agents on specified inputs

2 PICK the 3 best agents

if (No candidate is better then the best parent) then

Keep best parent for next generation (Elitism)

end if

3 LOG the current best agent

4 MUTATE 30 new candidates from the top 3

for (21 agents) do return Agents by mutating PID +/- 2.0

end for

for (9 agents) do return Agents by Recombining PID values from top 3

end for

end while
return best PID-values with reward and mean error

4.8 Monte Carlo Simulation

To get a good idea how well the different control systems responds, a
Monte Carlo simulation was made. 200 sets of random inputs is created
that later is tested on the PID control systems and the RL model. The list
of desired values that the systems is tested on are identical, meaning the
random-function that generated the setpoints uses the same seed. The test
calculates the mean error that the episode had for each setpoint. The er-
ror is measured on each axis independently. This gives a good measure of
how well each control system behaves on all three axis with a variety of
angular velocities. The test-environment is the same environment as the
training took place, only this time it uses setpoints that it has not seen be-

52

fore.

The test starts out with an angular velocity of zero, this is to show how
well the vehicle can idle. Random setpoints as angular velocities are then
given on each axis at the same time. This is a worst case scenario for the
quadrotor, as there is no ramp-up period, and the fact that they are given
for all three axis simultaneously. The setpoint is then changed back to
zero, after the vehicle has held the desired velocity for a set period. A
plot of how the desired and actual velocities respond to each other in the
environment.

Algorithm 4 GymFC Monte Carlo simulation
GENERATE 200 random sets of setpoints for roll, pitch and yaw
CHOOSE controller for testing

for 200 number of tests do

1 SIMULATE roll, pitch and yaw control with random setpoints

2 LOG error for each axis from episode

end for
return Data from 200 tests

53

54

5 | Experiments and Results

5.1 Training

In this chapter, we go through the process of training a RL-model, using
the PPO algorithm on the Digital Twin (DT) that were modeled for the
S500 quadrotor. An approach for acquiring a well performing model and
comparing its performance with other controllers, is shown. We validate
the results and get an understanding of the behaviour of the RL-controller.
Lastly, the different controllers are tested with the Monte Carlo simulation.

Due to the nature of randomness in RL, one does not always get a good
resulting controller nor does it always converge. When testing changes
in the reward-function, it was made sure to get at least 3 models trained
for 3.0 · 106 time steps, to validate the behaviour of the reward-function
before concluding if the changes where beneficial or not. A time step takes
place every 1ms in the simulation, if it runs in real time. One episode is
one simulation of the vehicle, where the vehicle starts out with a angular
velocity of 0 on all axes, then gets a set of desired inputs and goes back to
idle. An episode consists of 4608 time steps.

Each model is validated by running 3 different inputs-sets of rotational
velocities on each axis and receiving a reward and mean error for each
episode. This is done on every checkpoint. A checkpoint is made on every
3.0 · 103 time step, resulting in 100 checkpoints. After the evaluation, one
can plot response-graphs from the checkpoints that received the largest re-
ward, to visually see if the behaviour is adequate. If a specific checkpoint
shows great response, it can be extracted and further tested in a Monte
Carlo simulation. This is to further validate its performance on a broader
variety of inputs that the model has never seen before. The results from

55

the Monte Carlo simulation is what gives the box plots its data, which is
the chosen method to determine which model had the best performance.

PPO is known for not needing that much tuning of the hyperparamet-
ers [42]. The default settings were able to train a working model on the
NF1 quadrotor given as example in the GymFC repository, so the hyper-
parameters were left as is and rather spend time on further optimizing
the reward-function for the quadrotor used in this thesis. A training ses-
sion on the S500 quadrotor is shown in figure 5.1. The plot is showing 100
checkpoints from 4.0 · 106 time steps (868 episodes). The figure shows that
the model starts to converge after approximately 1.0 · 106 time steps. The
other metrics show the mean error, mean output to the motors, mean delta
output and the reward at each checkpoint.

At first, the agent is not responding to the inputs, as shown by the
flat metrics of the motor output u. The doing-nothing-penalty makes sure
that any output to the motors, gives a significantly better reward than
no outputs at all. As time goes on, the agent starts to use its motors
very frequently. This also increases the mean error, since the vehicle is
at this point just spinning out of control. The minimal output penalty
and oscillation penalty makes sure that the agent learns to minimize its
outputs, to get a more stable flight. By the time of about 2.0 · 106 time
steps, the change in motor output declines, which coincides with the
increasing reward. The hyperparameters used are shown in table 5.1. The
best checkpoint was extracted at approximately 2.8 · 106 timesteps and is
labeled as PPO 0 in the response graph of figure 5.5 and box plots. Training
was conducted on a desktop computer running Ubuntu 18.04 with an I5
4670K at 4GHz CPU and an Nvidia GTX 780 GPU.

56

Parameter: Value:
step size 1e-4
horizon 512
clip 0.2
lambda 0.95
batchsize 64
epochs 5
gamma 0.99
hidden size 32
hidden layers 2
action space 4
observ. space 6

Table 5.1: Training Parameters

57

101

102

103

M
ea

n
Er

ro
r

0.000

0.005

0.010

0.015

0.020

0.025

M
ea

n
u

0.0

0.1

0.2

0.3

M
ea

n
de

lta
 u

0 20 40 60 80 100
Checkpoint

109108107106105104103102101
1000100
101102103

Re
wa

rd

Figure 5.1: Training session with S500 quadrotor

58

5.2 Comparison and Evaluation

To find out how Reinforcement Learning (RL) is performing on drone-
control, we will compare it to the well known Proportional Integral
Derivative (PID) controller. First the results and the performance of the
PID controller, where the gain values have been tuned using EA. The
second PID controller will be with the classical Ziegler Nichols method.

5.2.1 Evolutionary Algorithm optimized PID

The Evolutionary Algorithm (EA) optimized PID controller, uses the same
fitness-function as in RL. This makes the comparisons easier, as they value
the same type of behaviour, which is low oscillations, minimal and smooth
motor-outputs and good tracking of the desired velocity. The best PID-
values that the algorithm could acquire were:

• Roll [Pϕ, Iϕ, Dϕ] = [15.84465486, 12.73278438, 0.84717646]

• Pitch [Pθ, Iθ, Dθ] = [40.37873658, 1.12492009, 0.79367289]

• Yaw [Pψ, Iψ, Dψ] = [47.64914102, 4.69741626, 1.46417112]

Response graph of the best individual can be seen in figure 5.5 together
with ZN PID and PPO. Data from the EA training session with the best
results can be seen in figure 5.2. The result from the EA-algorithm shows
a controller that outperforms the ZN method on all axes. Even though
the Monte Carlo test shows that it has some issues with tracking the
desired velocity for roll-control, with a slightly higher median than the
ZN-method. The spread however is much less on all axes, shown by
tighter spacing between the lower and upper quartile of the boxplot. This
represents 50% of the datapoints, while the whiskers represent the upper
and lower 25%. Overshoot is also almost eliminated, while still being just
as fast as the aggressive ZN-controller.

5.2.2 Ziegler Nichols optimized PID

The resulting PID-gains from the calculation for roll, pitch and yaw with
the ZN method were:

59

0 5 10 15 20 25 30
Generation

0

200

400

600

800

Fi
tn

es
s

Agent 1
Agent 2
Agent 3
Agent 4
Agent 5
Agent 6

Figure 5.2: Fitness of the best agents after each generation

• Roll [Pϕ, Iϕ, Dϕ] = [21, 233.3, 0.4725]

• Pitch [Pθ, Iθ, Dθ] = [21, 233.3, 0.4725]

• Yaw [Pψ, Iψ, Dψ] = [40, 1, 1]

Since the vehicle is a symmetrical x-frame, the same values for roll and
pitch were used. The ZN controller is performing significantly worse than
the controller from the EA-algorithm, but it is very often used as compar-
ison in other work [46] as a baseline. Response of Ziegler-Nichols PID is
shown with the other controllers in figure 5.5.

The controller does not show any large oscillations while maintaining
the setpoints but suffers from violent overshoots. The results from the
Monte Carlo simulation shows that it’s performing the best on the yaw
axis but the median of the data is still worse than PPO and EA. The lower

60

Model Roll error Pitch error Yaw error

PPO 0 3.2722 4.6958 5.4102
PPO 1 2.3733 9.6180 3.9309

EA PID 8.3615 4.2250 4.8869
ZN PID 7.3249 7.5597 5.7613

Table 5.2: Results from Monte Carlo simulation, showing median error
in deg/s. These are the same results as in figure 5.3

whisker of the box plot, is on par with the other models for yaw control.
Roll-control is showing slightly lower mean error than the best EA-model,
which lacked some performance on this axis, but performed well on pitch
and yaw. Data from the Monte Carlo tests can be studied closer in the Rain
Cloud Plots in the appendix.

Figure 5.3: Boxplot from Monte Carlo simulation

61

Figure 5.4: Rain Cloud Plot, Roll comparison.

5.2.3 PPO Response and Error comparison

There are two RL models used in these plots. One with the overall best
response on all axes labeled as PPO 0. A second model that were faster
and more precise on some axes but suffered in performance on one axis.
This model is labeled as PPO 1. Both models can be seen in figure 5.5,
which shows their response compared to PID control. The two models
are trained with the same hyperparameters and reward-function, only the
random seed is different. The results from the Monte Carlo simulation of
all the models are shown in figure 5.3 with table 5.2 showing the medians

Model Roll error Pitch error Yaw error

PPO 0 4.94% 4.64% 9.73%
PPO 1 3.27% 15.00% 7.30%

EA PID 7.31% 4.76% 10.03%
ZN PID 9.22% 10.53% 14.70%

Table 5.3: Showing mean error as a % of setpoint from figure 5.5

62

of the same results.

The PPO 1 model has a significantly faster response on the roll axis
then all of the other models compared. It shows very quick response with
close to zero overshoot and oscillations are non present. From the Rain
Cloud Plot in figure 5.4, it can seen that a large portion of the datapoints
lies in the sub 2 deg/s Mean Error area. However, the response for pitch,
seems to be over-damped and has a very slow rise-time. The error for this
has a considerably large spread as one can see in the box plot from figure
5.3, where a large amount of the datapoints are in the high-error area of
+10 Mean error. Indicating that it experiences instability on a significant
portion of the setpoints tested. The response for yaw, seems to be under-
damped but tracks the desired velocity sufficiently after settling. This can
be seen in the response graph in figure 5.5, with zoomed in versions of
the same response graphs in figure 5.6 and 5.7. The zoomed in response
graphs also show the mean error for that specific episode, on each axis,
for each model. Table 5.3 shows the mean error from the corresponding
episode, but as a percentage of the setpoints.

Both PPO models show great results, but the spread is quite high for
pitch control compared to the EA PID model. PPO 0 has datapoints with
lower error than both PID controllers on all axes, shown by the lower
whisker. PPO 0 has a slightly higher median, compared to EA PID on
pitch and yaw. More in depth representation of the results with rain cloud
plots can be seen in the appendix.

5.2.4 Mann Whitney U test (Wilcoxon Rank Sum Test)

A statistical analysis is made on all the models with a Mann Whitney U
test. Normally this test runs at a significance level of 5, meaning that if
the p-value is larger than 0.05, then we do not have statistically significant
evidence, that they are not sampled from the same population. Since this
test is comparing multiple samples, we use the Bonferroni method when
choosing significance level. Therefor the threshold α is lowered by α/n.
With α = 5 and n = 6 we get a significance level of 0.83 for our test. Table
5.4 - 5.6 shows the results from the data on roll, pitch and yaw from the
models used in this thesis. The models with a p-value of >0.0083 is colored

63

Table 5.4: MWU for Roll results

Table 5.5: MWU for Pitch results

Table 5.6: MWU for Yaw results

64

blue, meaning that the null hypotheses is kept. The data is taken from the
Monte Carlo simulation.

The results show that PPO 0 and EA PID are similar for the pitch-axis.
Their comparison resulted in a p-value of 0.0284, which means that the
null hypothesis is kept. The same models for yaw control are also similar,
with a p-value of 0.18. ZN PID is also similar to PPO 0 for the yaw axis,
showing a p-value of 0.0223. These were the only samples which had a p-
value of more than 0.0083, meaning that statistically they could’ve arrived
from the same population.

65

300

200

100

0

100

Ro
ll

(d
eg

/s
)

Desired Velocity
PPO 0
PPO 1
EA PID
ZN PID

100

50

0

50

100

150

200

Pi
tc

h
(d

eg
/s

)

Desired Velocity
PPO 0
PPO 1
EA PID
ZN PID

0 1 2 3 4
Time (s)

20

10

0

10

20

30

40

50

Ya
w

(d
eg

/s
)

Desired Velocity
PPO 0
PPO 1
EA PID
ZN PID

Figure 5.5: Response comparison of PPO 0, PPO 1, EA- and ZN-optimized
PID 66

Desired Velocity PPO 0 PPO 1 EA PID ZN PID

350

300

250

200

150

100

50

0

Ro
ll

(d
eg

/s
)

0

50

100

150

200

Pi
tc

h
(d

eg
/s

)

0.6 0.8 1.0 1.2 1.4
Time (s)

0

10

20

30

40

50

Ya
w

(d
eg

/s
)

Figure 5.6: zoomed 1. part

100

50

0

50

100

Error: 7.11 deg/s
Error: 4.71 deg/s
Error: 10.52 deg/s
Error: 13.28 deg/s

100

75

50

25

0

25

50

75

100

Error: 4.18 deg/s
Error: 13.50 deg/s
Error: 4.28 deg/s
Error: 9.48 deg/s

2.4 2.6 2.8 3.0 3.2
Time (s)

20

10

0

10

20

30
Error: 2.92 deg/s
Error: 2.19 deg/s
Error: 3.01 deg/s
Error: 4.41 deg/s

Figure 5.7: zoomed 2. part, w. error

67

68

6 | Discussion

The Proximal Policy Optimization algorithm did not have a problem
learning how to control the quadrotor. Reasonable results could be seen
after training for only 1.5 · 106 timesteps. This converts to approximately
1 hour on the hardware used, which was released in 2013. This training
period could be reduced substantially on more modern hardware. This
shows that PPO and the reward function used, was very effective in the
learning process. The algorithm usually took 2.2− 3.0 · 106 timesteps to
train the best RL controllers.

The Monte Carlo tests show that using Machine Learning algorithms
for optimizing PID controllers have great potential. The Evolutionary
Algorithm could probably give even better results if the fitness-function
was further optimized, but we wanted the PPO and EA models to have
the same fitness function. This can explain why the control for PPO
and EA PID behaved similar on some axes, especially pitch. The most
notable difference is how PPO performs a little slower but experiences
no overshoot (on roll and pitch) and keeps the velocity closer and more
steady near the setpoint. While EA is faster but is not following the
setpoint perfectly, having some corrections, over the duration of the given
input. However, the PID controller tuned with EA heavily outperforms
the controller tuned after Ziegler Nichols’ method.

There seems to be a trade-off between reasonable response-time on
all axis, or fast response on two of the axes, while the response on
one axis is compromised. This may be because the vehicle is given the
task of changing velocity on all axis at the same time, resulting in that
some of the axes has to be prioritized over the other. The tests that the
vehicle is given is a worst case scenario. A quadrotor is underactuated,
meaning it has a lower number of actuators than Degrees Of Freedom. It
changes orientation by adjusting the speed of several motors. Combining

69

the difference in speed on the four motors, resulting in the change of
orientation.

To roll, the vehicle increases the speed on motors 1 and 3 (motors
on the same side of the x-axis), while reducing or holding the speed on
the opposite side. To pitch the vehicle, the motors on one side of the
y-axis is increased or reduced, relatively to the opposite side. When
both of these actions is executed simultaneously, the roll and pitch will
interfere with each other, since the motors in use for roll and pitch overlap.
Same with rotation on the yaw axis. As a result, some of the torques
about each axis may cancel each other out. This could be why PPO
1 experiences instability on one axis, while models like EA PID show
acceptable performance on all axes. The reason to why the PPO 1 was kept
in the comparison, was to show the potential that the RL control system
have. None of the EA models tested were able mirror the performance on
any of the axes.

One aspect of control that the PPO model does well, is consistent and
smooth tracking of the desired velocity. It is able to keep a very steady
change of velocity, followed by perfectly holding that amount, even when
given setpoints for high velocities. PID-control on the other hand, is not
able to keep the same velocity as steady for the duration of the input. At
least from how they are tuned in this thesis. Rather the error increases
slowly until the integral-part of the controller accumulates enough error,
before it correct itself. A high integral-value for the PID would make
it hold the desired velocity closer, but this increases the amount of
corrections and would result in many small oscillations. Resulting in a
less stable controller overall. The EA-PID controllers would get this kind
of behaviour when removing the oscillation-penalty from the reward-
function. This is one of the disadvantages with PID control. It has to obey
to a mathematical formula, where there might not exist a perfect solution
to the gain parameters. In this sense, RL control is more "free". The only
weak point here is the reward-function, which is clearly not perfected.

From figure 8.3, one can see that the PPO 0 model had the overall best
results, if we consider the average between all axes. Even though the
median error was slightly higher than EA PID for pitch and yaw, it still
experienced notably better results for a portion of the tests on pitch and
yaw. Shown by the lower whisker and the density of the rain cloud plots

70

in figure 8.1 and 8.2.

Another thing to point out is that every datapoint from the Monte
Carlo simulation, is the mean error from an entire episode on each axis,
including the start and end where the vehicle is just idling. This means
that rapid overshoots and small corrections will not greatly affect the mean
error, calculated from the episode. Those models that had the greatest
results, were the ones that stayed the closest within the desired velocity,
on average through the whole episode. If we were looking for the fastest
models with no overshoot, we would have to use a different measurement
of the performance. One could also choose to only measure error when the
desired velocity is not 0. The disadvantage to this is that the models which
are unable to hold a steady idle, would perform better on this metric.
Another thing to point out is the episodes where the setpoints had a high
angular velocity, the mean error is also usually higher, than those with
lower velocities. This can be seen in the results chapter from figure 5.6 and
5.7, where the corresponding error to each model is shown. All models
show larger error on roll axis, compared to yaw axis, even though most
models show visibly better performace for roll control. This is because the
setpoint for roll was−144 deg/s and 30 deg/s on yaw. A possibility could
be to measure the error as a percentage of the setpoint. The results for
each model on that specific episode, by measuring error as a percentage
is shown in table 5.3 in results. Here it can be seen that the error for roll
control is lower than for yaw, by this metric.

The Monte Carlo simulation tells us which models were the most pre-
dictable and stable. The models with the smallest variance in error, could
be the controller of choice when looking for reliability. The reason for
using Ziegler Nichols and Evolutionary Algorithm when tuning the PID
controller, was to get an objective comparison with the new neural net-
work controller. Other comparisons often use a "trial and error" method
when tuning PID gains [38]. While this method can provide good results
and being the most common method for tuning. The result will depend
on the tuners intuition, unless they use a strict systematic approach. A
problem that may arise from this, is that one could skew the results by
tuning it badly, or having a bias towards a behaviour that may be seen
as sub optimal to some users. In this thesis we partly removed this hu-
man factor by using mathematical methods and ML algorithms to tune

71

the controllers. The comparison also got an interesting view of two differ-
ent controllers tuned after the same behaviour, since they share the same
reward-function.

Looking back on the process of modeling the vehicle and developing
the controllers. It appears like an easy and straightforward process,
but the procedure did not seem that certain after trying to understand
the available documentation. Going back to the problem statement and
goals of comparing the resulting controller to existing solutions, with
development time and cost in mind. When one has spent the time going
through the process of modeling and optimizing such a controller once, it
can easily be done the second time. The time it took to train a RL model
with great results, took substantially longer than optimizing PID gains
with EA. Concluding that RL and other ML algorithms can be a viable
tool for new attitude controllers for aerial vehicles.

Future Work

There are lots of things that could be tested further between the PPO and
PID controllers. To make an even better comparison, one could use RL to
tune the PID gains, by using the same training environment as the PPO
model.

An obvious point would be to compare the best performing models
from this thesis, on the real drone. Secondly and maybe within the same
scope of the previous point, would be to see which controller that adapts
the best to changes in the environment. This could be done by changing
the physical components of the vehicle after its deployment in the real
world, or fly in environments where external disturbances like wind is
present.

A digital twin is a model that has measurements from the real world.
One would always want to increase the fidelity of the digital version, to
make the reality gap closer. It could be interesting to collect data from a
real flight test and use this data for the RL model. To further improve the
algorithms for learning how to control the vehicles.

72

7 | Conclusion

The UAV industry is always evolving into new areas and industries, and
the vehicles are getting more accessible to the average consumer. This
has left a wide variety of aerial vehicles available with varying degree of
quality. This thesis looked into the challenging part of developing new
controllers for UAVs, and compared the results.

GymFC showed to be a great framework that simplified the modeling
aspect of aerial vehicles, while also providing a great platform for
developing and testing controllers. The resulting controllers showed
that their was still room for improvement, as the reward function did
mostly produce adequate results, but the behaviour for the RL model
was sub optimal on some occasions. The optimization of PID gains with
Evolutionary Algorithm showed stable results, and was on par with the
best RL model in some areas. Both RL and EA optimized PID controller
showed to be reliable for attitude control. By eliminating the human
factor in the tuning process, and using the same training environment
for the Reinforcement Learning and Evolutionary Algorithm, we got an
interesting comparison between the two control systems.

Some classes of UAV could benefit from this more than others, like
the Ducted Fan Micro Air Vehicle (DFMAV), which is actively unstable
and has more complex dynamics, but has great potential because of
its high payload-carrying efficiency. However, this thesis focused on
the quadrotor, since it’s a much more researched platform, with more
information and tools available. Developing a model for a DFMAV from
the ground up, would be beyond the scope of this thesis, and one would
risk not getting any reasonable results within the timeframe. GymFC is
designed to work with any type of airframe, so one can use the tuning
algorithms seen in this thesis on the more challenging aerial vehicles.

One of the goals for this thesis were to deploy the flight controller onto

73

the real life quadrotor, that we modeled after. Getting good results in the
simulator took longer time than expected and we realized we were short
on time. The focus was shifted on trying to get the best result in simulator,
rather than spending a lot of time with the expected troubleshooting, from
putting the project into the real world, and extracting data from real life
tests.

74

Bibliography

[1] R.M. Howard and I. Kaminer. ‘Survey of unmanned air vehicles’. In:
Proceedings of 1995 American Control Conference - ACC’95. Vol. 5. 1995,
2950–2953 vol.5. DOI: 10.1109/ACC.1995.532054.

[2] Guowei Cai, Jorge Dias and Lakmal Seneviratne. ‘A Survey of Small-
Scale Unmanned Aerial Vehicles: Recent Advances and Future
Development Trends’. In: Unmanned Systems 02 (Apr. 2014), pp. 175–
199. DOI: 10.1142/S2301385014300017.

[3] ITF Research Reports. ‘Ready for Take Off? Integrating Drones into
the Transport System’. In: (2021), p. 98.

[4] AiRMOUR. Opening up the skies for medical emergency drones. URL:
https://airmour.eu/ (visited on 13/05/2022).

[5] Sergey Levine et al. ‘Learning Hand-Eye Coordination for Robotic
Grasping with Deep Learning and Large-Scale Data Collection’. In:
The International Journal of Robotics Research 37 (Mar. 2016). DOI: 10.
1177/0278364917710318.

[6] David Silver et al. ‘Mastering Chess and Shogi by Self-Play with a
General Reinforcement Learning Algorithm’. In: (Dec. 2017).

[7] David Silver et al. ‘Mastering the game of Go without human
knowledge’. In: Nature 550 (Oct. 2017), pp. 354–359. DOI: 10.1038/
nature24270.

[8] Oriol Vinyals et al. ‘StarCraft II: A New Challenge for Reinforcement
Learning’. In: (Aug. 2017).

[9] Jemin Hwangbo et al. ‘Control of a Quadrotor With Reinforcement
Learning’. In: IEEE Robotics and Automation Letters 2.4 (2017),
pp. 2096–2103. DOI: 10.1109/LRA.2017.2720851.

75

https://doi.org/10.1109/ACC.1995.532054
https://doi.org/10.1142/S2301385014300017
https://airmour.eu/
https://doi.org/10.1177/0278364917710318
https://doi.org/10.1177/0278364917710318
https://doi.org/10.1038/nature24270
https://doi.org/10.1038/nature24270
https://doi.org/10.1109/LRA.2017.2720851

[10] Richard S Sutton and Andrew G Barto. Reinforcement learning: An
introduction. MIT press, 2015.

[11] U. Ansari, A. Bajodah and M. T. Hamayun. ‘Quadrotor Control
Via Robust Generalized Dynamic Inversion and Adaptive Non-
Singular Terminal Sliding Mode’. In: Asian Journal of Control 21
(2019), pp. 1237–1249.

[12] The Linux Foundation. The Dronecode Project. URL: https : / / www .
dronecode.org/ (visited on 13/05/2022).

[13] Xiaodong Zhang et al. ‘A Survey of Modelling and Identification of
Quadrotor Robot’. In: Abstract and Applied Analysis 2014 (Oct. 2014).
DOI: 10.1155/2014/320526.

[14] Prafulla Dhariwal et al. OpenAI Baselines. https://github.com/openai/
baselines. 2017.

[15] Olfa Boubaker. ‘The Inverted Pendulum Benchmark in Nonlinear
Control Theory: A Survey’. In: International Journal of Advanced
Robotic Systems 10 (Sept. 2013), pp. 233–242. DOI: 10.5772/55058.

[16] Keith D. Foote. A Brief History of Machine Learning. URL: https://www.
dataversity.net/a-brief-history-of-machine-learning/.

[17] J.M. Tao and J.Y.S. Luh. ‘Application of neural network with real-
time training to robust position/force control of multiple robots’.
In: [1993] Proceedings IEEE International Conference on Robotics and
Automation. 1993, 142–148 vol.1. DOI: 10.1109/ROBOT.1993.291974.

[18] Sun ChangHao Duan HaiBin. ‘Pendulum-like oscillation controller
for micro aerial vehicle with ducted fan based on LQR and PSO’. In:
(2013). DOI: 10.1007/s11431-012-5065-5.

[19] Rong-Jong Wai, Jeng-Dao Lee and Kun-Lun Chuang. ‘Real-Time
PID Control Strategy for Maglev Transportation System via Particle
Swarm Optimization’. In: Industrial Electronics, IEEE Transactions on
58 (Mar. 2011), pp. 629–646. DOI: 10.1109/TIE.2010.2046004.

[20] Ali Emami and Amin Rezaeizadeh. ‘Adaptive model predictive
control-based Attitude and Trajectory Tracking of a VTOL Aircraft’.
In: IET Control Theory and Applications 12 (May 2018). DOI: 10.1049/
iet-cta.2017.1048.

76

https://www.dronecode.org/
https://www.dronecode.org/
https://doi.org/10.1155/2014/320526
https://github.com/openai/baselines
https://github.com/openai/baselines
https://doi.org/10.5772/55058
https://www.dataversity.net/a-brief-history-of-machine-learning/
https://www.dataversity.net/a-brief-history-of-machine-learning/
https://doi.org/10.1109/ROBOT.1993.291974
https://doi.org/10.1007/s11431-012-5065-5
https://doi.org/10.1109/TIE.2010.2046004
https://doi.org/10.1049/iet-cta.2017.1048
https://doi.org/10.1049/iet-cta.2017.1048

[21] Bora Erginer and Erdinc Altug. ‘Modeling and PD Control of a
Quadrotor VTOL Vehicle’. In: 2007 IEEE Intelligent Vehicles Sym-
posium. 2007, pp. 894–899. DOI: 10.1109/IVS.2007.4290230.

[22] Ning Cao and Alan Lynch. ‘Inner-Outer Loop Control for Quadrotor
UAVs With Input and State Constraints’. In: IEEE Transactions on
Control Systems Technology 24 (Dec. 2015), pp. 1–8. DOI: 10 . 1109 /
TCST.2015.2505642.

[23] Xiangdong Meng, Yu Qing He and Jianda Han. ‘Survey on Aerial
Manipulator: System, Modeling, and Control’. In: Robotica 38 (Oct.
2019), pp. 1–30. DOI: 10.1017/S0263574719001450.

[24] Taeyoung Lee, Melvin Leok and N.H. Mcclamroch. ‘Control of Com-
plex Maneuvers for a Quadrotor UAV using Geometric Methods on
SE(3)’. In: (Mar. 2010).

[25] Shuanghou Deng, Siwei Wang and Zheng Zhang. ‘Aerodynamic
performance assessment of a ducted fan UAV for VTOL applica-
tions’. In: Aerospace Science and Technology 103 (June 2020), p. 105895.
DOI: 10.1016/j.ast.2020.105895.

[26] Aruneshwaran Rajashekaran et al. ‘Neural adaptive flight controller
for ducted-fan UAV performing nonlinear maneuver’. In: Apr. 2013,
pp. 51–56. DOI: 10.1109/CISDA.2013.6595427.

[27] Chao Zhang, Huosheng Hu and Wang Jing. ‘An adaptive neural
network approach to the tracking control of micro aerial vehicles
in constrained space’. In: International Journal of Systems Science 48
(Mar. 2016), pp. 1–11. DOI: 10.1080/00207721.2016.1157223.

[28] Zihuan Cheng, Hailong Pei and Shuai Li. ‘Neural-Networks Control
for Hover to High-Speed-Level-Flight Transition of Ducted Fan UAV
With Provable Stability’. In: IEEE Access 8 (2020), pp. 100135–100151.
DOI: 10.1109/ACCESS.2020.2997877.

[29] Dag Sonntag. ‘A Study of Quadrotor Modeling’. MA thesis.
Linköpings Universitet, 2011.

[30] Jemin Hwangbo et al. ‘Learning agile and dynamic motor skills for
legged robots’. In: Science Robotics 4 (Jan. 2019), eaau5872. DOI: 10.
1126/scirobotics.aau5872.

77

https://doi.org/10.1109/IVS.2007.4290230
https://doi.org/10.1109/TCST.2015.2505642
https://doi.org/10.1109/TCST.2015.2505642
https://doi.org/10.1017/S0263574719001450
https://doi.org/10.1016/j.ast.2020.105895
https://doi.org/10.1109/CISDA.2013.6595427
https://doi.org/10.1080/00207721.2016.1157223
https://doi.org/10.1109/ACCESS.2020.2997877
https://doi.org/10.1126/scirobotics.aau5872
https://doi.org/10.1126/scirobotics.aau5872

[31] Paul Fahlstrom and Thomas Gleason. ‘Introduction to UAV Systems:
Fourth Edition’. In: Introduction to UAV Systems: Fourth Edition (Aug.
2012). DOI: 10.1002/9781118396780.

[32] C Balan. ‘Modelling and Linear Control of a Quadrotor’. MA thesis.
Cranfield University, 2007.

[33] Robert Mahony, Vijay Kumar and Peter Corke. ‘Multirotor Aerial
Vehicles: Modeling, Estimation, and Control of Quadrotor’. In:
Robotics Automation Magazine, IEEE 19 (Sept. 2012), pp. 20–32. DOI:
10.1109/MRA.2012.2206474.

[34] J. Gordon Leishman. Principles of Helicopter Aerodynamics. Cam-
bridge University Press, 2016. ISBN: 9781107013353.

[35] E. M. Greitzer Z. S. Spakovszky and I. A. Waitz. ‘Performance of
propellers’. In: (). URL: https://web.mit.edu/16.unified/www/FALL/
thermodynamics/notes/node86.html.

[36] PX4 User Guide. URL: https://docs.px4.io/ (visited on 13/05/2022).

[37] M.A. Johnson et al. PID control: New identification and design methods.
Jan. 2005, pp. 1–543. DOI: 10.1007/1-84628-148-2.

[38] Jemie Muliadi and Benyamin Kusumoputro. ‘Neural Network
Control System of UAV Altitude Dynamics and Its Comparison with
the PID Control System’. In: Journal of Advanced Transportation 2018
(Jan. 2018), pp. 1–18. DOI: 10.1155/2018/3823201.

[39] J. G. Ziegler and N. B. Nichols. ‘Optimum settings for automatic
controllers.’ In: ASME (1942).

[40] S. Marsland. Machine Learning: An Algorithmic Perspective, Second
Edition. Chapman & Hall. CRC Press, 2014. ISBN: 9781466583337.
URL: https://books.google.no/books?id=6GvSBQAAQBAJ.

[41] Example of a deep neural network. URL: https://commons.wikimedia.org/
wiki/File:Example_of_a_deep_neural_network.png.

[42] John Schulman et al. Proximal Policy Optimization Algorithms. 2017.
arXiv: 1707.06347 [cs.LG].

78

https://doi.org/10.1002/9781118396780
https://doi.org/10.1109/MRA.2012.2206474
https://web.mit.edu/16.unified/www/FALL/thermodynamics/notes/node86.html
https://web.mit.edu/16.unified/www/FALL/thermodynamics/notes/node86.html
https://docs.px4.io/
https://doi.org/10.1007/1-84628-148-2
https://doi.org/10.1155/2018/3823201
https://books.google.no/books?id=6GvSBQAAQBAJ
https://commons.wikimedia.org/wiki/File:Example_of_a_deep_neural_network.png
https://commons.wikimedia.org/wiki/File:Example_of_a_deep_neural_network.png
https://arxiv.org/abs/1707.06347

[43] Asteris Apostolidis and Konstantinos P. Stamoulis. ‘An AI-based
Digital Twin Case Study in the MRO Sector’. In: Transportation
Research Procedia 56 (2021). 1st International Conference on Aviation
Future: Challenge and Solution (AFCS 2020), pp. 55–62. ISSN: 2352-
1465. DOI: https://doi.org/10.1016/j.trpro.2021.09.007. URL: https:
//www.sciencedirect.com/science/article/pii/S2352146521006347.

[44] Edward H. Glaessgen, D. S. Stargel and D. S. Stargel. ‘The Digital
Twin Paradigm for Future NASA and U.S. Air Force Vehicles’. In:
(2012).

[45] Adrian Barbu and Song-Chun Zhu. ‘Introduction to Monte Carlo
Methods’. In: Monte Carlo Methods. Singapore: Springer Singapore,
2020, pp. 1–17. ISBN: 978-981-13-2971-5. DOI: 10.1007/978- 981- 13-
2971-5_1. URL: https://doi.org/10.1007/978-981-13-2971-5_1.

[46] William Koch. Flight controller synthesis via deep reinforcement learning.
2019. DOI: 10.48550/ARXIV.1909.06493. URL: https://arxiv.org/abs/
1909.06493.

[47] Fadri Furrer et al. ‘Robot Operating System (ROS): The Complete
Reference (Volume 1)’. In: ed. by Anis Koubaa. Cham: Springer
International Publishing, 2016. Chap. RotorS—A Modular Gazebo
MAV Simulator Framework, pp. 595–625. ISBN: 978-3-319-26054-9.
DOI: 10.1007/978-3-319-26054-9_23. URL: http://dx.doi.org/10.1007/
978-3-319-26054-9_23.

[48] Fusion 360: Integrated CAD, CAM, CAE, and PCB software. URL: https:
//www.autodesk.com/products/fusion-360 (visited on 13/05/2022).

[49] Michael L. Waskom. ‘seaborn: statistical data visualization’. In:
Journal of Open Source Software 6.60 (2021), p. 3021. DOI: 10.21105/
joss.03021. URL: https://doi.org/10.21105/joss.03021.

[50] Kirstie Whitaker et al. RainCloudPlots/RainCloudPlots: WellcomeOpen-
Research. Version v1.1. Aug. 2019. DOI: 10.5281/zenodo.3368186. URL:
https://doi.org/10.5281/zenodo.3368186.

[51] Patrick E. McKnight and Julius Najab. ‘Mann-Whitney U Test’. In:
The Corsini Encyclopedia of Psychology. John Wiley Sons, Ltd, 2010,
pp. 1–1. ISBN: 9780470479216. DOI: https : / / doi . org / 10 . 1002 /
9780470479216.corpsy0524. eprint: https://onlinelibrary.wiley.com/doi/

79

https://doi.org/https://doi.org/10.1016/j.trpro.2021.09.007
https://www.sciencedirect.com/science/article/pii/S2352146521006347
https://www.sciencedirect.com/science/article/pii/S2352146521006347
https://doi.org/10.1007/978-981-13-2971-5_1
https://doi.org/10.1007/978-981-13-2971-5_1
https://doi.org/10.1007/978-981-13-2971-5_1
https://doi.org/10.48550/ARXIV.1909.06493
https://arxiv.org/abs/1909.06493
https://arxiv.org/abs/1909.06493
https://doi.org/10.1007/978-3-319-26054-9_23
http://dx.doi.org/10.1007/978-3-319-26054-9_23
http://dx.doi.org/10.1007/978-3-319-26054-9_23
https://www.autodesk.com/products/fusion-360
https://www.autodesk.com/products/fusion-360
https://doi.org/10.21105/joss.03021
https://doi.org/10.21105/joss.03021
https://doi.org/10.21105/joss.03021
https://doi.org/10.5281/zenodo.3368186
https://doi.org/10.5281/zenodo.3368186
https://doi.org/https://doi.org/10.1002/9780470479216.corpsy0524
https://doi.org/https://doi.org/10.1002/9780470479216.corpsy0524
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470479216.corpsy0524
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470479216.corpsy0524

pdf /10 . 1002/9780470479216 . corpsy0524. URL: https : //onlinelibrary.
wiley.com/doi/abs/10.1002/9780470479216.corpsy0524.

[52] Winston Haynes. ‘Bonferroni Correction’. In: Encyclopedia of Systems
Biology. Ed. by Werner Dubitzky et al. New York, NY: Springer New
York, 2013, pp. 154–154. ISBN: 978-1-4419-9863-7. DOI: 10.1007/978-
1-4419-9863-7_1213. URL: https://doi.org/10.1007/978-1-4419-9863-
7_1213.

[53] G.K. Ananda et al J.B. Brandt R.W. Deters. UIUC Propeller Database,
Vols 1-3, University of Illinois at Urbana-Champaign. URL: https://m-
selig.ae.illinois.edu/props/propDB.html.

[54] GrabCad: 3D CAD Model Library. URL: https://grabcad.com/library/
s500-frame-1 (visited on 13/05/2022).

[55] S500 V2 Kit. URL: http://www.holybro.com/product/pixhawk4-s500-v2-
kit/ (visited on 13/05/2022).

[56] BetaFlight. URL: https://github.com/betaflight/betaflight (visited on
13/05/2022).

[57] Custom Motor Mixing Multirotor. URL: https://oscarliang.com/custom-
motor-output-mix-quadcopter/ (visited on 15/05/2022).

80

https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470479216.corpsy0524
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470479216.corpsy0524
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470479216.corpsy0524
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470479216.corpsy0524
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470479216.corpsy0524
https://doi.org/10.1007/978-1-4419-9863-7_1213
https://doi.org/10.1007/978-1-4419-9863-7_1213
https://doi.org/10.1007/978-1-4419-9863-7_1213
https://doi.org/10.1007/978-1-4419-9863-7_1213
https://m-selig.ae.illinois.edu/props/propDB.html
https://m-selig.ae.illinois.edu/props/propDB.html
https://grabcad.com/library/s500-frame-1
https://grabcad.com/library/s500-frame-1
http://www.holybro.com/product/pixhawk4-s500-v2-kit/
http://www.holybro.com/product/pixhawk4-s500-v2-kit/
https://github.com/betaflight/betaflight
https://oscarliang.com/custom-motor-output-mix-quadcopter/
https://oscarliang.com/custom-motor-output-mix-quadcopter/

8 | Appendix

Rain cloud plot of the roll control can be seen in the results chapter 5.4.

Figure 8.1: Pitch error comparison from Monte Carlo sim. in a rain cloud
plot

81

Figure 8.2: Yaw error comparison from Monte Carlo sim. in a rain cloud
plot

82

Figure 8.3: Average error from all axes from Monte Carlo sim. in a rain
cloud plot

83

<plugin name="prop_1_motor_model" filename=’libgazebo_motor_model.so’>
<robotNamespace></robotNamespace>
<jointName> prop_1_joint </jointName>
<linkName> prop_1 </linkName>

<turningDirection> cw </turningDirection>
<timeConstantUp> 0.0125 </timeConstantUp>
<timeConstantDown> 0.025 </timeConstantDown>
<maxRotVelocity> 1096 </maxRotVelocity>
<motorConstant> 8.365e-6 </motorConstant>
<momentConstant> 0.0140 </momentConstant>

<motorNumber> 0 </motorNumber>
<rotorDragCoefficient> 0.000175 </rotorDragCoefficient>
<rollingMomentCoefficient> 1e-06 </rollingMomentCoefficient>
<rotorVelocitySlowdownSim> 10 </rotorVelocitySlowdownSim>
<rotorVelocityUnits> rpm </rotorVelocityUnits>

<escTransferFunction>
<term1Coefficient> -3316.98 </term1Coefficient>
<term2Coefficient> 13849.13 </term2Coefficient>
<term3Coefficient> -11.41 </term3Coefficient>

</escTransferFunction>
</plugin>

<link name="motor_1">
<pose>-0.165 -0.165 0.12465 0 -0 0</pose>

<inertial>
<pose>0.000000 -0.000000 0.016000</pose>
<mass>0.066</mass>
<inertia>

<ixx>8.8677e-06</ixx>
<ixy>0</ixy>
<ixz>0</ixz>
<iyy>8.8677e-06</iyy>
<iyz>0</iyz>
<izz>6.3810e-06</izz>

</inertia>
</inertial>

Figure 8.4: Showing the parts of the vehicle configuration file. This is only
showing one motor. The other 3 are identical except for their position
which is mirrored since this is a symmetrical x-frame.

84

<link name="prop_1">
<pose>-0.165 -0.165 0.1264 0 -0 0</pose>

<inertial>
<pose>0.000000 0.000000 0.00553</pose>
<mass>0.012</mass>
<inertia>

<ixx>4.0426e-05</ixx>
<ixy>5.1814e-07</ixy>
<ixz>0</ixz>
<iyy>3.3892e-07</iyy>
<iyz>0</iyz>
<izz>4.0665e-05</izz>

</inertia>
</inertial>

<link name=’battery’>
<pose>0 0 0 0 0 1.5708</pose>

<inertial>
<pose>0.000000 0.000000 -0.019000</pose>
<mass>0.490</mass>
<inertia>

<ixx>1.501e-4</ixx>
<ixy>0</ixy>
<ixz>0</ixz>
<iyy>8.416e-04</iyy>
<iyz>0</iyz>
<izz>8.730e-04</izz>

</inertia>
</inertial>

<link name=’frame’>
<pose>0 0 0.039 0 0 1.5708</pose>
<inertial>

<pose>0.000000 0.000000 0.00000 </pose>
<mass>0.514</mass>
<inertia>

<ixx>0.003260</ixx>
<ixy>0</ixy>
<ixz>0.000001819</ixz>
<iyy>0.003632</iyy>
<iyz>0.000000205</iyz>
<izz>0.005573</izz>

</inertia>
</inertial>

</link> 85

	List of Figures
	List of Tables
	Introduction
	Previous Work
	Problem statement
	Thesis Outline

	Background and Theory
	Unmanned Aerial Vehicle
	The control problem
	Rigid-body dynamics and scaling laws
	Aerodynamics
	Estimating the state

	Control Theory
	Proportional Integral Derivative
	Ziegler Nichols

	Artificial Intelligence
	Evolutionary Algorithm
	Artifical Neural Networks
	Deep Learning

	Reinforcement Learning
	Proximal Policy Optimization
	Digital Twin
	Monte Carlo Simulation

	Tools and Framework
	GymFC
	PX4 Gazebo sitl motor model plugin
	Simulation environment
	Reward functions
	OpenAI Baselines

	Computer-aided Design
	Statistical analysis and visualization

	Method and Implementation
	Motor-modeling
	Rigid body modeling
	Airframe
	Mixing

	Training
	Software
	Reward-function
	Ziegler Nichols optimized pid
	Optimizing pid-values with Evolutionary Algorithm
	Monte Carlo Simulation

	Experiments and Results
	Training
	Comparison and Evaluation
	ea optimized PID
	Ziegler Nichols optimized pid
	ppo Response and Error comparison
	Mann Whitney U test (Wilcoxon Rank Sum Test)

	Discussion
	Conclusion
	Appendix

