
UNIVERSITY OF OSLO
Department of informatics

Parametric
Subtypes in ABEL
(Revised Version)

Tore Jahn
Bastiansen

Research Report 207

ISBN 82-7368-118-1
ISSN 0806-3036

October 1995

Parametric Subtypes in ABEL

Tore Jahn Bastiansen

Department of Informatics

University of Oslo, Norway

October 1995

Abstract

Several problems arise when parametric subtypes are used in ABEL. This paper

deals with subtype parameters, the disjointness relation and the generation of pro�le

sets, extended to handle type parameters properly. I show how more type-information

can be obtained syntactically by studying the pro�les of the parametric type generators.

1 Introduction

For an introduction to ABEL (Abstraction Building Experimental Language), refer to

[DO91] and a more recent paper [DO95].

1.1 Types and Subtypes

Each type T in ABEL has an associated attribute VT , where VT is the value set of T .

There are two kinds of subtypes in ABEL; syntactic and semantic ones. Syntactic

subtypes and the main type itself are de�ned simultaneously.

Example 1

type Int by Neg,Zero,Pos

with NPos = Neg+Zero

and Nat = Pos+Zero

and Nzro = Neg+Pos

==

module

func 0 : �! Zero - - zero

func S : Nat �! Pos - - successor

func N : Pos �! Neg - - negation

one-one genbas 0,S ,N - - generator basis

endmodule

The main type is Int. Neg, Zero and Pos are called basic subtypes because they have

no proper syntactic subtypes. NPos, Nat, Nzro are intermediate subtypes. The generator

1

basis, GInt, is speci�ed to have a one-one property, which means that the type correct

generator terms of type Int are in a one-to-one relationship with the intended abstract

values (integers). Int is therefore called a freely generated type.

Semantic subtypes are de�ned by restricting an already de�ned type by a predicate.

Example 2

The type Nat10 is a subtype of Nat:

type Nat10 == x :Nat where x<10

module : : : endmodule

The subtype relation is de�ned syntactically in ABEL. That T is a subtype of U is

written T �U . The following property is ensured:

T �U) VT � VU (1)

This paper will only deal with syntactic subtypes. The inverse implication of (1) will

then also hold.

1.2 Parametric types

A parametric type is de�ned by a parametric type module, on the form

type UfT1; T2; :::; Tng == module ::: endmodule

where Ti; i = 1::n are formal type parameters.

Example 3

The type of �nite sequences:

type Seq{T} by NESeq,ESeq ==

module

func " : �! ESeq - - empty sequence

func ^`^ : Seq � T �! NESeq - - right append

one-one genbas ",^`^

endmodule

Note: types under de�nition are referred to by the type name only, parameters

are implicit.

For the subtype relation the following rule of monotonicity is compatible with (1).

MONOTY:
Ui�Vj ; i = 1::n

TfU1; U2; :::; Ung�TfV1; V2; :::; Vng

Let the following be a notational convention for the rest of this paper: TfU1; U2; : : : Ung

is the main type of a subtype family with subtypes Ti, i = 1::m. The formal type parameter

list of Ti is a sublist of those of T . Since there are no generator terms of type U when

2

U is a formal type, we introduce a special U -token TU , to stand for an arbitrary value of

type U . A term in T -generators and Ui-tokens is called a T -skeleton. The value set of

an instantiated T consists of instantiated T -skeletons, in which Ui-tokens are replaced by

Vi-values, where Vi is actual type for Ui.

2 Syntactic subtype parameters

Di�erent types in a syntactic subtype family may have di�erent numbers of type parameters.

It is necessary to have U as a type parameter to T if U occurs in the domain of a T -generator.

Otherwise, we would not be able to type formal patterns in case discriminators.

U is, however, not a necessary parameter to T if U is not in the domain of any T -

generator. For the type family of SeqfTg, ESeq does not need a T -parameter, since

the empty sequence, ", is the same for all instantiations of Seq (See [Gus91]). For non-

parametric subtypes in the same syntactic subtype family, X and Y , we have the following

property:

X = Y , VX = VY

Keeping parameter lists minimal ensures this property also for parametric types.

It is possible for the system to assign minimal parameter lists to uninstantiated para-

metric subtypes automatically. To each subtype there is assigned the list of formal types

that occur in the codomain of some of its generators. It is also checked that the list of the

main type is correct. The user de�ned parameter list for the main type is necessary, because

the order and names of the formal types must be known. The order in the parameter lists

of the subtypes is the same as for the main type.

If the type is recursively de�ned, a �xpoint algorithm is needed. Let Ti; i = 1::n be the

names of the types in the syntactic subtype family. Let Ti have parameter list Pi. Pi is a

subsequence of the parameter list of the main type, say fU1; U2; : : : ; Umg.

Initialize Set Pi to the list of all formal type parameters occur directly in the domain of

a Ti-generator, for i = 1::n.

Iterate For i = 1::n and j = 1::m, Uj is added to Pi if there is a generator g in GTi such

that Uj 2 Pk for some k such that Tk occurs in the domain of g. Uj is then an implicit

argument of Tk, and therefore also of Ti. This step is repeated until no change occurs.

Theorem 1 Uj is a type parameter of Ti if and only if there is a Ti-skeleton containing a

Uj-token.

Proof: Trivial.

2

The least �xpoint will often be found by the initialization, but the following example

illustrates why a �xpoint algorithm is necessary.

3

Example 4

type T{U ,V ,W } by T1 ,T2 ,T3

with T12 = T1+T2 and T13 = T1+T3 ==

module

func g1 : U �! T1

func g2 : T13 � V �! T2

func g3 : T12 � W �! T3

genbas g1 ,g2 ,g3

endmodule

The least �xpoint will be found in two passes.

Initial lists Pass 1 Pass 2

T1 fUg fUg fUg

T2 fV g fU; V;Wg fU; V;Wg

T3 fWg fU; V;Wg fU; V;Wg

T12 fU; V g fU; V;Wg fU; V;Wg

T13 fU;Wg fU; V;Wg fU; V;Wg

T fU; V;Wg fU; V;Wg fU; V;Wg

3 The disjointness relation

ABEL has a syntactically de�ned disjointness relation,��. Disjoint types have no common

values:

T ��U) VT \ VU = ; (2)

Note that the inverse implications (2) do hold for syntactic subtypes.

The disjointness relation is useful to the type checking algorithm of ABEL. Program-

ming errors can for instance be discovered when coercion between disjoint types would be

needed.

The basic syntactic subtypes are disjoint by de�nition. For syntactic subtypes, disjoint-

ness is then easily checked by looking at the sets of basic subtypes included in each type.

If the sets are disjoint, then so are the subtypes.

For parametric subtypes, we want to investigate whether a monotonicity rule for dis-

jointness, like for the subtype relation, would hold. It turns out, however, that UfT1g and

UfT2g may have common values even if VT1 \ VT2 = ;. The following example illustrates

this:

Example 5

Consider the type of �nite sequences, SeqfTg of example 3. Even though Nat

and Neg of example 1 are disjoint, SeqfNatg and SeqfNegg are not, because they

have the value " in common. On the other hand, NESeqfNatg��SeqfNegg.

To handle disjointness of parametric types, we introduce the concept of disjointness

preserving formal type parameters.

4

De�nition 1 (Disjointness preserving formal types) Ui is a disjointness preserving

formal parameter of TfUg if TfV g and TfWg have no common values when Vi and Wi

are disjoint. X is here short for the list X1; X2; : : : ; Xn, for X 2 fU; V;Wg.

Without violating (2) we can now de�ne

Vi��Wi) TfV g��TfWg

when Vi and Wi are actuals for the same disjointness preserving formal parameter, since

TfV g and TfWg have no common values.

We restrict ourselves in the following, to consider only types with a one-to-one gener-

ator basis. We can then compute the disjointness preserving parameters syntactically, by

studying generator pro�les.

Lemma 1 The formal type U is a disjointness preserving parameter of T if and only if

every T -skeleton contains at least one TU .

Proof: Let V and W be actual types for U in x : Tf: : : ; V; : : :g and y : Tf: : : ;W; : : :g.

Assume that every T -skeleton contain at least one TU . For x and y to be equal, given that

T has a one-to-one generator basis, they must be instances of the same skeleton. The latter

contains at least one TU , which is instantiated to a V -value in x and to a W -value in y. If

V ��W then x and y cannot be equal, consequently

VTf:::;V;:::g \ VTf:::;W;:::g = ;

The proof the other way is trivial.

2

Lemma 2 Every T -skeleton will contain at least one TU if and only if for every type

D (possibly a Cartesian product) that is the domain of a T -generator, every D-skeleton

contains at least one TU .

Proof: Trivial. (Note that all formal parameters of the Cartesian product type are dis-

jointness preserving.)

2

Let D(Ti) be the set of formal parameters U , such that every Ti-skeleton will contain

a TU . D can be computed simultaneously for all Ti, i = 1::n, by the following �xpoint

algorithm.

Initialize Let for i = 1::n, D(Ti) := the set of all formal types of Ti.

Iterate For i = 1::n, U is removed from D(Ti) if there is a Ti-generator with domain D

such that:

1. D has no occurrences of U , or

2. for every occurrence of V f: : : ; U; : : :g in D, where U is actual for the formal type

W , W 62 D(V). Note that if T is recursively de�ned, the old D is used in this

analysis.

5

This step is repeated until no change occurs.

Theorem 2 D(Ti) is the largest possible set of disjointness preserving formal type param-

eters of Ti.

Proof: For each type, theorem 1 shows that any sets larger than the parameter set would

be too large. Therefore, we start with sets that are large enough, and then narrow the sets

until no change occurs. Thus, the algorithm �nds the largest �xpoint. Note that the sets

are partially well-ordered by �, and that the iteration step is monotonic in the sense that

the sets can only decrease.

That the iteration step is correct, i.e. that the new D is correct according to the old

D, follows from lemma 2. From lemma 1 follows that D(Ti) is the largest possible set such

that only disjointness preserving formal types are in D(Ti).

2

D is only su�cient if we want to compute disjointness of di�erent instantiations of the

same type. For instantiations of Ti and Tj, disjointness can be computed by looking at

the intersection of Ti and T2. When Ti and Tj are in the same syntactic subtype family,

the intersection of uninstantiated types are always computable, and denoted Ti u Tj . The

following property is ensured:

VTiuTj = VTi \ VTj (3)

Let DD(Ti; Tj) be a set of pairs of formal type parameter positions of Ti and Tj , de�ned

as follows: (p; q) is in DD(Ti; Tj) if there is a formal type U 2 D(Ti u Tj) and U is the

formal type parameter in position p in Ti and q in Tj .

For the subtype family of Seq, D(ESeq) = D(Seq) = ; and D(NESeq) = fTg. The

following table illustrates DD:

ESeq NESeq Seq

ESeq ; ; ;

NESeq ; f(1; 1)g f(1; 1)g

Seq ; f(1; 1)g ;

The following inference rule can now be used to decide if to parametric types are dis-

joint. Ti and T2 must be in the same syntactic subtype family:

PARAM��:
9 (p; q) 2 DD(Ti; Tj) � Up��Vq
TifU1; U2; :::; Ung��TjfV1; V2; :::; Vmg

Theorem 3 The rule PARAM�� is compatible with (2).

Proof: Let x : TifU1; U2; :::; Ung and y : TjfV1; V2; :::; Vmg. Assume that the premise of

PARAM�� holds. We need to prove that x and y cannot be equal. For x and y to be equal,

they must have equal skeletons. Let Tu = TiuTj . By (3), the skeleton must be in VTu , but

from the de�nition of DD, Up and Vq are actuals for the same type W , and there is a TW

6

in every Tu-skeleton. Therefore x and y cannot be equal when Up��Vq.

2

If we want to handle types with a many-to-one generator basis, we have to consider the

possibility of redundant formal type parameters. A formal type parameter U , is redundant

if U-tokens may not be signi�cant to the equality relation, even if there is at least one TU
in every T -skeleton.

It is possible to constrain the language to make redundant parameters illegal. For

all type parameters U of any parametric type T , a function that extracts all U -tokens

from a T -skeleton, considering all TU -occurrences to be mutually distinct, can be de�ned

automatically:

func setU : T{: : :,U ,: : :} �! Set{U}

If the function setU is consistent with the congruence property of the equality relation

over T -values, the formal type U is not redundant, i.e.

x =T y) setU(x) =SetfUg setU(y)

If we prohibit redundant formal types, D and DD can be computed the same way for

any parametric type, whether freely generated or not.

4 Parametric subtypes in function domains

Let f : D �! C be a function where the domainDmay be a Cartesian product, andC is the

codomain. A �xpoint algorithm for generating a pro�le set for f , is presented (see [Dah92],

[OD91] and [Gus91]). The pro�le set P consists of pro�les (Di; Ci), where Di; i = 1::n are

all possible (syntactic) subtypes of D (pointwise if D is a Cartesian product).

Let T [U denote a type with value set equal to the union of the value sets of T and U .

That is, VT[U = VT [VU . If we restrict ourselves to non-parametric syntactic subtypes,

such union operations on types can be computed syntactically by representing any type by

its set of included basic subtypes. A basic subtype of a Cartesian product is a product of

basic subtypes. Union operations on Cartesian products can be computed syntactically if

we represent products as the sets of included basic products.

For types Di and Ci, i = 1::2, the typing algorithm implies that if both D1 �! C1 and

D2 �! C2 are valid pro�les for a function f , then D1 [D2 �! C1 [C2 is also valid. The

�xpoint algorithm may then be speeded up by only considering pro�les with basic domains

(see [OD91]). Intermediate pro�les can be generated by union operations.

Representing Cartesian products as sets of included basic products, can lead to types

that are not expressible in ABEL syntax, such as the type f(Pos�Neg); (Neg�Pos)g. With

a more straightforward representation of Cartesian products, union operations cannot be

computed, but it is still possible to construct all expressible intermediate pro�les.

Two types are mutually related if they have a common supertype. Let T t U denote

the smallest common supertype of types T and U . T tU is always de�ned and unique if T

7

and U are related. Since both T and U are subtypes of T tU , both VT and VU are included

in VTtU :

VTtU � VT [VU

Let B(T) be the set of basic subtypes included in a non-parametric type T , and Pf be

the set of basic pro�les for a function f . The codomain C, of an intermediate pro�le with

domain D, is now valid if

C =
G
fC 0jD0 �! C 0 2 Pf jD

0 2 B(D)g (4)

To accept this, note the following property on B:
[

D02B(D)

VD0 = VD (5)

Since the basic domains together span the value set of the intermediate domainD, the value

of an application of f(e), where e : D, will always be included in one of the codomains of

the basic pro�les.

Consider a general type expression TfV1; : : : ; Vng. Its basic subtypes are on the form

T 0fV 0
1 ; : : : ; V

0
mg, where T

0 is a basic subtype of T and each V 0
j is a basic subtype of the

corresponding Vi. For instance, for sequences of non-zero integers:

B(SeqfNzrog = fESeq;NESeqfNegg;NESeqfPosgg

The following example illustrates why (4) will give illegal intermediate pro�les in this case:

Example 6

The function sum that computes the sum of a sequence of integers, is de�ned

as follows:

func sum : Seq{Int} �! Int

def sum(q) == case q of " ! 0

j q 0`x ! sum(q 0)+x fo

The basic pro�le set will be:

sum:

ESeq �! Zero

Seq{Zero} �! Zero

NESeq{Pos} �! Pos

NESeq{Neg} �! Neg

Using equation (4) to generate an intermediate pro�le with domainNESeqfNzrog

will give the codomain Pos t Neg = Nzro, but the pro�le

NESeqfNzrog �! Nzro

is not valid.

8

The problem with the sequence type is that (5) does not hold. The union NESeqfNegg[

NESeqfPosg is the type of (nonempty) sequences where either all elements are negative

numbers or all are positive. This is a smaller type than NESeqfNegg t NESeqfPosg =

NESeqfNzrog.

De�nition 2 (Divisible type parameter) Let Tf: : : ; U; : : :g be an uninstantiated type.

U is said to be divisible for T if and only if: For an arbitrary actual type W for U ,
[

W 02B(W)

VW 0 = VW)
[

W 02B(W)

VTf:::;W 0;:::g = VTf:::;W;:::g

A Cartesian product of length n, can be viewed as a parametric type with n formal

type parameters, all divisible (can be proven). The following theorem states which type

parameters are divisible for an arbitrary parametric type.

Theorem 4 A formal type parameter U of Tf: : : ; U; : : :g is divisible if and only if no

T -skeleton can contain more than one U-token.

Proof: Let NU be the largest possible number of U -tokens in a T -skeleton (possibly in-

�nite). Let W be actual type for U in Tf: : : ;W; : : :g. Every Tf: : : ;W; : : :g-value is such

that for every w : W it contains, there is exactly one type W 0 2 B(W) such that w : W 0.

If NU = 1 then every t : Tf: : : ;W; : : :g is also of type Tf: : : ;W 0; : : :g for the same W 0 as

above. U is therefore divisible:

t 2 VTf:::;W;:::g) t 2
[

U 0
i
2B(Ui)

VTf:::;W 0;:::g

If NU > 1 then t may contain di�erent W -values included in di�erent types in B(W), t is

then not in VTf:::;W 0;:::g for any type W 0 2 B(W)

2

It is possible to syntactically distinguish divisible parameters form non-divisible ones,

only by looking at the generator basis of a parametric type.

Theorem 5 For a parametric type Tf: : : ; U; : : :g, U is divisible if and only if the following

holds for the domain of every T -generator:

1. there is at most one occurrence of U , and

2. U does not occur, directly or indirectly, as a parameter to any V in a non-divisible

position.

Proof: This simple proof can be done by induction on the syntactic complexity of generator

terms.

2

Note that to check the second property, a �xpoint algorithm is needed when T and V

are mutually related.

Nzro inNESeqfNzrog cannot be divided into basic subtypes, because the typeNESeqfTg

has a generator with two occurrences of T in its domain.

9

func ^`^ : Seq{T} � T �! NESeq{T}

On the other hand, the Cartesian product type has only one occurrence of each formal

type in the domain of its single generator.

func (^ , : : : ,^) : T1 � : : : � T2 �! (T1 � � � � � Tn)

To make a pro�le set for the function sum, one possible solution is to leave the Int-

parameter undivided at the expense of type information. We will then get the pro�le

set:

sum:

ESeq �! Zero

NESeq{Int} �! Int

It is, however, possible to get more type-information by using semi-basic pro�le sets:

De�nition 3 (Semi-basic types) A type TfU1; U2; : : : ; Ung is called semi-basic if and

only if T is basic, and, for i = 1::n, Ui is semi-basic when Ui is divisible.

The function B(T) is rede�ned to give the set of semi-basic subtypes included in T .

Intermediate pro�les are generated from semi-basic ones by (4), with the new de�nition of

B.

Example 7

The function sum (from example 6) will get the following semi-basic pro�le set.

sum:

ESeq �! Zero

NESeq{Zero} �! Zero

NESeq{Pos} �! Pos

NESeq{Neg} �! Neg

NESeq{Nat} �! Nat

NESeq{NPos} �! NPos

NESeq{Nzro} �! Int

NESeq{Int} �! Int

We have B(SeqfNzrog) = fESeq;NESeqfPosg;NESeqfNegg;NESeqfNzrogg. The

codomain of an intermediate pro�le with domain SeqfNzrog can now be ob-

tained from the codomains the four corresponding pro�les.

Zero t Pos t Neg t Int = Int

and we get the valid pro�le:

SeqfNzrog �! Int

10

The pro�le sets generated are monotonic (in the covariant sense). That is, if we have

two pro�les for a function f , D1 �! C1 and D2 �! C2, then D1 � D2) C1 � C2.

Therefore, if D1 and D2 is in B(D3) and D1�D2, D1 is redundant in the sense that the C1

will add nothing to the codomain when generating a pro�le with domain D3 (by equation

(4)). For e�ciency reasons, we can then de�ne B(T) only to contain only non-redundant

semi-basic (sub)types. B(SeqfNzrog) is then equal to fESeq;NESeqfNzrogg

The �xpoint algorithm will still have to iterate over all semi-basic subtypes, but inter-

mediate pro�le generation will be more e�cient.

5 Conclusion

The subtype mechanism in ABEL becomes more complicated when parametric types are

used. I have investigated problems imposed by such types, and have shown how these

problem can partially be solved by syntactic analysis. Notice that the solutions to the

problems discussed here are very similar. Formal types are classi�ed according to possible

number of occurrences of their values, and in all three cases, �xpoint analysis of generator

pro�les is necessary.

In contrast to [OD91], the pro�le set generation algorithm is not dependent on union

operations being syntactically computable.

Acknowledgments

Ole-Johan Dahl and Olaf Owe have given valuable comments through careful reading of

earlier versions.

References

[Dah92] Ole-Johan Dahl. Veri�able Programming. Prentice Hall International, England,

1992.

[DO91] Ole-Johan Dahl and Olaf Owe. Formal development with ABEL. In S. Prehn and

W.J. Toetene, editors, Formal Software Development Methods, LNCS 552, pages

320�362. VDM'91, Springer, 1991.

[DO95] Ole-Johan Dahl and O. Owe. On the use of subtypes in ABEL. Research Report

206, ISBN 82-7368-117-3, Department of informatics, University of Oslo, Norway,

1995.

[Gus91] Bente Gustavsen. Forbedret typeanalyse i ABEL. Master's thesis, Department of

Informatics, University of Oslo, Norway, 1991. In Norwegian.

[OD91] Olaf Owe and Ole-Johan Dahl. Generator induction in order sorted algebras.

Formal Aspects of Computing, 3:2�20, 1991.

11

