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Sammendrag 
Estimering av snøens vannekvivalente dybde har lenge vært et mål. Snøsmelting er en viktig kilde til 

ferskvann for mange regioner i kalde klimaer og utnyttes som en verdifull ressurs innen jordbruk, 

kraftproduksjon og som drikkevann. Målinger av snøens vannekvivalent er kostbare og ressurskrevende, 

noe som har skapt et behov for metoder for å estimere dem. I denne artikkelen presenteres fem 

forskjellige metoder for å gjøre dette. Data hentet fra USA og Canada, bestående av 314105 

målepunkter, danner grunnlaget for modellene. I tillegg har variabler blitt hentet fra ERA5-Land og 

prosessert. En block bootstrap metode har blitt anvendt for å undersøke generaliseringsfeilene i 

modellene. XGBoost og random forest er to nye metoder som har blitt undersøkt. I tillegg har en 

multilayer perceptron modell, foreslått av Ntokas et al. (2021), og to regresjonsmodeller foreslått av 

Jonas et al. (2009) og Sturm et al. (2010) blitt konstruert. Regresjonsmodellene presterte dårligst, mens 

en 𝑅2 score på over 0.98 ble oppnådd for de øvrige modellene. En høy generaliseringsfeil tyder likevel på 

at disse resultatene stammer fra overtrente modeller, da den høye nøyaktigheten ikke kunne bli 

reprodusert for nye regioner. Ved å anvende lokale målinger for å validere modellene ble 

generaliseringsfeilen redusert og modellene viste bedre resultater. XGBoost modellen hadde de beste 

resultatene med en 𝑅2 score på 0.93, mens både random forest og multilayer perceptron modellen 

hadde en 𝑅2 score på over 0.89 Random forest modellen utpreget seg ved å ha den laveste 

generaliseringsfeilen når den ble anvendt på et usett område. Bruk av kun regionale målepunkter viste 

seg å gi de beste resultatene ved bruk av XGB modellen, på tross av et mye mindre treningsdatasett. Det 

er blitt vist at reanalysert meteorologiske data bidrar til bedre modeller. For den beste XGBoost 

modellen anvendt til å estimere vannekvivalent i en nytt område, sto ERA5-Land deriverte variabler for 

10% av modellens nøyaktighetsøkning. Forskjellige metoder har blitt foreslått ut i fra datagrunnlaget i 

området. Dersom ingen data eksisterer er random forest den modellen som presterte best, ettersom 

den hadde lavest generaliseringsfeil. Dersom noe data eksisterer kan den brukes til å validere XGBoost 

modellen for å oppnå bedre resultater. Der hvor tilstrekkelig data eksisterer ble det funnet at en 

XGBoost modell trent på disse punktene vil gi de beste resultatene. En  score på 0.94 ble oppnådd ved 

denne metoden i Alaska.   



Eirik Storrud Røsvik  University of Oslo 

iii 
 

Acknowledgements 
First, I want to express my gratitude to my supervisors Thomas Vikhamar Schuler and Simon Filhol 
for their help and support in guiding me through this process. Their help in setting the project of 
on the right course and bringing the project to a conclusion is truly appreciated.   



iv 
 

Contents  
Abstract ......................................................................................................................................................... 1 

1. Introduction ............................................................................................................................................... 2 

1.1 Study Goals .......................................................................................................................................... 2 

1.2 Snow Measurements and Variables .................................................................................................... 3 

2. Literature ................................................................................................................................................... 4 

2.1 Snow classes ........................................................................................................................................ 4 

2.2 ERA5-Land ........................................................................................................................................... 5 

2.3 Machine learning ................................................................................................................................. 5 

2.4 The Sturm Model ................................................................................................................................. 6 

2.5 The Jonas Model .................................................................................................................................. 6 

2.6 The Ntokas Model ............................................................................................................................... 6 

2.7 Random forest algorithms ................................................................................................................... 8 

2.8 Extreme Gradient Boosting (XGBoost) ................................................................................................ 9 

2.9 Model Evaluation .............................................................................................................................. 10 

2.10 Generalization Error and Overfitting ............................................................................................... 11 

3. Experimental protocol ............................................................................................................................. 13 

3.1 Study area .......................................................................................................................................... 13 

3.1.1 Contiguous United States and Canada ....................................................................................... 14 

3.1.2 Alaska Dataset ............................................................................................................................ 17 

3.1.3 Removing outliers and false measurements .............................................................................. 18 

3.2 Explanatory variables ........................................................................................................................ 19 

3.3 Tested Hyper Parameters .................................................................................................................. 20 

4. Results ..................................................................................................................................................... 22 

4.1 USCN Validation ................................................................................................................................ 22 

4.1.1 Training ....................................................................................................................................... 22 

4.1.2 Performance ............................................................................................................................... 28 

4.2 Alaska Validation ............................................................................................................................... 31 

4.2.1 Training ....................................................................................................................................... 31 

4.2.2 Performance ............................................................................................................................... 35 

4.2.3 Further cross-validation ............................................................................................................. 39 

4.3 Feature Importance ........................................................................................................................... 44 



Eirik Storrud Røsvik  University of Oslo 

v 
 

4.4 Computational cost ........................................................................................................................... 46 

5. Discussion ................................................................................................................................................ 47 

6. Conclusion ............................................................................................................................................... 50 

7. Sources .................................................................................................................................................... 51 

Appendix ...................................................................................................................................................... 55 

 

 





Eirik Storrud Røsvik  University of Oslo 

1 
 

Abstract 
The Snow Water Equivalent (SWE) is a key area of research when aiming to quantify freshwater resources 

in cold areas. Snow melt is the main source of fresh water in many cold regions and is a valuable resource 

for agricultural, hydroelectrical, and community water supply uses. The acquisition of SWE measurements 

is costly and labor intensive, heightening the need for a computational approach. In this paper two decision 

tree machine learning techniques, XGBoost and random forest, are suggested as methods to estimate SWE 

using snow depth, elevation and reanalyzed ERA5-Land data as input variables. These are all variables that 

are relatively easy to acquire on a regional level. The models are built upon 314,105 SWE measurements 

collected from historical datasets from Canada and the United States. The generalization error has been 

analyzed with the use of a block bootstrap dataset division. For comparison, three previously suggested 

models; a multilayer perceptron model by Ntokas et al. (2021) and two regression models by Jonas et al. 

(2009) and Sturm et al. (2010), have been constructed. 𝑅2 scores greater than 0.98 were obtained from 

the non-regression models, but high generalization error found that the performance is not transferable 

in space. 𝑅2 scores greater than 0.89 were obtained for a novel region using a block bootstrap approach. 

The XGBoost proved the best performing model with an 𝑅2 score of 0.934. The random forest model was 

however the model with the lowest generalization error. The non-regression models performed much 

better than the regression models, showing that modern machine learning techniques are well suited for 

estimating SWE. The multilayer perceptron model was outperformed by the XGBoost and random forest 

both in accuracy and computational cost. ERA5-Land derived data was found to be important to the model 

predictions. In the best performing XGBoost model, ERA5-Land data accounted for 10% of the model gain. 

Different approaches to model SWE have been suggested based upon local data availability. The random 

forest should be considered if no local data are available, while the XGBoost should be used where data 

are available. Local measurements were used to improve models when used for validating model 

parameters, increasing the XGBoost 𝑅2 score from 0.87 to 0.93. The best results were found when training 

the XGBoost model on local data, improving the 𝑅2 score from 0.93 to 0.94.  
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1. Introduction 
Precipitation falling as snow plays an important role in many of the world’s watersheds. In polar and high 

elevation regions, where snow falls and accumulates, large amounts of fresh water can be stored in the 

form of snow. Several points of interest arise around the accumulation of snow and the subsequent 

melting. Snow melt is the largest contributor to the runoff of many rivers in the western United States and 

Canada with 50-80% of the runoff occurring in the melt season (Stewart et al., 2004). This melt is the 

primary freshwater source in the western United States (Bales et al., 2006). Runoff in these rivers is often 

collected in reservoirs, as a steady flow of water is often sought after. These water resources can then 

sustain agricultural irrigation and urban centers throughout the dryer American summers. Before the start 

of the melt season these reservoirs are prepared and serve as flood protection systems throughout the 

melt phase (Dettinger and Cayan, 1995).  

With global temperatures increasing (Cook et al., 2013), the global snow resources are changing and will 

likely change further as the earth’s atmosphere and oceans reach a higher energy equilibrium. (Mote et 

al., 2018). Changes in seasonal snow cover have been documented all over the world, with snow cover 

extent and snowfall volume decreasing (Essery, R. 1997; Demaria et al., 2016; Mote et al., 2018). In areas 

with reliable seasonal snow cover, these changes can impact both the local ecosystems (Vincent, W. 2010) 

and affect human activities (Prowse et al., 2009).   

The water management issues that arise in areas where snow and snow melt are dominant factors often 

require information regarding the volume of water existing in the watershed as snow (Bales et al., 2006). 

The snow water equivalent (SWE) is the depth of water that a snowpack would produce if it were to 

completely melt. It is a key variable to obtain when doing hydrological models in areas with snow cover. A 

module of calculating the SWE is therefore included in several hydrological models (Ntokas et al., 2021). 

Knowing the water content locked up in snowpacks is of particularly great interest in the fields of 

hydroelectricity (Magnusson et al., 2020), and flood prevention (Skaugen, T. 1998).  

Several approaches have been proposed to model the SWE of a snowpack. Regression models have been 

constructed using in-situ snow variables like snow depth, elevation and time (Jonas et al., 2009; Sturm et 

al., 2010). Although in recent years more complex machine learning techniques like artificial neural 

networks have been investigated (Odry et al., 2020, Snauffer et al., 2018; Ntokas et al., 2021). These have 

been constructed using several explanatory variables from reanalyzed meteorological data. Predicting 

SWE is a challenge as snow densification is highly localized (Zhong et al., 2021) and several models that 

have evaluated their findings have found large biases (Xu et al., 2019). The use of reanalyzed 

meteorological data has become popular with the release of the European Centre for Medium-range 

Weather Forecasts (ECMWF) ERA datasets (Hersbach et al., 2020). The latest iteration ERA5 and its land-

focused and downscaled ERA5-Land version have been used in several well performing hydrological 

models (Tarek et al, 2022; Ntokas et al. 2021). 

1.1 Study Goals 
This paper seeks to construct five different models to estimate SWE. An XGBoost, a random forest, a 

multilayer perceptron, and two regression models are studied. To model the SWE, snow depth, location 

and reanalyzed data are used as variables. The models are trained with data collected from Canada and 
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the United States going back to 1980. The Canadian Historical Snow Survey (CHSS) and the US Snow 

Telemetry Network (SNOTEL) was chosen as the measurement foundation. The goal is to produce a model 

that can generalize reanalyzed weather data coupled with limited in-situ data, chiefly snow depth. To 

evaluate the model findings and explore any generalization error, a portion of the dataset, the Alaskan 

SNOTEL stations, have been selected for validation.  

1.2 Snow Measurements and Variables 
Snow measurement stations commonly measure several physical quantities at the site. The relevant 

variables for undertaking an analysis on SWE are snow depth 𝑆𝐷, density 𝜌 and SWE. The depth-averaged 

snow density 𝜌̅ (𝑔/𝑐𝑚3) is defined in Equation 1, with 𝑚𝑠 being the mass of the snow and 𝑉𝑇 the total 

volume. (Kinar and Pomeroy, 2015) A survey conducted on 37000 measurements from Norway found the 

snow density ranges from 0.052𝑔/𝑐𝑚3 to 0.656 𝑔/𝑐𝑚3 with an average of 0.33 𝑔/𝑐𝑚3. (Bruland et al., 

2015) 

     𝜌̅  =
𝑚𝑠

𝑉𝑇
              Equation 1 

           𝑆𝑊𝐸 = 𝑆𝐷 ∗ 𝜌̅               Equation 2 

Snow depth (cm) is manually measured using a specialized measuring stick that is pushed through the 

snow down to the ground. This has the advantage of being very precise, but the method is labor intensive 

and can’t easily be scaled up (Kinar and Pomeroy, 2015). Several CHSS and SNOTEL stations have ultrasonic 

snow depth sensors, getting precise depth measurements at frequent intervals (Vionnet et al., 2021, 

Anderson & Wirt, 2008). These sensors are still susceptible to errors as damage to or blockage of the 

transducer can give faulty measurements (Anderson & Wirt, 2008). These tools give a good foundation of 

precise measurements to calibrate remote sensing equipment. Light Detection and Ranging (Lidar) is a 

remote-sensing technology used to obtain precise altimetry data. Lidar measurements can be obtained 

using airplanes for larger areas or from ground-based Lidar systems for the immediate surroundings. Snow 

depth can be calculated from airborne altimetry by comparing the snow free elevation with the snow-

covered elevation whereas ground-based systems use distance between known points in order to derive 

depth (Deems et al., 2013).  

SWE is the amount of water contained in the snowpack and is measured in mm spread over 1 m2. The SWE 

depth is manually measured using gravimetric data. This can be done through digging a snow pit, 

measuring the density and thickness of each layer (Fierz et al, 2009). A less laborious method is extracting 

a cylindrical core of snow which is then weighed. If the snow depth and base area of the cylinder are 

known, the bulk density is calculated using Equation 01. Measuring stations for SWE often use snow 

pillows. These are bags filled with an anti-freeze liquid, and as snow falls on top of the pillow the pressure 

inside is measured to calculate the weight, getting the SWE through Equation 02 (Kinar and Pomeroy, 

2015). Johnson (2004) showed that snow pillows are prone to errors and found three main sources: (1) 

With differences in compressibility between the snow pillow and the surrounding snow, a shear stress 

along the border of the sensor can occur. (2) When the temperature at the ground level is 0 °C a difference 

in thermal conductivity can cause uneven melt rates, which again can cause a similar shear stress. For 

longer periods with uneven melt rates a difference can develop between the snow above the sensor and 
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surrounding snow. (3) The last identified source of error are sensors with high compressibility. For higher 

SWE levels the compressibility can cause shear stress along the perimeter if the overlying snow sinks 

unevenly as the snow pillow is compressed (Johnson, 2004). Snow pillow errors are tested through 

removing all the snow directly above and measuring the weight again, comparing it to that of the pillow 

(Davis, 1973).  

SWE measurements are also hard to do remotely due to the heterogeneous density distribution of snow.  

Since a snowpack evolves throughout the season and the bulk density generally increases with time, the 

age of the snow can give valuable information. One commonly used parameter is the day of year. 

September 1st is often used as the start of the snow season in the northern hemisphere.  

Precipitation measuring stations in colder climates that experience regular snowfall are designed to collect 

both solid and liquid precipitation. When snow falls into the measuring bucket the reading will be the 

water equivalent depth (mm) as the measuring stations ensure that snow melts inside the bucket. This is 

done with a chemical solution that lowers the freezing point (Rasmussen et al., 2012).  

In order to predict what precipitation has fallen in solid or liquid form, Jennings et al. (2018) proposed an 

equation to estimate the probability of precipitation falling in solid form.  

𝑝(𝑇𝑎𝑣) =
1

1+𝑒−1.54+1.24𝑇𝑎𝑣
            Equation 3 

Where 𝑝(𝑇𝑎𝑣) is the probability of solid precipitation and 𝑇𝑎𝑣 is the average temperature (Jennings et al., 

2018).  

Zhong et al. (2021) found that the distribution of snow properties, including density, is highly localized and 

varies based on local features like terrain and vegetation. Other local factors that influence the snow 

depth/SWE relationship include the surrounding vegetation density and type, shading and terrain aspect. 

Wind induced deposition of snow is also very localized and has been found to result in denser snow. 

2. Literature 
In this section background knowledge for the most essential components to the research conducted is 

presented. Section 2.1 describes the snow classes, while section 2.2 covers the reanalyzed data. Section 

2.3 to 2.6 covers machine learning and previous machine learning approaches to estimating SWE. 

Section 2.7 and 2.8 covers the theory regarding the new proposed approaches random forest and 

XGBoost respectively. Section 2.9 and 2.10 give an overview in ways to evaluate model predictions.  

2.1 Snow classes 
Sturm and Holmgren developed in 1995 a snow classification system. The six classifications differentiate 

areas where snow density develops differently. The classifications aim to differentiate areas where 

different processes like wind, rain, or vegetation dominate the snow densification. This classification 

system has been used in several SWE models, leading to increased accuracy for models trained 

independently for each snow class (Sturm et al., 1995). In 2021 the classifications were revised and 

updated using ERA5-Land to increase the resolution to 10 by 10 arc seconds. Some of the class names were 
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also changed, as Taiga was renamed to Boreal Forest and Alpine to Montane Forest (Sturm et al., 2021). 

The snow classes as described in the 1995 paper are: 

● Tundra: Cold areas with thin snow cover (<75 cm) and frequent wind. Areas are typically found 

above the tree line and/or far north.  

● Boreal Forest: Cold areas with moderate snow depths (<120 cm). Found in forests where wind and 

snow density are low.    

● Montane Forest: Intermediate to cold deep snow cover (<250 cm). Areas are dominated by low 

density snowfall with occurring but insignificant melt features. Includes both sub alpine forests 

and montane areas.  

● Maritime: Areas with warm deep snow cover with max snow depth in excess of 300 cm. Snow in 

these areas have frequent melt features, with coarse grained snow being ubiquitous. 

● Prairie: Areas with thin snow cover (<100 cm). Areas are dominated by wind drift and wind slabs.  

● Ephemeral: Areas with extremely thin snow cover (<50 cm). In these areas snow starts melting 

shortly after snowfall, usually melting away before the next snowfall.  

These snow classes have been used in several SWE models as either a parameter or as a division when 

training multiple models. (Jonas et al., 2009; Bruland et al., 2015; Ntokas et al., 2021) 

2.2 ERA5-Land 
The ERA5 dataset is the fifth generation ECMWF atmospheric reanalysis, covering the period from 1950 

until the present. The ERA5-Land is another dataset created by ECMWF, covering the period from 1950 

until 2-3 months before present. It is created with high resolution numerical integrations of the ECMWF 

land surface model, using downscaled meteorological forcing from ERA5. ERA5-Land focuses on describing 

the water and energy cycles on land and is created specifically with hydrologic modeling in mind. The 

primary advantages in using the ERA5-Land dataset compared to ERA5 is the increased grid cell resolution 

to 9 km (ERA5-Land) compared to 31 km (ERA5). The disadvantage to using the ERA5-Land dataset is the 

delay in data availability. The up to 3-month delay makes real time analysis with ERA5-Land impossible. 

(Sabater et al., 2021) 

ERA5 and its predecessors have been widely used in climate models since their release. The benefits of 

being able to rely on reanalyzed data instead of actual observation are many. For hydrological models, 

observations in some regions are too scarce to build models upon, and areas where one parameter has 

been measured others may be missing. It is therefore common to use reanalyzed data as meteorological 

forcing when working with region-sized climate models. (Tarek et al, 2020) 

2.3 Machine learning 
Machine learning is a term coined in 1959 when computer software was used to play simple strategic 

games with performances surpassing that of the human who made it. Machine learning algorithms, and 

especially Artificial Intelligence (AI), are probabilistic and iterative methods that require large amounts of 

input data and are notoriously known for their computational cost. Due to these limitations, models using 

AI before the year 2000 would incorporate a large amount of human expertise in their models. These 

expert systems use AI in order to approximate a human expert’s assessment of the input variables. 
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Increased access to computing power coupled with greater availability of digitized data after the advent 

of the Internet has led machine learning to become relevant again (Lange and Sippel, 2020).  

2.4 The Sturm Model 
Sturm et al. (2010) developed a regression model for estimating snow bulk density using snow depth, day 

of year, and snow class as input parameters. The model is trained for each snow class, meaning the dataset 

is divided into subsets containing each snow class. The regression model therefore has a unique set of 

parameters for each class. 

 

       𝜌𝑠𝑖𝑚 = ( 𝜌𝑚𝑎𝑥 −  𝜌0)[1 − 𝑒−𝑘1𝑆𝐷𝑜𝑏𝑠−𝑘2𝐷𝑂𝑌𝑜𝑏𝑠] +  𝜌0          Equation 4 

Where  𝜌𝑚𝑎𝑥, 𝑘1, 𝑘2, and  𝜌0 are the parameters tuned for each snow class.  𝜌0 is the initial density of 

each individual snow layer and   𝜌𝑚𝑎𝑥 is the maximum density in each snow class subset. The fitting 

parameters 𝑘1 and 𝑘2 are the densification factors of snow depth and day of year respectively.  

To quantify the model fit, the root mean square error between the estimated and observed snow densities 

is used. (Sturm et al., 2010) 

2.5 The Jonas Model 
Jonas et al. (2009) proposed a linear regression model to estimate the snow's bulk density. The Jonas 

model uses four parameters that were found to have a notable effect on snow densification. The 

parameters used are the season, snow depth, elevation, and region. The Jonas model splits the dataset 

into several subsets depending on altitude and season of the measurements. They propose three divisions 

of the dataset based on elevation, (1) <1400m, (2) ≥1400m and <2000m, and (3) ≥2000m. Twelve temporal 

divisions are proposed, each containing one month. The linear regression model uses the equation 

    𝜌𝑠𝑖𝑚 = 𝑎 𝑆𝐷𝑜𝑏𝑠 + 𝑏 + 𝑜𝑓𝑓𝑠𝑒𝑡𝑟𝑒𝑔             Equation 5 

Where a and b are the parameters optimized by the regression and 𝑜𝑓𝑓𝑠𝑒𝑡𝑟𝑒𝑔 is the regional specific 

parameter. For each region the averaged predicted densities are subtracted from the averaged measured 

densities to find the offset value. The Jonas model was conducted in the Swiss alps and the regional 

divisions were done based on geographic features. (Jonas et al., 2009) 

 For this paper, the regions used are the snow classes defined by Sturm et al. (1995) as proposed by Ntokas 

et al. (2021). The regional offset is then calculated independently for each elevation and month to reduce 

regional bias. 

2.6 The Ntokas Model 
Ntokas et al. (2021) proposed an ensemble multilayer perceptron (MLP) model to calculate SWE directly 

using snow depth, elevation, snow classes and ERA5-Land data. Ntokas et al. argue for modeling SWE 

directly instead of bulk density which is later converted to SWE. Their model was produced using the CHSS 

dataset that was randomly split into three parts. One part was used for training the model, one part was 

used for validation and finding the best parameters, while the last third was used to test the model findings 
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with unseen data. The setup for the ensemble MLP model was found using the ceteris paribus principle 

where one parameter is fitted while keeping the rest static. The best parameters were found with all snow 

classes combined will be described in section 3.3. For the final model the snow classes were split up into 

separate datasets and the number of hidden layers and epochs were tested for each one. The MLP model 

is constructed of 20 ensemble members that are all trained and the final predicted value is the median of 

the member predictions. 

The ERA5-Land data used as input parameters gives the Ntokas model a much higher degree of complexity 

compared to the previous Jonas and Sturm regression models. While it has higher complexity, the in-situ 

measurements needed remain the same. The ERA5-Land data used is temperature, precipitation and snow 

density. Daily Tmin, Tmax, and precipitation is used to calculate further explanatory variables used in the 

model. These variables come in addition to the in-situ measurements. All the explanatory variables used 

in the Ntokas MLP model are based on Odry et al. (2020) except for ERA5 snow density.  

Elevation of the observations is used in order to correct the temperature data from ERA5-Land, since the 

station elevation can differ significantly from the ERA5-Land grid cell elevation. The correction equation 

used is: 

          𝑇𝑐𝑜𝑟 = 𝑇𝐸𝑅𝐴5 + 𝑙𝑎𝑝𝑠𝑒𝑟𝑎𝑡𝑒 (
𝐸𝑙𝑒𝑣𝑜𝑏𝑠−𝐸𝑙𝑒𝑣𝐸𝑅𝐴5

1000
)           Equation 6 

Where 𝑇𝑐𝑜𝑟 is the corrected temperature, 𝑇𝐸𝑅𝐴5 is the temperature from the ERA5-Land dataset, and 

𝐸𝑙𝑒𝑣𝑜𝑏𝑠 and 𝐸𝑙𝑒𝑣𝐸𝑅𝐴5 is the elevation of the observation and ERA5-Land grid cell respectively. The lapse 

rate used by Ntokas et al. (2021) is −6𝑜𝐶𝑘𝑚−1.  

Ntokas et al. (2021) concluded that predicting SWE directly yielded better model performance than when 

predicting density later converted to SWE. They produced two versions of the model, one where all snow 

classes were combined, and a second model that contains six MLPs individually trained for each snow 

class. Of these two the latter version had the best performance.  
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2.7 Random forest algorithms 

 

The enhanced classification and regression tree (CART) method random forest (RF) was developed by 

Breiman in 2001. RF algorithms are designed around the concept of decision trees (Figure 2.1). CARTs are 

flowchart-like structures where the input data are processed. Each split represents a test of the input data, 

and each branch leads to a new test depending on the outcome. These splits are formed using a randomly 

selected set of variables that the tree is constructed with. From this set of available predictors, the best 

split is chosen. At the end of the tests is a leaf, which will be the result of the input data. The final output 

of the RF algorithm is the average value of the ensemble CART outputs. RF is considered an ensemble 

learning technique as many decision trees are constructed in order to reduce variance. This also results in 

RF models being black-box algorithms, as it is impossible for a human to understand all the trees. (Breiman, 

2001) 

There are several hyperparameters that need to be tuned when constructing an RF. The most important 

parameters to be determined are the number layers (layers) and the number of predictors tested at each 

node (max features). These are optimized to reduce both the generalization error and correlation among 

CARTs. The way decision tree models only evaluates one feature at a time makes them immune to poor 

performance stemming from variable collinearity.  

 The number of trees (estimators) used in the ensemble can be decided. While not a tuning parameter it 

is recommended to use as many trees as possible to ensure that each candidate feature has the 

opportunity to be selected. The max feature parameter decides the number of features randomly selected 

as candidates when constructing each tree. A lower number of candidates can lead to increased precision 

if there are other features with a big impact on the result, while a higher number will reduce the risk of 

having non-informative candidate features (Liaw & Wiener, 2001). The default value for how many 

Figure 2.1: Example of data flow in a CART, nodes (circles) decide what variable is 

tested while the branches (lines) represent the test being performed. The leaves 

(squares) represent the final prediction of the tree. (Murray and Scime, 2010) 
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variables used for constructing the RF regressor in the Python scikit-learn package is the square root of the 

total number of variables. 

2.8 Extreme Gradient Boosting (XGBoost) 
The gradient tree boosting algorithm XGBoost was developed by Chen and Guestrin with a scalable 

implementation released in 2016. XGBoost is a preferred tool amongst programmers developing machine 

learning models, being the most used algorithm in winning submissions to Kaggle competitions in 2015. 

This is due to XGBoost being one of the best performing algorithms coupled with its high execution speed 

(Chen and Guestrin, 2016).  

XGBoost is a CART model, but unlike the random forest it uses gradient boosting. When optimizing the 

predictions of the target variable, gradient boosted algorithms will use a combination of several weaker 

learners. For regression problems the XGBoost model uses regression trees as the weak learners. These 

weaker regression trees follow the same general structure as the decision trees described in section 2.7. 

XGBoost differs in that it minimizes a regularized objective function. This combines a convex loss function 

calculated from the residual errors of the prediction and a second step that penalizes model complexity. 

Trees are added to the model iteratively with the next tree predicting the residuals of the prior trees. All 

the constructed trees are in the end used to form the final model prediction. The model gets is name from 

the way the loss is minimized when adding new trees, depicted in Figure 2.2. (ASM, 2021) 

 

 

Figure 2.2: Depiction of XGBoost model construction from Amazon SageMaker 

Developer Guide (ASM, 2021). 
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2.9 Model Evaluation 
Several measures can be used to evaluate the model performance. These methods compare the model 

predictions with actual SWE measurements. The data points used for measuring the performance of the 

model are not used to train the model. The general goal for any model is to reduce the difference between 

predicted and true values, and several different metrics exist to measure this. The most widely used 

metrics are Mean Absolute Error (MAE), the Mean Squared Error (MSE) and its root (RMSE), and the 

coefficient of determination (𝑅2) (Chicco et al., 2021). These deterministic metrics can tell a great deal 

about the model performance, but other metrics have also been used to get further insight.  

Probability density functions (PDF) obtained from a trained model can also be used to evaluate its 

accuracy. A PDF is in this paper defined as a vector where the i-th component of the vector describes the 

probability of the i-th outcome occurring so that the sum of all components equals 1 following Roulston 

and Smith (2002). 

The most common benchmarks for evaluating a model’s performance are MAE, MSE, RMSE, 𝑅2, and the 

mean bias error (MBE). These algorithms take as input the predicted 𝑦̂ and the true 𝑦. For the MLP 

ensemble model, the median of the predicted values is applied.  

 
𝑀𝐴𝐸 =

1

𝑛
∑|𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1

 

 

Equation 7 

 
𝑀𝑆𝐸 =

1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=1

 

 

Equation 8 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=1

 

 

Equation 9 

 
𝑀𝐵𝐸 =

1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

𝑛

𝑖=1

 

 

Equation 10 

The MBE is not an evaluation of model precision but rather the average value of the errors. The bias in the 

model is its tendency to under- or overestimate over all predicted values (Willmott and Matsuura, 2005).  

The coefficient of determination is calculated using the mean 𝑌̅ of the true values 

 
𝑌̅ =

1

𝑛
∑ 𝑦𝑖

𝑛

𝑖=1

 

 

Equation 11 
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And the mean sum of squares (MST) 

 
𝑀𝑆𝑇 =

1

𝑛
∑(𝑦𝑖 − 𝑌̅)2

𝑛

𝑖=1

 

 

Equation 12 

 
𝑅2 = 1 −

𝑀𝑆𝐸

𝑀𝑆𝑇
= 1 −

∑ (𝑦̂𝑖 − 𝑦𝑖)2𝑛
𝑖=1

∑ (𝑌̅ − 𝑦𝑖  )2𝑛
𝑖=1

 

 

Equation 13 

 

 

These metrics differ in how they penalize outliers. MAE does not penalize outliers too much and could be 

the better metric if the outliers in the dataset stems from corrupted or erroneous measurements. MSE 

and RMSE, which is monotonically related through the square root, will on the other hand penalize outliers 

harshly and is a good metric should the model performance on outliers be of importance. Since MST if 

fixed for a given dataset, 𝑅2 is negatively and monotonically related to MSE (Chicco et al, 2021).  

When model performance is compared in this paper, unless otherwise specified, it is the respective 𝑅2 

scores of the models that are compared. 

2.10 Generalization Error and Overfitting  

 

 

Overfitting occurs when the model performs well on training data but not on new data presented to it. A 

model will be overfitted if it is able to memorize the data and unable to generalize the data. Underfitting 

is when the model performs poorly on the training data, meaning it is not able to gain a general 

understanding. This will occur if not enough training data is available or poor parameters are chosen 

(AML, 2021). An example of over- and underfitting can be seen in Figure 2.3.  

Generalization error is a measure for how well a model has been able to gain a generalized understanding. 

It is defined as the difference between the empirical loss of the training set and the expected loss of a test 

set. This is in practice measured by the error difference in the training and test datasets. When a model 

does not memorize the training data, but rather is able to learn the underlying patterns, it is said to have 

good generalization. 

Figure 2.3: Example of underfitting, a balanced, and overfitted regressions. From 

Amazon Machine Learning Developer Guide (AML, 2021) 
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The generalization error cannot be calculated since the expected loss probability distribution is not known 

to the learning algorithm. It can however be approximated using the test loss. The equation for the 

approximated generalization error (GE) using the loss function 𝐿 is: 

 𝐺𝐸(𝑓, 𝑠𝑁 , 𝑡𝑁𝑡𝑒𝑠𝑡
) ≜ |𝐿𝑒𝑚𝑝(𝑦𝑖, 𝑓(𝑥𝑖)) − 𝐿𝑡𝑒𝑠𝑡(𝑦𝑖, 𝑡𝑁𝑡𝑒𝑠𝑡

)|, 

 

Equation 11 

 

where 𝐿𝑒𝑚𝑝 is the empirical test loss function defined as: 

 𝐿𝑒𝑚𝑝(𝑓, 𝑠𝑁) ≜
1

𝑁
∑ 𝐿(𝑦𝑖 , 𝑓(𝑥𝑖))𝑁

𝑖=1 ,          {(𝑥𝑖, 𝑦𝑖)}𝑖=1
𝑁 ∈ 𝑠𝑁, 

 

Equation 12 

 

and 𝐿𝑡𝑒𝑠𝑡, the empirical test loss is given by 

 𝐿𝑡𝑒𝑠𝑡(𝑓, 𝑡𝑁𝑡𝑒𝑠𝑡
) ≜

1

𝑁𝑡𝑒𝑠𝑡
∑ 𝐿(𝑦𝑖 , 𝑓(𝑥𝑖))

𝑁𝑡𝑒𝑠𝑡
𝑖=1 ,    {(𝑥𝑖, 𝑦𝑖)}𝑖=1

𝑁𝑡𝑒𝑠𝑡 ∈ 𝑡𝑁𝑡𝑒𝑠𝑡
. 

 

Equation 13 

 

In these equations 𝑥𝑖 are the explanatory variables and 𝑦𝑖  corresponding the target value in the training 

set (𝑠𝑁) and the test set (𝑡𝑁𝑡𝑒𝑠𝑡
). These sets contain 𝑁 and 𝑁𝑡𝑒𝑠𝑡 data points respectively. 𝑓(𝑥𝑖) is the model 

prediction for the i-th measurement. (Jakubovitz et al. 2019) 

The loss function 𝐿 in a regression problem can for example be the RMSE or the MAE (Qi et al., 2020). In 

the results section the MAE has been used as the loss function to quantify the generalization error. It can 

be seen as a metric for how much the model is overfitting. Keeping some data out of the training dataset 

is called bootstrapping, and is a feature included in several models. In this paper, block bootstrapping has 

been used for picking the test set. The blocks are all the measurements from the individual stations, and 

the test set is created from a portion of these blocks.  

 

  



Eirik Storrud Røsvik  University of Oslo 

13 
 

3. Experimental protocol 
This section covers the data sources used for input variables in section 3.1. In section 3.2 the way these 

variables were constructed is outlined and section 3.3 cover the parameter selection for the models. 

3.1 Study area 
The study is conducted using data collected from Canada and the United States, with two separate 

validation datasets. The first of the validation datasets consists of CHSS and SNOTEL stations that are also 

used in the training of the models. The second consists of stations outside the area where the model was 

trained. This validation dataset consists of the SNOTEL stations in Alaska. The reason for validating the 

model twice is to get a better impression of the generality of the model findings, and to explore how well 

performing the models will be at predicting SWE in areas lacking SWE measurements.  

While an extensive record of historical in-situ snow depth and SWE measurements exists, other 

meteorological variables have been estimated. The ERA5-Land dataset is a reanalyzed dataset using 

historical weather observations from the entire globe. All these observations are combined with modeled 

weather systems to create an hour-by-hour dataset of historical meteorological variables. (Sabater et al., 

2021)  

 

Figure 3.1: Map over Canada and the contiguous United States showing the 

location and snow class for stations in the USCN dataset. 
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3.1.1 Contiguous United States and Canada 

 

 

The Canadian Historical Snow Survey (CHSS) dataset is used for the Canadian measurements.  231692 

measurements from 2821 stations come from the CHSS dataset. The US Snow Telemetry (SNOTEL) dataset 

is not used in its full form due to changes in measurement frequency. One measurement was collected for 

each 7-day period for stations with frequent reporting, although most stations only reported once per 

month. 1185 SNOTEL stations from the contiguous United States were used with a total of 78350 

measurements collected. The combination of the Canadian and contiguous United States measurements 

is hereafter referred to as the USCN dataset. The locations of the USCN stations, as well as what snow class 

they belong to, can be seen in Figure 3.1. 

Figure 3.2: The USCN distribution of measured SWE depths at 50mm intervals. b) 

USCN distribution of measured snow depth at 10cm intervals. c) Distribution of USCN 

density calculated using Equation 1 shown with 0.03g cm-3 intervals. d) Temporal 

distribution of USCN measurement dates at 7-day intervals. e) Elevation of USCN 

stations rounded down at 200m intervals. f) Number of measurements obtained 

from each USCN station.   
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In all, 310042 SWE measurements have been collected from 4006 meteorological stations covering the 

period from 01.01.1980 to 01.01.2019. Of these, 10840 measurements were removed due to false and 

dubious measurements, leaving a total of 299202 measurements. The various distributions of the dataset 

can be seen in Figure 3.2.  

Snow class Measurements Stations Percentage (%) 

Maritime 27476 257 9.18 

Montane Forest 147066 1895 49.15 

Ephemeral 7660 176 2.56 

Prairie 42323 778 14.15 

Boreal Forest 53451 653 17.86 

Tundra 19593 215 6.55 

 

As the study area covers large parts of the North American continent, many different climates are included. 

Table 3.1 shows the snow class distribution, the number of measurements and number of stations from 

each snow class. The snow class distribution seen in Table 3.1 shows that Montane Forest is the largest 

with 49.15% of the measurements and the Ephemeral the smallest with only 2.56%. 

The snow depth distribution shown in Figure 3.2a has a mean depth of 90.3 cm and a median depth of 

69.0 cm. The snow depths in the USCN dataset have a right-skewed gamma distribution with a skewness 

of 1.61. The SWE measurements seen in Figure 3.2b has a mean depth of 302.1 mm and a median depth 

of 183.0 mm. The SWE gamma distribution is also right-skewed with a skewness of 2.15.  

The density distribution seen in Figure 3.2c is normally distributed with values ranging from 0.05 to 0.70 

g/cm3. The skewness of the density gamma distribution is 0.51. The mean density for the USCN dataset is 

0.299 𝑔/𝑐𝑚3 while the median density is 0.289 𝑔/𝑐𝑚3. 

The elevation distribution of the stations can be seen in Figure 3.2e. The median elevation is 1288 m and 

the mean elevation for all measurements is 1194 m. 

Several spikes can be seen in Figure 3.2d, these are the 7-day periods containing the end of the month 

when many SNOTEL measurements have been gathered. 

Table 3.1: Snow class distribution of the USCN dataset 
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Figure 3.3: Map of Alaskan SNOTEL stations showing their location and snow class.  
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3.1.2 Alaska Dataset 

The Alaskan dataset is a part of the SNOTEL dataset consisting of 14985 measurements from 211 stations. 

It was set aside so that the models could be cross validated using a block bootstrap approach. The Alaskan 

dataset was chosen for its uniqueness as it is measured with the SNOTEL methodology (USDA, 2022) while 

being geographically closer to Canadian stations. The different distributions of the Alaskan dataset differ 

from that of the contiguous United States and Canada, which can be seen in Figure 3.3. The distribution 

between snow classes for the Alaskan dataset can be seen in Table 3.2. A big majority of the measurements 

are situated in the Maritime snow class with 93.13% of the measurements. The Montane Forest and 

Tundra classes are hardly represented at all with less than 1% of the measurements. All the Alaskan station 

locations, as well as their snow class, can be seen in Figure 3.4.  

Figure 3.4: a) The Alaskan distribution of measured SWE depths at 50mm intervals. b) Alaskan 

distribution of measured snow depth at 10cm intervals. c) Distribution of density in Alaskan 

measurements calculated using Equation 1 shown with 0.03g cm-3 intervals. d) Temporal distribution 

of Alaskan measurement dates at 7-day intervals. e) Elevation of Alaskan stations rounded down at 

200m intervals. f) Number of measurements obtained from each Alaskan station.   
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Snow class Measurements Stations Percentage (%) 

Maritime 13955 185 93.13 

Montane Forest 31 1 0.21 

Ephemeral 160 5 1.07 

Prairie 519 9 3.46 

Boreal Forest 201 3 1.34 

Tundra 118 2 0.79 

 

The Alaskan snow depth measurements have a mean depth of 80.5 cm and a median value of 66.0 cm. 

The Alaskan snow depths have a right skewness of 1.93. The SWE measurements have a mean depth of 

212.7 mm and median depth of 147.0 mm. The SWE measurements are right skewed with a skewness of 

2.52. This makes the mean snow depth 9.8 cm shallower than the USCN dataset while the mean SWE is 

89.5 mm lower. The Alaskan snow depth and water equivalents are more right skewed than the USCN 

dataset.  

The density distribution of the Alaskan dataset differs greatly from that of the USCN. The Alaskan density 

distribution is normally distributed with a skewness of 0.89. The Alaskan densities have mean and median 

values of 0.240𝑔/𝑐𝑚3 and 0.224𝑔/𝑐𝑚3 respectively. The densities in the Alaskan dataset are lower than 

the USCN with the mean density being 0.059𝑔/𝑐𝑚3 lower.  

The median elevation of the Alaskan stations is 472 m and the mean elevation for all measurements is 487 

m. This makes the mean elevation for the USCN dataset 707 m higher than the Alaskan. 

The Alaskan dataset was divided into test and validation subsets. The two subsets were created splitting 

along the stations, with 106 stations and 7504 measurements in the validation dataset and 105 stations 

and 7481 measurements in the test dataset.  

3.1.3 Removing outliers and false measurements 

Several stations measurements were of suspicious quality, with an example station shown in Figure 3.5. 

These outliers were detected by calculating the snow density and manually reviewing outlier cases. The 

criteria being cases the densities exceeded 0.7 or where density was below 0.05 and depth over 1m. All 

measurements meeting these criteria were removed as these errors likely stem from errors in the 

measuring equipment. Several possible causes for these outliers are mentioned in Section 1.2.  

Table 3.2: Snow class distribution of the USCN dataset 
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3.2 Explanatory variables 
From the ERA5-Land temperature and precipitation data several further explanatory variables can be 

constructed. For this study, two variable datasets were collected from the ERA5-Land dataset, these being 

hourly temperature and hourly precipitation. The datasets were processed in order to get the daily 

maximum and minimum temperature, as well as the daily precipitation for each grid cell where snow 

measurements existed.  

The variables used are based on those proposed in Odry et al. (2020). Ntokas et al. (2021) used the same 

parameters but added snow density from ERA5-Land, which also proved to be their lowest scoring variable 

in terms of predictive power. Since this would require further ERA5-Land datasets to be acquired, the 

inclusion of this parameter was decided against. The snow classes in this paper are used as an explanatory 

variable, while earlier papers have trained separate models for each class. The explanatory variables used 

are:  

● Snow depth from in-situ observations. 

● Day of year, days since September 1st.  

Figure 3.5: Example of CHSS station 18E009S which contains three dubious measurements 

seen lying far above the rest of the measurements in terms of snow depth. 
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● Days without snow, the accumulated sum of days without meaningful snowfall since 

September 1st.  

𝐷𝑊𝑆 = ∑ 1

𝐷𝑂𝑌

𝑖=−122

→ (𝑃𝑟 > 3𝑚𝑚 𝑎𝑛𝑑 𝑇𝑚𝑎𝑥 < 0) 

● Number frost-defrost cycles. Using daily min and max temperature, it is calculated as the 

number of times the temperature fluctuates past the freezing/thawing threshold. These 

directional thresholds are set to −1Co and +1Co for the min and max temperature 

respectively. 

● Number of days with positive degrees, the sum of the number of days between September 

1st and the date of measurement where the max temperature exceeded zero degrees.    

● Snow-cover aging index, the mean number of days since the last occurrence of solid 

precipitation weighted by the total solid precipitation on the day it fell. The weights range 

from 0 on September 1st and 1 on the day of the measurement (DOY).  

𝑆𝐶𝐴𝐼 =  
∑

𝑖
𝐷𝑂𝑌 + 122

𝑃𝑟𝑖
𝐷𝑂𝑌+122
𝑖=1

∑ 𝑃𝑟𝑖
𝐷𝑂𝑌
𝑖=−122

 

Where 𝑃𝑟𝑖 is solid precipitation on the i-th day. 

● Number of layers, estimated from the intensity of solid precipitation. A new layer is 

defined as a gap three days or longer where the daily calculated solid precipitation does 

not exceed 3 mm. 

● Accumulated solid precipitation since the beginning of the season. 

● Accumulated solid precipitation in the last 10 days. 

● Total precipitation in the last 10 days. 

● Average temperature in the last 6 days. 

● Snow class according to Sturm et al. (2021). 

The temperature has been corrected for using Equation 6 following Ntokas et al. (2021).  

3.3 Tested Hyper Parameters 
Selecting the right hyper-parameters (parameters) is an important step when constructing a model. A poor 

parameter selection can lead to a model overfitting or underfitting depending on the parameters used 

(AML, 2021). The CART models have many parameters to tune how the model trains on the training data. 

All the parameters were tested using the ceteris paribus principle like in Ntokas et al. (2021) where the 

tested parameter is changed while all other parameters are kept the same. The XGBoost (XGB) model and 

the Random Forest (RF) model do not have identical parameters as they are constructed differently. The 

hyper-parameter names used in the scikit-learn packages are also different, even for the parameters that 

are similar (Buitinck et al. 2013). A common nomenclature has been used in this paper when referring to 

similar parameters.  

For the XGB model, the parameters tested were the max depth of the individual CARTs (layers), the 

number of estimators (estimators), the learning rate, and the number of explanatory variables considered 
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when training each tree (max features). It was decided to refer to the max depth of the CARTs as layers to 

avoid confusion with snow depth or SWE depth. 

For the RF model the parameters tested were the max depth (layers), number of trees (estimators) and 

max features. These are the parameters with common nomenclature to the XGB model. The minimum 

number of samples required to make a split and the minimum number of samples in the leaf node were 

additionally tested for the RF model. The max features parameter value “None” will mean that the number 

of features considered equals the number of variables. This means that all explanatory variables are 

considered when constructing each CART. 

 

 

 

Parameter Used 

Activation function tanh 

Optimization algorithm AdaDelta 

Parameter initialization U(−2, 2)3 

Shuffling data before epoch Yes 

Input variables All 

Batch size 100 

Ensemble members 20 

Number of ensembles 6 

 

The tested parameters for the MLP model are the number of hidden layers and number of epochs. The 

other parameters used are those found to give the best results in Ntokas et al. (2021) seen in Table 3.3. 

In this paper the term complex is used for a model where many layers and estimators are used during the 

training phase while simple models are used when few are used. 

   

  

Table 3.3: Best MLP Parameters from Ntokas et al. (2021) 
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4. Results 
The results section consists of two similar approaches to obtain model SWE predictions. In section 4.1 the 

test dataset stations are represented in the training dataset, while section 4.2 follows a block bootstrap 

approach where the stations are separated. In section 4.2 the ubiquitousness of the findings is further 

explored by repeating the method for different areas and dataset divisions. In section 4.3 the feature 

importance of the explanatory variables is presented, and section 4.4 explores the computational costs of 

the models. 

4.1 USCN Validation 
For finding the best parameters for the MLP, RF, and XGB models, the USCN dataset was divided into three 

separate datasets. 50% of the dataset is used for training the model, 25% for validating the model and 

finding the best parameters, and 25% for testing the final model. For the regression models the USCN 

dataset was split into two parts where 75% was used for training and 25% for testing. 

4.1.1 Training 

All the snow classes were used in the training of the CART models, leaving the snow class as a categorical 

feature for each data point.  

4.1.1.1 XGBoost 

 

Parameter Best Tested 

Number of estimators 1500 [10, 1500] 

Layers 9 [2, 11] 

Learning rate 0.1 [0.001, 0.5] 

Max features 1 [0.5, 1] 

 

The XGB model was trained with the parameters from section 3.3 being optimized. The parameters were 

tested one by one against a reference parameter combination and validated after each iteration. The best 

values for all parameters can be seen in Table 4.1. The learning rate and max features were found using 

this technique. These parameters were found using 7 layers and 500 estimators as reference parameters. 

After other appropriate parameters were found, the optimal numbers of estimators and layers were 

determined through a grid search. Using 161 different numbers of estimators in the range [1,1500] and 

layers in the range [2,11], a total of 1510 combinations were tested. The results of tuning layers and 

number of estimators can be seen in Figure 4.1.  

 

Table 4.1: Parameter ranges used when training the XGB model 
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The XGB performs better when adding complexity. Figure 4.1 shows that adding more layers and 

estimators improves the performance for (a) 𝑅2, (b) RMSE and (c) MAE. (d) The MBE is not affected in the 

same way with increasing complexity, with most iterations having an MBE in the range -0.15 mm to -0.3 

mm. The MBE difference between layers widens as more estimators are added, with the better performing 

models having a more negative bias. At 8 layers and 600 estimators the 𝑅2 score reaches 0.9845 and the 

addition of more layers and estimators have less of an impact. The addition of more layers is the most 

computationally costly parameter of the model, with execution times increasing exponentially. As the 

depth and the number of estimators are increased, the model appear to converge on an 𝑅2 score just shy 

of 0.985. The best layer and number of estimators parameters were 9 and 1500 respectively. 

4.1.1.2 RF model 

 

Parameter Best Tested 

Number of estimators 300 [10, 300] 

Layers 30 [4, 30] 

Max features None (all features included) Sqrt, log2, None 

Minimum number of samples (split) 3 [2, 10] 

Minimum number of samples (leaf) 1 [1, 5] 

 

The parameters for the RF model were found in the same manner as for the XGB model. The parameters 

tested can be seen in Table 4.2 along with the best parameters. The depth and number of estimators was 

then found by grid search. 7 different numbers of layers in the range [4, 30] were each trained in 

combination with 41 different numbers of estimators in the range [1, 300]. The resulting 𝑅2 score, RMSE, 

MAE, and MBE progression can be seen in Figure 4.2. The parameters resulting in the best performance 

were 30 layers and 300 estimators.  

The results follow the same pattern seen while training the XGB model with improving performance as 

complexity increases. In Figure 4.2 it can be seen that: for iterations with less than 12 layers, the model is 

not able to reach an 𝑅2 score above 0.98 (a). For models constructed with 6 or more layers this barrier is 

reached with less than 400 estimators. The RMSE (b) and MAE (c) follow similar downward trends with 

increasing complexity. The MBE is not as stable between iterations but is found in the range [-0.15 mm, -

0.25 mm] for more complex iterations (d).  

  

Table 4.2: Parameter ranges used when training the RF model 
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4.1.1.3 MLP 

 

Snow class Epoch Hidden Layers 

Maritime 400 100 

Montane Forest 400 200 

Ephemeral 400 10 

Prairie 500 50 

Boreal Forest 750 50 

Tundra  750 150 

Tested Range [50, 750] [10, 200] 

 

The MLP model was trained with the parameters tuned being the number of epochs and the number of 

hidden layers. For the parameter tuning, only one ensemble member was used to save time. The tuning 

was done for each snow class individually, creating a grid to find the best parameters within the ranges 

shown in Table 4.3. For each snow class 36 combinations of epochs/layers were tested. Ntokas et al. (2021) 

tested for many parameters when constructing their model. The parameters that gave the best results in 

their study were used here and can be seen in Table 4.3. The best epoch and hidden layer parameters for 

each snow class can be seen in Table 4.3 and the 𝑅2 scores from the different combinations used for 

training can be seen in Figure 4.3.  

4.1.1.4 Regression models 

The Sturm and Jonas models were implemented as described in Section 2.4 and 2.5 respectively. The 

Sklearn logistic regression package was used to find the optimal parameters. The regression models were 

trained using the snow density as the target which was then converted to SWE in order to run a 

comparative performance analysis. For the Jonas model, some elevation and month combinations had too 

few data points to make a proper regression fit. Therefore, a lower boundary was set and only month and 

elevation combinations with at least 10 measurements were considered. The months without enough data 

points were all summer months.   

  

Table 4.3: Best Epoch and Hidden Layer parameters found for the MLP model as well 

as tested ranges 
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4.1.2 Performance 

 

Model MSE (mm) RMSE (mm) MAE (mm) MBE (mm) 𝑅2 

XGBoost 1614.9 40.19 21.40 -0.32 0.985 

Random Forest 1623.7 40.30 22.04 -0.25 0.985 

Multilayer Perceptron 2127.6 46.13 28.52 0.09 0.980 

Jonas 5287.4 72.71 43.50 -0.11 0.950 

Sturm 5365.9 73.25 45.68 1.99 0.945 

Both XGB and the RF model outperformed previously suggested SWE models. In Figure 4.4 all model 

predictions for the test data set are plotted, alongside the theoretical best fit. Better model performance 

will produce a narrower cluster of modeled points around the theoretical best fit line shown in red. The 

corresponding 𝑅2, RMSE, MAE and MBE scores are found in Table 4.4. Comparing the results shows the 

Sturm model to have the weakest performance with an 𝑅2 score of 0.936, followed by the Jonas model 

with 1.5% better 𝑅2 score of 0.951. The more complex MLP model, with an 𝑅2 score of 0.980 had a 3.1% 

increase in precision compared to the Jonas models. The CART models compared with the MLP model 

show an improvement of 0.48% and 0.49% for the RF model and XGB model respectively.  

Figure 4.4: Scatter plot of measured values (mm) and predicted values (mm) when validating for 

the USCN dataset. The red line marks where x=y which is the theoretical best predictions. Limits for 

the plot were set to 3000mm meaning that not all measurements are included in these plots. 

Table 4.4: Model performance when applied on the USCN test dataset 
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The heatmaps displaying the probability of error as a function of snow depth in Figure 4.5 were created 

using 150 data points for each 10 cm snow depth interval in the range [0 cm, 350 cm].  A total of 5250 

measurements were used, all obtained from the test dataset. The heat maps are smoothed out from a 

scatter plot, using a smoothing algorithm to convert the scatterplot to a probability density plot. Increasing 

model performance will be observed in these plots by narrower bands of error probability.   

The CART models perform best for all snow depths as can be observed by the probability of error in Figure 

4.5. Observing first the density error probability, the models with lower accuracy scores produce errors 

distributed over larger ranges. The regression models have their density errors +/- 0.1 g/cm3 (4c, 5c), while 

the MLP model has errors of +/- 0.05 g/cm3 (3c). The XGB and RF models have their errors in the +/- 0.025 

g/cm3 range (1c, 2c). The complex models all tend to have better predictions as the depth increases. While 

this is also true for the regression models it is much less pronounced in the density errors and is perhaps 

better illustrated in the relative error distribution (4b, 5b). The SWE error probability shows the opposite 

pattern to that of the density. All the models show greater SWE errors as snow depth increases as the 

larger values cause a greater absolute spread. The error graphs show the power of the CART models (1a, 

1b) compared to the MLP model (3a) as the error probabilities throughout all depths are lower. This 

improvement is even better for snow depths > 200 cm. The relative SWE error shows the CART models 

have most of their predictions within a 10% range (1b, 2b), while the MLP is mostly within 15% (3b). The 

regression models are generally within 30% (4b, 5b).  

  

Figure 4.6: Box and whisker plot comparing the distribution of error residuals. The box and whiskers 

correspond to areas where percentiles of the errors are found within. The whiskers mark the 5th and 

95th percentile, while the box shows where 50% of the residuals are found inside. The red line marks 

the mean of the residuals. The XGB, RF, and MLP models are compared as they had the greatest 

accuracy.   
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Figure 4.6 shows the distribution of the residual errors. The XGB model has 90% of its residuals within a 

range of [−49.1 mm, 48.7 mm] and 50% within [−12.0 mm, 11.4 mm] with a median of −0.3 mm. For the 

RF, 90% are within [−50.6 mm, 52.2 mm] and 50% within the [−13.0 mm, 10.6 mm] range with a median 

of −1.1 mm. The respective MLP residual ranges are [−64.3 mm, 68.1 mm] and [−16.7 mm, 16.9 mm] with 

a median of −0.8 mm. This shows a slight negative bias, which is smallest for the XGB model, followed by 

the MLP model and lastly the RF model.  

Model MSE (mm) RMSE 
(mm) 

MAE 
(mm) 

MBE (mm) 𝑅2  GE(MAE) 

XGBoost 4764.2 69.02 47.44 −35.46 0.870 26.04 

Random Forest 3646.3 60.38 37.61 −24.98 0.908 15.57 

Multilayer Perceptron 11185.4 105.76 85.89 −84.07 0.748 57.37 

Jonas 8821.2 92.93 78.12 −83.51 0.761 34.62 

Sturm 12079.2 109.91 95.69 −92.86 0.686 50.01 

 

Table 4.5 shows that all the models have a big loss in performance when applied on the Alaskan dataset. 

This shows that there exists a considerable generalization error in all the complex models. This suggests 

that the models are overfitting and not learning the variable-SWE relationship. The RF model has the 

lowest generalization error of the models with a GE of -15.57 mm. 

4.2 Alaska Validation 
Due to the poor performance of the complex models when applied to the Alaskan dataset, it was decided 

to search for better parameters to get better performance and explore ways to minimize the 

generalization error. To search for better parameters, it was decided to split the Alaskan dataset into a 

validation and testing dataset, using a block bootstrap method where the measurements are divided along 

stations. This ensures that all measurements in the final test predictions will be from a site that the model 

has seen neither the training nor validation phase. 

4.2.1 Training 

Training the CART models were performed using the USCN training dataset and model parameters seen in 

Table 4.1 except for the number of layers and estimators. The Jonas and Sturm models was not retrained 

as their parameters are dependent exclusively on the training dataset. 

 

 

  

Table 4.5: Model performance when applied on the Alaska dataset with generalization 

error calculated using MAE as the loss function in Equation 11.  
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4.2.1.1 XGBoost 

Optimizing the XGB model was done by running the model with several combinations of layers [2, 11] and 

estimators [10, 100]. The results of the XGB parameter search can be seen in Figure 4.7. The resulting 𝑅2 

score (a), MAE (b), and RMSE (c) of validating all the parameter combinations can be seen to follow each 

other in terms of wellness. The accuracy of the model is increasing with layers added until peaking at 7 or 

8 before adding even more has a negative effect. The accuracy also increases with the number of 

estimators until the best results are reached at around 24. Subsequent addition of estimators only 

deteriorates model performance. The best performing combination of 7 layers and 24 trees gave an 𝑅2 

score of 0.93. The peak performance coincides with the MBE going from a positive bias to a negative bias, 

with the best validation parameters giving an MBE of -27.6 mm (d).  

4.2.1.2 Random Forest 

The RF model optimization was undertaken in the same way as the XGM model. Accuracy scores were 

produced by running the model for combinations of layers [4,20] and estimators [4, 100] seen in Figure 

4.8. The RF model improves with more layers obtaining the best results with 12 layers before further 

addition shows deteriorating performance (a). The impact of adding estimators shows a general positive 

trend where more estimators give better performance. The best result of the validation is 12 layers and 

60 estimators. the RMSE (b) shows the same trend as the 𝑅2 score, while the MAE does not seem to be 

significantly impacted by the addition of estimators (c). The MBE plot reveals that all iterations had an MBE 

less than −27 mm (d). Figure 4.8 reveals that the number of layers is the most impactful parameter of the 

two when training the RF mode. The best iteration of 12 layers and 60 estimators had an 𝑅2 score > 0.908 

and the MBE closest to 0.  

4.2.1.3 Multilayer Perceptron 

When training the MLP model, difficulties arise around the distribution of snow classes in the Alaskan 

dataset described in section 3.1.2. Since all the classes except the Maritime contain less than 10 stations, 

a single MLP was constructed with snow class as an explanatory variable instead. Ntokas et al. (2021) 

tested a similar approach in their paper which proved to perform well, although not as well as the snow 

class specific ensemble. The MLP was then validated to find the best hidden layer and epoch parameters. 

The validation was performed on a single ensemble member with hidden layer [2, 200] and epochs [10, 

100] combinations. The result of training the single MLP with these parameter combinations can be seen 

in Figure 4.9. Although it didn’t produce the overall best result, 2 hidden layers were chosen when creating 

the final MLP with 20 ensemble members. This is due to it being the most consistent over several iterations 

of similar parameters.  
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4.2.2 Performance 

 

 

Model MSE (mm) RMSE (mm) MAE (mm) MBE (mm) 𝑅2 GE(MAE) 

XGBoost 1738.5 41.70 26.80 −3.57 0.934 12.03 

Random Forest 2680.6 51.77 33.45 −22.10 0.914 2.29 

Multilayer Perceptron 3225.4 56.79 39.12 −29.69 0.894 0.28 

Jonas 7817.2 88.41 76.86 −72.85 0.731 33.36 

Sturm 12079.3 109.91 95.59 −92.86 0.650 31.18 

 
The measured values compared with the predicted values when the models are applied to the Alaskan 

test dataset can be seen in Figure 4.10. The 𝑅2 score, RMSE, MAE, and MBE are found in Table 4.6. The 

XGB model has a 2.0% better performance than the RF model and a 4.0% better performance than the 

MLP model. The better performance of the XGB model can be seen in Figure 4.10 where its predictions 

are closer to the red line marking where the predicted values equal the measured ones. The Jonas model 

performs 8.1% better than the Sturm model. This is significantly better than when compared to the 0.05% 

difference in performance from table 4.4. The XGB model has a performance 20.3% better than that of the 

Jonas model. The generalization errors have been calculated for the XGB, RF, and MLP models by running 

the USCN test dataset with the same parameters for comparison. The use of early stopping for the XGB 

model causes a greater MBE when tested using these parameters found in 4.2.1 on the USCN test dataset. 

Table 4.6: Model performance when validated on the Alaskan validation set and 

applied on the Alaska test dataset. The generalization error is estimated with the 

MAE from this test data and the MAE from using the USCN test data. 

Figure 4.9: Testing of MLP model parameters for all snow classes combined conducted on 

106 Alaskan stations. Due to the Alaskan dataset containing 93% Maritime measurements 

a single MLP was constructed taking snow class as a variable. 
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The greater generalization error suggests that regional biases are being corrected for and thus a model 

bias exists.  

 
 

The heatmap in Figure 4.11 is created using the full Alaskan dataset with 100 measurements selected for 

each depth in the range [20 cm, 170 cm] containing measurements from both the testing and validation 

datasets to obtain enough measurements. 100 additional measurements in the range [170 cm, 500 cm] 

were added and normalized to be displayed between 170 cm and 180 cm. A recurring trend in all the 

models is underestimating the SWE.  

The Sturm model shows the greatest tendency to underestimate. Figure 4.11-5 shows that as snow depth 

increases the area of high SWE error distribution goes from [−20 mm, 0 mm] at low snow depth to [−100 

mm, 0 mm] at snow depth > 100 cm (a). The relative SWE error for the Sturm model is imprecise but 

improving as snow depth increases. At a depth of 100 cm a higher distribution of errors is seen at [−40%, 

−20%] moving towards [−30%, 0%] for snow depth > 170 cm (b). The density error for low snow depth has 

the highest probability at −0.1 g/cm3. This decreases to −0.06 g/cm3 as snow depth increases and the 

model gets more precise (c).  

The Jonas model seen in Figure 4.11-4 shows much narrower error distributions than the Sturm model. 

The SWE error probability is centered around −20 cm at the lowest and spreads out as snow depth 

increases, being centered around −30 mm (a). The relative SWE error probability shows a similar trend as 

the Sturm model with imprecise predictions for snow depth < 100 cm (b). The density error has a high 

Figure 4.10: Scatter plot of measured values (mm) and predicted values (mm) when validating for the 

Alaskan dataset. The red line marks where x=y which is the theoretical best predictions. 2000 mm was 

selected as the limits, and thus not all measurements are included in the plot. 
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probability for low snow depth at −0.06 g/cm3 decreasing with snow depth and being centered around 

−0.01 g/cm3 at snow depth > 100 cm (c). 
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The MLP model performance can be seen in Figure 4.11-3. How the errors progress with increasing depth 

are similar to the Jonas model, but with better precision and accuracy. The error shows less spread with 

values centered around −10 mm at low snow depth to −40 mm at snow depth > 100 cm (a). The relative 

error at low snow depth is less probable below 40% with higher snow depth having an error of [−20%, 

10%] (b). The density error at low snow depth is centered around −0.03 g/cm3 (c).  

The RF model error distributions seen in Figure 4.11-3 are very similar to those of the MLP. The SWE error 

(a) and the relative SWE error (b) look like the MLP model’s but with higher precision. The better precision 

is best seen when comparing the relative SWE at low snow depth where the RF model has a higher density 

of errors in the range [−20%, 10%] at snow depth ≈ 75 cm. The density error probability of the RF model is 

centered around 0.025 g/cm3 at low snow depth and produces narrower distribution bands than the 

preceding models (c).  

The XGB model shows the best error distributions seen in Figure 4.11-1. The SWE error probability is 

centered around 0 mm for low snow depth spreading out as snow depth increases (a). The relative SWE 

error probability shows that the XGB model has the highest accuracy for predictions with snow depth < 

100 cm. The relative SWE error ranges from [−20%, 15%] (b). The density error probability is centered 

around 0.02 g/cm3 at low snow depth and around 0.00 g/cm3 for snow depth > 100 cm (c). 

 

 
 

 

 

 

 

Figure 4.12 shows the distribution of the error residuals for all five models. The regression models are 

included as they are more comparable in performance when applied to the Alaskan test dataset. For the 

Figure 4.12: Box and whisker plot comparing the distribution of error residuals for the Alaskan 

validation. The whiskers mark the 5th and 95th percentile while the box shows the 25th and 75th. The 

median of the residuals is shown with a red line. The Jonas and Sturm models have been included as 

their results are comparable with these models. 
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XGB model, 90% of the residuals are found within a range of [−70.0 mm, 63.2 mm] and 50% within [−23.8 

mm, 11.4 mm]. The median value of the residuals is −8.5 mm. For the RF model 90% of the residuals are 

within [−94.8 mm, 32.0 mm] and 50% within [−37.8 mm, 0.1 mm] with a median prediction error of −17.0 

mm. The residual distributions for the MLP model are 90% within [−96.7 mm, 29.8 mm] and [−46.8 mm, 

−8.0 mm] with a mean of −25.8 mm. Here it can be seen that all the best performing models in section 4.1 

to some degree underestimate the SWE in Alaska. Of these the XGB model shows the lowest negative bias, 

while the MLP model shows the highest. The regression models can be seen to follow behind in terms of 

accuracy with the Jonas model performing best with 90% of the residuals within [−116.7 mm, 41.9 mm] 

and 50% within [−58.1 mm, −11.7 mm] and a median of −34.9 mm. The Sturm model has the largest spread 

of the residuals with 90% of the residuals within [−180.0 mm, −9.7 mm] and 50% within [−123.3 mm, −59.8 

mm] and a median of −91.0 mm.    

 

4.2.3 Further cross-validation 

State N Estimators 𝑅2 

Alaska 24 0.929 

California 325.0 0.927 

Idaho 100.0 0.956 

Montana 75.0 0.963 

Nevada 250 0.941 

New Mexico 125 0.936 

Oregon 75 0.946 

South Dakota 650 0.845 

Utah 375 0.931 

Washington 50 0.936 

Wyoming 25 0.949 

 

The optimal parameters for the XGB model differed between section 4.1 and section 4.2. The parameters 

that gave the best results for a block bootstrap dataset were found to be those in section 4.2. Therefore, 

the same block bootstrap validation was performed on other US states to find their best parameters and 

observe if, or how, they differ. In these validations the number of layers was kept static at 7 while the 

number of estimators ranges from [1, 1000], testing every 25 for a total of 41 runs. The dataset used for 

training is the USCN training dataset with the stations from the validation state removed. The same state’s 

measurements from the USCN validation and test datasets were also added to the validation. The results 

can be seen in Figure 4.13 and show that when the different states’ datasets have different parameters 

where the model has the best performance. The best numbers of estimators yielding the best results as 

well as the corresponding 𝑅2 score are found in Table 4.7. These parameters are not necessarily the best 

for each states’ dataset, but it illustrates how overfitting is affecting areas differently. Some regions such 

Table 4.7: The best number of estimators and the corresponding best 

𝑅2 score for the US states used for cross-validation. 
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as Wyoming and Washington have few estimators for the best results, like Alaska. Other areas, like 

California and Utah, have better results with significantly more estimators.  
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Using the XGB model with the Alaskan test and validation datasets for training and validation respectively, 

a grid search was performed to investigate the performance when using only regional measurements to 

construct the model. The grid search uses layers in the range [2, 11] and number of estimators [10, 200]. 

This is still a block bootstrap method as the sites validated for are not used in training. The results are 

shown in Figure 4.14 and show different parameters to give the best results than those found in section 

4.2.1. The best parameters were 3 layers and 200 estimators. The best results from using these parameters 

for the validation gave an 𝑅2 score of 0.943, a 1.6% improvement to the results from section 4.2.2. Not as 

great results was found when doing the same test for the RF model, which had a best 𝑅2 score of 0.92, a 

0.06% increase in performance. None the less it shows that as good results can be produced with a much 

smaller dataset. Fitting the Jonas model to the Alaskan validation dataset resulted in an 𝑅2 score of 0.91, 

a considerable increase to the 0.731 when trained on USCN and applied to the same test set.  
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4.3 Feature Importance 
Looking at the feature importance metrics can give some understanding of the inner workings through 

which these models arrive at their predictions. For the XGB model, the two feature importance scores 

looked at here are gain and frequency. They were obtained from the XGB model created in section 4.1.1 

and 4.2.1. The feature fain score was obtained from the RF model from the same sections. Gain is a metric 

for how much relative contribution each explanatory variable has on each tree. In table 4.8 the feature 

importance metrics are shown with the gain is normalized and presented as the percentage. The 

percentage difference in the feature importance is also calculated. The frequency is the percentage of 

times a variable appears in the model as a split node criterion. For both the XGB and RF models the snow 

depth is the most important feature. This is perhaps not surprising, as it is the feature that most directly 

describes the local hydrology. The gain shows that the snow depth is almost one order of magnitude above 

that of the second most important feature, day of year.  

For the XGB model, when validated over the Alaskan dataset, the variable with the highest frequency is 

the accumulated solid precipitation. This is one of the variables calculated from ERA5-Land data. This 

feature has slightly higher frequency than snow depth, while the gain is still amongst the lowest scoring. 

This changes for the more complex version where the variable has the fourth highest gain. Apart from the 

snow depth, the day of year and average temperature in the last six days are the variables with the highest 

gains. This is true for both parameter combinations and for both models. The day of year has for a long 

time been known to have predictive power and is used in the regression models (Sturm et al. 2009). Several 

variables have a low gain score, but the days without snow and total precipitation in the last 10 days are 

consistently low scoring between iterations and models. The difference in the feature importance could 

give some insight as to what variables rises in importance when the models are trained. Accumulated 

precipitation is the variable that has the highest gain increase for the XGB model. This variable is also one 

of the higher scoring ones for the RF model. 

Further feature importance metrics were obtained from the XGB model to investigate the progression. 

The XGB model was chosen for its good performance and since its precision rose and declined as the 

number of estimators increased. This was done by getting the feature importance metrics from 100 runs 

with the number of layers being 7 and the number of estimators in the range [1, 100]. The results are seen 

in Figure 4.15. Beginning at the number of estimators being 1, as more are added, the frequency of the 

accumulated solid precipitation increases. It then starts decreasing in importance at around 30 estimators, 

coinciding with the Alaskan 𝑅2 score declining. The average temperature in the last 6 days becomes the 

most frequently used variable at around 55 estimators. As more estimators are added, the snow depth 

variable rises in frequency and eventually becomes the most frequently used feature as seen in Table 4.8 
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Figure 4.15: Feature progression as a function of number of 

estimators, the scores have been normalized to fit alongside the 

corresponding 𝑅2 score calculated for both the Alaskan and USCN 

validation. 

 



46 
 

4.4 Computational cost 
 

Model Training Duration (s) 

XGBoost 147 

RF 400 

MLP 72120 

Jonas 6.1 

Sturm 1.1 

 

Execution time is another factor of interest when building models, and for the models trained in this paper 

it varied widely. The regression models are far less complex and thus computationally less costly, with 

processing time for a complete execution measured in seconds. Following those are the CART models, 

both having run times that can be measured in minutes. Of the CART models the XBG model turned out to 

be the faster one. Lastly comes the MLP ensemble model with a considerably long execution time, taking 

over 20 hours to fully train. This stems from the 20 ensemble members being trained individually and a 

new model being constructed for each snow class. For the best performance it was found in section 4.1.1.3 

that many hidden layers and a large number of epochs were needed, further adding to the execution time. 

The run time for training each of the best models, as described in section 4.1.1, are shown in Table 4.8 and 

the equipment used is shown in appendix Table A1. 

 

  

Table 4.8: Model execution speed for models trained in section 4.1.2. 
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5. Discussion 
The regression models in this paper have considerably higher accuracy than in previous studies (Sturm et 

al., 2010; Ntokas et al., 2021). This is due to the removal of faulty measurements of the datasets. The 

regression models are especially sensitive to erroneous snow depth measurements due to it being an 

exponent in the equations. The inclusion of ERA5-Land data to the more complex models could give them 

the ability to correct for false data and could be an explanation as to why less improvements were seen in 

the MLP model compared with Ntokas et al. (2021). In terms of their performance, high generalization 

errors were found for both the Jonas and Sturm models. They had good accuracy scores for the areas 

where they were trained, with both achieving 𝑅2 scores greater than 0.94 for the USCN test dataset. The 

regression models were found to be best suited when trained with regional data. 

The MLP model was reexplored through the hidden layer and epoch parameters. Ntokas et al. (2021) noted 

that their model had a bias to underestimating SWE for SWE measurements above 2500 mm. The MLP 

model produced in this paper was not found to harbor this upper boundary when tested on the USCN 

dataset. This could be a result of the extended dataset containing larger numbers of deeper SWE 

measurements, or the far greater number of layers and epochs used. Most likely a combination of these 

led to the improved reliability of the MLP model in deeper snow when not using block bootstrapping. 

When using block bootstrapping, the number of hidden layers needed to be drastically reduced to 

minimize the generalization error. The initial findings showed a generalization error of 57.4 mm. Reducing 

the number of hidden layers from in the hundreds down to only 2 reduced the generalization error to 0.3. 

The final resulting 𝑅2 score of 0.894 improved greatly upon the initial score of 0.748. In development, the 

use of a single MLP model proved better suited than one for each snow class. This was because there 

simply existed too few measurements of some snow classes in Alaska.  

The RF model showed the lowest generalization error over all the tests with 15.57 mm when testing on 

the Alaskan dataset with the USCN validated model. This could be due to the internal bootstrapping 

feature of the model, where the training dataset is used portion by portion when constructing the model. 

The number of layers in the RF model was the most deciding parameter regarding whether the model 

overfitted or not. The way the RF model uses additional estimators is by creating more trees uniquely, 

meaning that the trees do not influence each other. This is in contrast to the XBG model where the trees 

are predicting the previous residuals. The difference in construction becomes evident when plotting 

performance scores as a function of the number of estimators. The RF model shows differing performance 

mostly based on the number of layers while the XGB gets better performance as a function of both layers 

and estimators. 

In regard to bootstrapping method, using a randomly selected subset was found to negatively affect the 

generality of the non-regression models. The findings were that higher complexity increased model 

performance. This reduces the usefulness of the three-way train, validation, and test split, as the subsets 

will perform better with the same parameters. The XGB model and RF model both showed similar 

performance for this validation with 𝑅2 scores of 0.985. The MLP model achieved an 𝑅2 score of 0.980. 

The models trained in this fashion was found to be overfitted to various degrees as they all had 

considerable generalization errors when tested against Alaskan data. The extremely high accuracy scores 
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are therefore of little value when not estimating for these areas. This is true to a lesser extent for the RF 

model. The measurements validated against were not seen by the model in training, but they are close in 

both temporal and spatial dimensions. The added complexity therefore likely overfits to learn the 

individual behaviors of the stations and regions. 

When applying a block bootstrap approach, much simpler models produced the best results. When 

validated over Alaskan data, the RF model outperformed the MLP model while both were outperformed 

by the XGB model. The RF model’s 𝑅2 score of 0.916 is 1.2% lower than that of the XGB model, and the 

MLP model’s 𝑅2 score of 0.894 is 3.6% lower than the XGB. The XGB model, with an 𝑅2 score of 0.934, 

seems to generalize the variable-SWE relationship best, and would be the preferable method when 

modeling areas with few previous SWE measurements. Iterating the XGB model further would yield results 

more like those of the RF and MLP models with a similar bias. The way the XGB model trains iteratively 

explains why it will overfit when adding too many estimators. This can also explain the downwards 

trending bias if the model starts off with a large bias and is minimizing it with each added estimator. Since 

the best performance was found during this downwards bias trend, it could be a combination of a 

somewhat well-trained model and early stopping acting as a bias offset. However, even though the model 

bias being equal to the regional bias might be the explanation, cross-validation of the findings found that 

increasing the number of estimators will at some point result in larger generalization error. 

It is impossible to say for certain exactly what causes the models to overfit, but some properties of snow 

could help explain it. The factors identified by Zhong et al. (2021) causing local variations in density, for 

example vegetation and topography, are not captured in the model features. They could contribute to give 

each station a unique snow depth-SWE relationship. It is not only station specific characteristics that are 

being overfitted. Regions have different parameters where the XGB model gives the best results. This 

suggests that some of the fitting done is more general, and some areas will benefit more from this than 

others. At around 400 estimators the XGB model seems to be overfitting for most areas and produce 

deteriorating results. The use of early stopping can therefore be beneficial when estimating SWE using the 

XGB model. It should be kept in mind that all other fitting parameters were kept static, and the point at 

which the model starts overfitting is a function of all parameters. 

When constructing the XGB model using only local data, the results were better than those found when 

using foreign training data and local validation. This suggests that fewer regional measurements have 

higher predictive power than a larger dataset obtained from elsewhere. The benefits of a small local 

dataset were also found when using the RF model, although it was not found to be an improvement to 

using foreign data. When using only local training data, the XBG model had the best results with only 3 

layers, as opposed to 7 layers when using it as validation for foreign training.  

The best performing XGB parameters when validating for a given area seem to be coupled with the 

parameters that give the lowest bias. The best performing RF and MLP models on the other hand both had 

significant negative biases and the regression models even greater. This could be caused by regional 

differences in snow densification. The Alaskan dataset was found to have a lower mean density than the 

USCN. Regional bias could also explain why, when validating over different areas, different parameter 
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combinations yield the best results. The XGB cross validation shows that the MBE converges on different 

values for different areas.  

There are several points to consider when choosing which model and approach used to estimate the SWE, 

chiefly measurement availability. If the model is to be applied to an area where no measurements exist, 

and with no knowledge about the regional bias, the RF model would be the best candidate. This is due to 

the necessity of using training data from outside the region and lack of ability to validate. The RF model 

was found to have the lowest generalization error for this scenario in section 4.1.2. The downside of this 

approach is that the bias of the model is still unknown. This could be remedied by having only a few 

measurements from the relevant region. The best approach in this case, comparable to section 4.2, would 

be to use these measurements as a validation for an XGB model with training data from elsewhere. The 

XGB model proved best when using an early stopping scheme, but this requires some existing regional 

knowledge. If the region should have enough measurements available from enough sites to train and 

validate with these, then it was found in section 4.2.3 that this gives the best results. What the dataset 

size threshold for this to the preferred method is, as well as the performance impact dataset size has on 

the model performance, is not explored in this paper.  

Results presented here strengthen the case for use of reanalyzed data when creating SWE models. The 

accumulated solid precipitation calculated from ERA5-Land data was the leading feature in terms of 

frequency where the XGB model was best at generalizing the SWE predictions. The average temperature 

in the last 6 days had the highest gain score of the ERA5-Land derived variables for both the RF and XGB 

model. Its importance to the model predictions was similar to that of the day of year. 10 of the model’s 13 

explanatory variables came from ERA5-Land data, and they all participate in the model prediction to some 

degree. The ERA5-Land derived features make the models easy to apply on new snow depth 

measurements as only date, location, and snow depth is needed to produce the variables that go into the 

models.  

The importance of snow classes from Sturm et al. (1995) proved less important in the feature analysis of 

the CART models. This feature had the lowest importance in terms of gain for both XGB and RF models 

when validating for USCN and was among the lower scoring features for the Alaskan validated models. 

This should not be interpreted as the snow classes having low predictive power since: (a) The findings in 

section 4.1.2 are highly overfitted and (b) the snow class classifications stem from many of the same 

variables also supplied to the model. This would mean that more complex models could internally 

generalize these snow classifications to some degree using the Odry et al. (2020) explanatory variables.  
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6. Conclusion 
The new machine learning approaches investigated in this paper offer several advantages over previous 

models. First and foremost is the improved reliability of the predictions, with the best XGB model having 

a 3.6% better performance than the MLP model when tested on Alaskan test data. The RF model also had 

a better performance than the MLP model, while its true strength lies in the low generalization error. 

Secondly comes the lower computational cost with the time needed for training an XGB model being 0.2% 

of that of the MLP ensemble. Advantages with shorter computational times are numerous as parameters 

can be optimized faster and results can quickly be compared. Lastly comes the inherent complexity, this 

gives the RF and XGB models the ability to take parameters such as snow class as a direct column feature. 

The CART models also have a way of handling missing data (Chen & Guestrin (2016); Breiman (2001)). This 

is an advantage as data points can still be evaluated without all features being included.  

The RF model was found to be the preferred model in areas where no SWE measurements exist, while the 

XGB model is the preferred option if some are available for validation. The most advantageous method, 

where enough measurements exist, is training an XGB model with the available SWE measurements. It is 

very important to find the correct parameters as all the models investigated were found to be prone to 

overfitting. Parameters producing simpler models are preferred as this leaves less opportunity for the 

model to memorize individual station characteristics.   

The findings from using a station-based block bootstrap approach brought up some concerns regarding 

the use of machine learning algorithms for SWE predictions. It was found that the XGB, RF, and MLP models 

can easily be overfitted, leading to unreliable results when tasked with predicting SWE from sites they 

have not previously seen. When training, the models use the training data in several iterations and will 

inevitably start fitting results to these exact measurements. Therefore, it is important to be aware of the 

goals of the model when selecting parameters. The best approach found to modeling SWE in regions where 

some measurements exist are to train the models with these and excluding outside data. For the XGB 

model this approach resulted in an 𝑅2 score of 0.943, a 1.6% improvement in performance compared with 

using the measurements as validation for foreign training data. What the performance impact of a growing 

dataset has on model performance could be an area for future research. 

Future research could also focus on the use of different bootstrapping schemes. A block bootstrap 

approach could be explored in the temporal dimension as well, as measurements obtained close in time 

from the same site might be very identical and cause overfitting. Assessing and possibly omitting 

measurements that are too similar might prompt a more general understanding of the variable-SWE 

relationship to be found.  
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Appendix 
 

Component Model 

CPU Intel i7 3770k 3.5GHz 

GPU Nvidia GeForce 980 

RAM Kingston DDR3 1600MHz 8gb x2 

Motherboard MSI A520M PRO 

 

Table A1: Computer specifications 


