A modified dividing local Gaussian processes
algorithm for theoretical particle physics
applications

Timo Lohrmann®, Anders Kvellestad?, Riccardo De Bin!

L Department of Mathematics, University of Oslo, Norway
2 Department of Physics, University of Oslo, Norway

E-mail for correspondence: timolo@math.uio.no

Abstract: We explore the use of dividing local Gaussian processes in the con-
text of theoretical particle physics. We adapt an existing algorithm to the specific
problem, trading some speed for a better precision. An intensive sensitivity anal-
ysis is performed.

Keywords: Gaussian processes; dividing local Gaussian processes; theoretical
particle physics.

1 Substantive problem and approach

Physicists have proposed a wide range of new theories that extend the
Standard Model of particle physics with new types of fundamental particles
and new interactions. Such new theories are collectively known as Beyond-
the-Standard-Model (BSM) theories. A BSM global fit refers to a large-scale
parameter estimation study, in which the preferred values or ranges for the
parameters of a BSM theory are determined by simultaneously comparing
the theory’s predictions to the results from all relevant experiments. The
basis for this parameter estimation is a joint likelihood function, which
is a function of the parameters of the BSM theory. The evaluation of the
likelihood, however, involves many time-consuming physics calculations and
simulations, which limit the scope of current BSM global fits. Our goal is to
introduce an algorithm that can provide fast, per-point surrogate models for
these time-consuming physics computations, or for the likelihood function
directly. For simplicity, we will focus on the latter case. Since the set of
relevant experimental results that enter the likelihood function is usually

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18-22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).

222

Lohrmann et al.

updated between every new BSM global fit, a key requirement for the
algorithm is that it is able to train the surrogates on-the-fly during the
execution of the BSM global fit.

L+AL
— 0
/
/
e /
czml?catEd Itake path if
physics | prediction is seanner
calculation good enoughl|
|
\ /
\ /
\
algorithm

FIGURE 1. Conceptual sketch of how the algorithm fits into the computational
framework of a BSM global fit.

Figure 1 provides a sketch of how the algorithm fits into the computa-
tional framework of a BSM global fit. An adaptive sampling algorithm (the
“scanner”) is responsible for sampling parameter points 6 from the BSM
parameter space. Each such point is passed to a code responsible for carry-
ing out the expensive physics calculations that results in a single likelihood
value L(#) for the given point. This likelihood is then passed back to the
scanner, which uses it to determine how to pick the next 6 point. Our algo-
rithm will operate as a middle layer, that can intercept the communication
between the scanner and the true likelihood computation. By learning from
the continuous stream of 6 and L(#) values, the algorithm can gradually
learn the likelihood function in the regions of 6 space explored by the scan-
ner. Once the algorithm has obtained a good enough estimate L(6) for L(6)
in a certain region, it can short-circuit the likelihood calculation for any
future 6 points in this region by passing the fast estimate L directly back to
the scanner. However, for 6 points where the estimate L is still highly uncer-
tain, the algorithm will pass the point on to the true likelihood calculation
and learn from the L(6) value being passed back.

2 Data

We use data from a recent BSM global fit by the GAMBIT Collaboration
(2019). Here the target likelihood is a function of four free BSM input
parameters. To emulate the global fit we pass the data points through our
algorithm one by one, in the order they were sampled by the differential
evolution scanner used in the GAMBIT study. For comparison with earlier

223

Lohrmann et al.

work, discussed below, we also perform tests with the SARCOS dataset
available from www.gaussianprocess.org/gpml/data.

3 Model(s)

We start from the dividing local Gaussian process (DLGP) algorithm of
Lederer et al (2020). The algorithm uses the stream of input data to dynam-
ically divide the input space into sub-spaces and train a Gaussian process
(GP) on each of them. This dynamic splitting can be viewed as a growing
tree structure, where the outermost nodes, called leaves, each contain a
part of the data and a corresponding GP. Many decisions have been made
to implement the algorithm: A leaf splits into two child leaves when a cer-
tain number of input points N is reached. The split is performed along the
input dimension with the largest variance. A smoothing effect is created
by randomly assigning some points to the sibling leaf. The probability of
assigning points decays linearly with the distance from the splitting value.
The predictive distribution of the tree is obtained by computing the prob-
ability of assigning the point x to leaf j, p;(x) = H;’ilpL%J_l(x), with
depth v;, that leads to the predictive distribution

poLap(f(x)[x, X, y) ZP; x)pap, (f(x)|x, D;),

where pgp; is the prediction of the GP of the j-th leaf on the data set D;. X
and y are the data set and the target variable, respectively. The predictive
distribution follows a normal distribution with mean pu, and variance o2,

x) =y 5 (x)p;(x) (1)

and
o2 (x) = Zﬁj (%) (07 (%) + 5 (%)) = (), (2)

where 4;(x) and 07 (x) are the mean and variance of leaf j.

3.1 Extension of previous work

Our work extends this base-line implementation by offering additional op-
tions for the aforementioned decisions, regulating them by hyperparame-
ters. We offer the chance to perform the splitting along the first principal
component. We include a Gaussian “decay shape”. We allow varying the
covariance function from the squared exponential originally used in Lederer
et al (2020) to Matérn kernels. And most importantly, we update the pa-
rameters of the GPs each time a new data point is added. This provides a
slower, but more precise and flexible algorithm than the original approach
of fixing the GP parameters based on the first 100 data points.

224

Lohrmann et al.

4 Results

4.1 Target quantities for model selection

We aim at getting as close as possible to the truth both in terms of the
expected prediction (RMSE) and in terms of variability. For the later, we
compute the mean difference between predicted uncertainty and standard
deviation of the input noise o,

1
Ay = N;U*(Xi)—ae,i- (3)

4.2 DLGP performance

As we can see in Fig. 2, the RMSE steadily decreases with the number of
input points. Moreover, we observe that the covariance function is crucial
to the performance of the algorithm. Over the whole range of input points,
the Matérn kernel with v = % performs equally or better than a Gaussian
kernel while keeping all other parameters the same.

RMSE of DLGP with Gauss kernel (red) vs Matérn kernel (blue)

0.75-
ww 0.50- ToorERE
2]
=
@
0.25-
0.00-
0 10000 20000 30000 40000 50000

Number of input points

FIGURE 2. Example of the performance of our version of the DLGP on the
GAMBIT data. The crosses are the RMSE aggregated over 1000 data points. The
parameters of both DLGPs where identical except for the covariance function. In
the case of the red crosses, a Gaussian kernel was used. Similarly, a Matérn kernel
with v = g was used for the blue crosses. We can clearly see that choosing the
Matérn kernel leads to improved results. The other parameters for the DLGP are

N =100, splitting along the first principal component while using the median as
center. A linear overlap shape with 1% overlap was used.

225

Lohrmann et al.
In Fig. 3, we see that o, converges to o. and remains in its vicinity after-

wards. This shows that the DLGP has learned to estimate the variability
of the training points to an adequate degree.

predicted uncertainty (blue) vs standard deviation of input noise (orange)

0.6

0.4-

sigma

xxxxxx

0.2-

0.0-

0 10000 20000 30000 40000 50000
Number of input points

FIGURE 3. Example of the performance of our version of the DLGP on the
GAMBIT data. The blue crosses are the predicted uncertainty aggregated over
1000 data points. The orange crosses are the aggregated o values. We observe
that 0. converges to o remains in its vicinity afterwards. For this DLGP, the
following parameters where chosen: Matérn kernel with v = %, N = 100, splitting
along first principal component while using the median as center. A linear overlap
shape with 1% overlap was used.

4.3 Sensitivity Analysis

A grid-search is performed to find the best combination of hyperparameters.
We explore 96 different GP tree configurations and perform tests both with
the data from the GAMBIT Collaboration (2019) and the SARCOS data
used in Lederer et al (2020). Due to the computational expense, we use only
the 50000 first data points in these initial tests. For the most promising GP
tree configurations we then carry out tests using the full data sets.

When describing the performance of the tree, we refer to an improvement
if a parameter improves on RMSE and A,. We observe that the choice of
covariance function impacts the performance the most. The Matérn kernel
function with v = % clearly outperforms the other kernels. In agreement
with the SARCOS study, we observe that for the GAMBIT data a larger
maximum number of points per leaf N improves the result. Furthermore,
increasing the overlap between the sibling leaves yields improvements with

226

Lohrmann et al.

regards to the RMSE, in contrast to the SARCOS results of Lederer et al
(2020). However, o, tends to be larger and less consistent for larger over-
laps as A, is significantly larger in this case. The overlapping shape has
a consistently insignificant contribution to the performance. There seems
to be a connection between using the median to define the center of the
splitting dimension and splitting along the first principal component: Using
the median instead of mean decreases the performance if all other param-
eters are equal, and the same is true for splitting along the first principal
component instead of the dimension with maximum variance. However, the
aforementioned combination performs equally well as mean and maximum
variance as splitting criterion.

5 Conclusion

In this paper, an application of dividing local Gaussian processes (Lederer
et al, 2020) is elaborated. In the presented theoretical physics use case, the
focus lies more on high quality than fast predictions. We showed that it is
worth considering improvements to the original algorithm. In particular we
showed that working on the covariance function can have a large impact
on the results. We believe that this online learning algorithm can also be
applied in other fields where fast and continuous updating is relevant, such
as finance or chemistry.

References

GAMBIT Collaboration: Athron, P., Baldzs, C. et al (2019). Combined
collider constraints on meutralinos and charginos. Eur. Phys. J. C
79, 395

Lederer, A., Conejo, A.J.O., Maier, K., et al (2020). Real-time regres-
ston with dividing local Gaussian processes. arXiv preprint,
arXiv:2006.09446.

Carl Edward Rasmussen and Christopher K. I. Williams (2006). Gaus-
sian Processes for Machine Learning. The MIT Press, 2006. ISBN
0-262-18253-X

Olivier Roustant, David Ginsbourger, Yves Deville (2012). DiceKriging,
DiceOptim: Two R Packages for the Analysis of Computer Exper-
iments by Kriging-Based Metamodeling and Optimization. Journal of
Statistical Software, 51(1), 1-55

227

