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Chapter 1

Introduction

1.1 Scientific visualization and simulation

Visualization is a part of our everyday life. It is used in weather forecasts, bar
charts of stock market prices and tour maps of the local mountainside.

It has been formally stated in [17] that “visualization is concerned with explor-
ing data and information in such a way as to gain understanding and insight into
the data”. In this thesis, we restrict such information to be the result of a computer
simulation of some physical phenomenon. Such scientific simulations are run to
enable us to predict or study the original phenomenon, by describing it mathem-
atically and producing results for various parameters. This is done because we
want to predict the outcome of the physical phenomenon, such as with tomorrow’s
weather forecasts. This weather forecast simulation can be based on today’s air
pressure, strength of the wind and other factors, and is simplified so that we can
describe them by a mathematical model. The mathematical model can be imple-
mented in a simulation program that we then can use to run various simulations of
the weather for tomorrow.

The result of the simulations can very often be a vast amount of numerical
values. Since the human mind is not capable of processing many numbers at the
same time, the result in its original form is not very useful.

Imagine that a simulation has been done to study how fast heat spreads across
a metal plate. We then want to view the data and see what is happening as time
passes. Unfortunately, the large list of rapidly changing numbers is not very de-
scriptive to us. We therefore need to introduce an added form of perception to
enable us to see more than the simple mass of numbers. Our eyes are respons-
ible for the major understanding of the world around us, so using this powerful
tool of sensory input, we can have the computer transform the numerical values
into images for us to view. By studying the images, we can more easily extract
information that is relevant.

For the above heat conduction simulation, we introduce different colors for
different temperatures, red for hot and blue for cold. These are colors we relate to
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warm and cold in the real world. Then we place the color values in a coordinate
system to form an image. If we let the image change over time according to the
simulation, we have an animation that represents our phenomenon in a way that we
can understand and study.

The importance of visualization is best stated as in [1]. “Since visualization
directly engages the vision system and human brain, it remains an unequaled tech-
nology for understanding and communicating data”.

1.2 Parallel simulation

All scientific simulations are based on mathematical models, and as these models
grow in size and complexity, it is necessary to use computers to run simulations.
Computers, however, have limitations, such as memory size and processor speed.
This limits the accuracy and the size of the simulation we can run. In recent years
one has started to use parallel computers to run scientific simulations. A parallel
computer is a set of processors that are able to work together cooperatively to solve
a computational problem. This includes clusters of PCs, networks of workstations,
supercomputers and any other architecture that combines more than one processor
in a single task.

Parallel computers are an important tool because they offer us the possibility
to concentrate computational resources, such as processing power and memory, on
a specific problem. For scientific simulation this enables us to solve our physical
problems more efficiently by dividing the computation among the processors. This
makes it possible to compute more accurate or complex solutions.

Another gain is that we are now able to solve problems that were previously too
large. A simulation that is too memory-consuming to compute on one processor
alone, can be decomposed into smaller domains and processed in parallel by a
group of processors

A common approach to parallel simulation is divide-and-conquer, described
in e.g. [19]. It is concerned with decomposing the original solution domain into
subdomains where each subdomain is processed by an individual simulator, called
a subdomain simulator. For the simulation to produce the same result as if were
done on one processor, the subdomain simulators must exchange information dur-
ing processing. Each subdomain simulator creates its own set of data.

1.3 Parallel datasets

In this thesis, we refer to a dataset as a collection of discrete data on the form of
fields and grids. The grid defines the topology of the data, such as the sample points
in a surface. The field defines a function based on a grid such that for each sample
point in the grid, there exists a field value for it. The dataset is the collection of all
the grids and fields that has been produced during a simulation.
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Recalling our example about how heat spreads across a metal plate, the grid
will represent the topology of the plate, and the field will contain the temperatures
for each sample point in the grid.

Parallel simulations are done by decomposing a domain into subdomains. The
individual datasets are the output from the individual subdomain simulators. A
parallel dataset is a collection of individual datasets that are the result of a parallel
simulation. We will use the term parallel dataset or global dataset to address the
union of the individual datasets. We will use the term subdomain dataset to ad-
dress these individual datasets. We use the term single dataset to address datasets
produced by non-parallel simulators.

1.4 Main result of the thesis

The primary result of this thesis is the implementation of a visualization system,
named PVis, that is able to load and display parallel datasets. The visualization
system is composed of a data loader, a user interface and filter modules. The main
feature that separates PVis from other visualization tools is its ability to load a
parallel dataset and treat the individual subdomain datasets collectively as a single
dataset.

The visualization system has been implemented using the Java programming
language[3] and use a Java 3D[8] based package named VisAD[10] for rendering.
Details on these topics are covered in later chapters. The datasets of interest are
from Diffpack[20, 21], a library for solving partial differential equations.

1.5 Organization of the thesis

This thesis is composed of eight chapters. The next chapter covers the software and
packages used as part of the implementation in this thesis, because some know-
ledge about these existing software and packages is helpful for understanding the
content of the forthcoming chapters.

Chapter 3 covers visualization of parallel datasets and describes how they differ
from single datasets. We propose in this chapter three methods for representing
parallel dataset in a visualization system and discuss how these methods will affect
standard visualization techniques.

Chapter 4 covers the implementation of PVis, which is a visualization system
based on a processing pipeline that loads datasets, filters them and displays them.
The execution order of the pipeline and and all its building blocks are covered here.

Chapter 5 covers the graphical user interface of PVis. It describes the imple-
mentation details, such as the classes that have been written and the relationship
between them.

Chapter 6 describes case studies done with the system. The object of the case
studies is to test the performance and usability of the PVis, as well as finding its
limits.
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Chapter 7 discusses the PVis system by analyzing the implementation of the
system and the software it is based on. It will also give explanations to some of the
limitations that were uncovered during the case studies.

Chapter 8 concludes the thesis by summarizing the work that has been done
and points out some issues for future extension.

The products of this thesis are located on the web site

http://www.ifi.uio.no/~gunnarsl/pvis

The web site contains installation guide, source code, compiled code, a screen
shot gallery and a user tutorial.

For all example code and pseudo code we will use a monospaced font and a
syntax that is close to the Java Coding Conventions [12], although trivial keywords
such as private and public often have been omitted. Package names use all lower-
case letters. Class and interface names are simple or complex nouns with the first
letter of each word capitalized. Method names are written with lowercase for the
first word and uppercase for the first letter in any subsequent word, and ending
with parenthesis. Variable names follow the same standard as methods save for the
parenthesis at the end. Functions and subroutines are called methods. Dot (.) is
used to dereference object methods and variables. The following is an example.

package a.b.c;
class Example {

int value;
int getValue();

}



Chapter 2

Background, tools and software

This chapter covers the background material, tools and software used in this thesis.

2.1 The Java programming language

The Java Programming Language started out as a simple programming language
for running small applications in web browsers in 1996. It is based on the concept
of compiling source code to byte code1 that could be run on a Java Virtual Marching
(JVM), described in [5]. A JVM has been implemented for all the major existing
operating systems and platforms, making Java applications platform independent
(compile once, run anywhere). The Java language has continuously evolved and
expanded since the then. It exists today commercially in version 1.3, and is a
widely used programming language.

2.1.1 The Java standard library

The Java language is shipped with an extensive standard library that contains gen-
eral APIs2 assisting the programmer in the most common tasks, such as user in-
terfaces, networking, input/output and database connections. Most applications
written in Java take advantage of these APIs, which mean that a large community
of programmers use the same standardized code.

Most common programming tasks, such as file access, networking and user in-
terfaces, that would normally require low level programming and hardware access
have also been encapsulated in the standard library in a platform independent way.
This has been done so that programmers need not worry about the target platform
of their applications. Should it be needed to access the hardware directly however,
that can also be done, through Java Native Interface covered in 2.1.5.

1Bytecode is targeted at a virtual hardware. Machine code which is the compiled result from a
language such as C++, is targeted at a specific CPU type, such as the Pentium processor.

2Application Programming Interface, a collection of routines targeted at performing one or more
tasks.
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The disadvantages of having an extensive library is that it takes time to learn it
and get familiar with it.

2.1.2 Dynamic class loading

Java uses dynamic class loading, which is the ability to load classes on demand at
runtime. The JVM uses this feature to load the classes needed for a program to
execute. Dynamic class loading is, among other things, used in distributed settings
to pass references of objects between JVMs. If an object being passed as reference
from one JVM to another does not have an implementing class file on the receiving
JVM, its implementation is loaded from the sender and the object will function
equally on both JVMs. In this thesis, class loading has been used to dynamically
load implementations of modules in the PVis system.

2.1.3 Java language reflection

Closely related to dynamic class loading is reflection. Reflection is the ability to
analyse the program at runtime. All Java objects hold a reference to its imple-
menting class. From the class one can extract all declared methods and fields.
Methods can be invoked and fields can be read and written. This technique is for
instance used to call themain method that is the starting point of any standard
Java application. Methods and fields are also objects so once extracted from the
class implementation, they can be passed as arguments to other methods, thus en-
abling passing of methods and references to fields as arguments, a feature that is
not available in the core Java language. Java language reflection is provided in the
java.lang andjava.lang.reflect packages in the standard library.

2.1.4 Object serialization

Reflection can also be used to make exact clones of objects, iterating over every
field in an object and copying them. This particular technique is called object
serialization. It is the process of dumping an entire object structure to an output
stream. The process of loading a serialized object structure into memory is called
deserialization. This can be used to pass objects structures between JVMs or as a
generic storage format.

2.1.5 Java native interface

Java Native Interface (JNI) is Java’s means of communicating with other program-
ming languages. This is done by creating a shared library3 primarily written in C,
C++ or Assembly, but any language that can be compiled to shared libraries can be
used. To access a shared library from Java, one defines a class that loads the shared
library and declares one method for each of the functions that should be available.

3Dynamic Link Libraries (.dll) on Windows and Shared Object (.so) on Unix
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JNI can also be used to access Java from a native language such as C. Technical
details and examples can be found in [6].

2.1.6 Threads

The Java programming language has the ability to spawn a program’s execution
into multiple threads. A thread is a task that executes separately from the rest of an
application, while still having access to the applications memory.

Threads differ from processes, as they would run on a parallel simulator, in
that threads share the same memory while processes may have separate memory.
This means that a multithreaded program can have multiple threads accessing the
same variables, whilst an application running with multiple processes, have separ-
ate variables for each process and have to communicate data through more complex
means, such as piping or message passing.

Threads are implemented in the classjava.lang.Thread . The fact that threads
are a part of the standard library is a strong feature, opposed to many other lan-
guages where threads are supported through extension packages.

2.1.7 References and pointers

Java uses references in stead of pointers. References are different from C style
pointers in that one does not allow access and manipulation the pointers, only the
objects they are referring to. In addition, references can only refer to objects, not
variables. This means that methods can only have one return value, and one cannot
make references to methods. Workarounds are possible, such as returning an array
of values or using reflection, but these methods are not equally efficient.

2.1.8 Memory model

The weakest side of Java is its memory model. Java uses a Garbage Collector
(GC), a background process that locates and removes all objects that are no longer
referenced by the application. This is convenient for the programmer as it leaves
deallocating memory for objects up to the system. The problem however, is that
one cannot through the programming language directly control the GC. The GC
runs separately and has two drawbacks. First, one cannot tune the memory usage of
an application, since memory may pass far beyond an estimated maximum before
the GC runs. Secondly, the GC can decide to run during a critical part for the
application, drastically reducing performance when it matters.

2.1.9 Runtime compilation

The original JVM (version 1.0) compiled byte code into machine code at run-time,
one instruction at a time, which resulted in that java programs executed very slowly.
To achieve better performance a technique called Just In Time (JIT) compilation
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was introduced. JIT compilation is the process of evaluating the byte code at run-
time and compile critical parts of the code to machine code. The JVM will then run
a combination of byte code and native code. Given the fact that most of a program’s
execution time is spent on minimal parts of the code, this has greatly increased the
performance of the JVM. JIT compilation also covers dynamic inlining of methods,
loop unrolling and elimination of bounds checking and null pointer checks. The
details on the JVM and JIT are covered in [5].

2.1.10 Array management

Arrays in java are objects, not only memory blocks, as they are be in C/C++. These
objects have been supplied with a length field, telling the program in runtime its
length. Multi-dimensional arrays are in fact a 1D array containing recursively new
independent arrays that may have different lengths for each row. The impact this
has on memory is discussed further in Section 7.1.1.

2.1.11 Datatypes

The Java programming language has a standard set of primitive datatypes, that all
have a fixed resolution independent of the underlying hardware or platform.

boolean 1 bit
byte 1 byte
char 2 bytes
short 2 bytes
int 4 bytes
long 8 bytes
float 4 bytes
double 8 bytes

All Java classes are derived from the classObject in the java.lang package.
This means that one can always reference any object with anObject reference.

2.1.12 Summary

By itself, the Java Programming Language is considered a low threshold program-
ming language. The basic features are stripped down compared with more complex
languages like C++. This results in that Java is a language that is easy to learn but
takes long time to master, and once mastered, the language is a highly functional
language, which is probably why it has been adopted in many communities world-
wide.

Compared with C/C++, Java is slower and more memory consuming as a result
of its abstraction from hardware, but these downsides are outweighed by the gain
in shorter development time and more stable applications.
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2.2 Java 3D

Java 3D is an object-oriented class library for 3D graphics written in Java. Its
basic function is to define virtual universe composed primarily of visual objects
and lights. Java 3D renders this virtual universe “behind the scenes” by using
existing graphic libraries such as OpenGL[23] and DirectX[24].

Java 3D is built to serve as a building block for java applications and libraries
that require 3D graphics. For that reason, it only contains general functionality for
setting up three-dimensional environment and having the environment displayed.
It does not include specialized functionality such as field representation or filters
needed for scientific visualization.

The Java 3D Specification[9] states the following: “Java 3D allows the pro-
grammer to think about geometric objects rather than about triangles - about the
scene and its components rather than about how to write the rendering code for
efficiently displaying the scene.”

2.2.1 Scene graph

The rendering process in Java 3D is based on a scene graph, which defines a vir-
tual universe. The scene graph is composed of various components, called nodes,
that serve as real world abstractions from low level graphics components. Geomet-
ric primitives such as triangle and quadratic strips, are abstracted as shape nodes
together with attributes that determine how the geometry should be rendered.

The color attribute defines the basic color for the shape. The rasterization mode
determines whether the shape is rendered as a wireframe, as points or as a filled
polygon. The backface culling attribute can be set to avoid rendering primitives
facing away from the viewer. The material properties define the ambient, diffuse,
specular and emissive color used to determine the coloring effect of light sources.

Matrices used to control translation, rotation, scale and skew are abstracted
in transformation nodes that are connected to the scene graph for the nodes they
operate on. Some other node types that exist in the scene graph are lights, camera
and fog.

The scene graph can be either mutable (read and write enabled) or immutable
(only readable once the graph is rendered) at the programmer’s choice. Immutable
scene graphs can be compiled and optimized to achieve better performance.

2.2.2 Example of basic flow

We will now describe how the components of Java 3D fit together. The first thing
is to have input data. It can be on the form of a file, a mathematical function or any
other discrete or sampleable form. From this input data one must create a shape
composed of polygonal geometry, such as triangles or triangle strips. For each
point in the polygon one can also add colors, normals and texture coordinates. We
can then set up appearance for the geometry by using a set of attributes.
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Polygonal geometries can be created in several ways. The standard distribution
of Java 3D contains a utility library that among other things can process a general
set of points into polygons, such as triangles or triangle strips. The programmer can
also implemented his own routines for this that can be optimized based on specific
topologies.

A virtual universe is created and the shape is added to it, together with one
or more light sources to illuminate the object. Then a display is connected to the
virtual universe and the display is added to a user interface. That concludes the
scene graph. If one wishes to interact with the graph one can add behavior nodes
to the graph that respond to mouse and key events to change the appearance of the
graph.

2.2.3 Application to scientific visualization

As stated earlier, Java 3D is a general library that can be applied to different ap-
plications. We will now exemplify how it can be applied to the field of scientific
visualization.

A visualization system based on Java 3D must have some form of internal
representation of data that is convenient for visualization based processing. It must
also contain a module for transforming that data to a format understood by Java
3D.

2D scalar data

2D scalar data, be it iso surfaces, slice planes or plain 2D fields, are trivial to
render in Java 3D. They are mostly represented as mono- or multicolored planes
or surfaces in a three dimensional space. They can be rendered by extracting the
geometry info from the grid representation and the colors from the field values.
Shading effects can be achieved by using the grid and field values to generate
normals.

3D scalar data

3D scalar data can be represented in several ways in Java 3D. The first is to use
the volume rendering technique described e.g. in [25] that creates a series of slice
planes through the data and display them to give the impression of a filled volume.

The other is to take advantage of 3D texturing hardware. Java 3D defines a
3D texture that can be applied to a volume. 3D texturing is not safe to use in a
general visualization system however, since it is not emulated in software and is
rarely supported by hardware. More information about 3D textures can be found
in e.g. [9].
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Vectors

Vector data can also be represented, since Java 3D supports lines as a primitive
type. Each vectors position can be extracted from the grid, and its direction from
the field.

To draw a vector one could the for each sample point in the dataset, create a
line in the direction of the vector, with length and color relative to the field value,
starting at the sample point. Multiple lines could also be combined to create arrows.

2.2.4 Abstraction from hardware

Java 3D by itself includes no code for rendering, only a structure of graphical
data. The rendering is done in a low-level 3D graphics library such as DirectX
or OpenGL. Java 3D is connected to a given low-level API using Java native in-
terface, see Section 2.1.5, that translates its functionality to the graphics library.
Currently, there exists implementations of Java 3D for OpenGL for Linux, Solaris
and Windows, and a DirectX implementation for Windows.

OpenGL is a graphics library, originally from Silicon Graphics. DirectX is a
multimedia package for sound and graphics delivered by Microsoft for the Win-
dows platform. A common feature of OpenGL and DirectX is that most of their
functions use hardware routines directly, or emulate them using software routines
if they are not supported by the underlying hardware. An example is texturing of a
polygon. Most of today’s computers have a video card that supports this function.
When running on these computers OpenGL or DirectX will recognize this, which
means that the CPU is free to do other computations. On a more stripped down
computer, like a laptop, the videocard may only support for 2D graphics, in which
case, the libraries will emulate texturing using software routines.

Since Java 3D relies on these low-level graphic libraries, which use hardware
routines or emulate them when not supported, the same feature will apply to Java
3D. This means that Java 3D will render properly independently of the underlying
hardware, and will use hardware acceleration if the underlying hardware supports
it.

Note that the Java 3D class library is identical for the two implementations,
only the shared libraries are different, meaning that a Java 3D application written
on DirectX on the Windows platform can be run with OpenGL version of Java 3D
on Linux without recompiling.

2.2.5 Performance and quality

The commercial version of Java 3D available today is 1.2. This release offered
great improvement to memory management, with the introduction of referenced
geometry. In earlier releases, the polygonal geometry could not be updated, only
replaced, which would result in massive reallocation of large arrays. This means
use of extra memory and recalling that the GC runs at unpredictable intervals, it
may greatly reduce the performance as well.
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Java 3D has only been available for a few years, and has reduced quality on
some areas. One of these areas is rendering transparent objects. Java 3D lacks
depth sorting for transparent polygons which results in that transparent surfaces
are not rendered properly.

Java 3D is abstracted from hardware and hardware drivers, means that one
cannot, through Java 3D, access hardware directly. The programmer is for that
reason not able to tune the software to perform at maximum for specific hardware.
Nor is it possible to take advantage of special features that may be present on
individual graphics hardware.

2.2.6 Platform dependence

As stated above, Java 3D is based on access to existing graphic libraries. These
graphic libraries are platform dependent and are accessed through native interfaces,
which also makes the implementation of Java 3D platform dependent. This is
a violation of one of the basic philosophies of Java. The Java 3D class library
however, is the same for all platforms, so applications using Java 3D are portable
to any platform that has Java 3D pre-installed.

2.3 VisAD

VisAD [10] is a visualization library written in Java, which uses Java 3D for ren-
dering. It is developed at Space Science and Engineering Center at University of
Wisconsin-Madison. Its basic functionality is to define grids and fields, describing
them with a general mathematical model and rendering them in a display. A strong
feature with VisAD is its compact programming style.

2.3.1 Dataset representation

VisAD supports a variety of data types. Below is given a short introduction to
those data types that are relevant for this thesis. Recalling our definition of data
from Section 1.3, we have that data is on the form of fields and grids. Grids exist
in VisAD as implementations of the classSet . The grids described below are all
derived from the classSampledSet which defines the topology through explicitly
or implicitly defined sample points. Fields exist in VisAD as implementations of
the classField .

The linear set classes

The simplest form of a grid is the linear sets, which are implemented in classes
Linear1DSet , Linear2DSet andLinear3DSet . Linear sets define a uniform or-
dering of points such that all sample points can be implicitly defined by a start
value, a stop value and the number of sample points for each axis. Neighboring
sample points will compose rectangles (2D) and boxes (3D) with angles that are
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all 90 degrees. The linear set classes have the fastest access times and is the most
memory efficient representation of data topology available in VisAD, but is limited
to data that is on a regular form.

The gridded set classes

The gridded set defines an ordered topology where coordinates of all sample points
are explicitly given. Gridded sets are implemented in the classesGridded1DSet ,
Gridded2DSet and Gridded3DSet . A gridded set is composed of sample points
and the number of sample points for each direction are callednx, ny andnz. The
sample points are stored linearly in a point array which isnx · ny · nz long, where
the x coordinate is the most rapidly changing and z is the least rapidly changing
coordinate.

Gridded1DSet can be used to represent the topology of an arbitrary line in 1D,
2D or 3D composed ofnx sample points, where the distance between each sample
point may differ.Gridded2DSet can be used to represent a plane in 2D or a surface
in 3D that is composed ofnx · ny sample points.Gridded3DSet can be used to
represent an 3D structured grid ofnx · ny · nz sample points.

The IrregularSet classes

Irregular sets define the topology for irregular data that is composed of sample
points and elements, where the elements are triangles for 2D and tetrahedra for 3D.
Irregular sets are implemented in the classesIrregular1DSet , Irregular2DSet

andIrregular3DSet .
The set of elements is represented as an object of theDelaunay class. The

Delaunay object is composed of an element array describing which points make
up the elements, an array describing which elements share the same points, an array
describing for each point, which element it is a part of an finally an edge matrix
that describes which elements share edges.

The irregular set implementations are ineffecient due to the irregular topology
of the data as well as memory consuming due to the arrays for element representa-
tion in theDelaunay object.

The UnionSet class

TheUnionSet class defines a union of an array ofSet objects which enables one
field to be mapped across multiple grids. The number of sample points in theField

object will equal the sum of the number of sample points in all theSet objects used
in theUnionSet object.

The FlatField classes

The FlatField class is, according to [11], “a class for finite samplings of func-
tions whose range type and range coordinate systems are simple enough to allow
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efficient representation”. An object of theFlatField class stores an array of dis-
crete function values, each corresponding to the sample point in the underlyingSet

object. Multiple arrays can also be used within one field to represent multidimen-
sional field values such as vectors.

2.3.2 Metadata description of VisAD datatypes

The VisAD datatypes, such as a grid or a field, contains mathematical metadata
called aMathType . There are several subclasses ofMathType , ScalarType rep-
resenting 1D real values,TupleType representing tuple of otherMathTypes and
FunctionType representing a function mapping one type to another type. For in-
stance, a field of temperatures over a 2D grid can be described as the following
hierarchy of types:

FunctionType
|
+--domain: TupleType
| |
| +--ScalarType, X coordinate
| |
| +--ScalarType, Y coordinate
|
+--range: ScalarType, Temperature

The temperature field can be written on a more formal form:(x, y) 7→ temp.
When creating the grid that forms the topology for the field, it is described by the
domain, a tuple ofx andy coordinates. It is of course required that the tuple and
the grid have same dimensions. The first type in the tuple represents the first di-
mension, the second type the second dimension etc. The field values are described
by range, which is the scalar type temperature. The field is described by the func-
tion of domain and range. The field will then contain a description of its data, in
addition to the numerical values.

2.3.3 Type based display

When a field is passed to the display module, the fieldsMathType is used to define
how it is rendered. The Display has its own set ofMathType definitions such as
XAxis , YAxis , ZAxis , RGB, Alpha andIsoContour . The programmer creates con-
nections, called maps, from the fieldsMathType to the display types. For the tem-
perature field example above we would create the following maps:

X coordinate → XAxis

Y coordinate → YAxis

Temperature → RGB

These maps would result in that thex coordinate of a point is used to displace
the point along thex axis and that they coordinate of a point is used to displace
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point along they axis, thus all points would be located in theXY plane. The plane
will be colored according the the temperature values. We could add some addi-
tional maps:

Temperature → ZAxis

Temperature → IsoContour

This would cause the temperature values to elevate the sample points along the
Z axis and would render contour lines instead a surface. It is also possible to define
constant maps, for instance thatAlpha equal to0.1 resulting in a semi transparent
surface. This is contrary to a scalar map which would result in the field being close
to transparent for low temperature values and close to opaque for high temperature
values.

OneMathType can be mapped to several display types, but one display type
cannot have more than oneMathType mapped to it. This means that two fields
must share range and domain types if they are going to be viewed with the same
filtering.

Some of the display types have widgets4, that can be used to configure how the
display type renders the data that is mapped to it.RGBfor instance, has a simple
color table editor.IsoContour has a widget for adjusting the threshold value.

It is not possible to change maps in the VisAD display if there is data in it.
this means that if one wishes to change the way something is rendered through the
replacement of a map, the data in the display must be removed first and added back
after the map has been changed, which means regeneration of geometric primitives.

A result of MathType based data and display is that one can with basic math-
ematical knowledge, easily define mappings that generate useful output, and in this
concept lies VisAD’s strength. It also means that building a generic and flexible
system based on VisAD is difficult since all the functionality is located in the dis-
play module, and not as independent modules that can be interconnected as the
programmer sees fit.

2.3.4 Animation in VisAD

Animation in VisAD is not done in the traditional way, where one iterates through
a loop that loads data and displays it for each step. It is done by reading all time
steps of the data and placing them in a 1D field, which then forms a line of time
steps, where the field value at each sample point is the field representing the time
step.

The MathType of the new field will be on the formt 7→ ((x, y) 7→ temp),
which indicates that it is a field mapping time to fields. In the display module, a
map mapping theMathType time in the time field is to the display typeAnimation .
This map will enable animation and display a standard time string as can be seen

4A simple graphical user interface component
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in e.g. Figure 3.2.
Since all the data is present in the display modules when animation starts, an-

imation is fast and smooth. This approach to animation however, consumes vast
amount of memory since all steps must be present in memory at the same time. For
large datasets with many time steps, one will run out of memory and animation will
not be possible. For such cases, animation must be split into several parts where
each part has fewer time steps.

2.3.5 Rendering techniques

The rendering techniques in VisAD are partially based on display types as dis-
cussed above and partially on the implementation of the set that defines the to-
pology of the data. For 1D and 2D sets one can define display type mappings to
render a surface or contours and one can map the field values to colors.

For 3D data, the rendering technique depends on what set type is used. For
Gridded3DSet and Irregular3DSet the data is rendered as points. If the data is
based on aLinear3DSet however, one can set a parameter in the display module
that generates slice planes through the data that are used for volume rendering. The
technique is described in detail in [25]. Contouring is available for all set types in
3D, the same as in 2D.

It is also possible to configure some Java 3D rendering attributes from VisAD,
such as the fill mode attribute that controls if polygons are rendered as points, lines
or as filled polygons. This attribute can be used to view data as wireframe models.

The display module in VisAD does not support rendering of vectors or tensors.
If an application wishes to visualize vector data, each individual vector has to be
represented as a new set and field pair, containing the start and end point for that
vector. Creating vector visualization for a64 · 64 · 64 regular set would thus result
in the creation of 262144 set and field objects, even before the rendering process
starts. These facts result in that vector visualization is not practically possible in
VisAD.

2.3.6 Summary

Despite these disadvantages and their consequence for the implementation of this
thesis, VisAD was chosen since it was the only existing visualization library for
Java that used hardware acceleration when this thesis was begun.

2.4 Diffpack

Diffpack is a numerical library written in C++ mainly concerned with solving par-
tial differential equations. Diffpack provides a set of generic C++ class hierarchies
for use in applications that solve problems arising in the fields of scientific comput-
ing. By making extensive use of well-tested libraries and high-level abstractions,
the time spent on writing and debugging code is moderate. Diffpack provides a
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file format, called simres, that is used to store the result of simulations done in
Diffpack.

2.4.1 Diffpack’s simres format

A simres database is composed of five different files. The first file is the informa-
tion file, named.xxx.simres . Each line in the.simres file contains the field, grid,
time step, number of points, etc. The fields are located in a file named.xxx.field

and the grids in a file named.xxx.grid . To aid in searching into the grid and field
files an offset file is supplied for each of them describing where in the file a given
field or grid starts. These files are named.xxx.field_ix and.xxx.grid_ix .

The content of the field and grid files can be in both ASCII and binary format.
One file can contain some ASCII components and some binary. Which represent-
ation is used for a given component can be determined by indicators in the file.

2.4.2 Parallel simulation in Diffpack

Parallel simulation in Diffpack is achieved using a strategy of divide-and-conquer
where the total domain is decomposed into multiple subdomains where each subdo-
main is computed in its own process and interaction between processes are handled
through an abstracted Diffpack communication layer.

The simres files from parallel datasets follow a naming convention where a_p

and four digits are appended to the name of each database. The number represents
the domain number within the parallel simulation, starting on 0. To give an ex-
ample, the fourth domain of a parallel simulation namedwave would have its data
information summarized in the file.wave_p0003.simres .

2.4.3 Visualization of datasets produced by Diffpack

Diffpack is written to aid the programmer in writing simulators that solve problems
that arise in scientific computing. The output of these simulators are given in the
simres format described above. Diffpack does not contain classes targeted at direct
visualization, but provides a set of filter classes that are used to convert Diffpack’s
simres format into external file formats that can be read by other visualization tools.

Filter classes, can be used separately to convert Diffpack datasets from a simres
database into an external file format, or they can be used in a simulator to produce
the results in the external file format directly. Each external file format is represen-
ted as an individual class.

As for visualization of parallel datasets, Diffpack provides the means for con-
verting each individual subdomain dataset into a format that can be read by other
visualization tools. When these datasets are imported to other visualization tools
they are interpreted as separate datasets, not as subdomains datasets in a parallel
dataset. This separation will lead to several problems as will be discussed in further
in Chapter 3.



Chapter 3

Visualization of parallel datasets

This chapter discusses how working with parallel datasets in a visualization sys-
tem differs from working with a single dataset. We will describe several possible
representations that can be used for parallel datasets in a visualization system and
how these representations affect the way the visualization system works.

3.1 Overview of parallel datasets

As stated in Section 1.3, a parallel dataset is a collection of all the subdomain
datasets that are produced during a parallel simulation. We will now discuss how
parallel datasets differs from single datasets.

3.1.1 Large amount of data

The first thing to recognize is that a parallel dataset can be very large. This comes
from the fact that parallel simulation is often used to solve large problems. A
solution domain that is to large too be processed on a single computer is decom-
posed into several smaller subdomains that each can be processed on individual
computers. When we want to visualize such a parallel dataset the problem of size
arises again, since all the subdomain datasets are present at once in the visualiza-
tion computer. To work around this problem there are several approaches.

One can resample the parallel dataset into a dataset that has fewer sample
points, which would result in a dataset that fit into memory and could be pro-
cessed. The new dataset however will both have less resolution and may contain
faulty approximations compared with the original parallel dataset.

Another way to manage the large amount of data is to view only some of the
subdomain datasets at once. The actual number of subdomain datasets that can
be viewed is determined by their size and the amount of processing power and
memory that is present on the visualization computer.

A third way of managing the large amount of data is to take advantage of the
parallelism already present. Visualization could, just as the simulation, be run in
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parallel, such that each subdomain dataset was processed by a separate processor

3.1.2 Overlapping boundaries

A common feature for the parallel datasets, whether they are obtained through a
divide-and-conquer method or another means, is that each subdomain dataset has
overlapping boundaries with its neighboring subdomain dataset. The subdomain
dataset boundaries overlap in most cases such that for each point that is on the
outer boundary for one subdomain dataset that point is part of the inner boundary
of its neighbor subdomain dataset. An illustration of overlapping boundaries is
shown in Figure 3.1.

Domain A Domain B

Figure 3.1: The illustration shows how two neighboring subdomain datasets, A and
B, can have overlapping boundaries and different element composition.

Although the points in the overlapping boundaries are the same, the cells cre-
ated from the points may differ, as seen in Figure 3.1. This is the result of that the
cell topology may have been created after the global domain has been divided into
subdomains.

3.1.3 Multiple data sources

A simulation that has been done in parallel will produce a parallel dataset. The
individual subdomain datasets of the parallel dataset can be stored in different files,
or even different file systems, depending on the design of the parallel simulator.
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3.2 Representation of parallel datasets

This section covers methods that can be used to represent parallel datasets in visu-
alization systems. Only the first, collection of subdomain dataset described in Sec-
tion 3.2.1, have been used in the implementation. The others have been included
for comparison.

3.2.1 Collection of subdomain datasets

One approach to modeling a parallel dataset in a visualization system is to keep
the subdomain datasets separated. Subdomain datasets are loaded and filtered indi-
vidually, then added to the same display to be viewed collectively. Maintaining the
parallel datasets would in this case be simple and it is possible to study subdomain
datasets individually as well as collectively.

What reduces the quality of this approach is that algorithms will in most cases
have to be extended to take into account that there is multiple subdomain datasets
as input instead of a single dataset. The changes that must be made for the various
visualization techniques are specified below.

Surface rendering

Surface rendering is a visualization technique where one renders the surface of a
field. The geometry of the surface can be a 2D grid such as plane or a height map
or an iso surface extracted from a 3D volume. Field values are often associated
with color values to increase the visual representation. The rendering is done by
mapping the grid topology into graphic primitives. Example of surface rendering
is given in Figure 3.2

Figure 3.2: Visualization of a surface composed of 6 subdomains

Transforming 2D topologies into graphic primitives is a simple process and is
described in detail in [1]. On the boundaries where subdomains overlap, the poly-
gons will also overlap, resulting in more polygons that have to be drawn. Overlap-
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ping polygons have grid points and field values originating from the same global
dataset, so the points and values that the polygons are composed of will be the
same. If the cells are equal and only field values are used to determine the color of
the polygons, there will be no visual difference.

This however, is rarely the case, since light is often used to give an increased
sense of depth. The amount of luminance at each point is determined by the normal
vector for each point1. The normal vector for each point is resolved by calculating
an average of all the normal vectors of the polygons that the point is a part of.
As can be seen by Figure 3.3, this introduces an error on the boundary where
the polygons from the intersecting subdomain should also have been used when
calculating the average.

A B A and B

Figure 3.3: Illustrates normal vectors on overlapping boundaries

To remedy this, one would have to join the grids before rendering, as described
in Section 3.2.2 or to change the rendering code to take the overlapping domains
into account.

Contouring

Contouring is, according to [1], “a scalar visualization technique that creates lines
(in 2D) or surfaces (in 3D) representing a constant scalar value across a scalar
field. Contour lines are called isovalue lines or isolines. Contour surfaces are
called isovalue surfaces or isosurfaces.”.

There are two algorithms for generating contours,marching cubesanddividing
cubes. There exist variations depending on the underlying element type and dimen-
sion such asmarching squares, marching tetrahedronanddividing squares. The
marching algorithms are based on creating a set of lines or triangles through the
cells that contain the threshold value as illustrated in Figure 3.4. The other variant
Dividing cubesis based on subdividing the cells into points where the isosurface
crosses through. Dividing cubes is not implemented in VisAD and has for that
reason not been discussed further.

The marching algorithms work per cell and since each subdomain dataset is
composed of its own set of cells the marching algorithm will produce correct
isolines or isosurfaces for each individual subdomain dataset.

1Actually, luminance is composed of three components, ambient, diffuse and specular light,
where only the diffuse and specular lighting are affected by the normal vector.
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On the boundaries of these datasets there will be overlapping isosurfaces as
a result of overlapping boundaries. Iso surfaces will suffer the same side effects
as other surfaces such as discussed in Section 3.2.1, but isosurfaces are generally
smooth and the side effects of incorrect lighting will thus not be visible in most
cases.

For marching squares and marching cubes there are certain combination of
values that give rise to multiple solutions e.g. the combination of values illustrated
in Figure 3.5. When processing, the algorithm will select one of the two solu-
tions (which one is selected depends on the implementation) to be a part of the
isosurface. If this happens on the border between two subdomain datasets, one
can imagine that different solution may be selected for the two subdomain datasets
and the result is that both solutions are present in the isosurface and the isosurface
will have intersections that would not exist in an isosurface created from a single
dataset.

Slice planes

Slice planes are a scalar visualization technique where one extracts the field values
of a volume along a plane and displays the values in the plane.

Figure 3.4: Illustration of marching squares. The black points are over the
threshold value and the white points are below the threshold value.

a) b)

Figure 3.5: Two correct solutions to the combination of points and values for
marching squares
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When applying this technique to parallel datasets, one will define the function
for slice plane and apply the technique to each subdomain dataset. The result will
be one slice plane for each of the subdomain datasets. The subdomain dataset
slices will have overlapping bounds, and suffer from the same results as surface
rendering described in Section 3.2.1. It is worth noting however, that slice planes
are often described by the functionax + by + cz + d = 0 which describes a flat
plane such that normal vectors for all points will be equal resulting in that the side
effects of lighting described above will not occur.

Hedgehogs

Hedgehogs is a vector visualization technique where one for each sample point
draws a line or an arrow that points in the direction of the vector and has a length
relative to the absolute size of the vector value.

As for the scalar techniques discussed above, this method will draw overlap-
ping arrows on the boundaries between subdomain datasets that overlap. The
sample points and their corresponding field values however, are equal so the over-
lapping arrows will be identical. This means that although more arrows are drawn
on the overlapping boundaries, the visual quality is not reduced.

Stream lines, streak lines and particle traces

There exists several vector visualization techniques that describe flow in a vector
field. From [1], we have the following.

• Particle tracesare trajectories traced by fluid particles over time.

• Streaklinesare the set of particles traces at a particular timeti that have
previously passed through a specific pointxi.

• Streamlinesare integral curves along a curves satisfying the equations =∫
t
~V ds, with s = (x, t̄) for a particular timēt, and~V describes the vector

field.

These vector visualization techniques use the means of numerical integration,
which implies the use of at least two sample points and their corresponding field
values for each computation. This gives rise to a problem when applied to a parallel
dataset. Using Euler’s method which the simples form of numerical integration we
have,

~xi+1 = ~xi + ~Vi∆t

To solve this equation by iterating through a dataset untill it reaches the bound-
ary is simple. Ifxi andxi+1 are located in different subdomain datasets however,
the curve should not stop, but continue into the second subdomain dataset. The
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result of this is that when the iteration leads the algorithm out of one subdomain
dataset, it must search through all other subdomain datasets and located which one
it enters if any and continue the iteration in that subdomain dataset.

3.2.2 Preprocess subdomain datasets into one global dataset

Another approach to modeling the subdomain datasets is to preprocess all of them
into one global dataset. The process would in general create a new dataset and
put the sample points and field values from each subdomain dataset into the new
dataset, thus creating a joined dataset.

For the preprocess to work properly we must define how to deal with certain
non-trivial issues, such as potentially overlapping points and cells. Overlapping
grid points will have the same field value, since they originated from the same
global domain. To solve the issue one must avoid adding duplicate grid points, and
cells with their corresponding field values to the total domain.

It is trivial to avoid adding duplicate grid points into the global datasets by
searching through the global dataset and not add points already present, although
such a method may be inefficient. Avoiding duplicate cells is less simple. This
is because the points that make up a cell in a subdomain dataset can have been
discarded due to duplicity in the global dataset. Also, it is not given that cells in
an overlapping boundary are composed of the same combination of points in two
subdomain datasets, as was shown in Figure 3.1.

If it is known that the subdomain datasets are on a structured form such as
the LinearSet andGriddedSet described in Section 2.3.1 the cells can easily be
regenerated for the overlapping boundaries since the points and the structure of
the points are known. For unstructured subdomain datasets one has to use more
sophisticated techniques. One could recreate all cell data based on the points in the
global dataset, which would be a memory and time consuming process. Another
way is to isolate all points that are overlapping and regenerate cells for these points.

The preprocess can be done at runtime or before the visualization starts. Join-
ing at runtime would consume extra resources since data has to be copied from the
subdomain datasets into the global dataset, and possible merge conflicts have to be
resolved. Joining the subdomains before visualization starts however, will prohibit
the possibility of working with them independently.

The joined dataset will be a single dataset, allowing the use of conventional
visualization techniques without any modifications.

3.2.3 Virtual global domain

The two approaches discussed above have certain advantages and certain draw-
backs. It would be most preferable if we could take advantage of the existing visu-
alization techniques without the loss of detail or the overhead of preprocessing.

This can be done, but the implementation must match a few requirements. The
first is that datasets are represented completely through an abstract definition. The
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second is that all visualization techniques are implemented based only on this ab-
stract definition and not of the specific dataset implementation such as regular and
irregular grids. These requirements are covered below.

• Access to sample points. All sample points in the grid can be accessed inde-
pendently and as a list or by iteration2. Grids that define an explicit sample
point array must allow access to it, while grids that define sample points
implicitly, such as regular grids, must have functionality to generate sample
point information.

• Access to cells. In the same manner as sample points, cells must be access-
ible both independently and as a list or by iteration. Cells are the polygons
that form a basis for the grid. Squares, rectangles, triangles, tetrahedra and
cubes are some cell types. These cells are often represented as an index
into the point array for each corner. Cells can be represented explicitly or
implicitly depending on the structure of the grid.

• Approximation of points. For any point within the bounds of the grid, one
should be able to locate the nearest sample point defined in the grid, as well
as the cell that surrounds the point.

• Sample point extremities. It must be possible to query the grid for its ex-
tremities and to check if a given point is inside or outside the bounds of the
grid.

• Access to field values. One must be able to access the field values for all
sample points both independently and as a list or by iteration, in the same
way as points and cells.

• Field value extremities. One must be able to extract the upper and lower
bounds for field values.

• Approximation of values. For all points within the bounds of the grid, there
must be functionality present for extracting the value at that point by approx-
imating the value using the values in the surrounding cell and by using the
value in the nearest grid point.

It is trivial to see that these abstract definitions form the basis for a single
dataset. Another use for the abstract definition is acontainer dataset, that contains
a collection of subdomain dataset. Such a container dataset would support the
abstract definition by relying on the abstract definition of the subdomain datasets
that it contains.

The simplest implementation is made possible by implementing aGrid class
that is responsible for maintaining all the topology-related information and aField

class that is responsible for maintaining all value related information. AContainer

2Iteration means that on can get all sample points one by one
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Grid that maintains an array ofGrid objects internally could be implemented to
support the topology for subdomain grids. A similarContainerField could be
implemented to support the values for subdomain fields.

Container datasets can in this way be used to write implementations that pack
multiple subdomain datasets in such a way that it shares the same interface as
a single dataset. Given that the visualization algorithms operate on this interface
only, the visualization techniques will work for parallel datasets and single datasets
alike.

Note however, that the performance of each routine in the abstract definition
may vary greatly depending on what type of grids the subdomains are. Some visu-
alization techniques may perform slower as a result of that. Another issue that
may reduce performance is that one cannot optimize the algorithms used in the
visualization techniques based on specific implementations.

An example could be to generate a slice plane through a collection of parallel
datasets. A slice plane is generated by defining a series of sampling points in a
plane and extracting the field values for each sampling point. This can be achieved
through approximation of values described above. The container field would for
each sample point locate which subdomain contained it and extract the value from
it. Overlapping boundaries would not affect the result since the both sides would
contain the same value and either would do.

One can clearly see that searching through multiple datasets in order to find
the correct one can slowdown the algorithm as well. Things that can be done to
avoid this is to search through the collection of subdomains more intelligently. One
improvement that can be done is to remember the subdomain that was last accessed
and assume that it is likely that it will be accessed next. Another improvement is to
build a list of neighbor info for the subdomains so that when searching in the last
subdomain failed, one can try its neighbors, then finally the rest.



Chapter 4

Implementation of the PVis
visualization system

This chapter covers the PVis visualization system, that has been written as a part
of this thesis.

4.1 Overview

We start by giving an overview of the system and its requirements, then explain the
details of the implementation. PVis has been written in Java and uses VisAD and
Java 3D for visualization and rendering.

4.1.1 Design Requirements

The main functionality of PVis is to load a set of subdomain dataset, do some
filtering and view them collectively as a single dataset. An assumption of PVis
is that all the subdomain data in a parallel dataset are stored in Diffpack’s simres
format.

There should be more to a visualization system than only loading and dis-
playing data. It should be able to use filtering modules on that data so that the
information can be extracted and viewed in multiple ways. The user should be
able to dynamically define the flow of data through filter modules. This is called
pipeline based visualization and has been successfully adopted by products such
as Iris Explorer[13] and The Visualization Toolkit (VTK)[1]. In the same way as
Iris Explorer, we will through the graphical user interface let the user define which
filter modules constitute the pipeline and how data flows through the filter modules.

PVis should, despite the extra complexity of parallel datasets, support the com-
mon filtering mechanisms available in conventional visualization software, as dis-
cussed in Chapter 3. This means it should for instance, be able to create iso surfaces
and slice planes that span multiple subdomains.
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Writing filter modules can be a time-consuming task, so supporting all possible
modules is beyond the scope of this thesis. The system should however have a
design that makes it easy to implement and incorporate new modules, so that users
can extend the system with their own code.

4.1.2 Pipeline based visualization

A visualization pipeline describes a set of modules, and how data flow through
these modules. This is similar to a directed acyclic graph [2], composed of nodes
and edges. Modules define the nodes, which are capable of receiving input, pro-
cessing it and passing the result to other modules. The flow of data between the
modules is represented as edges. Each edge holds a module that passes down the
data and a module that receives the data. Details on the PVis graph are covered in
Section 4.2. The graph holds all the nodes and edges, and determines the correct
order of invoking modules. The details of the PVis pipeline execution are covered
in Section 4.3.

An example of a visualization pipeline is given in Figure 4.1. It contains three
modules. A loader for importing datasets into the system, an boundary extraction
module and a display. The output of the loader is connected to the boundary ex-
traction module, whose output is connected to the display module. The display
will with this pipeline, render the exterior of the data loaded.

Loader→ BoundaryExtractor→ Display

Figure 4.1: Example of a pipeline

4.1.3 The PVis modules

Several modules have been written for PVis. The PVis modules are listed in Table
4.1. The table contains a short description of what each module does.

4.1.4 Representation of data

In order to process multiple datasets together we must find a means for passing
sets of data through the modules, not only one at a time as is done in conventional
software. Also, VisAD animation requires all time steps together, all time steps
in each of the subdomain datasets have to be passed between the modules. This
has been solved by passing a 2D array organized as [Isd][Its], whereIsd is the
subdomain dataset index andIts is the time step index.

Since VisAD is being used for the implementation, it is natural to use VisAD’s
grid and field classes to represent the data in the PVis system as well. This reduces
the development time and the amount of bugs. In addition it saves the system from
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Module name Description

SimresSource Loads a single datasets.
MultiSimresSource Loads a parallel datasets.
PVisDisplay Displays and filters data.
BoundaryExtractor Extracts the boundary of a dataset.
Resampler Resamples datasets to a uniform grid.
MyResampler Resample irregular datasets to a uniform grid.
Combiner Merges multiple datasets to one dataset.
Slicer Creates slice planes through volumes.
Serializer Writes and loads serialized objects.

Table 4.1: The PVis modules

having to transform large amount of data from one format to another at run time, a
process that could prove to be both time and memory consuming.

4.2 Class design of the PVis pipeline

This section covers the details of how the PVis pipeline is implemented, and how it
executes during processing. Note that this implementation uses terminology from
graph theory, so pipeline is called graph, modules are called nodes and flow of data
between modules are called edges.

4.2.1 The Node class

Each module is represented in the system as a subclass ofNode. Nodes have in-
going edges and outgoing edges that specify which other nodes are connected to
it. A module’s functionality is defined in itsprocess() method. The method
dispose() is used to release memory from a node once its processing is over. The
methodgetGetMethods() returns the name of all the methods used to extract pro-
cessed data from this object. The methodgetSetMethods() returns the name of
all the methods used to set input data to this node. This is specified in more detail
below. A pseudo implementation ofNode is given here:

package pvis.graph;
class Node {

Edge in[];
Edge out[];

boolean isProcessed();
boolean isPreProcessed();
boolean isPostProcessed();
void process();
void processNode();
void dispose();
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String[] getGetMethods();
String[] getSetMethods();

}

4.2.2 The Edge class

Connection between the modules in the PVis pipeline are described through the
Edge objects. An edge refers to the node to start in, and a method used for extract-
ing result from that node. In addition, the edge refers to the end node and method
to call, used to put the result extracted from the start node. A pseudo implementa-
tion of theEdge class is given here, and the details of the calling is covered later in
this section.

package pvis.graph;
class Edge {

Node start;
String getMethod;

Node end;
String setMethod;

}

4.2.3 The Graph class

The method for representing a graph that is used in the implementation of the PVis
graph, is based on adjacency lists which is described in detail in e.g. [2]. The
adjacency list representation of the graph is based on holding a list for each node,
that contains that edges leading to and from that node.

The implementation used in PVis is an extension of the adjacency list repres-
entation, where each node holds a list of ingoing and outgoing edges. TheGraph

object holds a reference to all the nodes and all the edges in the graph. The only
method of relevance here isprocessGraph() , which performs the graph execution,
covered in Section 4.3

package pvis.graph;
class Graph {

Map nodes;
Map edges;

void processGraph();
}

The typeMap is a container for java objects. It is located in thejava.util

package in the standard library. It is an interface that is defined to map key objects
to value objects for fast access. PVis uses theHashMap implementation, which
stores objects in an array based on a hash function, described in e.g. [2], resulting
in O(1) access times. Maps have been used in PVis to achieve fast and convenient
lookup of objects.
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4.3 PVis pipeline execution

This section describes in detail how the PVis pipeline executes. We start by discuss-
ing the method for determining the order in which nodes are processed, followed
by the details of the calling mechanism, before finally showing an example.

4.3.1 Execution order

The modules in the pipeline are processed in an order corresponding to topological
sort [2]. Topological sort is an ordering for directed acyclic graphs, that defines
that one node can be processed only if all nodes prior to it are completed, or more
precisely, all edges leading to this node, have starting nodes that are processed.
Figure 4.2 shows an illustration of topological sort where four modules process in
four passes. Pseudo code is given below:

for node in nodes
if node.inedges is empty

canProcess.add( node )
while canProcess not empty

node.processNode()
for outedges in node

if edge.end.isPreProcessed()
canProcess.add( end )

A B

C

D

1 2 3 4

Figure 4.2: Illustration of topological sort, where four modules are processed in
four passes.

As seen in the pseudo code, the graph is responsible for telling the nodes that
they can process, but it does not callprocess() directly. This is done because,
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before a node can process, it must fetch input data from its predecessors in the
graph. HowprocessNode() works is shown here:

for edge in inedges
<sample input>
if edge.start.isPostProcessed()

edge.start.dispose()
process()
if no outedges

dispose()

Nodes can exist in several states through the processing of the pipeline. These
states are revealed by theisXXXProcessed() methods in theNode class, and are
used to determine the order of events during pipeline processing. The first possible
state a node can acquire ispreprocessed, which means that all edges that end at
this node, have starting nodes that are processed. This state is used to determine if
processing can start for a node or not. Once a node has completed processing, it
has state:processed. The last state a node can have ispostprocessed, which means
that all nodes that have ingoing edges starting at this node have are processed. This
state is used to determine when node internal data can be disposed to save memory.

As stated in the beginning of this section, the graph that defines the pipeline
must be acyclic. This is because a pipeline defines a one-way flow which in general
starts at a source (a data loader), and ends up in a consumer (usually a renderer).
Should the graph contain cycles, the nodes making up the cycle will always have a
node prior to themselves that are not processed. These nodes will never beprepro-
cessed, and will for that reason never be processed. Algorithms exist for detecting
cycles in graphs [2], but that has been omitted in the implementation.

4.3.2 Calling mechanism

Edges in the graph, are composed of a start point, which consists of an object and
a method, and a similar end point. Dynamically referencing methods, however is
not trivial in Java, since it does not have the ability to pass references to methods
as arguments, as discussed in Section 2.1.7

What can be done however, is to use Java language reflection, see Section 2.1.3
to inspect theNode in question. Reflection, can be used to search for methods that
have a specific name and set of calling arguments. Methods are represented as an
object of the classMethod

package java.lang.reflect;
class Method {

void invoke( Object instance, Object args[] );
}

Once theMethod object has been acquired, it can be invoked.. Pseudo code for
the procedure looks like this:
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args = null
getMethod = nodeA.getMethod( getName, args )
result = getMethod.invoke( nodeA, args )

args = [result]
setMethod = nodeB.getMethod( setName, args )
setMethod.invoke( nodeB, args )

Output methods have been defined to have no arguments. Input methods have
been defined to have one argument, the outcome of the get method that executed
before it.

4.3.3 Example execution

To summarize the pipeline execution, we will give an example. Suppose nodeA
is a module for loading fields, which are extracted through its method,getF ield.
NodeB is a module for viewing fields. Fields are added to the display through a
methodaddField. To allow the output ofA to be the input ofB, an edgeEAB
is created that has starting point at(A, getF ield) and ends at(B, addField), see
Figure 4.3.

A.getField→ B.addField

Figure 4.3: Pipeline used in the example execution

When the graph processes, it starts by locating the nodes that can be processed.
In this case,A, becauseA does not have any incoming edges. In the next pass,
B can be processed as its predecessorA has completed.B will use the edgeAB
to extract the field fromA, usinggetF ield, and set the field to its own method
addField. ThenB can process, which means converting the field to geometric
primitives and make them viewable to the user.B notifiesA that it is done using
A’s data, andA reaches the postprocessed state, meaning that it can dispose itself,
thus releasing the memory it has allocated.

4.4 The PVis Modules

For a module to be represented in the user interface, it must be a subclass ofNode.
In order to be of any use it must supply at least one input or output method.

Each module, must implement the abstract methodprocess() which is called
during pipeline processing, as specified in Section 4.3 Also, modules should im-
plement the methoddispose() to aid in memory recycling during processing.

The modules can also serve as an interface to a more complex structure such
as the SimresSource loader, described in Section 4.4.1.

Any module that can be configured by the user must implement an ui compon-
ent to interact with it. This ui component will be recognized by the ui and enable
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the user to modify the settings for the module. Details on this is covered in Section
5.5

A module can be either a single class that does all the processing in itsprocess()

method, which is the case for theResampler module in Section 4.4.3, or it can
serve as an interface to a more complex hierarchy of classes such as theMultiSimres

Source in Section 4.4.1, which uses theprocess() method to call a set of classes
used to load datasets.

4.4.1 The SimresSource and MultiSimresSource modules

The implementation of the simres reader reflects the structure of the simres data-
base on file. The simres file format is covered in Section 2.4.1. The base class is
SimresDB located in thepvis.diffpack package, which servers as an interface to
the simres reader. It is supplied a directory and name and uses that information
to read the.name.simres file. This file is read usingFieldLineReader , and pro-
duces an object of the classFieldLine for each line in it. The offset files are read
in a class calledIXReader . TheSimresDB holds and instance of aFieldReader

and aGridReader which are used to read grids and fields from the.name.field

and.name.grid files upon request.
Grids exist in Diffpack as lattice grids which are rectangular, homogenous

grids, and finite element grids composed of cells which can be of varying type.
These are represented in the simres reader asGridLattice and GridFE , which
both are subclasses ofGrid . The grid classes have been structured in a represent-
ation close to those used in VisAD, meaning that point and element arrays are on
the same form. This has been done to avoid an extra level of transformation which
would be both time and memory consuming.

VisAD elements are composed of triangles and tetrahedra. The reader is there-
fore responsible for converting the elements on file to these element types while the
file is being read. Squares are converted into two triangles and cubes are converted
into six tetrahedra.

The grid and field files can be in ASCII format, binary format or both. Un-
fortunately, there is no class in the Java Standard Library that can read numerical
values from an ASCII input stream1. Nor is there support for generally reading
binary numbers. The standard library supplies a set ofDataInput andDataOutput

classes, but this class uses big-endian2 form, which is Java’s internal representa-
tion of binary values. The binary data produced by Diffpack however, can be both
big-endian and little-endian3 based on the platform it is running on.

As a result if this, a specialized reader,DPInputStream has been written that

1Although the functionality is present in other classes such as: java.lang.Integer,
java.lang.Double, etc

2The bytes in a word (4 bytes) are stored with the most significant byte in the lowest address, the
word is stored big-end-first.

3The bytes in a word (4 bytes) are stored with the least significant byte in the lowest address, the
word is stored little-end-first.
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has a set of ASCII read methods and corresponding binary read methods. The idea
was to implement a subclass for big-endian binary and another for little-endian
binaries, but only the little-endian version has been completed at present.

The Simres reader is represented in the graph as two different modules.Simres

Source which is used to load a single Simres database into the pipeline. Internally
it holds oneSimresDB object whose read location can be configured through a
simple user interface.

The other isMultiSimresSource , which loads a sequence of simres databases
and holds oneSimresDB internally for each of them. The user selects which sub-
domain datasets and time steps to load through a user interface.

The output of theSimresSource and MultiSimresSource modules is a 2D
array of fields, organized as[SimresIndex][timesteps] .

4.4.2 The PVisDisplay module

A fundamental module in any visualization system is the display and rendering
module. In PVis, this is handled by using functionality already present in VisAD.
The VisAD renderer is represented in the PVis system as a processor node,PVisDis

play , as any other module. It has one input method used to set fields that should
be displayed.

Input fields are gathered in thePVisDisplay module until itsprocess() method
is called, when each field is added to the VisAD display module, with a given set
of mappings.

As stated in Section 2.3, VisAD has all filtering functionality located in the
display module as mappings of field values to display types, such as contouring and
coloring, see Section 2.3.3. These settings as well as the display itself are a part of
the displays user interface. By default, x coordinates are mapped to theXAxis , y to
YAxis , and z toZAxis for 3D data. For 2D data field values are mapped toZAxis

(indicating a height field). Through the graphical user interface of thePVisDisplay

module, the user can activate or deactivate contouring, animation, color, alpha and
a texturing property. This means that the user interface is responsible for setting
up the maps that create the desired effects for the rendering part of the display. For
each map that is activated its corresponding control widget is also opened so that
the user can control the result of the map.

Changing display maps in the VisAD display and renderer is described in Sec-
tion 2.3.3. In practical terms, this means that when the user turns off a map, like
alpha, all fields and display maps must be removed. Then all fields and maps are
added again.

As stated in Section 2.3, animation is achieved in VisAD by defining a 1D field
containing all time steps. ThePVisDisplay module handles this by creating one
1D field with all time steps of an animation for each subdomain dataset. What is
being added to the display after this preprocess has been done is one 1D field per
subdomain dataset that was originally loaded at the beginning of the pipeline.



36 Implementation of the PVis visualization system

a) b)

Figure 4.4: Visualization of a volumetric dataset. Image a) shows the dataset.
Image b) shows the dataset with resampling.

4.4.3 The Resampler module

Volume rendering is available only to uniform data, as discussed in Section 2.3.
Datasets however, are often represented as irregular grids in 3D, so the module
Resampler was written to allow the user to resample irregular data on a uniform
grid to enable the use of volume rendering functionality already present in VisAD.
This was easily done since VisAD fields have a method for resampling fields on a
new set.

The resample() method takes as input aSet object, an integer describing
which interpolation mode to use and an integer describing error estimation mode.
TheSet object can be any VisAD set, but theResampler module producesLinear3

DSet since the goal of theResampler modules is to enable volume rendering. The
available interpolation modes areweighted averageandnearest neighborThe error
estimation mode is not used by theResampler module.

For each sample point in theLinear3DSet theresample() method will calcu-
late a value from the field using the desired interpolation mode. The output from
the resample() method is a new field that has theLinear3DSet as topology.

The Resampler module creates a newLinear3DSet and uses it to call the
resample() method for each input field it receives. The number of sample points
in each direction and the interpolation mode can be configured through a simple
user interface.

Images that show the result of resampling are shown in Figure 4.4, where a)
shows a dataset as only points, and b) shows the dataset as a volume.

4.4.4 The MyResampler module

Resampling fields based on theIrregularSet class is extremely slow when using
the standard functionality in VisAD. TheMyResampler module was written to bet-
ter the performance when working with datasets using this grid type. It is written
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completely from scratch.
TheMyResampler module is derived from theResampler class and shares the

same graphical user interface component. The difference is that in stead of relying
on theresample() method present in the VisAD field implementation, it resamples
the each point manually. This is done by creating aLinearSet , same asResampler

does, and extract all sample points from this new set. For each sample point the
module locates the tetrahedron that contains the point in the irregular set, and cal-
culates an average field value for the sample point based on the field values in the
four corners of the tetrahedron.

Since the next sample point will in most cases lie close to the last sample point,
it is likely that the next sample point will be inside the same tetrahedron as the
previous or in one of the last tetrahedrons neighboring tetrahedra. Thus, by check-
ing inside the last tetrahedron and its neighboring tetrahedra first the method will
avoid traversing the entire set of tetrahedra for each sample point. If the search in
the previous tetrahedron fails, standard a search is performed.

The following algorithm was used to determine if a point is within a tetrahedron
or not. The tetrahedron is made up of four triangles. Each triangle is composed of
three out of four of the tetrahedrons points. From the three points we can create a
normal vector and from the normal vector we can create a plane equation for the
triangle. The fourth point is inserted into the plane equation for the triangle. The
same is done for the sample point. If the two points result in values that have equal
signs, it means that they are located on the same side of the triangle. If this is true
for all the four triangles, it means that the point is inside the tetrahedron.

4.4.5 The Slicer module

TheSlicer module is used to create slice planes through volume datasets. This is
done by defining a plane that passes through the volume, and resample the input
dataset based on this plane.

The plane is created by first defining its normal vector, theSlicer module
only allows slice planes that are normal to one of the three axis in the coordinate
system. Positioning the plane in the direction of the normal vector is done by
giving a weight value ranging from 0 to 1, where 0 is the lowest sample point
along the normal vector in the dataset and 1 is the highest sample point along the
normal vector in the dataset. The sample points are uniformly distributed between
the minimum and maximum sample points in each direction.

The maximum and minimum values in each direction, x, y, z, are extrac-
ted from the dataset’s grid using thegetHi() andgetLow() method in the class
SampledSet .

The Slicer module has a simple graphical user interface component, where
the user can set which axis to use, the number of sample points in each direction
and the weight value, determining where the plane is resampled.

Illustrations of the result of the module can be seen in Figure 4.5
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a) b)

Figure 4.5: Visualization of a volumetric dataset. Image a) shows the dataset.
Image b) shows a slice plane through the dataset.

4.4.6 The BoundaryExtractor module

Another way of filtering 3D data to a format that can be viewed by VisAD is to
extract the boundary of the field and represent it as a two dimensional surface.
The BoundaryExtractor module was written to serve this purpose. Since vari-
ous Set implementations differ in topology, different methods for extracting the
boundary had to be implemented. These boundary extraction methods are derived
from class namedBEProcessor in thepvis.visad package.BEProcessor classes
have been implemented to supportGridded3DSet namedBEGridded3DSet and
Irregular3DSet namedBEIrregular3DSet . It is up to theBoundaryExtractor

module to select the properBEProcessor based on whichSet the field is based on.
The BoundaryExtractor will create one boundary for each input field it re-

ceives as input, which means that if it receives overlapping subdomain datasets,
the output will be boundaries that intersect.

The BEIrregular3DSet boundary extractor

The boundary of an irregular 3D geometry has in this implementation been as-
sumed to be the surface composed of all triangles that are only part of one tetra-
hedron. This is a result of that each tetrahedron that has an edge to the interior
of the geometry, will have a neighbor tetrahedron with which it shares a triangle.
Thus, any triangle that is not part of two tetrahedron must be on the boundary of
the geometry.

This information can be extracted by relying on the representation of irregular
grids, theIrregular3DSet and Delaunay classes which is described in Section
2.3.1.

Using this information we can extract the boundary. This is done by searching
through the triangles of each tetrahedron that has less than four neighbors. Each
such tetrahedra has at least one triangle that is not shared with other tetrahedron
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a) b)

Figure 4.6: Visualization of an irregular volumetric dataset. Image a) shows the
dataset. Image b) shows the extracted boundary of the dataset.

ptop = pbottom = nxny
pleft = pright = nynz
pfront = prear = nxnz

Table 4.2: The number of points in the surfaces extracted from the boundary of a
Gridded3DSet

and these triangles are on the boundary. Once the points in all the triangles have
been found, we can extract the field values for each point and create the 2D field
which represents the boundary.

Images that show the result of boundary extraction are shown in Figure 4.6,
where a) shows a dataset as only points, and b) shows the dataset as the boundary.

The BEGridded3DSet boundary extractor

TheGridded3DSet defines an ordered set of points as described in Section 2.3.1.
The boundary of the aGridded3DSet is composed of six surfaces that represent the
top, bottom, front, rear, left and right sides of a uniformed or deformed cube. Using
six separate loops, the sample points and field values for each of the surfaces are
extracted from the set. The sample points are stored in six separate arrays and form
the basis for sixGridded2DSet objects. TheseGridded2DSet objects are joined
using aUnionSet , described in Section 2.3.1. The field values are stored sequen-
tially in one array in the same order as the sample points. The field values together
with the UnionSet object composed of the sample points in the six surfaces are
then used to create a new field that defines the boundary of the input field.

Given aGridded3DSet object withnx, ny andnz describing the number of
points in each direction andporient describes the number of points in the surface
orient, we have three pairs of surfaces where each pair has the same number of
sample points, as can be seen in Table 4.2
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a) b)

Figure 4.7: Visualization of a volumetric dataset. Image a) visualizes the dataset
as multiple subdomains. Image b) visualizes the dataset combined to one domain.

4.4.7 The Combiner module

As stated in Section 2.2.5, Java 3D does not support multiple transparent surfaces
stacked behind one another. The result is that polygons will be visible or invisible
depending on which way the normal vector of the polygon is facing. When several
subdomain datasets are resampled and one wishes to visualize the volume, the
transparency issue results in poor images, as can be seen in Figure 4.7 a).

The Combiner module has been written as a workaround of this problem. Its
purpose is to merge several subdomain datasets into one dataset. This is done
by extracting theSet object from each of the field and join them in aUnionSet ,
described in Section 2.3.1. The field values are appended in one long array. The
UnionSet object and the appended field values array are used to form the merged
dataset.

Sadly, theUnionSet implementation is only partially finished in VisAD which
means that not all functionality is present for datasets based on it. Resampling
with the weighed average approximation method is the most important feature that
is missing. For resampling a merged dataset one has to use the nearest neighbor
approximation method.

The results of are shown in Figure 4.7, where the image in a) shows a volume
(at its worst) as a resampled parallel dataset where the subdomain datasets are kept
separate. The image in b) shows the same parallel dataset where the subdomain
datasets have been merged using the combiner module before resampling.

4.4.8 The Serializer module

There are cases where one wish to load a dataset into memory and do some time-
consuming processing on it and then display it. If this is done with the same data
over and over, one would most likely prefer to save the processed data and load
the processed data again and again instead of reprocessing the data each time. The



Implementation of the PVis visualization system 41

Serializer module was written to do this. It takes an input field and writes it to
a file or loads a file and supplies it to other modules. The user can specify the file
name through a simple graphical user interface.

The technique for writing and loading files is Java object serialization as de-
scribed in Section 2.1.4, which provides a simple, yet flexible way of storing gen-
eric object structures to file.

4.4.9 Creating additional modules

The PVis system has been written with the intention that extending it with new
modules should be easy, given that the user is familiar with the Java programming
language.

All modules that are to be a part of the PVis pipeline must be derived from
the classNode, which handles all the details on the execution of the PVis graph as
discussed in Section 4.3.

There are two methods that the module must implement in order to work prop-
erly. The first is theprocess() method which is called during the execution of the
PVis pipeline to perform the modules task. An example is theResampler module
which uses itsprocess() method to create a resampled version of its input fields.

The second method that must be implemented in aNode is dispose() . Al-
though it is not absolutely required that a module implements thedispose() method
it is highly recommended since not doing so may lead to redundant memory massive
objects existing in the PVis graph after they are no longer needed. The goal of the
dispose() method is to reset all pointers that are not needed between calls to
process() .

Methods that a module use to receive input must be have a name that starts
with in . Methods that a module use to expose its processed output must have a
name that starts without . This is because the graphical user interface, described in
Chapter 5, browses each modules methods and displays all the methods that have
names starting within as input methods and all methods that have names starting
with out as output methods.

If the module is to be configured, then it must also implement theConfigurable

interface, which is described in Section 5.5
Below is listed the code for a simple module that receives an input object and

exposes it without doing anything.

import pvis.visad.*;

public class PassThrough extends Node {

private Object obj;

/** Receives the input and stores it internally */
public void inObject( Object input ) {

obj = input;
}
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/** Exposes the object to the listeners */
public Object outObject() {

return obj;
}

/** This module does not do anything */
public void process() {

// Do nothing
}

/** Release the memory referenced by this object */
public void dispose() {

obj = null;
}

}



Chapter 5

The graphical user interface for
the PVis visualization system

The previous chapter described the building blocks of PVis’ pipeline architecture,
and how they fit together. We now specify how this architecture is represented, so
that the user can easily take advantage of its flexibility. It is important for user to
see the nodes and edges present in the pipeline and that modifying the pipeline is
simple. As stated earlier, we have chosen to implement a graphical user interface
similar to that of Iris Explorer which has a visual, interactable representation of the
pipeline, and that has the ability to open simple user interface components for all
the modules that can be configured explicitly by the user. The user is also able to
load and save the pipeline each time the PVis system is used.

5.1 Overview

The user interface is implemented as several Java classes, all of which are loc-
ated in thepvis.gui package. The first is theRootFrame which defines the main
window, as seen in Figure 5.1, and the structure of the user interface. Next is
thePipelineRenderer which is responsible for the user interaction and visualiz-
ation of the pipeline. The modules present in the pipeline are drawn using a third
component,NodeRenderer . The last is theConfigurable interface which is im-
plemented by all modules that can be configured.

5.2 The RootFrame class

The RootFrame class is a Java window, derived from the standard library class
JFrame in the javax.swing package. An object of theRootFrame class creates
PVis’ graphical user interface, which composed of several menu items, used to
start the various actions that PVis can do. It also holds a list of all the modules that
can be used in the pipeline.
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5.2.1 Event management

TheRootFrame maintains an event manager that registers all actions performed in
the menu, the processor list and the start and stop buttons. The event manager
is responsible for overseeing that the correct actions are taken, such as adding
modules to the pipeline or starting processing of the pipeline.

The event management has been implemented by having theRootFrame class
implement theActionListener 1 interface. The menu items and buttons register
the RootFrame object as listener and theRootFrame object is thus notified when
an action happens. An action can be when the user clicks on a menu item or on a
button.

5.2.2 Separate thread for pipeline processing

Pipeline processing is started in a separate thread than that for running the applic-
ation. This is because the application thread is the virtual machines main event
dispatcher, responsible for triggering all events for all windows, including input
from keyboard and mouse as well as repaint of windows. It is recommended in [7]
that only simple instructions and low cost tasks are done from this thread. Time
consuming tasks should be done in separate threads. If the event dispatch thread is

1The java.awt.event.ActionListener interface defines one method
actionPerformed() that is used to notify implementing classes that action has occurred.

Figure 5.1: Snapshot of the graphical user interface of PVis
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held up, the windows will not work properly.
In addition, the user might wish to stop the processing before it is completed,

and that can only be achieved if it is running in a separate thread.

5.2.3 Loading available modules

All the modules that can be a part of the PVis pipeline must be explicitly specified
for the graphical user interface. This is done in the fileprocessors.res in the
pvis/resources directory. This file contains the class names of all the modules.
Dynamic class loading, see Section 2.1.2, is used to load these modules into the
user interface.

5.3 The PipelineRenderer class

ThePipielineRenderer class is responsible for drawing and interacting with the
PVis pipeline. It draws each module using an object of the classNodeRenderer

described in Section 5.4. Edges are drawn as simple lines using functionality in the
Java standard library.

Interaction with the user is achieved through several event managers that have
been implemented as inner classes in thePipelineRenderer . The event managers
have been implemented by using theMouseListener interface in thejava.awt.ev

ent package. The interface notifies objects of the implementing class on all mouse
related events that occur, such as mouse motion and mouse clicks.

5.3.1 The MoverCraft event manager

TheMoverCraft event manager is responsible for registering when the user drags
modules from one location to another. This movement only affects the visual rep-
resentation of the PVis pipeline, not the order in which it executes.

5.3.2 The ClickHandler event manager

TheClickHandler event manager is used to take appropriate action when the user
clicks on a filter module. A double click opens a filter modules control widget if
such a control widget is defined. Details on this are covered in Section 5.5. If the
user clicks on the right button over a filter module, theClickHandler will open a
menu for that filter module. The menu can be used to delete the filter module or its
edges.

5.3.3 The LinePainter event manager

TheLinePainter event manager is used to create connections between modules.
When the user drags the mouse from an output method of one module to an input
method of another module, theLinePainter contiounsly draws a line. When the
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user relases the mouse, theLinePainter creates anEdge object between the two
modules.

5.4 The NodeRenderer class

TheNodeRenderer is the simplest part of the user interface. It is derived from the
javax.swing.JPanel class and is responsible for drawing a single module in the
PVis pipeline with its name, input and output methods. It also contains function-
ality used to resolve which input or output method corresponds to a given point.
This is used by the event managers in thePipelineRenderer to take appropriate
action when the user clicks or drags the mouse over aNodeRenderer object.

Drawing is done by overriding thepaint() method injavax.swing.JPanel .
This method is called from the windowing toolkit in Java whenever the compon-
ent needs to be repainted. The method is passed an object of the classGraphics

from the java.awt package which encapsulates the graphics context of the cur-
rent window. This object has several methods for paint such asfillRect() ,
drawString() , etc.

5.5 The Configurable interface

Some nodes can take user input. These nodes implement theConfigurable inter-
face (pseudo code below), which tells the node to define a simple user interface
which can be used to modify and configure the node. It also tells the node to define
what kind of data should be saved, so that the nodes which are loaded from file are
configured in the same way as when they where saved.

There are no requirements to the user interface supplied by theConfigurable

interface, except that it is a subclass ofjava.awt.Component which is the object
that all graphical user interface components in Java are derived from. The user
interface is placed in a dialog box by theClickHandler event manager as described
above.

The methodsgetSaveData() andsetLoadData() are used to store and load
parameters that are configured in the user interface each time the PVis system is
used. These methods operate on anObject object, but knowing that all non prim-
itive types in Java are derived from this class, the object can actually be an array of
new objects or any other form of Java object. What is located in the object is thus
up to the module that implements the interface.

interface Configurable {

Component getUI();
void endUI();

Object getSaveData();
void setLoadData( Object o );
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}

The modules that implement theConfigurable interface and have a graphical
user interface component associated with them are listed in Table 5.1.

Module Graphical user interface component

MultiSimresSource UIMultiSimresSource
SimresSource UISimresSource
Resampler UIResampler
Slicer UISlicer
Serializer UISerializer
PVisDisplay UIPVisDisplay

Table 5.1: The modules implementing the Configurable interface, and their associ-
ated graphical user interface implementaiton.

All graphical user interface implementations are located in thepvis.gui pack-
age. The graphical user interface componentUIPVisDisplay has been covered in
detail in Section 5.6. The other graphical user interface components are trivial and
the implementational details concerning them have been omitted.

5.6 The UIPVisDisplay class

The graphical user interface component for thePVisDisplay module is the part
of the PVis system where the rendering happens. It is basically composed of two
dialog boxes. One which contains only the VisAD display module that at all times
displays the data and enables the user to interact with the mouse. The other dialog
contains a menu with several options for modifying how the data is rendered among
other things. These options and their implementational details are covered below.

The menu uses an event manager in the same manner as theRootFrame class.
The reason for two separate dialog boxes, one for control and one for display is

that the display is a heavyweight2 Java component and the menu is a lightweight3

Java component. Heavyweight components are always drawn after lightweight
components, thus overlapping heavyweight and lightweight components will not
work properly.

5.6.1 Iso contour

This option is used to enable iso contours. Iso contours are made available in
VisAD by creating a map from field values to the display typeIsoContour , as

2Peer based, receives a graphic context from the OS and writes directly to it
3Draws to an offscreen buffer and flushes the buffer to the graphic context when the OS signals

repainting
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discussed in Section 2.3.3. This map is set to the VisAD display and a control
widget is started to enable the user to change the threshold value of the iso contour.

Enabling or disabling contouring involves the replacement of a map and is
subject to the issue on map replacement discussed in Section 2.3.3

5.6.2 3D Texturing

This option toggles the texturing property in the VisAD renderer. This option is
enabled by default and is used to enable volume rendering as discussed in Section
2.3.5.

5.6.3 Color table editor

The color table editor option is used to launch a color table editor. The color table
editor is a VisAD implementation which is used to modify the color table for the
field values in the VisAD display.

The color table is coupled to the data in the display, in such a way that if the data
is removed and added again the data will recreate a new default color table. There
will be no connection between the old color table and the new data. To modify
the new color table after a map change, one must thus open a new color table
editor. Note that data has to be removed and added each time a map is changed, so
changing another map, such asIsoContour described in Section 2.3.3, will reset
the color table.

Changing the color table involves the replacement of a map and is subject to
the issue on map replacement discussed in Section 2.3.3

5.6.4 Alpha

Alpha is an option which can be used to determine which display type, described
in Section 2.3.3, is used to represent field values in the display. If alpha is enabled
the display typeRGBAis used. If alpha is disabled, the display typeRGBis used.
Once alpha is enabled the value can be changed in the color table editor described
above.

Changing the alpha parameter involves the replacement of a map and is subject
to the issue on map replacement discussed in Section 2.3.3

5.6.5 Polygon mode

There are three options available in the polygon mode menu. These arefilled,
wireframeandpoints. These options are provided by VisAD and can be set as the
programmer wishes. VisAD relies on the Java3D rasterization mode which is set
through the polygon attributes as described in Section 2.2.
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5.6.6 Animation

Animation in VisAD is discussed in Section 2.3.3. Animation is controlled through
an object of theAnimationControl class, which has methods for starting and stop-
ping an animation, stepping forward and backward and setting the animation speed.
The options in the menu of theUIPVisDisplay are used to trigger these methods.

5.6.7 Snapshot

Snapshot is the process of extracting the raster data in the VisAD display and cre-
ating an image from it. This is done by relying on the methodgetImage() which
is available in the VisAD display, which returns an object of thejava.awt.Image

class. The image is written to a file using theJpegEncoder class located in the
ij.io package, which is a part of the VisAD distribution.

The snapshot is namedsnapshot_x.jpg , wherex starts at0 and is incremented
with one for each snapshot that is taken.

5.6.8 Subdomain dataset filter

The subdomain dataset filter was written to allow the user to enable or disable the
viewing of individual subdomain datasets. This is done by creating a list contain-
ing all the subdomain datasets that are loaded into thePVisDisplay module and
create a toggle button for each of them. When a subdomain dataset is disabled it is
removed from the display and when it is enabled it is added again.

5.7 Pipeline storage

The PVis pipeline can be stored between each time it is used. The code for pipeline
storage is located in thepvis.io package. The storage format is a self specified
XML [15] format, and the file is read and written using an open source XML parser
named Xerces [16]. When the pipeline is stored it is converted to a tree structure
suited for XML and written using Xerces. When the pipeline is loaded, the XML
file is read using Xerces and converted to a pipeline. An example of a pipeline file
is given below.

<?xml version="1.0" encoding="UTF-8"?>
<pipeline>

<nodes>
<node class="pvis.visad.MultiSimresSource" key="2" x="59" y="65">

<config>
<array class="[Ljava.lang.Object;" length="4">

<array class="[I" length="1">
<object class="java.lang.Integer" value="3"/>

</array>
<array class="[I" length="2">

<object class="java.lang.Integer" value="0"/>
<object class="java.lang.Integer" value="3"/>

</array>
<object class="java.lang.String" value="data"/>
<object class="java.lang.String" value="WA16"/>

</array>
</config>

</node>
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<node class="pvis.visad.PVisDisplay" key="1" x="408" y="64">
<config>

<null/>
</config>

</node>
</nodes>
<edges>

<edge class="pvis.visad.Edge" key="3">
<incoming key="2" method="outFields"/>
<outgoing key="1" method="inField"/>

</edge>
</edges>

</pipeline>

The tree structure is built by the an object of theOutputHandler class. This
object is responsible creating a root element, namedpipeline which contains all
the nodes and edges in the graph. For each node it creates a new element that con-
tains the class name, key and location. If the node implements theConfigurable

interface a block of save data is written out as well. Save data is written out recurs-
ively so although thegetSaveData() method returns an object this object may be
a nested structure. Using Java language reflection, see Section 2.1.3, this nested
structure is converted into a subtree of elements.

The edges in the pipeline are converted to elements each containing an element
for the module and method to extract data from and an element for the module and
method to which the edge should pass the data.

Loading is done by using Xerces to load the XML file into a tree structure. The
tree structure is the same as the one created when storing the file, and is decoded by
an object of theInputHandler class. The nodes are then regenerated based on the
class name supplied in the file. Any saved parameters are recreated and converted
back into the same nested object structure as was returned by thegetSaveData()

when the pipeline was stored. The structure is passed to each module using the
setLoadData() method. Edges are recreated using the specified location to extract
data and pass data to. As the nodes and edges are created they are inserted into the
Graph object, and will thus be a part of the PVis pipeline.
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Case studies

This chapter covers case studies that have been done using the PVis visualization
system. The goal of these case studies is to measure the performance of the PVis
system. The measurements concern processing times, memory usage, smoothness
of animation and general usability of the PVis system. The results of the case
studies are discussed together with some general issues in the next chapter.

6.1 Overview of the case studies

The specifications for the computer used to run the case studies are listed in Table
6.1.

6.1.1 Measuring time

The processing times have been measured using the Java methodcurrentTimeMillis()

in the classjava.lang.System . According to [14] the method returns “the differ-
ence, measured in milliseconds, between the current time and midnight, January 1,

Hardware

Processor AMD Athlon XP1700+
Memory 512Mb (DDR)
Graphics card NVidia GeForce3 Ti200, 64Mb

Software

Platform Microsoft Windows 2000
Java Java HotSpot(TM) Client VM (build 1.3.1-24, mixed mode)
Java 3D Java 3D(tm) 1.2.1_1 SDK (OpenGL) Version)
VisAD Version 2.0

Table 6.1: Hardware and software specifications used to perform the case studies.
The tests were run with the option-mx500m to the JVM, which means that the

heap size is set to a maximum of 500Mb of memory (default is 64Mb).
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1970 UTC”. Time is measured by taking the difference incurrentTimeMillis()

between when a task starts and when a task stops. Time is measured in milli-
seconds.

This method gives rise to an estimation error, since MS Windows 2000 is a
multi-tasking environment. This means that the number of milliseconds the task
is allowed to actually run on the processor is less than the number of milliseconds
that has elapsed since the task started, as a result of other tasks running as well. By
running each task multiple times we hope to reduce this error. We will also have
only the PVis system running on the computer so that as much processor time as
possible can be spent on PVis.

6.1.2 Measuring memory usage

Memory usage has been measured in different ways. One method is to investigate
a parallel dataset and estimate how much space it will take up, given the number of
points and elements in each subdomain dataset. This estimate is based on the num-
ber of points, elements and field values and the number of bytes used to represent
each datatype. The object representation of the data will in most cases include ad-
ditional information such as object variables and tables to aid traversing irregular
grids. This means that this estimate is only a lower bound estimate and will only
give a pinpoint on the memory usage.

Another way that we use to measure memory usage is to monitor the allocated
memory in the JVM. This is done by calling the methodstotalMemory() and
freeMemory() in the Runtime class in thejava.lang package. These methods
return the total amount of memory allocated by the JVM and the free memory.
This is used to measure the memory allocated by each module by sampling the
difference between total and free memory before and after a module processes.
These methods are also used to extract the total memory that is used by the JVM
when the pipeline has completed processing.

A third way of estimating how much memory is used is to serialize the objects
involved and check the size of the file, see Section 2.1.4. This means that we can
get a very accurate estimate on how much memory a specific object takes. The
serialized object will however, contain some metadata information needed to de-
serialize it but in the case of numerical data, which largely consists of long data
arrays, the overhead of metadata should be minimal.

The methodgc() in the java.lang.System class can be used to hint to the
garbage collector that it should run, but this method does not guaranty that GC will
actually run. It is this method that has been used when we force garbage collection.

6.1.3 Measuring time and memory for the PVisDisplay module

ThePVisDisplay module differs from the other modules in that one part of it is im-
plemented using VisAD classes and the other part is a PVis module. As described
in Section 4.4.2, theprocess() method of thePVisDisplay module only adds the
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input fields to a VisAD display. The VisAD display will then render the data in a
separate thread. Consequently the time and memory measurements obtained upon
PVisDisplay ’s completion ofprocess() does only partially include the memory
and time spent on rendering.

6.1.4 About the metric items

We will now give a short description of the metric items that have been used in the
case studies, what they mean and where the numbers come from.

Estimated memory usage for field values per time step; The estimated amount
of memory that the field value array will take for each time step. The field values
are represented as an array orfloat values which means that the memory usage
will be the number of points times 4 (which is the number of bytes used to represent
a float).

Estimated memory usage for points per time step; The estimated amount of
memory that the point array will take for each time step. ForLinearSet this array
is not present. ForGriddedSet andIrregularSet this array is an array offloat

values organized as[dim][numpts] . For 3D data we then have that the amount of
memory used will be 3 times 4 times the number of points.

Estimated memory usage for element representation per time step; The estim-
ated amount of memory that the element representation will take. This value is
only present for fields based onIrregularSet , since the other set implementa-
tions represent elements implicitly. The value is based on the size of the arrays in
theDelaunay object described in Section 2.3.1.

Estimated memory usage per time step; The sum of the memory usage for field
values, points and element representation for one time step.

Estimated total memory usage; The sum of the estimated memory usage for
each time step.

6.1.5 Time and memory tables

For each case study we have measured the time and memory used. This has been
done three times for each case study. Time and memory use is measured for each
module individually, by sampling the values before and after the module processes.
This value is measured immediately before and after a module processes so objects
allocated during a module’sprocess() method may not have had time be garbage
collected. It also measures the time and memory used when the PVis pipeline has
completed processing. This is done by sampling the values before the PVis pipeline
starts and after it completes. Recalling that the graph processes in one thread, the
graphical user interface in another and rendering in a third thread, we can assume
that these numbers may vary depending on the time spent on the other threads. The
final value is the memory use after garbage collection. This value is measured by
waiting for the rendering to complete, then force garbage collection through the
graphical user interface and finally displaying the memory usage in the JVM.
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6.1.6 Description of the response times in the user interface

In addition to the various parameters that are measured and estimated, we will for
each case study describe how the user interface component for thePVisModule re-
sponds to the user interaction. This includes navigating the dataset using the mouse
for zoom and rotation, subdomain dataset filtering, switching between standard and
wireframe view and updating the color table.

The responses are a description of how the user experiences the user interface.
The values used areimmediatewhich means that the response from a command is
immediately visible in the display,x seconds delaywherex represents the time the
user experiences the delay. This can be a rangex to y. Note that this is not a meas-
ured time, but rather a description of how the user experiences the visualization
system. The last termN/A, means that the option is not available.

For animation the response time is based on the step forward and step backward
options available in the user interface for thePVisDisplay module.

6.2 The 3D wave simulation

This case study involves a parallel dataset of 16 subdomain datasets created from
a 3D wave simulation. The simulation is covered in detail in [27]. The field values
in the datasets represent velocity potential,φ.

The subdomain datasets have an ordered topology which allows them to be
represented through theGridded3DSet class, described in Section 2.3.1. The topo-
logy of the parallel dataset is time dependent, which means that the sample points
move from time step to time step. The metric items for the parallel dataset are
listed in Table 6.2.

Number of subdomains: 16
Number of time steps: 33
Total number of fields: 528
Sample points per field: Range from 6929 to 8036
Elements per field: Range from 5760 to 6760
Total number of points per time step: 123.650
Total number of elements per time step: 103.340
Estimated memory usage for field values per time step:494.600 bytes
Estimated memory usage for points per time step: 1.483.800 bytes
Estimated memory usage per time step: 1.988.400 bytes
Estimated total memory usage: 65.617.200 bytes

Table 6.2: Metric items for the wave simulation.
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6.2.1 Measurement of memory usage

The purpose of this case study is to measure the amount of memory that the parallel
dataset uses. This has been done by loading all the time steps for all subdomain
datasets and serializing them. An illustration of the pipeline used for the test is
showed in Figure 6.1. The test is run only once since the size of the serialized
object cannot differ from test to test. The results from the test are listed in Table
6.3

When we compare the results in Table 6.3 with the estimated total memory
usage in Table 6.2, we see that the values are close. The results are discussed
further in Section 7.3.1.

MultiSimresSource→ Serializer

Figure 6.1: Illustration of the pipeline used to measure memory usage

Type of serialized file Size

16 subdomains and 33 time steps69.9 Mb

Table 6.3: Results of serializing the parallel dataset from the wave simulation to
disk.

6.2.2 Visualization of the exterior

The purpose of this case study is to measure the time and memory used on loading
the parallel dataset, filtering out the exterior and visualizing it. The exterior is
filtered out using theBoundaryExtractor module described in Section 4.4.6. The
case study has been divided into three parts. The first part visualizes the first time
step only, the second part visualizes every other time step, and the third part studies
the result of visualizing all the time steps. This is for checking how time and
memory usage increase with the amount of data involved.

Snapshots from the visualization are shown in Figure 6.2. The dark color rep-
resent low field values and the bright color represent high field values. Figure 6.2.2
shows the last time step of the simulation, but with four of the subdomain datasets
filtered out, using the subdomain dataset filter in the user interface component to
thePVisDisplay module. This has been done to show how the parallel dataset is
divided into subdomains.

Tables 6.4 - 6.10 contain the measurements that are associated with the three
parts. An illustration of the pipeline used for the test is showed in Figure 6.4.
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a) b)

c) d)

e) f)

Figure 6.2: Visualization of the exterior of the wave simulation at different time
steps.
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a) b)

Figure 6.3: Visualization of the exterior of the wave simulation, some subdomains
are deliberately made invisible.

Visualization of the exterior of the wave simulation, one time step

We have visualized one time step of the exterior. The results of memory and time
usage and are listed in Table 6.4. The results of user interaction is shown in Table
6.5.

Module Time Memory Time Memory Time Memory

MultiSimresSource 1.5 s 5.0 Mb 1.4 s 5.0 Mb 1.8 s 5.0 Mb
BoundaryExtractor 0.06 s 1.3 Mb 0.04 s 1.3 Mb 0.05 s 1.3 Mb
PVisDisplay 0.1 s 0.5 Mb 0.1 s 0.5 Mb 0.2 s 0.5 Mb
Graph completed 1.7 s 10.4 Mb 1.6 s 10.4 Mb 2.0 s 10.4 Mb
After GC 9.3 Mb 9.3 Mb 9.3 Mb

Table 6.4: Time and memory usage for visualization of the exterior of wave simu-
lation, one time step.

Visualization of the exterior of the wave simulation, every other time step

This visualization is of the exterior of the wave equation and contains every other
time step (1, 3, 5, etc), for a total of 17 time steps. The results of memory and time
usage are listed in Table 6.6. The results of user interaction are shown in Table 6.7.

MultiSimresSource→ BoundaryExtractor→ PVisDisplay

Figure 6.4: Pipeline for loading the parallel dataset, filtering out the exterior of the
dataset and visualize it.
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Interaction type Response

Iso Contours Immediate
Color table updates Immediate
Alpha Immediate
Turn off subdomain Immediate
Turn on subdomain Immediate
Polygon mode Immediate
Animation N/A
Navigation Immediate

Table 6.5: User interaction response for visualization of the exterior of wave equa-
tion, one time step.

Module Time Memory Time Memory Time Memory

MultiSimresSource 14.5 s 58.3 Mb 14.5 s 58.4 Mb 16.3 s 59.2 Mb
BoundaryExtractor 0.7 s 4.5 Mb 0.7 s 4.1 Mb 0.7 s 3.5 Mb
PVisDisplay 0.2 s 6.1 Mb 0.2 s 6.1 Mb 0.2 s 14.9 Mb
Graph completed 15.4 s 72.4 Mb 15.4 s 72.1 Mb 17.3 s 80.1 Mb
After GC 88.8 Mb 88.9 Mb 89.1 Mb

Table 6.6: Time and memory usage for visualization of the exterior of the wave
simulation, every other time step.

Interaction type Response

Iso Contours 2 to 15 seconds delay
Color table updates Up to 5 seconds delay
Alpha N/A
Turn off subdomain Immediate
Turn on subdomain 2 to 5 seconds delay
Polygon mode 3 seconds delay
Animation Immediate
Navigation Immediate

Table 6.7: User interaction response for visualization of the exterior of the wave
simulation, every other time step.

Visualization of the exterior of the wave simulation, all time steps

This visualization is of the exterior of the wave simulation for all 33 time steps.
The results of memory and time usage are listed in Table 6.8. The results of user
interaction are shown in Table 6.9.

It was observed that repeated calls to the heavy interaction types (those that
took more than a few seconds) when operating on all 33 time steps caused the
visualization system to slow down drastically. Knowing that drops in performance
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Module Time Memory Time Memory Time Memory

MultiSimresSource 34.0 s 95.6 Mb 31.8 s 100.1 Mb 33.3 s 100.1 Mb
BoundaryExtractor 1.0 s 31.0 Mb 1.0 s 30.1 Mb 1.0 s 30.4 Mb
PVisDisplay 0.3 s 12.2 Mb 0.6 s -87.7 Mb 6.3 s 27.4 Mb
Graph completed 35.3 s 142.3 Mb 33.5 s 46.2 Mb 40.6 s 134.7 Mb
After GC 157.4 Mb 164.0 Mb 193.2 Mb

Table 6.8: Time and memory usage for visualizing the exterior of the wave simu-
lation, all time steps.

Interaction type Response

Iso Contours 5 to 20 seconds delay
Color table updates 10 to 15 seconds delay
Alpha N/A
Turn off subdomain Immediate
Turn on subdomain 5-20 seconds delay
Polygon mode 5-20 seconds delay
Animation Immediate
Navigation Immediate

Table 6.9: User interaction response for visualization of the exterior of the wave
simulation, all time step

are often related to memory and garbage collection, we did another test where
we removed subdomain datasets and added them again using the subdomain filter
described in Section 5.6, while continuously monitoring the memory used by the
system. The test was done with all subdomain datasets and all time steps loaded.
The results are shown in Table 6.10. When we forced garbage collection the first
time (350Mb→ 200Mb), the user interface hung for 10 to 15 seconds, probably
because the garbage collection consumed all processing resources on the computer.

The MultiSimresSource writes out one line of information for each field it
loads from the parallel dataset. When all the 528 fields were loaded, we could
observe that there were short delays (less than a second) on regular intervals. These
delays occured once for every 10 to 15 field. Suspecting that this was the result of
garbage collection, we started the JVM with the option-verbose:gc which writes
out info each time the garbage collector runs. It could then be observed that each
delay was followed by a release of memory as a result of garbage collection.

Summary of the visualization of the exterior of the wave simulation

Visualization of the exterior gives us a good indication on the behavior of the par-
allel dataset, since the movement of the sample points and field values are visible
on the exterior. The displacement of the sample points on the surface of the parallel
dataset is seen quite clearly in Figure 6.2. The images in Figure 6.2 also give in-
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Action Memory used Memory used Memory used

Initial (16 subdomains visible) 170.9 Mb 171.0 Mb 170.7 Mb
Remove 3 (13 visible) 171.8 Mb 170.6 Mb 171.6 Mb
Add 1 (14 visible) 277.9 Mb 276.4 Mb 275.4 Mb
Add 1 (15 visible) 341.6 Mb 325.3 Mb 332.5 Mb
Add 1 (16 visible) 356.3 Mb 355.8 Mb 354.7 Mb
Force GC 212.1 Mb 204.7 Mb 205.8 Mb
Force GC 178.8 Mb 177.9 Mb 178.7 Mb
Force GC 157.1 Mb 157.1 Mb 157.1 Mb
Force GC 157.2 Mb 157.1 Mb 157.1 Mb

Table 6.10: Results from memory monitoring when filtering subdomain datasets
from the wave simulation.

sight into how the field values differ during the animation, since field values differ
on the exterior of the parallel dataset, not only the interior.

The time it took to complete the visualization for all subdomain datasets and
all time steps, was up to about 40 seconds. Considering the amount of data being
processed, such processing times can be concidered acceptable. Once the visualiz-
ation has been loaded into the VisAD display, navigating it with the mouse can be
done without delay. When stepping through an animation, the response times are
also immediate, which means that one can start animation and navigate the parallel
dataset while the animation is still running.

When we change the maps in the display, described in Section 5.6, the response
times drop to as much as 20 seconds and for repeated map changes, the computer
begins swapping1 and the system slows down to a degree where it is no longer
usable.

Boundary extraction has an advantage over resampling in that it allows us to
visualize the exterior surfaces using the sample points from the input grid, which
means in this case, that the surface of the water is visualized using the same sample
points from the parallel dataset, so we do not get loss of resolution. To achieve the
same effect using resamping, one would have to resample on a very dense grid.
Another advantage over resampling is that one can use lighting effects to increase
the sense of depth in the visualization.

6.2.3 Volume visualization of the wave simulation

The purpose of this case study is to measure the time and memory spent on loading
the parallel dataset, resampling it to a uniform grid and visualizing it using volume
rendering. The case study has been divided into three parts. The first part visualizes
the first time step only, the second part visualizes every other time step, and the

1Swapping is a term used to describe the process of shuffeling data between physical and virtual
memory. The process and its concequences are described in Section 7.1.1
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third part studies the result of visualizing all the time time steps. The case study
has been divided into three parts to check how time and memory usage increases
with the amount of data involved.

Snapshots from the visualization are shown in Figure 6.5. The color table used
runs from blue for the low field values to white for intermediate values and red for
high values. In Figure 6.6 the color table has the same shape, but the range from
blue to white to red has been concentrated to the intermediate values. In addition
alpha is set to follow the field values so it is transparent for blue and red and opaque
for white. This has been done to create a form of contour volume.

The pipeline used to visualize the data is given in Figure 6.7. Notice that the
Combiner module has been placed before theResampler module. This is to avoid
the transparency issue concerning Java 3D as discussed in Section 2.2.5. By com-
bining the subdomain datasets before resampling, the result will be one dataset
instead of 16 subdomain datasets. The combined parallel dataset is resampled on a
uniform grid of size64 · 64 · 64.

The Tables 6.11-6.15 contain the measurements that are associated with the
three parts.

Volume visualization of the wave simulation, one time step

This is a visualization of the resampled volume for one time step. The results of
time and memory usage are listed in Table 6.11. The results of interaction are listed
in Table 6.11.

Module Time Memory Time Memory Time Memory

MultiSimresSource 1.5 s 5.0 Mb 1.4 s 5.0 Mb 1.6 s 5.1 Mb
Combinder 0.0 s 1.0 Mb 0.0 s 1.0 Mb 0.0 s 0.9 Mb
Resampler 58.4 s 78.7 Mb 60.2 s 78.7 Mb 57.3 s 78.7 Mb
PVisDisplay 0.1 s 4.5 Mb 0.1 s 4.5 Mb 0.1 s 4.5 Mb
Graph completed 60.0 s 92.8 Mb 61.8 s 92.8 Mb 59.1 s 92.8 Mb
After GC 24.8 Mb 25.0 Mb 25.0 Mb

Table 6.11: Time and memory usage for volume visualization of the wave simula-
tion, one time step.

Volume visualization of the wave simulation, every other time step

This is a visualization of the resampled volume for every other time step, for a total
of 17 time steps in all. The results of time and memory usage are listed in Table
6.13. The results of interaction are listed in Table 6.14.



62 Case studies

a) b)

c) d)

e) f)

Figure 6.5: Volume visualization of the wave simulation, using a color table ran-
ging from blue to white to red.
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a) b)

c) d)

e) f)

Figure 6.6: Volume visualization of wave simulation, using a color table ranging
from transparent blue to opaque white to transparent red.
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Interaction type Response

Iso Contours 1 second delay
Color table updates 1 second delay
Alpha 1 second delay
Turn off subdomain N/A
Turn on subdomain N/A
Polygon mode N/A
Animation N/A
Navigation Immediate

Table 6.12: User interaction response for volume visualization of the wave simu-
lation, one time step.

Module Time Memory Time Memory Time Memory

MultiSimresSource 20.9 s 49.5 Mb 21.9 s 58.6 Mb 22.0 s 49.2 Mb
Combinder 0.2 s 15.1 Mb 0.3 s 39.1 Mb 0.2 s 14.8 Mb
Resampler 1005 s 132.6 Mb 1010 s 128.5 Mb 1001 s 186.8 Mb
PVisDisplay 0.7 s 88.5 Mb 0.7 s 88.2 Mb 1.2 s -73.6 Mb
Graph completed 1026 s 289.3 Mb 1033 s 284.8 Mb 1025 s 180.8 Mb
After GC 297.0 Mb 297.9 Mb 316.7 Mb

Table 6.13: Time and memory usage for volume visualization of the wave simula-
tion, every other time step.

Interaction type Response

Iso Contours More than 60 seconds
Color table updates More than 60 seconds
Alpha More than 60 seconds
Turn off subdomain N/A
Turn on subdomain N/A
Polygon mode N/A
Animation Some delay (see summary)
Navigation Immediate

Table 6.14: User interaction response for volume visualization of the wave simu-
lation, every other time step.

MultiSimresSource→ Combiner→ Resampler→ PVisDisplay

Figure 6.7: Pipeline for loading the parallel dataset, combining the fields, res-
ampling the combined fields and and visualizing the uniform dataset
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Volume visualization of the wave simulation, all time step

This is a visualization of the resampled volume for all 33 time steps. The res-
ults of time and memory usage are listed in Table 6.15. It was however, not
possible to complete the case study. After the graph had completed processing,
during the rendering of the VisAD display, the PVis system crashed with the mes-
sage out of memory, which means that the JVM has passed beyond the maximum
memory limit and can no longer allocate memory for new objects. There is for that
reason no listing of interaction results, nor of the memory usageAfter GC, since
it is sampled after the VisAD has completed rendering. The tests have still been
provided, though unsuccessful, since they also help to describe the behavior of the
Combiner andResampler module.

Module Time Memory Time Memory Time Memory

MultiSimresSource 40.3 s 95.8 Mb 40.1 s 107.0 Mb 38.9 s 103.1 Mb
Combinder 0.3 s 32.0 Mb 0.6 s 13.5 Mb 0.6 s 17.6 Mb
Resampler 2077 s 330.3 Mb 2177 s 196.9 Mb 2062 s 326.2 Mb
PVisDisplay 24.4 s -116.0 Mb 11.7 s 172.3 Mb 10.5 s -84.1 Mb
Graph completed 2142 s 345.6 Mb 2230 s 493.4 Mb 2112 s 366.4 Mb
After GC N/A N/A N/A

Table 6.15: Time and memory usage for volume visualization of the wave simula-
tion, all time steps.

Volume visualization of the wave simulation, all time steps, without combina-
tion

This is a visualization of the resampled volume for all 33 time steps without the
use of theCombiner module before theResampler module. The visualization is
in this case only viewable from one direction as shown in Figure 4.7. The test is
done to measure the increase in time created by theCombiner module. Each field
is resampled on a uniform grid of size:16 · 16 · 64. The parallel dataset is divided
into 4 · 4 · 1 subdomain datasets, so the total of sample points will be64 · 64 · 64,
the same number of sample points as used in the previous case study.

The results of time and memory usage are listed in Table 6.16. We see from the
results in Table 6.15 compared with the results in Table 6.16, that resampling takes
nearly twice as much time when processing fields based on theUnionSet class,
created by theCombiner module.

MultiSimresSource→ Resampler

Figure 6.8: Pipeline used to load, resample and visualizing the parallel dataset.



66 Case studies

Module Time Memory Time Memory Time Memory

MultiSimresSource 39.6 s 96.4 Mb 89.5 s 89.5 Mb 36.0 s 110.7 Mb
Resampler 1233 s 100.9 Mb 1229 s 211.5 Mb 1212 s 169.3 Mb
Graph completed 1273 s 201.5 Mb 1319 s 305.4 Mb 1249 s 283.9 Mb
After GC 67.3 Mb 45.5 Mb 48.5 Mb

Table 6.16: Time and memory usage for volume visualization of the wave simula-
tion, all time steps, without combination.

Summary of volume visualization of the wave simulation

The images in Figure 6.5 show the wave simulation using a color table with all field
values set to opaque. This image is not unlike that used in the visualization of the
exterior in Figure 6.2, save the loss of resolution and depth. The images in Figure
6.6 however, show the wave simulation using a color table where the field values
are only opaque for a small area of the color table, while the rest are transparent.
By making parts of the volume transparent, we can more clearly see how the field
values on the interior of the dataset change.

The processing times for resampling and volume rendering were more than 30
minuttes, as can be seen in Table 6.15, which means that doing the same visualiz-
ation multiple times can be tedious. Note however, that if the same parallel dataset
is to be resampled and visualized multiple times, much time could be saved by
resampling the parallel dataset only once, then serialize it and load the serialized
parallel dataset later. Loading a serialized dataset usually takes no more than a few
seconds.

Volume visualization of the resampled parallel dataset worked acceptable when
only one time step was involved. The response times for the second test, every other
time step, were much slower for the types that involvled map changes, described in
Section 5.6. At this point the computer started to access the hard disk intensively
when we tried to change maps. For volume visualization of all time steps, the
computer did not even manage to render the data, due to memory exhaustion. This
will be furhter discussed in Chapter 7.

The response times for animation listed in Table 6.14, are measured by stepping
one time step at a time. If this is done repeatedly with short delays in between we
could however observe short delays, and occational hard disk access.

6.3 The 3D heart simulation

This case study involves a parallel dataset of 8 subdomain datasets produced by a
3D simulation of electric activity in the human heart. The simulation is covered in
detail in [28]. The field values represent the electrical potential,u.

The subdomain datasets are irregular and use theIrregular3DSet class, de-
scribed in Section 2.3.1, for representing the topology. The metric items for the
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parallel dataset are listed in Table 6.17.

Number of subdomain dataset: 8
Number of time steps: 1
Total number of fields: 8
Sample points per field: Range from 5164 to 5191
Elements per field: Range from 24649 to 26557
Total number of points per time step: 41.453
Total number of elements per time step: 200.926
Estimated memory usage for field values per time step:165.812 bytes
Estimated memory usage for points per time step: 497.426 bytes
Estimated memory usage for elements per time step 14.568.096
Estimated total memory usage: 15.231.334

Table 6.17: Metric items for the heart simulation.

6.3.1 Measurement of memory usage

The purpose of this case study is to measure the amount of memory that the parallel
dataset uses. This has been done by loading all the time steps for all subdomain
datasets and serializing it. An illustration of the pipeline used for the test is shown
in Figure 6.1. The test is run only once since the size of the serialized object cannot
differ from test to test. The results from the test are listed in Table 6.18.

When we compare the results in Table 6.18 with the estimated total memory
usage in Table 6.17, we see that the measured memory usage is larger than the
estimate. This is most likely the result of that the parallel dataset is based on an
irregular grid. The results are discussed further in Section 7.3.1.

Type of serialized file Size

8 Subdomain datasets21.723.514 Mb

Table 6.18: Results of serializing the parallel dataset to disk

6.3.2 Visualization of the exterior of the heart simulation

The purpose of this case study is to measure the time and memory spent on loading
the parallel dataset, filter out the exterior using theBoundaryExtractor module
and visualize it.

Snapshots from the visualization are shown in Figure 6.9. The dark colors
represent low field values and the bright colors represent high field values. The
images in a) and b) show the parallel dataset with all subdomains, but from differ-
ent angles. The images in c), d), e) and f) show the parallel dataset from different
angles, where one or more subdomain datasets are filtered away using the subdo-
main filter described in 5.6.
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The results from the visualization are listed in Tables 6.19 and 6.20. An illus-
tration of the pipeline used for the test is showed in Figure 6.4.

Module Time Memory Time Memory Time Memory

MultiSimresSource 19.4 s 38.7 Mb 17.0 s 38.7 Mb 19.9 s 38.7 Mb
BoundaryExtractor 0.7 s -0.1 Mb 0.7 s -0.1 Mb 0.7 s -0.1 Mb
PVisDisplay 0.1 s 0.8 Mb 0.1 s 1.2 Mb 0.1 s 0.1 Mb
Graph completed 20.1 s 42.7 Mb 17.8 s 43.2 Mb 20.8 s 43.2 Mb
After GC 42.6 Mb 42.5 Mb 42.9 Mb

Table 6.19: Time and memory usage for visualization of the exterior of the heart
simulation.

Interaction type Response

Iso Contours Immediate
Color table updates Immediate
Alpha N/A
Turn off subdomain Immediate
Turn on subdomain Immediate
Polygon mode Immediate
Animation N/A
Navigation Immediate

Table 6.20: User interaction response for visualization of the exterior of the heart
simulation.

Visualization of the exterior does not give us the same insight as it did in the
case study conducted in 6.2.2, since the field values located on the exterior are all
the same value. By filtering away one or more of the subdomain datasets however,
we can view the interior areas of relevance, as can be seen in the images c) through
f) in Figure 6.9.

6.3.3 Comments on volume visualization of the heart simulation

Viewing the 3D heart simulation using volume rendering would most likely in-
crease the information that could be extracted from it.

Resampling datasets based onIrregular3DSet however, was experienced to
be very slow. In addition to that, the volume has to be combined in theCombiner

module to avoid the transparency issue discussed in Section 4.4.7. Initial tests
showed that resampling the combined dataset on a64 · 64 · 64 volume would take
several days to complete. This is the result of extra complexity of theUnionSet

produced from theCombiner module combined with the long processing times for
resampling datasets based on irregular grids. Resampling on a coarser grid, would
not produce an informative volume, so the test was dropped.
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a) b)

c) d)

e) f)

Figure 6.9: Visualization of the exterior of the heart simulation. Some subdomain
datasets have in images c)-f) been deliberately filtered out.



Chapter 7

Discussions

This chapter contains disucssions on three main topics. In the first section, we
discuss the the issues concerning memory and performance that are to be expected
from the software that the PVis system is based on, Java, Java 3D and VisAD.
In the following section we go in depth of the performance and memory issues
concerning each of the PVis modules. And finally we look at the case studies and
see how the results measured here match the expected results.

7.1 The underlying software and tools

In this section we discuss the known factors of the software, that the PVis system
is based on, where memory and performance are concerned. We start by looking
at the Java runtime environment. Following that we discuss issues concerning Java
3D and VisAD.

7.1.1 The Java runtime environment

Array management in Java

As stated in Section 2.1.10, Java arrays are represented as objects, and multi-
dimensional arrays are represented as recursive structures of arrays. There are
three ways to represent multi dimensional arrays, and these are given in Table 7.1.
Typically, the number of dimensions (Ndims) will be 1, 2 or 3, while the number
of points (Npts) can range from a few points up to millions of points for large data-
sets. If we use method a) from Table 7.1, we get one array object that is used to
represent all the data. The method described in b) uses one array object for each
dimension, but sinceNdims � Npts this method is not measurably worse in terms
of memory usage than method a). Method c) however, will create one array object
for each point in the dataset. Given thatNdims is small andNpts is large, the result
is a large amount of small array objects. Tests indicates that method c) uses 40%
more memory than methods a) and b).
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Representation method Result

a) [Ndims ·Npts] Results in one array of lengthNdims ·Npts

b) [Ndims][Npts] Results inNdims arrays of lengthNpts

c) [Npts][Ndims] Results inNpts arrays of lengthNdims

Table 7.1: Representation of multi dimensional arrays in Java

Overhead of the Java Virtual Machine

As discussed in Section 2.1, Java programs execute within a Java virtual machine.
The JVM executes programs by interpreting the bytecodes of the Java classes that
make up the program. The bytecode of each individual class file is cached in
memory to achieve better performance. In addition, some of the bytecode is at all
times being compiled to native code (JIT technology described in Section 2.1.9).
A class file rarely has a size of more than a few kilobytes, but many classes are
required for the JVM and its runtime environment to run so it is in total a size to
be considered. As a result of this, it is commonly observed that a trivial Java ap-
plication without a graphical user interface will require a minimum of 4 megabytes
of memory. If graphical user interfaces are used, this value increases to 10 to 15
megabytes easily.

Garbage collection

As mentioned in Section 2.1.8, Java uses a garbage collector (GC). The GC is a
separate thread inside the JVM that is not accessible through the functionality of
the standard library. It recognizes objects that are no longer referenced by the
application and releases the memory allocated by these objects for reuse. Since the
GC runs separately, it is not possible to signal the GC to immediately deallocate
objects that are no longer in use.

Consider a loop that creates a new object as the first instruction. When the loop
reaches the last instruction and starts over, the allocated object will be derefer-
enced. The second time the loop runs, the object allocated in the first run may not
yet have been garbage collected and more memory has to be allocated when the
second object is created, despite that the second object could have taken the same
memory space as the first object, had the first been garbage collected.

One solution is to tune the maximum heap size parameter to the JVM (through
the -mx option to the JVM) that sets the maximum amount of memory the JVM
can allocate. Setting this value to high, will cause the use of virtual memory, a
topic that is further discussed below. If the heap size is set close to the estimated
memory limits, it is possible that unreferenced objects are not deallocated before
new objects are created, which would mean that the application will run out of
memory and not function properly.

This makes it very difficult to write applications in Java that fit within a desired
memory limit. The general solution to this problem is to avoid object allocation as
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much as possible and recycle objects instead, an approach that is described further
in [26].

The topic of garbage collection will be further discussed in Section 7.3.2 where
we study the results of a case study concerning garbage collection conducted in the
previous chapter.

Physical and virtual memory

When an application is allocating memory in Java, there is no measurable border
where physical memory ends and virtual memory begins. Virtual memory is based
on storing parts of the physical memory which is not currently being used to disk
and reload it into memory when it is needed again, a process often referred to as
swapping.

The lack of a measurable border between physical and virtual memory, allows
an application to transparently allocate memory far beyond the capacity of physical
memory. Since read and write operations are much slower for hard disks than for
memory, relying on virtual memory causes an application to slow down drastically.

It may be that even though the maximum memory set by the-mx parameter
to the JVM is below the memory present on the computer, other processes such
as the operating system, require parts of the physical memory for the computer to
function properly. The actual physical memory available to an application is thus
lower than the total amount of memory installed.

The effect of swapping can clearly be seen in the Table 6.14, where the use of
virtual memory has caused the interaction times to increase drastically.

Interpreted code

As stated in Section 2.1.9, Java applications are based on interpreting bytecode,
rather and executing machine code. This involves translating each virtual opera-
tion to one or more physical CPU operations, which results in slower execution.
Several methods have been adopted to address this, such as just in time compila-
tion (JIT) and dynamic optimization, and have proved to greatly the performance
of applications written in Java.

The difference in performance from a statically compiled, such as C++, lan-
guage to a dynamically compiled language, such as Java, can only be measured
by a large scale application written identically in the two languages. The applic-
ation has to be large scale for JIT compilation and dynamic optimazion to have
any real effect. The difference could have been measured by rewriting the PVis
application in the C++ programming language, but such work is beyond the scope
of this thesis. We can therefore only state that runtime compilation will most likely
slow down performance compared to the same code written in C++, but the actual
amount of slowdown is not addressed.
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Figure 7.1: Visualization of a transparent surface, the strange result is due to the
lack of depth sorting in Java 3D.

7.1.2 The Java 3D graphics library

The lack of depth sorting reduce the quality for several visualization techniques
such as transparent surfaces and volume rendering. For transparent surfaces the
result is a discontinuous surface which cannot be used to extract information. Fig-
ure 7.1 shows a transparent surface and how it is affected by the lack of depth
sorting.

Volume visualization, as it is implemented in VisAD, is based on creating one
set of slice planes for each viewing direction. Normally this could have been done
by creating three sets of slice planes, but since Java 3D lacks depth sorting such
a set of slice planes would only be visibly correct when viewed from one side.
In VisAD this, has been solved by creating six sets of slice planes, one for each
viewing direction.

When visualizing a parallel dataset composed of several fields, the lack of
depth sorting results in faulty visualizations as can be seen in Figure 4.7.

Some visualization techniques can be made possible without loss of quality
through the use of workarounds such as with volume rendering, but workarounds
are often more time and memory consuming than straight forward methods and
should in general be avoided if possible.

7.1.3 The VisAD visualization library

Irregular datasets

The IrregularSet class, that is described in Section 2.3.1 used to represent irreg-
ular datasets can only have triangles or tetrahedra as elements. For some datasets,
such as an irregular box based grid that does not fit into the ordered topology of
theGriddedSet , the elements have to be decomposed into tetrahedra. This means
that each box has to be divided into six tetrahedron. Although the element size will
be reduced from eight points to four points, we get an increase in the number of
elements by a factor of six, which will result in more memory being used.
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Member array Array dimensions Purpose

Tri [Nelms][Selm] Describe the points in each element
Vertices [Npts][V ] Describe elements which share points
Walk [Nelms][Selm] Describe elements which share sides
Edges [Nelms][Nedges] Describe elements which share lines

Nelms The number of elements
Npts The number of points
Nedges The number of line segments in an element (3 or 6)
Selm The number of points in each element (3 or 4)
V The size is varying from index to index in the array

Table 7.2: The members of theDelaunay object used to represent the elements in
an IrregularSet

The Delaunay class

As stated in Section 2.3.1, theIrregularSet class, which is used to represent ir-
regular datasets in VisAD, uses an object of theDelaunay class to represent the
elements in the topology. TheDelaunay object is composed of four two dimen-
sional arrays used to represent information about the elements. These arrays and
their organization and purpose are listed in Table 7.2. Some of these arrays are
represented using the memory inefficient method c) described in Section 7.1.

For theTri array we have thatSelm � Nelms. Since VisAD does not support
varying element types in anIrregularSet , the element size,Selm is constant. The
array could thus be represented using either method a) or method b) from Table 7.1.
The same applies to theWalk array. This is because each index in theWalk array
is of lengthSelm even if it does not have a complete set of neighbors, (see Section
4.4.6 for further details on neighbors), in which case it is filled with negative values.
TheEdges array also falls into this category since we have thatNedges � Nelms.
Similar to theWalk array, it is filled with negative values if the neighboring edge
set is incomplete.

The VisAD renderer

The VisAD renderer is based on maps from metadata descriptions of the field to
different rendering modes, as described in Sections 2.3.2 and 2.3.3. It is also stated
there that maps cannot be changed when there are fields in the display. To change
the set of maps in a renderer, one must therefore remove all fields from the renderer
and add the fields to the renderer again after the set of maps have been changed.
VisAD is based on Java 3D version 1.1, which does not allow reference to geomet-
ric primitives, which means that to change an object in the scene graph, it has to be
completely recreated. This means that changing a map results in that all the Java
3D based geometry information such as polygons and attributes has to be recre-
ated based on the new set of mappings. This will have significant impact on both
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memory usage and rendering time.
By using version 1.2 of Java 3D and a mutable scene graph this impact could

have been reduced significantly. This is because version 1.2 of Java 3D supports
referenced geometry arrays, which means that one can update individual parts of
a visual object, such as its color table or polygon attributes, without replacing the
entire object.

7.2 The PVis modules

This section discusses the performance and the memory usage expected from each
of the PVis modules. This is done by inspecting the code for each of the PVis
modules and discuss how they will use memory and how they will perform.

7.2.1 The MultiSimresSource and SimresSource modules

TheSimresSource and theMultiSimresSource are covered as one module, since
they rely on the same implementation, as described in Section 4.4.1.

The classDPInputStream read ASCII based input using temporary objects.
This is true for all types except integers, which are read and generated character by
character. Each field and grid located in the simres databases, include a text based
header that contain information about the data. This means that for all grids and
fields that are loaded there are several created several objects. These objects have
no value once the field has been loaded, and are discarded, resulting in garbage
collection.

In addition to the objects generated by theDPInputStream , there are also data
structures like arrays and lists that are created when data are loaded, used to organ-
ize the data while it is being loaded. These data structures are also temporary and
are discarded when a field has been loaded. There is however, no object generation
on the loops that are used to read the binary data arrays, points, elements and field
values.

To give an example of the amount of temporal objects that are generated, con-
sider loading an irregular dataset from a binary file. TheGridReader would in this
case create 11 temporary objects and theFieldReader would create 12 temporary
object. For the wave simulation in the case study in Section 6.2 which is composed
of 528 fields and grids, this would lead to a total of 12.144 temporary objects.

When reading text based simres files, there should be a lot of temporary objects
created to read the float values, which would result in many short lived objects that
need to garbage collected. This would slow down the reading process drastically.

For complete details, one would have to read the source code for the simres
reader, which is located in thepvis.diffpack package.

There are no particular algorithms involved in the processing of theSimresSource

and theMultiSimresSource modules. The time spent during the processing of
these modules spent in most part on loading the data arrays, which is considered to
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be of linear complexityO(n) relative to the number of field values, sameple points
and elements in the dataset.

7.2.2 The PVisDisplay module

The PVisDisplay module, described in 4.4.2, is used to render and display data-
sets in the PVis system. Recalling that thePVisDisplay module is only respons-
ible for passing the input fields into the VisAD renderer, it should follow that the
process() method of thePVisDisplay does not need to allocate any objects, nor
should it take any considerable time before it completes.

7.2.3 The BoundaryExtractor module

The BoundaryExtractor module, described in Section 4.4.6, uses different pro-
cessor subclasses to extract the boundary from different grid types.

The simplest processor classBEGridded3DSet is based on extracting the six
surfaces forming the exterior of the grid. The number of points in each surface
are listed in Table 4.2, and can be used to predetermine the number of points in
each of the six fields that are created. The only memory that is allocated during the
processing of theBEGridded3DSet is the data arrays used to describe the sample
points and field values for the output field. The complexity of the algorithm is
O(N) whereN is the sum of the points in all the six surfaces.

The processor classBEIrregular3DSet is a more complex since the number
of triangles on the boundary cannot be predetermined and since the sample points
on the boundary has to be found through searching, not accessed directly. Each
triangle that is found to be a part of the boundary is placed as three indices in
an array. Since the number of triangles are not pre determinable, the array will
dynamically expand, should the number of triangles surpass the arrays capacity.
Increasing an array’s capacity is done by allocating a new larger array, and copy
the contents of the old into the new array. Array copying will result in that the old
array is discarded and has to be garbage collected.

The complexity of theBEIrregular3DSet isO(Ntri), whereNtri is the total
number of triangles in the grid.Ntri is 4 · Nelms, the number of elements in the
Delaunay object used to represent the irregular grid.

7.2.4 The Resampler module

TheResampler module is, as described in Section 4.4.3, implemented using VisAD
functionality, which means that we have little control over the amount of memory
it uses or the time it spends processing, but we can make a few assumptions.

The memory required to perform the resampling should in general not be more
than the data arrays from the input dataset and output dataset. It may be however,
that the resample method uses temporary objects to achieve better performance,
but such details are unknown.
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Since theresample() method is implemented specifically for eachSet imple-
mentation, the complexity of the resample method is dependent on the topology of
the data it resamples. In general the complexity will beO(Nelms · Npts), where
Nelms is the number of elements in the field that is to be resampled andNpts is the
number of sample points to resample.

ForSet implementations where the elements are implicitly defined, such as the
LinearSet described in Section 2.3.1, location of each cell is of complexityO(1)
which will result in the complexity ofO(Npts) for the resample method.

For theUnionSet implementation, which is a combination of multipleSet ob-
jects, the number of elements,Nelms, is the sum of elements for all sets.

7.2.5 The MyResampler module

TheMyResampler module, described in 4.4.4, is in terms of memory and perform-
ance very similar to theResampler module discussed in above. The difference is
that the code is known, and the assumptions made above can be confirmed.

No temporary objects are used during the processing of theMyResampler mod-
ule, which means that the only memory that is being allocated is the array used to
represent the field values of the output dataset.

The complexity of theMyResampler module will beO(Nelms ·Npts), same as
for theResampler module, but the optimization that has been added, described in
detail in Section 4.4.4, should result in processing times that are better than what
theO estimate should indicate.

Note that if the sample points are so dense that the a sample point will always
fit into the same element as the last sample point or a neighboring element of
the last sample point, searching through the elements will not be needed and the
complexity of the algorithm will beO(Npts).

7.2.6 The Slicer module

The Slicer module, described in Section 4.4.5, is implemented based on res-
ampling functionality already present in VisAD, same as theResampler module
described above, we cannot with certainty determining the complexity of the al-
gorithm involved, nor the amount of temporary objects are used. We can however
make the same assumptions as above and state that the complexity of the algorithm
isO(Nelms · Npts), whereNelms is the number of elements in the input field and
Npts is the number of sample points in grid used for resampling.

In addition to calling up the functionality of VisAD, theSlicer module gen-
erates the grid of the plane it resamples on, which has complexity relative to the
number of sample points in the generated slice plane,O(Npts).

There is no allocation of temporary objects during the processing of theSlicer

module.
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7.2.7 The Combiner module

The Combiner module, described in Section 4.4.7, is used to merge subdomain
datasets into a single dataset.

The process() method of theCombiner module extracts the grid and field
values for each of the input fields. The grids are joined in aUnionSet and the
field values are joined in one array. The output field is created from the combined
field value array and the grids combined in theUnionSet . There are no tempor-
ary objects created, and the only memory allocated is the combined field value
array and theUnionSet object. TheUnionSet is based already existing objects
so memory increase will in its case be minimal, which means that the only relev-
ant memory is the combined field value array. The complexity of the algorithm is
O(Nsubdomains), whereNsubdomains is the number of subdomains.

7.2.8 The Serializer module

The Serializer module, described in Section 4.4.8, is used to read and write
serialized objects such as fields in the PVis pipeline. It relies on functionality in
Java to enable this, so we can not say for certain what the memory usage and
complexity will be, but it is not likely that large amount of temporary objects are
created during the serialization process, since its only the content of the existing
objects that are involved.

We can also assume that the serialization process is a recursive routine that
traverses the object structure one object at a time, and that objects are written out
only once. The time spent on processing will thus be relative to the number of
objects in the object structure and their size, since larger objects will take more
time to read or write.

7.3 The case studies

7.3.1 The time and memory measurements

In this section we discuss what can be determined by the results in the time and
memory tables for each of the case studies conducted in Chapter 6.

Memory estimates compared with serialized objects

Serialized objects are used in the case studies to measure how well our memory es-
timates of the fields correspond to the amount of memory the field objects actually
use as described in Section 6.1.2.

The 3D wave simulation described in Section 6.2 is represented using aGridded-3DSet

as grid. This class has an array containing all the points, with the elements repres-
ented implicitly based on the organization of the point array. Based on these facts,
we estimated the size of all the fields in the dataset to be 65.6 Mb, as shown in
Table 6.2. The size of the serialized dataset is 69.9 Mb as shown in Table 6.3. The
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serialized dataset is 6.5% larger than our estimate. This is not bad considering that
the serialized object contains a little information, such as which classes are being
used. In addition to the information, we must consider the other members of the
field or grid objects such as theMathType objects used to describe the fields and
grids.

The heart simulation described in Section 6.3 is represented using aIrregular

3DSet , which uses a point array to represent the points and aDelaunay object to
represent its elements. Based on these facts, we estimated all the fields in the
parallel dataset to be 15.2 Mb, as shown in Table 6.17. The size of the serialized
dataset is 21.7 Mb as shown in Table 6.18. The serialized object is in this case
42.8% larger than the estimate. As with theGridded3DSet described above, we
have an overhead of class information in the serialized file and other members of
the field and grid objects. In addition to these two factors, theIrregular3DSet

represents elements using aDelaunay object and we saw in Section 7.1.3 that the
organization of some of the arrays were of the memory inefficient sort, type c) from
Table 7.1.

Time usage

It is clearly seen from Tables 6.4 and 6.19 that the performance depend on the grid
used to represent the dataset. The dataset from the wave simulation contains about
3 times as many points for one time step than the dataset from the heart simulation.
Despite this, the dataset from the wave simulation is loaded several times faster.

This is partially the result that the module must read the element array for the
heart dataset as well. In addition to that the elements in the irregular grid has to be
loaded, theDelaunay object, used to represent the elements in aIrregular3DSet ,
is only given the arrayTri used to describe which points make up the elements.
The other three element arrays, described in Table 7.2, must be computed before
theDelaunay object is valid. The computation is done internally by theDelaunay

object.
The Resampler module had the longest processing times in the case studies.

This is the result of that it has complexityO(Nelms · Npts). It is not surprising
that resampling the heart dataset is more time consuming considering that the heart
dataset has almost twice as many elements than the wave dataset, as can be seen
from Tables 6.2 and 6.17. In addition to that, the heart dataset is represented using
Irregular3DSet class which makes searching through elements slow, compared
with the wave dataset which is represented using theGridded3DSet where the
elements are implicitly defined, and searching through them is faster.

We could see in Tables 6.8 and 6.13 that the processing times for thePVisDisplay

could vary from almost immediate completion, as seen in e.g. the first listing in
Table 6.8, to several second, as seen in e.g. the last listing in Table 6.8. This
is the result of that the module passes the input fields to the VisAD renderer
module, which starts processing the fields into geometric primitives in a separ-
ate thread. The rendering thread is prioritized and delays the thread executing the
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PVis pipieline for several seconds.

Memory usage

It could be seen in Table 6.8 that memory usage of theMultiSimresSource is a
bit larger than what is estimated in Table 6.2 and what is the result of the serialzied
file shown in Table 6.3. This is most likely the result of temporary objects that
have not yet been deallocated. The same results can be observed for the dataset
from the heart simulation. The estimate is given in Table 6.17, the size of the
serialized dataset in Table 6.18 and the memory used in reality in Table 6.19. The
difference for the heart dataset is larger, but that is most likely the result of more
temporary objects being generated during the completion of theIrregular3DSet

and theDelaunay object.
Some modules, such as thePVisDisplay module in the second test shown in

Table 6.8, appear with negative memory usage. This is the result of that garbage
collection has been performed during the processing of the module, and since the
memory measurement is based on the usage in the JVM and not for a specific
thread independently, this number will be affected by garbage collection. In the
case of negative memory usage, more memory has been deallocated from previous
modules than the module itself allocated.

7.3.2 Garbage collection

Expectations of garbage collection are discussed in Section 7.1.1. We now see how
these expectations fit together with the measurements obtained in the case studies.

In the summary of Section 6.2.2 we reported that during the processing of the
MultiSimresSource module, there were occasional short time delays. By starting
the JVM with the option-verbose:gc we learned that the delays were caused by
garbage collection. These delays were short, but that is most likely the result of
that the temporary objects created in the module are relatively few and small. Had
these delays occured while an application was performing a time critical process,
such as displaying video at 30 frames per second, the delay of garbage collection
would cause the frame rate to become unsteady.

The drastic slowdown seen in Table 6.13 compared with Table 6.11, is a res-
ult of that the JVM allocated memory beyond the limits of physical memory and
allocated virtual memory instead, which is significantly slower. The reason that
the JVM allocated this much is that the JVM was set up with a heap size of 500
Mb, and that less than 500 Mb of physical memory is available. The windows task
manager1 reported that Windows 2000 with its applications and services use over
120 Mb of memory when the computer is not doing anything. Recalling that the
computer that ran the case studies had 512 Mb of physical memory, this means that
the border between virtual memory and physical memory is, for the JVM and the
PVis system, less than 400 Mb.

1A monitoring application much liketop in UNIX
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We could try to minimize the heap size, to reduce the chance of the JVM al-
locating virtual memory, but this could result in that the JVM ran out of memory,
since it did not have time to garbage collect dereferenced objects before new ob-
jects were created.

A surprise from the results listed in Table 6.10 is that we have to force garbage
collection 3 times before the allocated memory stabilizes. It was expected that
one pass of the garbage collector recognized the unreferenced objects and dealloc-
ated them. This could be the result of massive nested object structures, where the
garbage collector is unable to determine if an object is dereferenced or not on the
first pass. On the second pass, parts of the nested object structure has been deal-
located, revealing other unreferenced objects that can be collected. Thus one part
of the nested object structure is collected for each pass.

Another reason that could cause this is that the garbage collector is limited to
only collecting a certain amount of unreferenced objects on each pass. Recall from
the tests associated with the results in Table 6.10 that the JVM did nothing other
than garbage collection for up to 15 seconds. To avoid even longer delays, it limits
the amount of objects to be deallocated so that other threads are allowed to run as
well.

7.3.3 Interaction with the PVis system

Fast, but limited animation

As can be seen from the tables concerning interaction in Chapter 6, animation is
smooth for all datasets that are successfully loaded. This is without doubt a result
from VisAD’s approach to animation which is based on loading all time steps of
a simulation into memory at once. The reason that this results in faster animation
is that all fields for all time steps are loaded, filtered and processed into geometric
primitives, before any rendering starts.

If the parallel dataset is too large, it will not fit into memory when one tries
to load all time steps for all subdomain datasets together. The result was seen in
Section 6.2.3 where the application crashed due to memory exhaustion when we
tried to visualize all time steps using volume rendering.

The alternative is to iterate through the animation and load, filter and process
one time step at a time into geometric primitives. This method would be more time
consuming for each time step, but would enable visualization of animations that
range over many time steps. The PVis graph however, does not support this kind
of iteration.

Change of display maps

Consider the Tables 6.12 and 6.14. It is interesting to see that even though only
one time step is visible in the display, the time it took to change display maps, such
as the color table, increased significantly from Table 6.12 to Table 6.14. This is a
direct result of the way animation is handled. When a map is changed, the slice
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planes used for volume rendering has to be recreated, not only for the time step
that is currently visible, but for all the time steps in the renderer.

This increase in allocated memory from Table 6.10 indicate that whenever
fields are removed from the display and added again, they are completely discarded
and totally new objects are created to replace them. Recalling from Section 2.3.3
that changes to the set of display maps must take place when no fields are in the
renderer, change of display maps result in that all fields in the renderer are removed,
added and reprocessed into geometric primitives again.

The vast amount of memory involved when fields are discarded and regenerated
will eventually cause the JVM to run out of physical memory and the JVM will use
virtual memory in stead. This is what happened in Table 6.14 when the response
times were over 60 seconds, which exceeds linear times compared to the results
from Table 6.12, where each interaction type was delayed only for a second.

Navigating the visualization

Navigation the dataset, by means of rotation, zoom and pan, was observed to have
immediate response times, as can be seen e.g. in Table 6.14. The observations
indicate that once the fields has been processed into geometric primitives and been
made a part of the Java 3D scene graph, the navigation, such as rotation, is only
transformation matrices that are accelerated by the graphics hardware. As long as
the size of the dataset is small enough to fit into the graphics memory, 64 Mb on
the computer used for the case studies, navigation is smooth.

We can estimate which limits this enforces on the system. Recall that volume
rendering in Java 3D and VisAD uses 6 sets of slice planes. Each slice plane is
textured using RGBA2 color. The size of each texture is determined by the number
of sample points in the grid.

With 64 Mb of graphics memory this should limit us to a field of size128 ·
128 · 128 for one time step, or a field of size64 · 64 · 64 for 10 time steps. If
the visualization contains fields that exceed these limits, physical memory (RAM)
would have to be used as well, and we would most likely experience slowdowns
since much time would be spent copying the geometry between physical memory
and graphical memory. The effects of this can be seen in Table 6.14 where we try
to visualize 17 time steps of a dataset of size64 · 64 · 64. Recalling from Section
7.1.1 that there is no border between physical memory and virtual memory, the use
of memory may result in massive swapping and drastic slowdowns in performance.

2Red, Green, Blue, Alpha, 8 bits per channel



Chapter 8

Concluding remarks

In this chapter we try to summarize the work that is done in this thesis and draw
conclusions from the discussions in Chapter 7. Following that we look at future
work that can be done.

8.1 The PVis visualization system

In this section we summarize the most relevant things we have learned from the
various parts of the PVis system. We describe the key points we learned from Java,
Java 3D, VisAD and the PVis system.

8.1.1 Using Java in a visualization system

During code development and while performing the case studies, we were continu-
ously looking for signs that would indicate that performance suffered greatly as a
result of PVis being written in Java. We could not determine if Java executes PVis
significantly slower than a similar application written in other languages, as dis-
cussed in Section 7.1.1. Our experience was that performance of the PVis system
implemented in Java was sufficient.

As was seen in Sections 7.1.1 and 7.3.2, a major issue for concern is garbage
collection. The results discussed there lead us to think that it is difficult and in some
cases impossible to write memory tight applications in Java. With the term memory
tight we mean applications that stay within a predefined memory limit. Another
result of garbage collection is that it may have significant impacts on performance,
should it start during a time critical part of the application, as discussed in 7.3.2.
The solution to both cases is to avoid the use of temporary objects, and rely on the
reuse of long lived objects instead.

The extensive standard library, with well tested code for nearly all application
level purposes, gives the programmer a good starting point. The presence of a
garbage collector avoids direct memory leaks, meaning that dereferenced objects
will be collected sooner or later. Multi threading is integrated into the runtime
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environment. These facts, among others, lead us to conclude that when developing
software in Java, one can expect a gain in productivity over languages such as C++.

8.1.2 Concerning Java 3D

The results from the case studies in Chapter 6, on navigation and animation, in-
dicate that once the datasets have been processed to geometry and been made a
part of the Java 3D scene graph, graphics are rendered quickly, which indicate that
Java 3D, as a graphics library, performs at an acceptable level. This also means
that for Java 3D to be an efficient graphics library, it requires an efficient graphics
processor that can translate datasets into the Java 3D scene graph efficiently.

The lack of depth sorting in Java 3D reduces Java 3D’s quality as a graph-
ics library for visualization. We saw in Section 7.1.2 that it is not possible to
draw transparent surfaces properly and volume rendering uses twice the required
memory, 6 sets of slice planes instead of 3.

8.1.3 Concerning VisAD

VisAD is a fully functional Java 3D based visualization library, but contains some
points, as mentioned on several occasions earlier, that make it unfitting to some
degree for the work that was done in this thesis.

The first thing that makes VisAD unsuitable for the PVis system is that all its
functionality is located in the display and rendering module. PVis is a pipeline
based system built for interconnecting filter modules to achieve maximum flexib-
ility. VisAD is based on loading datasets into the display and filtering them using
one method only. Although the functionality of filtering is present in VisAD, such
as iso surfaces, it is not present in such a way that it can be extracted into a fil-
ter module. It is integrated into the renderer. The fact that filtering functionality is
located in the display and rendering module, also limits the flexibility of the visual-
izations that can be done in VisAD. One can for instance not combine a iso surface
with volume rendering, since the map that triggers iso surfaces would render the
volume as an iso surface as well.

VisAD is based upon Java 3D version 1.1, as stated in 7.1.3. In this version,
Java 3D did not allow reference to geometry array by reference. Each time geo-
metric primitives are updated, either by display map changes, subdomain dataset
filtering or switching between solid and wire frame, all geometry arrays have to
be regenerated. This means allocation of new memory and deallocation of the
old through garbage collection. This is a cause for significant slow downs when
interacting with the dataset in the display module in the PVis system.

As stated in Section 7.3.3 VisAD achieves animation by loading all time steps
into memory and view them. This approach results in fast animation since all
processing is complete when animation starts, but limits the number of time steps
to the amount that can fit in memory. If the time dependent dataset is to large,
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animation is not possible. This result is especially bad for the PVis system, which
is targeted at loading large parallel datasets, potentially with many time steps.

8.1.4 Conclusion of the PVis visualization system

The goal of this thesis was to implement a system that could be used to visualize
parallel datasets created by simulators written using Diffpack. Standard visualiza-
tion techniques should be available despite the extra complexity of parallel datasets.
It should also have the ability to filter out one or more subdomain datasets from the
visualization.

The PVis system matches most of these criteria. It can load both single datasets
and parallel datasets from Diffpack’s simres format. It currently supports a only
few filter modules for various visualization techniques, but the PVis system was
written such that new modules can be added easily. In the display module of the
PVis system one can view and navigate the data in addition to several other filtering
options. The PVis system is based around a visualization pipeline, where the user
dynamically builds a pipeline of modules and connections between them. This
approach gives the user full flexibility to configure how a dataset is filtered before
it is rendered.

There is also functionality that is missing from the PVis system. As stated
earlier, PVis does not have the ability to animate time dependent datasets that span
more time steps than would fit in memory at once. In addition to this, the PVis
system only support datasets that have scalar field values. Vector fields and tensor
fields are not supported.

8.2 Future work

In this section we try to cover what could be done to increase the quality and
performance of the PVis system.

8.2.1 Loops in the PVis graph

One of the most serious drawbacks of the PVis system in its current version is that
it relies on VisAD type animation which loads all time steps of the datasets before
rendering, which may lead to memory problems. If we could simulate the effect of
a for loop in the graph, it would be possible to iterate through the animation and
loading one time step, filter it and display it, then do the same for the next time
step.

Note that the introduction of loop modules would cause the pipeline to become
cyclic since the loop’s end module would be connected to the loop’s start module,
so partial re-implementation would be required in the pipeline execution as well.

With the introduction of loops in the graph, one could also introduce automatic
screenshot generation. A module could be placed after the display in the graph that
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extracted the image displayed there, and write it to a file. This would be far more
useful than the manual snapshot that is currently present in the PVis system.

8.2.2 Pipeline based visualization library

The visualization library VisAD, on which the PVis system has been based is not
pipeline based. This is a drawback, since it has caused the display module in PVis
to be far more complex than it would otherwise have been. One could imagine that
visualization library used in the modules were flexible enough to allow a simple
display module and yet keep all the functionality. This can be done in two ways.

The first is to completely replace VisAD as visualization library and use a more
pipeline based library instead, such as for instance VTK [1, 29]. Doing so would
increase the functionality of the PVis system with all the functionality of the new
visualization library. The drawback however, is that the PVis system is based on
VisAD’s dataset representation of fields and grids, and so are all the currently ex-
isting modules. Should VisAD be replaced by another visualization library, all the
current modules would have to be modified to accommodate this.

The second method is to use VisAD for rendering only, and discard the fact
that it has filtering functionality in its display and renderer module. By not rely-
ing on the display maps for rendering, one can also combine different rendering
techniques, such as combining an iso surface with a volume. Note also that imple-
menting all the functionality would be a time consuming process.

8.2.3 Vector and Tensor support

It is a weakness of the PVis system that it does not support vector and tensor fields.
These were originally omitted as a result of that VisAD does not support them in
the renderer. If VisAD is replaced however, as proposed in Section 8.2.2, vector
and tensor support should be integrated into the PVis system.

8.2.4 Virtual global domain

Visualization techniques that are written to operate on parallel datasets, are more
complex than those that operate on single dataset. In Section 3.2.3 we proposed
an implementation of a virtual global domain, that abstracted the complexity of
multiple subdomains in the parallel dataset to appear as a single dataset for all
operations on the parallel dataset.

In PVis, this could have been made possible by extending the field and grid
implementations of VisAD, or perhaps another visualization library, to match the
abstract defintions described in 3.2.3. From these extended implementations one
could derive container grids and container fields used to represent the virtual global
domain.
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