
Mapping Relational Database
Constraints to SHACL
(Extended Version)

Ratan Bahadur Thapa and Martin Giese
Research Report Nr 503, July 25, 2022

ISBN 978-82-7368-603-9
ISSN 0806-3036

Mapping Relational Database Constraints to SHACL

Ratan Bahadur Thapa and Martin Giese

Dept. of Informatics, University of Oslo, Norway
{ratanbt|martingi}@ifi.uio.no

Abstract. Most structured data today is still stored in relational databases, which
makes it important to provide a translation between relational and semantic data.
A relational to RDF mapping, such as R2RML [14], provides a way to view
existing relational data in the RDF data model through declarative mappings.
While relational to RDF mapping translates relational instance data to RDF, it
does not specify any translation of existing relational constraints such as primary
and foreign key constraints. Since the introduction of R2RML, interest in RDF
constraint languages has increased and SHACL [17] has been standardised. This
raises the question of which SHACL constraints are guaranteed to be valid on a
dataset produced by a relational to RDF mapping. For arbitrary SQL constraints
and relational to RDF mappings, this is a hard problem, but we introduce a number
of restrictions on the mappings that allow us to introduce a constraint rewriting
for relational to RDF mappings that faithfully transfers SQL integrity constraints
to SHACL constraints. We define and prove two fundamental properties, namely
maximal semantics preservation and monotonicity.

1 Introduction

In relational database theory, one can restrict data to a set of relations that are considered
to be useful to applications at hand by imposing relevant integrity constraints upon
them, i.e., the semantics properties, also known as data dependencies, that the data in
the database must obey. However, such integrity constraints of relational data are not
explicit when mapped into RDF. A relational to RDF (R2R) mapping outputs an RDF
graph that no longer contains the integrity constraints information. To overcome the
problem, one can restore the semantic properties of R2R transformed data by using a
semantics preserving constraint rewriting [28,7,25] that maps the integrity constraints of
relational data into a well-behaved constraint formalism, which provides a closed-world
description for the mapped RDF graph. The integrity constraints of the dataset that
is being stored or represented in the RDF graph are a critical piece of information in
practice, both to detect problems in the RDF dataset and provide data quality guarantees
for RDF data exchange and interoperability.

In this paper, we study constraint rewriting for R2R mapping to make it more faithful
by transforming the integrity constraints, such as primary and foreign keys, unique
and not null integrity constraints as well as data types, from SQL database to RDF
graph. In an attempt to transfer such integrity constraints of relational data, such as key
constraints and functional dependency in direct mapping [2] to a larger perspective of
relational constraints [1, Sect. 10] in more expressive ontology-based mapping [20] of

relational data, into OWL DL axioms [22] as well as Epistemic DL axioms [15], the
problem has recently been studied in [25,7] and [10,11,23] respectively. However, for
our work, we follow the constraint rewriting technique proposed in [28] that explicitly
transforms integrity constraints of SQL database into integrity constraints on the RDF
graph, expressed in SHACL [17] as opposed to OWL/Epistemic DL axioms. Contrary
to OWL, SHACL, the Shapes Constraint Language recommended by W3C since 2017,
has a closed world semantics and uses the unique name assumption, which makes it a
more suitable candidate than OWL for expressing as well as detecting the violations of
integrity constraints on an RDF graph.

For arbitrary SQL constraints and relational to RDF mappings, constraint rewriting
is a hard problem. For simplicity, we restrict ourselves to (a) the most common SQL
constraints, namely keys, uniqueness and not null constraints, and (2) simple R2R map-
pings (Defn. 4), which are restricted in such a way that the resulting RDF is structurally
close enough to the source that it remains possible to analyse the propagation of source
constraints to the target. Thus, once the SHACL descriptions of the mapped RDF graph
are available, they can be used to validate that the facts in the graph are compatible with
the constraints of the relational source and the mapping, using the SHACL validation
engine. However, R2R mappings are also known for their mapping inconsistency and
redundancy anomalies [18,9], thus one-to-one semantics correspondence such as seman-
tics preservation proposed in [28, Defn. 6] and [25, Defn. 12] between the relational
and the mapped RDF data can not be established in general [28,25, Prop. 1]. One of
the prominent reasons behind such flaws is that R2R mappings often imply SHACL
constraints that satisfy the mapped RDF graph with respect to database constraints even
if the key constraints are violated in the source database, which can not be easily fixed
as the mappings rely on the values of database keys to produce RDF terms [28, Exam. 4
and 5]. We can thus not hope for semantic equivalence between the SQL and SHACL
constraints. In this work we instead define a notion of maximal semantics preservation
to express that any additional SHACL constraints are either implied by the generated
ones, or not implied by the SQL constraints.

Example 1 Consider the following database instanceD with schemas that describes
students and their enrollment in courses being offered by a university :

create table course (C_id varchar primary key, Title varchar unique);

create table student (S_id integer primary key, Name varchar, Code

varchar not null foreign key references course(C_id));

S_id Name Code

011 Ida CS40

012 CS20

C_id Title

CS40 Logic

CS20 Database

CS50 Data Eng

FK

In general, an R2R mapping is an assertion of the form Q −→ ψ that transforms a set of
tuples projected by SQL query Q, called source query, over a relational sourceD into
a set of RDF triples defined by graph triple patterns ψ. Assume an R2R mapping M to
retrieve students and their enrollment in the university’s courses,

Select S_id from student −→ 〈iri1(S_id), rdf:type, Student〉.

Select C_id from course −→ 〈iri2(C_id), rdf:type, Course〉.

Select S_id, C_id from student, course −→ 〈iri1(S_id), enrolledFor, iri2(C_id)〉.

where student.Code = course.C_id

3

where iri1 and iri2 are injective functions that construct iris for students and courses
from their respective id’s. The mapping M yields the following RDF graph G (on the
left) from the database instanceD:

〈iri1(011), rdf:type, Student〉.

〈iri1(012), rdf:type, Student〉.

〈iri2(CS40), rdf:type, Course〉.

〈iri2(CS20), rdf:type, Course〉.

〈iri2(CS50), rdf:type, Course〉.

〈iri1(011), enrolledFor, iri2(CS40)〉.

〈iri1(012), enrolledFor, iri2(CS20)〉.

:Student a sh:NodeShape, rdfs:Class;

sh:property [sh:path :enrolledFor;

sh:maxCount 1; sh:minCount 1;

sh:nodeKind sh:IRI; sh:class :Course].

:Course a sh:NodeShape, rdfs:Class;

sh:property [sh:path [sh:inversePath

:enrolledFor];

sh:nodeKind sh:IRI; sh:class :Student].

Next, consider a SHACL document S (on the right), which consists of node shapes
:Student and :Course with implicit target class 1 that define the constraints, intuitively, all
students must be enrolled for exactly one course, and all courses must be enrolled by zero
or more students. Now observe that the document S not only validates the graph G but
also guarantee the validation of every RDF graphs that can be generated via mappings
M from any valid instanceD of the schemas in Example 1, i.e., semantics preservation.
Moreover, any further restrictions on the property paths of S, such as all courses must
be enrolled by at least one students, would easily be violated, meaning that a valid
database instanceD can be found such that mapped RDF graphs would not validate the
document S. Thus, we say that S is a maximally implied set of SHACL shapes for the
given relational source and the mappings M. For proof details, we refer the readers to
the extended version [30].

Example 1 illustrates that an assessment of R2R mapping is necessary to guaran-
tee whether the integrity constraints of relational data are maximally propagated via
mappings to the RDF. We thus take the process of R2R transformation into account and
define constraint rewriting as a function from constraints in SQL database to the sets
of SHACL shapes over RDF graph. We first introduce two fundamental properties of
constraint rewriting, namely maximal semantics preservation and monotonicity. Finally,
we show that our proposed constraint rewriting is both maximal semantics preserving
and monotone, even in the most general and practical scenario where relational databases
contain null values. A constraint rewriting for R2R mappings is monotonic if it as-
sures that the result of constraint rewriting that is already computed no longer requires
alteration after the addition of new mappings.

2 Preliminaries

In this section, we fix notions and notations fundamental to the definition of R2R
mapping, and SHACL constraints [17].

Databases. Let ∆ be a countably infinite set of constants, including the reserved symbol
null. A relational schema R is a finite set of relation names, known as relation schemas.

1 https://www.w3.org/TR/shacl/#implicit-targetClass.

4

https://www.w3.org/TR/shacl/#implicit-targetClass

We associate with each relation schema R ∈ R a finite, non-empty set of named attributes,
denoted by att(R). An instanceD of R assigns each relation schema R ∈ R a finite set of
tuples RD, where each tuple t ∈ RD is a function that assigns to each attribute in att(R) a
value from domain ∆.

We write X as shorthand for a non-empty set {x1, . . . , xn} of attributes for n ≥ 1, and
x ∈ X to say that x is one of the elements of the set. |X| = n denotes the cardinality of the
set. We further write X / R to denote that X is a non-empty subset of att(R). We write
t(x) to denote the restriction of a tuple t ∈ RD to an attribute x ∈ att(R), which can be
extended to a set X / R, i.e., t(X). Finally, we define a relational database as a pair of
R andD, where R is a relational schema andD is a database instance of R. The active
domain ΓD of a database is the set of constants appearing inD, i.e., ΓD ⊆ ∆ \ {null}.

SQL Constraints. We consider declarations of the SQL: (a) primary (PK) and foreign
(FK) keys, (b) not null (NN) and unique (UNQ) integrity, and (c) data types, constraints
on the relational schema R. We write Σ for the set of SQL constraints. NN, UNQ and PK
constraints on a relational schema R are expressions of the form NN(X,R), UNQ(X,R) and
PK(X,R), resp., for any X / R such that R ∈ R. An instanceD of R satisfies:

� NN(X,R) if for every t ∈ RD and x ∈ X, t(x) , null.
� UNQ(X,R) if for every t, t′ ∈ RD, if t(x) = t′(x) , null for every x ∈ X then t = t′.
� PK(X,R) if: (a) for every t ∈ RD and x ∈ X, t(x) , null, and (b) for every t, t′ ∈ RD,

if t(X) = t′(X) then t = t′.

An FK constraint on R is an expression of the form FK(X,R,Y, S) for any X / R and
Y / S with |X| = |Y | and R, S ∈ R. An instanceD of R satisfies FK(X,R,Y, S) if for every
t ∈ RD: either (a) t(x) = null for some x ∈ X, or (b) there exists a tuple t′ ∈ SD such
that t(X) = t′(Y). Next, to handle SQL data types, let the domain of an SQL data type
ν be a subset ∆ν ⊆ ∆. An SQL data type declaration on R is an expression of the form
Type(x, ν,R) for every x ∈ att(R) such that R ∈ R, where ν is an SQL data type. An
instanceD of R satisfies Type(x, ν,R) for an attribute x ∈ att(R), if t(x) ∈ ∆ν for every
t ∈ RD.

A relational schema R with source constraints Σ consists of the relational schema R
and a set Σ of SQL constraints on R, such that UNQ(Y,R) ∈ Σ for all FK(X,R,Y, S) ∈ Σ,
as usual in all SQL implementations. W.l.o.g., we also assume that for every X / R:
(a) if PK(X,R) ∈ Σ, then UNQ(X,R) ∈ Σ and NN(X,R) ∈ Σ, (b) if NN(X,R) ∈ Σ, then
NN(x,R) ∈ Σ for every x ∈ X and (c) if NN(x,R) ∈ Σ for every x ∈ X, then NN(X,R) ∈ Σ.
Finally, given a relational schema R with constraints Σ, and an instanceD of R, we call
D a legal instance of R with Σ, denoted byD |= Σ, ifD satisfies all constraints in Σ.

Queries. Assume relational algebra with Selection σ¬isNull, Projection π, Equi Join
Zequality, Right Outer Join Z equality, Left Outer Join Zequality and Full Outer Join
./ equality operations as query language that corresponds to a sub-class of basic fragment
of SQL standard. We use notation σ¬isNull for the select condition ‘IS NOT NULL’ over
an attribute as in SQL, which can be extended to a set of attributes. Assume that R is a
relational schema,D is an instance of R and Q is a relational algebra expression over R.
Then att(Q), the set of attributes of Q, is recursively defined as follows, where we write
X / Q to denote that X is a non-empty subset of att(Q):

5

1. If Q = R such that R ∈ R, then att(Q) = att(R).
2. If Q′ is a relational algebra expression over R, X / Q′ and Q = σ¬isNull(X)(Q′), i.e.,

σ¬isNull(x1)∧ ...∧¬isNull(xn)(Q′), then att(Q) = att(Q′).
3. If Q′ is a relational algebra expression over R, X / Q′ and Q = πX(Q′), then

att(Q) = X.
4. Let Q1,Q2 be relational algebra expressions over R such that X / Q1 and Y / Q2

have compatible data types. If Q = Q1 OPX=Y Q2 s.t. OP ∈ {Z,Z , Z, ./ }, then
att(Q) = att(Q1) ∪ att(Q2).

The evaluation of Q overD, a set of tuples denoted by QD, is recursively defined as
follows,

1. If Q = R such that R ∈ R, then QD = RD.
2. If Q′ is a relational algebra expression over R, X / Q′ and Q = σ¬isNull(X)(Q′), then

QD = {t ∈ Q′D | t(x) , null for every x ∈ X}.
3. If Q′ is a relational algebra expression over R, X / Q′ and Q = πX(Q′) then, for

every t ∈ QD there exists t′ ∈ Q′D such that t(X) = t′(X).
4. Let Q1,Q2 be relational algebra expressions over R such that X / Q1 and Y / Q2

have compatible data types.
a. If Q = Q1 ZX=Y Q2 then for every t ∈ QD: (i) there exist t1 ∈ Q1

D and
t2 ∈ Q2

D s.t. t(x) = t1(x) = t2(y) , null for every x ∈ X and y ∈ Y , (ii)
t(u) = t1(u) for every u ∈ (att(Q1) \ att(Q2)), and (iii) t(v) = t2(v) for every
v ∈ (att(Q2) \ att(Q1)).

b. If Q = Q1 ZX=Y Q2 then for every t ∈ QD: either (i) there exist t1 ∈ Q1
D and

t2 ∈ Q2
D s.t. t(x) = t1(x) = t2(y) , null for every x ∈ X and y ∈ Y , t(u) = t1(u)

for every u ∈ (att(Q1) \att(Q2)) and t(v) = t2(v) for every v ∈ (att(Q2) \att(Q1)),
or (ii) there exist t1 ∈ Q1

D s.t. t(u) = t1(u) for every u ∈ (att(Q1) \ att(Q2)) and
t(v) = null for every v ∈ (att(Q2) \ att(Q1)).

c. If Q = Q1Z X=Y Q2 then for every t ∈ QD: either (i) there exist t1 ∈ Q1
D and t2 ∈

Q2
D s.t. t(x) = t1(x) = t2(y) , null for every x ∈ X and y ∈ Y , t(u) = t1(u) for

every u ∈ (att(Q1) \ att(Q2)) and t(v) = t2(v) for every v ∈ (att(Q2) \ att(Q1)), or
(ii) there exist t2 ∈ Q2

D s.t. for every t(v) = t2(v) for every v ∈ (att(Q2)\att(Q1))
and t(u) = null for every u ∈ (att(Q1) \ att(Q2)).

d. If Q = Q1 ./ X=Y Q2 then QD = Qa
D ∪ Qb

D s.t. Qa = Q1 ZX=Y Q2 and
Qb = Q1 Z X=Y Q2.

Henceforth, we denote by SP the relational expression containing only select-project rela-
tional operations, and SPJ the relational expression containing select-project-(outer)join
relational operations, respectively.

Definition 1 Let Q be a relational expression over a relational schema R. Then, we say
that the Q is a valid query if and only if there exist foreign key references between
every two sets of attributes participating in an equality join condition in the Q.

RDF Graphs. Assume that I,B and L are countably infinite disjoint sets of Interna-
tionalized Resource Identifiers (IRIs), Blank nodes and Literals, respectively. The set
of RDF terms T is I ∪ L ∪ B. A well-defined RDF triple is defined as a triple 〈s, p, o〉
where s ∈ I ∪ B is called the subject, p ∈ I is called the predicate and o ∈ T is called
the object. An RDF graph G ⊆ (I ∪ B) × I × T is a finite subset of RDF triples.

6

Definition 2 The set of nodes of an RDF graph G is the set of subjects and objects of
triples in the graph, i.e., {s, o | 〈s, p, o〉 ∈ G}.

Assume a countably infinite setV of variables disjoint from T . A triple pattern is defined
as a triple in (I∪B∪V)× (I∪V)× (T ∪V). A basic graph pattern (BGP) is a finite
set of triple patterns. The schema sch(ψ) of a triple pattern ψ is the RDF property and
class predicates [19] from the ψ.

Mappings. Formally, we adopt R2R mapping [6,24] that generate RDF triples from the
active domain of a database ΓD. Assume countably infinite and disjoint sets F and T
of iri-template and typing functions respectively, with each function α ∈ F ∪ T has an
associated arity n > 0. W.l.o.g., we assume that functions F ∪ T are injective, and map
only null to null.

Definition 3 We specify R2R-mappingM, from relational database-to-RDF, partitioned
into three disjoint sets:MC,MP andMU such that

i. MC is a set of data-to-RDF concept mappings, each one of the form

QX −→ 〈f(X), rdf:type,C〉,

where
a. QX is a source query Q over R with X / Q,
b. f ∈ F and C is an RDF concept.

ii. MP is a set of data-to-RDF object property mappings, each one of the form

QX,Y −→ 〈f(X), P, f′(Y)〉,

where
a. QX,Y is a source query Q over R with X,Y / Q,
b. f, f′ ∈ F and P is an RDF object property.

iii. MU is a set of data-to-RDF datatype property mappings, each one of the form

QX,Y −→ 〈f(X),U, t(Y)〉,

where
a. QX,Y is a source query Q over R with X,Y / Q,
b. f ∈ F, t ∈ T and U is an RDF datatype property.

Let m be a mapping Q −→ ψ of a triple pattern ψ, as in Defn. 3. The source query Q
is the body(m) of m, whereas the triple pattern ψ is the head(m). The schema sch(M) of
a mapping setM is the union of sch(head(m)) of each m ∈ M. For any two mapping
setsM andM′ defined over a relational schema R with source constraint Σ, we write
M′ ⊆ M, if for every mapping definition m, if m ∈ M′ then m ∈ M.

Definition 4 Let QC , QP and QU be the source queries of mappings of an RDF concept
C, object property P and datatype property U, respectively. Then, we say that a mapping
set M (according to Defn. 3) is a simple mapping if: (a) M contains exactly one
mapping definition per concept C, object property P and datatype property U predicates

7

in sch(M); (b) each QP is a valid SPJ query with one join operation, (c) each QU is
an SP query, d) if C and C′ are the concepts whose instances are subject and object of
an object property P, then the QC and QC′ are either equal to QP or SP queries with a
projected set of attributes whose (tuple) values are mapped to instances of C and C′,
and (e) if C is the concept whose instances are the subject of a datatype property U, then
QC is either equal to QU or an SP query with a projected set of attributes whose (tuple)
values are mapped into the instances of C.

Example 2 Consider the mapping of object property ‘EnrolledFor’ in Example 1.
Instances of concepts ‘Student’ and ‘Course’ are mapped to subject and object of the
property ‘EnrolledFor’, respectively. Then, according to simple mapping in Defn. 4, the
source queries used in the mappings of those ‘Student’ and ‘Course’ concepts must be
either the exact same source query used in the mapping of the property ‘EnrolledFor’
or the SP source queries as in Example 1. Thus, a distinct simple mapping could be
defined for the same purpose that maps RDF concepts ‘Student’ and ‘Course’ using
the same SPJ source query QP,

QP F Select S_id, C_id from student, course

where student.Code = course.C_id

as used in the mapping of object property ‘EnrolledFor’ as follows:

QP −→ 〈iri1(S_id), rdf:type, Student〉.

QP −→ 〈iri2(C_id), rdf:type, Course〉.

QP −→ 〈iri1(S_id), enrolledFor, iri2(C_id)〉.

Let t ∈ QD be a tuple of constants, and let f(X) be a term such that f ∈ F and X /Q. Then,
f(t(X)) is a ground term of f(X) obtained by substituting occurrence of every x ∈ X with
t(x).

Definition 5 LetMC ∪MP ∪MU be an R2R mapping setM defined over a relational
schema R, and D an instance of R. Then, we call the set of well-defined RDF triple
assertionsM(D), i.e.,

M(D) = {〈f(t(X)), rdf:type,C〉 | {Q −→ 〈f(X), rdf:type,C〉} ∈ MC, X / Q and t ∈ QD}

∪ {〈f(t(X)), P, f′(t(Y))〉 | {Q −→ 〈f(X), P, f′(Y)〉} ∈ MP, X,Y / Q and t ∈ QD}

∪ {〈f(t(X)),U, t(t(Y))〉 | {Q −→ 〈f(X),U, t(Y)〉} ∈ MU , X,Y / Q and t ∈ QD},

the RDF graph projected by the mapping setM and the instanceD.

We recall that R2R mappings in Defn. 3 generate RDF triples from the active domain
of a database ΓD, i.e., null cannot appear in the output RDF triples. Therefore, in this
paper, we explicitly consider that (a) mappingsM is simple, and (b) w.l.o.g., source
query Q of each mapping inM contains σ¬isNull(X) and σ¬isNull(Y) filters over every
projected set of X,Y / att(Q).

SHACL. Our formal treatment of the core constraints of SHACL [17] is based on the
approach of Corman et al. [13]. Each SHACL constraint is a set of conditions, usually
referred to as shape, defined as a triple 〈s, τs, φs〉 consisting of a shape IRI s, a target

8

definition τs, and a constraint definition φs. The τs and φs are expressions that determine
for every RDF graph G and node n of G, whether n is a target of the shape, G |= τs(n),
respectively‚ whether n satisfies the constraint, G |= φs(n). All shapes generated by our
transformation have an ‘implicit target class,’ which means that s is also the IRI of a
class and G |= τ(n) iff n is a SHACL instance of class s.2 For the purpose of our work,
the constraint φs is an expression defined according to the following grammar:

φF φ ∧ φ | ≥n P±. α | ≤n P±. α | BC P± (1)
αF > | ` | ¬` | C | ¬C

where > stands for truth, ` is an XML schema datatype, C and P are an RDF concept
and property names respectively, the superscript ± stands for a property or its inverse,
n ∈ N, ¬ for negation, (≥n P±.α) means ‘must have at least n P±-successor verifying α’
for any n ∈ N and (BC P±) means ‘all values of P±-successor must be unique 3 among
instances of concept C’. As syntactic sugar, we use (=n P±.α) for (≥n P±.α)∧ (≤n P±.α),
(BC P±.α) for (≤1 P±.α) ∧ (BC P±) and (DC P±.α) for (=1 P±.α) ∧ (BC P±).

A SHACL document is a set of SHACL shapes. An RDF graph G validates against a
shape 〈s, τs, φs〉 if for every nodes n of G, if G |= τs(n) then G |= φs(n). An RDF graph G
validates against a SHACL document S, written G |= S , iff G validates against all shapes
in S. The schema sch(s) of a SHACL shape s is the set of RDF concept and property
predicates [19] used in the target τs and constraint φs definition. The schema sch(S) of a
SHACL document S is the union of sch(s) of every shape s ∈ S .

3 Constraint rewriting: Definition and Properties

Our goal is to generate a set of SHACL constraints that is as strong as possible while
being guaranteed to hold for all RDF graphs resulting from valid database instances. Let
M be a mapping set defined over a relational schema R with source constraints Σ.

Definition 6 A SHACL document S is an Σ-implied set of shapes with respect to M,
written as Σ |=M S , if for every instanceD of R:

D |= Σ →M(D) |= S .

Definition 7 Let Σ |=M S . Then, we say that S is a maximally Σ-implied set of shapes
with respect toM, written as Σ |=∗

M
S , if for every Σ |=M S ′ s.t. sch(S ′) ⊆ sch(M) and

every RDF graph G :
G |= S → G |= S ′.

We now formalise a constraint rewriting and some desirable properties. Let S be the
set of all SHACL shapes and Q be the set of all pairs (M, Σ) such thatM is a mapping
set defined over a relational schema R with source constraints Σ.

Definition 8 (Constraint rewriting) A constraint rewriting is a function T : Q→ P(S).

2 https://www.w3.org/TR/shacl/#implicit-targetClass
3 dash:uniqueValueForClassConstraintComponent from http://datashapes.org

9

https://www.w3.org/TR/shacl/#implicit-targetClass
http://datashapes.org

We next introduce central properties of a constraint rewriting T .

Definition 9 (Semantics preservation) A constraint rewriting T is semantics preserv-
ing if for every mapping setM and every source constraints Σ:

Σ |=M T (M, Σ).

Definition 10 (Maximal semantics preservation) A constraint rewriting T is maxi-
mal semantics preserving if for every mapping set M and every source constraints
Σ:

Σ |=∗
M
T (M, Σ).

Definition 11 (Monotonicity) A constraint rewriting T is monotone if for any mapping
setsM′ ⊆ M defined over a relational schema R with source constraint Σ and every
RDF graph G:

G |= T (M, Σ)→ G |= T (M′, Σ).

4 View Constraint: Definitions

As introduced in Sect. 2, R2R mapping relies on database views based on a source
query to compute RDF terms from the database values. As a first step of our constraint
transformation, we have to analyse the propagation of database constraints to these
views.

Let R be a relational schema with source constraints Σ, and R ∈ R. The constraint Σ
restricted to the set of att(R), denoted by Σ |R, is the set of constraints such that for every
constraint σ ∈ Σ on any X / R, there is σ ∈ Σ |R. For example, if FK(X,R,Y, S) ∈ Σ (resp.,
FK(Y, S , X,R) ∈ Σ) on any X /R, then there is FK(X,R,Y, S) ∈ Σ |R (resp., FK(Y, S , X,R) ∈
Σ |R).

Definition 12 Let Q be a relational expression over a relational schema R with source
constraints Σ. Then, the set Σ propagated to the set of att(Q), denoted by Σ |Q, is recur-
sively defined as follows,

a. If Q = R such that R ∈ R, then Σ |Q = Σ |R.
b. Q = σ¬isNull(X)(Q′) where X / Q′, then Σ |Q = Σ |Q′ .
c. If Q = πX(Q′) where X / Q′ then Σ |Q = {PK(Y,R), UNQ(Y,R), NN(Y,R), FK(Y,R,Z, S),
FK(Z, S ,Y,R) ∈ Σ |Q′ | Y ⊆ X and R, S ∈ R}.

d. If Q = Q1 OPX=Y Q2 where X / Q1 and Y / Q2 have compatible data types, and
OP ∈ {Z,Z , Z, ./ }, then Σ |Q = Σ |Q1 ∪ Σ |Q2 .

SQL constraints are not well suited to direct translation to SHACL, so we introduce
an intermediate representation similar to functional dependencies. Let R be a relation
name with X,Y /R. Then, we write a functional dependency as an expression of the form
FDX→Y , i.e., meaning X / R functionally determines Y / R. Relational data dependencies,
such as functional, multi-value and others, are originally defined on databases without
null [3,5]. However, we need notions of data dependencies that also apply to databases
with null, such as in [4], which we define as follows:

10

Definition 13 Let Q be a source query over a relational schema R with source con-
straints Σ, R ∈ R a relation name andD an arbitrary instance of R. Let V be the pair
(QD, Σ |Q) of projected view QD and propagated constraints Σ |Q. Then, for any X,Y / Q,

a. V |= FPX→Y if for every t, t′ ∈ QD, if t(X) = t′(X) then t(Y) = t′(Y).
b. V |= UFX→Y if QD |= FPX→Y and QD |= FPY→X .
c. V |= FDX→Y if QD |= FPX→Y and NN(X,R), NN(Y,R) ∈ Σ |Q.
d. V |= UFDX→Y if QD |= FDX→Y and QD |= FDY→X .

Henceforth, we will keep the SQL notations intuitively simple in examples, i.e., we
write NN(X) ∈ Σ |X/R instead of NN(X,R) ∈ Σ |X/R for the propagated NN(X,R) ∈ Σ to
Σ |X/R.

Example 3 Following Example 1, assume a mapping setM with fS and fC iri-templates
and a typing function tν 4 as follows:

a. πS_id,Nameσ¬isNull(S_id)∧¬isNull(Name)(student) −→ 〈fS(S_id), hasName, tν(Name)〉.
b. πC_id,Titleσ¬isNull(C_id)∧¬isNull(Title)(course) −→ 〈fC(C_id), hasTitle, tν(Title)〉.

Let Q1 = πS_id,Nameσ¬isNull(S_id)∧¬isNull(Name)(student), and V1 = (Q1
D, Σ |Q1). Then,

• att(Q1) = {S_id,Name} and Σ |att(Q1) = {PK(S_id), UNQ(S_id), NN(S_id), Type(S_id, ν),
Type(Name, ν)}, i.e., from assumption in Sect. 2, if PK(S_id) then UNQ(S_id) and NN(S_id).

• V1 |= FPS_id→Name since for every t, t′ ∈ Q1
D, if t(S_id) = t′(S_id) then t(Name) = t′(Name).

Filter σ¬isNull(Name) excludes tuples from Q1
D that contains null for the Name ∈ att(Q1).

Similarly, let Q2 = πC_id, Titleσ¬isNull(C_id)∧¬isNull(Title)(course), and
V2 = (Q2

D, Σ |Q2). Then,

• att(Q2) = {C_id, Title} and Σ |att(Q2) = {PK(C_id), UNQ(C_id), NN(C_id), Type(C_id, ν),
UNQ(Title), Type(Title, ν), FK(Code, student, C_id, course)}

• V2 |= FPC_id→Title since for any t, t′ ∈ Q2
D, if t(C_id) = t′(C_id) then t(Title) = t′(Title).

• V2 |= FPTitle→C_id since for any t, t′ ∈ Q2
D, if t(Title) = t′(Title) then t(C_id) = t′(C_id).

• V2 |= UFC_id→Title since Q2
D |= FPC_id→Title and Q2

D |= FPTitle→C_id.

5 Source to View Constraint Implication

The next step is to determine which of the data dependencies from Defn. 13 hold for
the view defined by the source queries, i.e., they are implied by the propagated SQL
constraints.

Let Q be a source query over a relational schema R with source constraints Σ.
Then, we say that Σ implies a data dependency σX→Y s.t. σ ∈ {UFD,FD,UFP,FP} on
X,Y / Q, denoted by ΣQ σX→Y , if V |= σX→Y for every legal instanceD of R, where
V = (QD, Σ |Q) is the pair of projected view QD and propagated constraints Σ |Q. We now
concentrate on SP source queries.

4 tν specify XML Schema datatype of RDF literal tν(d) corresponding to the SQL data type ν of
the database constant d ∈ ∆ν, e.g., tν is an xsd:string IRI term if ν is varchar SQL data type.

11

Lemma 1. Let Q be a source query πX,Yσ¬isNull(X)∧¬isNull(Y)(R) over a relational
schema R with source constraints Σ, R ∈ R a relation name and Σ |Q the set Σ propagated
to set of att(Q). Then, for any X,Y / Q,

a. ΣQ FPX→Y if UNQ(X,R) ∈ Σ |Q.
b. ΣQ UFX→Y if UNQ(X,R), UNQ(Y,R) ∈ Σ |Q.
c. ΣQ FDX→Y if UNQ(X,R) ∈ Σ |Q and NN(X,R), NN(Y,R) ∈ Σ |Q.
d. ΣQ UFDX→Y if UNQ(X,R), UNQ(Y,R) ∈ Σ |Q and NN(X,R), NN(Y,R) ∈ Σ |Q.

Corollary 1. Let Q be a source query πX,Yσ¬isNull(X)∧¬isNull(Y)(R) over a relational
schema R with source constraints Σ, R ∈ R a relation name and Σ |Q the set Σ propagated
to set of att(Q). Then, for any X,Y / Q,

a. ΣQ UFDX→Y → ΣQ FDX→Y and ΣQ FDX→Y → ΣQ FPX→Y

b. ΣQ UFDX→Y → ΣQ UFX→Y and ΣQ UFX→Y → ΣQ FPX→Y

We next concentrate on SPJ source queries. An SPJ source query Q over a relational
schema R with source constraints Σ is a relational algebra expression of the form,

Q B πX,Yσ¬isNull(X)∧¬isNull(Y)(R1 OPU=V R2),

where R1,R2 ∈ R are relation names with X,U / R1 and Y,V / R2, |U | = |V | and
OP ∈ {Z, Z,Z , ./ }. Since mapping in Defn. 3 generates RDF triples from the active
domain ΓD ⊆ ∆ \ {null} of the database, w.l.o.g., we equivalently express the stated
SPJ source query Q, that yields the same set of RDF triples as the original Q, as follows,

πX,Yσ¬isNull(X)∧¬isNull(Y)(σ¬isNull(X)∧¬isNull(U)(R1) OPU=V σ¬isNull(V)∧¬isNull(Y)(R2)).

Note that the SPJ query Q is valid if and only if FK(U,R1,V,R2) ∈ Σ |Q or FK(V,R2,U,R1) ∈
Σ |Q, see Defn. 1. Henceforth, we use symbol→∗ to express dependency in the opposite
direction of foreign key reference, i.e., we write FDX→∗Y to state functional dependency
from X / Q to Y / Q if FK(Y,R2, X,R1) ∈ Σ |Q or FK(V,R2,U,R1) ∈ Σ |Q s.t. X,U / R1 and
Y,V / R2.

Lemma 2. Let R be a relational schema with source constraints Σ, and let Q be an SPJ
source query over R,

Q B πX,Yσ¬isNull(X)∧¬isNull(Y)(Q1 OPU=V Q2)

s.t. Q1 and Q2 are SP expressions over R1 ∈ R and R2 ∈ R with X,U / Q1 and Y,V / Q2
respectively, OP ∈ {Z, Z,Z , ./ } and FK(U,R1,V,R2) ∈ Σ |Q. Then, for any X,Y / Q :

a. ΣQ σX→Y if ΣQ1 σX→U and ΣQ2 σV→Y s.t. σ ∈ {UFD,FD,UF}.
b. ΣQ σX→Y if ΣQ1 UFDX→U and ΣQ2 σV→Y s.t. σ ∈ {FD,UF}.
c. ΣQ σX→Y if ΣQ1 σX→U s.t. σ ∈ {FD,UF} and ΣQ2 UFDV→Y .
d. ΣQ FPX→Y if ΣQ1 FDX→U and ΣQ2 UFV→Y .
e. ΣQ FPX→Y if ΣQ1 UFX→U and ΣQ2 FDV→Y .
f. ΣQ FPX→Y if ΣQ1 FPX→U .

12

g. ΣQ FPX→Y if ΣQ1 σX→U and ΣQ2 FPV→Y s.t. σ ∈ {UFD,FD,UF}.
h. ΣQ σY→∗X if ΣQ1 σU→X and ΣQ2 σY→V s.t. σ ∈ {UFD,UF}.
i. ΣQ FPY→∗X if ΣQ1 σU→X s.t. σ ∈ {UFD,FD,FP} and ΣQ2 UFY→V .
j. ΣQ σY→∗X if ΣQ1 σU→X s.t. σ ∈ {FD,UF,FP} and ΣQ2 UFDY→V .

On the correctness of Lemma 2, e.g., assume the case (f). Then, UNQ(V,R2) ∈ Σ |Q2 since
FK(U,R1,V,R2) ∈ Σ |Q. Thus, ΣQ2 σV→Y s.t. σ ∈ {UFD,FD,UF,FP} is the set of all
possible constraints implication. Hence, the case (f) of Lemma 2 covers the following
possible cases of constraints implication:

• ΣQ FPX→Y if ΣQ1 FPX→U and ΣQ2 σV→Y s.t. σ ∈ {UFD,FD,UF,FP}.

Further, by applying similar arguments and the implication rules stated in Corollary 1 to
the rest of cases in Lemma 2, the correctness proof of the Lemma can be enumerated.

Example 4 Following Example 1 and 4, assume an R2R mapping:

Q −→ 〈fS(S_id), enrolledFor, fC(C_id)〉,

where Q is a source query πS_id,C_idσ¬isNull(S_id)∧¬isNull(C_id)(Q1 ZCode=C_id Q2) such
that Q1 = σ¬isNull(S_id)∧¬isNull(Code)(student) and Q2 = σ¬isNull(C_id)(course). Then,

a. for SP expression Q1 :
• att(Q1) = {S_id,Code} and {UNQ(S_id), NN(S_id), NN(Code)} ⊆ Σ |Q1 from

Defn. 12.
• ΣQ1 FDS_id→Code from the case (c) of Lemma 1

b. for SP expression Q2 :
• att(Q2) = {C_id} and {UNQ(C_id), NN(C_id)} ⊆ Σ |Q2 from Defn. 12.
• ΣQ2 UFDC_id→C_id from the case (d) of Lemma 1

c. finally, for SPJ expression Q:
• att(Q) = {S_id, C_id}
• FK(Code, student, C_id, course) ∈ Σ |Q1 ∩ Σ |Q2 , i.e., Q is a valid SPJ query.
• ΣQ FDS_id→C_id from case (c) of Lemma 2, since

i. ΣQ1 FDS_id→Code, and
ii. ΣQ2 FDC_id→C_id from Σ UFDC_id→C_id → Σ FDC_id→C_id following

the case (a) of Corollary 1

6 The Constraint Rewriting

We now introduce a constraint rewriting Γ for a simple mappingM (Defn. 4), and prove
the properties defined in Sect. 3. The constraint rewriting Γ in Defn. 15 transforms the
view constraints implied by the relational source Σ (as introduced in Sect. 4 and 5) into
sets of SHACL shapes. Since the semantic equivalence of generated SHACL constraints
to the source constraints Σ also depends on the combination of source queries used
in mappings of RDF triples, we first introduce the classification functions ι and κ to
distinguish between the various cases that can occur.

Let fC and fC′ be iri mapping templates for the respective RDF concepts C and
C′, and let t be an iri typing template. Let QC , QP and QU be the source queries of
mapping Defn. 3 of an RDF concept C, object property P and datatype property U,
respectively.

13

Definition 14 LetM be a simple mapping with RDF predicates C,C′, P,U ∈ sch(M).
Let ι and κ be classification functions that take a triple pattern of the form 〈fC(X), P, fC′ (Y)〉
and 〈fC(X),U, t(Y)〉 respectively, and the mapping set M as input, and classifies the
groups of the respective source queries (QC ,QP,QC′) and (QC ,QU) as follows,

ι(〈fC(X), P, fC′ (Y)〉,M) =

{
A if QC , QP

B otherwise.
and κ(〈fC(X),U, t(Y)〉,M) =

{
A if QC , QU

B otherwise.

Let Q be a source query over a relational schema R with source constraint Σ. Then,
we write ΣQ σX�Y s.t. σ ∈ {UFD,FD,UF,FP} to express the dependency that is either
ΣQ σX→Y or ΣQ σX→∗Y on X,Y / Q.

Definition 15 (Constraint rewriting Γ) Let M be a simple mapping defined over a
relational schema R with source constraint Σ, and let ι and κ be the classification
functions. Then, the constraint rewriting Γ(M, Σ) of Σ w.r.t. M is a set of SHACL
shapes that for each RDF concept C with mapping QX −→ 〈fC(X), rdf:type,C〉,
contains 〈C, τC , φC〉 with an implicit targetClass τC and conjunctive set of constraints
φC =

∧
1≤i≤3 Φi, where

1. for mapping m of each object property P such as QX,Y −→ 〈fC(X), P, fC′ (Y)〉,

Φ1 =

{
(≤0 P.¬C′) ∧ (≥0 P.C′) ∧ (

∧
ΣQσ λ1(σ)) if ι(head(m),M) = A

(≤0 P.¬C′) ∧ (≥1 P.C′) ∧ (
∧

ΣQσ λ2(σ)) if ι(head(m),M) = B

where

λ1(σ) =

(DC P.C′) if σ = UFDX→Y

(=1 P.C′) if σ = FDX→Y

(BC P.C′) if σ = UFX�Y

(≤1 P.C′) if σ = FPX�Y

and λ2(σ) =

{
(DC P.C′) if σ = UFX�Y

(=1 P.C′) if σ = FPX�Y

2. for mapping m of each object property P such as QX,Y −→ 〈fC′ (X), P, fC(Y)〉,

Φ2 =

{
(≤0 P−.¬C′) ∧ (≥0 P−.C′) ∧ (

∧
ΣQσ δ1(σ)) if ι(head(m),M) = A

(≤0 P−.¬C′) ∧ (≥1 P−.C′) ∧ (
∧

ΣQσ δ2(σ)) if ι(head(m),M) = B

where

δ1(σ) =

(DC P−.C′) if σ = UFDX→Y

(=1 P−.C′) if σ = FDX→Y

(BC P−.C′) if σ = UFX�Y

(≤1 P−.C′) if σ = FPX�Y

and δ2(σ) =

{
(DC P−.C′) if σ = UFX�Y

(=1 P−.C′) if σ = FPX�Y

3. for mapping m of each datatype property U such as QX,Y −→ 〈fC(X),U, t(Y)〉,

Φ3 =

{
(≤0 U.¬t) ∧ (≥0 U. t) ∧ (

∧
ΣQσ µ1(σ)) if ι(head(m),M) = A

(≤0 U.¬t) ∧ (≥1 U. t) ∧ (
∧

ΣQσ µ2(σ)) if ι(head(m),M) = B

where

µ1(σ) =

(DC U. t) if σ = UFDX→Y

(=1 U. t) if σ = FDX→Y

(BC U. t) if σ = UFX�Y

(≤1 U. t) if σ = FPX�Y

and µ2(σ) =

{
(DC U. t) if σ = UFX�Y

(=1 U. t) if σ = FPX�Y

14

Observe that in Defn. 15, the first constraint components, such as (≤0 P±.¬C′) and
(≤0 U.¬t) in the definitions of Φi, are implied by the restriction on the mapping set
M, i.e., by the fact that M contains exactly one mapping defining per object and
datatype property predicates. The second constraint components, such as (≥0 P±.¬C′)
or (≥1 P±.¬C′) and (≥0 U.¬t) or (≥1 U.¬t), in the Φi are implied by the combination
of ι- and κ-classifications. Finally, the third constraints components

∧
ΣQσ f (σ) s.t.

f ∈ λi ∪ δi ∪ µi for 1 ≤ i ≤ 2 are implied by the source constraint Σ w.r.t.M.
The constraint definition φC B (≤0 P±.¬C′) requires all nodes n′ in the graph that

that are reachable from a node n s.t. 〈n, rdf:type,C〉 via property path P± to have a
typing triple s.t. 〈n′, rdf:type,C′〉, which is exactly what we needed for the mapped
object property paths P± in the RDF graph given the restriction that set M contains
exactly one mapping definitions per object property predicates. Thus, to extend the
constraint rewriting Γ Defn. in 15 beyond the simple mapping M, the rewriting Γ
must: (i) not generate constraint components such as (≤0 P±.¬C′) and (≤0 U.¬t) when
there exist more than one mapping definition per object P and datatype U properties,
respectively, in the setM, (ii) accommodate classification of all possible combinations
of sources queries in the definitions of ι and κ, and (iii) revise the definitions of λi, δi and
µi for additional consequences of Σ-implications w.r.t. the extendedM.

We now state the properties of the constraint Γ rewriting. Theorem 1 is a soundness
statement that guarantees that all constraints produced by Γ will be validated by the RDF
graph mapped from any valid database instance.

Theorem 1. The constraint rewriting Γ is semantics preserving.

Theorem 2 expresses the completeness of Γ, i.e., every SHACL constraint expressible
with the schema sch(M) of the mappings, and that is implied by Σ is implied by the
generated shapes Γ(M, Σ). This does not hold in general for SHACL constraints on
predicates not in sch(M). Finally, Theorem 3 expresses that adding mappings will never
invalidate generated constraints.

Theorem 2. The constraint rewriting Γ is maximal semantics preserving.

Theorem 3. The constraint rewriting Γ is monotone.

7 Discussion

We have presented a constraint rewriting Γ for simple R2R mapping that is useful in the
context of relational to RDF data transformation [14,25,21] and data integration [24,33].
Observe that simple R2R mappings can express a comprehensive catalog of useful
mapping patterns studied in [8,27,26]. Simplifying simple R2R mapping further yields
direct mapping [2] since that requires additional restrictions on Defn. 4; therefore, the
results for our constraint rewriting for simple mappings also seamlessly holds for direct
mapping [2,25,29]. In future work, we believe that it would interesting to extend our
constraint rewriting Γ in two different directions: (a) for arbitrary R2R mappings, e.g.,
admitting the full relational algebra or arbitrary SPJ expressions as the source query in
mapping Defn. 3, and (b) for a broader class of relational constraints such as (disjunctive)
tuple and equality generating dependencies [1].

15

There are several approaches that map relational schemas and constraints to RDFS
and OWL/Epistemic DL axioms since, with an appropriate closed world semantics, OWL
can express integrity constraints. In particular, we first refer the reader to the implications
of constraints in ontology-based data access platform under different names, such as
protection and faithfulness in [10,11], which is equivalent to relational constraints-to-
OWL, i.e., to check whether the mapped RDF of every source dataset satisfying the
source constraints can be extended to a model of the mapped DL-LiteA axioms, and
OWL-to-relational constraints, i.e., opposite of former, constraints implication in [23].
Even though these proposals for combining OWL/Epistemic DL axioms with integrity
constraints have some promising results for target constraints specification in the OBDA
setting, there has been no unanimity on the correct semantics.

The problem of direct mapping of source schemas and constraints into RDFS/OWL
axioms has been studied in [25,7]. Sequeda et al. [25] attempted to capture the database
constraints on the RDF graph resulting from direct mapping using OWL. However, the
bootstrapped OWL axioms did not trigger the unsatisfiability of the directly mapped
graph whenever keys are violated in the source database unless the database instance is
explicitly encoded in the constraint rewriting. Further, Sequeda et al. [25, Theorem 3]
established that the desirable monotonicity property of direct mapping is an obstacle to
obtain a semantics preserving OWL axioms even if the database instance is explicitly
encoded in the constraint rewriting. To accomplish the desired one-to-one semantics
correspondence between legal relational data and RDF graph satisfying OWL axioms,
Calvanese et al. [7] further extended the direct mapping of relational schemas into
DL-LiteRDFS with disjointness – as constraints over mapped RDF graphs.

Finally, Thapa et al. [28] have studied the problem of translating database constraints
into SHACL, instead of OWL/Epistemic DL, giving a direct transformation from SQL
constraints to SHACL, preserving their semantics when source key constraints are
satisfied [28, Theorem 2]. The present work improves on this by a) not being restricted
to direct mappings, and b) lifting the requirement on satisfied key constraints.

8 Conclusion

In this paper, we study the problem of constraint rewriting for relational to RDF data
transformation based on the central property of maximal semantics preservation. We
translate standard SQL database constraints to shapes in the SHACL constraint language
for RDF graphs. We show that our proposed rewriting Γ for the simple relational to RDF
mappings satisfies the central properties of a constraint rewriting.

We believe that the propose constraint rewriting constitutes a core component of
R2R mapping tools for the crucial task of constructing and maintaining a quality-assured
RDF graph with SHACL constraints. The SHACL description of the generated RDF
graph provides a data quality guarantee for data exchange, interoperability and query
optimization. Hence, an important direction for future work will be the implementation
and practical evaluation of our rewriting for relational to RDF data transformation and
query optimization [32] in an ontology-based data access platform [31,33].

Acknowledgements This work is supported by the Norwegian Research Council via the
SIRIUS SFI (237898). We thank Egor Kostylev for many constructive suggestions.

16

References

1. Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases, volume 8.
Addison-Wesley Reading, 1995.

2. Marcelo Arenas, Alexandre Bertails, Eric Prud’hommeaux, and Juan Sequeda. A direct
mapping of relational data to RDF. W3C recommendation, 27:1–11, 2012.

3. William Ward Armstrong. Dependency structures of data base relationships. In IFIP congress,
volume 74, pages 580–583. Geneva, Switzerland, 1974.

4. Antonio Badia and Daniel Lemire. Functional dependencies with null markers. The Computer
Journal, 58(5):1160–1168, 2015.

5. Catriel Beeri, Ronald Fagin, and John H Howard. A complete axiomatization for functional
and multivalued dependencies in database relations. In Proceedings of the 1977 ACM
SIGMOD international conference on Management of data, pages 47–61, 1977.

6. Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, Antonella
Poggi, Mariano Rodriguez-Muro, and Riccardo Rosati. Ontologies and databases: The DL-
Lite approach. In Reasoning Web International Summer School, pages 255–356. Springer,
2009.

7. Diego Calvanese, Wolfgang Fischl, Reinhard Pichler, Emanuel Sallinger, and Mantas Simkus.
Capturing relational schemas and functional dependencies in RDFS. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 28, 2014.

8. Diego Calvanese, Avigdor Gal, Davide Lanti, Marco Montali, Alessandro Mosca, and Roee
Shraga. Mapping patterns for virtual knowledge graphs. arXiv preprint arXiv:2012.01917,
2020.

9. Cristina Civili, Jose Mora, Riccardo Rosati, Marco Ruzzi, and Valerio Santarelli. Semantic
analysis of R2RML mappings for ontology-based data access. In International Conference
on Web Reasoning and Rule Systems, pages 25–38. Springer, 2016.

10. Marco Console and Maurizio Lenzerini. Data quality in ontology-based data access: The case
of consistency. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 28,
2014.

11. Marco Console and Maurizio Lenzerini. Epistemic integrity constraints for ontology-based
data management. In Proceedings of the AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 2790–2797, 2020.

12. Julien Corman, Juan L. Reutter, and Ognjen Savkovic. Semantics and validation of recursive
SHACL [extended version], KRDB research centre technical report: KRDB18-01, 6 november
2018. http://www.inf.unibz.it/krdb/ .

13. Julien Corman, Juan L Reutter, and Ognjen Savković. Semantics and validation of recursive
SHACL. In International Semantic Web Conference, pages 318–336. Springer, 2018.

14. Souripriya Das, Seema Sundara, and Richard Cyganiak. R2RML: RDB to RDF mapping
language. September 2012. https://www.w3.org/TR/2012/REC-r2rml-20120927/.

15. Francesco M Donini, Daniele Nardi, and Riccardo Rosati. Description logics of minimal
knowledge and negation as failure. ACM Transactions on Computational Logic (ToCL),
3(2):177–225, 2002.

16. Steve Harris, Andy Seaborne, and Eric Prud’hommeaux. SPARQL 1.1 query language. W3C
recommendation, 21(10):778, 2013.

17. Holger Knublauch and Dimitris Kontokostas. Shapes constraint language (SHACL).
W3C recommendation, W3C, July 2017. https://www.w3.org/TR/2017/
REC-shacl-20170720/.

18. Domenico Lembo, José Mora, Riccardo Rosati, Domenico Fabio Savo, and Evgenij
Thorstensen. Mapping analysis in ontology-based data access: Algorithms and complexity.
In International Semantic Web Conference, pages 217–234. Springer, 2015.

17

http://www.inf.unibz.it/krdb/
https://www.w3.org/TR/2012/REC-r2rml-20120927/
https://www.w3.org/TR/2017/REC-shacl-20170720/
https://www.w3.org/TR/2017/REC-shacl-20170720/

19. Frank Manola, Eric Miller, Brian McBride, et al. RDF primer. W3C recommendation,
10(1-107):6, 2004.

20. Giansalvatore Mecca, Guillem Rull, Donatello Santoro, and Ernest Teniente. Ontology-based
mappings. Data & Knowledge Engineering, 98:8–29, 2015.

21. Luciano Frontino de Medeiros, Freddy Priyatna, and Oscar Corcho. MIRROR: Automatic
R2RML mapping generation from relational databases. In International Conference on Web
Engineering, pages 326–343. Springer, 2015.

22. Boris Motik, Ian Horrocks, and Ulrike Sattler. Bridging the gap between OWL and relational
databases. Journal of Web Semantics, 7(2):74–89, 2009.

23. Charalampos Nikolaou, Bernardo Cuenca Grau, Egor V Kostylev, Mark Kaminski, and Ian
Horrocks. Satisfaction and Implication of Integrity Constraints in Ontology-based Data
Access. In IJCAI, pages 1829–1835, 2019.

24. Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe De Giacomo, Maurizio
Lenzerini, and Riccardo Rosati. Linking data to ontologies. In Journal on data semantics X,
pages 133–173. Springer, 2008.

25. Juan F. Sequeda, Marcelo Arenas, and Daniel P Miranker. On directly mapping relational
databases to RDF and OWL. In Proceedings of the 21st international conference on World
Wide Web, pages 649–658, 2012.

26. Juan F. Sequeda and Daniel P Miranker. Ultrawrap mapper: A semi-automatic relational
database to RDF (RDB2RDF) mapping tool. In International semantic web conference
(posters & demos), 2015.

27. Juan F. Sequeda, Freddy Priyatna, and Boris Villazón-Terrazas. Relational database to RDF
mapping patterns. In WOP, 2012.

28. Ratan Bahadur Thapa and Martin Giese. A source-to-target constraint rewriting for direct
mapping. In International Semantic Web Conference, pages 21–38. Springer, 2021.

29. Ratan Bahadur Thapa and Martin Giese. A source-to-target constraint rewriting for direct
mapping (extended version). Research Report 498, Dept. of Informatics, University of Oslo,
September 2021. http://urn.nb.no/URN:NBN:no-90764.

30. Ratan Bahadur Thapa and Martin Giese. Mapping relational database constraints to SHACL
(extended version). Research Report 503, Dept. of Informatics, University of Oslo, July 2022.
http://urn.nb.no/URN:NBN:no-35645.

31. Guohui Xiao, Diego Calvanese, Roman Kontchakov, Domenico Lembo, Antonella Poggi,
Riccardo Rosati, and Michael Zakharyaschev. Ontology-based data access: A survey. IJCAI
Organization, 2018.

32. Guohui Xiao, Roman Kontchakov, Benjamin Cogrel, Diego Calvanese, and Elena Botoeva.
Efficient handling of SPARQL optional for OBDA. In International Semantic Web Conference,
pages 354–373. Springer, 2018.

33. Guohui Xiao, Davide Lanti, Roman Kontchakov, Sarah Komla-Ebri, Elem Güzel-Kalaycı,
Linfang Ding, Julien Corman, Benjamin Cogrel, Diego Calvanese, and Elena Botoeva. The
virtual knowledge graph system Ontop. In International Semantic Web Conference, pages
259–277. Springer, 2020.

18

http://urn.nb.no/URN:NBN:no-90764
http://urn.nb.no/URN:NBN:no-35645

A Preliminaries

A.1 SHACL constraints.

We briefly recall the core constraints [17] of SHACL introduced in [13]. Each SHACL
constraint in a set of conditions, usually referred to as shape, defined as a triple 〈s, τs, φs〉

consisting of a shape IRI s, a target definition τs, and a constraint definition φs. The target
definition τs is a SPARQL [16] query with one distinguished variable whose purpose
is to retrieve target nodes of node shape s from the data graph, i.e., entities occurring
in the RDF graph for which the constraints φs of the node shape sc should be validated.
For the purpose of our work, the constraint φs is an expression defined according to the
following grammar:

φF φ ∧ φ | ≥n P±. α | ≤n P±. α | BC P±

αF > | ` | ¬` | C | ¬C

where > stands for the Boolean truth values, ` is an XML schema datatype, C and P
are an RDF concept and property names respectively, the superscript ± stands for a
property or its inverse, n ∈ N, ¬ for negation, (≥n P±.α) means ‘must have at least
n P±-successor verifying α’ for any n ∈ N and (BC P±.α) means ‘all values of P±-
successor must be unique 5 among instances of concept C’. As syntactic sugar, we use
(=n P±.α) for (≥n P±.α)∧ (≤n P±.α), (BC P±.α) for (≤1 P±.α)∧ (BC P±) and (DC P±.α)
for (=1 P±.α) ∧ (BC P±).

A SHACL document is a set of shapes, also referred to as shape graph, and an
RDF graph that is supposed to be validated against a shape graph is called data graph.
Validation of a data graph G against a shape graph S is a two-step process: (1) retrieve
the target nodes of every shape in S from G, known as shape assignment, and (2) check
whether or not target nodes of every shape in S satisfy their constraint definition, known
as constraint validation. A shape assignment β for G and S is a total function mapping
nodes in G to subsets of (S ∪ {¬s | s ∈ S }) such that s and ¬s can not be both in β(n).
The assignment is called total if either s ∈ β(n) or ¬s ∈ β(n) for each node n in G and
shape 〈s, τs, φs〉 ∈ S . The semantics of constraint φs validation is given in terms of a
function [φs]G,n, i.e., an evaluation [φs]G,n of constraint φs at node n in graph G. Given
the total shape assignment β for G and S, and φs a constraint formula, for each nodes
n in G, the evaluation [φs]G,n, i.e., either [φs]G,n = 1 (true) or [φs]G,n = 0 (false), is
inductively defined as follows:

[>]G,n = 1

[`]G,n = 1 iff n has datatype `

[C]G,n = 1 iff n is the instance of SHACL class C

[¬C]G,n = 1 − [C]G,n

[φ1 ∧ φ2]G,n = min {[φ1]G,n, [φ2]G,n}

[≥n P±.α]G,n
= 1 iff | {n′ | (n, n′) ∈ ~P±�G and [α]G,n′ = 1} | ≥ n

5 dash:uniqueValueForClassConstraintComponent from http://datashapes.org

19

http://datashapes.org

[≤n P±.α]G,n
= 1 iff | {n′ | if(n, n′) ∈ ~P±�G and [α]G,n′ = 1} | ≤ n

[=n P±.α]G,n
= 1 iff [≥n P±.α]G,n

= 1 and [≤n P±.α]G,n
= 1

[BC P±]G,n
= 1 iff for every node n′ s.t. n′ , n and [C]G,n′ = 1,

if (n, n1) ∈ ~P±�G and (n′, n2) ∈ ~P±�G then n1 , n2.

[BC P±.α]G,n
= 1 iff [≤1 P±.α]G,n

= 1 and [BC P±]G,n
= 1

[DC P±.α]G,n
= 1 iff [=1 P±.α]G,n

= 1 and [BC P±]G,n
= 1

where (n, n′) ∈ ~P±�G represents that the nodes n and n′ in G are connected via a
SHACL property path P±.

We are now ready to introduce graph validation. Intuitively, a data graph G is valid
against a shape graph S if one can find an assignment β for G and S complying with
targets and constraints, known as faithful assignment. Formally, an assignment β for G
and S is faithful if and only if [τs]G ⊆ β(n) for each shape 〈s, τs, φs〉 ∈ S , and for each
node n in G:

– if s ∈ β(n), then [φs]G,n = 1
– if ¬s ∈ β(n), then [φs]G,n = 0

where τs is a SPARQL query by definition, and [τs]G is the evaluation of τs over G. A
data graph G is valid against a shape graph S if there is a faithful assignment β for G
and S .

A.2 Example of Abstract syntax-to-SHACL Syntax Translation

For the complete translation of abstract syntax to SHACL syntax, we refer to the
source [12, appx A.3]. For the purpose of brief examples, consider following @prefixes:

@prefix dash: <http :// datashapes .org /dash#> .
@prefix rdf : <http :// www.w3.org/1999/02/22−rdf−syntax−ns#> .
@prefix rdfs : <http :// www.w3.org/2000/01/rdf−schema#> .
@prefix schema: <http :// schema.org/> .
@prefix sh: <http :// www.w3.org/ns/shacl#> .
@prefix xsd: <http :// www.w3.org/2001/XMLSchema#> .

Then,

– 〈Student, τStudent, φC B (=1 EnrolledFor. Course)〉 can be translated into:

schema:Student a sh:NodeShape, rdfs : Class ;
sh: property [

sh:path schema:EnrolledFor ;
sh: qualifiedValueShape [sh: class schema:Course] ;
sh:qualifiedMinCount 1 ;
sh:qualifiedMaxCount 1 ;

] .

– 〈Student, τStudent, φC B (≤0 EnrolledFor.¬Course)〉 can be translated into:

20

schema:Student a sh:NodeShape, rdfs : Class ;
sh: property [

sh:path schema:EnrolledFor ;
sh:nodeKind sh:IRI;
sh: class schema:Course

] .

– 〈Student, τStudent, φC B (=1 EnrolledFor. Course)∧(≤0 EnrolledFor.¬Course)〉
can be translated into:

schema:Student a sh:NodeShape, rdfs : Class ;
sh: property [

sh:path schema:EnrolledFor ;
sh:minCount 1;
sh:maxCount 1;
sh:nodeKind sh:IRI ;
sh: class schema:Course;

] .

For the translation of abstract syntaxBC to dash:uniqueValueForClassConstraintComponent
syntax definition, we refer to the page http://datashapes.org. For the purpose of
brief examples,

– 〈Student, τStudent, φC B (BC HasName. xsd:string)〉 can be translated into:

schema:Student a sh:NodeShape, rdfs : Class ;
sh: property [

sh:path schema:HasName ;
sh: datatype xsd: string ;
sh:maxCount 1 ;
dash:uniqueValueForClass schema:Student ;

] .

B Proof of Section 5

Lemma 1. Let Q be a source query πX,Yσ¬isNull(X)∧¬isNull(Y)(R) over a relational
schema R with source constraints Σ, R ∈ R a relation name and Σ |Q the set Σ propagated
to set of att(Q). Then, for any X,Y / Q,

a. ΣQ FPX→Y if UNQ(X,R) ∈ Σ |Q.
b. ΣQ UFX→Y if UNQ(X,R), UNQ(Y,R) ∈ Σ |Q.
c. ΣQ FDX→Y if UNQ(X,R) ∈ Σ |Q and NN(X,R), NN(Y,R) ∈ Σ |Q.
d. ΣQ UFDX→Y if UNQ(X,R), UNQ(Y,R) ∈ Σ |Q and NN(X,R), NN(Y,R) ∈ Σ |Q.

Proof. Let R be a relational schema with source constraints Σ and R ∈ R a relation name.
Let Q = πX,Yσ¬isNull(X)∧¬isNull(Y)(R). Then, att(Q) and Σ |Q are recursively defined by
following query declaration in Sect. 2 and Defn. 12, respectively.

21

http://datashapes.org

a. LetD be an arbitrary instance of R. Since ¬isNull(X) and ¬isNull(Y) filter-out
the tuples t ∈ RD that contain null for any x ∈ X and y ∈ Y attribute from the
answer set QD of query Q, i.e.,

QD = {t ∈ RD | t(x) , null for each x ∈ X and t(y) , null for each y ∈ Y},

there must be t(X) , null and t(Y) , null for every t ∈ QD. Next, assume
UNQ(X,R) ∈ Σ |Q. Then, UNQ(X,R) ∈ Σ |Q must have sprung from the UNQ(X,R) ∈ Σ |R,
i.e., for every tuples t, t′ ∈ RD of every legal instanceD of R, if t(x) = t′(x) , null
for every x ∈ X then t = t′.

Hence, the filters ¬isNull(X) and ¬isNull(Y) on X,Y /Q and the uniqueness
constraint UNQ(X,R) ∈ Σ |Q guarantees that if t(X) = t′(X) then t(Y) = t′(Y) for every
tuples t, t′ ∈ QD of every legal instance D of R, i.e., QD |= FPX→Y for each legal
instanceD of R, from the case (a) of Defn. 13. Therefore, ΣQ FPX→Y .

b. Since ¬isNull(X) and ¬isNull(Y) on X,Y / Q, we have t(X) , null and t(Y) ,
null for every t ∈ QD of every instanceD of R.

Next, assume UNQ(X,R), UNQ(X,R) ∈ Σ |Q. Then, UNQ(X,R), UNQ(Y,R) ∈ Σ |R.
Hence, QD |= FPX→Y and QD |= FPY→X for every legal instanceD of R, following
the case (a) above. That is, QD |= UFX→Y for every legal instanceD of R, from the
case (c) of Defn. 13. Therefore, ΣQ UFX→Y .

c. Assume UNQ(X,R) ∈ Σ |Q. Then, we have QD |= FPX→Y on X,Y / Q for every legal
instanceD of R, from the case (a).

Next, assume NN(X,R), NN(Y,R) ∈ Σ |Q. Then, we have QD |= FDX→Y for every
legal instanceD of R, from the case (d) of Defn. 13. Hence, ΣQ |= FDX→Y .

d. Assume UNQ(X,R), UNQ(Y,R) ∈ Σ |Q. Then, we have QD |= UFX→Y for every legal
instanceD of R, from the case (b).

Assume NN(X,R), NN(Y,R) ∈ Σ |Q. Then, we have QD |= FDX→Y and QD |=
FDY→X for every legal instance D of R, from the case (c) of Defn. 13. That is,
QD |= UFDX→Y for every legal instanceD of R, from the case (d) of Defn. 13. Hence
ΣQ UFDX→Y .

Corollary 1. Let Q be a source query πX,Yσ¬isNull(X)∧¬isNull(Y)(R) over a relational
schema R with source constraints Σ, R ∈ R a relation name and Σ |Q the set Σ propagated
to set of att(Q). Then, for any X,Y / Q,

a. ΣQ UFDX→Y → ΣQ FDX→Y and ΣQ FDX→Y → ΣQ FPX→Y
b. ΣQ UFDX→Y → ΣQ UFX→Y and ΣQ UFX→Y → ΣQ FPX→Y

Proof. The proof is implicit by the following inspections.

a. From case (d) of lemma 1, we have ΣQ UFDX→Y if UNQ(X,R), UNQ(Y,R) ∈ Σ |Q
and NN(X,R), NN(Y,R) ∈ Σ |Q. Then, from the case (c) of lemma 1, these conditions
are sufficient for the ΣQ FDX→Y . Hence, if ΣQ UFDX→Y then ΣQ FDX→Y , i.e.,
ΣQ UFDX→Y → ΣQ FDX→Y .

From case (c) of lemma 1, ΣQ FDX→Y if UNQ(X,R) ∈ Σ |Q and NN(X,R), NN(Y,R) ∈
Σ |Q. Then, from the case (a) of lemma 1, the condition UNQ(X,R) ∈ Σ |Q is suf-
ficient for the ΣQ FPX→Y . Hence, if ΣQ FDX→Y then ΣQ FPX→Y , i.e.,
ΣQ FDX→Y → ΣQ FPX→Y .

22

b. From case (d) of lemma 1, we have ΣQ UFDX→Y if UNQ(X,R), UNQ(Y,R) ∈ Σ |Q
and NN(X,R), NN(Y,R) ∈ Σ |Q. Then, from the case (b) of lemma 1, the conditions
UNQ(X,R), UNQ(Y,R) ∈ Σ |Q is sufficient for the ΣQ UFX→Y . Hence, if ΣQ UFDX→Y

then ΣQ UFX→Y , i.e., ΣQ UFDX→Y → ΣQ UFX→Y .
From case (b) of lemma 1, ΣQ UFX→Y if UNQ(X,R), UNQ(Y,R) ∈ Σ |Q. Then,

from the case (a) of lemma 1, the condition UNQ(X,R) ∈ Σ |Q is sufficient for the
ΣQ FPX→Y . Hence, if ΣQ UFX→Y then ΣQ FPX→Y , i.e., ΣQ UFX→Y → ΣQ
FPX→Y .

Note 1. Consider an R2R mapping over a relational schema R with source constraints
Σ,

πX,Yσ¬isNull(X)∧¬isNull(Y)(R1 OPU=V R2) −→ 〈f(X),MarriedTo, f′(Y)〉,

where R1,R2 ∈ R are relation names with X,U /R1 and Y,V /R2, OP ∈ {Z,Z , Z, ./ } and
FK(U,R1,V,R2) ∈ Σ. Next, consider the source query πX,Y (R1 OPU=V R2) with/without
σ¬isNull filters as follows,

• Q1 B πX,Y (R1 OPU=V R2) and Q2 B πX,Y (σ¬isNull(U)(R1) OPU=V σ¬isNull(V)(R2))
• Q3 B πX,Y (σ¬isNull(X)∧¬isNull(U)(R1) OPU=V σ¬isNull(V)∧¬isNull(Y)(R2))
• Q4 B πX,Yσ¬isNull(X)∧¬isNull(Y)(σ¬isNull(U)(R1) OPU=V σ¬isNull(V)(R2))
• Q5 B πX,Y (σ¬isNull(X)∧¬isNull(U)(R1) OPU=V σ¬isNull(V)∧¬isNull(Y)(R2))
• Q6 B πX,Yσ¬isNull(X)∧¬isNull(Y)(σ¬isNull(X)∧¬isNull(U)(R1) OPU=V σ¬isNull(V)∧¬isNull(Y)(R2))

Since R2R mapping in Defn. 3 generates RDF triples from the active domain of
database ΓD, i.e., ΓD ⊆ ∆\{null}, the stated mapping with source queries from Q1-to-Q6
for each OP ∈ {Z,Z , Z, ./ } equijoin operation yields the same set of RDF triples as with
the original query πX,Yσ¬isNull(X)∧¬isNull(Y)(R1 OPU=V R2). Thus, henceforth, w.l.o.g., 6

we assume that every SPJ source query is a relational expression of the form Q6.

Theorem 4. Lemma 2 covers the complete space of constraints ΣQ σX→Y and ΣQ
σY→∗X s.t. σ ∈ {UFD,FD,UFP,FP} implications for a valid SPJ source query Q.

Proof. The proof involves a syntactic enumeration of the complete space of constraint
implications for the SPJ source query. We show that Lemma 2 exhaustively consider
the all possible case combinations for constraints ΣQ σX→Y and ΣQ σY→∗X s.t.
σ ∈ {UFD,FD,UFP,FP} implications on any X,Y / Q.

Let Q be an SPJ source query over a relational schema R with source constraint Σ
as in Lemma 2, i.e.,

Q B πX,Yσ¬isNull(X)∧¬isNull(Y)(Q1 OPU=V Q2)

s.t. Q1 and Q2 are SP expressions over R1 ∈ R and R2 ∈ R
7 with X,U / Q1 and

Y,V / Q2 respectively, OP ∈ {Z, Z,Z , ./ } and FK(U,R1,V,R2) ∈ Σ |Q. Then, following
our assumption for the SP-expression, i.e., SP source-query definition, let

Q1 B πX,Uσ¬isNull(X)∧¬isNull(U)(R1)

6 from our assumption for the (simple) mappings, see paragraph below Defn. 5, i.e. only selections
considered are those that filter out non-null values.

7 i.e., not necessarily R1 , R2

23

and
Q2 B πV,Yσ¬isNull(V)∧¬isNull(Y)(R2).

For any ΣQ σX→Y or ΣQ σY→∗X s.t. σ ∈ {UFD,FD,UP,FP} on X,Y / Q, we need
to consider following cases.

A. For ΣQ σX→Y s.t. σ ∈ {UFD,FD,UP,FP}, we exhaustively consider all possible
ΣQ1 σX→U and ΣQ2 σV→Y case combinations. Note that UNQ(V,R2) ∈ Σ |Q2 since
FK(U,R1,V,R2) ∈ Σ |Q. Thus, ΣQ2 σV→Y s.t. σ ∈ {UFD,FD,UF,FP} represents the
complete space of constraint implications from V /Q2 to Y /Q2. Hence, the possible
case combinations are:

a. ΣQ1 UFDX→U and ΣQ2 σV→Y s.t. σ ∈ {UFD,FD,UF,FP},
i. ΣQ1 UFDX→U and ΣQ2 UFDV→Y

ii. ΣQ1 UFDX→U and ΣQ2 FDV→Y

iii. ΣQ1 UFDX→U and ΣQ2 UFV→Y

iv. ΣQ1 UFDX→U and ΣQ2 FPV→Y
b. ΣQ1 FDX→U and ΣQ2 σV→Y s.t. σ ∈ {UFD,FD,UF,FP},

i. ΣQ1 FDX→U and ΣQ2 UFDV→Y

ii. ΣQ1 FDX→U and ΣQ2 FDV→Y

iii. ΣQ1 FDX→U and ΣQ2 UFV→Y

iv. ΣQ1 FDX→U and ΣQ2 FPV→Y
c. ΣQ1 UFX→U and ΣQ2 σV→Y s.t. σ ∈ {UFD,FD,UF,FP},

i. ΣQ1 UFX→U and ΣQ2 UFDV→Y

ii. ΣQ1 UFX→U and ΣQ2 FDV→Y

iii. ΣQ1 UFX→U and ΣQ2 UFV→Y

iv. ΣQ1 UFX→U and ΣQ2 FPV→Y
d. ΣQ1 FPX→U and ΣQ2 σV→Y s.t. σ ∈ {UFD,FD,UF,FP},

i. ΣQ1 FPX→U and ΣQ2 UFDV→Y

ii. ΣQ1 FPX→U and ΣQ2 FDV→Y

iii. ΣQ1 FPX→U and ΣQ2 UFV→Y

iv. ΣQ1 FPX→U and ΣQ2 FPV→Y

The cases a(i.), b(ii.) and c(iii.) are covered by the case(a) of Lemma 2. The cases
a(ii.) and a(iii.) are covered by the case(b) of Lemma 2, e.g., consider the case a(iii.).
We have ΣQ1 UFDX→U → ΣQ1 UFX→U from the case (b) of Corollary 1, and
ΣQ2 UFV→Y . Then, the case (a) of Lemma 2 s.t. σ = UF implies ΣQ UFX→Y ,
which exactly correspond to the result,

I ΣQ UFX→Y if ΣQ1 UFDX→U and ΣQ2 UFV→Y .

Further, the cases b(i.) and c(i.) are covered by the case (c) of Lemma 2. The cases
b(iii.) and c(ii.) are covered by the case (d) and (e) of Lemma 2, respectively. The
cases a(iv.), b(iv.) and c(iv.) are covered by the case (g) of Lemma 2. Finally, the
remaining cases d(i.)-to-d(iv.) are covered by the case (f) of Lemma 2.

B. For ΣQ σY→∗X s.t. σ ∈ {UFD,FD,UP,FP}, we exhaustively consider all possible
ΣQ1 σU→X and ΣQ2 σY→V case combinations. Again, we have UNQ(V,R2) ∈ Σ |Q2

since FK(U,R1,V,R2) ∈ Σ |Q. Hence, ΣQ2 σY→V s.t. σ ∈ {UFD,UF} represents the
complete space of constraint implications from Y / Q2 to V / Q2. Thus, the possible
case combinations are:

24

a. ΣQ1 UFDU→X and ΣQ2 σY→V s.t. σ ∈ {UFD,UF},
i. ΣQ1 UFDU→X and ΣQ2 UFDY→V

ii. ΣQ1 UFDU→X and ΣQ2 UFY→V

b. ΣQ1 FDU→X and ΣQ2 σY→V s.t. σ ∈ {UFD,UF},
i. ΣQ1 FDU→X and ΣQ2 UFDY→V

ii. ΣQ1 FDU→X and ΣQ2 UFY→V

c. ΣQ1 UFU→X and ΣQ2 σY→V s.t. σ ∈ {UFD,UF},
i. ΣQ1 UFU→X and ΣQ2 UFDY→V

ii. ΣQ1 UFU→X and ΣQ2 UFY→V

d. ΣQ1 FPU→X and ΣQ2 σY→V s.t. σ ∈ {UFD,UF},
i. ΣQ1 FPU→X and ΣQ2 UFDY→V

ii. ΣQ1 FPU→X and ΣQ2 UFY→V

The cases a(i.) and c(ii.) are covered by the case (h) of Lemma 2. The cases a(ii.),
b(ii.) and d(ii.) are covered by the case (i) of Lemma 2. Finally, the cases b(i), c(i)
and d(i) are covered by the case (j) of Lemma 2.

Hence, the complete space of constraint implications for the valid SPJ query Q is covered
by the Lemma 2, which concludes the correctness of the lemma.

Remark 1. Lemma 2 can be extended for an SPJ source query Q containing (outer)equijoins
between more than two SP expressions, i.e.,

Q B πAσ¬isNull(A)(Q1 OPU1=V2 Q2 OPU2=V3 Q3 . . . OPUn−1=Vn Qn)

such that Q1,Q2, . . . and Qn are SP queries, OP ∈ {Z, Z,Z , ./ } and there exist foreign
key references in an order from U1 / Q1 to V1 / Q2, U2 / Q2 to V3 / Q3, etc. Note that
relaxing clause (b) in Defn. 4 of simple mapping, i.e., allowing (outer)equijoins between
more than two tables or SP expressions in SPJ source queries of mapping, requires such
extension of lemma 2 for the (maximal) semantics-preserving rewriting in Defn. 15. We
left this as future work.

Lemma 2. Let R be a relational schema with source constraints Σ, and let Q be an SPJ
source query over R,

Q B πX,Yσ¬isNull(X)∧¬isNull(Y)(Q1 OPU=V Q2)

s.t. Q1 and Q2 are SP expressions over R1 ∈ R and R2 ∈ R with X,U / Q1 and Y,V / Q2
respectively, OP ∈ {Z, Z,Z , ./ } and FK(U,R1,V,R2) ∈ Σ |Q. Then, for any X,Y / Q :

a. ΣQ σX→Y if ΣQ1 σX→U and ΣQ2 σV→Y s.t. σ ∈ {UFD,FD,UF}.
b. ΣQ σX→Y if ΣQ1 UFDX→U and ΣQ2 σV→Y s.t. σ ∈ {FD,UF}.
c. ΣQ σX→Y if ΣQ1 σX→U s.t. σ ∈ {FD,UF} and ΣQ2 UFDV→Y .
d. ΣQ FPX→Y if ΣQ1 FDX→U and ΣQ2 UFV→Y .
e. ΣQ FPX→Y if ΣQ1 UFX→U and ΣQ2 FDV→Y .
f. ΣQ FPX→Y if ΣQ1 FPX→U .
g. ΣQ FPX→Y if ΣQ1 σX→U and ΣQ2 FPV→Y s.t. σ ∈ {UFD,FD,UF}.
h. ΣQ σY→∗X if ΣQ1 σU→X and ΣQ2 σY→V s.t. σ ∈ {UFD,UF}.

25

i. ΣQ FPY→∗X if ΣQ1 σU→X s.t. σ ∈ {UFD,FD,FP} and ΣQ2 UFY→V .
j. ΣQ σY→∗X if ΣQ1 σU→X s.t. σ ∈ {FD,UF,FP} and ΣQ2 UFDY→V .

Proof. Let R be a relational schema with source constraints Σ, and let Q be an SPJ
source query over R as in Lemma 2, i.e.,

Q B πX,Yσ¬isNull(X)∧¬isNull(Y)(Q1 OPU=V Q2).

Then, following our assumption for the SP relational expressions, i.e., SP source query,
in the mapping definition 3, let

Q1 B πX,Uσ¬isNull(X)∧¬isNull(U)(R1)

and
Q2 B πV,Yσ¬isNull(V)∧¬isNull(Y)(R2),

where R1,R2 ∈ R are relation names with X,U / R1 and Y,V / R2. Next observe
that UNQ(U,R2) ∈ Σ |Q2 since FK(V,R1,U,R2) ∈ Σ |Q. Thus, ΣQ2 σV→Y s.t. σ ∈
{UFD,FD,UF,FP} and ΣQ2 σY→∗V s.t. σ ∈ {UFD,UF}, respectively, represent the com-
plete space of constraint implications on Y,V / R2.

LetD be an arbitrary instance of R. Then, observe that the filters ¬isNull(X) and
¬isNull(Y) on the X,Y / Q filter-out the tuples t ∈ QD that contain null for any x ∈ X
and y ∈ Y attribute from the answer set QD, i.e.,

QD = {t ∈ Q′D | t(x) , null for each x ∈ X and t(y) , null for each y ∈ Y},

where Q′ = (Q1OPU=V Q2). In addition, X ⊆ att(Q) ∩ att(Q1) and Y ⊆ att(Q) ∩ att(Q2),
therefore, the answer set QD of the SPJ source query Q with any OP ∈ {Z,Z , ./ }
operations contain same set of tuples as of the query Q with equi-join Z operation 8, i.e.,
indeed, w.l.o.g., Q = πX,Yσ¬isNull(X)∧¬isNull(Y)(Q1 ZU=V Q2).

The proof of each case (a)-to (k) of Lemma 2 is as follows:

a. For the caseσ = UFD, the claim ΣQ UFDX→Y if ΣQ1 UFDX→U and ΣQ2 UFDV→Y

holds as follows.

Let ΣQ1 UFDX→U and ΣQ2 UFDV→Y . Then, referential integrity constraint
FK(U,R1,V,R2) ∈ Σ |Q from U /Q1 to V /Q2 guarantees that for each tuple t1 ∈ Q1

D

of every legal instance D of R, there exists a unique tuple t2 ∈ Q2
D such that

8 i.e., observe that ¬isNull(X) and ¬isNull(Y) filter-out all dangling tuples of QD if exist,
i.e., every tuple in Q1

D that has no matching tuple in Q2
D and vice-versa. In addition, note

that the Q is a valid SPJ source query, i.e., FK(U,R1,V,R2) ∈ Σ |Q. Hence, the Q with ZU=V

left-outer join operation either does not contain the dangling tuples or filter-out by the filter
¬isNull(Y) over the Y ⊆ att(Q)∩ att(Q2) , thus, equivalent to the Q with join ZU=V . Similarly,
the dangling tuples of Q with right-outer join Z U=V operation, if exist,i.e., emerging from the
Q2, filter-out by the filter ¬isNull(X) over the X ⊆ att(Q) ∩ att(Q1), thus, equivalent to the Q
with ZU=V . Finally, the equivalence of the query Q with full-outer join ./ U=V operation to the
Q with equi-join ZU=V follows from the previous arguments.

26

t1(U) = t2(V). This is a semantic restriction imposed on the evaluation of every
extension of R1 and R2 over every legal instanceD of R.

W.l.o.g., let Q = πX,Yσ¬isNull(X)∧¬isNull(Y)Q′ such that Q′ = (Q1 ZU=V Q2). Then,
for each tuple t in the answer set Q′D over every legal instanceD of R, there exist
t1 ∈ Q1

D and t2 ∈ Q2
D with t(U) = t1(U) = t2(V), i.e.,

Q′D = {t | t1 ∈ Q1
D and t2 ∈ Q2

D s.t. t(u) = t1(u) = t2(v) for every u ∈ U and v ∈ V ,

t(x) = t1(x) for every x ∈ att(Q1) and
t(y) = t2(y) for every y ∈ att(Q2)}.

Next, att(Q′) = att(Q1) ∪ att(Q2) since Q′ = (Q1 ZU=V Q2). Then,
i. ΣQ′ UFDX→U since ΣQ1 UFDX→U .

ii. ΣQ′ UFDX→V since ΣQ′ UFDX→U , and for each t ∈ Q′D, there exists a unique
tuple t2 ∈ Q2

D such that t(U) = t2(V).
iii. ΣQ′ UFDV→Y since ΣQ2 UFDV→Y .
iv. ΣQ′ UFDX→Y since ΣQ′ UFDX→V and ΣQ′ UFDV→Y .

Thus, ΣQ UFDX→Y since Q = πX,Yσ¬isNull(X)∧¬isNull(Y)Q′ and ΣQ′ UFDX→Y .

For the cases σ = {FD,UF}, i.e., the claims ΣQ σX→Y if ΣQ1 σX→U and
ΣQ2 σV→Y , hold as in the case σ = UFD, by following similar arguments.

b. For the case σ = FD, the claim ΣQ FDX→Y if ΣQ1 UFDX→U and ΣQ2 FDV→Y

holds as follows.

Note that ΣQ1 UFDX→U → ΣQ1 FDX→U from the case (a) of Corollary 1. Then,
ΣQ FDX→Y if ΣQ1 FDX→U and ΣQ2 FDV→Y , holds by following similar argu-
ment as in the previous case (a).

For the case σ = UF, the claim ΣQ UFX→Y if ΣQ1 UFDX→U and ΣQ2 UFV→Y

holds as follows. We have ΣQ1 UFDX→U → ΣQ1 UFX→U from the case (b) of
Corollary 1. Then, ΣQ UFX→Y whenever ΣQ1 UFX→U and ΣQ2 UFV→Y holds by
following similar arguments as in the previous case.

c. For the cases σ ∈ {FD,UF}, the claims ΣQ σX→Y if ΣQ1 σX→U and ΣQ2
UFDV→Y hold by following similar arguments as in the case (b).

d. The claim, ΣQ FPX→Y if ΣQ1 FDX→U and ΣQ2 UFV→Y holds as follows.

Note that ΣQ1 FDX→U → ΣQ1 FPX→U and ΣQ1 UFX→U → ΣQ1 FPX→U

from the case (a) and (b) of Corollary 1, respectively. Next, as in the case (a) above,
w.l.o.g., let Q = πX,Yσ¬isNull(X)∧¬isNull(Y)Q′ s.t. Q′ = (Q1 ZU=V Q2). We have
att(Q′) = att(Q1) ∪ att(Q2) since Q′ = (Q1 ZU=V Q2). Then,

i. ΣQ′ FPX→U since ΣQ1 FPX→U .
ii. ΣQ′ FPX→V since ΣQ′ FPX→U , and for each t ∈ Q′D, there exists a unique

tuple t2 ∈ Q2
D such that t(U) = t2(V).

27

iii. ΣQ′ FPV→Y since ΣQ2 FPV→Y .
iv. ΣQ′ FPX→Y since ΣQ′ FPX→V and ΣQ′ FPV→Y .

Thus, ΣQ FPX→Y since Q = πX,Yσ¬isNull(X)∧¬isNull(Y)Q′ and ΣQ′ FPX→Y .

e. The claim ΣQ FPX→Y if ΣQ1 UFX→U and ΣQ2 FDV→Y holds by following
similar arguments as in the previous case (d).

f. The claims ΣQ FPX→Y if ΣQ1 FPX→U hold as follows.

Recall that UNQ(U,R2) ∈ Σ |Q2 since FK(V,R1,U,R2) ∈ Σ |Q. Hence ΣQ2 σV→Y s.t.
σ ∈ {UFD,FD,UF,FP} represents the complete space of constraint implications from
V / Q2 to Y / Q2. Then, ΣQ FPX→Y if ΣQ1 FPX→U (i.e., and ΣQ2 σV→Y s.t.
σ ∈ {UFD,FD,UF,FP}) hold by following similar arguments as in the case (b)-to-(e)
above.

g. For the case σ ∈ {UFD,FD,UF}, the claims ΣQ σX→Y if ΣQ1 σX→U and
ΣQ2 FPV→Y hold by following similar observations as in the case (f).

h. The claims hold by follows similar arguments as in the case (a) when σ = {UFD,UF}.
i. The claims hold by following similar observations as in the case (d).
j. The claims holds by following similar observations as in the case (c) and (e).

C Proof of Section 6

Theorem 1. The constraint rewriting Γ is semantics preserving.

Proof. The proof requires that constraint rewriting Γ in Defn. 15 satisfies the condition
stated in Definition 9, i.e., given a mapping setM defined over a relational schema R
with source constraint Σ and an arbitrary instanceD of R:

D |= Σ −→M(D) |= S,

where M(D) from Definition 5, S = Γ(M, Σ) from Definition 8 and Γ is constraint
rewriting in Defn. 15.

Let D be an instance of relational schema R with D |= Σ. Then, there must be
M(D) |= S. In order to proveM(D) |= S, we next show that there exists an assignment
β for G and S complying with both targets and constraints, known as faithful assignment.

– For each shape s in the SHACL document S s.t. 〈C, τC , φC〉
9, there exists a mapping

of an RDF concept C s.t.,

QC −→ 〈fC(X), rdf:type,C〉,

9 Note that τC is implicit targetClass declaration, i.e., C a sh:NodeShape, rdfs:Class .

28

where QC is an SP/SPJ source query Q over R with X / Q, see the rewriting Γ in
Defn. 15.

Next, given theM(D) graph and shape assignment β, if there exists a mapping
of a node n in graphM(D) s.t. 〈n, rdf:type,C〉, then there exists shape assignment
s ∈ β(n) for the node n and shape s by following the target definition τC . An
inspection ofM(D), i.e.,

{〈fC(t(X)), rdf:type,C〉 ∈ G | {Q −→ 〈fC(X), rdf:type,C〉} ∈ MC, X/Q & t ∈ QD}

further reveals that the node n is generated by the injective mapping template fC

from t(X), i.e., a tuple t ∈ QD restricted to X / Q. Then, from the semantics of shape
validation, every node n inM(D) s.t. s ∈ β(n) validates against the shape s if and
only if [φC]G,n=1. Hence, for every node n inM(D) s.t. s ∈ β(n), we next show that
[φC]G,n=1 for all possible definition of the constraint φC .

Starting by the base cases:
1. Let φC be a property shape definition for an object property P. Then, from the

rewriting Γ in Defn. 15, there exist mapping of an object property P ∈ sch(M)
s.t.,

QP −→ 〈fC(X), P, fC′ (Y)〉,

where QP is an SPJ source query Q over R with X,Y / Q, and mapping of an
RDF concept C′ s.t.,

QC′ −→ 〈fC′ (Y), rdf:type,C′〉,

where QC′ is an SP/SPJ source query Q over R with Y / Q. Further, from the
Defn. of SPJ source query in Lemma 2, there must be

QP B πX,Yσ¬isNull(X)∧¬isNull(Y)(QC OPU=V QC′)

s.t. QC and QC′ are SP relational expressions over R1 ∈ R and R2 ∈ R with
X,U /QC and Y,V /QC′ respectively, and OP ∈ {Z, Z,Z , ./ }. In addition, there
must be either FK(U,R1,V,R2) ∈ Σ |Q or FK(V,R2,U,R1) ∈ Σ |Q since every QP

is a valid SPJ query.

a. For object property path P:
i. Let φC B (DC P.C′). Then, from the definition of classification ι func-

tion, there are two mapping cases to consider:

A. Let QC , QP, i.e., either QC , QP , QC′ or QC , QP = QC′ . For
the mapping case QC , QP , QC′ , let

QC B πXσ¬isNull(X)(R1) and QC′ B πYσ¬isNull(Y)(R2),

such that R1,R2 ∈ R are relation names with X,U / R1 and V,Y / R2.
Then, from the rewriting function λ1 in Defn. 15, there must be
ΣQP UFDX→Y . Further from the case(a) of Lemma 2, there must be

29

ΣQC UFDX→U and ΣQC′ UFDV→Y , and FK(U,R1,V,R2) ∈ Σ |Q.

Since ΣQP UFDX→Y , QP
D |= UFDX→Y for every legal instanceD of

R, i.e., for every t, t′ ∈ QP
D:

• if t(X) = t′(X) then t(Y) = t′(Y),
• if t(Y) = t′(Y) then t(X) = t′(X), and
• NN(X,R1), NN(Y,R2) ∈ Σ |QP .
Then, w.l.o.g., QP B πX,Yσ¬isNull(X)∧¬isNull(Y)(QC ZU=V QC′) fol-
lowing arguments from the proof of Lemma 2. Thus, for every legal
instanceD of R,

QP
D = {t | t1 ∈ QC

D and t2 ∈ QC′
D s.t. t(u) = t1(u) = t2(v) , null

for every u ∈ U and v ∈ V , t(x) = t1(x) , null and
t(y) = t2(y) , null for every x ∈ X and y ∈ Y}.

Next, since FK(U,R1,V,R2) ∈ Σ |Q and NN(X,R1), NN(U,R1) ∈ Σ |QC ,
for every tuple t1 ∈ QC

D over every legal instance D of R, there
exists a tuple t ∈ QP

D s.t. t1(X) = t(X) and vice-versa. Thus, for
mapping of each node fC(t1(X)) inM(D) s.t.

〈fC(t1(X)), rdf:type,C〉,

where fC is an injective template and t1(X) is the restriction of tuple
t1 ∈ QC

D to X / QC , there exist mapping of exactly one unique node
fC′ (t2(Y)) inM(D) s.t.,

〈fC′ (t2(X)), rdf:type,C′〉,

where fC′ is an injective template and t2(Y) is the restriction of tuple
t2 ∈ QC′

D to Y / QC′ , connected via the property path P s.t.,

〈fC(t(X)), P, fC′ (t(Y))〉,

where t(X) and t(Y) are the restriction of tuple t ∈ QP
D to X,Y / QP.

Therefore, every node n inM(D) s.t. s ∈ β(n) satisfies both the DC

cardinality and the range typing C′ requirement for the property path
P, i.e., [(DC P.C′)]G,n=1.

Now, for the mapping case QC , QP = QC′ , let

QC B πXσ¬isNull(X)(R1) and QC′ = QP, i.e., same SPJ-query,

where R1 ∈ R is relation name with X,U / R1. As in the mapping
case above, from the rewriting function λ1 in Defn. 15, we have
ΣQP UFDX→Y , i.e., for every tuples t, t′ ∈ QP

D over every legal
instanceD of R:
• if t(X) = t′(X) then t(Y) = t′(Y),

30

• if t(Y) = t′(Y) then t(X) = t′(X), and
• NN(X,R1), NN(Y,R2) ∈ Σ |QP .
In addition 10,

QP
D = {t | t1 ∈ QC

D and t2 ∈ QC′
D s.t. t(u) = t1(u) = t2(v) , null

for every u ∈ U and v ∈ V , t(x) = t1(x) , null and
t(y) = t2(y) , null for every x ∈ X and y ∈ Y}

and for every tuple t1 ∈ QC
D there exists a tuple t ∈ QP

D s.t. t1(X) =

t(X) and vice-versa. Thus, for mapping of each node fC(t1(X)) in
M(D) s.t.

〈fC(t1(X)), rdf:type,C〉,

where fC is an injective template and t1(X) is the restriction of tuple
t1 ∈ QC

D to X / QC , there exist mapping of exactly one unique node
fC′ (t(Y)) inM(D) s.t.,

〈fC′ (t(X)), rdf:type,C′〉

connected via the property path P s.t.,

〈fC(t(X)), P, fC′ (t(Y))〉,

where fC′ is injective template, and t(X) and t(Y) are the restriction
of tuple t ∈ QP

D to X,Y / QP. Therefore, [(DC P.C′)]G,n=1.

B. Let QC = QP, i.e., either QC = QP , QC′ or QC = QP = QC′ .
Assume the mapping case QC = QP , QC′ such that,

QC = QP, i.e., same SPJ query, and QC′ B πYσ¬isNull(Y)(R2),

where R2 ∈ R is relation name with V,Y / R2. Then, from the rewrit-
ing function λ2 in Defn. 15, we have ΣQP UFX�Y . First, assume
ΣQP UFX→Y . Then, from the case(a) of Lemma 2, there must be
ΣQC UFX→U and ΣQC′ UFV→Y , and FK(U,R1,V,R2) ∈ Σ |Q. Note
that, since ΣQC UFDX→U → ΣQC UFX→U and ΣQC′ UFDV→Y →

ΣQC′ UFV→Y , the case(a) also covers the relevant cases (b) and (c)
of Lemma 2.

Since ΣQP UFX→Y , i.e., for every tuples t, t′ ∈ QP
D over every legal

instanceD of R:
• if t(X) = t′(X) then t(Y) = t′(Y) and
• if t(Y) = t′(Y) then t(X) = t′(X),
and

QP
D = {t | t1 ∈ QC

D and t2 ∈ QC′
D s.t. t(u) = t1(u) = t2(v) , null

for every u ∈ U and v ∈ V , t(x) = t1(x) , null and
t(y) = t2(y) , null for every x ∈ X and y ∈ Y}

10 w.l.o.g., QP B πX,Yσ¬isNull(X)∧¬isNull(Y)(QC ZU=V QC′).

31

for every t ∈ QP
D there exist a tuple t2 ∈ QC′

D s.t. t(Y) = t2(Y).
Thus, for mapping of each node fC(t(X)) inM(D) s.t.,

〈fC(t(X)), rdf:type,C〉,

there exist mapping of exactly one unique node fC′(t2(Y)) inM(D)
s.t.,

〈fC′ (t2(Y)), rdf:type,C′〉

where fC′ is injective template and t2(Y) is the restriction of tuple
t2 ∈ QC′

D to Y / QC′ , connected via the property path P s.t.,

〈fC(t(X)), P, fC′ (t(Y))〉,

where fC′ is injective template, and t(X) and t(Y) are the restriction
of tuple t ∈ QP

D to X,Y / QP. Hence, [(DC P.C′)]G,n=1.
Next, assume ΣQP UFX→∗Y . Then, following the case (h) of

Lemma 2, there must be ΣQC UFX→U and ΣQC′ UFV→Y , and
FK(V,R2,U,R1) ∈ Σ |Q. Note that the case (h) also covers relevant
case (i) of Lemma 2 since ΣQC′ UFDV→Y → ΣQC′ UFV→Y .

As in the previous case, since ΣQP UFX→Y i.e., for every tuples
t, t′ ∈ QP

D over every legal instanceD of R:
• if t(X) = t′(X) then t(Y) = t′(Y) and
• if t(Y) = t′(Y) then t(X) = t′(X)
and

QP
D = {t | t1 ∈ QC

D and t2 ∈ QC′
D s.t. t(u) = t1(u) = t2(v) , null

for every u ∈ U and v ∈ V , t(x) = t1(x) , null and
t(y) = t2(y) , null for every x ∈ X and y ∈ Y}

for every t ∈ QP
D there exist a tuple t2 ∈ QC′

D s.t. t(Y) = t2(Y).
Thus, for mapping of each node fC(t(X)) inM(D) s.t.

〈fC(t(X)), rdf:type,C〉,

there exist mapping of exactly one unique node fC′(t2(Y)) inM(D)
s.t.,

〈fC′ (t2(Y)), rdf:type,C′〉

where fC′ is injective template and t2(Y) is the restriction of tuple
t2 ∈ QC′

D to Y / QC′ , connected via the property path P s.t.,

〈fC(t(X)), P, fC′ (t(Y))〉,

where fC′ is injective template, and t(X) and t(Y) are the restriction
of tuple t ∈ QP

D to X,Y / QP. Hence, [(DC P.C′)]G,n=1.

32

Similarly, assume QC = QP = QC′ . Then, by following the same
reasoning arguments as in the case above, we get [(DC P.C′)]G,n=1.

ii. Let φC B (=1 P.C′). Then, from the function ι definition, there are two
mapping cases to consider:

A. Let QC , QP, i.e., QC , QP , QC′ or QC , QP = QC′ . For the
former case, assume QC , QP , QC′ , s.t.,

QC B πXσ¬isNull(X)(R1) and QC′ B πYσ¬isNull(Y)(R2),

where R1,R2 ∈ R are relation names with X,U / R1 and V,Y / R2.
Similarly, for the latter case, assume QC , QP = QC′ s.t.,

QC B πXσ¬isNull(X)(R1) and QC′ = QP, i.e., same SPJ-query.

Then, in both cases, from the rewriting function λ1 in Defn. 15, there
must be ΣQP FDX→Y . Further from the case (a) of Lemma 2, there
must be ΣQC FDX→U and ΣQC′ FDV→Y , and FK(U,R1,V,R2) ∈
Σ |Q. Note that, since ΣQC UFDX→U → ΣQC FDX→U and ΣQC′
UFDV→Y → ΣQC′ FDV→Y , the case (a) also covers relevant cases (b)
and (c) of Lemma 2.

Since ΣQP FDX→Y , QP
D |= FDX→Y for every legal instanceD of R,

i.e., for every t, t′ ∈ QP
D:

• if t(X) = t′(X) then t(Y) = t′(Y), and
• NN(X,R1), NN(Y,R2) ∈ Σ |QP .
Then, w.l.o.g., QP B πX,Yσ¬isNull(X)∧¬isNull(Y)(QC ZU=V QC′) fol-
lowing arguments from the proof of Lemma 2. Thus, for every legal
instanceD of R,

QP
D = {t | t1 ∈ QC

D and t2 ∈ QC′
D s.t. t(u) = t1(u) = t2(v) , null

for every u ∈ U and v ∈ V , t(x) = t1(x) , null and
t(y) = t2(y) , null for every x ∈ X and y ∈ Y}.

In addition, since FK(U,R1,V,R2) ∈ Σ |Q and NN(X,R1), NN(U,R1) ∈
Σ |QC , for every tuple t1 ∈ QC

D over every legal instance D of R,
there exists a tuple t ∈ QP

D s.t. t1(X) = t(X) and vice-versa. Thus, in
the former case, for mapping of each node fC(t1(X)) inM(D) s.t.

〈fC(t1(X)), rdf:type,C〉,

where fC is injective template and t1(X) is the restriction of tuple
t1 ∈ QC

D to X/QC , there exist mapping of exactly one node fC′ (t2(Y))
inM(D) s.t.,

〈fC′ (t2(X)), rdf:type,C′〉,

33

where fC′ is injective template and t2(Y) is the restriction of tuple
t2 ∈ QC′

D to Y / QC′ , connected via the property path P s.t.,

〈fC(t(X)), P, fC′ (t(Y))〉,

where t(X) and t(Y) are the restriction of tuple t ∈ QP
D to X,Y / QP.

Likewise, in the latter case, for mapping of each node fC(t1(X)) in
M(D) s.t.

〈fC(t1(X)), rdf:type,C〉,

where fC is injective template and t1(X) is the restriction of tuple
t1 ∈ QC

D to X /QC , there exist mapping of exactly one node fC′ (t(Y))
inM(D) s.t.,

〈fC′ (t(X)), rdf:type,C′〉

connected via the property path P s.t.,

〈fC(t(X)), P, fC′ (t(Y))〉,

where fC′ is injective template, and t(X) and t(Y) are the restriction
of tuple t ∈ QP

D to X,Y / QP.

Therefore, in the both case, [(=1 P.C′)]G,n=1.

B. Let QC = QP, i.e., QC = QP , QC′ or QC = QP = QC′ . Assume
QC = QP , QC′ such that,

QC and QP are same SPJ-query, and QC′ B πYσ¬isNull(Y)(R2),

where R2 ∈ R is relation name with V,Y / R2. Then, from the rewrit-
ing function λ2 in Defn. 15, we have ΣQP FPX�Y .

First, assume ΣQP FPX→Y . Then, from the cases (d), (e) and
(f) of Lemma 2, there could be any of the following case with
FK(U,R1,V,R2) ∈ Σ |Q:
• ΣQC FDX→U and ΣQC′ UFV→Y ,
• ΣQC UFX→U and ΣQC′ FDV→Y .
• ΣQC FDX→U and ΣQC′ σV→Y s.t. σ ∈ {UFD,FD,UF,FP},
For the simplicity, w.l.o.g., we concentrate on the case
• ΣQC FPX→U and ΣQC′ FPV→Y ,
and exclude the rest of cases since the same arguments apply on
those cases as well.

Since ΣQP FPX→Y , i.e., for every tuples t, t′ ∈ QP
D over every legal

instanceD of R:
• if t(X) = t′(X) then t(Y) = t′(Y),

34

and

QP
D = {t | t1 ∈ QC

D and t2 ∈ QC′
D s.t. t(u) = t1(u) = t2(v) , null

for every u ∈ U and v ∈ V , t(x) = t1(x) , null and
t(y) = t2(y) , null for every x ∈ X and y ∈ Y}

with FK(U,R1,V,R2) ∈ Σ |Q and UNQ(V,R2) ∈ Σ |QC
11, for every

t ∈ QP
D there exist exactly one tuple t2 ∈ QC′

D s.t. t(Y) = t2(Y).
Thus, for mapping of each node fC(t(X)) inM(D) s.t.,

〈fC(t(X)), rdf:type,C〉,

there exist mapping of exactly one node fC′ (t2(Y)) inM(D) s.t.,

〈fC′ (t2(Y)), rdf:type,C′〉

where fC′ is injective template and t2(Y) is the restriction of tuple
t2 ∈ QC′

D to Y / QC′ , connected via the property path P s.t.,

〈fC(t(X)), P, fC′ (t(Y))〉,

where fC′ is injective template, and t(X) and t(Y) are the restriction
of tuple t ∈ QP

D to X,Y / QP.
Next, assume ΣQP FPX→∗Y . Then, following the case (i) of

Lemma 2, there must be ΣQC FPX→U and ΣQC′ FPV→Y , and
FK(V,R2,U,R1) ∈ Σ |Q. Note that, since ΣQC′ UFDV→Y → ΣQC′
UFV→Y → ΣQC′ FPV→Y , the case (i) covers rest and the case (j) of
Lemma 2.

Since ΣQP FPX→∗Y i.e., for every tuples t, t′ ∈ QP
D over every legal

instanceD of R:
• if t(X) = t′(X) then t(Y) = t′(Y),
and

QP
D = {t | t1 ∈ QC

D and t2 ∈ QC′
D s.t. t(u) = t1(u) = t2(v) , null

for every u ∈ U and v ∈ V , t(x) = t1(x) , null and
t(y) = t2(y) , null for every x ∈ X and y ∈ Y},

for every t ∈ QP
D there exist a tuple t2 ∈ QC′

D s.t. t(Y) = t2(Y).
Thus, for mapping of each node fC(t(X)) inM(D) s.t.

〈fC(t(X)), rdf:type,C〉,

there exist mapping of exactly one node fC′ (t2(Y)) inM(D) s.t.,

〈fC′ (t2(Y)), rdf:type,C′〉
11 arguments hold for both cases: (a) NN(U,R1) ∈ Σ |QC , i.e., in case of ΣQC FDX→U , and (b)
NN(U,R1) < Σ |QC , i.e., in case of ΣQC UFX→U and ΣQC FPX→U .

35

where fC′ is an injective template and t2(Y) is the restriction of tuple
t2 ∈ QC′

D to Y / QC′ , connected via the property path P s.t.,

〈fC(t(X)), P, fC′ (t(Y))〉,

where fC is an injective template, and t(X) and t(Y) are the restriction
of tuple t ∈ QP

D to X,Y / QP.

Hence, in the case ΣQP FPX�Y , there is [(=1 P.C′)]G,n=1.

Similarly, for the latter mapping case QC = QP = QC′ , we obtain
[(=1 P.C′)]G,n=1 by following the same arguments as in the previous
mapping case.

iii. Let φC B (BC P.C′). Then, from the constraint rewriting Γ in Defn. 15,
there is only two mapping cases to consider QC , QP, i.e., either
QC , QP , QC′ or QC , QP = QC′ .

For the former case QC , QP , QC′ , assume

QC B πXσ¬isNull(X)(R1) and QC′ B πYσ¬isNull(Y)(R2),

such that R1,R2 ∈ R are relation names with X,U / R1 and V,Y / R2.
Similarly, for the latter case QC , QP = QC′ , assume

QC B πXσ¬isNull(X)(R1) and QC′ = QP, i.e., same SPJ-query.

Then, in both cases, from the rewriting function λ1 in Defn. 15, there
must be ΣQP UFX�Y .

First, assume the case ΣQP UFX→Y . Further from the case (a) of
Lemma 2, there must be ΣQC UFX→U and ΣQC′ UFV→Y , and
FK(U,R1,V,R2) ∈ Σ |Q. Note that the case (a) also covers relevant
cases (b) and (c) of Lemma 2, i.e., case ΣQP UFX→Y .

Since ΣQP UFX→Y , there is QP
D |= UFX→Y for every legal instanceD

of R, i.e., for every t, t′ ∈ QP
D:

• if t(X) = t′(X) then t(Y) = t′(Y), and
• if t(Y) = t′(Y) then t(X) = t′(X).
Note that, w.l.o.g. QP B πX,Yσ¬isNull(X)∧¬isNull(Y)(QC ZU=V QC′).
Then, for every legal instanceD of R,

QP
D = {t | t1 ∈ QC

D and t2 ∈ QC′
D s.t. t(u) = t1(u) = t2(v) , null

for every u ∈ U and v ∈ V , t(x) = t1(x) , null and
t(y) = t2(y) , null for every x ∈ X and y ∈ Y}.

Further, since FK(U,R1,V,R2) ∈ Σ |Q and ΣC UFX→U (i.e., NN(U,R1) <
Σ |QC), for every tuple t1 ∈ QC

D over every legal instanceD of R, there

36

exists at most one tuple t ∈ QP
D s.t. t1(X) = t(X). Thus, in the former

case, for mapping of each node fC(t1(X)) inM(D) s.t.

〈fC(t1(X)), rdf:type,C〉,

where fC is an injective template and t1(X) is the restriction of tuple
t1 ∈ QC

D to X / QC , there exist mapping of at most one unique node
fC′ (t2(Y)) inM(D) s.t.,

〈fC′ (t2(X)), rdf:type,C′〉,

where fC′ is an injective template and t2(Y) is the restriction of tuple
t2 ∈ QC′

D to Y / QC′ , connected via the property path P s.t.,

〈fC(t(X)), P, fC′ (t(Y))〉,

where t(X) and t(Y) are the restriction of tuple t ∈ QP
D to X,Y / QP.

Similarly, in the latter mapping case QC , QP = QC′ , for mapping of
each node fC(t1(X)) inM(D) s.t.

〈fC(t1(X)), rdf:type,C〉,

where fC is injective template and t1(X) is the restriction of tuple t1 ∈
QC
D to X/QC , there exist mapping of at most one unique node fC′ (t(Y))

inM(D) s.t.,
〈fC′ (t(X)), rdf:type,C′〉

connected via the property path P s.t.,

〈fC(t(X)), P, fC′ (t(Y))〉,

where fC′ is injective template, and t(X) and t(Y) are the restriction of
tuple t ∈ QP

D to X,Y / QP.

Hence, in the both case, [(BC P.C′)]G,n=1.

Second, assume the case ΣQP UFX→∗Y . Further from the case (h)
of Lemma 2, there must be ΣQC UFX→U and ΣQC′ UFV→Y , and
FK(V,R2,U,R1) ∈ Σ |Q. Note that the case (h) also covers the relevant
case (j) of Lemma 2.

Then, following the same procedure as in the previous constraint case,
given FK(V,R2,U,R1) ∈ Σ |Q and ΣC UFX→U (i.e., UNQ(U,R1) ∈ Σ |QC),
for every tuple t1 ∈ QC

D over every legal instanceD of R, there exists
at most one tuple t ∈ QP

D s.t. t1(X) = t(X).

Hence, with the same arguments as in the first constraint case in the
both former and latter mapping cases, we arrive at [(BC P.C′)]G,n=1.

37

iv. Let φC B (≤1 P.C′). Then, there is only one mapping case QC , QP

to consider based on the rewriting λ1 rules, i.e., either QC , QP , QC′

or QC , QP = QC′ . For the former case QC , QP , QC′ , let

QC B πXσ¬isNull(X)(R1) and QC′ B πYσ¬isNull(Y)(R2),

such that R1,R2 ∈ R are relation names with X,U / R1 and V,Y / R2.
Similarly, for the latter case QC , QP = QC′ , let

QC B πXσ¬isNull(X)(R1) and QC′ = QP, i.e., same SPJ-query.

Then, in both cases, based on the rewriting function λ1 in Defn. 15,
there must be ΣQP FPX�Y .

First, assume ΣQP FPX→Y . Then, from the cases (d), (e) and (f) of
Lemma 2, there could be any of the following case with FK(U,R1,V,R2) ∈
Σ |Q:
• ΣQC FDX→U and ΣQC′ UFV→Y ,
• ΣQC UFX→U and ΣQC′ FDV→Y .
• ΣQC FDX→U and ΣQC′ σV→Y s.t. σ ∈ {UFD,FD,UF,FP},
For the simplicity, w.l.o.g., we concentrate on the case
• ΣQC FPX→U and ΣQC′ FPV→Y ,
and exclude the rest of cases since the same arguments apply on those
cases as well.

Since ΣQP FPX→Y there is QP
D |= UFX→Y for every legal instanceD

of R, i.e., for every t, t′ ∈ QP
D:

• if t(X) = t′(X) then t(Y) = t′(Y).
Next, w.l.o.g. QP B πX,Yσ¬isNull(X)∧¬isNull(Y)(QC ZU=V QC′). Thus,
for every legal instanceD of R,

QP
D = {t | t1 ∈ QC

D and t2 ∈ QC′
D s.t. t(u) = t1(u) = t2(v) , null

for every u ∈ U and v ∈ V , t(x) = t1(x) , null and
t(y) = t2(y) , null for every x ∈ X and y ∈ Y}.

In addition, since FK(U,R1,V,R2) ∈ Σ |Q and UNQ(V,R2) ∈ Σ |QC , for
every tuple t1 ∈ QC

D over every legal instance D of R, there exists
at most one tuple t ∈ QP

D s.t. t1(X) = t(X). Thus, in the former case
QC , QP , QC′ , for mapping of each node fC(t1(X)) inM(D) s.t.

〈fC(t1(X)), rdf:type,C〉,

where fC is injective template and t1(X) is the restriction of tuple t1 ∈
QC
D to X / QC , there exist mapping of at most one node fC′(t2(Y)) in

M(D) s.t.,
〈fC′ (t2(X)), rdf:type,C′〉,

38

where fC′ is injective template and t2(Y) is the restriction of tuple
t2 ∈ QC′

D to Y / QC′ , connected via the property path P s.t.,

〈fC(t(X)), P, fC′ (t(Y))〉,

where t(X) and t(Y) are the restriction of tuple t ∈ QP
D to X,Y / QP.

Similarly, in the latter case QC , QP = QC′ , for mapping of each
node fC(t1(X)) inM(D) s.t.

〈fC(t1(X)), rdf:type,C〉,

where fC is injective template and t1(X) is the restriction of tuple t1 ∈
QC
D to X/QC , there exist mapping of at most one unique node fC′ (t(Y))

inM(D) s.t.,
〈fC′ (t(X)), rdf:type,C′〉

connected via the property path P s.t.,

〈fC(t(X)), P, fC′ (t(Y))〉,

where fC′ is injective template, and t(X) and t(Y) are the restriction of
tuple t ∈ QP

D to X,Y / QP.

Hence, in the both case, [(≤1 P.C′)]G,n=1.

Second, assume the case ΣQP FPX→∗Y . Further from the case (i)
of Lemma 2, there must be ΣQC FPX→U and ΣQC′ FPV→Y , and
FK(V,R2,U,R1) ∈ Σ |Q. Note that the case (i) also covers the relevant
case (j) of Lemma 2.

As in the previous case, given FK(U,R1,V,R2) ∈ Σ |Q and ΣC UFX→U

(i.e., UNQ(U,R1) ∈ Σ |QC), for every tuple t1 ∈ QC
D over every legal

instanceD ofR, there exists at most one tuple t ∈ QP
D s.t. t1(X) = t(X).

Hence, by following same arguments as in the previous case in the both
mapping setting, we arrive at [(≤1 P.C′)]G,n=1.

v. Let φC B (≥1 P.C′). Then, from the definition of classification function
ι associated with the constraint rewriting Γ in Defn. 15, there is mapping
case QC = QP to consider, i.e., either QC = QP , QC′ or QC = QP =

QC′ . For the first case QC = QP , QC′ , let

QC = QP, i.e., same SPJ-query, and QC′ B πYσ¬isNull(Y)(R2),

such that R2 ∈ R is relation name with V,Y / R2.
In both mapping cases, w.l.o.g., we have

QP B πX,Yσ¬isNull(X)∧¬isNull(Y)(QC ZU=V QC′).

39

Then, for every legal instanceD of R,

QP
D = {t | t1 ∈ QC

D and t2 ∈ QC′
D s.t. t(u) = t1(u) = t2(v) , null

for every u ∈ U and v ∈ V , t(x) = t1(x) , null and
t(y) = t2(y) , null for every x ∈ X and y ∈ Y}.

In addition, since FK(U,R1,V,R2) ∈ Σ |Q or FK(V,R2,U,R1) ∈ Σ |Q and
filter ¬isNull(X) on X / QC′ , for every tuple t ∈ QP

D over every
legal instance D of R, there exist one or more tuples t2 ∈ QC′

D s.t.
t(Y) = t2(Y). Thus, in the former mapping case, for mapping of each
node fC(t(X)) inM(D) s.t.,

〈fC(t(X)), rdf:type,C〉,

there exist mapping of zero or more node fC′ (t2(Y)) inM(D) s.t.,

〈fC′ (t2(Y)), rdf:type,C′〉,

where fC′ is injective template and t2(Y) is the restriction of tuple
t2 ∈ QC′

D to Y / QC′ , connected via the property path P s.t.,

〈fC(t(X)), P, fC′ (t(Y))〉,

where t(X) and t(Y) are the restriction of tuple t ∈ QP
D to X,Y / QP.

Similarly, in the latter mapping case QC = QP = QC′ , for mapping
of each node fC(t(X)) inM(D) s.t.

〈fC(t(X)), rdf:type,C〉,

there exist mapping of one or more node fC′ (t(Y)) inM(D) s.t.,

〈fC′ (t(Y)), rdf:type,C′〉

connected via the property path P s.t.,

〈fC(t(X)), P, fC′ (t(Y))〉,

where fC′ is injective template, and t(X) and t(Y) are the restriction of
tuple t ∈ QP

D to X,Y / QP.

Hence, in the both mapping cases, [(≥1 P.C′)]G,n=1.

vi. Let φC B (≥0 P.C′). Then, from the constraint rewriting Γ Defn. 3,
there is the mapping case QC , QP to consider, i.e., either QC , QP ,
QC′ or QC , QP = QC′ . For the former case QC , QP , QC′ , let

QC B πXσ¬isNull(X)(R1) and QC′ B πYσ¬isNull(Y)(R2),

40

such that R1,R2 ∈ R are relation names with X,U / R1 and V,Y / R2.
Similarly, for the latter case QC , QP = QC′ , assume

QC B πXσ¬isNull(X)(R1) and QC′ = QP, i.e., same SPJ-query.

In both cases, since FK(U,R1,V,R2) ∈ Σ |Q or FK(V,R2,U,R1) ∈ Σ |Q
and filter ¬isNull(X) on X / QC , for every tuple t1 ∈ QC

D over every
legal instance D of R, there exist zero or more tuples t ∈ QP

D s.t.
t1(X) = t(X). Thus, in the former case, for mapping of each node
fC(t1(X)) inM(D) s.t.,

〈fC(t1(X)), rdf:type,C〉,

where fC is injective template and t1(X) is the restriction of tuple t1 ∈
QC
D to X / QC , there exist mapping of zero or more node fC′ (t2(Y)) in

M(D) s.t.,
〈fC′ (t2(Y)), rdf:type,C′〉,

where fC′ is injective template and t2(Y) is the restriction of tuple
t2 ∈ QC′

D to Y / QC′ , connected via the property path P s.t.,

〈fC(t(X)), P, fC′ (t(Y))〉,

where t(X) and t(Y) are the restriction of tuple t ∈ QP
D to X,Y / QP.

Similarly, in the latter case QC , QP = QC′ , for mapping of each node
fC(t1(X)) inM(D) s.t.

〈fC(t1(X)), rdf:type,C〉,

where fC is injective template and t1(X) is the restriction of tuple t1 ∈
QC
D to X / QC , there exist mapping of zero or more node fC′(t(Y)) in

M(D) s.t.,
〈fC′ (t(Y)), rdf:type,C′〉

connected via the property path P s.t.,

〈fC(t(X)), P, fC′ (t(Y))〉,

where fC′ is injective template, and t(X) and t(Y) are the restriction of
tuple t ∈ QP

D to X,Y / QP.

Hence, in the both mapping cases, [(≥0 P.C′)]G,n=1.

vii. Let φC B (≤0 P.¬C′). Then, following the constraint rewriting Γ in
Defn. 15, there exists mapping of an object property P s.t.,

QP −→ 〈fC(X), P, fC′ (Y)〉,

41

where QP is an SPJ-source query Q over R with X,Y /Q, and mapping
of an RDF concept C′ s.t.,

QC′ −→ 〈fC′ (Y), rdf:type,C′〉,

where QC′ is an SP/SPJ source query Q over R with Y / Q.

Further, from the definition of simple mapping set M, there exists
only one mapping definition per object property P. Hence, if there
exists any node in the graphM(D) that is reachable from a node n s.t.
〈n, rdf:type,C〉 via property path P± then that must be no other than
the node n′ s.t. 〈n′, rdf:type,C〉, i.e., [(≤0 P.¬C′)]G,n=1.

b. For inverse object property path P−, from the constraint rewriting Γ in
Defn. 15, observe that there exist mapping of an object property P s.t.,

QP −→ 〈fC′ (X), P, fC(Y)〉,

where QP is an SPJ-source query Q over R with X,Y / Q, and mapping of
an RDF concept C′ s.t.,

QC′ −→ 〈fC′ (Y), rdf:type,C′〉,

where QC′ is an SP/SPJ source query Q over R with Y / Q.
Then, like in the mappings of different property shapes φC definition

with path P in the previous case (a), there exist analogous arguments based
on the rewriting functions δ1 and δ2 in Defn. 15 for the following inverse
property path P− constraints φC definitions:

i. φC B (DC P−.C′).
ii. φC B (BC P−.C′)

iii. φC B (=1 P−.C′)
iv. φC B (≤1 P−.C′)
v. φC B (≥1 P−.C′)

vi. φC B (≥0 P−.C′)
vii. φC B (≤0 P−.¬C′)

2. Let φC be a property shape definition for a datatype property U. Then, from the
constraint rewriting Γ in Defn. 15, there exist mapping of a datatype property U
s.t.,

QU −→ 〈fC(X), P, t(Y)(Y)〉,

where QU is an SP source query Q over R with X,Y / Q.

i. Let φC B (DC U. t). Then, from the definition of classification κ function,
there are two mapping cases to consider, i.e., QC , QU and QC = QU .

First, let QC , QU . Then, based on the assumption for SP source query in
the mapping Defn. 3, there must be

QU B πX,Yσ¬isNull(X)∧¬isNull(Y)R and QC B πXσ¬isNull(X)R,

42

such that R ∈ R is a relation name with X,Y / R. Next, from the rewriting
function µ1 in Defn. 15, there must be ΣQU UFDX→Y . Thus, QU

D |=

UFDX→Y for every legal instanceD of R, i.e., for every t, t′ ∈ QU
D:

• if t(X) = t′(X) then t(Y) = t′(Y),
• if t(Y) = t′(Y) then t(X) = t′(X), and
• NN(X,R1), NN(Y,R2) ∈ Σ |QU .

Then, for every tuple t1 ∈ QC
D over every legal instance D of R, there

exists a tuple t ∈ QU
D s.t. t1(X) = t(X) and vice-versa. Thus, for mapping

of each node fC(t1(X)) inM(D) s.t.

〈fC(t1(X)), rdf:type,C〉,

where fC is injective template and t1(X) is the restriction of tuple t1 ∈ QC
D

to X / QC , there exist mapping of exactly one unique literal value t(Y) s.t.,

〈fC(t(X)), P, t(t(Y))〉 ∈ M(D),

where t(X) and t(Y) are the restriction of tuple t ∈ QP
D to X,Y / QP.

Therefore, i.e., [(DC U. t)]G,n=1.
Second, let QC = QU , i.e., there is relation name R ∈ R s.t.,

QU B πX,Yσ¬isNull(X)∧¬isNull(Y)(R) and QC = QU , i.e., are same SP-query.

As in the previous case, from the rewriting function µ2 in Defn. 15, we have
ΣQU UFX→Y , i.e., for every tuples t, t′ ∈ QU

D over every legal instanceD
of R:
• if t(X) = t′(X) then t(Y) = t′(Y), and
• if t(Y) = t′(Y) then t(X) = t′(X).

Thus, for mapping of each node fC(t(X)) inM(D) s.t.

〈fC(t(X)), rdf:type,C〉,

there exist mapping of exactly one unique literal value t(Y) inM(D) s.t.,

〈fC(t(X)), P, t(t(Y))〉,

where fC is injective template, and t(X) and t(Y) are the restriction of tuple
t ∈ QP

D to X,Y / QP. Therefore, [(DC U. t)]G,n=1.

ii. Let φC B (=1 U. t). Then, from the function κ definition, there are two
mapping cases to consider, i.e., QC , QU and QC = QU .

First, let QC , QU . Then, based on the assumption for SP source query in
the mapping Defn. 3, there must be

QU B πX,Yσ¬isNull(X)∧¬isNull(Y)R and QC B πXσ¬isNull(X)R,

such that R ∈ R is a relation name with X,Y / R. Next, from the rewriting
function µ1 in Defn. 15, there must be ΣQU FDX→Y . Thus, QU

D |= FDX→Y

for every legal instanceD of R, i.e., for every t, t′ ∈ QU
D:

43

• if t(X) = t′(X) then t(Y) = t′(Y) and
• NN(X,R1), NN(Y,R2) ∈ Σ |QU .

Then, for every tuple t1 ∈ QC
D over every legal instance D of R, there

exists a tuple t ∈ QU
D s.t. t1(X) = t(X). Thus, for mapping of each node

fC(t1(X)) inM(D) s.t.

〈fC(t1(X)), rdf:type,C〉,

where fC is injective template and t1(X) is the restriction of tuple t1 ∈ QC
D

to X / QC , there exist mapping of exactly one literal value t(Y) s.t.,

〈fC(t(X)), P, t(t(Y))〉 ∈ M(D),

where t(X) and t(Y) are the restriction of tuple t ∈ QP
D to X,Y / QP. There-

fore, i.e., [(=1 U. t)]G,n=1.

Second, let QC = QU , i.e., there is relation name R ∈ R s.t.,

QU B πX,Yσ¬isNull(X)∧¬isNull(Y)(R) and QC = QU , i.e., are same SP-query.

As in the previous case, from the rewriting function µ2 in Defn. 15, we have
ΣQU FPX→Y , i.e., for every tuples t, t′ ∈ QU

D over every legal instanceD
of R:
• if t(X) = t′(X) then t(Y) = t′(Y).

Thus, for mapping of each node fC(t(X)) inM(D) s.t.

〈fC(t(X)), rdf:type,C〉,

there exist mapping of exactly one literal value t(Y) inM(D) s.t.,

〈fC(t(X)), P, t(t(Y))〉,

where fC is injective template, and t(X) and t(Y) are the restriction of tuple
t ∈ QP

D to X,Y / QP. Therefore, [(=1 U. t)]G,n=1.

iii. Let φC B (BC U. t). Then, based on the rewriting µ1 rules, there is only one
mapping cases to consider, i.e., QC , QU .

Let QC , QU . Then, based on the assumption for SP source query in the
mapping Defn. 3, there must be

QU B πX,Yσ¬isNull(X)∧¬isNull(Y)R and QC B πXσ¬isNull(X)R,

such that R ∈ R is a relation name with X,Y /R. From the rewriting function
µ1 in Defn. 15, there must be ΣQU UFX→Y . Thus, QU

D |= UFX→Y for every
legal instanceD of R, i.e., for every t, t′ ∈ QU

D:
• if t(X) = t′(X) then t(Y) = t′(Y) and
• if t(Y) = t′(Y) then t(X) = t′(X).

44

Then, for every tuple t1 ∈ QC
D over every legal instance D of R, there

exists at most one tuple t ∈ QU
D s.t. t1(X) = t(X). Thus, for mapping of

each node fC(t1(X)) inM(D) s.t.

〈fC(t1(X)), rdf:type,C〉,

where fC is injective template and t1(X) is the restriction of tuple t1 ∈ QC
D

to X / QC , there exist mapping of at most one unique literal value t(Y) s.t.,

〈fC(t(X)), P, t(t(Y))〉 ∈ M(D),

where t(X) and t(Y) are the restriction of tuple t ∈ QP
D to X,Y / QP. There-

fore, i.e., [(BC U. t)]G,n=1.

iv. Let φC B (≤1 U. t). Then, similar to the case (iii) above, there is only one
mapping cases to consider based on the rewriting µ1 rules, i.e., QC , QU .

Let QC , QU . Then, based on the assumption for SP source query in the
mapping Defn. 3, there must be

QU B πX,Yσ¬isNull(X)∧¬isNull(Y)R and QC B πXσ¬isNull(X)R,

where R ∈ R is a relation name with X,Y / R. From the rewriting function
µ1 in Defn. 15, there must be ΣQU FPX→Y . Thus, QU

D |= FPX→Y for every
legal instanceD of R, i.e., for every t, t′ ∈ QU

D:
• if t(X) = t′(X) then t(Y) = t′(Y).

Then, for every tuple t1 ∈ QC
D over every legal instance D of R, there

exists at most one tuple t ∈ QU
D s.t. t1(X) = t(X). Thus, for mapping of

each node fC(t1(X)) inM(D) s.t.

〈fC(t1(X)), rdf:type,C〉,

where fC is injective template and t1(X) is the restriction of tuple t1 ∈ QC
D

to X / QC , there exist mapping of at most one literal value t(Y) s.t.,

〈fC(t(X)), P, t(t(Y))〉 ∈ M(D),

where t(X) and t(Y) are the restriction of tuple t ∈ QP
D to X,Y / QP. There-

fore, i.e., [(≤1 U. t)]G,n=1.

v. Let φC B (≥1 U. t). Then, from the constraint rewriting function Γ, there is
mapping case QC = QU to consider.

Let QC = QU . Then, based on the assumption for SP source query in the
mapping Defn. 3, there must be

QU B πX,Yσ¬isNull(X)∧¬isNull(Y)R and QC = QP,

45

such that R ∈ R is a relation name with X,Y / R. Thus, for mapping of each
node fC(t(X)) inM(D) s.t.

〈fC(t(X)), rdf:type,C〉,

there exist mapping of at least one literal value t(Y) s.t.,

〈fC(t(X)), P, t(t(Y))〉 ∈ M(D),

where fC is injective template, and t(X) and t(Y) are the restriction of tuple
t ∈ QP

D to X,Y / QP. Therefore, i.e., [(≥1 U. t)]G,n=1.

vi. Let φC B (≥0 U. t). Then, from the constraint rewriting function Γ , there
is mapping case QC , QU to consider.

Let QC , QU . Then, based on the assumption for SP source query in the
mapping Defn. 3, there must be

QU B πX,Yσ¬isNull(X)∧¬isNull(Y)R and QC B πXσ¬isNull(X)R,

such that R ∈ R is a relation name with X,Y / R. Thus, for mapping of each
node fC(t′(X)) inM(D) s.t.

〈fC(t′(X)), rdf:type,C〉,

where fC is injective template and t′(X) is the restriction of tuple t′ ∈ QC
D

to X / QC , there exist mapping of zero or more literal value t(Y) s.t.,

〈fC(t(X)), P, t(t(Y))〉 ∈ M(D),

where t(X) and t(Y) are the restriction of tuple t ∈ QP
D to X,Y / QP. There-

fore, i.e., [(≥0 U. t)]G,n=1.

vii. Let φC B (≤0 U.¬t). Then, following the constraint rewriting Γ in Defn. 15,
there exists mapping of a datatype property U s.t.,

QU −→ 〈fC(X), P, t(Y)〉,

where QU is an SP-source query Q over R with X,Y / Q, and mapping of
an RDF concept C s.t.,

QC −→ 〈fC(X), rdf:type,C〉,

where QC is also an SP source query Q over R with X / Q.

Further, from the definition of simple mapping setM, there exists only one
mapping definition per datatype property Usch(M). Hence, if there exists
a node n in the graph M(D) s.t. 〈n, rdf:type,C〉 and 〈n,U, v〉, then the
RDF literal v has no other XML datatype than the t, i.e., [(≤0 U.¬t)]G,n=1.

46

This concludes the proof of the theorem.

Theorem 2. The constraint rewriting Γ is maximal semantics preserving.

Proof. The proof involves showing that the constraint rewriting Γ introduced in Defini-
tion 15 satisfies the condition stated in Definition 10, i.e., for every mapping setM and
every source constraint Σ,

Σ |=∗
M
Γ(M, Σ).

LetM be a mapping set defined over a relational schema R with source constraint
Σ. Then, as per the Definition 7, S = Γ(M, Σ) is maximally Σ-implied set of SHACL
shapes with respect toM, Σ |=∗

M
S , that is:

I. First, Σ |=M S , means S is Σ-implied with respect toM as per the Definition 6.
More precisely, for every instanceD of R,

D |= Σ −→M(D) |= S .

II. Then, for every Σ |=M S ′ s.t. sch(S ′) ⊆ sch(M) and every RDF graph G,

G |= S −→ G |= S ′.

Theorem 1 establish that the constraint rewriting Γ is semantic preserving, i.e., we
have

Σ |=M S , where S = Γ(M, Σ) from Definition 8.

In order to prove the next statement (II), we first identify every Σ-implied sets S ′ of
SHACL shapes w.r.t.M, i.e., ∀S ′. Σ |=M S ′ s.t. sch(S ′) ⊆ sch(M), and subsequently,
establish that G |= S → G |= S ′ for every RDF graph G.

– Let s ∈ S be a shape s.t. 〈C, τC , φC〉
12. Then, there exists a mapping of an RDF

concept C ∈ sch(M) s.t.,

QC −→ 〈fC(X), rdf:type,C〉,

where QC is an SP/SPJ source query Q over R with X /Q, see the rewriting Γ in Defn. 15.

Starting by the base cases:

i. We first consider the object (SHACL) property path P. Let P ∈ sch(〈C, τC , φC〉) be
an object property path. Then, from the rewriting Γ in Defn. 15, there exists mapping
of an object property P ∈ sch(M) s.t.,

QP −→ 〈fC(X), P, fC′ (Y)〉,

where QP is an SPJ source query Q over R with X,Y / Q, and mapping of an RDF
concept C′ ∈ sch(M) s.t.,

QC′ −→ 〈fC′ (Y), rdf:type,C′〉,
12 i.e., τC is implicit targetClass declaration, i.e., C a sh:NodeShape, rdfs:Class .

47

where QC′ is an SP/SPJ source query Q over R with Y / Q. Further, from the Defn.
of SPJ source query in Lemma 2, the query QP must be

QP B πX,Yσ¬isNull(X)∧¬isNull(Y)(QC OPU=V QC′)

such that QC and QC′ are SP expressions over R1 ∈ R and R2 ∈ R with X,U / QC

and Y,V /QC′ respectively, and OP ∈ {Z, Z,Z , ./ }. In addition, there must be either
FK(U,R1,V,R2) ∈ Σ |Q or FK(V,R2,U,R1) ∈ Σ |Q since every QP is valid SPJ query.
From the proof arguments of Lemma 2, w.l.o.g.,

QP B πX,Yσ¬isNull(X)∧¬isNull(Y)(QC ZU=V QC′).

a. Let φC B (≤0 P.¬C′). Note that the rewriting Γ in Defn. 15 generates constraint
(≤0 P.¬C′) ∈ φC since there exists only one mapping definition per property
path predicate P in sch(M), see the proof case (1).(a).(vii) of Theorem 1 for
details. Following, the QP above, and the assumption for SP source query, let

QC B πXσ¬isNull(X)(R1) and QC′ B πYσ¬isNull(Y)(R2),

such that R1,R2 ∈ R are relation names with X,U / R1 and V,Y / R2.
Next, for the purpose of constructing s′ B 〈C, τC , φC〉 s.t. Σ |=M s′ with

sch(s′) ⊆ sch(M), let C and P be the set of all RDF concepts and object property
predicates in sch(M) respectively, and let B ∈ C be an RDF concept 13. Then,
following are the Definitions φC such that Σ |=M 〈C, τC , φC〉:
(1). φC B (≥0 P±. B) : since the minimum zero cardinality is always satisfied.
(2). φC B (≥0 P±.¬B) : by following similar argument as in the case (1).
(3). φC B (≥0 P±.>) : it follows from the previous cases (1) and (2).
(4). φC B (≤0 P.¬C′): it follows from arguments of the case (1).(a).(vii) of

Theorem 1.
(5). φC B (≤n P.D) s.t. D ∈ C \ C′ and n ≥ 0: since there will not an instance

of D that is reachable from any instance of C via property path P, which is
enough to imply the constraint.

(6). φC B (=0 P±.D) s.t. D ∈ C \C′: it follows from the previous case (5).
(7). φC B (≤n P−. B) for n ≥ 0: since there will not an instance of B that is

reachable from any instance of C via property path P−, which is enough to
imply the constraint.

Contrarily, following are the Definitions φC such that Σ 6|=M 〈C, τC , φC〉 :

(1). φC B (≥n P±. B) for n ≥ 1 :
Let D = {R1(a, null),R2(c, d)} 14. Then QC

D = {(a)} and QP
D = {∅}.

Thus,M(D) = {〈a, rdf:type,C〉} andM(D) 6|= 〈C, τC , φC B≥n P±. B)〉
for n ≥ 1.

13 i.e., B ∈ C s.t. B , C′ or B = C′.
14 we ignore Σ in the counter-example since we are reasoning for the constraints implied by the

restriction on the mappingM (i.e., not by the source constraint Σ).

48

(2). φC B (≥n P±.¬B) for n ≥ 1 : similar to the previous case.
(3). φC B (≥n P±.>) for n ≥ 1 : it follows from the previous cases (1) and (2).
(4). φC B (≤n P.C) for n ≥ 0 : it follow from the argument as in the previous

case(1), there exist counter-examples for each constraint when n is fixed.
(5). φC B (=n P±. B) for n ≥ 0 : it follows from the previous cases.
(6). φC B (=n P±.¬B) for n ≥ 0 : it follows from the previous cases.
(7). φC B (=n P±.>) for n ≥ 0 : it follows from the previous cases.
(8). φC B (BC P±. B) :

Let D = {R1(a, c),R1(b, c),R2(c, d)}. Then QC
D = {(a), (b)} and QP

D =

{(a, d), (b, d)}. Thus,M(D) = {〈a, rdf:type,C〉, 〈b, rdf:type,C〉, 〈a, P, d〉,
〈b, P, d〉, 〈d, rdf:type,C′〉} andM(D) 6|= 〈C, τC , φC B (BC P±. B)〉 (even
if B = C′).

(9). φC B (DC P±. B) : it follows from the case (8).

Let G be an arbitrary graph with G |= s, where s = 〈C, τC , φC B (≥0 P.C′)〉.
Then, there must be G |= s′ := 〈C, τC , φC〉 for all the φC s.t. Σ |=M s′ and
sch(φC) ⊆ sch(M), as follows:

– Base cases:
(1) φC B (≥0 P±. B) : G |= s′ since zero cardinality is always satisfied.
(2) φC B (≥0 P±.¬B) : G |= s′ since zero cardinality is always satisfied.
(3) φC B (≥0 P±.>) : G |= s′ since zero cardinality is always satisfied.
(4) φC B (≤0 P.¬C′): trivial.
(5) φC B (≤n P±.D) s.t. D ∈ C \C′ and n ≥ 0: G |= s′ since the case (4).
(6) φC B (=0 P±.D) s.t. D ∈ C \C′: G |= s′ since the case (5).
(7) φC B (≤n P−. B) for n ≥ 0: G |= s′ since there will not be any instance

of C with property path P−.
– Inductive cases:

Let φC
1 and φC

2 be two arbitrary base constraints (enumerated above) s.t.
Σ |=M s′ B 〈C, τC , φC

1〉 and Σ |=M s′ B 〈C, τC , φC
2〉 with sch(φC

i) ⊆
sch(M) and i = 1, 2. Then, for any graph G, we have

if G |= 〈C, τC , φC
1〉 and G |= 〈C, τC , φC

2〉 then G |= 〈C, τC , φC
1 ∧ φC

2〉.

Thus, G |= 〈C, τC , φC
1 ∧ · · · ∧ φC

n〉 for all φC
i s.t. Σ |=M 〈C, τC , φC

i〉 and
i = 1, . . . , n.

b. Let φC B (≥0 P.C′). Then, from the constraint rewriting Γ Defn. 15, there is the
mapping case QC , QP to consider, i.e., QC , QP , QC′ or QC , QP = QC′ .
See the proof case (1).(a).(vi) of Theorem 1 for details. Assume QC , QP , QC′ .
Then,

QC B πXσ¬isNull(X)(R1) and QC′ B πYσ¬isNull(Y)(R2),

such that R1,R2 ∈ R are relation names with X,U / R1 and V,Y / R2. Similarly,
assume QC , QP = QC′ . Then,

QC B πXσ¬isNull(X)(R1) and QC′ = QP, i.e., same SPJ-query.

49

Next, let s′ be a shape 〈C, τC , φC〉 s.t. sch(s′) ⊆ sch(M). Then, for the purpose
of constructing φC s.t. Σ |=M s′ B 〈C, τC , φC〉, let C and P be the set of all
RDF concepts and object property predicates in sch(M) respectively, and let
B ∈ C be an RDF concept. Then, following are the constraint Defn. φC s.t.
Σ |=M s′ B 〈C, τC , φC〉

15 with sch(φC) ⊆ sch(M):

(1). φC B (≥0 P±. B) : since the minimum zero cardinality is always satisfied.
(2). φC B (≥0 P±.¬B) : by following similar argument as in the case (1).
(3). φC B (≥0 P±.>) : it follows from the previous cases (1) and (2).

Contrarily, following are the Defn. φC s.t. Σ 6|=M 〈C, τC , φC〉 : 16

(1). φC B (≥n P.C′) s.t. n ≥ 1 :
let D = {R1(a, null),R2(c, d)}. Then, QC

D = {(a)} and QP
D = {∅}. Thus,

M(D) = {〈a, rdf:type,C〉} and M(D) 6|= 〈C, τC , φC F (≥n P.C′)〉 for
n ≥ 1.

(2). φC B (≤n P.C′) s.t. n ≥ 0 : similar to the case (1), there exist counter-
examples for each constraint when n > 0 or n = 0, respectively.

(3). φC B (=n P.C′) s.t. n ≥ 0 : it follows from the argument of case (1) and
(2).

(4). φC B (BC P±.C′) : similar counter example as in the case (a) above exists.
(5). φC B (DC P±.C′) : it follows from the case (3) and (4).

Let G be an arbitrary graph with G |= s B 〈C, τC , φC B (≥0 P.C′)〉. Then,
there must be G |= s′ B 〈C, τC , φC〉 for all the φC s.t. Σ |=M s′ with sch(φC) ⊆
sch(M).

– Base case:
(1) φC B (≥0 P±. B) : G |= s′ since zero cardinality is always satisfied.
(2) φC B (≥0 P±.¬B) : G |= s′ since zero cardinality is always satisfied.
(3) φC B (≥0 P±.>) : G |= s′ since zero cardinality is always satisfied.

– Inductive case: Since, for every graph G, if G |= 〈C, τC , φC
1〉 and G |=

〈C, τC , φC
2〉 then G |= 〈C, τC , φC

1 ∧ φC
2〉. Thus, G |= 〈C, τC , φC

1 ∧ · · · ∧

φC
n〉 for all φC

i s.t. Σ |=M 〈C, τC , φC
i〉 and sch(φC

i) ⊆ sch(M), where
i = 1, . . . , n.

c. Let φC B (≥1 P.C′). Then, from the constraint rewriting Γ Defn. 15, there
is the mapping case QC = QP to consider, i.e., either QC = QP , QC′ or
QC = QP = QC′ . See the proof case (1).(a).(v) of Theorem 1 for details.

15 We only have to cover the constraint φC definition involving the property path predicate P for
this particular case. The constraint φC definition involving different property path predicates
will eventually be covered when we reason for the rest of the (SHACL) property path predicates
P in the sch(M).

16 Note that we can’t claim the rest of the Defn. φC s.t. Σ 6|=M 〈C, τC , φC〉 based on the available
facts, i.e.,M and Σ. However, those unlisted constraints will eventually be enumerated when
we reason for the maximality of rest of the Defn. φC s.t. Σ |= s B 〈C, τC , φC〉.

50

Next, let s′ be a shape 〈C, τC , φC〉 s.t. sch(s′) ⊆ sch(M). Let C and P be the set
of all RDF concepts and object property predicates in sch(M) respectively, and
let B ∈ C be an RDF concept. Then, following are the constraint Defn. φC s.t.
Σ |=M 〈C, τC , φC〉 with sch(φC) ⊆ sch(M):
(1). φC B (≥0 P±. B) : since the minimum zero cardinality is always satisfied.
(2). φC B (≥0 P±.¬B) : similar to the case (1).
(3). φC B (≥0 P±.>) : it follows from the arguments of cases (1) and (2).
(4). φC B (≥1 P.C′) : it follows from arguments of case (1).(a).(v) of Theo-

rem 1.

Contrarily, following are the rest of the Defn. φC s.t. Σ 6|=M 〈C, τC , φC〉 :

(1). φC B (≥n P.C′) s.t. n ≥ 2 :
let D = {R1(a, null),R1(a, c),R2(c, d)} s.t. att(R1) = {X,U} and att(R2) =

{V,Y}. Then, QP
D = {(a, d)} and QC′

D = {(d)}. Thus,M(D) = {〈a, P, d〉,
〈a, rdf:type,C〉, 〈d, rdf:type,C′〉} andM(D) 6|= (≥n P.C′) for n ≥ 2.

(2). φC B (≤n P.C′) s.t. n ≥ 0 : similar to the case (1), there exist counter-
examples for each constraint when n > 0 or n = 0, respectively.

(3). φC B (=n P.C′) s.t. n ≥ 0 : it follows from the argument of case (1) and (2).
(4). φC B (BC P±.C′) : similar counter example as in the case (a) above exists.
(5). φC B (DC P±.C′) : it follows from the case (3) and (4).

Let G be an arbitrary graph with G |= s, where s = 〈C, τC , φC B (≥0 P.C′)〉.
Then, there must be G |= s′ B 〈C, τC , φC〉 for all the φC s.t. sch(φC) ⊆ sch(M).

– Base case:
(1) φC B (≥0 P±. B) : G |= s′ since zero cardinality is always satisfied.
(2) φC B (≥0 P±.¬B) : G |= s′ since zero cardinality is always satisfied.
(3) φC B (≥0 P±.>) : G |= s′ since zero cardinality is always satisfied.
(4) φC B (≥1 P.C′) : G |= s′ is trivial.

– Inductive case:
Since, for every graph G, if G |= 〈C, τC , φC

1〉 and G |= 〈C, τC , φC
2〉 then

G |= 〈C, τC , φC
1 ∧ φC

2〉. Thus, G |= 〈C, τC , φC
1 ∧ · · · ∧ φC

n〉 for all φC
i s.t.

Σ |=M 〈C, τC , φC
i〉 and sch(φC

i) ⊆ sch(M), where i = 1, . . . , n.
d. Let φC B (≤1 P.C′). Then, from the constraint rewriting Γ in Defn. 15 and

the classification function ι in Defn. 14, there is mapping case QC , QP, i.e.,
QC , QP , QC′ or QC , QP = QC′ , to consider. See the proof case (1).(a).(iv)
of Theorem 1 for details. Further, from the rewriting function λ1 in Defn. 15,
there must be ΣQP FPX�Y , i.e., ΣQP FPX→Y or ΣQP FPX→∗Y depending on
the foreign key reference between join-attributes.

Next, let s′ be a shape 〈C, τC , φC〉 s.t. sch(s′) ⊆ sch(M). Let C and P be the set
of all RDF concepts and object property predicates in sch(M) respectively, and
let B ∈ C be an RDF concept. Then, following are the constraint Defn. φC s.t.
Σ |=M s′ B 〈C, τC , φC〉 with sch(φC) ⊆ sch(M):
(1). φC B (≥0 P±. B) : trivial.
(2). φC B (≥0 P±.¬B) : trivial.

51

(3). φC B (≥0 P±.>) : trivial.
(4). φC B (≤1 P.C′) : it follows from arguments of case (1).(a).(iv) of Theo-

rem 1.
(5). φC B (≤n P.C′) s.t. n ≥ 2 : it follows from the same argument as in the

case (4).

Contrarily, following are the Defn. φC s.t. Σ 6|=M 〈C, τC , φC〉 :
(1). φC B (≥n P.C′) s.t. n ≥ 1 :

let D = {R1(a, null),R2(c, d)} s.t. att(R1) = {X,U}, att(R2) = {V,Y} and
ΣQP FPX→Y , and QC , QP , QC′ . Then, QC

D = {(a)}, QP
D = {∅} and

QC′
D = {(d)}. Thus,M(D) = {〈a, rdf:type,C〉, 〈d, rdf:type,C′〉} and

M(D) 6|= (≥n P.C′) for n ≥ 1.
(2). φC B (=n P.C′) s.t. n ≥ 0 :

Similar to the previous case (1), there exist counter-examples for each
constraint when n > 0 or n = 0, respectively.

(3). φC B (BC P±.C′) : similar counter example as in the case (a) above exists.
(4). φC B (DC P±.C′) : it follows from the case (2) and (3).

Let G be an arbitrary graph with G |= s, where s = 〈C, τC , φC B (≥0 P.C′)〉.
Then, there must be G |= s′ B 〈C, τC , φC〉 for all the φC s.t. sch(φC) ⊆ sch(M).

– Base case:
(1) φC B (≥0 P±. B) : G |= s′ since zero cardinality is always satisfied.
(2) φC B (≥0 P±.¬B) : G |= s′ since zero cardinality is always satisfied.
(3) φC B (≥0 P±.>) : G |= s′ since zero cardinality is always satisfied.
(4) φC B (≤1 P.C′) : G |= s′ is trivial.
(5) φC B (≤n P.C′) s.t. n ≥ 2 : since G |= s′ in the previous case (4).

– Inductive case:
Since, for any graph G, if G |= 〈C, τC , φC

1〉 and G |= 〈C, τC , φC
2〉 then

G |= 〈C, τC , φC
1 ∧ φC

2〉. Thus, G |= 〈C, τC , φC
1 ∧ · · · ∧ φC

n〉 for all φC
i s.t.

Σ |=M 〈C, τC , φC
i〉 and sch(φC

i) ⊆ sch(M), where i = 1, . . . , n.

e. Let φC B (BC P.C′). Then, from the constraint rewriting Γ in Defn. 15 and
the classification function ι in Defn. 14, there is mapping case QC , QP, i.e.,
QC , QP , QC′ or QC , QP = QC′ , to consider. See the proof case (1).(a).(iii)
of Theorem 1 for details. Further, from the rewriting function λ1 in Defn. 15,
there must be ΣQP UFX�Y , i.e., ΣQP UFX→Y or ΣQP UFX→∗Y depending on
the foreign key reference between attributes participating in the join condition.

Now, let s′ be a shape 〈C, τC , φC〉 s.t. sch(s′) ⊆ sch(M). Let C and P be the set
of all RDF concepts and object property predicates in sch(M) respectively, and
let B ∈ C be an RDF concept. Then, following are the constraint Defn. φC s.t.
Σ |=M s′ B 〈C, τC , φC〉 with sch(φC) ⊆ sch(M):
(1). φC B (≥0 P±. B) : trivial.
(2). φC B (≥0 P±.¬B) : trivial.
(3). φC B (≥0 P±.>) : trivial.

52

(4). φC B (BC P.C′) : it follows from arguments of case (1).(a).(iii) of Theo-
rem 1.

(5). φC B (≤1 P.C′): it follows from the same argument as in the case (4).

Contrarily, following are the Defn. φC s.t. Σ 6|=M 〈C, τC , φC〉 :
(1). φC B (≥n P.C′) s.t. n ≥ 1 :

let D = {R1(a, null),R2(c, d)} s.t. att(R1) = {X,U}, att(R2) = {V,Y} and
ΣQP FPX→Y , and QC , QP , QC′ . Then, QC

D = {(a)}, QP
D = {∅} and

QC′
D = {(d)}. Thus,M(D) = {〈a, rdf:type,C〉, 〈d, rdf:type,C′〉} and

M(D) 6|= (≥n P.C′) for n ≥ 1.
(2). φC B (=n P.C′) s.t. n ≥ 0 :

Similar to the previous case (1), there exist counter-examples for each
constraint when n > 0 or n = 0, respectively. For example, let D =

{R1(a, null),R1(b, c),R2(c, d)} s.t. ΣQP UFX→Y , and QC , QP = QC′ .
Then, QC

D = {(a), (b)} and QP
D = {(b, d)} = QC′

D. Thus, M(D) =

{〈a, rdf:type,C〉, 〈d, rdf:type,C′〉, 〈b, P, d〉} andM(D) 6|= 〈C, τC , φC B
(=1 P.C′)〉.

(3). φC B (DC P.C′) : it follows from the case (2).
Let G be an arbitrary graph with G |= s, where s = 〈C, τC , φC B (≥0 P.C′)〉.
Then, there must be G |= s′ B 〈C, τC , φC〉 for all the φC s.t. sch(φC) ⊆ sch(M).

– Base case:
(1) φC B (≥0 P±. B) : G |= s′ since zero cardinality is always satisfied.
(2) φC B (≥0 P±.¬B) : G |= s′ since zero cardinality is always satisfied.
(3) φC B (≥0 P±.>) : G |= s′ since zero cardinality is always satisfied.
(4) φC B (BC P.C′) : G |= s′ is trivial.
(5) φC B (≤1 P.C′) : since G |= s′ in the previous case (4).

– Inductive case:
Since, for any graph G, if G |= 〈C, τC , φC

1〉 and G |= 〈C, τC , φC
2〉 then

G |= 〈C, τC , φC
1 ∧ φC

2〉. Thus, G |= 〈C, τC , φC
1 ∧ · · · ∧ φC

n〉 for all φC
i s.t.

Σ |=M 〈C, τC , φC
i〉 and sch(φC

i) ⊆ sch(M), where i = 1, . . . , n.

f. Let φC B (=1 P.C′). Then, from the constraint rewriting Γ in Defn. 15 and
the classification function ι in Defn. 14, there is two mapping cases QC , QP

and QC = QP to consider. See the proof case (1).(a).(ii) of Theorem 1 for
details. Consider the case QC , QP. Then, based on the rewriting function λ1
in Defn. 15, there must be ΣQP FDX�Y , i.e., ΣQP FDX→Y or ΣQP FDX→∗Y

depending on the foreign key reference between attributes participating in the
join condition. Similarly, assume the case QC = QP. Then, based on the rewrit-
ing function λ2 in Defn. 15, there must be ΣQP FPX�Y , i.e., ΣQP FPX→Y or
ΣQP FPX→∗Y . For details, we refer to the case (a).(ii).(A) and (a).(ii).(B) of
Theorem 1.

Next, let s′ be a shape 〈C, τC , φC〉 s.t. sch(s′) ⊆ sch(M). Let C and P be the
set of all RDF concepts and object predicates in sch(M) respectively, and let
B ∈ C be an RDF concept. Then, in either case of mappings, i.e., QC , QP

53

or QC = QP, following are the constraint Defn. φC s.t. Σ |=M s′ B 〈C, τC , φC〉

with sch(φC) ⊆ sch(M):
(1). φC B (≥0 P±. B) : trivial.
(2). φC B (≥0 P±.¬B) : trivial.
(3). φC B (≥0 P±.>) : trivial.
(4). φC B (=1 P.C′) : it follows from arguments of case (1).(a).(ii) of Theo-

rem 1.
(5). φC B (≤1 P.C′): it follows from the same argument as in the case (4).
(6). φC B (≥1 P.C′): it follows from the same argument as in the case (4).

Contrarily, following are the Defn. φC s.t. Σ 6|=M 〈C, τC , φC〉 :
(1). φC B (≥n P.C′) s.t. n ≥ 2 :

Let QC , QP = QC′ , and let D = {R1(a, c),R2(c, d)} s.t. ΣQP FDX→Y .
Then, QC

D = {(a)} and QP
D = {(a, d)}= QC′

D. Thus,M(D) = {〈a, P, d〉,
〈a, rdf:type,C〉, 〈d, rdf:type,C′〉} andM(D) 6|= 〈C, τC , φC B (≥n P.C′)〉
for n ≥ 2.

(2). φC B (=n P.C′) s.t. n ≥ 2 or n = 0 : it follows from the previous case (1).
(3). φC B (BC P.C′) :

Let QC , QP = QC′ , and letD = {R1(a, c),R1(b, c),R2(c, d)} s.t. att(R1) =

{X,U}, att(R2) = {V,Y} and ΣQP FDX→Y . Then, QC
D = {(a), (b)} and

QP
D = {(a, d), (b, d)}= QC′

D. Thus,M(D) = {〈a, rdf:type,C〉, 〈b, rdf:type,C〉
, 〈d, rdf:type,C′〉, 〈a, P, d〉, 〈b, P, d〉} andM(D) 6|= 〈C, τC , φC B (BC P.C′)〉.

(4). φC B (DC P.C′) : it follows from the case (2) and (3).
Let G be an arbitrary graph with G |= s, where s = 〈C, τC , φC B (≥0 P.C′)〉.
Then, there must be G |= s′ B 〈C, τC , φC〉 for all the φC s.t. sch(φC) ⊆ sch(M).

– Base case:
(1) φC B (≥0 P±. B) : G |= s′ since zero cardinality is always satisfied.
(2) φC B (≥0 P±.¬B) : G |= s′ since zero cardinality is always satisfied.
(3) φC B (≥0 P±.>) : G |= s′ since zero cardinality is always satisfied.
(4) φC B (=1 P.C′) : G |= s′ is trivial.
(5) φC B (≤1 P.C′) : G |= s′ is trivial from the case (4).
(6) φC B (≤1 P.C′) : G |= s′ is trivial from the case (4).

– Inductive case:
Since, for any graph G, if G |= 〈C, τC , φC

1〉 and G |= 〈C, τC , φC
2〉 then

G |= 〈C, τC , φC
1 ∧ φC

2〉. Thus, G |= 〈C, τC , φC
1 ∧ · · · ∧ φC

n〉 for all φC
i s.t.

Σ |=M 〈C, τC , φC
i〉 and sch(φC

i) ⊆ sch(M), where i = 1, . . . , n.

g. Let φC B (DC P.C′). Then, from the constraint rewriting Γ in Defn. 15 and
the classification function ι in Defn. 14, there is two mapping cases QC , QP

and QC = QP to consider. See the proof case (1).(a).(i) of Theorem 1 for de-
tails. Consider the case QC , QP. Then, based on the rewriting function λ1 in
Defn. 15, there must be ΣQP UFDX�Y , i.e., ΣQP UFDX→Y or ΣQP UFDX→∗Y

depending on the foreign key reference between attributes participating in the
join condition. Similarly, assume the case QC = QP. Then, based on the rewrit-
ing function λ2 in Defn. 15, there must be ΣQP UFX�Y , i.e., ΣQP UFX→Y

or ΣQP UFX→∗Y . For details, we refer to the case (a).(i).(A) and (a).(i).(B) of

54

Theorem 1.

Next, let s′ be a shape 〈C, τC , φC〉 s.t. sch(s′) ⊆ sch(M). Let C and P be the set
of all RDF concepts and object property predicates in sch(M) respectively, and
let B ∈ C be an RDF concept. Then, in either case of mappings, i.e., QC , QP

or QC = QP, following are the constraint Defn. φC s.t. Σ |=M s′ B 〈C, τC , φC〉

with sch(φC) ⊆ sch(M):
(1). φC B (≥0 P±. B) : trivial.
(2). φC B (≥0 P±.¬B) : trivial.
(3). φC B (≥0 P±.>) : trivial.
(4). φC B (DC P.C′) : it follows from arguments of case (1).(a).(i) of Theo-

rem 1.
(5). φC B (BC P.C′) : it follows from the same argument as in the case (4).
(6). φC B (=1 P.C′) : it follows from the same argument as in the case (4).
(7). φC B (≤1 P.C′): it follows from the same argument as in the case (4).
(8). φC B (≥1 P.C′): it follows from the same argument as in the case (4).

Contrarily, following are the Defn. φC s.t. Σ 6|=M 〈C, τC , φC〉 :
(1). φC B (≥n P.C′) s.t. n ≥ 2 :

Let QC , QP = QC′ , and let D = {R1(a, c),R2(c, d)} s.t. ΣQP UFDX→Y .
Then, QC

D = {(a)} and QP
D = {(a, d)}= QC′

D. Thus,M(D) = {〈a, P, d〉,
〈a, rdf:type,C〉, 〈d, rdf:type,C′〉} andM(D) 6|= 〈C, τC , φC B (≥n P.C′)〉
for n ≥ 2.

(2). φC B (=n P.C′) s.t. n ≥ 2 or n = 0 : it follows from the previous case (1).

Let G be an arbitrary graph with G |= s, where s = 〈C, τC , φC B (≥0 P.C′)〉.
Then, there must be G |= s′ B 〈C, τC , φC〉 for all the φC s.t. sch(φC) ⊆ sch(M).

– Base case:
(1) φC B (≥0 P±. B) : G |= s′ since zero cardinality is always satisfied.
(2) φC B (≥0 P±.¬B) : G |= s′ since zero cardinality is always satisfied.
(3) φC B (≥0 P±.>) : G |= s′ since zero cardinality is always satisfied.
(4) φC B (DC P.C′) : G |= s′ is trivial.
(5) φC B (BC P.C′) : G |= s′ is trivial from the case (4).
(6) φC B (=1 P.C′) : G |= s′ is trivial from the case (4).
(7) φC B (≤1 P.C′) : G |= s′ is trivial from the case (4).
(8) φC B (≤1 P.C′) : G |= s′ is trivial from the case (4).

– Inductive case:
Since, for any graph G, if G |= 〈C, τC , φC

1〉 and G |= 〈C, τC , φC
2〉 then

G |= 〈C, τC , φC
1 ∧ φC

2〉. Thus, G |= 〈C, τC , φC
1 ∧ · · · ∧ φC

n〉 for all φC
i s.t.

Σ |=M 〈C, τC , φC
i〉 and sch(φC

i) ⊆ sch(M), where i = 1, . . . , n.

ii. We now consider the inverse object (SHACL) property path P−. Let P− ∈ sch(〈C, τC , φC〉)
be an object property path. Then, from the rewriting Γ in Defn. 15, there exists
mapping of an object property P ∈ sch(M) s.t.,

QP −→ 〈fC′ (Y), P, fC(X)〉,

55

where QP is an SPJ source query Q over R with X,Y / Q, and mapping of an RDF
concept C′ ∈ sch(M) s.t.,

QC′ −→ 〈fC′ (Y), rdf:type,C′〉,

where QC′ is an SP/SPJ source query Q over R with Y / Q. Further, from the Defn.
of SPJ source query in Lemma 2, the query QP must be

QP B πX,Yσ¬isNull(X)∧¬isNull(Y)(QC OPU=V QC′)

such that QC and QC′ are SP expressions over R1 ∈ R and R2 ∈ R with X,U / QC

and Y,V /QC′ respectively, and OP ∈ {Z, Z,Z , ./ }. In addition, there must be either
FK(U,R1,V,R2) ∈ Σ |Q or FK(V,R2,U,R1) ∈ Σ |Q since every QP is valid SPJ query.
From the proof arguments of Lemma 2, w.l.o.g.,

QP B πX,Yσ¬isNull(X)∧¬isNull(Y)(QC ZU=V QC′).

Similar to the mapping of property path P ∈ sch(M) in the previous cases (i), there
exist similar proof-arguments for the following Σ |=∗

M
〈C, τC , φC〉 s.t. P− ∈ sch(φC)

based on the rewriting rules δ1 and δ2 in Defn. 15.

a. φC B (≤0 P−.¬C′)
b. φC B (≥0 P−.C′)
c. φC B (≤1 P−.C′)
d. φC B (≥1 P−.C′)
e. φC B (=1 P−.C′)
f. φC B (BC P−.C′)
g. φC B (DC P−.C′)

iii. We next consider the datatype (SHACL) property. Let U ∈ sch(〈C, τC , φC〉) be a
datatype property path. Then, from the rewriting Γ in Defn. 15, there exists mapping
of a datatype property U ∈ sch(M) s.t.,

QU −→ 〈fC(X),U, t(Y)〉,

where QP is an SP source query Q over R with X,Y / Q, see proof case (2) of
Theorem 1 for details. Hence, there must be either QC = QU or QC , QU , i.e.,

QU B πX,Yσ¬isNull(X)∧¬isNull(Y)R and QC = QU ,

or
QU B πX,Yσ¬isNull(X)∧¬isNull(Y)R and QC B πXσ¬isNull(X)R,

such that R ∈ R is a relation name with X,Y / R.
Next, similarly to the maximality proof arguments for the mapping of object

property path P± ∈ sch(M) in the previous case (1), there exist similar proof-
arguments for the datatype property U, i.e., Σ |=∗

M
〈C, τC , φC〉 s.t. U ∈ sch(φC),

based on the rewriting rules µ1 and µ2 in Defn. 15.

56

a. Let φC B (≤0 U.¬t). Recall that the constraints rewriting Γ in Defn. 15 gener-
ates constraint (≤0 U.¬t) ∈ φC since there exists only one mapping definition
per datatype property U ∈ sch(M), see the proof case (2).(vii) of Theorem 1 for
details.

For the purpose of constructing s′ B 〈C, τC , φC〉 s.t. Σ |=M s′ with
sch(s′) ⊆ sch(M), let U be the set of all RDF datatype predicates in sch(M), T
be set of all XML Schema datatypes, and let t′ ∈ T be an XML schema datatype.
Then, following are the Definitions φC such that Σ |=M 〈C, τC , φC〉:
(1). φC B (≥0 U. t′) : since the minimum zero cardinality is always satisfied.
(2). φC B (≥0 U.¬t′) : by following similar argument as in the case (1).
(3). φC B (≥0 U.>) : it follows from the previous cases (1) and (2).
(4). φC B (≤0 U.¬t): it follows from arguments of the case (2).(vii) of Theo-

rem 1.
(5). φC B (≤n U.X) s.t. X ∈ T\ t and n ≥ 0: since the value of datatype property

path U will not be a literal of datatype X, which is enough to imply the
constraint.

(6). φC B (=0 U.X) s.t. X ∈ T \ t: it follows from the previous case (5).

Contrarily, following are the Definitions φC such that Σ 6|=M 〈C, τC , φC〉 :

(1). φC B (≥n U. t′) for n ≥ 1 :
Let D = {R(a, null),R(c, d)} 17, where att(R) = {X,Y}. Then QC

D =

{(a), (c)} and QU
D = {(c)}. Thus,M(D) = {〈a, rdf:type,C〉, 〈c, rdf:type,C〉,

〈c,U, d〉} andM(D) 6|= 〈C, τC , φC B≥n U. t′)〉 for n ≥ 1.
(2). φC B (≥n U.¬t′) for n ≥ 1 : similar to the previous case.
(3). φC B (≥n U.>) for n ≥ 1 : it follows from the previous cases (1) and (2).
(4). φC B (≤n U. t) for n ≥ 0 : it follow from the argument as in the previous

case(1), there exist counter-examples for each constraint when n is fixed.
(5). φC B (=n U. t′) for n ≥ 0 : it follows from the previous cases.
(6). φC B (=n U.¬t′) for n ≥ 0 : it follows from the previous cases.
(7). φC B (=n U.>) for n ≥ 0 : it follows from the previous cases.
(8). φC B (BC U. t′) :

LetD = {R(a, c),R(b, c)}. Then QC
D = {(a), (b)} and QU

D = {(a, c), (b, c)}.
Thus,M(D) = {〈a, rdf:type,C〉, 〈b, rdf:type,C〉, 〈a,U, c〉,
〈b,U, c〉} andM(D) 6|= 〈C, τC , φC B (BC U. t′)〉 (as if t′ = t).

(9). φC B (DC U. t′) : it follows from the case (8).

Let G be an arbitrary graph with G |= s, where s = 〈C, τC , φC B (≥0 P.C′)〉.
Then, there must be G |= s′ := 〈C, τC , φC〉 for all the φC s.t. Σ |=M s′ and
sch(φC) ⊆ sch(M), as follows:

– Base cases:
(1) φC B (≥0 U. t′) : G |= s′ since zero cardinality is always satisfied.
(2) φC B (≥0 U.¬t′) : G |= s′ since zero cardinality is always satisfied.

17 we ignore source constraints in the counter-example since we are reasoning for the constraints
implied by the restriction on the mappingM.

57

(3) φC B (≥0 U.>) : G |= s′ since zero cardinality is always satisfied.
(4) φC B (≤0 U.¬t): trivial.
(5) φC B (≤n U.X) s.t. X ∈ T \ t and n ≥ 0: G |= s′ since the case (4).
(6) φC B (=0 U.X) s.t. X ∈ T \ t: G |= s′ since the case (5).

– Inductive cases: Since, for any graph G, if G |= 〈C, τC , φC
1〉 and G |=

〈C, τC , φC
2〉 then G |= 〈C, τC , φC

1 ∧ φC
2〉. Thus, G |= 〈C, τC , φC

1 ∧ · · · ∧

φC
n〉 for all φC

i s.t. Σ |=M 〈C, τC , φC
i〉 and sch(φC

i) ⊆ sch(M), where
i = 1, . . . , n.

b. Let φC B (≥0 U. t). Then, from the constraint rewriting function Γ , there is
mapping case QC , QU to consider, see proof case (2).(vi) of Theorem 1. Based
on the assumption for SP source query in the mapping Defn. 3, there must be

QU B πX,Yσ¬isNull(X)∧¬isNull(Y)R and QC B πXσ¬isNull(X)R,

such that R ∈ R is a relation name with X,Y / R.

Next, let s′ be a shape 〈C, τC , φC〉 s.t. sch(s′) ⊆ sch(M). Then, for the purpose
of constructing s′ B 〈C, τC , φC〉 s.t. Σ |=M s′ with sch(s′) ⊆ sch(M), let U be
the set of all RDF datatype predicates in sch(M), T be set of all XML Schema
datatypes, and let t′ ∈ T be an XML schema datatype. Then, following are the
Definitions φC such that Σ |=M 〈C, τC , φC〉:
(1). φC B (≥0 U. t′) : since the minimum zero cardinality is always satisfied.
(2). φC B (≥0 U.¬t′) : by following similar argument as in the case (1).
(3). φC B (≥0 U.>) : it follows from the previous cases (1) and (2).

Contrarily, following are the Definitions φC s.t. Σ 6|=M 〈C, τC , φC〉 : 18

(1). φC B (≥n U. t) s.t. n ≥ 1 :
letD = {R(a, null),R(c, d)}, where att(R) = {X,Y}. Then, QC

D = {(a), (c)}
and QU

D = {(c, d)}. Thus,M(D) = {〈a, rdf:type,C〉, 〈c, rdf:type,C〉,
〈c,U, d〉} andM(D) 6|= 〈C, τC , φC F (≥n U. t)〉 for n ≥ 1.

(2). φC B (≤n U. t) s.t. n ≥ 0 : similar to the case (1), there exist counter-
examples for each constraint when n > 0 or n = 0, respectively.

(3). φC B (=n U. t) s.t. n ≥ 0 : it follows from the argument of case (1) and (2).
(4). φC B (BC U. t) : similar counter example as in the case (a) above exists.
(5). φC B (DC U. t) : it follows from the case (3) and (4).

Let G be an arbitrary graph with G |= s B 〈C, τC , φC B (≥0 P.C′)〉. Then,
there must be G |= s′ B 〈C, τC , φC〉 for all the φC s.t. Σ |=M s′ with sch(φC) ⊆
sch(M).

– Base case:
(1) φC B (≥0 U. t′) : G |= s′ since zero cardinality is always satisfied.
(2) φC B (≥0 U.¬t′) : G |= s′ since zero cardinality is always satisfied.

18 Note that we can’t claim the rest of the Defn. φC s.t. Σ 6|=M 〈C, τC , φC〉 based on the available
facts, i.e.,M and Σ. However, those unlisted constraints will eventually be enumerated when
we reason for the maximality of rest of the Defn. φC s.t. Σ |= s B 〈C, τC , φC〉.

58

(3) φC B (≥0 U.>) : G |= s′ since zero cardinality is always satisfied.
– Inductive case: Since, for every graph G, if G |= 〈C, τC , φC

1〉 and G |=
〈C, τC , φC

2〉 then G |= 〈C, τC , φC
1 ∧ φC

2〉. Thus, G |= 〈C, τC , φC
1 ∧ · · · ∧

φC
n〉 for all φC

i s.t. Σ |=M 〈C, τC , φC
i〉 and sch(φC

i) ⊆ sch(M), where
i = 1, . . . , n.

c. Let φC B (≥1 U. t). Then, from the constraint rewriting function Γ, there is
mapping case QC = QU to consider, see proof case (2).(v) of Theorem 1. Based
on the assumption for SP source query in the mapping Defn. 3, there must be

QU B πX,Yσ¬isNull(X)∧¬isNull(Y)R and QC = QP,

such that R ∈ R is a relation name with X,Y / R.

Let s′ be a shape 〈C, τC , φC〉 s.t. sch(s′) ⊆ sch(M). Then, for the purpose of
constructing s′ B 〈C, τC , φC〉 s.t. Σ |=M s′ with sch(s′) ⊆ sch(M), let U be the
set of all RDF datatype predicates in sch(M), T be set of all XML Schema
datatypes, and let t′ ∈ T be an XML schema datatype. Then, following are the
Definitions φC such that Σ |=M 〈C, τC , φC〉:
(1). φC B (≥0 U. t′) : since the minimum zero cardinality is always satisfied.
(2). φC B (≥0 U.¬t′) : by following similar argument as in the case (1).
(3). φC B (≥0 U.>) : it follows from the previous cases (1) and (2).
(4). φC B (≥1 U. t) : it follows from arguments of case (2).(v) of Theorem 1.

Contrarily, following are the rest of the Definitions φC such that Σ 6|=M 〈C, τC , φC〉

:

(1). φC B (≥n U. t) s.t. n ≥ 2 :
letD = {R(a, null),R(a, c)}, where att(R) = {X,Y}. Then, QU

D = {(a, c)}
and QC

D = {(a)}. Thus,M(D) = {〈a, rdf:type,C〉, 〈a, P, c〉} andM(D) 6|=
〈C, τC , φC F (≥n U. t) for n ≥ 2.

(2). φC B (≤n U. t) s.t. n ≥ 0 : similar to the case (1), there exist counter-
examples for each constraint when n > 0 or n = 0, respectively.

(3). φC B (=n U. t) s.t. n ≥ 0 : it follows from the argument of case (1) and (2).
(4). φC B (BC U. t) : similar counter example as in the case (a) above exists.
(5). φC B (DC U. t) : it follows from the case (3) and (4).

Let G be an arbitrary graph with G |= s, where s = 〈C, τC , φC B (≥0 P.C′)〉.
Then, there must be G |= s′ B 〈C, τC , φC〉 for all the φC s.t. sch(φC) ⊆ sch(M).

– Base case:
(1) φC B (≥0 U. t′) : G |= s′ since zero cardinality is always satisfied.
(2) φC B (≥0 U.¬t′) : G |= s′ since zero cardinality is always satisfied.
(3) φC B (≥0 U.>) : G |= s′ since zero cardinality is always satisfied.
(4) φC B (≥1 U. t) : G |= s′ is trivial.

– Inductive case:
Since, for every graph G, if G |= 〈C, τC , φC

1〉 and G |= 〈C, τC , φC
2〉 then

59

G |= 〈C, τC , φC
1 ∧ φC

2〉. Thus, G |= 〈C, τC , φC
1 ∧ · · · ∧ φC

n〉 for all φC
i s.t.

Σ |=M 〈C, τC , φC
i〉 and sch(φC

i) ⊆ sch(M), where i = 1, . . . , n.
d. Let φC B (≤1 U. t). Then, similar to the case (c) above, there is only one

mapping cases to consider based on the rewriting µ1 rules in Defn. 15, that is,
QC , QU . See the proof case (2).(iv) of Theorem 1 for details.

Let s′ be a shape 〈C, τC , φC〉 s.t. sch(s′) ⊆ sch(M). Then, for the purpose of
constructing s′ B 〈C, τC , φC〉 s.t. Σ |=M s′ with sch(s′) ⊆ sch(M), let U be the
set of all RDF datatype predicates in sch(M), T be set of all XML Schema
datatypes, and let t′ ∈ T be an XML schema datatype. Then, following are the
Definitions φC such that Σ |=M 〈C, τC , φC〉:
(1). φC B (≥0 U. t′) : Trivial.
(2). φC B (≥0 U.¬t′) : Trivial.
(3). φC B (≥0 U.>) : Trivial following the cases (1) and (2).
(4). φC B (≤1 U. t) : it follows from arguments of case (2).(iv) of Theorem 1.
(5). φC B (≤n U. t) s.t. n ≥ 2 : it follows from the same argument as in the

case (4).

Contrarily, following are the Definitions φC such that Σ 6|=M 〈C, τC , φC〉 :
(1). φC B (≥n U. t) s.t. n ≥ 1 :

let D = {R(a, null),R(c, d)} s.t. att(R) = {X,Y} and ΣQU FPX→Y . Let
QC , QU . Then, QC

D = {(a), (c)} and QU
D = {(c, d)}. Thus, M(D) =

{〈a, rdf:type,C〉, 〈c, rdf:type,C〉, 〈c,U, d〉} andM(D) 6|= 〈C, τC , φC F
(≥n U. t′)〉 for n ≥ 1.

(2). φC B (=n U. t) s.t. n ≥ 0 :
Similar to the previous case (1), there exist counter-examples for each
constraint when n > 0 or n = 0, respectively.

(3). φC B (BC U. t) : similar counter example as in the case (a) above exists.
(4). φC B (DC U. t) : it follows from the case (2) and (3).

Let G be an arbitrary graph with G |= s, where s = 〈C, τC , φC B (≥0 P.C′)〉.
Then, there must be G |= s′ B 〈C, τC , φC〉 for all the φC s.t. sch(φC) ⊆ sch(M).

– Base case:
(1) φC B (≥0 U. t′) : G |= s′ since zero cardinality is always satisfied.
(2) φC B (≥0 U.¬t′) : G |= s′ since zero cardinality is always satisfied.
(3) φC B (≥0 U.>) : G |= s′ since zero cardinality is always satisfied.
(4) φC B (≤1 U. t) : G |= s′ is trivial.
(5) φC B (≤n U. t) s.t. n ≥ 2 : since G |= s′ in the previous case (4).

– Inductive case:
Since, for any graph G, if G |= 〈C, τC , φC

1〉 and G |= 〈C, τC , φC
2〉 then

G |= 〈C, τC , φC
1 ∧ φC

2〉. Thus, G |= 〈C, τC , φC
1 ∧ · · · ∧ φC

n〉 for all φC
i s.t.

Σ |=M 〈C, τC , φC
i〉 and sch(φC

i) ⊆ sch(M), where i = 1, . . . , n.

e. Let φC B (BC U. t). Then, similar to the case (c) above, there is only one
mapping cases to consider based on the rewriting µ1 rules in Defn. 15, that is,

60

QC , QU . See the proof case (2).(iii) of Theorem 1 for details.

Now, let s′ be a shape 〈C, τC , φC〉 s.t. sch(s′) ⊆ sch(M). Then, for the purpose
of constructing s′ B 〈C, τC , φC〉 s.t. Σ |=M s′ with sch(s′) ⊆ sch(M), let U be
the set of all RDF datatype predicates in sch(M), T be set of all XML Schema
datatypes, and let t′ ∈ T be an XML schema datatype. Then, following are the
Definitions φC such that Σ |=M 〈C, τC , φC〉:
(1). φC B (≥0 U. t′) : Trivial.
(2). φC B (≥0 U.¬t′) : Trivial.
(3). φC B (≥0 U.>) : Trivial.
(4). φC B (BC U. t) : it follows from arguments of case (2).(iii) of Theorem 1.
(5). φC B (≤1 U. t): it follows from the same argument as in the case (4).

Contrarily, following are the Definitions φC such that Σ 6|=M 〈C, τC , φC〉 :
(1). φC B (≥n U. t) s.t. n ≥ 1 : as for the case (f) above.

(2). φC B (=n U. t) s.t. n ≥ 0 :
Similar to the previous case (1), there exist counter-examples for each
constraint when n > 0 or n = 0, respectively. For example, let D =

{R(a, null),R(b, c)} s.t. att(R) = {X,Y} and ΣQU UFX→Y . Let QC , QU .
Then, QC

D = {(a), (b)} and QU
D = {(b, c)} = QC′

D. Thus, M(D) =

{〈a, rdf:type,C〉, 〈b, rdf:type,C〉, 〈b,U, c〉} andM(D) 6|= 〈C, τC , φC B
(=1 U. t)〉.

(3). φC B (DC U. t) : it follows from the case (2).
Let G be an arbitrary graph with G |= s, where s = 〈C, τC , φC B (≥0 P.C′)〉.
Then, there must be G |= s′ B 〈C, τC , φC〉 for all the φC s.t. sch(φC) ⊆ sch(M).

– Base case:
(1) φC B (≥0 U. t′) : G |= s′ since zero cardinality is always satisfied.
(2) φC B (≥0 U.¬t′) : G |= s′ since zero cardinality is always satisfied.
(3) φC B (≥0 U.>) : G |= s′ since zero cardinality is always satisfied.
(4) φC B (BC U. t) : G |= s′ is trivial.
(5) φC B (≤1 U. t) : since G |= s′ in the previous case (4).

– Inductive case:
Since, for any graph G, if G |= 〈C, τC , φC

1〉 and G |= 〈C, τC , φC
2〉 then

G |= 〈C, τC , φC
1 ∧ φC

2〉. Thus, G |= 〈C, τC , φC
1 ∧ · · · ∧ φC

n〉 for all φC
i s.t.

Σ |=M 〈C, τC , φC
i〉 and sch(φC

i) ⊆ sch(M), where i = 1, . . . , n.

f. Let φC B (=1 U. t). Then, from the µ1 and µ2 rules in Defn. 15, there are two
mapping cases to consider, that is, QC , QU and QC = QU . See the proof
case (2).(ii) of Theorem 1 for details.

Next, let s′ be a shape 〈C, τC , φC〉 s.t. sch(s′) ⊆ sch(M). Then, for the purpose
of constructing s′ B 〈C, τC , φC〉 s.t. Σ |=M s′ with sch(s′) ⊆ sch(M), let U be
the set of all RDF datatype predicates in sch(M), T be set of all XML Schema
datatypes, and let t′ ∈ T be an XML schema datatype. Then, following are the
Definitions φC such that Σ |=M 〈C, τC , φC〉:

61

(1). φC B (≥0 U. t′) : Trivial.
(2). φC B (≥0 U.¬t′) : Trivial.
(3). φC B (≥0 U.>) : Trivial.
(4). φC B (=1 U. t) : it follows from arguments of case (2).(ii) of Theorem 1.
(5). φC B (≤1 U. t): it follows from the same argument as in the case (4).
(6). φC B (≥1 U. t): it follows from the same argument as in the case (4).

Contrarily, following are the Definitions φC such that Σ 6|=M 〈C, τC , φC〉 :
(1). φC B (≥n U. t) s.t. n ≥ 2 :

Let QC , QU , and letD = {R(a, c),R(b, d)} s.t. att(R) = {X,Y} and ΣQU
FDX→Y . Then, QC

D = {(a), (b)} and QU
D = {(a, c), (b, d)}. Thus,M(D) =

{〈a, rdf:type,C〉, 〈b, rdf:type,C〉, 〈a,U, c〉, 〈b,U, d〉} andM(D) 6|= 〈C, τC ,
φC B (≥n U. t)〉 for n ≥ 2.

(2). φC B (=n U. t) s.t. n ≥ 2 or n = 0 : it follows from the previous case (1).
(3). φC B (BC P.C′) :

Let QC , QU , and let D = {R(a, c),R(b, c)} s.t. att(R) = {X,Y} and ΣQU
FDX→Y . Then, QC

D = {(a), (b)} and QU
D = {(a, c), (b, c)}. Thus,M(D) =

{〈a, rdf:type,C〉, 〈b, rdf:type,C〉, 〈a,U, c〉, 〈b,U, c〉} andM(D) 6|= 〈C, τC ,
φC B (BC U. t)〉.

(4). φC B (DC U. t) : it follows from the case (2) and (3).
Let G be an arbitrary graph with G |= s, where s = 〈C, τC , φC B (≥0 P.C′)〉.
Then, there must be G |= s′ B 〈C, τC , φC〉 for all the φC s.t. sch(φC) ⊆ sch(M).

– Base case:
(1) φC B (≥0 U. t′) : G |= s′ since zero cardinality is always satisfied.
(2) φC B (≥0 U.¬t′) : G |= s′ since zero cardinality is always satisfied.
(3) φC B (≥0 U.>) : G |= s′ since zero cardinality is always satisfied.
(4) φC B (=1 U. t) : G |= s′ is trivial.
(5) φC B (≤1 U. t) : G |= s′ is trivial from the case (4).
(6) φC B (≤1 U. t) : G |= s′ is trivial from the case (4).

– Inductive case:
Since, for any graph G, if G |= 〈C, τC , φC

1〉 and G |= 〈C, τC , φC
2〉 then

G |= 〈C, τC , φC
1 ∧ φC

2〉. Thus, G |= 〈C, τC , φC
1 ∧ · · · ∧ φC

n〉 for all φC
i s.t.

Σ |=M 〈C, τC , φC
i〉 and sch(φC

i) ⊆ sch(M), where i = 1, . . . , n.

g. Let φC B (DC U. t). Then, from the µ1 and µ2 rules in Defn. 15, there are two
mapping cases to consider, that is, QC , QU and QC = QU . See the proof
case (2).(i) of Theorem 1 for details.

Let s′ be a shape 〈C, τC , φC〉 s.t. sch(s′) ⊆ sch(M). Then, for the purpose of
constructing s′ B 〈C, τC , φC〉 s.t. Σ |=M s′ with sch(s′) ⊆ sch(M), let U be the
set of all RDF datatype predicates in sch(M), T be set of all XML Schema
datatypes, and let t′ ∈ T be an XML schema datatype. Then, following are the
Definitions φC such that Σ |=M 〈C, τC , φC〉:
(1). φC B (≥0 U. t′) : Trivial.
(2). φC B (≥0 U.¬t′) : Trivial.
(3). φC B (≥0 U.>) : Trivial.

62

(4). φC B (DC U. t) : it follows from arguments of case (2).(i) of Theorem 1.
(5). φC B (BC U. t) : it follows from the same argument as in the case (4).
(6). φC B (=1 U. t) : it follows from the same argument as in the case (4).
(7). φC B (≤1 U. t): it follows from the same argument as in the case (4).
(8). φC B (≥1 U. t): it follows from the same argument as in the case (4).

Contrarily, following are the Definitions φC such that Σ 6|=M 〈C, τC , φC〉 :
(1). φC B (≥n U. t) s.t. n ≥ 2 :

Let QC , QU . Let D = {R(a, c),R(b, d)} s.t. att(R) = {X,Y} and ΣQU
UFDX→Y . Then, QC

D = {(a), (b)} and QU
D = {(a, c), (b, d)}. Thus,M(D) =

{〈a, rdf:type,C〉, 〈b, rdf:type,C〉, 〈a,U, c〉, 〈b,U, d〉} andM(D) 6|= 〈C, τC ,
φC B (≥n U. t)〉 for n ≥ 2.

(2). φC B (=n P.C′) s.t. n ≥ 2 or n = 0 : it follows from the previous case (1).

Let G be an arbitrary graph with G |= s, where s = 〈C, τC , φC B (≥0 P.C′)〉.
Then, there must be G |= s′ B 〈C, τC , φC〉 for all the φC s.t. sch(φC) ⊆ sch(M).

– Base case:
(1) φC B (≥0 U. t′) : G |= s′ since zero cardinality is always satisfied.
(2) φC B (≥0 U.¬t′) : G |= s′ since zero cardinality is always satisfied.
(3) φC B (≥0 U.>) : G |= s′ since zero cardinality is always satisfied.
(4) φC B (DC U. t) : G |= s′ is trivial.
(5) φC B (BC U. t) : G |= s′ is trivial from the case (4).
(6) φC B (=1 U. t) : G |= s′ is trivial from the case (4).
(7) φC B (≤1 U. t) : G |= s′ is trivial from the case (4).
(8) φC B (≤1 U. t) : G |= s′ is trivial from the case (4).

– Inductive case:
Since, for any graph G, if G |= 〈C, τC , φC

1〉 and G |= 〈C, τC , φC
2〉 then

G |= 〈C, τC , φC
1 ∧ φC

2〉. Thus, G |= 〈C, τC , φC
1 ∧ · · · ∧ φC

n〉 for all φC
i s.t.

Σ |=M 〈C, τC , φC
i〉 and sch(φC

i) ⊆ sch(M), where i = 1, . . . , n.

This concludes the proof of the theorem.

Finally, we claim thatM′ extending a given simple mappingM does not invalidate
already translated Γ(M, Σ) constraints, i.e., Γ(M, Σ) is contained in Γ(M′, Σ) for every
simple mappingsM ⊆M′. However, interest in having a monotone constraint rewriting
for arbitrary R2R mappings lies purely in the formulation of the ‘rewriting rules’ that
generate disjunctive constraints when clause (a) in Defn. 4 of simple mapping is relaxed.

Theorem 3. The constraint rewriting Γ is monotone.

Proof. It is straightforward to see that Γ is monotone, because all the rewriting steps,
i.e., including rules λi ∪ δi ∪ µi for 1 ≤ i ≤ 2 in the constraints Φ1≤i≤3 definitions as
well as the classifications functions ι and κ, defining Γ in Defn. 15 refer to the source
constraints Σ and the mappings M ⊆ M′, and these elements are kept fixed when
checking monotonicity.

63

The proof involves showing that the constraint rewriting Γ satisfies the condition
stated in Defn. 11, i.e., for every mapping setsM ⊆M′ defined over a relational schema
R with source constraint Σ and every RDF graph G,

G |= Γ(M′, Σ)→ G |= Γ(M, Σ),

where Γ is constraint rewriting from Definition 15, and Γ(M′, Σ) and Γ(M, Σ) from
Definition 8.

LetM ⊆ M′ be simple mappings defined over a relational schema R with source
constraints Σ, i.e., for every mapping m , if m ∈ M then m ∈ M′. Note that database
schema R with source constraints Σ is fixed for the both mappings M′ and M and
all the rewriting steps defining Γ in Defn. 15 are negation-free. Hence, by structural
induction on Γ, for every SHACL shape 〈s, τs, φs〉 on sch(M), if 〈s, τs, φs〉 ∈ Γ(M, Σ)
then 〈s′, τs′ , φs′〉 ∈ Γ(M′, Σ) s.t. τs = τs′ and, for each shape constraint φ, if φ ∈ φs then
φ ∈ φs′ . Thus, for every graph G, if G |= Γ(M′, Σ) then G |= Γ(M, Σ).

D Proof of Sect. 1

Lemma 3. Let M be a mapping set defined over the relational schema R with source
constraints Σ and S a set of SHACL shapes, known as SHACL document, from Example 1.
Then, the document S is maximally Σ-implied set of shapes with respect to M.

Proof. To ease the presentation, consider the relational schema R with source constraints
Σ from Example 1 as follows,

cu {C_id varchar PK, Title varchar UNQ},
st {S_id integer PK, Name varchar, Code

varchar NN and FK to cu(C_id)}.

Henceforth, we use atom P(a, b) for the RDF triple 〈a, P, b〉 and C(a) for the class
membership triple 〈a, rdf:type,C〉. Then, the mapping set M from Example 1:

Select S_id from st −→ St(S_id).
Select C_id from cu −→ Cu(C_id).

Select S_id, C_id from st, cu −→ enrolledFor(S_id, C_id).
where st.Code = cu.C_id

The SHACL document S from Example 1 in abstract syntax [13] :

S = {〈St, τSt, φSt〉, 〈Cu, τCu, φCu〉}, with 19

φSt B (=1 enrolledFor .Cu) ∧ (≤0 enrolledFor .¬Cu)

and φCu B (≤0 enrolledFor
−.¬St).

To prove that S is maximally Σ-implied set of SHACL shapes with respect to M, we
need to establish:
19 Note that node shapes are defined with implicit targetClass

64

� Σ |=M S as per required by the Defn. 6, and
� Σ |=∗M S as per required by the Defn. 7.

First, to prove Σ |=M S , we show:

D |= Σ → M(D) |= S

for every instanceD of R, where M(D) is graph from Definition 5.

LetD be an instance of R that is legal for the source constraints Σ, i.e.,D |= Σ. Then,
there must be, ∧

〈s,τs,φs〉∈S

∧
node n in M(D)

. (M(D) |= τc(n)→ M(D) |= φC(n)),

where S = {〈St, τSt, φSt B (=1 enrolledFor .Cu)∧(≤0 enrolledFor .¬Cu)〉, 〈Cu, τC, φCu B
(≤0 enrolledFor−.¬St)〉}.

To show that M(D) satisfies the shape constraint 〈St, τSt, φSt B (=1 enrolledFor.Cu) ∧ (≤0

enrolledFor .¬Cu)〉 ∈ S . For the component (=1 enrolledFor.Cu) ∈ φSt, let n be an arbitrary
node with St(n) ∈ M(D). A St(n) triple must come from a tuple t1 ∈ st

D with t1(S_id) ,
null. The NN constraint on Code ensures that t1(Code) , null, and the FK constraint in turn
guarantees that there is a tuple t2 ∈ cu

D with t1(Code) = t2(C_id). There is therefore a triple
enrolledFor(n, t2(C_id)) ∈ M(D) with Cu(t2(C_id)) ∈ M(D). Thus, there cannot be more than one
triple enrolledFor(n, t2(C_id)) ∈ M(D) for each St(n) ∈ M(D), since that would either require
several tuples t1 ∈ st

D with the same t1(S_ID) but different t1(Code), contradicting the primary
key constraint PK(S_id, st) ∈ Σ. Similarly, for the component (≤0 enrolledFor.¬Cu) ∈ φSt, observe
that there exists only one mapping definition per property path enrolledFor in sch(M). Thus, M
assures that if there exist any node in M(D) that is reachable from a node n s.t. St(n) ∈ M(D) via
property path enrolledFor then that must no other than the node n′ with Cu(n′) ∈ M(D).

To show that M(D) satisfies the shape constraint 〈Cu, τCu, φCu B (≤0 enrolledFor−.¬St)〉 ∈
S . Let n be an arbitrary node with Cu(n) ∈ M(D). A Cu(n) triple must come from a tuple
t2 ∈ cu

D with t2(C_id) , null. Since there is no UNQ constraint on the Code ∈ att(cu) and
FK(Code, st, C_id, Cu) constraint, for each t2 ∈ cu

D with t2(C_id) , null there exist zero
or more tuples t1 ∈ st

D with t1(Code) = t2(C_id). Therefore, there is zero or more triples
enrolledFor(t1(S_id), n) ∈ M(D) with St(t(S_id)) ∈ M(D) for each Cu(n) ∈ M(D). In addition,
there cannot be a triple enrolledFor(t1(S_id), n) ∈ M(D) without St(t(S_id)) ∈ M(D), since that
contradict the mapping M and the PK(S_id, st) ∈ Σ constraint.

Thus, for each legal instanceD of R, we have M(D) |= S , i.e.,

� (M(D) |= τSt(n)→ M(D) |= φSt(n)) for every St(n) ∈ M(D) and
� (M(D) |= τCu(n′)→ M(D) |= φCu(n′)) for every Cu(n’) ∈ M(D),

where S = {〈St, τSt, φSt〉, 〈Cu, τC, φCu〉}. Hence, Σ |=M S .

Next, we proceed to prove Σ |=∗M S , i.e., according to Defn. 7, for every SHACL document
Σ |=M S ′ such that sch(S ′) ⊆ sch(M) and every RDF graph G:

G |= S → G |= S ′.

65

For the purpose, we first identify all the SHACL documents Σ |=M S ′ such that sch(S ′) ⊆
sch(M), i.e., according to the Defn. 6, all the SHACL documents S’ such that sch(S ′) ⊆ sch(M)
and for every database instanceD:

D |= Σ → M(D) |= S ′.

Let S ′ be a SHACL document such that sch(S ′) ⊆ sch(M), and let s be an arbitrary shape in S ′.
Then, s must be defined on sch(M), i.e., sch(s) ⊆ sch(M) = {St, Cu, enrolledFor±}. Therefore,20

s B 〈St, τSt, φSt〉 | 〈Cu, τCu, φCu〉 ,

whose constraints φ definition is given by the following grammar:21

φF ≥n P±. α | ≤n P±. α | BC P± | φ ∧ φ

αF > | C | ¬C

where P stands for the property path ‘enrolledFor’, the superscript ± refers to the path
‘enrolledFor’ or its inverse ‘enrolledFor−’, C B St | Cu, n ∈ N and rest of the notations are
as introduced in Sect 2.

Thus,

A. For 〈St, τSt, φSt〉 ∈ S ′ – with implicit targetClass τSt that declares the instances of RDF
concept St as target nodes, there exist following φSt definitions on RDF vocabularies
{St, Cu, enrolledFor±} :

i. Defn. φSt on {St, Cu, enrolledFor}:
a. Defn. φSt with {≤0,≥0,=0} cardinality and {>, St, Cu} typing 22:

1. Defn. φSt B (≤0 enrolledFor.>):
For the constraint, we have Σ 6|=M 〈St, τSt, (≤0 enrolledFor.>)〉.
AssumeD = {st(001,_, CS40), cu(CS40, Logic)} such thatD |= Σ. Then,

M(D) = {St(001), Cu(CS40), enrolledFor(001,CS40)}.

For the φSt B (≤0 enrolledFor.>) definition, there is M(D) |= τSt(001), but
M(D) 6|= φSt(001) since St(001) ∈ M(D) violates the at most zero cardinality.

2. Defn. φSt B (≤0 enrolledFor. St):
There is Σ |=M 〈St, τSt, (≤0 enrolledFor. St)〉 since M ensures that there
will not be an instance St(n) in M(D) for any D that is reachable from the
target τSt node with the property path ‘enrolledFor’.

3. Defn. φSt B (≤0 enrolledFor. Cu):
For the constraint, Σ 6|=M 〈St, τSt, (≤0 enrolledFor. Cu)〉 follows from the
counter-example of case (1).

4. Defn. φSt B (≥0 enrolledFor.>):
For the constraint, we have Σ |=M 〈St, τSt, (≥0 enrolledFor.>)〉 since the
minimum zero cardinality is always satisfied.

20 For simplicity, w.l.o.g. we ignore these cases s B
〈∃ enrolledFor, τ∃ enrolledFor, φ∃ enrolledFor〉 | 〈∃ enrolledFor

−, τ∃ enrolledFor− , φ∃ enrolledFor− 〉.
for now, i.e., constraints on the domain and range of the property path ‘enrolledFor’ and its
inverse ‘enrolledFor−’.

21 ` is removed from sub-grammar α because we do not have datatype predicates in sch(M), and
⊥ (false, i.e. constraints that will always be violated) is shorthand for ¬>.

22 i.e. ‘typing’ for the value node in the data graph M(D) that can be reached from the target τSt
node with the property path ‘enrolledFor’.

66

5. Defn. φSt B (≥0 enrolledFor. St):
For the constraint, Σ |=M 〈St, τSt, (≥0 enrolledFor. St)〉 follows from the
same reason as in the previous case (4).

6. Defn. φSt B (≥0 enrolledFor. Cu):
For the constraint, Σ |=M 〈St, τSt, (≥0 enrolledFor. Cu)〉 follows from the
same reason as in the previous case (4).

7. Defn φSt B (=0 enrolledFor.>):
For the constraint, Σ 6|=M 〈St, τSt, (=0 enrolledFor.>)〉 follows from the
previous cases (1) and (4).

8. Defn. φSt B (=0 enrolledFor. St):
For the constraint, Σ |=M 〈St, τSt, (=0 enrolledFor. St)〉 follows from the
previous cases (2) and (5).

9. Defn. φSt B (=0 enrolledFor. Cu):
For the constraint, Σ 6|=M 〈St, τSt, (=0 enrolledFor. Cu)〉 follows from the
previous cases (3) and (6).

b. Defn. φSt with {≤0,≥0,=0} cardinality and {¬St,¬Cu} typing:

1. Defn. φSt B (≤0 enrolledFor.¬St):
For the constraint, Σ 6|=M 〈St, τSt, (≤0 enrolledFor.¬St)〉 follows from the
previous case (a).(3).

2. Defn. φSt B (≤0 enrolledFor.¬Cu):
The φSt B (≤0 enrolledFor.¬Cu) declares that if there exists any node in the
graph that is reachable from a node n s.t. 〈n, rdf:type, St〉 via property path
enrolledFor then that must be no other than the node n′ s.t. 〈n′, rdf:type, Cu〉.
The M ensures that for every St(n) ∈ M(D) s.t. enrolledFor(n, n′) ∈ M(D)
with Cu(n′) ∈ M(D) following as reason as in the previous case (a).(2). Thus,
Σ |=M 〈St, τSt, (≤0 enrolledFor.¬Cu)〉.

3. Defn. φSt B (≥0 enrolledFor.¬St):
For the constraint, Σ |=M 〈St, τSt, (≥0 enrolledFor.¬St)〉. Note that the
constraints is equivalent to previous φSt B (≥0 enrolledFor. Cu) in the
case (a).(6).

4. Defn. φSt B (≥0 enrolledFor.¬Cu):
For the constraint, Σ |=M 〈St, τSt, (≥0 enrolledFor.¬Cu)〉. Note that the
constraints is equivalent to previous φSt B (≥0 enrolledFor. St) in the
case (a).(5).

5. Defn. φSt B (=0 enrolledFor.¬St):
For the constraint, Σ 6|=M 〈St, τSt, (=0 enrolledFor.¬St)〉 follows from the
previous cases (1) and (3).

6. Defn. φSt B (=0 enrolledFor.¬Cu):
For the constraint, Σ |=M 〈St, τSt, (=0 enrolledFor.¬Cu)〉 follows from the
previous cases (2) and (4).

c. Defn. φSt with {≤1,≥1,=1} cardinality and {>, St, Cu} typing:
1. Defn. φSt B (≤1 enrolledFor.>):

For the constraint, Σ |=M 〈St, τSt, (≤1 enrolledFor.>)〉 follows from the
arguments for the case Σ |=M 〈St, τSt, (=1 enrolledFor. Cu)〉, see details in
the proof section Σ |=M S ′′ above.

2. Defn. φSt B (≤1 enrolledFor. St):
We have Σ |=M 〈St, τSt, (≤1 enrolledFor. St)〉 following same arguments as
for the Σ |=M 〈St, τSt, (≤0 enrolledFor. St)〉 in the case (a).(2).

3. Defn. φSt B (≤1 enrolledFor. Cu):

67

We have Σ |=M 〈St, τSt, (≤1 enrolledFor. Cu)〉 following arguments from the
previous case (1).

4. Defn. φSt B (≥1 enrolledFor.>):
There is Σ |=M 〈St, τSt, (≥1 enrolledFor.>)〉. It also follows from the argu-
ments in the previous case (1).

5. Defn. φSt B (≥1 enrolledFor. St):
There is Σ 6|=M 〈St, τSt, (≥1 enrolledFor. St)〉 following arguments from the
case (a).(2).

6. Defn. φSt B (≥1 enrolledFor. Cu):
The Σ |=M 〈St, τSt, (≥1 enrolledFor. Cu)〉 follows from the arguments of the
previous case (1).

7. Defn. φSt B (=1 enrolledFor.>):
For the constraint, Σ |=M 〈St, τSt, (=1 enrolledFor.>)〉 follows from the
previous cases (1) and (4).

8. Defn. φSt B (=1 enrolledFor. St):
The Σ 6|=M 〈St, τSt, (=1 enrolledFor. St)〉 follows from the previous cases (2)
and (5).

9. Defn. φSt B (=1 enrolledFor. Cu):
The Σ |=M 〈St, τSt, (=1 enrolledFor. Cu)〉 follows from the previous cases (3)
and (6).

d. Defn. φSt with {≤1,≥1,=1} cardinality and {¬St,¬Cu} typing:
1. Defn. φSt B (≤1 enrolledFor.¬St):

For the constraint, Σ |=M 〈St, τSt, (≤1 enrolledFor.¬St)〉. Note that the
constraint is equivalent to φSt B (≤1 enrolledFor. Cu) in the case (c.3).

2. Defn. φSt B (≤1 enrolledFor.¬Cu):
We have Σ |=M 〈St, τSt, (≤1 enrolledFor.¬Cu)〉. Note that the constraint is
equivalent to φSt B (≤1 enrolledFor. St), see the case (c.2).

3. Defn. φSt B (≥1 enrolledFor.¬St):
We have Σ |=M 〈St, τSt, (≥1 enrolledFor.¬St)〉. Note that the constraint is
equivalent to φSt B (≥1 enrolledFor. Cu), see the previous case (c.6).

4. Defn. φSt B (≥1 enrolledFor.¬Cu):
We have Σ 6|=M 〈St, τSt, (≥1 enrolledFor.¬Cu)〉. Note that the constraint is
equivalent to φSt B (≥1 enrolledFor. St), see the case (c.5).

5. Defn. φSt B (=1 enrolledFor.¬St):
For the constraint, Σ |=M 〈St, τSt, (=1 enrolledFor.¬St)〉 follows from the
previous cases (1) and (3).

6. Defn. φSt B (=1 enrolledFor.¬Cu):
For the constraint, Σ 6|=M 〈St, τSt, (=1 enrolledFor.¬Cu)〉 follows from the
previous cases (2) and (4).

e. Defn. φSt with {≤n,≥n,=n} such that n ≥ 2 cardinality and {>, St, Cu} typing:
1. Defn. φSt B (≤n enrolledFor.>):

For the constraint, Σ |=M 〈St, τSt, (≤n enrolledFor.>)〉 follows from the
previous case (c.1).

2. Defn. φSt B (≤n enrolledFor. St):
We have Σ |=M 〈St, τSt, (≤n enrolledFor. St)〉 following the same arguments
as for the case (c.2).

3. Defn. φSt B (≤n enrolledFor. Cu):
We have Σ |=M 〈St, τSt, (≤n enrolledFor. Cu)〉 following the same arguments
as for the case (c.3).

4. Defn. φSt B (≥n enrolledFor.>):

68

We have Σ 6|=M 〈St, τSt, (≥n enrolledFor.>)〉 since Σ |=M 〈St, τSt, (=1

enrolledFor.>)〉 from the case (c.7).
5. Defn. φSt B (≥n enrolledFor. St):

For the constraint, Σ 6|=M 〈St, τSt, (≥n enrolledFor. St)〉 since Σ |=M 〈St, τSt, (≥1

enrolledFor. St)〉 from the case (c.5).
6. Defn. φSt B (≥n enrolledFor. Cu):

We have Σ 6|=M 〈St, τSt, (≥n enrolledFor. Cu)〉 since Σ |=M 〈St, τSt, (=1

enrolledFor.>)〉 from the case (c.7).
7. Defn. φSt B (=n enrolledFor.>):

For the constraint, Σ 6|=M 〈St, τSt, (=n enrolledFor.>)〉 following the previ-
ous case (4).

8. Defn. φSt B (=n enrolledFor. St):
For the constraint, Σ 6|=M 〈St, τSt, (=n enrolledFor. St)〉 following the previ-
ous case (5).

9. Defn. φSt B (=n enrolledFor. Cu):
For the constraint, Σ 6|=M 〈St, τSt, (=n enrolledFor. Cu)〉 following the previ-
ous case (6).

f. Defn. φSt with {≤n,≥n,=n, } such that n ≥ 2 cardinality and {¬St,¬Cu} typing:
1. Defn. φSt B (≤n enrolledFor.¬St):

For the constraint, Σ |=M 〈St, τSt, (≤n enrolledFor.¬St)〉 follows from the
previous case (e.3).

2. Defn. φSt B (≤n enrolledFor.¬Cu):
For the constraint, Σ |=M 〈St, τSt, (≤n enrolledFor.¬Cu)〉 follows from the
previous case (e.2).

3. Defn. φSt B (≥n enrolledFor.¬St):
For the constraint, Σ 6|=M 〈St, τSt, (≥n enrolledFor.¬St)〉 follows from the
previous case (e.6).

4. Defn. φSt B (≥n enrolledFor.¬Cu):
For the constraint, Σ 6|=M 〈St, τSt, (≥n enrolledFor.¬Cu)〉 follows from the
previous case (e.5).

5. Defn. φSt B (=n enrolledFor.¬St):
For the constraint, Σ 6|=M 〈St, τSt, (=n enrolledFor.¬St)〉 follows from the
previous case (e.9).

6. Defn. φSt B (=n enrolledFor.¬Cu):
For the constraint, Σ 6|=M 〈St, τSt, (=n enrolledFor.¬Cu)〉 follows from the
previous case (e.8).

g. Defn. φSt with {BSt,DSt} cardinality and {>, St, Cu} typing:
1. Defn. φSt B (BSt enrolledFor.>):

For the constraint, we have Σ 6|=M 〈St, τSt, (BSt enrolledFor.>)〉.
Assume D = {st(001,_, CS40), st(002,_, CS40), cu(CS40, Logic)} such that
D |= Σ. Then,

M(D) = {St(001), St(002), Cu(CS40), enrolledFor(001,CS40),

enrolledFor(002,CS40)}.

From the semantics of BCu cardinality, we have M(D) 6|= φSt since there are
two ‘enrolledFor−’- successor for the Cu(CS40) ∈ M(D).

2. Defn. φSt B (BSt enrolledFor. St):
For the constraint, Σ |=M 〈St, τSt, (BS t enrolledFor. St)〉 follows from the
mapping M definition.

69

3. Defn. φSt B (BSt enrolledFor. Cu):
For the constraint, Σ 6|=M 〈St, τSt, (BS t enrolledFor. Cu)〉 follows from the
case (1).

4. Defn. φSt B (DSt enrolledFor.>):
For the constraint, Σ 6|=M 〈St, τSt, (DS t enrolledFor.>)〉 follows from the
case (1).

5. Defn. φSt B (DSt enrolledFor. St):
For the constraint, Σ 6|=M 〈St, τSt, (DS t enrolledFor. St)〉 follows from the
semantics BSt and the Σ 6|=M 〈St, τSt, (=1 enrolledFor. St)〉 in the case c.8.

6. Defn. φSt B (DSt enrolledFor. Cu):
For the constraint, Σ 6|=M 〈St, τSt, (DS t enrolledFor. Cu)〉 follows from the
case (1).

h. Defn. φSt with {BSt,DSt} cardinality and {¬St,¬Cu} typing:
1. Defn. φSt B (BSt enrolledFor.¬St):

For the constraint, Σ 6|=M 〈St, τSt, (BS t enrolledFor.¬St)〉 follows from the
case (g.3).

2. Defn. φSt B (BSt enrolledFor.¬Cu):
For the constraint, Σ |=M 〈St, τSt, (BS t enrolledFor.¬Cu)〉 follows from the
case (g.2).

3. Defn. φSt B (DSt enrolledFor.¬St):
For the constraint, Σ 6|=M 〈St, τSt, (DS t enrolledFor.¬St)〉 follows from the
case (g.6).

4. Defn. φSt B (DSt enrolledFor.¬Cu):
For the constraint, Σ 6|=M 〈St, τSt, (DS t enrolledFor.¬Cu)〉 follows from the
case (g.5).

ii. Defn. φSt on {St, Cu, enrolledFor−}
a. Defn. φSt with {≤0,≥0,=0} cardinality and {>, St, Cu,¬St,¬Cu} typing:

For the constraints, we have Σ |=M 〈St, τSt, φSt〉 since M ensures that there will
not be an instance in M(D) for any D that can be reached from the τSt (i.e., any
St(n) ∈ M(D)) node with the property path ‘enrolledFor−’.

b. Defn. φSt with {≤n} such that n ≥ 1 cardinality and {>, St, Cu,¬St,¬Cu} typing:
For the constraints, we have Σ |=M 〈St, τSt, φSt〉 following the same arguments from
previous case (a).

c. Defn. φSt with {≥n,=n} such that n ≥ 1 cardinality and {>, St, Cu,¬St,¬Cu} typing:
For the constraints, we have Σ 6|=M 〈St, τSt, φSt〉.
Let φSt B (≥1 enrolledFor

−.>). AssumeD = {st(001,_, CS40), cu(CS40, Logic)}
such thatD |= Σ. Then,

M(D) = {St(001), Cu(CS40), enrolledFor(001,CS40)}.

Then M(D) 6|= φSt(001) since St(001) ∈ M(D) violates the at least one cardinality
requirement for the property path ‘enrolledFor−’. Similar arguments exist for the
rest of the constraints φSt definitions as well.

d. Defn. φSt with {BSt} cardinality and {>, St, Cu,¬St,¬Cu} typing:
For the constraints, we have Σ |=M 〈St, τSt, φSt〉 following the same arguments as
in the first case (a).

e. Defn. φSt with {DSt} cardinality and {>, St, Cu,¬St,¬Cu} typing:
For the constraints, we have Σ 6|=M 〈St, τSt, φSt〉 following the previous case (c).

B. For 〈Cu, τCu, φCu〉 ∈ S ′ – with implicit targetClass τCu that declares the instances of RDF
concept Cu as target nodes, there exist following φCu definitions on RDF vocabularies
{St, Cu, enrolledFor±}:

70

i. Defn. φCu on {St, Cu, enrolledFor−}:
a. Defn. φCu with {≤0,≥0,=0} cardinality and {>, St, Cu} typing 23:

1. Defn. φCu B (≤0 enrolledFor
−.>):

We have Σ 6|=M 〈Cu, τCu, (≤0 enrolledFor
−.>)〉.

AssumeD = {st(001,_, CS40), cu(CS40, Logic)} such thatD |= Σ. Then,

M(D) = {St(001), Cu(CS40), enrolledFor−(001,CS40)}.

There is M(D) |= τCu(CS40), but M(D) 6|= φCu(CS40) since Cu(CS40) in M(D)
violates the at most zero cardinality.

2. Defn. φCu B (≤0 enrolledFor
−. St):

The Σ 6|=M 〈Cu, τCu, (≤0 enrolledFor
−. St)〉 follows from previous case (1).

3. Defn. φCu B (≤0 enrolledFor
−. Cu):

For the constraint, Σ |=M 〈Cu, τCu, (≤0 enrolledFor
−. Cu)〉 since M ensures

that there will not be an instance Cu(n) in M(D) for any D that is reachable
from the target τCu node with the property path ‘enrolledFor−’.

4. Defn. φCu B (≥0 enrolledFor
−.>):

For the constraint, we have Σ |=M 〈Cu, τCu, (≥0 enrolledFor
−.>)〉 since the

minimum zero cardinality is always satisfied.
5. Defn. φCu B (≥0 enrolledFor

−. St):
For the constraint, Σ |=M 〈Cu, τCu, (≥0 enrolledFor

−. St)〉 follows from the
same reason as in the previous case (4).

6. Defn. φCu B (≥0 enrolledFor
−. Cu):

For the constraint, Σ |=M 〈Cu, τCu, (≥0 enrolledFor
−. Cu)〉 follows from the

same reason as in the previous case (4).
7. Defn φCu B (=0 enrolledFor

−.>):
For the constraint, Σ 6|=M 〈Cu, τCu, (=0 enrolledFor

−.>)〉 follows from the
previous cases (1) and (4).

8. Defn. φCu B (=0 enrolledFor
−. St):

For the constraint, Σ |=M 〈Cu, τCu, (=0 enrolledFor
−. St)〉 follows from the

previous cases (2) and (5).
9. Defn. φCu B (=0 enrolledFor

−. Cu):
For the constraint, Σ 6|=M 〈Cu, τCu, (=0 enrolledFor

−. Cu)〉 follows from the
previous cases (3) and (6).

b. Defn. φCu with {≤0,≥0,=0} cardinality and {¬St,¬Cu} typing:
1. Defn. φCu B (≤0 enrolledFor

−.¬St):
For the constraint, Σ |=M 〈Cu, τCu, (≤0 enrolledFor

−.¬St)〉 follows from the
previous case (a).(3).

2. Defn. φCu B (≤0 enrolledFor
−.¬Cu):

The Σ 6|=M 〈Cu, τCu, (≤0 enrolledFor
−.¬Cu)〉 follows from the previous

case (a).(2).
3. Defn. φCu B (≥0 enrolledFor

−.¬St):
For the constraint, Σ |=M 〈Cu, τCu, (≥0 enrolledFor

−.¬St)〉 since the mini-
mum zero cardinality is always satisfied. Note that the constraints is equivalent
to φCu B (≥0 enrolledFor

−. Cu).
4. Defn. φCu B (≥0 enrolledFor

−.¬Cu):
For the constraint, Σ |=M 〈Cu, τCu, (≥0 enrolledFor

−.¬Cu)〉 since the mini-
mum zero cardinality is always satisfied. Note that the constraints is equivalent
to φCu B (≥0 enrolledFor

−. St).
23 i.e. ‘typing’ for the value node in the data graph M(D) that can be reached from the target node

with the property path ‘enrolledFor−’.

71

5. Defn. φCu B (=0 enrolledFor
−.¬St):

For the constraint, Σ |=M 〈Cu, τCu, (=0 enrolledFor
−.¬St)〉 follows from the

previous cases (1) and (3).
6. Defn. φCu B (=0 enrolledFor

−.¬Cu):
For the constraint, Σ 6|=M 〈Cu, τCu, (=0 enrolledFor

−.¬Cu)〉 follows from the
previous cases (2) and (4).

c. Defn. φCu with {≤n,≥n,=n} such that n ≥ 1 cardinality and {>, St, Cu} typing:
1. Defn. φCu B (≤n enrolledFor

−.>):
For the constraints φCu when n is any fixed natural number, we have Σ 6|=M

〈Cu, τCu, (≤n enrolledFor
−.>)〉 . There always exists a counter-example for

any fixed at most n cardinality restriction since Σ |=M 〈Cu, τCu, (≤0 enrolledFor
−.¬St)〉

in the previous case (b.1).
2. Defn. φCu B (≤n enrolledFor

−. St):
We have Σ 6|=M 〈Cu, τCu, (≤n enrolledFor

−. St)〉 following the previous
case (1).

3. Defn. φCu B (≤n enrolledFor
−. Cu):

We have Σ |=M 〈Cu, τCu, (≤n enrolledFor
−. Cu)〉 following the previous

case (a.3).
4. Defn. φCu B (≥n enrolledFor

−.>):
For any fixed n, we have Σ 6|=M 〈Cu, τCu, (≥n enrolledFor

−.>)〉 since Σ |=M

〈Cu, τCu, (≤0 enrolledFor
−.¬St)〉 in the previous case (b.1).

5. Defn. φCu B (≥n enrolledFor
−. St):

For the constraints, Σ 6|=M 〈Cu, τCu, (≥n enrolledFor
−. St)〉 following the

same arguments as in the previous case (1).
6. Defn. φCu B (≥n enrolledFor

−. Cu):
For the constraints, we have Σ 6|=M 〈Cu, τCu, (≥n enrolledFor

−. Cu)〉.
Let φCu B (≥1 enrolledFor

−. Cu). AssumeD = {cu(CS40, Logic)} such that
D |= Σ. Then,

M(D) = {Cu(CS40)}.

There is M(D) |= τCu(CS40), but M(D) 6|= φCu(CS40) since Cu(CS40) ∈ M(D)
violates the at least one cardinality.

7. Defn. φCu B (=n enrolledFor
−.>):

For the constraints, Σ 6|=M 〈Cu, τCu, (=n enrolledFor
−.>)〉 following the

previous case (1).
8. Defn. φCu B (=n enrolledFor

−. St):
For the constraints, Σ 6|=M 〈Cu, τCu, (=n enrolledFor

−. St)〉 following the
previous cases (2) and (5).

9. Defn. φCu B (=n enrolledFor
−. Cu):

For the constraint, Σ 6|=M 〈Cu, τCu, (=n enrolledFor
−. Cu)〉 following the

previous case (6).
d. Defn. φCu with {≤n,≥n,=n, } such that n ≥ 1 cardinality and {¬St,¬Cu} typing:

1. Defn. φCu B (≤n enrolledFor
−.¬St):

For the constraint, Σ |=M 〈Cu, τCu, (≤n enrolledFor
−.¬St)〉 follows from the

previous case (c.3).
2. Defn. φCu B (≤n enrolledFor

−.¬Cu):
For the constraint, Σ |=M 〈Cu, τCu, (≤n enrolledFor

−.¬Cu)〉 follows from the
previous case (c.2).

3. Defn. φCu B (≥n enrolledFor
−.¬St):

For the constraint, Σ 6|=M 〈Cu, τCu, (≥n enrolledFor
−.¬St)〉 follows from the

previous case (c.6).

72

4. Defn. φCu B (≥n enrolledFor
−.¬Cu):

For the constraint, Σ 6|=M 〈Cu, τCu, (≥n enrolledFor
−.¬Cu)〉 follows from the

previous case (c.5).
5. Defn. φCu B (=n enrolledFor

−.¬St):
For the constraint, Σ 6|=M 〈Cu, τCu, (=n enrolledFor

−.¬St)〉 follows from the
previous case (c.9).

6. Defn. φCu B (=n enrolledFor
−.¬Cu):

For the constraint, Σ 6|=M 〈Cu, τCu, (=n enrolledFor
−.¬Cu)〉 follows from the

previous case (c.8).
e. Defn. φCu with {BCu,DCu} cardinality and {>, St, Cu} typing:

1. Defn. φCu B (BCu enrolledFor−.>):
For the constraint, we have Σ 6|=M 〈Cu, τCu, (BCu enrolledFor−.>)〉.
Assume D = {st(001,_, CS40), st(002,_, CS40), cu(CS40, Logic)} such that
D |= Σ. Then,

M(D) = {St(001), St(002), Cu(CS40), enrolledFor−(001,CS40),

enrolledFor−(002,CS40)}.

From the semantics of BCu cardinality, we have M(D) 6|= φCu, i.e., there are two
‘enrolledFor−’-successor for the Cu(CS40) ∈ M(D).

2. Defn. φCu B (BCu enrolledFor−. St):
For the constraint, Σ 6|=M 〈Cu, τCu, (BCu enrolledFor

−. St)〉 follows the previ-
ous case (1).

3. Defn. φCu B (BCu enrolledFor−. Cu):
For the constraint, Σ |=M 〈Cu, τCu, (BCu enrolledFor

−. Cu)〉 follows the
case (a.3).

4. Defn. φCu B (DCu enrolledFor−.>):
For the constraint, Σ 6|=M 〈Cu, τCu, (DCu enrolledFor

−.>)〉 follows the case (1).
5. Defn. φCu B (DCu enrolledFor−. St):

For the constraint, Σ 6|=M 〈Cu, τCu, (DCu enrolledFor
−. St)〉 follows from the

semantics BCu and the Σ 6|=M 〈Cu, τCu, (=1 enrolledFor
−. St)〉 in the case c.8.

6. Defn. φCu B (DCu enrolledFor−. Cu):
For the constraint, Σ 6|=M 〈Cu, τCu, (DCu enrolledFor

−. Cu)〉 follows from the
case (c.9).

f. Defn. φCu with {BCu,DCu} cardinality and {¬St,¬Cu} typing:
1. Defn. φCu B (BCu enrolledFor−.¬St):

For the constraint, Σ |=M 〈Cu, τCu, (BS t enrolledFor
−.¬St)〉 follows from

the case (e.3).
2. Defn. φCu B (BCu enrolledFor−.¬Cu):

For the constraint, Σ |=M 〈Cu, τCu, (BCu enrolledFor
−.¬Cu)〉 follows from

the case (e.2).
3. Defn. φCu B (DCu enrolledFor−.¬St):

For the constraint, Σ 6|=M 〈Cu, τCu, (DCu enrolledFor
−.¬St)〉 follows from

the previous case (1).
4. Defn. φCu B (DCu enrolledFor−.¬Cu):

For the constraint, Σ 6|=M 〈Cu, τCu, (DCu enrolledFor
−.¬Cu)〉 follows from

the previous case (2).

ii. Defn. φCu on {St, Cu, enrolledFor}
a. Defn. φCu with {≤0,≥0,=0} cardinality and {>, St, Cu,¬St,¬Cu} typing:

73

For the constraints φCu, we have Σ |=M 〈Cu, τCu, φCu〉 since M ensures that there
will not be an instance in M(D) for any D that can be reached from τCu (i.e., any
Cu(n) ∈ M(D)) node with the property path ‘enrolledFor’.

b. Defn. φCu with {≤n} such that n ≥ 1 cardinality and {>, St, Cu,¬St,¬Cu} typing:
For the constraints, we have Σ |=M 〈Cu, τCu, φCu〉 following the same arguments from
previous case (a).

c. Defn. φCu with {≥n,=n} such that n ≥ 1 cardinality and {>, St, Cu,¬St,¬Cu} typing:
For the constraints, we have Σ 6|=M 〈Cu, τCu, φCu〉.
Let φCu B (≥1 enrolledFor.>). AssumeD = {cu(CS40, Logic)} such thatD |= Σ.
Then,

M(D) = {Cu(CS40)}.

Then M(D) 6|= φCu(CS40) since Cu(CS40) ∈ M(D) violates the at least one cardi-
nality requirement for the property path ‘enrolledFor’. Similar arguments exist
for the rest of the constraints φCu as well.

d. Defn. φCu with {BCu} cardinality and {>, St, Cu,¬St,¬Cu} typing:
For the constraints, we have Σ |=M 〈Cu, τCu, φCu〉 following the same arguments as
in the previous case (a).

e. Defn. φCu with {DCu} cardinality and {>, St, Cu,¬St,¬Cu} typing:
For the constraints, we have Σ 6|=M 〈Cu, τCu, φCu〉 following the previous case (c).

Next, observe that all the SHACL document S ′ such that Σ |=M S ′ are :

S ′ ⊆ {〈St, τSt, φSt〉, 〈Cu, τCu, φCu〉}

where φSt and φCu are the sets of constraints (i.e., including their possible conjunctions) such that
Σ |=M 〈St, τSt, φSt〉 and Σ |=M 〈Cu, τCu, φCu〉, see the listed φSt and φCu constraints above.

Finally, we now establish Σ |=∗M S , i.e., for every SHACL document Σ |=M S ′ and every RDF
graph G : G |= S → G |= S ′. Recall that S = {〈St, τSt, φSt B (=1 enrolledFor .Cu) ∧ (≤0

enrolledFor .¬Cu)〉, 〈Cu, τC, φCu B (≤0 enrolledFor−.¬St)〉}. Then, there are the following
three cases to consider for the Σ |=M S ′:

1. Σ |=M S ′ such that S ′ = {〈St, τSt, φSt〉}:
Observe that, for any RDF graph G, whenever there is∧

node n in ∈G

.(G |= τSt(n)→ G |= φSt(n))

for the 〈St, τSt, φSt B (=1 . enrolledFor. Cu) ∧ (≤0 . enrolledFor. ¬Cu)〉 ∈ S , the
sentence ∧

node n in ∈G

.(G |= τSt(n)→ G |= φSt(n))

must hold for the S ′ = {〈St, τSt, φSt〉}.

Let G be an arbitrary graph with G |= S , i.e.,

G |= 〈St, τSt, φSt B (=1 enrolledFor .Cu) ∧ (≤0 enrolledFor .¬Cu)〉

and
G |= 〈Cu, τC, φCu B (≤0 enrolledFor−.¬St)〉.

Then, there must be G |= S ′.

74

• Base case: In this part of the proof, we need to consider the following Defn. φSt such
that Σ |=M 〈St, τSt, φSt〉.
(A).(i).(a).(2) Defn. φSt B (≤0 enrolledFor. St):

For the φSt, G |= 〈St, τSt, (≤0 enrolledFor. St)〉 is trivial since G |= 〈St, τSt, (≤0

enrolledFor.¬Cu)〉, i.e., there will not be any node n s.t. St(n) ∈ G reachable
from τSt node with the property path ‘enrolledFor’ other than the node n′ s.t.
〈n′, rdf:type, Cu〉.

(A).(i).(a).(4) Defn. φSt B (≥0 enrolledFor.>):
For the φSt, G |= 〈St, τSt, (≥0 enrolledFor.>)〉 since the minimum zero cardinal-
ity is always satisfied.

(A).(i).(a).(5) Defn. φSt B (≥0 enrolledFor. St): same as for the case (A).(i).(a).(4)
(A).(i).(a).(6) Defn. φSt B (≥0 enrolledFor. Cu): same as for the case (A).(i).(a).(4)
(A).(i).(a).(8) Defn. φSt B (=0 enrolledFor. St): same as for the case (A).(i).(a).(2)
(A).(i).(b).(2) Defn. φSt B (≤0 enrolledFor.¬Cu): same as for the case (A).(i).(a).(2)
(A).(i).(b).(3) Defn. φSt B (≥0 enrolledFor.¬St):

For St(n) ∈ G of any G, if G |= φSt(n) for the φSt B (=1 enrolledFor .Cu)
then G |= φSt(n) for the (≤0 enrolledFor.¬St) is trivial. Thus, G |= 〈St, τSt, (≤0

enrolledFor.¬St)〉.
(A).(i).(b).(4) Defn. φSt B (≥0 enrolledFor.¬Cu): trivial from the case (A).(i).(a).(4)
(A).(i).(b).(6) Defn. φSt B (=0 enrolledFor.¬Cu): same as for the case (A).(i).(a).(2)
(A).(i).(c).(1) Defn. φSt B (≤1 enrolledFor.>): same as for the case (A).(i).(b).(3)
(A).(i).(c).(2) Defn. φSt B (≤1 enrolledFor. St): same as for the case (A).(i).(a).(2)
(A).(i).(c).(3) Defn. φSt B (≤1 enrolledFor. Cu): same as for the case (A).(i).(b).(3)
(A).(i).(c).(4) Defn. φSt B (≥1 enrolledFor.>): same as for the case (A).(i).(b).(3)
(A).(i).(c).(6) Defn. φSt B (≥1 enrolledFor. Cu): same as for the case (A).(i).(b).(3)
(A).(i).(c).(7) Defn. φSt B (=1 enrolledFor.>): same as for the case (A).(i).(b).(3)
(A).(i).(c).(9) Defn. φSt B (=1 enrolledFor. Cu): same as for the case (A).(i).(b).(3)
(A).(i).(d).(1) Defn. φSt B (≤1 enrolledFor.¬St): same as for the case (A).(i).(b).(3)
(A).(i).(d).(2) Defn. φSt B (≤1 enrolledFor.¬Cu): same as for the case (A).(i).(a).(3)
(A).(i).(d).(3) Defn. φSt B (≥1 enrolledFor.¬St): same as for the case (A).(i).(b).(3)
(A).(i).(d).(5) Defn. φSt B (=1 enrolledFor.¬St): same as for the case (A).(i).(b).(3)
(A).(i).(e).(1) Defn. φSt B (≤n enrolledFor.>) for n ≥ 2:

same as for the case (A).(i).(b).(2). Since G |= 〈St, τSt, (=1 enrolledFor. Cu)〉, the
G |= 〈St, τSt, (≤n enrolledFor.>) is trivial. Note that, for any graph G,

G |= 〈St, τSt, (=1 enrolledFor.>)〉 → G |= 〈St, τSt, (≤1 enrolledFor.>)〉,

and

G |= 〈St, τSt, (≤1 enrolledFor.>)〉 → G |= 〈St, τSt, (≤n enrolledFor.>)〉.

(A).(i).(e).(2) Defn. φSt B (≤n enrolledFor. St) for n ≥ 2: same as for the case (A).(i).(a).(2)
(A).(i).(e).(3) Defn. φSt B (≤n enrolledFor. Cu) for n ≥ 2: same as for the case (A).(i).(b).(3)
(A).(i).(f).(1) Defn. φSt B (≤n enrolledFor.¬St) for n ≥ 2: same as for the case (A).(i).(b).(3)
(A).(i).(f).(2) Defn. φSt B (≤n enrolledFor.¬Cu) for n ≥ 2: same as for the case (A).(i).(a).(2)
(A).(i).(g).(2) Defn. φSt B (BSt enrolledFor. St):

Since G |= 〈St, τSt, (≤n enrolledFor.¬Cu)〉, there will not be any instance St(n) ∈
G that is reachable from τSt node with the property path ‘enrolledFor’.

(A).(i).(h).(2) Defn. φSt B (BSt enrolledFor.¬Cu): same as for the case (A).(i).(g).(2)
(A).(ii).(a) Defn. φSt with {≤0,≥0,=0} cardinality on path enrolledFor− and {>, St, Cu,¬St,¬Cu}

typing:

75

For all φSt, same as for the case (A).(i).(a).(2), i.e., there will not be any St(n) ∈ G
or Cu(n) ∈ G in any G s.t. G |= S ′ reachable from τSt node with the property path
‘enrolledFor−’.

(A).(ii).(b) Defn. φSt with {≤n} such that n ≥ 1 cardinality on path enrolledFor− and
{>, St, Cu,¬St,¬Cu} typing:
For all φSt, same as for the case (A).(ii).(a).

(A).(ii).(d) Defn. φSt with {BSt} cardinality on path enrolledFor− and {>, St, Cu,¬St,¬Cu}
typing:
For all φSt, same as for the case (A).(ii).(a).

• Inductive Case: In this part of the proof, we need to consider conjunction of the Defn.
φSt such that Σ |=M 〈St, τSt, φSt B φ1

St ∧ φ
2
St〉, i.e., S ′ = 〈St, τSt, φSt B φ1

St ∧ φ
2
St〉.

Let φ1
St and φ2

St be two arbitrary base constraints (ı.e. from the base cases listed above)
such that Σ |=M 〈St, τSt, φ

1
St〉 and Σ |=M 〈St, τSt, φ

2
St〉. Then, for any graph G, we have

G |= S → G |= 〈St, τSt, φ1
St〉

and
G |= S → G |= 〈St, τSt, φ2

St〉.

Thus, G |= S → G |= 〈St, τSt, φ1
St ∧ φ

2
St〉.

2. Σ |=M S ′ such that S ′ = {〈Cu, τCu, φCu〉}:
LetD be an arbitrary instance of R such that G |= S . That is,

G |= 〈St, τSt, φSt B (=1 enrolledFor .Cu) ∧ (≤0 enrolledFor .¬Cu)〉

and
G |= 〈Cu, τC, φCu B (≤0 enrolledFor−.¬St)〉.

Then, there must be G |= S ′.
• Base Case: In this part of the proof, we need to consider the following Defn. φCu such

that Σ |=M 〈Cu, τCu, φCu〉.
(B).(i).(a).(3) Defn. φCu B (≤0 enrolledFor

−. Cu):
The G |= 〈Cu, τCu, (≤0 enrolledFor

−. Cu)〉 follows from the case G |= 〈Cu, τCu, (≤0

enrolledFor−.¬St)〉, i.e.,

G |= 〈Cu, τCu, (≤0 enrolledFor
−.¬St)〉 → G |= 〈Cu, τCu, (≤0 enrolledFor

−. Cu)〉.

(B).(i).(a).(4) Defn. φCu B (≥0 enrolledFor
−.>):

There is G |= 〈Cu, τCu, (≥0 enrolledFor
−.>)〉 since the minimum zero cardinality

is always satisfied.
(B).(i).(a).(5) Defn. φCu B (≥0 enrolledFor

−. St): same as for the case (B).(i).(a).(4)
(B).(i).(a).(6) Defn. φCu B (≥0 enrolledFor

−. Cu): same as for the case (B).(i).(a).(4)
(B).(i).(a).(9) Defn. φCu B (=0 enrolledFor

−. Cu): same as for the case (B).(i).(a).(3)
(B).(i).(b).(1) Defn. φCu B (≤0 enrolledFor

−.¬St): same as for the case (B).(i).(a).(3)
(B).(i).(b).(3) Defn. φCu B (≥0 enrolledFor

−.¬St): same as for the case (B).(i).(a).(4)
(B).(i).(b).(4) Defn. φCu B (≥0 enrolledFor

−.¬Cu): same as for the case (B).(i).(a).(4)
(B).(i).(b).(5) Defn. φCu B (=0 enrolledFor

−.¬St): same as for the case (B).(i).(a).(3)
(B).(i).(c).(3) Defn. φCu B (≤n enrolledFor

−. Cu) for n ≥ 1:
same as for the case (B).(i).(a).(3)

76

(B).(i).(d).(1) Defn. φCu B (≤n enrolledFor
−.¬St) for n ≥ 1:

same as for the case (B).(i).(a).(8)
(B).(i).(e).(3) Defn. φCu B (BCu enrolledFor−. Cu): same as for the case (B).(i).(a).(3)
(B).(i).(f).(1) Defn. φCu B (BCu enrolledFor−.¬St): same as for the case (B).(i).(a).(3)
(B).(ii).(a) Defn. φCu with {≤0,≥0,=0} cardinality on path enrolledFor and {>, St, Cu,¬St,¬Cu}

typing:
For all φCu, same as for the case (B).(i).(a).(3), i.e., there will not be any Cu(n) ∈ G or
St(n) ∈ G in any G reachable from τCu node with the property path ‘enrolledFor’.

(B).(ii).(b) Defn. φCu with {≤n} such that n ≥ 1 cardinality on path enrolledFor and
{>, St, Cu,¬St,¬Cu} typing:
For all φCu, same as for the case (B).(ii).(a)

(B).(ii).(d) Defn. φCu with {BCu} cardinality on path enrolledFor and {>, St, Cu,¬St,¬Cu}
typing:
For all φCu, same as for the case (B).(ii).(a)

• Inductive Case: In this part of the proof, we consider conjunction of the Defn. φCu such
that Σ |=M 〈Cu, τCu, φCu B φ1

Cu ∧ φ
2
Cu〉, i.e., S ′ = 〈Cu, τCu, φCu B φ1

Cu ∧ φ
2
Cu〉.

Let φ1
Cu and φ2

Cu be two arbitrary base constraints (ı.e. from the base cases listed above)
such that Σ |=M 〈Cu, τCu, φ

1
Cu〉 and Σ |=M 〈Cu, τCu, φ

2
Cu〉. Then, for any graph G, we have

G |= S ′ → G |= 〈Cu, τCu, φ1
Cu〉

and
G |= S ′ → G |= 〈Cu, τCu, φ2

Cu〉.

Thus, G |= S → G |= 〈Cu, τCu, φ1
Cu ∧ φ

2
Cu〉.

3. Σ |=M S ′ such that S ′ = {〈St, τSt, φSt〉, 〈Cu, τCu, φCu〉} :
From the case (1) and (2) above, observe that whenever we have G |= S for any G:

G |= 〈St, τSt, φSt〉 and G |= 〈Cu, τCu, φCu〉
for any 〈St, τSt, φSt〉 ∈ S ′ and 〈Cu, τCu, φCu〉 ∈ S ′. Thus, for every graph G and every Σ |=M S ′,

G |= S → G |= S ′.

Therefore, Σ |=∗M S . This concludes the proof of the Lemma.

E A Complete Example of Constraint Rewriting Γ

E.1 Relational Database and MappingsM from Example 1

create table course (C_id varchar primary key, Title varchar unique);

create table student (S_id integer primary key, Name varchar, Code

varchar not null foreign key references course(C_id));

S_id Name Code

011 Ida CS40

012 CS20

C_id Title

CS40 Logic

CS20 Database

CS50 Data Eng

FK

Select S_id from student −→ 〈iriStudent(S_id), rdf:type, Student〉.

Select C_id from course −→ 〈iriCourse(C_id), rdf:type, Course〉.

Select S_id, C_id from student, course −→ 〈iriStudent(S_id), enrolledFor, iriCourse(C_id)〉.

where student.Code = course.C_id

77

iriStudent and iriCourse are injective functions that construct iris for students and courses from
their respective id’s.

E.2 Translation of SQL-to-Relational Algebra

Following our assumption for the source query, SQL query

Select S_id, C_id from student, course where student.Code = course.C_id

can be translated into:

πS_id,C_idσ¬isNull(S_id)∧¬isNull(C_id)(Q1 ZCode=C_id Q2)

s.t. Q1 = σ¬isNull(S_id)∧¬isNull(Code)(student) and Q2 = σ¬isNull(C_id)(course)

E.3 SQL-to-View Constraint Implication

Following Example 1 and 4, we have:

Q −→ 〈iriStudent(S_id), enrolledFor, iriCourse(C_id)〉,

where Q is a source query πS_id,C_idσ¬isNull(S_id)∧¬isNull(C_id)(Q1 ZCode=C_id Q2) such that Q1 =

σ¬isNull(S_id)∧¬isNull(Code)(student) and Q2 = σ¬isNull(C_id)(course). Then,

a. For SP expression Q1 :
• att(Q1) = {S_id,Code} and {UNQ(S_id), NN(S_id), NN(Code)} ⊆ Σ |Q1 , from Defn. 12.
• ΣQ1 FDS_id→Code from the case (c) of Lemma 1

b. For SP expression Q2 :
• att(Q2) = {C_id} and {UNQ(C_id), NN(C_id)} ⊆ Σ |Q2 from Defn. 12.
• ΣQ2 UFDC_id→C_id from the case (d) of Lemma 1

c. Finally, for SPJ expression Q:
• att(Q) = {S_id, C_id}
• Q is a valid SPJ expression since FK(Code, student, C_id, course) ∈ Σ |Q1 ∩ Σ |Q2 .
• ΣQ FDS_id→C_id from case (c) of Lemma 2, since

i. ΣQ1 FDS_id→Code, and
ii. ΣQ2 FDC_id→C_id from Σ UFDC_id→C_id → Σ FDC_id→C_id following the case (a)

of Corollary 1

E.4 Result of Constraint Rewriting Γ

〈Student, τStudent, φStudent〉 s.t.

φStudent B (≤0 enrolledFor.¬Course) by rule 1 of Γ since M is simple

φStudent B (≥0 enrolledFor. Course) by rule 1 of Γ since ι(head(m),M) = A

φStudent B (=1 enrolledFor. Course) by rule 1 of Γ since δ1(FDS_id→C_id)

〈Course, τCourse, φCourse〉 s.t.

φCourse B (≤0 enrolledFor
−.¬Student) by rule 2 of Γ since M is simple

φCourse B (≥0 enrolledFor
−. Student) by rule 2 of Γ since ι(head(m),M) = A

78

Translation to SHACL Syntax

:Student a sh:NodeShape, rdfs:Class;

sh:property [sh:path :enrolledFor;

sh:maxCount 1; sh:minCount 1;

sh:nodeKind sh:IRI; sh:class :Course].

:Course a sh:NodeShape, rdfs:Class;

sh:property [sh:path [sh:inversePath

:enrolledFor];

sh:nodeKind sh:IRI; sh:class :Student].

79

	 Mapping Relational Database Constraints to SHACL

