
UNIVERSITY OF OSLO
Department of Informatics

Predicting Performance
and Scaling Behaviour
in a Data Center with
Multiple Application
Servers

Master thesis

Gard Undheim
Oslo University College

May 21, 2006

Predicting Performance and Scaling
Behaviour in a Data Center with Multiple

Application Servers

Gard Undheim
Oslo University College

May 21, 2006

Abstract

As web pages become more user friendly and interactive we see that objects
such as pictures, media files, cgi scripts and databases are more frequently
used. This development causes increased stress on the servers due to intensi-
fied cpu usage and a growing need for bandwidth to serve the content. At the
same time users expect low latency and high availability. This dilemma can
be solved by implementing load balancing between servers serving content to
the clients. Load balancing can provide high availability through redundant
server solutions, and reduce latency by dividing load.

This paper describes a comparative study of different load balancing algo-
rithms used to distribute packets among a set of equal web servers serving
HTTP content. For packet redirection, a Nortel Application Switch 2208 will
be used, and the servers will be hosted on 6 IBM bladeservers. We will com-
pare three different algorithms: Round Robin, Least Connected and Response
Time. We will look at properties such as response time, traffic intensity and
type. How will these algorithms perform when these variables change with
time. If we can find correlations between traffic intensity and efficiency of the
algorithms, we might be able to deduce a theoretical suggestion on how to
create an adaptive load balancing scheme that uses current traffic intensity to
select the appropriate algorithm. We will also see how classical queueing al-
gorithms can be used to calculate expected response times, and whether these
numbers conform to the experimental results. Our results indicate that there
are measurable differences between load balancing algorithms. We also found
the performance of our servers to outperform the queueing models in most of
the scenarios.

Acknowledgements

First and foremost I would like to thank my supervisor, professor Mark Burgess,
for his invaluable help and guidance during this semester. He has given me
inspiration, motivation and input beyond what I expected. I would also like to
express my gratitude towards Espen Braastad, Jon Henrik Bjørnstad, Ilir By-
tyci, Sven Ulland and all the other master students at Oslo University College
for valuable discussions and help, and also for being good friends. Further-
more I would like to thank my beloved fiancée Cecilie Moen for being so toler-
ant during my late nights in front of the computer, and for her unconditional
love and friendship. Last but not least I would like to thank my family and
friends for all the support and guidance I have received during this stressful
period.

Oslo, May 2006

Gard Undheim

Preface

A technical paper, Predictable Scaling Behaviour in the Data Centre with Multi-
ple Application Servers, based on the results from this thesis has recently been
submitted for review to the 17th IFIP/IEEE Distributed Systems: Operations and
Management (DSOM 2006) conference. The paper is written in collaboration
with my supervisor, Professor Mark Burgess.

Project Background

The idea for this project was developed during the fall of 2005, when my pro-
fessor Mark Burgess told me he would like me to look at possible assignments
surrounding the subject high volume webservers. Later that fall the school
bought a Nortel Alteon Application switch for our lab. The Alteon switch is
designed for load balancing traffic between servers. Just before Christmas 2005
we also received 6 IBM bladeservers for our lab, which gave me an excellent
opportunity for setting up a perfect load balancing environment in the lab. A
quick search in well known libraries such as IEEE and ACM revealed that ex-
periments already had been done to study the performance of load balancing
algorithms, but not all the results were coherent. We decided to do another
performance analysis of available load balancing solution and also investigate
the questions of whether or not queueing theory could be used to predict ser-
vice requirements such as response time and bandwidth capacity.

Target Audience

Knowledge about networks and basic protocols is an advantage when reading
this thesis. Technologies used will be briefly discussed in the opening chapters,
but will not be sufficient for fully comprehending the material without prior
knowledge of basic protocols such as IP, TCP/IP and HTTP.

All experiments including their purpose will be explained to the reader be-
fore the results are presented. Configurations and setup procedures are docu-
mented either in the methodology chapter or in the appendix for reproduction
purposes.

viii Chapter 0. Preface

Terminology

Abbreviations will be avoided where it is reasonable. The abbreviations used
in this document will be explained in their first occurence, e.g. Server Load
Balancing (SLB). The terms server, webserver and fileserver will be used inter-
changeably throughout this document. These terms refer to machines serving
content to clients. The terms load balancer, application switch and dispatcher
are all used throughout the document to describe the unit doing load balanc-
ing.

Thesis Outline

The thesis outline contains a coarse description of the sections in this thesis.
Refer to the table of contents for a more detailed overview of the structure.

Chapter 1: Introduction
In the first section we describe the motivation for this thesis, and what
advantages we can gain from server load balancing. In the second sec-
tion a coarse description of load balancing techniques are given and we
explain what areas we are about to investigate. In the end the reader is
given a broad overview of the experimental approach taken in this thesis.

Chapter 2: Background and Previous Research
This part include background material that is necessary for comprehen-
sion of the experiments and results described in the following chapters.
A survey of previous research in the field is provided along with the the-
ory. The former research will be subject to comparison and discussion.

Chapter 3: Hypotheses
This is a short chapter where we define our hypothesis and shortly dis-
cuss their meaning.

Chapter 4: Experimental Design
This chapter starts by defining the constraints of our system. Then we
describe our system and the tools used during the experiments.

Chapter 5: Methodology
We start by describing the workflow for our experiments. Then we de-
scribe some statistical theories used to analyze our results. In the end we
represent a description of our test plan.

Chapter 6: Results and Analysis
This is where we present our results, mostly with tables and graphs. We
start by analysing the performance of the servers. Then we compare

ix

queueing models with results from experiments. In the end we look at
scalability and algorithm performances.

Chapter 7: Conclusions and Discussion
This chapter is dedicated for discussions and conclusions drawn from
our results. Further work will also be proposed.

Appendix
This part of the document includes scripts, graphs and programs devel-
oped during this thesis.

Contents

Abstract iii

Acknowledgements v

Preface vii

1 Introduction 1
1.1 Load Balancing - A Valuable Asset 1
1.2 Predicting Service Scalability . 2
1.3 Aspects of Load Balancing . 2

1.3.1 WAN Load Balancing . 3
1.3.2 LAN Load Balancing . 3
1.3.3 Experimental Overview 4

2 Background and Previous Research 5
2.1 The Beginning . 7
2.2 The OSI Model . 10
2.3 Dispatch Based Load-Balancing 11
2.4 Dispatch Modes . 12

2.4.1 Flat-Based SLB Network Architecture 13
2.4.2 NAT-Based SLB Network Architecture 13
2.4.3 Redundancy . 14

2.5 Load-Balancing Algorithms . 15
2.5.1 Performance Evaluation - Algorithms 16

2.6 Performance Evaluation - Topology 17
2.7 Web-Traffic Characteristics . 19
2.8 Performance Model . 20

2.8.1 Infinite Queue Model . 22
2.8.2 M/M/k Queues . 25

3 Hypotheses 29
3.1 Expected Results . 29

4 Experimental Design 31

xii CONTENTS

4.1 System constraints . 31
4.2 Experimental Configuration . 32

4.2.1 Hardware Specifications 33
4.3 Tools . 33

4.3.1 Apache 2.0 - Webserver . 34
4.3.2 Atsar - System Activity Report 35
4.3.3 httperf - HTTP performance measurement tool 35
4.3.4 Autobench - Perl wrapper for httperf 36
4.3.5 Gnuplot - Plotting program 38
4.3.6 Scripts . 38

5 Methodology 41
5.1 Workflow . 41
5.2 Assessment of Error and Uncertainty 42
5.3 Test Plan . 43

5.3.1 Blade properties . 43
5.3.2 Benchmarking Algorithms 44
5.3.3 Experiment vs. Queueing models 44
5.3.4 Scalability . 45

6 Results and Analysis 47
6.1 Describing the Results . 47

6.1.1 Apache Webserver Performance 47
6.1.2 Queueing Models vs. Real Life 51
6.1.3 SLB Scalability . 56
6.1.4 Comparison of Algorithms 58

7 Conclusions and Further Work 61
7.1 Conclusions . 61
7.2 Further Work . 62

A Scripts 69
A.1 process.pl . 69
A.2 merge results.pl . 74
A.3 queues.c . 79

List of Figures

1.1 Overview of GLSB and SLB . 2
1.2 Cause tree for QoS using load balancing 3

2.1 Basic Load Balancing Scheme . 5
2.2 Client load balancing . 6
2.3 Server side load balancing . 7
2.4 OSI and TCP/IP model . 10
2.5 Virtual Interface Adress . 12
2.6 Possible Implementations of SLB 12
2.7 Flat SLB Architecture . 13
2.8 Active - Standby scenario . 14
2.9 Response Times from Teo and Ayani 16
2.10 Poisson Distribution . 21
2.11 Expected trend for throughput 22
2.12 Transition between states . 23
2.13 Low Redundancy Architecture: 27
2.14 High Redundancy Architecture: 27

4.1 Experimental Setup . 32

5.1 Workflow chart . 42
5.2 Normal Distribution . 43

6.1 Throughput of single webserver - Poisson 48
6.2 Comparison - Poisson vs Static 50
6.3 Comparison2 - Poisson vs Static 51
6.4 2 Clients Generating Traffic . 52
6.5 Simulation vs. experiment . 54
6.6 Scalability - SLB . 56
6.7 Scalability2 - SLB . 57
6.8 Algorithms Performance - Homogenous 59
6.9 Algorithms Performance2 - Homogenous 60
6.10 Algorithms Performance - Inhomogeneous 60

List of Tables

2.1 Results from research by Teo and Ayani 17
2.2 Performance considerations from Cisco 19

4.1 Description of HS20 Blades . 33
4.2 Description of BladeCenter Chassis 33

6.1 Throughput of single webserver - Poisson 49
6.2 Error and CPU Utilization . 55

Chapter 1

Introduction

We believe in the possibility of a theory which is able to give a complete
description of reality, the laws of which establish relations between the

things themselves and not merely between their probabilities ... God does
not play dice. - Albert Einstein

1.1 Load Balancing - A Valuable Asset

Downtime often has a direct dollar value associated with it. Large sites can
lose thousands of dollars or more in revenue every minute their site is un-
available. By using server load balancing (SLB) or global server load balanc-
ing (GLSB) it is possible to provide better reliability since load balancing algo-
rithms can facilitate fault resilience. It also enables the possibility to do server
upgrades and maintenance without interrupting the service offered. If servers
crash and need to be turned off due to maintenance, it will only cause a per-
formance degradation [15], while the service is still available on the servers
remaining active. Research by Bhatti [6] shows that the average tolerance for
delay is around 8 seconds for a normal user loading a web page. With SLB,
user perceived Quality of Service (QoS) can be improved by dynamically dis-
tributing load between several servers.

A Service Provider often needs to conform to a Service Level Agreements
(SLAs). SLAs describe limits for the service delivered, such as response time,
uptime, bandwidth etc. A SLA is usually created in mutual cooperation be-
tween client and provider. These agreements are often static over periods of
time, and are renegotiated on regular basis. Since network traffic is subject to
rapid change (e.g. slashdot effect, where a popular website can cause highly
increased traffic to smaller sites by linking to them) it is of great importance
for the service provider to be able to adapt to changes that might occur due to
increased traffic against the servers. Load balancing provide the possibility to
adapt the network to increasing demands, or redirect traffic based on dynamic

2 Chapter 1. Introduction

Figure 1.1: Overview of GLSB and SLB: The figure shows that GSLB can dis-
tribute requests to different physical locations, while SLB distributes requests among
different servers usually located on the same location

or static metrics.

1.2 Predicting Service Scalability

Meeting SLA requirements with variable demand and resources has become
very important during the last years [14, 32]. One common way to solve this
is to overprovision, e.g. using more resources than needed, within acceptable
margins. In this thesis we will look at how low level load balancing scales, and
how simple queueing models can be used as estimators for response time.

1.3 Aspects of Load Balancing

Load balancing is a generic term that can be divided in two main branches:
wan load balancing, also referred to as Global Server Load Balancing (GSLB)
and Local Area Network (LAN) SLB. Whereas GSLB can be used for distribut-
ing load between servers all over the world, LAN SLB is used to distribute
load between servers on the same LAN (see figure 1.1). In figure 1.2 we see a
cause tree showing the most important factors to consider when implement-
ing SLB. Quality of Service (QoS) refers to the characteristics of a network and
the threshold values to maintain user satisfaction. QoS is closely connected to
SLAs, whereas the SLA include guidelines or limits for the QoS metrics that
need to be fulfilled.

The two first nodes in figure 1.2 shows network delay and site delay. The
former refers to all aggregated delays between the client and gateway of the
service provider, while the latter considers delay caused by factors residing in
the service providers network. In this experiment we will consider the right-
most node, which is switch/router. Below the switch/router node we see key
elements like SLB algorithms and topology implementation. We want to in-
vestigate how these factors affect QoS.

1.3. Aspects of Load Balancing 3

Figure 1.2: Cause tree for QoS using load balancing The areas marked grey are
subject to investigation in this thesis

1.3.1 WAN Load Balancing

Network delay can be improved by doing Load Balancing on the WAN side,
where possibilites such as BGP and DNS balancing are available. On the WAN
side we need to consider locality, meaning the proximity between client and
server. DNS load balancing can redirect requests such that clients connect to
servers in near proximity, which can reduce transfer delays (for further inves-
tigation of these subjects see [9]).

1.3.2 LAN Load Balancing

Server delay refers to latency caused on the LAN side where the servers are
located, and can be induced by the server itself or the network and network
equipment used. A server can be overloaded in terms of memory usage, num-
ber of users, cpu utilization etc. This might affect user perceived QoS in terms
of reduced response time, packet loss or even server downtime. SLB gives
the opportunity to use specialized servers that serve different contents, com-
bined the servers incorporate a complete web page. This can be convenient
for reducing response time since it enables the possibility to create servers that
are optimized for serving static or dynamic content, such as pictures or cgi
scripts [15].

On the network side on the LAN we have switches and routers, possibly
acting as dispatchers (see section 2.3). Limitations such as bandwidth, topol-
ogy and if SLB is used: load balancing algorithms affect the performance and
will be subject to measurements in this assignment.

4 Chapter 1. Introduction

1.3.3 Experimental Overview

This experiment will focus on the factors marked grey in figure 1.2, which
means the network part on the LAN side. One of the objectives of this experi-
ment is to see whether or not queueing theory can be used to predict hardware
requirements for fulfilling SLAs. To investigate whether this is possible or not,
a model of our network will be created. To create this model we need to find
the performance of our servers. We will not investigate how to improve server
performance, we will treat each server as a ”black box”, only considering the
throughput measured in requests per second. Expected response times will
be calculated using measured throughput for the servers using queueing the-
ories. These results will be compared to see if they scale with results obtained
from measurements taken when generating http traffic against the servers. We
will also do experiments to reveal possible relationships between performance
and factors such as traffic intensity, load balancing algorithms and traffic char-
acteristics.

Chapter 2

Background and Previous Research

Server Load Balancing (SLB) is a widely used term, and its meaning and per-
ception might differ depending on context or author. This is because of the
fierce competition between different vendors, where each producer use their
own terminology. This often makes it hard to compare one product and tech-
nology against another without vendor specific knowledge. Throughout this
report SLB will be referred to as a process of distributing web traffic among
several servers. An illustration of a simple SLB setup is shown in figure 2.1.

Figure 2.1: Basic Load Balancing Scheme: Figure showing a load balancer (dis-
patcher) that distributes requests among the available servers

Cardellini et al. divide load balancing into four schemes: client-based, DNS-
based, dispatcher-based and server-based [11].

Load balancing at the client can be divided into two groups, the transparent
mode and the non-transparent mode [15]. The latter requires the client soft-
ware to be aware of available servers. An example of this is the way Netscape
load balanced their webservers earlier. They integrated a list of their avail-
able webservers into the browser, from which the browser then selected which
server to use in a round-robin style [22] (see figure 2.2). The apparent problem

6 Chapter 2. Background and Previous Research

with this solution is that each client needs to be updated if there is a change
in the pool of available web servers. The former mode of client load balanc-
ing deploys load balancing using DNS servers. The DNS servers have several
IP’s for each domain name, and rotate the returning list of addresses for each
request.

Figure 2.2: Client load balancing: Client load balancing where the client browser
holds several records for each domain name. For each request the client alternates
which server to use according to some preconfigured algorithm

Load balancing at the server can be achieved by setting up proxy servers
that do not process content, but redirect requests to other available servers
based on detailed server metrics. The problem is that requests are redirected
on the application level, and the requests must traverse the entire protocol
stack (see section 2.2) 4 times before it is processed. This solution is only use-
ful if the bottleneck is the processing of content and it is not scalable [15].
Server based load balancing can also be achieved by having servers redirect
packets only when its own utilization is above a certain threshold (See figure
2.3). This means that every server needs to inform the others about its own
utilization, and the frequency for this information needs to be high to make
this work [5, 15]. High frequency of information between servers can cause
bottlenecks both in network and server utilization due to processing of inter-
changing information.

Load balancing in the network is achieved by using a load balancer or
dispatcher that intercepts and redirects packets to suited servers (see figure
2.1) based on predefined algorithms. Load balancing web servers using a dis-
patcher can be divided into two parts: the entity performing the load balancing
and the algorithm used to distribute client requests among the pool of avail-
able servers [30]. Network SLB is transparent to the end user, and can operate
in several modes using different algorithms. Below is a list of advantages us-
ing SLB:

Flexibility: SLB allows an enterprise to add or remove servers without affect-

2.1. The Beginning 7

User

Client

Server n
Util: 20%

Server 1
 Proxy
Util: 70%

Step 1: User requests website
Step 2: Client makes proper HTTP request
Step 3: Proxy server redirects HTTP request
 based on knowledge that server n
 is less utilized than itself
Step 4: Server n notifies proxy that of its
 current utilization

1

3

2

4

Figure 2.3: Server side load balancing: Server side load balancing where one of
the webservers act as a proxy and decides which of the servers that is least utilized and
therefore best equipped to handle the request

ing the users. This makes it possible to do maintenance on servers pro-
viding critical services without affecting the avalability.

Scalability: If traffic increases, it is easy to add additional servers to handle
the load. Using many servers is cheaper in purchase cost than buying
one high-end server.

High Availability: Most SLB implementations offer the possibility to monitor
server health. This way machines that are malfuntioning can be removed
from the pool of available servers, and be activated again when they are
fixed. Load balancers often support redundant configurations, using a
heartbeat protocol between the devices. This removes the problem with
having a single point of failure within the load balancer itself.

Increased Server Utilization: SLB can be implemented for several protocols.
This makes it possible to load balance protocols that might peak in usage
at different times of day across several servers. This can be used to reduce
number of servers.

2.1 The Beginning

The first attempts to balance traffic between multiple webservers were done by
Netscape. They hardcoded the addresses of all their servers into the Netscape
browser. The browser then used a round robin algorithm to alternate which
address to use. This is not a very flexible solution, and the next attempt of load
balancing was achieved through DNS load balancing.

DNS servers have zone files that include mappings between hostnames
and ip addresses. When a user tries to access www.example.net the host-

8 Chapter 2. Background and Previous Research

name will be resolved to the appropriate ip address through a request made
to a nameserver which is specified on a particular machine. The drawback is
that many clients and local DNS servers cache these responses. This can cause
a skewed load on the clustered web servers [15]. Below is a description of how
the correct ip address is obtained by a client:

1. User tries to access www.example.net

2. DNS request is sent to configured DNS server(often provided by ISP).

3. The DNS server checks whether it has the address of www.example.net
cached. If not, it sends another DNS request to one of the root DNS
servers.

4. The root server will respond with the address of the autorative DNS
server for the requested hostname.

5. The DNS server will then ask the authorative DNS server for the address,
and receives an address in response.

6. The web browser will connect to www.example.net using the ip ad-
dress received from the DNS server.

The procedure above is a simplification, and might include several steps be-
fore reaching the authorative DNS server. It is also two ways a DNS server can
be configured to do lookups, recursive and iterative mode. The procedure de-
scribed above is an iterative lookup. This is out of the scope of this experiment,
for further details see [16, 9].

An authorative DNS server usually have one mapping between a hostname
and a ip address, in BIND the configuration looks something like this:

www.example.net IN A 212.12.12.15

When a DNS server is configured to do load balancing between one URL and
a set of IP addresses each entry includes pointers to all available IP addresses
for that URL. BIND is also configured to hand out the available addresses for
a domain name in a round robin manner. The zone file for a DNS server with
several addresses mapped to one hostname will look something like this:

www.example.net IN A 212.12.12.15
IN A 212.12.12.16
IN A 212.12.12.17

2.1. The Beginning 9

There are several caveats to consider if using this solution. First there is the
problem that most DNS servers cache the responses they receive from other
DNS servers. In reality this means that if a client asks for the address of
www.example.net from a local DNS (non-authorative), it might only receive
an IP address cached by that DNS server. All other clients using the same non-
authorative DNS server will receive the same address until the cache of the
DNS server is cleared. To avoid this problem one could adjust each entry on
the authorative DNS server with a short validity period, which is done through
setting a Time To Live value (TTL). A cache entry can be valid from anywhere
between a day to an entire week. In [15] they tested different TTL values for a
DNS server handing out responses for a cluster of 8 web servers. With a TTL
of 1 hour the load on the servers (measured in connections handled by each
server) ranged between 10.7 to 15.8 percent. With a TTL of 24 hours the load
ranged from 8.1 to 18.5 percent. Bryhni also states that DNS caching can intro-
duce skewed load on a server farm by an average of as much as±40 percent of
the total load. Dynamically setting TTL values for DNS through hidden load
weight for each domain, client location and server condition can improve per-
formance [5]. Bryhni [15] also mentions that if TTL values are small, the DNS
traffic itself can cause significant network overhead, since it does not carry
any user information. Barford and Crovella says that DNS Load balancing can
not use more than 32 servers due to UDP size constraints [5]. Cardellini [11]
also points out the fact that intermediate DNS servers caching responses, often
ignore small TTL values to avoid unecessary DNS traffic.

Another problem using DNS based load-balancing is that there is no way
for a DNS server to notice when a server goes offline, which leads to DNS
servers handing out addresses that are unreachable. Even if the authorative
DNS server is updated the moment a server goes online/offline, other cached
DNS entries need to expire before they request a new address [15].

In [11] performance tests are performed to compare dispatch based (see sec-
tion 2.3) and DNS load balancing. Results show that in their testing scenario,
all DNS schemes (constant TTL, adaptive TTL and Round Robin) are outper-
formed by a simple Round Robin (RR) dispatch based method. The DNS ap-
proach with best performance is the one with adaptive TTL, where the results
show a maximum server node utilization of 90 percent, while the dispatch
based approach have a maximum of 80 percent. They consider server nodes
that are utilized above 90 percent to be overloaded. The DNS RR approach
shows that at least one server node is overloaded 70 percent of the time, while
the DNS with static TTL overloads at least one node 20 percent of the time.
They conclude by saying that network bandwidth, more than server node ca-
pacity, is likely to be a limiting factor for load balancing techniques. Therefore
a combination of DNS based and dispatch based load balancing should be im-
plemented, so that client proximity and network load can be considered.

10 Chapter 2. Background and Previous Research

2.2 The OSI Model

When we speak about Server Load Balancing the OSI model is often men-
tioned. The OSI model is meant as a framework for developing network pro-
tocols, the reference model consists of 7 layers. The OSI model is used to de-
scribe how different types of protocols work together, such as HTTP, IP, TCP
and 802.3 (Ethernet). We often refer to layers in the OSI model to describe how
SLB works. It is therefore important to know what each layer does. In figure
2.4 the different layers in the TCP/IP and OSI reference model is shown.

Figure 2.4: OSI and TCP/IP model: The figure shows how the TCP/IP implemen-
tation of the layers conform to the OSI reference model

Layer 1 This layer is often referred to as the ”Physical” layer. The protocols
in this layer specify how 1s and 0s are transmitted over the physical
medium they are operating. Load Balancing is not performed at this
level.

Layer 2 On this layer it is specified how the packets are encapsulated before
being transmitted out on the link. Ethernet, which is the most common
Layer 2 protocol, also has error correction in its header. This layer is of-
ten involved when talking about SLB, here we can tune the maximum
size for frames transmitted (usually 1500 bytes, but Jumbo Frames can
support up to 9000 bytes). In some load balancing schemes we also
need to take into consideration the Adress Resolution Protocol (ARP),
which is used for looking up MAC addresses for devices on the same
segment in the network. When using the topology scheme Direct Server
Return, DSR (see section 2.4.1), we need to disable the ARP protocol on
the servers.

Layer 3 On this layer the routers operate. They forward packets based on IP
addresses according to static routes or routes created by routing proto-

2.3. Dispatch Based Load-Balancing 11

cols such as Routing Information Protocol (RIP) and Open Shortest Path
First (OSPF). The source IP address is often used in SLB context, espe-
cially when talking about session persistance.

Layer 4 On this layer we often speak of two sets of protocols; connection-
less and connection oriented. Typically UDP represents the former and
TCP the latter. Higher level services such as HTTP, FTP etc. all have
dedicated port numbers when they are encapsulated in a TCP or UDP
packet. Source port, destination port, source IP and destination IP com-
bined make a socket, used as a unique identifier for connections. This
4-tuple is often used to track connections and separate them when im-
plementing SLB.

Layer 5-7 These higher levels consist of protocols used directly by users. FTP,
HTTP, SSH and DNS are just a few. There are also a set of presentation
protocols to present information to us in ways we can understand (e.g.
HTTP packets are usually presented using a web browser). Using these
protocols for load-balancing is possible, but often relies on powerful de-
vices because of the need to process each packet at such a high level in
the protocol stack. This type of load balancing is often used to balance
load between servers serving different types of content (e.g. separating
content between static and dynamic content).

2.3 Dispatch Based Load-Balancing

There are several ways to deploy a SLB scheme, which makes it easier to adapt
the solution to different needs and network architectures. The most common
solution is to centralize scheduling and completely control client-request rout-
ing, an additional network component called a dispatcher will be used for
this [11]. Dispatch based load balancing has several possible implementations.
What characterizes these modes of operation is how the dispatcher forward
packets, and how the headers are changed. Dispatch mode can operate on
layer 2 and up in the OSI model, which means that it supports both switch-
ing, routing and forwarding based on higher levels such as URLs and TCP
sessions.

An important term when describing load balancing is the Virtual IP Ad-
dress (VIP). The VIP address is configured on the load balancing unit, and is
used by the clients when connecting to the servers behind it. The VIP address
can be equal to the actual address of each server, or it can be the ”external” ad-
dress before a Network Address Translation (NAT) takes place. This depends
on which mode we use for load balancing. All modes share a common fea-
ture, the load balancing is transparent to the clients. Clients connect to the VIP
address as if it was one single server serving all the content. Behind the VIP

12 Chapter 2. Background and Previous Research

Clients Load Balancer

Server 1
10.10.10.1

...

VIP: 222.10.10.10
LAN: 10.10.10.100 Server 2

10.10.10.2

Server n
10.10.10.n

Step 1: Client sends request to 222.10.10.10
Step 2: Load balancer decides which server
 is most suited to receive request
Step 3: Server performs DNAT to 10.10.10.2
 and SNAT to 10.10.10.100
Step 4: Server 10.10.10.2 processes packet
Step 5: Server returns packet to 10.10.10.100
Step 6: Load balancer performs reverse DNAT
 and SNAT
Step 7: Load balancer returns packet to client

1,7 2,3,6
4,5

Figure 2.5: Virtual Interface Adress: The load balancer acts as a proxy and inter-
cepts all packets before they reach the servers. In this case a NAT based architecture is
used where all servers have local adresses

there can be anywhere from 1 to many servers. In figure 2.5 a setup using a
VIP address is shown.

2.4 Dispatch Modes

Dispatch modes can be implemented in many ways, and the terminology used
to describe these implementations is not consistent. Vendors use their own
terms, and scientific articles often refer to terminology used by vendors. This
makes it harder to compare different technologies and papers. In the following
sections I will explain the different architectures, and refer to them using the
terminology I have found to be most common and appropriate. The terms are
in accordance with the ones used in the O’Reilly book: Server Load Balancing
[7] by Tony Bourke and the article Comparison of Load Balancing Strategies on
Cluster-based Web Servers [30]. They divide SLB into two main branches: Flat-
based and NAT-based.

IP CONFIGURATION RETURN PATH

Flat-Based

NAT-Based

Bridge-Path

Route-Path

DSR

Figure 2.6: Possible Implementations of SLB: 2 sets of topology implementations:
flat-based and NAT-based. 3 return paths that packets can be sent: bridge-path, route-
path and Direct Server Return (DSR)

All possible implementation of SLB infrastructure can be described as a
variation of those shown in Figure 2.6. The first box show the two variations
available for the IP topology. When implementing flat-based SLB the VIP ad-
dresses and the IPs for the real servers reside on the same segment. For NAT-

2.4. Dispatch Modes 13

based SLB the VIP addresses and real servers are on different subnets. The sec-
ond box show how the traffic can be routed or switched from the real servers
back to the client. Bridge-path is when the dispatcher acts as a bridge, and is in
the layer-2 path between the real server and the client (this solution only works
with Flat-based SLB). Layer-2 path is the path a packet follows inside one seg-
ment, using only layer 2 information (MAC addresses) to make forwarding
decisions. When using Route-path the dispatcher acts as a router, and is in the
layer-3 path between the real server and the client. Layer-3 path is the path
where IP addresses are used to make forwarding decisions. DSR is an abbrevi-
ation for Direct Server Return, and is implemented so that the traffic from the
real servers goes directly to the client without passing the load balancer. What
is common to all these implementations is that the dispatcher should be close
to the servers to avoid network capacity becoming a bottleneck [5], and keep,
if used, server load information as accurate as possible [15].

2.4.1 Flat-Based SLB Network Architecture

In this architecture the VIP address resides on the same segment as the IPs of
the real servers. In figure 2.7 we see an example of a flat-based SLB architec-
ture. There can be variations in the setup.

Clients Load Balancer

Server 1
10.10.10.1

...

VIP: 10.10.10.101
LAN: 10.10.10.100 Server 2

10.10.10.2

Server n
10.10.10.n

Step 1: Client sends request to 10.10.10.101
Step 2: Load balancer decides which server
 is most suited to receive request
Step 3: Server performs DNAT to 10.10.10.2
Step 4: Server 10.10.10.2 processes packet
Step 5: Server returns packet to client
 using 10.10.10.100 as default gateway
Step 6: Load balancer intercepts packet and
 rewrite the source to 10.10.10.101 (SNAT)
Step 7: Load balancer returns packet to client

1,7 2,3,6
4,5

Figure 2.7: Flat SLB Architecture: The load balancer acts as a proxy and intercepts
all packets before they reach the servers. Load balancer uses Destination Network Ad-
dress Translation (DNAT) on incoming packets and Source Network Address Trans-
lation (SNAT) on outgoing packets. When implementing this architecture the load
balancer need to be in the route path between the server and the client

2.4.2 NAT-Based SLB Network Architecture

Directed mode operates on layer 3. The load-balancer translates its’ VIP ad-
dress to the real server address. The answer from the real servers are then
translated back to the VIP address before they are sent to the client requesting
files. This process makes it possible to place the real servers on different seg-

14 Chapter 2. Background and Previous Research

Figure 2.8: Active - Standby scenario: The active load balancer receives all traffic.
If it fails the backup unit will take over. Information such as connection tables, cookies,
weighting information etc. is transferred from failing unit to backup unit if possible

ments, hence make it easier to alter physical locations and better use of the IP
address space.

Dispatch mode operates on layer 2. This requires the load balancer and the
real server to be on the same segment connected through a switch. The VIP
address on the load-balancer is the same as the ip address of the real servers.
Because of this it is recommended to configure a non-arp secondary or alias
interface on the real servers assigned to the VIP address, this to avoid issues
surrounding duplicate ip addresses in some OS’es.

2.4.3 Redundancy

One of the important advantages of implementing SLB is to facilitate fault re-
silience. With one load balancer we still have a single point of failure as we
also would using one webserver. Most load balancers support redundant ar-
chitectures where one can employ one or several units in backup or parallell
(see figure 2.8). Proprietary heart beat protocols are then used between the
units to communicate. It is usual to use the Virtual Router Redundancy Proto-
col (VRRP) to share an adress between the units. If a unit fails, the next in line
will then assume the VRRP adress and start load balancing the traffic. Propri-
etary protocols are usually responsible for trying to transfer state information
such as connection tables, cookies etc. from the failing device to the one taking
over.

2.5. Load-Balancing Algorithms 15

2.5 Load-Balancing Algorithms

In this section I will start by describing the most ordinary load balancing al-
gorithms, in other words the ones that rarely change due to vendor specific
solutions. In the end I will summarize some of the research on the field, and
compare results obtained from different experiments.

Round Robin Algorithm: This is a simple algorithm that distributes requests
to different servers in a round-robin manner independent of any infor-
mation about load, active connections, bandwidth usage etc. The algo-
rithm is known to be effective in the terms of processing needed for the
dispatcher, but can overload servers if the sequence of requests is nonop-
timal [15]. In inhomogeneous server environments with long-range de-
pendent traffic distribution, this algorithm should not perform better
than random chance.

Least Connections Algorithm: The least connections algorithm keeps track of
how many active connections each node currently has, and sends new
connections to the node with least active connections. If two or more
servers have the same amount of active connections, there are several
ways to decide which server to use. Some implementations use the low-
est IP address, or round-robin, while others use an identifier for each
server, and sends the request to the server with the lowest one [15]. The
last solution have the effect that the same server will receive requests
each time the system is empty. This algorithm is said to be somewhat
self-regulating since faster servers can process requests at a higher rate,
hence receive more requests [24].

Server Response Algorithm This is a generalization of algorithms that use
real time server information to balance load. Some implementation use
the Round Trip Time (RTT). The RTT is calculated by sending out In-
ternet Control Message Protocol (ICMP) echo requests, and calculate the
time it takes to receive an ICMP echo reply, to get an impression of which
server is least utilized. Some monitor the TCP sessions and calculate the
time between a request is forwarded and to the first reply back. Servers
with a small response time is considered less utilized than server with
higher response times. There are a number of different solutions for se-
lecting the appropriate server when two servers have the same value.
Some use round-robin between the equal servers, while others use a
least loaded scheme when servers can not be separated using the metrics
given in the server response algorithm [15] More accurate system mon-
itoring tools are available, but often in proprietary solutions. Agents on
each server can serve or push information to the load balancer, which

16 Chapter 2. Background and Previous Research

again will use this information to make adequate decisions for distribut-
ing requests [15].

2.5.1 Performance Evaluation - Algorithms

Many experiments concerning performance testing has been performed to un-
cover which algorithm that is most efficient when load balancing web traf-
fic [21,18,30,11,28,1,31,3,23,4,15]. These experiments either use a trace driven
or program generated traffic. Program generated traffic is created by the use
of tools like specWEB, httperf , siege , etc. The trace driven approach uses
playback of previously captured traffic. The majority of experiments focus
on response time, and how this factor vary depending on number of servers
available and traffic intensity.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

168421

R
es

po
ns

e
T

im
e

[m
s]

No. of Servers

Response Times from Teo and Ayani

Least Loaded
Round Robin

Least Connected

Figure 2.9: Response Times from Teo and Ayani [30]: The graph shows response
times using the least loaded algorithm, least connections algorithm and round robin
algorithm. The number of servers range from 1 to 16, and their experiment yield that
round robin is outperformed by the two other algorithms

In [30] they claim that Least Loaded (LL) algorithm is superior to Round
Robin (RR), although it is hard to implement because you need detailed in-
formation about workload on each server (see figure2.9). RR algorithms are
measured to have the highest response times, especially under low to medium
workload. The Least Connections (LC) algorithm performs well for medium to
high workloads, but they measure it to be 2-6 times worse than the least loaded

2.6. Performance Evaluation - Topology 17

algorithms under low loads. Their results show that all three algorithms con-
verge when the load increases. In table 2.1 we see that average response time
decreases when they increase the number of servers. Arrival rate and number
of servers are increased proportionally, so that the load per server is constant
during all tests. The authors in [30] give no explanations for their result. Due
to the increased amount of processing needed at the dispatcher when increas-
ing the load, one would expect a decrease in throughput.

No. of servers LL Response Time RR Response Time LC Response Time
1 3467 3467 3467
2 1772.0 1913.2 1724.6
4 853.1 1115.9 856.7
8 419.7 741.4 416.0
16 213.0 608.0 215.6

Table 2.1: Results from research by Teo and Ayani [30]: Response times obtained
when using three different algorithms with increasing number of servers. LL equals
Least Loaded, LC equals Least Connected and RR equals Round Robin

Cardellini et al. show in their experiment results that contradict results shown
in [30, 5], they found that the RR algorithm demonstrated better performance
than other load balancing algorithms due to less need for processing power
at the dispatcher unit. Bryhni [15] proposes the adaptive load balancing algo-
rithm using the Round Trip time for ICMP messages to weigh the servers as a
good alternative to the RR. Although it needs improvement to reflect current
server load, especially during transient high-load conditions.

2.6 Performance Evaluation - Topology

As we have seen there is more than one way to implement SLB. Which so-
lution to choose depends on infrastructure, the need for security and traffic
characteristics.

The dispatcher unit needs to process each packet before forwarding it to a
server, which indicates a possible bottleneck [2]. When network load balancing
is used, and we use unique IP addresses for each of the real servers, the load
balancer need to recalculate the IP checksum of each packet forwarded. This
means additional overhead compared to load balancing on the link layer [15].
If the client requests a large file, it means that several reply packets are sent by
the server, hence several ACK packets from the client. This results in increased
utilization on the dispatcher, since it needs to process more ACK replies. The
process time for each request is therefore proportional to the size of the request.
In [30] they hypothesize that:

18 Chapter 2. Background and Previous Research

Dispatcher Service T ime =
L

K
+ C (2.1)

Where L denotes the size of the request in bytes, K is a linear factor to model
the processing of ACK packets and C is a constant factor modelling the over-
head for setting up a TCP session. By sampling request sizes between 1 byte
and 2MB they found values for L and C.

As mentioned in [15] the amount of processing performed by the load bal-
ancer can be significant to the overall performance. In [2] they discuss the
amount of processing needed for different modes of load balancing:

• Dispatch Mode

• Directed or server NAT

• Client NAT

• Connection spoofing

• Direct Server Return

When configuring the load balancer’s mode of operation, the first thing to
consider should be service requirements. A secondary consideration is perfor-
mance. In [2] they have arranged the modes in a list relative to their expected
performance. The performance is measured relative to the amount of pro-
cessing needed for each packet. In DSR mode for example, the packet can go
directly from the server to the client without alterations, which might increase
performance.

1. Direct Server Return

2. Dispactch Mode

3. Directed or server NAT

4. Client NAT

5. Connection spoofing

Table 2.2 points out the tasks or changes a load balancer must perform to in-
coming and outgoing packets under different modes of operation.
From 2.2 it is clear that Direct Server Return is the implementation with the
least amount of processing. Since outbound traffic usually exceeds inbound
traffic, the advantage of DRS becomes even greater. When using connection
spoofing, the packet needs to get its header rewritten in both layer 2,3 and 4 of
the protocol stack, which might cause the dispatcher to become the bottleneck.

2.7. Web-Traffic Characteristics 19

Mode/Task Inbound
Traffic

In-/Outbound
Traffic

MAC
Header

IP
Header

TCP/UDP
Header

Connection
Spoofing

DSR • •
Dispatch • •
Directed • • • •
Client
NAT • • •
Connection
Spoofing • • • • •

Table 2.2: Performance considerations from Cisco [2]: The table shows which
alterations that are done to each packet using different topology solutions when imple-
menting SLB. As we see the Direct Server Return solution needs the least alterations,
while connection spoofing needs the most.

2.7 Web-Traffic Characteristics

When doing simulations it is important to take into consideration what type
of traffic that is used. Traffic characteristics can affect performance. How web
traffic is distributed have been subject for discussion in many articles [5,12,26]
Barford and Crovella identified 6 constraints that apply to http traffic: server
file distribution, request size distribution, relative file popularity, embedded
file references, temporal locality of reference and idle periods of individual
users [5].

Network traffic can be self-similar, which means that traffic can show sig-
nificant variability over a wide range of scales. This characteristic has been
shown to have a negative impact on network performance [13, 25]. In [5] they
mention two methods for capturing these properties: using traces from pre-
vious traffic or an analytical approach. Analytical workload generations start
with mathematical models that represent the characteristics of web traffic, and
then generate output according to these. The disadvantage of using traces is
that the traffic is a ”black box”, and without the knowledge of traffic charac-
teristics, it is often harder to understand causes of behaviour on the server.
Traces offer no flexibility when it comes to adjusting the load depending on
the site, or if characteristics change with time. Analytical traffic generators
are often more complex to create, but offer greater flexibility, such as file size
adjustments, number of clients, packet inter-arrival times etc.

With HTTP 1.0 it is possible to achieve load balancing by directing requests
aimed at one logical address to different machines, this is because the HTTP
protocol is stateless and creates new TCP sessions for every object on a web
page [15]. The Internet Engineering Task Force (IETF) has standardized a new
HTTP protocol, version 1.1. This version enables several objects to be trans-
ferred per TCP session [17].

20 Chapter 2. Background and Previous Research

In [5] they used both exponential (see figure 2.10) and heavy-tailed traf-
fic to model client traffic. The heavy-tailed client traffic were represented us-
ing Pareto and Weibull distributions, while the exponential traffic were cre-
ated with poisson distributions. The experiments showed that using the expo-
nential distribution model the dispatch based approach outperform both DNS
based and server based load balancing. The dispatcher based method keeps
the webserver utilization below 0.8. DNS with adaptive TTL, and server based
load balancing manages to keep server utilization below 0.9. While DNS with
constant TTL values had at least one overloaded node (utilized above 0.9) for
almost 20 percent of the time. The RR DNS solution overloaded one server for
more than 70 percent of the time, and turned out to be the worst solution.

When using heavy-tailed traffic distribution the results degrade for all ap-
proaches. Dispatch based and DNS with adaptive TTL are the two approaches
that perform best. The server based approach does not cope with the heavy-
tailed distribution and at least one server was over utilized for more than 50
percent of the time.

Traffic intensity can constrain load balancing schemes even more than server
capacity. This means that LAN based webserver clusters are just a limited so-
lution to scaling increased client load. For an optimal solution a WAN based
solution should be combined with a LAN based solution. The WAN based so-
lution needs to take proximity and client load into consideration. One of the
great challenges is how to dynamically evaluate such information as it rapidly
changes in the Internet environment.

2.8 Performance Model

To create a model of our system we want to create a reasonable abstraction
level for our experiments. We want to look at the throughput each webserver
can handle, and not necessarily how each server is configured. To find the
service time for a server can be complicated, in [30] they identify three main
delay sources to consider: CPU (together with memory access time), disk access
time and network delay time. The delay caused by disk access can be avoided by
storing all the content in memory instead of disk. This is a viable assumption
considering the large amount of memory often found in web servers today.
Network delay time is also considered to be a negible. This leaves us with
only CPU and memory access time as sources for delay on a server.

We define the throughput of each server as a function X0(n), where n is the
number of request present on the server. This means that we wish to look at the
server as a black box. Figure 2.11 shows a reasonable assumption about how
the throughput will change with n number of request present in the system.
The throughput will stop increasing when the server is saturated, and then the
server needs to start queueing jobs.

2.8. Performance Model 21

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 5 10 15 20

P
ro

ba
bi

lit
y

%

Inter Arrival Time [ms]

Poisson Distributions

Average 1 ms
Average 5 ms

Average 10 ms

Figure 2.10: Poisson Distribution: The graphs show poisson distributions with dif-
ferent average rates and exponential inter-arrival times. The function is only defined
at integer values of x. Connecting lines do not indicate continuity.

In [8] it is mentioned 6 parameters to consider when using queueing mod-
els:

• Arrival time distribution process: This is the inter-arrival time between
arriving requests. A lot of research has been done to find out whether the
inter-arrival time of network traffic form a Poisson or Long-tail distribu-
tion. In our experiment we will generate network traffic with Poisson
distribution (see figure 2.10).

• Process time distribution: This is the time a client is engaged in request-
ing a service. Research has shown service time to be heavy-tailed in dis-
tribution [15]. Due to software limitations the service time in this experi-
ment is static.

• Number of servers: This is the number of computers processing re-
quests. In our experiment we have at maximum 6 servers available.

• System processing limit: If the servers have a maximum throughput this
will affect the system as a hole. In our case we willl find the maximum
throughput of each server measured in KB/s for different file sizes and
cpu consuming scripts.

22 Chapter 2. Background and Previous Research

 0

 20

 40

 60

 80

 100

 120

 140

T
hr

ou
gh

pu
t

Request Rate

Expected Throughput

Throughput

Figure 2.11: Exptected trend for throughput: We expect the throughput of each
server to increase proportional with the increased request rate until approaching max-
imum limit. Then the rate will flatten out and remain constant.

• Maximum population size: Maximum number of clients that can ask for
services.

• Scheduling policy: This refers to how the queueing policy is imple-
mented. In our case which load balancing algorithm the dispatcher uses,
and the topology of the network.

2.8.1 Infinite Queue Model

To create a model of our web server we make the assumption that there is no
maximum length on the queue that our servers are capable of handling. This
is of course an erroneous assumption, but it is sufficient as long as our model
is only used to describe situations where the server is not utilized above its
limitations [29].

We assume that all requests are statistically indistinguishable, which means
that the requests present in the web server are not important, only the number
of requests present. This is called the homogeneous workload assumption [20].
Since our web server model accepts requests regardless of how many that are
present in the system, we get what we call an infinite queue [19].

If our model should work, it needs to be in something that is called an
operational equilibrium [10] (this means that for a given time-interval the num-
ber of requests that goes into the web server needs to be equal to the number
of requests that are processed by the server). We can now describe each web
servers state by saying how many requests that are present in the server, wait-
ing or receiving processing. This indicates that the previous states of the server
are irrelevant, and are what we call memoryless or Markovian assumption.

2.8. Performance Model 23

Figure 2.12: Transition between states: The figure shows how incoming (λ) and
processing (µ) requests take our system from one state to another. An operational
equilibrium is accomplished when λ = µ

To visualize the states of each server, we define that a state is given by an
integer: p0, p1, p2, · · ·, pn. The transitions between states are caused by new
requests arriving at the server, this event will take the state from pn to pk+1.
The rate at which these transitions occur will depend on the properties of web
traffic, we use a Poisson distribution to generate traffic. The Poisson process
is memoryless in distribution1. Each time the server completes one request, a
state transition from pn to pn−1 occurs (see picture2.12).

The rate at which requests arrive: λ requests
second

must be equal to the rate at
which requests are processed: µ requests

second
. There is a probability that the server

is in a given state that is given by: pn, where (n = 0, 1, 2, · · ·,∞). We can then
write that:

λ · pn−1 = µ · pn,

pn = ρpn−1 (2.2)

for any n, where ρ = λ
µ

. ρ is an estimate of the traffic intensity, and we see that
if ρ > 1 the incoming rate is higher than the outgoing rate. We will see that if ρ
approaches 1 the average number of tasks in the queue will approach infinity.
Since the equation in Eq. (2.2) holds for all n we can write:

p1 = ρp0

p2 = ρ2p0

.

.

pn = ρnp0 (2.3)

If we can find p0 we can find the possibility that the server is in any of the other
states. At any time the server has to be in one of the states, so if we sum of the
fraction of each state we get that [8]:

1What happened before has no significance, only the present state

24 Chapter 2. Background and Previous Research

∞∑
n=0

pn = 1 (2.4)

Since this is a geometric series we can write:

∞∑
n=0

pn =
p0

1− ρ
= 1 (2.5)

This gives:

pn = (1− ρ)ρn (2.6)

If we assume that there is an infinite number of tasks, we can calculate the
expectation value of the number of tasks in the queue:

E(n) = 〈n〉 =
∞∑

n=0

npn

〈n〉 =
∞∑

n=0

n(1− ρ)ρn

=
∞∑

n=0

nρn −
∞∑

n=0

nρn+1

If we relabel n → n + 1, the second term gives us:

〈n〉 =
∞∑

n=0

nρn −
∞∑

n=1

(n− 1)ρn

=
∞∑

n=1

ρn

〈n〉 =
ρ

1− ρ
(2.7)

We are now able to calculate the average number of jobs in the queue, and
the only information we need is the λ incoming rate and µ processing rate of
the server. We will use littles law to find a formula for calculating the average
response time by using 〈n〉. In [8] Burgess defines load average/utilization as
the probability of finding at least one job in the queue, which equals 1− p0:

2.8. Performance Model 25

U = 1− p0 = 1− (1− ρ) = ρ =
λ

µ
(2.8)

Little’s Law about queue sizes says that the mean number of jobs 6 n〉 is equal
to the product of the mean arrival rate per second λ and the mean delay time
per second R. We can then calculate the expected response time:

R =
〈n〉
λ

R =
1

µ(1− ρ)

R =
1

µ− λ
(2.9)

A result of this formula is that the response time goes to infinity when λ → µ.
This is in accordance with the formula for calculating the mean number of
tasks, where the number of tasks goes to infinity when ρ → 1, and ρ = λ

µ
.

2.8.2 M/M/k Queues

In the previous section we deduced the formula for calculating response times
for M/M/1k queues. In this section we will look at a slightly different queue
formula, the M/M/k queue. According to the folk theorem the M/M/k queue
generates lower response times as it can be compared to having low redun-
dancy (see figure 2.13), compared to the M/M/1k queue which is compared to
high redundancy (see figure 2.14).

It is hard to classify our experiment in any of the two architetures shown
in pictures 2.13 and 2.14. The closest architecture is probably the low redun-
dancy, since all traffic goes through the dispatcher, and the service we offer will
be available even if the dispatcher fails. The only problem is if the dispatcher
fails itself, although this can be solved using backup solutions. In our experi-
ment we will see which of the two models that best describes our system. The
equations in this section will derive the formula for finding the response time
using the M/M/k queue model.

λpn−1 =

{
nµpn (0 < n ≤ k)
kµpn (n > k)

(2.10)

If we solve this, it gives us that:

λpn =

p0

(
λ
µ

)n
1
n!

(0 < n ≤ k)

pk

(
λ
µ

)n−k
1

kn−k = p0

(
λ
µ

)n
1

k!kn−k (n > k)
(2.11)

26 Chapter 2. Background and Previous Research

By normalizing we can then find p0

∞∑
n=0

pn = p0

(
k−1∑
n=0

(
λ

µ

)n
1

n!
+

∞∑

n=k

(
λ

µ

)n
1

k!kn−k

)
= 1 (2.12)

If we let the traffic intensity per server be ρ = λ
µk

p0 =

(
1 +

k−1∑
n=1

(kρ)n 1

n!
+

(kρ)k

k!(1− ρ)

)−1

(2.13)

κ is the probability that a task will have to wait to be performed, and is given
by the probability that there are k or more tasks already in the system

κ ≡ P (n ≥ k) =
∞∑

n=k

pn =
(kρ)k

k!(1− ρ)
p0 (2.14)

The expectation value of n represents the average number of jobs in the system

〈n〉 =
∞∑

n=0

npn = kρ +
κρ

1− ρ
(2.15)

Little’s law gives that the average response time for the system to respond is

R =
〈n〉
λ

=
1

µ

(
1 +

κ

k(1− ρ)

)
(2.16)

We can now verify that κ(k = 1) = ρ and that when k = 1 the results are
the same for both M/M/k and M/M/1k models. We see that the formula for
response time goes towards infinity when λ → µ just as the response time
formula for M/M/1k queues.

2.8. Performance Model 27

LOW LEVEL REDUNDANCY

Figure 2.13: Low Redundancy Architecture: If we imagine the blocks in the figure
being hardware components, we might say that each component is in parallell, and if
one fails the other takes over. This means that no matter which path a ”task” takes
through the system, it is enough if one of the components is functional

HIGH LEVEL REDUNDANCY

Figure 2.14: High Redundancy Architecture: If we imagine the blocks in the fig-
ure being hardware components, we see that the entire system as a whole is ducplicated.
This means that if a ”current” chooses the upper path and one component in that path
is broken, the current fails to pass through the system.

Chapter 3

Hypotheses

This chapter is dedicated to state our hypotheses. First the hypotheses are
stated. After each hypothesis there is a short discussion where we describe
how we will test the hypothesis and what results we are expecting.

3.1 Expected Results

In this chapter, we present our hypotheses, and during our experiment our
goal is to falsify or justify them. Karl Popper, considered one of the most im-
portant philosophers of science since Francis Bacon, suggested once that we
cannot be certain of what we see, but maybe we can can prove whether or not
we are wrong [8]. In other words this means that since we can always do one
more test, and we can never know whether this test will deviate from the oth-
ers or not, we cannot say that our hypotheses are right. But if our hypotheses
fail one time, we can at least say that it is wrong.

Hypothesis 1: Increasing number of servers available to a load balancer should de-
crease the response time.

It is a valid assumption that an increase of servers will decrease the response
time as the total processing power increases. We would also like to see if the
response time decreases linearly proportional with the increasing number of
servers added. We also suspect that with some types of traffic (e.g. multimedia
traffic) the constraint is not within the servers but in network or load balancer
capacity. Tests with 1-5 servers will be performed to see how the response time
is affected.

Hypothesis 2: The decrease in response time should follow the same trend as a theo-

30 Chapter 3. Hypotheses

retical model based on a M/M/1k queue, where k is the number of computers available
to the load balancer. We also believe that the M/M/k queue will generate too opti-
mistic results compared to our experiments

This assumption is very optimistic since these queueing models assume per-
fect load balancing between available processing units. We would like to see
whether our simulations and experimental results scale proportionally. We
will generate response rates from queueing algorithms to compare with actual
results.

Hypothesis 3: Response time varies depending on load balancing algorithm used and
number of servers available.

We would like to see how different load balancing algorithms perform com-
pared to each other. Response time might not vary in all situations, for ex-
ample when the load is low or the network is heavily utilized. Tests will be
performed using different algorithms and traffic intensities.

Hypothesis 4: Inhomogeneity among the servers varies the relative efficiency of the
algorithms

How does algorithms perform when balancing load between equal servers
compared to different ones. We will test this scenario by reducing CPU power
on some of our servers, and then do tests to compare the relative efficiency of
algorithms compared to results obtained when servers had equal capabilities.

Hypothesis 5: There are correlations between algorithms and traffic intensity which
can be used to create an adaptive solution for selecting appropriate algorithms depend-
ing on current load.

If we are able to find relative correlations between algorithms and traffic in-
tensity we can propose limits for when to change algorithms to increase per-
formance. Excisting algorithms that use current load are not necessarily the
most efficient at all intensities.

Chapter 4

Experimental Design

4.1 System constraints

According to Burgess [8] a constraint defines the limitations of the variables
and parameters in the system. A constraint usually takes the form of a rule
or a parameter inequality. When doing measurements on the performance of
load balancing it is important that we are aware of the constraints. Some of the
constraints that apply to this experiment are:

Processing power: Each of the blades in use have limited processing power.
When this limit is exceeded it might be difficult to acquire accurate mea-
surements from the blades.

Network Bandwith: All blades are connected to the network with GigaBit
(GB) interfaces, but since all blades are connected through one CAT6
Twisted Pair (TP) cable, they share 1GB of bandwidth.

Load Balancer: The load balancer must process packets, and the amount of
processing depends on topology and algorithms used. The load balancer
could become a limitation in extreme cases.

Apache Webserver: The apache webserver is configured to spawn a limited
number of child processes to handle incoming requests (see section 4.3.1).
When this limit is reached, it starts to put requests in a queue, and when
the queue is full the server do not accept more incoming requests.

Client limitations: Our traffic generator act as a client generating traffic to-
wards the webservers. The client can only generate a limited amount
of connections based on a filedescriptor value (each connection needs a
filedescriptor).

32 Chapter 4. Experimental Design

4.2 Experimental Configuration

In this section some brief descriptions of hardware and experimental setup
will be given and discussed. One of the main objectives when configuring the
lab was to get the best possible bandwidth between all units to avoid network
congestion due to traffic intensity.

Blade 1:
192.168.100.11

Blade 2:
192.168.100.12

Blade 3:
192.168.100.13

Blade 4:
192.168.100.14

Blade 5:
192.168.100.15

Blade 6:
192.168.100.16

IBM Bladecenter Baystack 5510

Application Switch

Optical VLAN Trunk
VLAN: 1,10,100

VLAN 100

Interface: 192.168.1.1 (VLAN 1)
Interface: 192.168.10.1 (VLAN 10)
Interface: 192.168.100.1 (VLAN 100)
Interface: 192.168.100.2 (VIP)

Client 1
WEB

VLAN 10

Interface: 192.168.10.2 (VLAN 10)
Interface: External (WEB)

Figure 4.1: Experimental Setup: The picture shows how the setup in the lab is, and
the ip addresses used. All lines except to WEB has GB bandwidth.

An overview of the lab can be seen in figure 4.1. We have divided the setup
into three VLANs:

VLAN 1 - Administration VLAN (192.168.1/24): This VLAN is for adminis-
tration purposes only. The network equipment used is configured with
management interfaces on this VLAN for easy access through the net-
work. The baystack switch is configured with management interface
192.168.1.2 and the application switch has the address 192.168.1.1. Both
these units can be accessed through ssh or telnet depending on config-
uration. The default gateway for this vlan is 192.168.1.1, which is the
interface configured on the application switch.

VLAN 10 - Client VLAN (192.168.10/24): This VLAN is the client VLAN. This
is the VLAN which gives us access to the network from the outside. The

4.3. Tools 33

machines accessible through internet have two interfaces, one of them is
located on VLAN 10 with address 192.168.10.2 (see figure 4.1) and uses
192.168.10.1 as gateway. 192.168.10.1 is configured on the application
switch.

VLAN 100 - Server VLAN (192.168.100/24): This VLAN is created for the servers,
which have ip addresses in the range 192.168.100.11-16. They all use
192.168.100.1 as default gateway, this address is configured on the ap-
plication switch.

4.2.1 Hardware Specifications

All 6 blades used in the experiment are identical. The specification is listed in
Table 4.1, they are of the type IBM BladeCenter HS20. The blades are located in
a BladeCenter Chassis, specifications are listed in Table 4.2.

HS20 Blade 1-6
CPU Intel Xeon Processor - 2.8GHz
Memory 1GB PC2-3200 DDR2
Network Dual Gigabit Ethernet
Internal Hard Drive 32GB Ultra320 SCSI
Operating System Debian, Kernel 2.6.12-

Table 4.1: Description of HS20 Blades: The blades are internally connected to a
GB switch which again is connected to the baystack switch (see figure 4.1). All blades
share the same disk, usb, cdrom, mouse, keyboard and screen through an internal KVM
switch.

BladeCenter Chassis
Blade Bays 14 2-processor blades or 7 4-processor blades
Media DVD-ROM and USB drive available on all blades
Networking Nortel Networks Layer 2/3 Copper Gigabit Ethernet
Management Software IBM Director

Table 4.2: Description of BladeCenter Chassis: The BladeCenter chassis has its
own network interface for management. It is also possible to control and monitor
through SNMP. The SNMP protocols supports automatic shutdown with signalling
from UPS if desired.

4.3 Tools

In this section the tools used during the experiment will be described. We also
included the configuration of servers and programs, although we tried to keep

34 Chapter 4. Experimental Design

as much as possible in the default state.

4.3.1 Apache 2.0 - Webserver

All our webservers are running a default installation of Apache 2.0. We need
to make some adjustements to increase their performance. Apache have a set
of modules implementing how multi-processing should be performed. Only
one of the modules are active when running apache, and it is usually either
the Apache MPM worker module or the Apache MPM prefork module. There
are other modules available, but these are either under development or dep-
recated. The prefork and worker modules have a set of common directives to
control them, and some of them need to be adjusted. Below is the output
showing that our webservers are using the Apache MPM prefork module.

blade1:/etc/apache2# apache2 -V
Server version: Apache/2.0.54
Server built: Sep 5 2005 11:15:09
Server’s Module Magic Number: 20020903:9
Architecture: 32-bit
Server compiled with....

-D APACHE_MPM_DIR="server/mpm/prefork"
-D APR_HAS_SENDFILE
-D APR_HAS_MMAP
-D APR_HAVE_IPV6 (IPv4-mapped addresses enabled)
-D APR_USE_SYSVSEM_SERIALIZE
-D APR_USE_PTHREAD_SERIALIZE
-D SINGLE_LISTEN_UNSERIALIZED_ACCEPT
-D APR_HAS_OTHER_CHILD
-D AP_HAVE_RELIABLE_PIPED_LOGS
-D HTTPD_ROOT=""
-D SUEXEC_BIN="/usr/lib/apache2/suexec2"
-D DEFAULT_PIDLOG="/var/run/httpd.pid"
-D DEFAULT_SCOREBOARD="logs/apache_runtime_status"
-D DEFAULT_LOCKFILE="/var/run/accept.lock"
-D DEFAULT_ERRORLOG="logs/error_log"
-D AP_TYPES_CONFIG_FILE="/etc/apache2/mime.types"
-D SERVER_CONFIG_FILE="/etc/apache2/apache2.conf"

The prefork module implements a non-threaded, preforking web server. In
apache2.conf some of the directives controlling the prefork module have been
set to default values:

<IfModule prefork.c>
StartServers 5
MinSpareServers 5
MaxSpareServers 10
MaxClients 20
MaxRequestsPerChild 0
</IfModule>

StartServers, MinSpareServers, MaxSpareServers and MaxClients
control how apache spawn processes to serve new requests. We want to be
able to serve as many requests per second as possible, but not so many that our

4.3. Tools 35

server starts swapping, as this is too time consuming. MaxRequestsPerChild
defines how many requests each child process will process before it is killed,
setting this value to zero means that the process will never die. We would like
to have the possibility of 300 simultaneous requests, to do this we adjust the
MaxClients directive to 300. Any connection attempts above this value will
be queued up, and the directive ListenBacklog defines the maximum queue
length. By default Apache is configured with a directive called ServerLimit ,
that defines the maximum number of processes apache can start. Therefore
when we set MaxClient to 300 we also need to adjust ServerLimit accord-
ingly.

4.3.2 Atsar - System Activity Report

Atsar is a program that deliver statistics about a system. It gathers information
from files under the /proc directory. We will use atsar on the servers when
doing performance tests to gather information about the CPU load. By doing
this we can see how the load on each server increases when the requests per
second is increasing.

4.3.3 httperf - HTTP performance measurement tool

Httperf1 is a tool for measuring web server performance. Httperf suppoprts
both HTTP 1.1 and 1.0. One of the main advantages of using httperf for traffic
generation is that it can generate web traffic with Poisson inter-arrival times.
An example of using httperf:

httperf --hog \
--server=192.168.10 \
--period=e0.1 \
--num-conn=400 \
--num-calls=1 \
--uri=/index.html2 \
--timeout=10

The --hog option specifies that httperf should open as many TCP connec-
tions as needed, otherwise httperf is limited to ephemeral port2. The --server
option specifies the domain name or IP address of the server we are about to
test. --period=e0.1 specifies that we want to generate requests with a
Poisson distribution, with an average inter-arrival time \lambda equals 0.1
seconds. The --num-conn option specifies how many connections we wish
to generate on total, while --num-calls specify how many sessions we wish
to generate for each connection. With the --uri option we select which file to

1Homepage: http://www.hpl.hp.com/research/linux/httperf/
2Ports in the range 1024 until 5000

36 Chapter 4. Experimental Design

get in our HTTP GET request. The last option --timeout sets a limit for how
long the client will wait for an answer. If the server is loaded it might be wise
to increase the timeout value to give the server enough time to answer.

Total: connections 400 requests 400 replies 400 test-duration 44.354 s

Connection rate: 9.0 conn/s (110.9 ms/conn, <=30 concurrent connections)
Connection time [ms]: min 89.5 avg 1523.1 max 12091.4 median 1070.5 stddev 1464.3
Connection time [ms]: connect 113.2
Connection length [replies/conn]: 1.000

Request rate: 9.0 req/s (110.9 ms/req)
Request size [B]: 75.0

Reply rate [replies/s]: min 6.8 avg 10.0 max 12.2 stddev 2.0 (8 samples)
Reply time [ms]: response 131.2 transfer 1278.7
Reply size [B]: header 253.0 content 10000000.0 footer 0.0 (total 10000253.0)
Reply status: 1xx=0 2xx=400 3xx=0 4xx=0 5xx=0

CPU time [s]: user 5.80 system 34.95 (user 13.1% system 78.8% total 91.9%)
Net I/O: 88073.1 KB/s (721.5*10ˆ6 bps)

Errors: total 0 client-timo 0 socket-timo 0 connrefused 0 connreset 0
Errors: fd-unavail 0 addrunavail 0 ftab-full 0 other 0

4.3.4 Autobench - Perl wrapper for httperf

Autobench is a perl wrapper to automize a series of tests using httperf. Auto-
bench also parse the output, and summarises the results in a CSV3 or an TSV4

file. The problem with autobench is that it does not enable all the function-
alities from httperf to be used. The possibility of using Poisson distributed
requests is not enabled in autobench. We solved this by manually editing the
autobench perl script to accept the Poisson distribution option. Another useful
feature in autobench is that you can run an autobench daemon on other ma-
chines, and launch distributed tests against a web server. This will be useful
if we find out that one client machine can not generate enough traffic for the
blades. An example of running autobench against the blades:

autobench_mod --single_host \
--host1 192.168.100.1 \
--quiet \
--low_rate 10 \
--high_Rate 150 \
--poisson \
--num_call 1 \
--rate_step 10 \
--uri1 /index.html
--const_test_time 60
--timeout 10
--file result.tsv

3Comma Separated Variables
4Tab Separated Variables

4.3. Tools 37

With the --single_host option we specify that we only wish to test one
host, and --host defines the domain or IP address of the host we wish to test.
We do not wish to generate any output to STDOUT5 since we write our results
to file with the option --file . The --high_rate and --low_rate specify
which rate autobench should start running httperf on, and on which rate it
should end. In the example above, autobench start the tests with a rate of 10
packets per second. Since we have specified that we wish to use poisson dis-
tributed inter-arrival times with --poisson , the mean inter-arrival time will
be set to 1/low_rate . One of the more important features of autobench is the
option --const_test_time 6, which defines the time each iteration should
run. In httperf we can only specify how many connections each test should
run, which causes a skewed time distribution when increasing the load7.The
option --rate_step specifies how much we should increase the rate for each
iteration. In this case we increase with 10 requests/second, so that the next it-
eration will be run with 20 requests/second. Autobench runs until it reaches
--high_rate , which in this case is 150 requests/second, hence autobench
will run httperf 15 times with increasing rates. --num-call specify how
many sessions to establish per TCP connection, --file specify the output
file and --timeout defines how long the client should wait for an answer.
Below is a sample output from one of our tests:

1 1.0 1.0 1.0 1.0 1.0 0.0 18.9 0.3 0
6 6.0 6.0 6.0 6.0 6.0 0.0 18.7 2.0 0
11 11.0 11.0 11.0 11.0 11.0 0.0 18.8 3.7 0
16 16.0 16.0 16.0 16.0 16.0 0.0 18.8 5.4 0
21 21.0 21.0 21.0 21.0 21.0 0.0 18.8 7.0 0
26 26.0 26.0 26.0 26.0 26.0 0.0 18.8 8.7 0
31 31.0 31.0 31.0 31.0 31.0 0.0 18.9 10.4 0
36 36.0 36.0 36.0 36.0 36.0 0.0 18.7 12.0 0
41 41.0 41.0 41.0 41.0 41.0 0.0 18.7 13.7 0
46 46.0 46.0 46.0 46.0 46.0 0.0 18.7 15.4 0
51 51.0 51.0 50.8 51.0 51.0 0.1 18.7 17.0 0
56 53.5 53.5 52.6 53.4 53.8 0.4 737.2 17.9 0.1191895
61 50.8 50.8 44.2 52.1 53.6 3.5 1727.0 17.0 0.0546747
66 48.0 48.5 18.2 49.0 54.4 12.5 2030.5 16.0 0.9688934

We are mainly interested in column 1,5,8 and 10. Column 1 shows the request
rate demanded at the command line. Column 5 shows the average response
rate in responsen per second. Column 8 shows the average response time and
column 10 shows the error rate.

5Standard Output, file descriptor 1
6It is recommended to run each iteration for at least 300 seconds, that will provide you with

30 samples as httperf take measurements every 10th second
7Tests with high rate will finish faster than the tests with lower rates

38 Chapter 4. Experimental Design

4.3.5 Gnuplot - Plotting program

Gnuplot is a command-driven plotting program. It supports both CSV and
TSV files. In this experiment we have created gnuplot scripts to generate en-
capsualted postscript files (EPS), this file format is vector based and easy to
integrate in latex.

4.3.6 Scripts

Scripts were developed to aid us in the work with this project. Some of them
are created for testing purposes and others are for merging and formatting test
result to the desired format.

stddev.pl

The stddev.pl script can take a number of result files generated by autobench
and calculate mean and standard deviations for each column from the original
files. A file called processed will be generated and contains the result. Only
the columns containing: number of connections, response time, netio and errors are
processed. The script must be located in the same directory as the result files,
and the files must have this naming convention: result1.tsv result2.tsv result3.tsv
... resultn.

Usage: stddev.pl <number of result files>
user@blade1: ./stddev.pl 10

iterate.sh

This is a shell script that iterates autobench n times. To keep things simple,
the only option that can be used with this script is the number of iterations
to perform. THe autobench parameters must be changed in the script code.
Between each iteration the script restarts apache2 webserver on all the blades
and waits for 10 minutes. This is because we want all connections from last
run to be timed out, so that the next test is not affected by the one before.
The script generates files for each iteration of this format: result1.tsv result2.tsv
result3.tsv ... resultn, which makes it easy to use iterate.sh to extract information
and calculate mean and standard deviations.

Usage: iterate.sh <number of iterations>
user@blade1: ./iterate.sh 10

merge.sh

merge.sh is a shell script created to merge results obtained at the servers using
atsar and the results created by the autobench script. The merge.sh script also
calculates the standard deviations of the cpu load measured at the servers.

4.3. Tools 39

autobench mod

Autobench is just a perl wrapper to automize the use of httperf. Although
autobench lacks some of the functionality offered by httperf. We had to alter
the autobench script to allow us to use Poisson distributed traffic. We also
added start and stop times for each test, which was necessary to be able to
compare load data gathered with atsar .

Gnuplot scrips

For each of the graphs in the result section, there is created a gnuplot script.
These scripts are merely a set of the gnuplot commands to create a certain
graph. By storing the commands we can easily alter things such as: output
format, range of axis, labels, input files etc.

Usage: gnuplot [gnuplot script]
user@blade1: gnuplot ./blade1_resuilt.gnuplot

Example script:
Setting the name that will show above the graph
set title "Least connections algorithm"

Setting the key in the upper left corner
set key under

Setting the labels for my axis
set xlabel "Requests/Second"
set ylabel "Response Time "

Need to disable mirroring of y-axis when using
different yaxis
set ytics nomirror

I do not wish to have ticks on the x2axis
set xtics nomirror

Set range for x and y axis
set xrange[0:450]
set yrange[0:]

Setting output parameters
set terminal postscript eps enhanced color
set output "result-respons.eps"

Plotting the graph
plot "processed" using 1:2 title ’Response Time Mean’ w l, \
"processed-error" using 1:2:3 title ’Response Time Std. Dev.’ with yerrorbars

Chapter 5

Methodology

5.1 Workflow

In Figure 5.1 there is a workflow chart showing the course of the experiment.
The workflow is divided into 7 states: theorize, model, test, process, analyze, visu-
alize and conclude:

Theorize: In this part of the thesis it is important to acquire enough knowl-
edge in the field of load balancing to be able to conduct sane experi-
ments. It is also of great importance to do a survey to find other similar
experiments and results.

Model: This area includes the configuration of the equipment and the selec-
tion of hardware and software tools. In this part we should also have
enough knowledge to make some hypothesis about what we wish to
prove with our experiments.

Test: Here we perform the actual tests, using the equipment and software we
found suitable in the previous phase.

Process: Some of the results need additional calculations, like mean and stan-
dard deviation values. We also need to merge and adapt our results so
that they can be used for visualization and easy interpretation.

Analyze: Here are the results analyzed. This includes trying to find the cause
and effect for the values obtained from the test. It is important that we
know how different factors affect our results. By keeping all variables in
the system constant except one, we can isolate causes for change.

Visualize: Visualization is often a great aid to help interpret results, therefore
we will in this phase use graphs to create time series of our result. This
will help us to find trends and analyze the results further.

42 Chapter 5. Methodology

Conclude: This is the final phase of the project, where we look at our analysis
and see whether the results conform to our hypothesis or not.

Figure 5.1: Workflow chart: Showing the different states during the thesis, and the
transitions between them

In figure 5.1 there is a decision point, where an arrow goes back to the model
phase. Empiricism requires three iterative main phases: observe, model and ex-
plain. From Figure 5.1 the arrow going from the decision point back to model
represents the iterations needed to do empirical research. For each iteration
we will have gained knowledge about our software and equipment, and can
therefore create better models and do more precise testing to receive more ac-
curate results.

5.2 Assessment of Error and Uncertainty

When doing scientific experiments we can not expect to find absolute results,
therefore we need to calculate with probabilities. Through the use of statistics,
it is possible to say what the chances are that our results yield the truth and can
be reproduced. In this experiment we use the quantities mean and standard
deviation, also called the first and second moments of the collected data.

Assuming that there are no systematic errors, meaning that all errors have
independent random causes, we can define the value <n> to be the mean arith-
metic value:

〈n〉 =
v1 + v2...vN

N
=

1

N

N∑
i=1

vi (5.1)

The mean value is only a rough description of the dataset, and two datasets can
have the same mean value, but differ in distribution of values. The mean value
can not tell whether the distribution is skewed or how wide the distribution
is. So to be sure that the mean value yields a sane representation of our data

5.3. Test Plan 43

we need to calculate the second moment of our data as well, the standard
deviation:

σ =

√√√√ 1

N

N∑
i=0

(xi − 〈x〉)2 (5.2)

The standard deviation tells us about the spread in our dataset, and whether
the mean value is a valid representation for our set. The standard deviation
gives us a measure of the scatter in the data due to random influences. If we
assume that the errors in the experiment are caused by independent random
causes, we can assume that they also are normally distributed. For normally
distributed datasets, with x and standard deviation σ, 68.26% of the values will
be within [x− σ, x + σ] and 95.46% will be within [x− σ, [x + σ] (See Figure 5.2)

Figure 5.2: Normal Distribution: Curve illustrating the percentage distribution of
values for a normally distributed set of values. Where µ represents the mean and σ is
the standard deviation.

5.3 Test Plan

A series of tests will be executed to find correlations between the load balanc-
ing algorithm used and the perceived quality of service (QoS) for the users. In
this experiment we will define QoS as the response time of the packets gen-
erated toward the servers. The tests will be performed in specific order in
accordance with the proposed workflow chart, which is important to uncover
the properties of the system.

5.3.1 Blade properties

All 6 blades used in our experiments have the same hardware and software,
which makes it possible for us to find the limitations of the blades by bench-
marking one of them. The first thing we are interrested in, is how much traffic

44 Chapter 5. Methodology

one server can cope with, and how much memory and cpu that is utilized
while serving content, both static and dynamic, at different rates.

We start by creating a test that generates HTTP GET requests toward one of
the blade servers at pre-defined rates. This rate will be Poisson distributed to
assimilate regular web traffic. To eliminate some sources of error we decided
to run the first test in three different ways:

1. Blade Performance, test 1: Here we use httperf and autobench to au-
tomize a series of tests. The traffic is directed directly against the blade,
meaning that it does not go through the load balancer. The CPU load on
the blade serving as a server will be monitored during the test.

2. Blade Performance, test 2: We repeat test 1, only this time the traffic
goes through the load balancer. By doing this we can eliminate the load
balancer being a bottleneck if we get the same results as in test 1.

3. Blade Performance, test 3: The client is also a possible source of error
in our tests. To eliminate this possibility we will run the same tests as
described above, but now using two clients where the rate each client
produces is halved, meaning that the sum of request per second is the
same as using one client.

5.3.2 Benchmarking Algorithms

To be able to compare the efficiency of different load balancing algorithms, we
will perform a series of tests on each of them and compare the results. We will
look at properties such as response time and load distribution. To be able to
compare our results we will only use one topology configuration while testing
the different algorithms.

Here we use blade1-5 as webservers, blade6 is used as a traffic generator.
All generated traffic is sent towards the VIP address on the dispatcher, which
in turn distributes the requests among the blades. We will use a small shell
script to run autobench 20 times with rates from 2-600 requests per second.
After the test, mean and standard deviations will be calculated from the result
files and plotted in graphs. We will test the performance of three algorithms:
Round Robin (RR), Least Connected (LC) and Respone Time (RT)

5.3.3 Experiment vs. Queueing models

In these experiments we will look at how our blades perform compared to
M/M/k and M/M/1k queueing models. We use a small c program to generate
results from the models. Then we perform the same tests at our blades. We

5.3. Test Plan 45

will test how response varies with 1-5 blades using autobench as a traffic gen-
erator. All results will be plotted in graphs together with the results from our
queueing program.

5.3.4 Scalability

In these experiments we are interested in seeing how performance scales when
adding additional servers. We will run tests with rates: 100, 200, 400, 600
requests per second. All these tests will be repeated using 1-5 blades, and we
will plot response times and see if there is a linear increase in performance
when adding blades.

Chapter 6

Results and Analysis

6.1 Describing the Results

In this section the results we obtained will be discussed, and causes deducted.

6.1.1 Apache Webserver Performance

It is important to identify the saturation point of the servers used in the ex-
periment [30]. Given a precise value for the throughput of our blades, the
result can be used to predict response times using the formulas for M/M/1k

and M/M/k queues. A reasonable assumption is that all blades have the same
performance, as they are equal in both software and hardware. We define the
throughput of our server as:

Throughput µi =
No.ofcompletions

T ime
(6.1)

To eliminate some sources of error tests were executed from more than one
location, using both ab and httperf. To be able to utilize the blades, a php
script had to be made. For each request the server ran a PHP loop 10000 times:

GET index.php?iter=10000 .

<?php
$start = microtime(TRUE);

for($i = 0; $i < $_GET[’iter’];$i++)
{}

$stop = microtime(TRUE);
echo "Start: $start; Stop: $stop; Total time:".($stop-$start);

?>

The graph in Figure 6.1 shows that the response time stays low until we reach
approximately 100 requests/second. Above 110 requests/second the response

48 Chapter 6. Results and Analysis

time stays between 1200 and 1400 ms. From these results it is obvious that the
server can handle somewhere between 100 and 110 requests per second. We
also see that the CPU utilization increases linearly until around 105 request-
s/second, then it drops. This is a strange result since the server should be
heavily utilized above this rate. Looking at the standard deviation of the re-
sults obtained for CPU load, we see that it is very high when the request rate
is above 110 requests/second. This implies that the results obtained for CPU
load when requests per second exceeds the maximum threshold, is useless due
to process thrashing at the server side. Thrashing is a term describing situa-
tions where two or more processes try to access a shared resource repeatedly,
and the overhead of accessing that resource becomes so high that no real work
is done. This also tells us that we should stay clear of the thrashing region at
all costs.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 50 100 150 200 250
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

R
es

po
ns

e
T

im
e

C
P

U
 U

til
iz

at
io

n

Requests/Second

Response Time
Server Utilization Std. Dev.

Server Utilization

Figure 6.1: Throughput of single webserver - Poisson: Response time and CPU
utilization as a function of requests per second, using Poisson distribution with expo-
nential inter-arrival times.

From the graph in figure 6.1 the response time flattens out when the requests
per second exceeds approximately 105 requests per second. Above this rate
the server starts to refuse connections instead of accepting all of them. From
table 6.1 the numbers show that the error rate above 100 requests per second

6.1. Describing the Results 49

increases proportionally with the increasing request rate. This indicates that
the server can not process requests at any higher rate.

No. of requests CPU utilization CPU Std. Dev. No. of errors
2 2.98 2.43 0
10 10.80 3.26 0
30 30.78 5.85 0
50 49.22 7.34 0
70 67.30 8.88 0
90 85.32 8.18 0
100 94.96 6.09 0
120 35.36 43.55 5.91
140 34.67 42.85 19.45
160 47.87 46.24 37.63
180 32.07 43.93 55.01

Table 6.1: Throughput of single webserver - Poisson: Table showing a summary
of CPU utilization and corresponding request rate when using Poisson distributed
inter-arrival times

The reason for the results shown in table 6.1 is the queue length configured
on the apache webserver. Apache is only spawning a limited number of child
processes to handle incoming requests, and when all these processes are busy,
it needs to queue up waiting requests. This queue has a maximum length,
in our case defined by the Apache2 ListenBacklog directive, although this
can often be OS dependent. The errors start to increase when the server has
filled up its queue. 120 requests/second gives an error rate of 5.91 packets, and
when the request rate increases further, we see that the increase in errors is al-
most the same as the increase in requests per second. We are mainly interested
in the results before the server reaches full utilization.
In this experiment we will use exponential inter-arrival times with poisson
distribution. This is the closest to real-life traffic we get without altering the
source code of httperf . Research has shown [26, 17] that packet switched
networks tend to be best characterized with long-tailed self similar distribu-
tions when looking at large amount of traffic. In figure 6.2 the results of using
both poisson distribution and static inter-arrival times are visualized. When
the load is low we see that both distributions give approximately the same
results, but when the load increases, the poisson distribution causes greater
stress to the server, and this results in increasing response times.

To enlarge the differences between stress caused on servers using expo-
nential and deterministic inter-arrival times, figure 6.3 shows a graph with
response times as a function of request rates between 0 and 100. This graph
shows only a part of the data collected, but the selection makes it easier to
see the gap in response time using poisson inter-arrival times compared to
using static inter-arrival times. We can clearly see that using the posisson

50 Chapter 6. Results and Analysis

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 50 100 150 200 250
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

R
es

po
ns

e
T

im
e

C
P

U
 U

til
iz

at
io

n

Requests/Second

Respons Time Static
CPU Utilization Static

Respons Time Poisson
CPU Utilization Poisson

Figure 6.2: Comparison - Poisson vs Static: Graph showing results obtained from
using both Poisson and Deterministic inter-arrival times

inter-arrival distribution causes significant higher amount of stress on the web
server, which results in the response time to peak at lower request rates than
when using the static inter-arrival distribution.
To eliminate some sources of error we ran the same performance tests from
1 and 2 clients. Often when doing such performance tests the client can be
a limiting factor, and it is not always easy to discover. In figure 6.4 we have
compared the results obtained from using both 1 and 2 clients. It is evidential
that the client is not a limiting factor in this scenario since the results show
approximately the same results. Next we also did an experiment where the
traffic was sent directly from the client to the server. This was done to see if
the load balancer caused any delay. The results showed that the dispatcher did
not cause any significant increase in response times.
From the extensive tests we have run through httperf and autobench we also
want to be sure that our test tool is providing accurate results. From our graphs
and result files we now know that each webserver can approximately process
105 requests per second when requesting the index.php file with 10000 itera-
tions for each request. To verify these results we also used ab (Apache HTTP
benchmarking tool). ab calculates things such as the processing time and re-

6.1. Describing the Results 51

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 20 40 60 80 100 120
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

R
es

po
ns

e
T

im
e

C
P

U
 U

til
iz

at
io

n

Requests/Second

Response Time Poisson
Server Utilization Poisson

Response Time Static
Server Utilization Static

Figure 6.3: Comparison2 - Poisson vs Static: Graph showing results when request
rate is between 0 and 100 obtained from using both Poisson and Deterministic inter-
arrival times.

sponse time. We ran ab in a shell script 100 times to find standard deviation
and mean value. The result from our run with ab showed that the average
value of 100 testruns, each run doing 1000 lookups, gave us a mean value of
104.13 requests/second with a standard deviation of ±2.16.

6.1.2 Queueing Models vs. Real Life

In this part we will look at how queueing models perform compared to real
results obtained from our lab. We use a c script to calculate response times
using both M/M/1n and M/M/n queues. From the previous sections we have
calculated the performance of a single webserver, and we use this result in
our queueing simulation. Below is a list of parameters we need for calculating
expected response times using queueing theory:

• µ This is the variable we found when doing performance tests against
one server. It is the processing capability of the server, also called the
service rate and is often expressed in completions per millisecond.

52 Chapter 6. Results and Analysis

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 50 100 150 200 250
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

R
es

po
ns

e
T

im
e

C
P

U
 U

til
iz

at
io

n

Requests/Second

Using 1 client
Using 2 Clients

Figure 6.4: 2 Clients Generating Traffic: Graphs showing the response time when
using both 1 and 2 clients to generate the traffic.

6.1. Describing the Results 53

• λ This is the actual rate, at which the traffic arrives. It is usually referred
to as the arrival rate, and is expressed in arrivals per millisecond

• n Number of servers available. In our experiments we had at the most 5
available servers to balance the load between.

In figure 6.5 we see the comparison of the response times acquired through
simulation, and the response times we calculated using our c program. The
input parameters used were:

• µ = 0.10413 This value is calculated from the fact that each server is able
to process 104.13 requests per second, which means 0.10413 requests per
millisecond

• λ = 0.002 This means that our c program will start simulations with 2
requests per second, and it will increase this value until it reaches the
value specified by max rate.

• n Number of computers to simulate, in figure 6.5 we load balance be-
tween 2 computers.

• max rate Specifies the limit at which we will stop our simulation. This is
usually equal to n·µ since the queueing algorithms do not produce sane
results when the servers are overloaded. In figure 6.5 max rate equals
2 · µ = 0.20826.

In figure 6.5 we used the RR algorithm to balance the load between two servers,
requesting the cpu intensive php script described in 6.1.1. We see that the order
of performance from best to worse is: our experimental results, M/M/2, and
then the M/M/12 queue. It is quite surprising that our experimental results
outperformes the response times from the queueing algorithms. The queueing
algorithms are based on the assumption that we have perfect load balancing,
meaning that requests are always forwarded to the unit that is least loaded.
One of the reasons for our result is probably that the same object is always
requested from our traffic generator, which means that the service time on
the servers is static. The queueing algorithms assume that service time at the
servers are poisson distributed. It is also important to remember the fact that
internet traffic is considered to be heavy-tailed in nature, which will cause
greater variance in inter-arrival times which leads to an increase in response
time. In table 6.2 a summary of the results are shown. We see that when the
request rate exceeds 200 requests per second, the standard deviation starts to
increase more rapidly, and we also get some errors. Above this rate it is hard
to make any conclusions because of the high standard deviation and the errors
caused by the servers dropping requests. We see that in the range between
0-150 requests per second the M/M/2 queueing model can be used as a good

54 Chapter 6. Results and Analysis

predictor for response times. The sudden peak in response times also suggest
that it would be preferable to avoid rates above 150 requests per second per
server, since it is very hard to predict sudden bursts of traffic that might cause
servers to be overloaded. In the table 6.2 we see that the servers managed to
handle 200 requests per second before any error occured. If we use the graph
in 6.5 for 2 servers, we see that the point of maximum curvature is approx-
imately at 180 requests per second. 180 requests per second is around 87%
percent of the ideal performance of 208 requests per second.

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250

R
es

po
ns

e
T

im
e

Requests/Second

M/M/12 M/M/2 Response time

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300 350

R
es

po
ns

e
T

im
e

Requests/Second

M/M/13 M/M/3 Response time

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300 350 400 450

R
es

po
ns

e
T

im
e

Requests/Second

M/M/14 M/M/4 Response time

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500 600

R
es

po
ns

e
T

im
e

Requests/Second

M/M/15 M/M/5 Response time

Figure 6.5: Simulation vs. experiment: The graph shows how response rates scale
when adding extra servers. In the top left corner we used 2 servers, in the top right
corner 3 machines, in bottom left 4 machines and in bottom right 5 machines.

Figure 6.5 also shows the simulation where we used 5 servers. The param-
eters are the same except for:

• n Number of computers to simulate, in figure 6.5 we see the results using
5 computers.

• max rate Specifies the limit at which we will stop our simulation. This is
usually equal to n·µ since the queueing algorithms do not produce sane

6.1. Describing the Results 55

No. of requests Response Time Std. Dev. No. of errors
2 9.89 0.09 0

10 9.87 0.12 0
50 10.45 0.13 0
100 12.49 0.12 0
150 17.64 0.36 0
160 20.12 0.67 0
170 24.40 1.00 0
180 31.40 1.72 0
190 41.08 3.27 0
200 66.04 18.35 0
202 78.44 34.21 0.002
204 97.91 77.31 0.003
220 853.56 76.73 0.1

Table 6.2: Error and CPU Utilization: Table showing a summary of CPU uti-
lization and corresponding request rate when using Poisson distributed inter-arrival
times, and load balancing between 2 servers

results when the servers are overloaded. In figure 6.5 max rate equals
5 · µ = 0.52065.

From the graphs in figure 6.5 we see that our experimental response rates us-
ing 5 servers are lower than the M/M/15 and M/M/5 queue in performance
until the request rate reaches approximately 480 requests/second. After this
the response rate peaks following the same trend as the M/M/15 queue. In
our formulas we have calculated the max rate for n number of servers by mul-
tiplying with the processing rate we found for one server in (see section 6.1.1).
This means that 5 servers should be able to process approximately 520 request-
s/second. From the graph we see that our results peak around 480 request-
s/second, which means that the servers perform at around 92% of what is ex-
pected according to the queueing models. Before the rate reaches 480 requests
per second we can use the M/M/15 queue as an estimator for response time,
which also gives us some tolerance since our results show that the M/M/15

queue gives slightly higher response times than what our experiment gave us.
If we compare this result to what we saw in our experiments with two comput-
ers, we see that the relative performance has dropped from 96% to 92%. Other
experiments performed with 3 and 4 servers show relative performance simi-
lar to using 2 servers (see figure 6.6. The 2,3,4-server solutions outperform the
M/M/2,3,4 predictions at all rates, even in the thrashing regime. The reason
for this might be because the servers are handling the requests using parallel
processing threads, not First Come First Server (FCFS) as the queue models
assume [27]. The results show that when using 5 servers, the transition from
low response times to process thrashing is steeper than for 2,3,4 servers. This
could be a sign that the load balancer itself is the bottleneck. We were not able

56 Chapter 6. Results and Analysis

to investigate this anomaly further since we had no more identical servers to
deploy in our experiment.

6.1.3 SLB Scalability

We would like to investigate how perfomance scales when increasing the num-
ber of servers. If performance scales linearly when adding servers, it means
that we can easily predict the effect of adding more servers. This is especially
useful when considering QoS and maintaining SLA agreements. In figure 6.6
we have 4 graphs, where each graph represents a simulation with one traf-
fic intensity, in this case: 100, 200, 400 and 600 requests per second. We have
measured performance at all rates with 1-5 servers available.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 1 2 3 4 5 6

R
es

po
ns

e
tim

e
[m

s]

No. of machines

100 requests per second

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 1 2 3 4 5 6

R
es

po
ns

e
tim

e
[m

s]

No. of machines

200 requests per second

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 1 2 3 4 5 6

R
es

po
ns

e
tim

e
[m

s]

No. of machines

400 requests per second

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 1 2 3 4 5 6

R
e

sp
o

n
se

 t
im

e
 [

m
s]

No. of machines

600 requests per second

Figure 6.6: Scalability - SLB: The graph shows how response rates scale when
adding extra servers. Adding servers at low rates seems to result in a discontinu-
ous improvement. Adding new servers the highest rates seems to reduce performance,
as the limitations of the bottleneck dispatcher become apparent

We know from investigation that each server should be able to process approx-
imately 104 requests per second. If we use maximum point of curvature in the

6.1. Describing the Results 57

graphs in figure 6.6 we find these values for their performance relative to the
max rate:

Performance 2 servers: 200
(104·2)

· 100% ≈ 96%

Performance 3 servers: 300
(104·3)

· 100% ≈ 96%

Performance 4 servers: 400
(104·4)

· 100% ≈ 96%

Performance 5 servers: 480
(104·5)

· 100% ≈ 92%

In the first graph in figure 6.6 we see that the response time is kept low in all
scenarios. This fits with the assumption that 1 server should be capable of han-
dling 104 requests per second. The next graph show that all scenarios except
the one with 1 server is capable of handling 200 requests. This is correct accord-
ing to the observation that 2 servers should be able to handle approximately
200 requests per second. The other graphs also conform to our calculations of
relative performance.

 100

 150

 200

 250

 300

 350

 400

 450

 500

 1 2 3 4 5

R
es

po
ns

e
T

im
e

Number of servers

Figure 6.7: Scalability2- SLB: The graph shows the maximum processing capability
as a function of number of servers

In figure 6.7 we see how the maximum processing capability changes when
adding more servers. From figure 6.7 we see that the scaling is not linear,
and that there are some overhead when going from having 1 server to start
load balancing between 2 or more servers. We also see that the increase in
performance is starting to drop, which indicates that at this point the load
balancer becomes the bottleneck.

58 Chapter 6. Results and Analysis

6.1.4 Comparison of Algorithms

In this section we will look at how the different algorithms perform when in-
creasing the request rate. A load balancer is usually preconfigured to use one
type of algorithm, it is therefore important that this algorithm performs good
both when the load is low and when it is high.

Homogeneous server environment

In figure 6.8 we see the results from using least connected, round robin, and
response time algorithms to balance load between 5 servers. The graphs show
that the algorithms perform approximately the same under low stress (0-420
requsts per second). Althoug the LC algorithm have slightly higher response
times.

Our traffic generator use poisson distributed inter-arrival times, but the
files requested and processed by each server is the same each time, this means
that the server’s service time is deterministic. This indicates that as long as
the incoming request rate for each server is below its threshold of processing
capability, the roundrobin algorithm is a very effective algorithm due to low
processing costs. Although when the request rate starts to exceed the threshold
of requests per second, the RR algorithm does not take into consideration that
some servers might be under more stress than others because of the poisson
distributed inter-arrival times.

If we take a closer look at the response times in the range 0-450 requests per
second, we see that the LC algorithm peaks around 260 requests per second,
and then starts to approach the efficiency of the RR and RT algorithms. In the
region 400-430 requests per second the LC algorithm surpasses the RR and RT
algorithms (see figure 6.9).

Inhomogeneous server environment

In the previous section we investigated how the load balancing algorithms
performed relative to each other. In this section we have manually adjusted
the CPU speed on some of the blades to create an inhomogenous environment.
Below is the CPU speed of each blade specified:

Blade 1: 2800000 MHz

Blade 2: 2450000 MHz

Blade 3: 2100000 MHz

Blade 4: 1750000 MHz

Blade 5: 1400000 MHz

6.1. Describing the Results 59

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500

R
es

po
ns

e
T

im
e

Requests/Second

Round robin algorithm reponse time
Least connections algorithm response time

Response time algorithm response time

Figure 6.8: Algorithm Performance - Homogenous: The graphs show the perfor-
mance of the RT, LC and RR algorithms in a homogeneous server environment

In the inhomogeneous environment the RT and RR strategies perform equally
well (based on actual measurements of system performance). The LC algo-
rithm sustain low response times the longest (see figure 6.10. We believe that
when the servers enter the thrashing regime they can no longer provide us
with useful information about load, as the RT algorithm requires. The RT al-
gorithm becomes no better than RR (random chance) in practice, and we see
that RR and RT succumb to noise about the same point. We suspect that LC
works at higher rates because it relies on state information in the dispatcher,
thus creating an equilibrium where the fastest servers are receiving most re-
quests. Real traffic would not have static service times, and we believe that LC
would not perform significantly better than RR or LC in such a scenario.

60 Chapter 6. Results and Analysis

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250 300 350 400 450

R
es

po
ns

e
T

im
e

Requests/Second

Least Connections Round Robin Response Time

Figure 6.9: Algorithms Performance 2 - Homogenous: The graphs show the
performance of the RT; LC and RR algorithms in a homogeneous environment. The
range is limited to 0-450 requests per second to enhance the differences between the
algorithms

 0

 200

 400

 600

 800

 1000

 1200

 0 50 100 150 200 250 300 350 400

R
es

po
ns

e
T

im
e

Requests/Second

RR algorithm LC algorithm RT algorithm

Figure 6.10: Algorithms Performance - Inhomogeneous: The graphs show the
performance of the RT; LC and RR algorithms in an inhomogeneous environment

Chapter 7

Conclusions and Further Work

7.1 Conclusions

In this thesis we have investigated the performance of different load balancing
algorithms under various traffic intensities and types. We have measured the
performance in homogeneous and inhomogeneous server environments. Our
results show measurable differences in algorithm performances for different
testing scenarios.

In hypothesis 1 we stated that the response time should decrease when
we add additional servers. What we found was that response time did not
decrease linearly, instead it dropped very quickly as soon as we had enough
processing power. This means that we got from saturation to comfort zone
fairly easy by adding an additional server. In this regard we can see no rea-
son for not having extra capacity available at the service centre. We also saw
that going from 4 to 5 servers when the traffic intensity was high, only caused
a degradation in performance, which we believe is caused by the dispatcher
becoming a bottleneck. This non-linear performance scale contradicts results
shown in [30].

We also stated that we believed the response rates would follow the M/M/1k

queueing model, and that the M/M/k model would be too optimistic. As it
turned out the results from our experiments show that for low to medium uti-
lization our experiment using the RR algorithm outperforms both queueing
models. When using 1-4 servers we also saw that our experiment gave bet-
ter response times under medium to high workload as well, but when using
5 servers the response time from our experiment converged with the M/M/15

queue under high loads. We also found that the service rate used in the queue-
ing algorithms was very sensitive to minor adjustments. This implies that we
need a very accurate measurement of the servers we wish to simulate.

Our next hypothesis suggested that there are differences in performance
when using different load balancing algorithms. Other researches has found

62 Chapter 7. Conclusions and Further Work

the RR algorithm to be worst under all conditions [5, 30]. Teo [30] also sug-
gests that the LC, RT and RR algorithms converge at high loads. These results
contradict our own and the ones found in [11]. Our results show that the RR
algorithm performs best under low to medium load. Under high loads we saw
that the LC algorithm was able to sustain the response time longer than the RR
and RT algorithm.

We also performed tests checking whether inhomogeneous server environ-
ments would alter the relative performance between the three load balancing
algorithms. We found that under low to medium loads the RR algorithm gave
the lowest response times. In the high load regime we saw that LC outper-
formed the RR and RT algorithms. The RR and RT algorithms succumb to
noise at the same time, indicating that the polling used by the RT algorithm
did not reflect the server status (we polled server status every 5th second).
We tried altering the inter-polling time used by the RT algorithm without any
effect, although we found that polling servers each second gave us a degrada-
tion in performance due to the increased amount of connections each server
needed to establish. The fact that LC is superior in the high load regime is
probably due to the operational equilibrium that is created by the dispatcher
keeping track of open connections, and therefore sending more requests to the
fastest machines.

In our last hypothesis we stated that we wanted to find an optimal solution
for switching between different algorithms that performed optimal for cur-
rent traffic intensity. When considering the steep curve taking us from com-
fort zone to complete saturation, it would be better to increase the number
of servers rather than switching between algorithms. Since network traffic is
considered to be bursty and unpredictable [13] it would be very hard to pre-
dict performance when the servers enter the thrashing regime. An optimal
approach to maximize performance would be to use the RR algorithm under
low to medium workloads, and switch to the LC algorithm when the work-
load is high. This can be implemented by having a load threshold telling the
dispatcher when to switch between the algorithm.

Although one could implement a safety switch that changed from RR to
the LC algorithm if the traffic intensity exceeded some threshold, at least if the
server park is inhomogeneous, since the differences under high loads become
more significant under such conditions.

7.2 Further Work

The scope of this thesis needed some adjustements during the course of the
semester. Some of the experiments originally planned had to be dropped due
to time considerations.

One of the things that need further investigation is when the dispatcher

7.2. Further Work 63

becomes a bottleneck. From our experiments we found that going from 4 to 5
servers under high loads would not increase relative performance in the same
magnitude as going from 3 to 4 servers. It would be interesting to use more
servers and see if we could find a trend describing the performance increase
when adding more servers.

The fact that our experiment outperformed the queueing models in most
scenarios was rather surprising, and we suspect that the static service time
and Poisson inter-arrival time might be the reason. Further tests could be per-
formed using more realistic traffic patterns. We would like to use heavy-tailed
distributions both in file sizes requested and in the inter-arrival time of re-
quests. Heavy-tailed traffic distributions would probably have negative im-
pact on server performance, and we could hypothesize that our experimental
results would converge with the M/M/1k queue as first predicted.

In the section where we tested relative performance between algorithms
there are also some unanswered questions. Further investigation could help
us find the cause of why the RT algorithm performed no better than random
chance. The RT algorithm is dependent on state information from the server,
which in these experiments was gathered by measuring the time it took to
setup and teardown a tcp session (this was performed every 5th second). There
are many other available polling methods available: ICMP, SNMP, HTTP, ARP,
etc. Some of these might give us better indications of current load on a server.
The time between polls could also be further investigated.

If we want to create an adaptive scheme that change queueing algorithms
based on load or current traffic intensity, we need to investigate further to find
a more exact point where the RR algorithm succumb to noise. If we can predict
this point with greater accuracy, a good suggestion would be to use this as a
threshold for switching to the LC algorithm, which would endure higher loads
and perhaps avoid congestion.

Bibliography

[1] Redirection algorithms for load sharing in distributed web-server sys-
tems. In ICDCS ’99: Proceedings of the 19th IEEE International Conference
on Distributed Computing Systems, page 528, Washington, DC, USA, 1999.
IEEE Computer Society.

[2] M. Arregoces and M. Portolani. Data Center Fundamentals. Cisco Press,
Indiapolis, IN 46240 USA, 2004.

[3] Luis Aversa and Azer Bestavros. Load balancing a cluster of web servers
using distributed packet rewriting. In Performance, Computing, and Com-
munications Conference, 2000. IPCCC ’00. Conference Proceeding of the IEEE
International, pages 24–29, Boston, MA, USA, 1999. Boston University.

[4] Jaiganesh Balasubramanian, Douglas C. Schmidt, Lawrence Dowdy, and
Ossama Othman. Evaluating the performance of middleware load bal-
ancing strategies. In EDOC ’04: Proceedings of the Enterprise Distributed
Object Computing Conference, Eighth IEEE International (EDOC’04), pages
135–146, Washington, DC, USA, 2004. IEEE Computer Society.

[5] Paul Barford and Mark Crovella. Generating representative web work-
loads for network and server performance evaluation. In SIGMETRICS
’98/PERFORMANCE ’98: Proceedings of the 1998 ACM SIGMETRICS joint
international conference on Measurement and modeling of computer systems,
pages 151–160, New York, NY, USA, 1998. ACM Press.

[6] Nina Bhatti, Anna Bouch, and Allan Kuchinsky. Integrating user-
perceived quality into web server design. In Proceedings of the 9th inter-
national World Wide Web conference on Computer networks : the international
journal of computer and telecommunications netowrking, pages 1–16, Amster-
dam, The Netherlands, The Netherlands, 2000. North-Holland Publishing
Co.

[7] Tony Bourke. Server Load Balancing. O’Reilly & Associates, 101 Morris
Street, Sebastopol, CA 95472, first edition edition, August 2001.

66 BIBLIOGRAPHY

[8] M. Burgess. Analytical Network and System Administration — Managing
Human-Computer Systems. J. Wiley & Sons, Chichester, 2004.

[9] M. Burgess and S. Ulland. Uncertainty in global application services with
load sharing policy. In 17th IFIP/IEEE Distributed Systems: Operations and
Management (DSOM 2006), volume submitted. Springer, 2006.

[10] J. P. Buzen. Operational analysis: An alternative to stochastic modelling.
In Performance of Computer Installations, pages 175–194, North Holland,
1978.

[11] V Cardellini and M Colajanni. Dynamic load balancing on web-server
systems. Internet Computing IEEE, 3(4):28–39, 1999.

[12] Mark E. Crovella and Azer Bestavros. Self-similarity in world wide web
traffic: evidence and possible causes. IEEE/ACM Trans. Netw., 5(6):835–
846, 1997.

[13] Ashok Erramilli, Onuttom Narayan, and Walter Willinger. Experimental
queueing analysis with long-range dependent packet traffic. IEEE/ACM
Trans. Netw., 4(2):209–223, 1996.

[14] J. Sauv et al. Sla design from a business perspective. In IFIP/IEEE
16th international workshop on distributed systems operations and management
(DSOM), in LNCS 3775. IEEE Press, 2006.

[15] E Klovning H Bryhni and O Kure. A comparison of load balancing tech-
niques for scalable web servers. 14(4):58–64, 2000.

[16] Jaeyeon Jung, Emil Sit, Hari Balakrishnan, and Robert Morris. Dns
performance and the effectiveness of caching. IEEE/ACM Trans. Netw.,
10(5):589–603, 2002.

[17] Balachander Krishnamurthy, Jeffrey C. Mogul, and David M. Kristol. Key
differences between http/1.0 and http/1.1.

[18] Hwa-Chun Lin and C. S. Raghavendra. A dynamic load-balancing policy
with a central job dispatcher (lbc). IEEE Trans. Softw. Eng., 18(2):148–158,
1992.

[19] D. A. Menasc and V. A .F Almeida. Capacity Planning for Web Services.
Prentice Hall, Upper Saddle River, New Jersey 07458, first edition edition,
2002.

[20] D. A. Menasc, V. A .F Almeida, and L. W. Dowdy. Capacity Planning and
Performance Modeling: From Mainframes to Client-Server Systems. Prentice
Hall, Upper Saddle River, New Jersey 07458, first edition edition, 1994.

BIBLIOGRAPHY 67

[21] Michael Mitzenmacher. On the analysis of randomized load balancing
schemes. In SPAA ’97: Proceedings of the ninth annual ACM symposium on
Parallel algorithms and architectures, pages 292–301, New York, NY, USA,
1997. ACM Press.

[22] Dan Mosedale, William Foss, and Rob McCool. Lessons learned adminis-
tering netscape’s internet site. IEEE Internet Computing, 1(2):28–35, 1997.

[23] Sucheta Nadimpalli and Shikharesh Majumdar. Techniques for achieving
high performance web servers. In ICPP ’00: Proceedings of the Proceedings
of the 2000 International Conference on Parallel Processing, page 233, Wash-
ington, DC, USA, 2000. IEEE Computer Society.

[24] Nortel Networks. Nortel application switch operating system: Applica-
tion guide. January 2006.

[25] Kihong Park, Gitae Kim, and Mark Crovella. On the relationship between
file sizes, transport protocols, and self-similar network traffic. In ICNP ’96:
Proceedings of the 1996 International Conference on Network Protocols (ICNP
’96), page 171, Washington, DC, USA, 1996. IEEE Computer Society.

[26] Vern Paxson and Sally Floyd. Wide area traffic: the failure of poisson
modeling. IEEE/ACM Trans. Netw., 3(3):226–244, 1995.

[27] J.H. Bjørnstad and M. Burgess. On the reliability of service level estima-
tors in the data centre. In 17th IFIP/IEEE Distributed Systems: Operations
and Management (DSOM 2006), volume submitted. Springer, 2006.

[28] Milan E. Soklic. Simulation of load balancing algorithms: a comparative
study. SIGCSE Bull., 34(4):138–141, 2002.

[29] Francois Spies. Modeling of optimal load balancing strategy using queue-
ing theory. Microprocess. Microprogram., 41(8-9):555–570, 1996.

[30] YM Teo and R Ayani. Comparison of load balancing strategies on cluster-
based web servers. Transactions of the Society for Modeling and Simulation,
2001.

[31] G. Teodoro, T. Tavares, B. Coutinho, Jr. W. Meira, and D. Guedes. Load
balancing on stateful clustered web servers. In SBAC-PAD ’03: Proceedings
of the 15th Symposium on Computer Architecture and High Performance Com-
puting, page 207, Washington, DC, USA, 2003. IEEE Computer Society.

[32] S. Singhal W. Xu, X. Zhu and Z. Wang. Predictive control for dynamic
resource allocation in enterprise data centers. In 10th IFIP/IEEE Network
Operations and Management Symposium (NOMS 2006), pages 115–126. IEEE
Press, 2006.

Appendix A

Scripts

This part of the appendix will include the source code of the scripts used for
testing and processing of results. The scripts consists of perl, bash and c code.
The functioning of each script will be described in the source code, as will the
functions etc.

A.1 process.pl
#!/usr/bin/perl
#
This script will take several result files from autobench
and calulate mean and standard deviation values
#
Example usage: process.pl <number of resultfiles>
#
The above example have a couple of prerequisuites. First
the program needs to be executed in the same directory as
the resultfiles. Second the resultfiles have names like:
result1.tsv, result2.tsv, result3.tsv.....

unless ($#ARGV + 1 == 1)
{
print STDERR "Incorrect number of arguments\n";
print STDERR "Usage: $0 <number of resultfiles>\n\n";
exit 1;
}

$num_files = $ARGV[0];

#check whether files exists
check_files();

#open files
open_files(input);

my %output;

my @result1_lines = <RESULT1_FH>;
my @result2_lines = <RESULT2_FH>;
my @result3_lines = <RESULT3_FH>;
my @result4_lines = <RESULT4_FH>;
my @result5_lines = <RESULT5_FH>;

70 Chapter A. Scripts

my @result6_lines = <RESULT6_FH>;
my @result7_lines = <RESULT7_FH>;
my @result8_lines = <RESULT8_FH>;
my @result9_lines = <RESULT9_FH>;
my @result10_lines = <RESULT10_FH>;

#close files
close_files(input);

#calculate mean and std.dev from data
process();

#print results to new file
print_output();

sub process
{
$line_counter = 0;

remove trailing carriage return characters if they exists
chomp($result1_lines1[$#result1_lines]);
chomp($result2_lines1[$#result2_lines]);
chomp($result3_lines1[$#result3_lines]);
chomp($result4_lines1[$#result4_lines]);
chomp($result5_lines1[$#result5_lines]);
chomp($result6_lines1[$#result6_lines]);
chomp($result7_lines1[$#result7_lines]);
chomp($result8_lines1[$#result8_lines]);
chomp($result9_lines1[$#result9_lines]);
chomp($result10_lines1[$#result10_lines]);

assuming all files have the same amount of lines, we iterate
through each line and extracts the information needed
for my $result1_line (@result1_lines)
{

my @respons;
my @netio;
my @errors;

@result1_fields = split ("\t", $result1_line);

if($result1_fields[0] eq ’begin’)
{
$line_counter++;
next;
}

$result2_line = $result2_lines[$line_counter];
@result2_fields = split ("\t", $result2_line);

$result3_line = $result3_lines[$line_counter];
@result3_fields = split ("\t", $result3_line);

$result4_line = $result4_lines[$line_counter];
@result4_fields = split ("\t", $result4_line);

$result5_line = $result5_lines[$line_counter];
@result5_fields = split ("\t", $result5_line);

$result6_line = $result6_lines[$line_counter];
@result6_fields = split ("\t", $result6_line);

$result7_line = $result7_lines[$line_counter];

A.1. process.pl 71

@result7_fields = split ("\t", $result7_line);

$result8_line = $result8_lines[$line_counter];
@result8_fields = split ("\t", $result8_line);

$result9_line = $result9_lines[$line_counter];
@result9_fields = split ("\t", $result9_line);

$result10_line = $result10_lines[$line_counter];
@result10_fields = split ("\t", $result10_line);

push (@respons, $result1_fields[9]);
push (@respons, $result2_fields[9]);
push (@respons, $result3_fields[9]);
push (@respons, $result4_fields[9]);
push (@respons, $result5_fields[9]);
push (@respons, $result6_fields[9]);
push (@respons, $result7_fields[9]);
push (@respons, $result8_fields[9]);
push (@respons, $result9_fields[9]);
push (@respons, $result10_fields[9]);

push (@netio, $result1_fields[10]);
push (@netio, $result2_fields[10]);
push (@netio, $result3_fields[10]);
push (@netio, $result4_fields[10]);
push (@netio, $result5_fields[10]);
push (@netio, $result6_fields[10]);
push (@netio, $result7_fields[10]);
push (@netio, $result8_fields[10]);
push (@netio, $result9_fields[10]);
push (@netio, $result10_fields[10]);

push (@errors, $result1_fields[11]);
push (@errors, $result2_fields[11]);
push (@errors, $result3_fields[11]);
push (@errors, $result4_fields[11]);
push (@errors, $result5_fields[11]);
push (@errors, $result6_fields[11]);
push (@errors, $result7_fields[11]);
push (@errors, $result8_fields[11]);
push (@errors, $result9_fields[11]);
push (@errors, $result10_fields[11]);

calculating mean and std.dev and putting the results
into our output hash
$output{$line_counter}{req_rate} = $result1_fields[2];
$output{$line_counter}{resp_time_mean} = calculateMean(@respons);
$output{$line_counter}{resp_time_stddev} = calculateStdDev(@respons);
$output{$line_counter}{netio_mean} = calculateMean(@netio);
$output{$line_counter}{errors_mean} = calculateMean(@errors);

$line_counter++;
}

}

sub print_output
{
open_files(output);

print RESULTS_FH "req_rate\t";
print RESULTS_FH "resp_mean\t";
print RESULTS_FH "resp_stddev\t";

72 Chapter A. Scripts

print RESULTS_FH "netio_mean\t";
print RESULTS_FH "errors_mean\t";
print RESULTS_FH "\n";

printing the content of our output hash to file
for my $key (sort {$a <=> $b} keys %output)
{
print RESULTS_FH "$output{$key}{req_rate}\t";
print RESULTS_FH "$output{$key}{resp_time_mean}\t";
print RESULTS_FH "$output{$key}{resp_time_stddev}\t";
print RESULTS_FH "$output{$key}{netio_mean}\t";
print RESULTS_FH "$output{$key}{errors_mean}\t";
print RESULTS_FH "\n";
}
close_files(output);
}

sub open_files
{
if($_[0] eq ’input’)
{
open (RESULT1_FH, "< result1.tsv") || die "Cannot open file, $!";
open (RESULT2_FH, "< result2.tsv") || die "Cannot open file, $!";
open (RESULT3_FH, "< result3.tsv") || die "Cannot open file, $!";
open (RESULT4_FH, "< result4.tsv") || die "Cannot open file, $!";
open (RESULT5_FH, "< result5.tsv") || die "Cannot open file, $!";
open (RESULT6_FH, "< result6.tsv") || die "Cannot open file, $!";
open (RESULT7_FH, "< result7.tsv") || die "Cannot open file, $!";
open (RESULT8_FH, "< result8.tsv") || die "Cannot open file, $!";
open (RESULT9_FH, "< result9.tsv") || die "Cannot open file, $!";
open (RESULT10_FH, "< result10.tsv") || die "Cannot open file, $!";
}
if($_[0] eq ’output’)
{
open (RESULTS_FH, "> processed") || die "Cannot open file, $!";
}
}

sub close_files
{

if($_[0] eq ’input’)
{
close (RESULT1_FH);
close (RESULT2_FH);
close (RESULT3_FH);
close (RESULT4_FH);
close (RESULT5_FH);
close (RESULT6_FH);
close (RESULT7_FH);
close (RESULT8_FH);
close (RESULT9_FH);
close (RESULT10_FH);
} elsif ($_[0] eq ’output’)
{
close (RESULTS_FH);
}
}

sub check_files
{
Check to see whether all result files are present
for ($i = 1; $i < $num_files + 1; $i++)
{
$missing_bool = 0;

A.1. process.pl 73

if (! -f "result$i.tsv")
{
print STDERR "Missing file result$i.tsv..\n";
$missing_bool = 1;
}
}
if ($missing_bool == 1)
{
print STDERR "One or several files missing.. Quitting\n";
exit 1;
}
}

sub calculateMean
{
$sum = 0;
$n = 0;

foreach $x (@_)
{
$sum += $x;
$n++;
}
$mean = ($sum / $n);
return $mean;
}

sub calculateStdDev
{

my $n; # the number of values
my $stddev; # the standard deviation, calculated by this

subroutine, from the variance
my $sum; # the sum of the values
my $sumOfSquares; # the sum of the squares of the values
my $variance; # the variance, calculated by this subroutine
my $x; # set to each value

Initialize variables.
$n = 0;
$sum = 0;
$sumOfSquares = 0;

Use a foreach loop to get each value from the array @_, which
is the argument array and which contains the values.
foreach $x (@_)
{

Add the value to the growing sum.
$sum += $x;

Increment $n, the number of values.
$n++;

Add the square of the value to the growing sum of the squares.
$sumOfSquares += $x * $x;

}

Calculate the variance.
$variance = ($sumOfSquares - (($sum * $sum) / $n)) / ($n);

Calculate the standard deviation, which is the square root of the
variance.

$stddev = sqrt($variance);
Return the calculated standard deviation.
return $stddev;

74 Chapter A. Scripts

A.2 merge results.pl
This script is only a modification of a script made by Matt Disney. The script
originally merges result files created by windows versions of sar and auto-
bench, which has different formatting. It is also added functionality to perform
standard deviation calculations.

#!/usr/bin/perl
#
This script combines the output from autobench and sar, using timestamps
as the relational key.
#
#
IMPORTANT: This script can *not* handle tests that span midnight!
#
It expects the "name" of a test run. The output files are expected to have
this name as well.
#
Example usage:
merge_results.sh test1
#
The above example will combine the results of ˜/results/autobench/test1.dat
and ˜/results/sardata/test1.sar into ˜/results/merged/test1.dat. The merged
data should be tab-delimited and easily machine-readable.

Check command-line arguments. There can be only one!
($#ARGV is a reference to the index number of the last element in the ARGV array,
which contains all the command-line arguments *except* the program name itself.)

unless ($#ARGV + 1 == 1)
{

print STDERR "Incorrect number of arguments\n";
usage();

}

$project_name = $ARGV[0];

Here we will setup our directory variables inside a hash (associative
array), allowing us to loop through them later using the "keys" method.
my %dirs;

$dirs{’home’} = "/home/gard/school/thesis";
$dirs{’results’} = $dirs{home}."/results";
$dirs{’ab_results’} = $dirs{results}."/autobench";
$dirs{’sar_results’} = $dirs{results}."/sardata";
$dirs{’merged’} = $dirs{results}."/merged";

Create a hash of the data filenames.
my %files;

%files =
(

autobench => $dirs{’ab_results’}."/$project_name.dat",
sar => $dirs{’sar_results’}."/$project_name.sar",
merged => $dirs{’merged’}."/$project_name"."_merged.dat"

);

check_exist();

open_files(input);

Read the file contents into arrays so that we don’t have to worry about

A.2. merge results.pl 75

closing the files at the right time.
my @ab_lines = <AB_FH>;
my @sar_lines = <SAR_FH>;

close_files(input);

Now let’s setup a hash of arrays that we will use to store the output lines.
my %output;

for my $ab_line (@ab_lines)
{

my @abfields;
my @matchlines;
my @sarfields;
my $nowepoch = 0;
my $endepoch = 0;
my @nowary;
my @endary;

Break the $ab_line, delimited by tabs (\t), into an array
@abfields = split ("\t", $ab_line);

if ($abfields[0] eq "begin") { next; }

my $now = $abfields[0];
@nowary = split (’:’, $now);
Hours
$nowepoch += ($nowary[0] * 60 * 60);
Minutes
$nowepoch += ($nowary[1] * 60);
Seconds
$nowepoch += $nowary[2];

chomp($abfields[$#abfields]);

$output{$now}{end} = $abfields[1];
$output{$now}{dem_req_rate} = $abfields[2];
$output{$now}{req_rate} = $abfields[3];
$output{$now}{conn_rate} = $abfields[4];
$output{$now}{min_rep_rate} = $abfields[5];
$output{$now}{avg_rep_rate} = $abfields[6];
$output{$now}{max_rep_rate} = $abfields[7];
$output{$now}{stddev_rep_rate} = $abfields[8];
$output{$now}{resp_time} = $abfields[9];
$output{$now}{net_io} = $abfields[10];
$output{$now}{errors} = $abfields[11];

@endary = split (’:’, $output{$now}{end});
Hours
$endepoch += ($endary[0] * 60 * 60);
Minutes
$endepoch += ($endary[1] * 60);
Seconds
$endepoch += $endary[2];

my $accumulating = 0;
my $cpu_busy_accum = 0;
my $cpu_busy_counter = 0;
my $sar_time = 0;
my $sarepoch = 0;
my $sdeviation = 0;
my @sar_time_ary;
my @epochvalues;

76 Chapter A. Scripts

Now, loop through our grep matches.
for my $sar_line (@sar_lines)
{

Split the $sar_line, delimited by tabs, into an array
Here we use the regex match (//) representation of whitespace (\s).
@sarfields = split (/\s+/ , $sar_line);

$sar_time = $sarfields[0];

@sar_time_ary = split (’:’, $sar_time);
Hours
$sarepoch = ($sar_time_ary[0] * 60 * 60);
Minutes
$sarepoch += ($sar_time_ary[1] * 60);
Seconds
$sarepoch += $sar_time_ary[2];

We are only interrested in lines with cpu load
if ($sarfields[1] =˜ /all/)
{

If appropriate, start the accumulation necessary to calculate averages.
if (($nowepoch <= $sarepoch) && ($accumulating == 0))
{

Start accumulating!
$accumulating = 1;
print "Now processing the test $now - $output{$now}{’end’} ... "

}

If we’re accumulating, then we want to increment stuff...
if (($accumulating == 1) && ($sarepoch <= $endepoch))
{

$cpu_busy_counter += 1;
$cpu_busy_accum += (100 - $sarfields[8]);

push (@epochvalues, $sarfields[8]);
next;

}

If we have reached the end of our test period, then we
want to reset our variables and perform the average computations.
if ($sarepoch > $endepoch)
{

print "done.\n";
if ($cpu_busy_counter != 0)

{
$output{$now}{’cpu_busy’} = $cpu_busy_accum / $cpu_busy_counter;

$output{$now}{’deviation’} = calculateStdDev(@epochvalues);
} else
{

$output{$now}{’cpu_busy’} = 100;
$output{$now}{’deviation’} = 0;

}
$cpu_busy_accum = 0;

$cpu_busy_counter = 0;
$accumulating = 0;
@epochvalues = 0;

last;
}

}
}

}

print_output();

A.2. merge results.pl 77

exit 0;

sub calculateStdDev
{

my $n; # the number of values
my $stddev; # the standard deviation, calculated by this

subroutine, from the variance
my $sum; # the sum of the values
my $sumOfSquares; # the sum of the squares of the values
my $variance; # the variance, calculated by this subroutine
my $x; # set to each value

Initialize variables.
$n = 0;
$sum = 0;
$sumOfSquares = 0;

Use a foreach loop to get each value from the array @_, which
is the argument array and which contains the values.
foreach $x (@_)
{

Add the value to the growing sum.
$sum += $x;

Increment $n, the number of values.
$n++;

Add the square of the value to the growing sum of the squares.
$sumOfSquares += $x * $x;

}

Calculate the variance.
$variance = ($sumOfSquares - (($sum * $sum) / $n)) / ($n - 1);

Calculate the standard deviation, which is the square root of the
variance.
$stddev = sqrt($variance);

Return the calculated standard deviation.
return $stddev;

}

sub print_output
{

open_files(output);
print MERGED_FH "begin\t";
print MERGED_FH "end\t";
print MERGED_FH "dem_req_rate\t";
print MERGED_FH "req_rate\t";
print MERGED_FH "conn_rate\t";
print MERGED_FH "min_rep_rate\t";
print MERGED_FH "avg_rep_rate\t";
print MERGED_FH "max_rep_rate\t";
print MERGED_FH "stddev_rep_rate\t";
print MERGED_FH "resp_time\t";
print MERGED_FH "net_io\t";
print MERGED_FH "cpu_busy\t";
print MERGED_FH "deviation\t";
print MERGED_FH "errors\t";
print MERGED_FH "\n";

for my $key (sort keys %output)
{

print MERGED_FH "$key\t";
print MERGED_FH "$output{$key}{end}\t";

78 Chapter A. Scripts

print MERGED_FH "$output{$key}{dem_req_rate}\t";
print MERGED_FH "$output{$key}{req_rate}\t";
print MERGED_FH "$output{$key}{conn_rate}\t";
print MERGED_FH "$output{$key}{min_rep_rate}\t";
print MERGED_FH "$output{$key}{avg_rep_rate}\t";
print MERGED_FH "$output{$key}{max_rep_rate}\t";
print MERGED_FH "$output{$key}{stddev_rep_rate}\t";
print MERGED_FH "$output{$key}{resp_time}\t";
print MERGED_FH "$output{$key}{net_io}\t";
print MERGED_FH "$output{$key}{cpu_busy}\t";
print MERGED_FH "$output{$key}{deviation}\t";
print MERGED_FH "$output{$key}{errors}\t";
print MERGED_FH "\n";

}
close_files(output);

}

sub check_exist
{

Check to make sure all our directories exist.
for my $key (keys %dirs)
{

if (! -d $dirs{$key})
{

print STDERR "Directory $dirs{$key} does not exist! Quitting.\n";
exit 1;

}
}

Check to make sure the files do or don’t exist, as appropriate.
for my $key (keys %files)
{

if ($key eq ’merged’) {
We do *not* want the merged data file to exist already, otherwise
we risk overwriting important data.
if (-f $files{’merged’})
{

print STDERR "Merged data file $files{’merged’} already exists! Quitting.\n";
exit 1;

}
} else
{

If one of the data files doesn’t exist, we have nothing to do.
if (! -f $files{$key})
{

print STDERR "Data file $files{$key} does not exist! Quitting.\n";
exit 1;

}
}

}
}

sub usage
{

$0 in Perl is always the program name that has been run.
print STDERR "Usage: $0 testname\n\n";
exit 1;

}

Open up the data files:
sub open_files
{

A.3. queues.c 79

if ($_[0] eq ’input’)
{

The autobench is read-only.
open (AB_FH, "< $files{’autobench’}") || die "Cannot open file, $!";
The sar file is read-only.
open (SAR_FH, "< $files{’sar’}") || die "Cannot open file, $!";

} elsif ($_[0] eq ’output’)
{

The merged file is read-write (not concat).
open (MERGED_FH, "> $files{’merged’}") || die "Cannot open file, $!";

}
}

sub close_files
{

if ($_[0] eq ’input’)
{

close (SAR_FH);
close (AB_FH);

} elsif($_[0] eq ’output’)
{

close (MERGED_FH);
}

}

A.3 queues.c
This script is used to generate response times using the well known queueing
models M/M/k and M/M/1k

/***/
/* */
/* File: queues.c */
/* */
/* Created: Mon Feb 20 11:26:32 2006 */
/* */
/* Author: Mark Burgess, Jon Henrik Bjrnstad and Gard Undheim */
/* */
/* Revision: 2 */
/* */
/* Compile: gcc -o queue queue.c -lm */
/* */
/* Purpose: This scripts is used for calculating response times using */
/* queueing models: n*M/M/1 and M/M/k */
/* */
/***/

#include <stdio.h>
#include <math.h>

extern double strtod();

int main (int argc, char **argv)
{

/* variable and function definitions */
double rate_ms,rate,max_rate,rho,mu,lambda,n,p0,kappa,sum1,sum2;
double mm1best, mmk, factorial();
int max_servers;

/* verify correct number of arguments */
if(argc != 5)

80 Chapter A. Scripts

{
printf("Usage: %s <lambda> <mu> <number-of-servers> <max-rate>\n", argv[0]);
return 1;

}

/* assigning input parameteres to variables */
lambda = strtod(argv[1],NULL);
mu = strtod(argv[2], NULL);
max_servers = atoi(argv[3]);
max_rate = strtod(argv[4],NULL);

/* measure everything in bytes per second */
printf("k\t\tmm1best\t\tmmk\n");
printf("-------------------------------\n");

/* increases start rate until it reaches max_rate */
for (rate = lambda*1000; rate <= max_rate*1000; rate++)
{

rate_ms = rate/1000;
rho = rate_ms/(max_servers*mu);
sum1 = 0;
/*mm1 = 1.0/(mu-rate_ms);*/
mm1best = 1.0/(mu-rate_ms/max_servers);

for (n = 1; n < max_servers; n++)
{

sum1 += pow(max_servers*rho,n)/factorial(n);
}

p0 = 1.0/(1.0 + sum1 + pow(max_servers*rho,max_servers)/((factorial(max_servers)*(1-rho))));
kappa = pow(rho*max_servers,max_servers)*p0/(factorial(max_servers)*(1-rho));
mmk = (1.0 + kappa/(max_servers*(1-rho)))/mu;
printf("%g\t%g\t%g\n",rate,mm1best,mmk);

}
return 0;

}

/**/

double factorial(double n)
{

double f,i;
f = 1;
i = n;

while (i > 1)
{

f *= i--;
}
return f;

}

