
Daniel Rygh Bakkelund

Order Preserving Hierarchical
Clustering

Thesis submitted for the degree of Philosophiae Doctor

Department of Informatics
Faculty of Mathematics and Natural Sciences

DataScience@UiO

SIRIUS Centre for Scalable Data Access

2022

© Daniel Rygh Bakkelund, 2022

Series of dissertations submitted to the
Faculty of Mathematics and Natural Sciences, University of Oslo
No. 2532

ISSN 1501-7710

All rights reserved. No part of this publication may be
reproduced or transmitted, in any form or by any means, without
permission.

Cover: Hanne Baadsgaard Utigard.
Print production: Reprosentralen, University of Oslo.

To Pauline:
Why is a raven like a writing desk?

The Mad Hatter; Lewis Carroll
“Alice’s Adventures in Wonderland” (1865)

Acknowledgements
This pamphlet describes the fruits of my academic labours over the last five
years. I say labourious, but I could say joyful, illuminating, fantastic, maturing,
inspiring, educating, awesome, contemplative and many other words, of which
none can possibly fully describe the utter privilege. The privilege of getting up
every morning, knowing that you shall immerse yourself deeply into the things
you love the most. And that you shall do the same thing tomorrow, and the day
after, and the day after. Sure, it has been unnerving at times, but without that,
this journey would not have been half as grand.

This is therefore, in a sense, a sad day; marking the end of an era of my life.
First and foremost, I would like to thank my advisors, Henrik Forssell and

Gudmund Hermansen, who have followed me for the last half of my PhD. They
have complemented each other perfectly; Henrik’s scrutinising eye and attention
to detail on one side, and Gudmund’s ever returning questions regarding “why
do you do that?” and “what do you really mean with this?” on the other. I
hope, and believe, this has lead to a style of exposition that is both rigorous,
correct and easily understandable.

My thanks to Evgenij Thorstensen and Martin Giese, who were my advisors
for the first half of my PhD. Sometimes, a detour is required to understand
where you are going.

A special thanks goes to the DataScience@UiO research cluster set up by
Ingrid Glad and Arild Waaler, and to all the good conversations we had at our
gatherings. My thanks to Arnoldo Frigessi, for his continuous encouragement
and support; and to Carlo Mannino, with which I had in particular one meeting
that was pivotal to the course of my research.

My thanks to TechnipFMC, my employer outside the university, for allowing
me the opportunity of leave over these years, and for supporting my efforts in
pursuing the industry problem that inspired this PhD in the first place. An
example to be followed.

And finally, of course, there is my family; my darling Rigmor and my fantastic
daughter Pauline, who have endured me all this time: Without your everlasting
patience, persisting support and unconditional love, I could never have completed
this project.

Daniel Rygh Bakkelund
Oslo, June 2022

I could also thank my PhD colleagues Lars Tveito and Sigurd Kittilsen for their relentless
efforts to get me off track by pointing at every mathematical riddle and unsolved math problem
there is. Luckily, I resisted most of their attempts.

iii

List of Papers

Paper I

Daniel Bakkelund ‘Order preserving hierarchical agglomerative clustering’.
In: Machine Learning. (2021),
DOI: 10.1007/s10994-021-06125-0.

Paper II

Daniel Bakkelund ‘An objective function for order preserving hierarchical
clustering’.
Submitted for publication.
Preprint available at the arXiv: 2109.04266

Paper III

Daniel Bakkelund ‘Machine part data with part-of relations and part dissimilar-
ities for planted partition generation’.
In: Data in Brief. (2022)
DOI: 10.1016/j.dib.2022.108065.

v

https://doi.org/10.1007/s10994-021-06125-0
http://arxiv.org/abs/2109.04266
https://doi.org/10.1016/j.dib.2022.108065

Contents

Acknowledgements iii

List of Papers v

Contents vii

1 Introduction 1
1.1 Layout of the thesis . 2
1.2 Motivating industry problem 2
1.3 Order relations, hierarchical clusterings and ultrametrics . 3
1.4 Order preserving flat clustering 11
1.5 Summary of Papers . 12
1.6 Discussion . 14
References . 19

Papers 24

I Order preserving hierarchical agglomerative clustering 25
I.1 Introduction . 26
I.2 Background . 34
I.3 Optimised hierarchical clustering 38
I.4 Order preserving clustering 41
I.5 Partial dendrograms . 45
I.6 Hierarchical clustering of ordered sets 49
I.7 Polynomial time approximation 53
I.8 Demonstration of approximation efficacy on randomly

generated data . 54
I.9 Demonstration on data from the parts database 63
I.10 Summing up . 71
I.A Plots from the part database demo 73
I.B Reference implementation 78
References . 78

II An objective function for order preserving hierarchical
clustering 83
II.1 Introduction . 83
II.2 Order preserving hierarchical clustering 91
II.3 An objective function for trees over ordered data 97
II.4 Properties of g . 99

vii

Contents

II.5 Properties of f = sd + g 108
II.6 Approximation . 113
II.7 Demonstration . 118
II.8 Summary and future work 124
References . 126

III Machine part data with part-of relations and part dissimil-
arities for planted partition generation 131
III.1 Data specification . 132
III.2 Value of the Data . 133
III.3 Data Description . 134
III.4 Experimental design, materials and methods 137
References . 139

A Correction of Theorem I.4.6 141

viii

Chapter 1

Introduction
Clustering is the art of placing things that belong together together, and
keeping things that should be kept apart apart. It is both one of the oldest,
and one of the most frequently used, tools for exploratory data analysis and
unsupervised classification. Indeed, some of today’s most popular methods
are almost identical to those described by the pioneers, such as Macqueen’s
k-means for flat clustering [16], or the initial model for hierarchical agglomerative
clustering by Johnson [12]. And the toolbox of clustering methods is still growing,
with new research being pushed to the arXiv on a weekly basis.

Over the last decades, a number of methods for clustering data organised
in graphs or networks have seen the light of day, where the graph- or network
structure contributes to determine the clustering. The prototypical example
is clustering of community networks [8]. In community networks, vertices are
individuals, and edges represent social bonds. During clustering, parts of the
network with high local connectivity are collapsed to clusters. Although the
original structure of the network is lost, the semantic information is maintained;
the socially closely connected individuals are now gathered in clusters.

Partially ordered data is also relational, and can be represented as directed
acyclic graphs or networks. The semantic meaning of a partial order varies with
the context: In number theory, a ≤ b can mean a is less than or equal to b; in a
project plan or a computer program, it can mean a must be completed before
b can start; or, as in the motivating industry problem of this thesis, where we
are concerned with composite machine parts, it means that a is a part of b. In
either case, a ≤ b indicates, in some sense, that a precedes b, and often, when
that is the case, then a and b are different.

Hence, while relations in a community network indicate individuals belonging
together, partial order relations indicate that elements are different and should
not be placed together when clustering. Moreover, we wish to transfer this
information to the clustering; that is, if [a] and [b] denotes the respective clusters
of a and b, then we wish for [a] to precede [b]. Concretely, we require the existence
of a partial order ≤′ on the set of clusters so that

a ≤ b ⇒ [a] ≤′ [b]. (1.1)

This differs from the case with community networks in that we do not replace
relations with clusters. Rather, we preserve the relations and transfer them to
the clustering.

Methods for order preserving clustering of partially ordered sets exist to some
extent, but they are usually tailored for very particular purposes and aim to
satisfy domain- and application specific constraints. Also, they do not easily
combine with the notions of similarity we use for clustering in data analysis. It

1

1. Introduction

is the aim of the present work to start closing this gap, and to make this class of
methods available for more general applications.

1.1 Layout of the thesis

The thesis is structured as follows: Section 1.2 describes the real-world industry
problem that motivated the research project. Section 1.3 recalls partial order
relations and hierarchical clustering, as well as the definition of order preserving
flat clustering that we find in order theory. Section 1.5 provides the abstracts
of the published and submitted papers. Section 1.6 discusses the contributions
of the papers in light of a comparative analysis. Some further research topics
are also identified. The papers themselves are presented in the sections Paper I,
Paper II and Paper III.

1.2 Motivating industry problem

The inspiration for this work stems from a real-world industry problem concerning
a database of machine parts at TechnipFMC1, one of the leading technology
providers in the energy industry. The items in the database represent blueprints
for pieces of mechanical machinery, and the blueprints are linked together with
part-of relations, indicating that one piece of machinery is a physical constituent
of another. In the same way that a particular type of engine is a part of a
particular type of car. The result is a database of machinery that consists of
parts that consists of parts that consists of parts and so on. And, since an
engine cannot contain itself as a sub-part [18], the structure of all the blueprints
together constitute a directed acyclic graph, or, equivalently, a partially ordered
set.

Over time, due to business reasons, some blueprints have been subject to
copy-paste with minimal modifications. Historically, there has been no tracking
of the copy-paste relations, but it is now desirable to recover these links to
identify essentially equivalent machinery. The main driver for this need is a large
amount of machinery in stock; typically spares that have been produced for the
sake of preparedness, but that were never required. This is known as an excess
inventory problem [19], and is a recognised type of problem in many industries.

One way of reducing excess inventory, is to identify equivalent machinery, so
that when an existing customer comes to asks for a replacement for a previously
purchased component, and if there is no such component currently in stock,
then the supplier may search for equivalent machinery in stead of making new.
Since the production of large steel components comes with both a fiscal and a
carbon footprint, this is a double up-side compared to the alternative, namely
to eventually decimate the excess inventory.

To tackle this problem, there is already a project running in the company,
using machine learning to identify equivalent machinery designs. While being

1https://www.technipfmc.com/

2

https://www.technipfmc.com/

Order relations, hierarchical clusterings and ultrametrics

very successful, with millions of dollars saved annually, there are still challenges.
One of these is that the available metadata is often very similar between a part
and its sub-part, leading to parts and sub-parts often being more similar than a
part and its copy.

This is where order preserving clustering comes to the rescue: If we cluster
equivalent machinery, while at the same time preserving the part-of relations, we
will eliminate the problem of similarities between parts and sub-parts. Moreover,
the part-of relations, when transferred to the clusters, can tell us which of the
clusters that contain parts that are likely to be valid sub-parts of other clusters’
parts. A simplified view of the situation is depicted in Figure 1.1, where we
display clustering scenarios of the four element set {a, b, c, d} where a is a part
of b and c is a part of d. As we see from the figure, all the order preserving
clusterings keep the part and sub-part apart.

a b

c d

1. The original data. a
is a part of b and c is a
part of d.

a
c

b

d

2. a and c are equivalent,
and both can be sub-parts
of both b and d, allowing for
spare part interchange.

b
d

a

c

3. b and d are equivalent,
and both contain a and
c as sub-parts.

a
c

b
d

4. a and c are equivalent,
and b and d are equivalent.
It is likely that one pair is a
copy of the other.

a db
c

5. b and c are equivalent,
and both a and b are
sub-parts of d. b and c
can be interchanged as
spare parts in d.

a
d

b
c

6. Not a valid clustering
since the induced part-of
relations are cyclic.

Figure 1.1: A selection of possible clusterings of the set {a, b, c, d} where a is a
part of b and c is a part of d. Possible interpretations in terms of the motivating
use case are given together with the clusterings. All but 6) are examples of order
preserving clusterings. In 6), the part-of relations constitute a cycle, implying
that the parts are proper sub-parts of themselves, which is a contradiction [18].
Note: the figure is the same as Fig.II.1 in Paper II.

1.3 Order relations, hierarchical clusterings and ultrametrics

For sets A and B, we write A ⊂ B to denote the usual subset relation. If A is a
proper subset of B, we write A ⊊ B.

1.3.1 Order relations

This section gives a concise recollection of the required concepts of order theory.
For a comprehensive introduction, see [21].

3

1. Introduction

A binary relation on a set X is a subset E ⊂ X × X, and we say that x and
y are related under E if (x, y) ∈ E. We commonly write xEy to denote this
fact. We say that E is transitive if

∀x, y, z ∈ X : xEy ∧ yEz ⇒ xEz,

and the transitive closure of E is the smallest transitive binary relation E′ on
X for which E ⊂ E′.

Now, a partially ordered set is a pair (X, ≤), where X is a set, and ≤ is a
binary relation on X for which the following properties hold:

po1. ∀x ∈ X : x ≤ x (reflexivity),
po2. ∀x, y ∈ X : x ≤ y ∧ y ≤ x ⇒ x = y (antisymmetry),
po3. ∀x, y, z ∈ X : x ≤ y ∧ y ≤ z ⇒ x ≤ z (transitivity).

On the other hand, a strictly partially ordered set is a pair (X, <) where <
is a binary relation satisfying

spo1. ∀x ∈ X : x ̸< x (irreflexivity).
spo3. ∀x, y, z ∈ X : x < y ∧ y < z ⇒ x < z (transitivity).

Notice that spo1 and spo3 together imply

spo2. ∀x, y ∈ X : x < y ⇒ y ̸< x (asymmetry),

We will refer to both strict and non-strict partial order relations as orders,
unless there is any reason to distinguish the two. Also, we will stick to using the
symbol ≤ for orders, unless there is any risk of ambiguity.

So, if (X, ≤) is an ordered set, we say that x, y ∈ X are comparable (under
≤) if x≤y or y≤x; otherwise, we say that they are incomparable. If all
pairs of elements of X are comparable under ≤, we say that (X, ≤) is linearly
ordered. A chain in (X, ≤) is a subset of X that is linearly ordered with
respect to ≤. We say x0 ∈ X is the least element of (X, ≤) if x0 is the
unique element in X for which y ∈ X − {x0} ⇒ x0 ≤ y, and, dually, that y0 ∈ X
is the greatest element of (X, ≤) if y0 is the unique element in X for which
x ∈ X − {y0} ⇒ x ≤ y0. Finally, a map f : (X, ≤) → (Y, ≤′) between ordered
sets is an order preserving map if

∀x, y ∈ X : x≤y ⇒ f(x)≤′f(y).

Looking back at the machine parts of Section 1.2, it is clear that the part-of
relation is a strict partial order. In particular, a part cannot have itself as a
sub-part; that is, x ̸≤ x. This is the focus of Paper I, where we construct a
method for hierarchical clustering of strictly partially ordered data. But, as we
find in that paper, this constraint comes with some challenges. In Paper II, we
therefore consider the part-of relation to be a (non-strict) partial order relation.
This can be seen as a relaxation of the strict partial order, because we are now
allowed x ≤ x. This relaxation gives us some leeway that we can use to our avail.

4

Order relations, hierarchical clusterings and ultrametrics

1.3.2 Hierarchical clustering

Before we define hierarchical clustering, we need to recall flat clustering.
Recall that a partition of a set X is a collection of disjoint subsets {Ai}n

i=1
of X which union covers X. We refer to the elements Ai of the partition as
blocks. In the context of this work, a (flat) clustering of X is a partition
of X, and a cluster in a clustering corresponds to a block in the partition. In
particular, we do not consider overlapping clusters in this thesis. We write [x]C
to denote the cluster under C containing x, possibly skipping the subscript if
there is no risk of ambiguity. And the map q : X → C, defined by q(x) = [x]C,
that sends every element to its cluster, is the quotient map corresponding to
C. We denote the set of all (flat) clusterings over X by Cl(X).

We now turn to hierarchical clustering. As it turns out, hierarchical clustering
fits very well together with order theory. Not too many works take on this
perspective; a notable exception is that of Janowitz [10], giving a wholly order
theoretic description of the concept.

Given two clusterings A, B ∈ Cl(X), we say that A refines B if, for every
cluster A ∈ A, there exists a cluster B ∈ B for which A ⊂ B. Refinement is a
partial order relation on Cl(X), and we denote this relation by A ⊏ B. There are
two particular clusterings that require our attention. The first is the singleton
clustering S(X) =

{
{x}

}
x∈X

, where each element of X is placed in a cluster
on its own. And the second is the trivial clustering {X}, where all elements
of X are placed in the same cluster. Notice that S(X) refines every clustering in
Cl(X), while every clustering in Cl(X) refines {X}. We have already said that
(Cl(X),⊏) is a partially ordered set. Recall that a chain in a partially ordered
set is a subset that is linearly ordered.

Definition 1.3.1. A hierarchical clustering over a set X is a chain in (Cl(X),⊏)
that contains both S(X) and {X}.

That is, a hierarchical clustering is a sequence of flat clusterings on the form

S(X) ⊏ · · · ⊏ {X}.

In the research literature, we find that hierarchical clustering is also defined

• without requiring S(X) to be part of the hierarchical clustering [11],

• without requiring {X} to be part of the hierarchical clustering [Paper I],

• without requiring either S(X) or {X} to be part of the hierarchical
clustering [3],

but the classical definition includes both.
The set Cl(X) forms a lattice under refinement, with S(X) as least element

and {X} as greatest element. Figure 1.2 displays the Hasse diagram of this
lattice for the set {a, b, c}, together with an indicated hierarchical clustering.

5

1. Introduction

{{a, b, c}}

{{a, b}, {c}} {{a, c}, {b}} {{a}, {b, c}}

{{a}, {b}, {c}}

Cl(X) :

Figure 1.2: The lattice of clusterings of {a, b, c} arranged under refinement makes
up a complete lattice. The elements in bold make up a chain in (Cl(X),⊏) that
contains both the least and greatest elements, and therefore also constitutes a
hierarchical clustering of X.

1.3.3 Three main approaches to hierarchical clustering

It is customary to label methods for hierarchical clustering according to their
generative process; that is, how the methods go forth in specifying the hierarchical
clustering. The two main classes are agglomerative and divisive methods. A
third important class is that of algorithm free methods, that do not specify how
a hierarchical clustering should be obtained, but rather states what makes a
good hierarchical clustering.

1.3.3.1 Agglomerative hierarchical clustering

Agglomerative methods are the oldest methods, and also to some extent the
origin, of hierarchical clustering. They are also, by far, the most popular methods
for hierarchical clustering in applications. The earliest applications are found
in biology, dating as far back as 1948, to a paper by the Danish biologist
T. A. Sørensen [22]. The classical (and current) approach to agglomerative
hierarchical clustering is usually attributed to the 1967 paper by Johnson [12].
The mathematical foundations were laid down by Nicholas Jardine and Robin
Sibson in their seminal book Mathematical Taxonomy from 1971, and gave rise
to a field of its own, carrying the very same name as their book [11].

If R+ denotes the non-negative reals, the classical algorithm for agglomerative
hierarchical clustering makes use of a dissimilarity measure, a function
d : X × X → R+ for which

m1. ∀x ∈ X : d(x, x) = 0 (positive definitiveness),
m2. ∀x, y ∈ X : d(x, y) = d(y, x) (symmetry).

that provides us with a means for measuring the difference between elements
of X. The algorithm goes as follows:

1. Start by generating the singleton clustering S(X).

6

Order relations, hierarchical clusterings and ultrametrics

2. Of all clusters, find the two that are most similar according to the
dissimilarity measure, and replace the two clusters by their union.

3. If we have only one cluster left, we are done. Otherwise, go to Step 2.

The sequence of generated clusters constitutes a hierarchical clustering: the
process starts with the singleton partition, and since the merge in Step 2 induces
a refinement, the sequence of clusters is a sequence of refinements. The process
stops when we reach the trivial clustering.

Now, for this to work, we need a method for comparing clusters using a
dissimilarity measure. The tool for this is a linkage function:

Definition 1.3.2. 2 Let P(X) denote the power-set of X, and let the set of all
dissimilarity measures over X be denoted by M(X). A linkage function is a
map

L : P(X) × P(X) × M(X) → R+

so that for every dissimilarity d ∈ M(X) and every clustering C ∈ Cl(X), the
restriction L|C×C×{d} is a dissimilarity measure on C.

The classical linkage functions are defined as follows. The elements p and q
are clusters in some clustering C:

Single linkage : SL(p, q, d) = minx∈p miny∈q d(x, y).

Complete linkage : CL(p, q, d) = maxx∈p maxy∈q d(x, y).

Average linkage : AL(q, p, d) =
∑

x∈p

∑
y∈q d(x, y)

|p| · |q|
.

The output from agglomerative hierarchical clustering is often depicted in
terms of a graphical dendrogram like the one in Figure 1.3.

2.0
4.5
8.0

10.0

1 5 3 2 4

Figure 1.3: Example dendrogram from classical agglomerative hierarchical
clustering over the set {1, 2, 3, 4, 5}. The horizontal bars indicate joined clusters,
and are drawn at heights corresponding to the dissimilarity of the clusters.

In Figure 1.3, the leafs the tree correspond to the elements of X =
{1, 2, 3, 4, 5}. A diagram like this gives rise to an ultrametric over X; that is a
dissimilarity measure that also satisfies

2Linkage functions are rarely defined formally like this, but rather just through their
formulae. Definition 1.3.2 is akin to the definition provided by Carlsson and Mémoli [2].

7

1. Introduction

u3. ∀x, y, z ∈ X : d(x, z) ≤ max{d(x, y), d(y, z)} (ultrametric inequality).

Since u3 implies the triangle inequality d(x, z) ≤ d(x, y) + d(y, z), it follows that
an ultrametric is also a metric in the classical sense. The ultrametric distance
between x and y, given by the graphical dendrogram, corresponds to the height
in the graphical dendrogram you must go to in order to traverse from x to y.
For example, for the dendrogram in Figure 1.3, the ultrametric distance between
2 and 5 is 10.0, and the distance between 2 and 3 is 8.0.

As it turns out, through this definition, there is a one-to-one correspondence
between the set of dendrograms over X and the set of ultrametrics over X. That
is, if D(X) is the family of dendrograms over X, and if U(X) is the family of
ultrametrics over X, then there exists a bijective map

ΨX : D(X) −→ U(X) (1.2)

between dendrograms and ultrametrics [2].

1.3.3.2 Divisive hierarchical clustering

Divisive methods for hierarchical clustering are of much newer origin, and the
first proper contribution is that of Kaufman and Rousseeuw from 1990 [13, Ch.6].
After that, a large body of research has contributed with new methods and
techniques. The idea behind divisive hierarchical clustering is very intuitive, and
usually progresses according to the below algorithm.

1. Start with the trivial clustering {X}.

2. Find the largest cluster and split it in two.

3. If all clusters have cardinality one, we are done. Otherwise, go to Step 2.

This process is essentially the reverse of agglomerative hierarchical clustering,
starting with the trivial clustering and ending up with the singleton clustering.
Each invocation of Step 2 produces a refinement of the current clustering, so
the result is a chain of refinements, or, equivalently, a hierarchical clustering.
Notice that the process produces a hierarchical clustering that can be drawn as
a binary tree, since we always split a set in two. We denote the family of binary
trees over X that can be generated in this way by B(X).

In order to make the above algorithm useful, Step 2 requires a function

split : P(X) → P(X) × P(X),

that splits a cluster in two in a meaningful way. The exact implementation of the
split function is what distinguishes the different methods for divisive hierarchical
clustering. Some split functions use a dissimilarity measure to decide on a good
split, in which case the usual idea is that different elements should be split apart,
and similar elements should be kept together.

8

Order relations, hierarchical clusterings and ultrametrics

For example, the DIANA method of Kaufman and Rousseeuw picks the
element in the cluster of maximum mean dissimilarity to the others, and moves
along with this element all the other elements that is more similar to the new
cluster than to the old [13, Ch.6].

Another common approach to splitting a cluster is that of optimising a cut.
The idea is to find a split C 7→ (A, B) of the cluster C that optimises some
objective function; for example, the Max-Cut [4] aims find a split C 7→ (A, B)
maximising the sum ∑

a∈A

∑
b∈B

d(a, b).

Since this way of thinking is closely related to cuts in graphs, divisive methods
for hierarchical clustering have become popular for clustering of graph based
data, such as community networks.

In divisive hierarchical clustering, the focus is on the splits generating the
hierarchy, and graphical representations are sometimes drawn as in Figure 1.4.

1 5 3

2 4

T [3 ∨ 4]

Figure 1.4: A tree T of splits of the set X = {1, 2, 3, 4, 5} that constitutes a
hierarchical clustering of X.
Note: The figure is the same as Fig.II.2 of Paper II.

Not all methods for divisive hierarchical clustering come with numerical
values on the splits that give rise to ultrametrics like that of the graphical
dendrogram in Figure 1.3. However, there are ultrametrics that only rely on
the topology of the tree, and can be computed for any hierarchical clustering.
One example is the following ultrametric due to Roy and Pokutta [20]. Before
we define the ultrametric, for a tree T ∈ B(X), let T [x ∨ y] denote the deepest
internal node in the tree which rooted subtree contains both x and y as leafs;
see Figure 1.4 for an example. We write |T [x ∨ y]| to denote the number of leaf
nodes of this subtree.

Now, given a tree T ∈ B(X), the ultrametric uT : X × X → R+ is defined as

uT (x, y) = |T [x ∨ y]| − 1. (1.3)

9

1. Introduction

Roy and Pokutta show that B(X) embeds into the set of ultrametrics under this
construction; that is, (1.3) gives rise to an injective map B(X) → U(X) defined
by T 7→ uT .

1.3.3.3 Algorithm free methods

Algorithm free methods are methods that do not provide a recipe for the
generation of the hierarchical clustering. Rather, the methods specify properties
that a hierarchical clustering should have, and are typically subject for
optimisation. Since the number of hierarchical clusterings of a set X far exceeds
2|X|, many of the methods yield NP-hard optimisation problems. The solution,
then, is often a heuristically based algorithm that is either agglomerative or
divisive, that can provide a decent hierarchical clustering relative to the optimum.

Dasgupta’s objective function for hierarchical clustering from 2016 is one
example of this type of method [7]. Dasgupta makes use of a similarity measure3

s : X × X → R+, and computes the cost of a binary tree to be

costs(T) =
∑

{{x,y}⊂X|x̸=y}

|T [x ∨ y]|s(x, y).

Optimising for this objective function is NP-hard, but Dasgupta provides an
approximation algorithm using divisive hierarchical clustering, where the split
function is a SparsestCut [14]. That is, a split into subsets A, B that minimises∑

a∈A

∑
b∈B s(a, b)

|A||B|
.

Now, SparsestCut is also an NP-hard problem, so Dasgupta takes this one step
further, and points to a polynomial time approximation of SparsestCut [14],
which he eventually uses in his approximation algorithm. Several publications
provide further improvements over Dasgupta’s model, both agglomerative [17]
and divisive [20].

Another family of algorithm free methods for hierarchical clustering, is that
of ultrametric fitting. Recall that every hierarchical clustering is in a one-to-one
correspondence with an ultrametric (Equation (1.2)). Hence, we can replace the
search for a hierarchical clustering by the search for an ultrametric.

Given a dissimilarity or metric d ∈ M(X), ultrametric fitting is often about
solving the optimisation problem

arg min
u∈U(X)

L(d, u),

where L is some loss function to be minimised over U(X). A frequently used loss
functions for ultrametric fitting is the p-norm, measuring the point-wise distance

3A similarity measure is a symmetric function s : X × X → R+ for which pairs of similar
elements yield higher function values compared to pairs of dissimilar elements. For example,
given a dissimilarity measure d bounded by M > 0, the function s = M − d is a similarity
measure.

10

Order preserving flat clustering

between the original metric d and the ultrametric u:

L(d, u) = ∥d − u∥p = p
√ ∑

x,y∈X

|d(x, y) − u(x, y)|p.

The underlying idea is that the initial metric is a good guess, and that we should
look for a hierarchical clustering (i.e. ultrametric) that is as close to that metric
as possible. In ultrametric fitting, the problem of finding an optimal solution
is usually NP-hard, and the contributions in the field are often algorithmically
based approximations. See [5, 6] for some recent publications.

1.4 Order preserving flat clustering

The theory for order preserving flat clustering of partially ordered sets is
previously described in [1, §3]. A parallel theory for order preserving flat
clustering for strictly partially ordered sets is set forth in Section I.4 of Paper I.
As it turns out, the theories are sufficiently similar for us to continue to stick to
the convention of referring to both classes of order relations as orders.

The central question to answer is how to deal with the order relation during
clustering.

Definition 1.4.1. Let (X, ≤), be an ordered set, and let C = {Ci}n
i=1 be a

clustering of X. Define a binary relation E on C as follows:

(Ci, Cj) ∈ E ⇔ ∃x, y ∈ X : x≤y ∧ x ∈ Ci ∧ y ∈ Cj .

Let ≤′ denote the transitive closure of E. We refer to the relation ≤′ as the
relation on C induced by ≤. Or just the induced relation for short.

An instructive illustration of what the induced relation looks like, is that of
a C-fence [1], or just fence, for short:

b1 b2 bn−1 bn

· · ·

a1 a2 an−1 an

(1.4)

Triple lines indicate that elements are in the same cluster in C, and the arrows
represent comparability in (X, ≤). The fence visualises how one can traverse
from b1 to an along arrows and through clusters in C, and in that case we say
that the fence links b1 to an. The induced relation ≤′ has the property that
x≤′y if and only if there exists a C-fence linking x to y.

There is nothing in Definition 1.4.1 suggesting that the induced relation is an
order relation. The following theorem classifies precisely when this is the case.

11

1. Introduction

Theorem 1.4.2. Let (X, ≤) be an ordered set, and let C be a clustering of X.
Then the following statements are equivalent:

1. The induced relation ≤′ is an order relation on C.

2. The quotient map q : (X, ≤) → (C, ≤′) is order preserving.

Proof. A proof for partial order relations can be found in [1, Thm.3.1]. For a
proof in the case of strict partial orders, see [Paper I,Thm.I.4.3]. ■

Notice that Statement 2. of Theorem 1.4.2 is equivalent to

x ≤ y ⇒ [x]C ≤′ [y]C .

This is precisely what we declared to be order preserving from the semantic
perspective, in the discussion preceding equation (1.1).

This brings us more or less exactly to the starting point of the research
presented in this thesis. The topic of the research papers (Papers I and II) is
to define order preserving hierarchical clustering, and to investigate how we
can identify the order preserving hierarchical clusterings that are also good
hierarchical clusterings in their own right. That is, to combine the classical ideas
of hierarchical clustering with that of order preservation.

Since the topic of order preserving clustering in a data analysis context is a
new field, there is little or no publicly available data formatted for this purpose.
The thesis therefore also sets forth the data article in Paper III, to contribute to
mending this situation.

1.5 Summary of Papers

Paper I Order preserving hierarchical agglomerative clustering
Author: Daniel Bakkelund
In: Machine Learning (2021)
Abstract: Partial orders and directed acyclic graphs are commonly
recurring data structures that arise naturally in numerous domains and
applications and are used to represent ordered relations between entities in
the domains. Examples are task dependencies in a project plan, transaction
order in distributed ledgers and execution sequences of tasks in computer
programs, just to mention a few. We study the problem of order preserving
hierarchical clustering of this kind of ordered data. That is, if we have
a < b in the original data and denote their respective clusters by [a] and
[b], then we shall have [a] < [b] in the produced clustering. The clustering
is similarity based and uses standard linkage functions, such as single- and
complete linkage, and is an extension of classical hierarchical clustering.
To achieve this, we develop a novel theory that extends classical hierarchical
clustering to strictly partially ordered sets. We define the output from
running classical hierarchical clustering on strictly ordered data to be partial

12

Summary of Papers

dendrograms; sub-trees of classical dendrograms with several connected
components. We then construct an embedding of partial dendrograms
over a set into the family of ultrametrics over the same set. An optimal
hierarchical clustering is defined as the partial dendrogram corresponding
to the ultrametric closest to the original dissimilarity measure, measured
in the p-norm. Thus, the method is a combination of classical hierarchical
clustering and ultrametric fitting.
A reference implementation is employed for experiments on both synthetic
random data and real world data from a database of machine parts. When
compared to existing methods, the experiments show that our method
excels both in cluster quality and order preservation.

Paper II An objective function for order preserving hierarchical
clustering
Author: Daniel Bakkelund
In: Submitted to Journal of Machine Learning Research (JMLR)
Abstract: We present an objective function for similarity based
hierarchical clustering of partially ordered data that preserves the partial
order. That is, if (X, ≤) is a partially ordered set, a clustering of X is
order preserving with respect to ≤ if there exists a partial order ≤′ on
the clusters so that if x ≤ y and if [x] and [y] are the clusters of x and
y, then [x] ≤′ [y]. The theory distinguishes itself from existing theories
for clustering of ordered data in that the order relation and the similarity
are combined to obtain a hierarchical clustering seeking to satisfy both.
In particular, the order relation is weighted in the range [0, 1], and if the
similarity and the order relation are not aligned, then order preservation
may have to yield in favor of clustering. Finding an optimal solution
is NP-hard, so we provide a polynomial time approximation algorithm,
with a relative performance guarantee of O

(
log3/2n

)
, based on successive

applications of directed sparsest cut. We provide a demonstration on a
benchmark dataset, showing that our method outperforms existing methods
for order preserving hierarchical clustering with significant margin. The
theory is an extension of Dasgupta’s objective function for hierarchical
clustering.

Paper III Machine part data with part-of relations and part dissimilar-
ities for planted partition generation
Author: Daniel Bakkelund
In: Submitted to Data in Brief
Abstract: Identifying relationships between entities in data is a central
topic across various industries and businesses, from social networks to
supply chain and heavy manufacturing industries. In this paper we present
data from a database of machinery represented in terms of machine parts.
The machine parts are originally organised in tree structures where the ver-
tices are machine part types, and the edges are “part-of” relations. Hence,
each tree represents a type of machinery broken down into its machine

13

1. Introduction

part constituent types. The data we present is the union over these trees,
making up a directed acyclic graph describing the type hierarchy of the
machine parts.
The motivation for publishing the dataset is the following real-world
industry problem: Each tree represents a mechanical design, and over time
some designs have been copy-pasted with minor modifications. The new
instances have been given new identifiers with no reference to where from
they were copied. In hindsight, it is desirable to recover the copy-paste
links to for interchange between essentially identical designs. However,
telling which parts are copies of which other parts has turned out to be
difficult. In particular, the metadata has a tendency of displaying higher
similarities within a composite part than between a part and its copy. Due
to non-disclosure, we cannot provide the metadata, but we provide element
wise dissimilarities that are generated based on the metadata using classical
methods such as Jaccard similarity on description texts, material types
etc. The dissimilarities are obtained from a data science project in the
company owning the data, trying to tackle the very problem of recovering
the copy-paste links.
Availability of labeled data on this data set is limited, so based on our in-
depth knowledge of the problem domain, we present a data synthetisation
method that can generate arbitrarily large problem instances of the
copy-paste problem based on the sample data, that provides a realistic
representation of the real world problem. The problems are presented
as planted partitions of vertices of directed acyclic graphs with vertex
dissimilarities, and thus constitutes a typical classification problem along
the lines of graph- or network clustering.
The type of industry data we present is usually company confidential, bound
by intellectual property rights, and generally not available to scientists.
We therefore publish this anonymised dataset to offer real world sample
data and generated problem instances for researchers that are interested in
this type of classification problems, and on which theories and algorithms
can be tested.
The data and the problem generation methodology are backed by a Python
implementation, providing both data access and an API for parameterised
problem generation. The data is also available as raw files.

1.6 Discussion

The work presented in this thesis discusses the topic of order preserving
hierarchical clustering of partially ordered sets equipped with a measure of
similarity or dissimilarity. Concretely, we have worked our way around the
difficulties of, on one side, generating a hierarchical clustering based on the
similarity or dissimilarity, while simultaneously identifying clusterings that do
not violate the partial order relation.

14

Discussion

The modus operandi has been to first establish a mathematical interpretation
of order preserving hierarchical clustering; then, to develop a method for deciding
what constitutes a good order preserving hierarchical clustering in the presence of
a measure of similarity or dissimilarity; and finally, to demonstrate the efficacy of
the theory on synthetic and real world data. For both of the presented theories
(Papers I and II), we can see from the demonstrations that taking the partial
order into account has a pronounced effect on the quality of the generated
hierarchical clustering.

The thesis also sets forth the data article in Paper III, based on real
world data from the mentioned industry problem. The motivation is to make
available data, suited for testing methods and algorithms for order preserving
(hierarchical) clustering in a data analysis context. The paper presents both
real and synthetic data, and a framework for benchmarking methods for order
preserving (hierarchical) clustering.

Relevance to the industry problem. Recalling the industry problem from
Section 1.2, Papers I and II provide demonstrations that the order preserving
hierarchies contain flat clusterings that are better than what is achieved by the
methods compared against. But it is also interesting to consider how the concept
of order preserving hierarchical clustering fits into the use case of identifying
equivalent machinery in terms of ultrametrics.

Theorem II.2.11 of Paper II says that the more elements there are between
two elements in a partial order, the more different they are under an ultrametric
corresponding to an order preserving hierarchical clustering. Now, consider the
engineer looking for machinery that is equivalent to that of type x. Given the
ultrametric, she can sort the inventory with respect to ultrametric distance to x.
At the top of the list, she will find the items in the inventory most similar to x.
And, according to Theorem II.2.11, if an element is several levels of containment
inside x, this element will appear as more and more dissimilar to x. In particular,
this effectively eliminates the problem of accidental part and sub-part similarity
due to similar metadata.

On representations of the order relation. While Paper I considers the
order relation to be a strict partial order relation, Paper II not only replaces
the strict relation by a (non-strict) partial order, but goes further to introduce
the idea of a relaxed relation ω : X × X → [0, 1] that does not even have to
be an order relation. Moving to the relaxed relation has several benefits, both
theoretically and practically:

• Scaling: The relaxation ω leads to a compatibility with calculus that
greatly surpasses the binary representation. We can scale the order relation,
and the concept allows for application of standard calculus operations.
Without this, the linear combination making up the objective function of
Paper II would not be possible.

• Less bug traps: In the context of greedy search algorithms, bug-traps are
topological features of the search space that causes the search algorithm to

15

1. Introduction

use excessive time; such as a part of a labyrinth with only dead ends. In
the same way, the method of Paper I is hampered by all the dead ends in
the partial lattice constituting the legal hierarchical clusterings (Paper I,
Fig.I.2). Passing to a non-strict partial order removes all the dead ends,
since the hierarchical clusterings of a partial order constitutes a complete
lattice. Still, the nature of order preserving hierarchical clustering will
eventually split comparable elements apart, also in the case of a partial
order. For example, the objective function of Paper II favourises this over
keeping comparable elements inside one cluster. This means that also the
model of Paper II is well suited for strict partial orders; one must simply
take care to discard the clusterings that are not strictly order preserving.
The bug-trap effect is even more profoundly removed with the relaxed
relation. In Paper II, we allow clusterings to violate order preservation,
but we value order preserving solutions more. Such a model allows for
algorithms to explore areas in the search space that are off limit to the
stricter cases, and may open up for faster approximations. This is a
relaxation in the true meaning of the word.

Embedding semantic information in machine learning. Both Paper I
and II can be seen as methods for combining logically structured information
with classical machine learning techniques. In particular, they manage to satisfy
both the semantic interpretation of hierarchical clustering and that of order
preservation, but in different ways.

The method of Paper I treats the strict partial order as a logical object, and
presents an algorithm that preserves the partial order as an invariant while doing
agglomerative clustering. The method works, but it is not obvious how to, for
example, add more constraints in addition to the partial order.

The method of Paper II is, as such, more general. The work provides an
objective function that will produce order preserving hierarchical clusterings
under mild assumptions (Paper II, Thm.II.4.3). However, the order relation
is given a quantitative representation that allows it to be combined with the
similarity in Dasgupta’s objective. This allows us to search for a solution that
satisfies both the partial order and the similarity, for example in terms of a
Pareto optimal solution.

The method can be extended to incorporate any type of semantic information,
as long as the goal of incorporating the semantics can be described in terms of
objective functions over splits S → (A, B), and that the objective functions are
invariant under positive scaling.

1.6.1 Open questions and future work topics

Below are listed the open main problems that are common to the methods set
forth in this work.

Problem complexity. An open question of both Papers I and II is that of
problem complexity. While both theories yield NP-hard optimisation problems

16

Discussion

when the order relation is excluded, and therefore are NP-hard in the worst
case, it is not obvious what the problem complexity is when both the similarity
and the order relation is present. Nor do we know the complexity class when
we remove the similarity or dissimilarity and only the order relation is present.
This latter case is possibly related to a class of already described antichain
partitioning problems, which complexity classes are still undetermined [15].

Performance. For both of the presented methods, performance is a challenge.
In Paper I, since the (strict) partial order relation is treated as an unbreakable

constraint, this implies a hard limit on the complexity lower bound, even for
the approximation algorithm. Although recent developments in approximate
ultrametric fitting show promising results [6], and recent results within acyclic
partitioning are promising [9], it is not obvious how to combine these methods
to achieve a balancing of the goals of these solutions. This is partly because the
referenced solutions are algorithmic, and blending algorithms is generally not
straight forward.

The method of Paper II also has issues with performance, and currently
does not scale to industrial applications. There are two obvious paths to
pursue in this case. The first is that of providing faster approximations of
DirectedSparsestCut.4 This is a cut that has received limited attention
in the research community, and it is to hope that it is possible to produce a
time-efficient approximation for this cut. The other is that of agglomerative
approximation algorithms, and an obvious track to investigate is to produce an
agglomerative method using the objective function of Paper II to compute the
gain of merging two clusters.

Flat clustering. The models set forth by this work are in the realm of
hierarchical clustering. It is natural to also consider theories and algorithms
for flat order preserving clustering for use in data analysis. This may yield a
string of papers or advanced master thesis projects, extending existing methods
to partially ordered sets. Technically, the main challenge will most likely be in
finding ways of quantifying order preservation in the context of the different
methods’ objectives.

1.6.2 Other possible applications

It is possible to imagine several alternative applications of order preserving
clustering, and some have already been mentioned in the papers. Below are
mentioned two more; one almost trivial, but very descriptive of the nature of
the method: that of sorting segments of a book. The second application, for
ranking based recommendation systems, serves to show that in one sense, order
preserving hierarchical clustering can be considered as a method for sorting of
data according to two different sort orders.

4Or any approximations, ref. Paper II, Section II.8.

17

1. Introduction

Sorting the segments of a book. I corresponded briefly with Vijaya Kumari
Yeruva, a data analyst and fellow PhD student, who needed to cluster segments
of a book while keeping the ordering of the segments intact, as indicated in
Figure 1.5.

Figure 1.5: An example of order preserving hierarchical clustering of segments
of a book. The segments are linearly ordered and cannot be shuffled about.
The figure is downloaded from stackoverflowa and reprinted here with permission
from V. K. Yeruva.

ahttps://stackoverflow.com/questions/70069193/order-preserving-hierarchical-agglomerative-
clustering-python

Yeruva had already attempted to use the ophac5 library for this (ophac
realises the theory of Paper I), but the result was not very useful. This is as
expected, since Paper I treats the order relation as strict, and since the segments
of a book constitutes a linear order, the resulting hierarchy will consist of only
the singleton- and the trivial clustering. However, by applying the theory from
Paper II, you can have both order preservation and non-trivial clustering. Alas,
at the time of this writing, Yeruva communicated by e-mail that she had not
come to test this out yet.

Now, Yeruva works in the field of sentiment analysis, but we can imagine
a simpler application for the sake of example: Given a reasonable similarity
measure between segments, an order preserving hierarchical clustering can be
used to suggest a division of the book into chapters, sections and subsections.

Recommender systems. Consider the task of recommender systems that
make use of ranking data. If a user ranks a set of items, this constitutes a

5https://pypi.org/project/ophac/

18

https://stackoverflow.com/questions/70069193/order-preserving-hierarchical-agglomerative-clustering-python
https://stackoverflow.com/questions/70069193/order-preserving-hierarchical-agglomerative-clustering-python

References

linearly ordered set. And if the user ranks several sets of data, combining all the
sets yields a partially ordered set. Assume now that we are given a similarity
measure over the items, so that we can say which items are similar. Further,
assume that we perform order preserving hierarchical clustering with the ranking
information, but replacing the similarity with its corresponding dissimilarity.
The resulting order preserving tree will induce an ordering of all the ranked items.
In particular, due to Lemma II.2.7 of Paper II, the leaf nodes of the hierarchical
clustering will be ordered left-to-right so that the right hand elements are 1) the
highest ranked items according to the user, and 2) the most dissimilar items,
since dissimilar items are placed close together. Hence, from a bird’s-eye view,
we can use order preserving hierarchical clustering to offer highly ranked topics
of high diversity.

This is not to say that the theories set forth in this work outperforms existing
methods, or are even useful, for ranking based recommendation. But it serves to
show that the concept of order preserving hierarchical clustering may give rise
to new methods for deducing recommendations.

References

[1] Blyth, T. Lattices and Ordered Algebraic Structures. Universitext. Springer
London, 2005. url: https://www.springer.com/gp/book/9781852339050.

[2] Carlsson, G. and Mémoli, F. ‘Characterization, Stability and Convergence
of Hierarchical Clustering Methods’. In: J. Mach. Learn. Res. vol. 11 (Aug.
2010), pp. 1425–1470. url: http://www.jmlr.org/papers/v11/carlsson10a.
html.

[3] Carlsson, G. and Mémoli, F. ‘Classifying Clustering Schemes’. In:
Foundations of Computational Mathematics vol. 13, no. 2 (Apr. 2013),
pp. 221–252. url: https://doi.org/10.1007/s10208-012-9141-9.

[4] Chatziafratis, V., Mahdian, M. and Ahmadian, S. ‘Maximizing Agreements
for Ranking, Clustering and Hierarchical Clustering via MAX-CUT’. In:
International Conference on Artificial Intelligence and Statistics. PMLR.
2021, pp. 1657–1665.

[5] Chierchia, G. and Perret, B. ‘Ultrametric fitting by gradient descent’. In:
Journal of Statistical Mechanics: Theory and Experiment vol. 2020, no. 12
(2020).

[6] Cohen-Addad, V., S., K. C. and Lagarde, G. ‘On Efficient Low Distortion
Ultrametric Embedding’. In: Proceedings of the 37th International Con-
ference on Machine Learning. Ed. by III, H. D. and Singh, A. Vol. 119.
Proceedings of Machine Learning Research. PMLR, July 2020, pp. 2078–
2088. url: https://proceedings.mlr.press/v119/cohen-addad20a.html.

19

https://www.springer.com/gp/book/9781852339050
http://www.jmlr.org/papers/v11/carlsson10a.html
http://www.jmlr.org/papers/v11/carlsson10a.html
https://doi.org/10.1007/s10208-012-9141-9
https://proceedings.mlr.press/v119/cohen-addad20a.html

1. Introduction

[7] Dasgupta, S. ‘A Cost Function for Similarity-Based Hierarchical Clustering’.
In: Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of
Computing. STOC ’16. Cambridge, MA, USA: Association for Computing
Machinery, 2016, pp. 118–127. url: https: / /dl .acm.org/doi /10.1145/
2897518.2897527.

[8] Fortunato, S. and Hric, D. ‘Community detection in networks: A user guide’.
In: Physics Reports vol. 659 (2016). Community detection in networks: A
user guide, pp. 1–44. url: https://www.sciencedirect.com/science/article/
pii/S0370157316302964.

[9] Herrmann, J. et al. ‘Acyclic Partitioning of Large Directed Acyclic Graphs’.
In: 2017 17th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGRID). May 2017, pp. 371–380. url: https :
//hal.inria.fr/hal-01744603.

[10] Janowitz, M. F. Ordinal and Relational Clustering. WORLD SCIENTIFIC,
2010. eprint: https://www.worldscientific.com/doi/pdf/10.1142/7449. url:
https://www.worldscientific.com/doi/abs/10.1142/7449.

[11] Jardine, N. and Sibson, R. Mathematical Taxonomy. Wiley series in
probability and mathematical statistics. Wiley, 1971.

[12] Johnson, S. C. ‘Hierarchical clustering schemes’. In: Psychometrika vol. 32,
no. 3 (1967), pp. 241–254. url: https://link.springer.com/article/10.1007/
BF02289588.

[13] Kaufman, L. and Rousseeuw, P. J. Finding groups in data : an introduction
to cluster analysis. eng. New York, 1990.

[14] Leighton, T. and Rao, S. ‘Multicommodity Max-Flow Min-Cut Theorems
and Their Use in Designing Approximation Algorithms’. In: J. ACM vol. 46,
no. 6 (Nov. 1999), pp. 787–832. url: https://doi.org/10.1145/331524.
331526.

[15] Lonc, Z. ‘On complexity of some chain and antichain partition problems’.
In: Graph-Theoretic Concepts in Computer Science. Ed. by Schmidt, G.
and Berghammer, R. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992,
pp. 97–104. url: https://doi.org/10.1007/3-540-55121-2_9.

[16] Macqueen, J. ‘Some methods for classification and analysis of multivariate
observations’. In: In 5-th Berkeley Symposium on Mathematical Statistics
and Probability. 1967, pp. 281–297. url: https://projecteuclid.org/euclid.
bsmsp/1200512992.

[17] Moseley, B. and Wang, J. R. ‘Approximation Bounds for Hierarchical
Clustering: Average Linkage, Bisecting K-Means, and Local Search’. In:
Proceedings of the 31st International Conference on Neural Information
Processing Systems. NIPS’17. Long Beach, California, USA: Curran
Associates Inc., 2017, pp. 3097–3106.

[18] Rescher, N. ‘Axioms for the part relation’. In: Philosophical Studies: An
International Journal for Philosophy in the Analytic Tradition vol. 6, no. 1
(1955), pp. 8–11.

20

https://dl.acm.org/doi/10.1145/2897518.2897527
https://dl.acm.org/doi/10.1145/2897518.2897527
https://www.sciencedirect.com/science/article/pii/S0370157316302964
https://www.sciencedirect.com/science/article/pii/S0370157316302964
https://hal.inria.fr/hal-01744603
https://hal.inria.fr/hal-01744603
https://www.worldscientific.com/doi/pdf/10.1142/7449
https://www.worldscientific.com/doi/abs/10.1142/7449
https://link.springer.com/article/10.1007/BF02289588
https://link.springer.com/article/10.1007/BF02289588
https://doi.org/10.1145/331524.331526
https://doi.org/10.1145/331524.331526
https://doi.org/10.1007/3-540-55121-2_9
https://projecteuclid.org/euclid.bsmsp/1200512992
https://projecteuclid.org/euclid.bsmsp/1200512992

References

[19] Rosenfield, D. B. ‘Disposal of excess inventory’. In: Operations research
vol. 37, no. 3 (1989), pp. 404–409.

[20] Roy, A. and Pokutta, S. ‘Hierarchical Clustering via Spreading Metrics’.
In: Journal of Machine Learning Research vol. 18, no. 88 (2017), pp. 1–35.
url: http://jmlr.org/papers/v18/17-081.html.

[21] Schröder, B. Ordered Sets, An Introduction. Springer Science + Business
Media, LLC, 2003. url: https://link.springer.com/content/pdf/10.1007/978-
3-319-29788-0.pdf.

[22] Sørensen, T. A. ‘A Method of Estimating Groups of Equal Amplitude in
Plant Sociology Based on Similarity of Species Content’. In: Biologiske
Skrifter. Vol. 5. Det Kongelige Danske Videnskabernes Selskab. Kommis-
sionær: Munksgaard, 1948, pp. 1–34.

21

http://jmlr.org/papers/v18/17-081.html
https://link.springer.com/content/pdf/10.1007/978-3-319-29788-0.pdf
https://link.springer.com/content/pdf/10.1007/978-3-319-29788-0.pdf

Papers

Paper I

Order preserving hierarchical
agglomerative clustering

Daniel Bakkelund
Published in Machine Learning, Des 2021,
DOI: 10.1007/s10994-021-06125-0.

I

Abstract

Partial orders and directed acyclic graphs are commonly recurring data
structures that arise naturally in numerous domains and applications and
are used to represent ordered relations between entities in the domains.
Examples are task dependencies in a project plan, transaction order
in distributed ledgers and execution sequences of tasks in computer
programs, just to mention a few. We study the problem of order preserving
hierarchical clustering of this kind of ordered data. That is, if we have
a < b in the original data and denote their respective clusters by [a] and
[b], then we shall have [a] < [b] in the produced clustering. The clustering
is similarity based and uses standard linkage functions, such as single- and
complete linkage, and is an extension of classical hierarchical clustering.

To achieve this, we develop a novel theory that extends classical
hierarchical clustering to strictly partially ordered sets. We define the
output from running classical hierarchical clustering on strictly ordered
data to be partial dendrograms; sub-trees of classical dendrograms with
several connected components. We then construct an embedding of partial
dendrograms over a set into the family of ultrametrics over the same set.
An optimal hierarchical clustering is defined as the partial dendrogram
corresponding to the ultrametric closest to the original dissimilarity
measure, measured in the p-norm. Thus, the method is a combination of
classical hierarchical clustering and ultrametric fitting.

A reference implementation is employed for experiments on both
synthetic random data and real world data from a database of machine
parts. When compared to existing methods, the experiments show that
our method excels both in cluster quality and order preservation.

Keywords: Hierarchical clustering · Order preserving clustering · Partial
dendrogram · Unsupervised classification · Ultrametric fitting · Acyclic
partition

25

https://doi.org/10.1007/s10994-021-06125-0

I. Order preserving hierarchical agglomerative clustering

I.1 Introduction

Clustering is one of the oldest and most frequently used techniques for exploratory
data analysis and unsupervised classification. The toolbox contains a large variety
of methods and algorithms, spanning from the initial, but still popular ideas of
k-means [32] and hierarchical clustering [25], to more recent methods, such as
density- and model based clustering [12, 28], and semi-supervised methods [2],
plus a large list of variants. All these methods have one thing in common: they
try to extract hidden structure from the data, and make it visible to the analyst.
But they also share another feature: if the analysed data is already endowed
with some form of structure, the structure is lost in the clustering process; the
clustering does not try to retain the structure.

In this paper, we show how to extend hierarchical clustering to relational
data in a way that preserves the relations. In particular, if the input is a set X
equipped with a strict partial order <, and if a, b ∈ X, we ensure that if a < b
then we will have [a] <′ [b] after clustering, where [a] and [b] are the respective
clusters of a and b, and <′ is a partial order on the clusters naturally induced
by <.

Since directed acyclic graphs (DAGs) correspond to partial orders, our method
works equally well for DAGs. If the input is a DAG, then every clustering in the
produced hierarchy is a DAG of clusters, and there exists a DAG homomorphism
from the original DAG to the cluster DAG.

I.1.1 Motivating real-world use case

The motivation for our method comes from an industry database of machine
parts that are arranged in part-of relations: parts are registered as sub-parts of
other parts. For historical reasons, there have been incidents of copy-paste of
machine designs, and the copies have been given entirely new identifiers with
no links to the original design. In hindsight, there is a wish to identify these
equivalent machine parts, but telling them apart is hard. Also, the metadata
that is available has a tendency of displaying high similarity between a part and
its sub-parts, leading to “vertical clustering” in the data.

Since the motivation is to identify equivalent machinery with the aim of
replacing one piece of machinery with an equivalent part, and since a part and
its sub-parts by no means can be interchanged, it is essential to maintain this
parent-child relationship. Moreover, since a part and its sub-part are never
equivalent, this is a strict order relation. The set of all machine parts thus makes
up a strictly partially ordered set. By preserving these relations in the clustering
process, we can eliminate the errors due to close resemblance between the part
and the sub-part, resulting in improved over all quality of the clustering.

It is possible to imagine other use cases. We choose to mention two; citation
network analysis and time series alignment:

Citation networks are partial orders, where the order is defined by the
citations. If we perform order preserving clustering in the above sense on citation
networks, the clusters will contain related research, and the clusters will be

26

Introduction

ordered according to appearance relative other related research. This differs from
clustering with regards to time: when clustering with time as a parameter, you
have to choose, implicitly or explicitly, a time interval for each cluster. When
the citation graph is used for ordering, the clusters will contain research that
occurred in parallel, citing similar sources, and being cited by similar sources,
regardless to whether they occurred in some particular time interval.

A time series is a totally ordered set of events, so that a family of time series
is a partially ordered set. Assume that you want to do time series alignment,
matching events from one time series with events from another, but for some
reason the time stamps are corrupted and cannot be used for this purpose.
Given a measure of (dis-)similarity between events, we can cluster the events to
figure out which events are the more similar. Since an optimal order preserving
clustering is one that both preserves all event orders and matches the most
similar events across the time series, ideally the result is a series of clusters with
each cluster containing the events that correspond to each other across the time
series.

I.1.2 Problem overview

Given a set X together with a notion of (dis-)similarity between the elements
of X, a hierarchical agglomerative clustering can be obtained as follows [21,
§3.2]:

1. Start by placing each element of X in a separate cluster.

2. Pick the two clusters that are most similar according to the (dis-)similarity
measure, and combine them into one cluster by taking their union.

3. If all elements of X are in the same cluster, we are done. Otherwise, go to
Step 2 and continue.

The result from this process is a dendrogram; a tree structure showing the
sequence of the clustering process (Figure I.1).

2.0
4.5
8.0

10.0

a b c d e

Figure I.1: A dendrogram over the set X = {a, b, c, d, e}. The elements of X are
the leaf nodes of the dendrogram, and, starting at the bottom, the horizontal bars
indicate which elements are joined at which step in the process. The numbers on
the y-axis indicate at which dissimilarity level the different clusters were formed.

27

I. Order preserving hierarchical agglomerative clustering

Now, given a partially ordered set X = {a, b, c, d} where a < b and c < d, we
can use arrows to denote the order relation, thinking of X as a directed acyclic
graph with two connected components. If we want to produce a hierarchical
clustering of X, while at the same time maintaining the order relation, our
options are depicted in the Hasse digram in Figure I.2.

ac bd

a bc d c ad b
ac b

d
a
c

bd

a b
c d

Figure I.2: Possible order preserving hierarchical clusterings over the set
X = {a, b, c, d} with a < b and c < d. Adjacent elements indicate clusters.

Each path in this diagram, starting at the bottom and advancing upwards,
represents a hierarchical clustering. But, since we are required to preserve the
strict order relation, we cannot merge any more elements than what we see here.
This means that we will never obtain dendrograms like the one in Figure I.1,
that joins at the top when all elements are placed in a single cluster. Rather, the
output of hierarchical agglomerative clustering would take the form of partial
dendrograms like those of Figure I.3.

1

2

b c a d
a bc d

1

2

a d b c
c ad b

1

2

a c b d
ac bd

Figure I.3: Partial dendrograms over the set X = {a, b, c, d} with a < b and
c < d. Each partial dendrogram corresponds to a path in Figure I.2 starting
at the bottom and advancing upwards to the ordered set depicted below the
dendrogram.

To complicate matters, if both (a, d) and (a, c) are pairs of minimal
dissimilarity, then they are both candidates for the first merge. From Figure I.2
we can see that ad and ac are mutual exclusive merges, and that choosing one

28

Introduction

over the other leads to very different solutions. We therefore need a method to
decide which candidate merge, or which candidate partial dendrogram, is the
better.

I.1.3 Outline of our method and contributions

As our first contribution, to solve the problem of picking one candidate merge
among a set of tied connections, we present a permutation invariant method
for hierarchical agglomerative clustering. The method uses the classical linkage
functions of single-, average- and complete linkage, but is optimisation based, as
opposed to the algorithmic definition of classical hierarchical clustering. Recalling
that every hierarchical clustering corresponds to a unique ultrametric [23], the
optimisation criterion is that of minimising the matrix norm of the difference
between the original dissimilarity and the ultrametric corresponding to the
hierarchical clustering, a method known as ultrametric fitting [11].

We have seen that order preserving hierarchical agglomerative clustering on
strictly partially ordered sets leads to partial dendrograms. In order to evaluate
the ultrametric fitting of a partial dendrogram, our next contribution is an
embedding of partial dendrograms over a set into the family of ultrametrics over
the same set.

Our main contribution, order preserving hierarchical agglomerative clustering
of strictly partially ordered sets, is the combination of the two. We define an
optimal order preserving hierarchical clustering to be the hierarchical clustering
with the partial dendrogram that has the best ultrametric fit relative the original
dissimilarity measure.

In want of an efficient algorithm, we present a method of approximation
that can be computed in polynomial time. We demonstrate the approximation
on synthetic data generated as random directed acyclic graphs and random
dissimilarity measures, as well as on data from the parts database motivating
this research. We evaluate the quality of the obtained clustering by computing
the adjusted Rand index relative a planted partition [19]. We provide a novel
method for comparing two induced order relations using a modified adjusted
Rand index, which we believe is a first of its kind. We also provide simple method
for computing the level of order preservation of a clustering of an ordered set by
counting the number of induced loops.

Beyond our main contribution, we believe that the embedding of partial
dendrograms into ultrametrics may be of interest to a larger audience. The
embedding provides a means for treating partial dendrograms as complete
dendrograms, offering access to the entire rack of tools that already exists in
this domain. An obvious example candidate is that of hierarchical clustering
with must-link and no-link constraints. The no-link constraints will necessarily
lead to partial dendrograms that can be easily evaluated in our framework.

29

I. Order preserving hierarchical agglomerative clustering

I.1.3.1 Summary of contributions

Our main contribution is the theory for order preserving hierarchical agglom-
erative clustering for strict posets. Further contributions we wish to highlight
are:

• A theory for embedding partial dendrograms over a set into the set of
complete dendrograms over the same set.

• An optimisation based, permutation invariant hierarchical clustering
methodology for non-ordered sets that is very similar to classical
hierarchical clustering.

• A polynomial time approximation scheme for order preserving hierarchical
agglomerative clustering

• A novel method for comparison of induced order relations over a set based
on the adjusted Rand index.

• A measure of the level of order preservation of a clustering of an ordered
set.

I.1.4 Related work

Hierarchical agglomerative clustering is described in a plethora of books and
articles, and we shall not try to give an account of that material. For an
introduction to the subject, see [21, §3.2].

I.1.4.1 Clustering of ordered data

There are quite a few articles presenting clustering of ordered data, placing
themselves in one of two categories.

The first is clustering of sets where the (dis)similarity measure is replaced by
information about whether one pair of elements is more similar than another pair
of elements, for example based on user preferences. This is sometimes referred to
as comparison based clustering. See the recent article by Ghoshdastidar, Perrot
and Luxburg [14] for an example and references. In this category, we also find
the works of Janowitz [22], providing a wholly order theoretic description of
hierarchical clustering, including the case where the dissimilarity measure is
replaced by a partially ordered set.

The second variant is to partition a family of ordered sets so that similarly
ordered sets are associated with each other. Examples include the paper by
Kamishima and Fujiki [26], where they develop a variation of k-means, called
k-o′means, for clustering preference data, each list of preferences being a totally
ordered set. Other examples in this category include clustering of times series,
identifying which times series are alike [31].

Our method differs from all of the above in that we cluster elements inside
one ordered set through the use of a (dis)similarity measure, while maintaining
the original orders of elements.

30

Introduction

I.1.4.2 Clustering to detect order

Another variant is the detection of order relations in data through clustering: In
[7], it is demonstrated how hierarchical agglomerative quasi-clustering can be
used to deduce a partial order of “net flow” from an asymmetric network.

In this category, it is also worth mentioning dynamic time warping. This is a
method for aligning time series, and can be considered as clustering across two
time series that is indeed order preserving. See [31] for further references on this.

I.1.4.3 Acyclic graph partitioning problems

The problem of order preserving hierarchical agglomerative clustering can be
said to belong to the family of acyclic graph partitioning problems [16]. If we
consider the strict partial order to be a directed acyclic graph (DAG), the task is
to partition the vertices into groups so that the groups together with the arrows
still makes up a DAG.

Graph partitioning has received a substantial attention from researchers,
especially within computer science, over the last 50 years. Two important fields
of application of this theory are VLSI and parallel execution.

In VLSI, short for Very Large Scale Integration, the problem can be
formulated as follows: Given a set of micro processors, the wires that connect
them, and a set of circuit boards, how do you best place the processors on the
circuit boards in order to optimise a given objective function? Typically, a part
of the objective function is to minimise the wire length. But other features may
also be part of the optimisation, such as the amount or volume of traffic between
certain processors etc. [33]

For parallel processing, the input data is a set of tasks to be executed. The
tasks are organised as a DAG, where predecessors must be executed before
descendants. Given a finite number of processors, the problem is to group the
tasks so that they can be run group-wise on a processor, or running groups
in parallel on different processors, in order to execute all tasks as quickly as
possible. Typically additional information available is memory requirements,
expected execution times for the tasks, etc. [5]

It is not difficult to understand why both areas have received attention,
being essential in the development of modern computers. The development of
theory and methods has been both successful and abundant, and a large array
of techniques are available, both academic and commercially.

Although both problems do indeed perform clustering of strict partial orders,
their solutions are not directly transferable to exploratory data analysis. Mostly
because they have very specific constraints and objectives originating from their
respective problem domains.

The method we propose in this paper has as input a strict partial order
(equivalently; a DAG) together with an arbitrary dissimilarity measure. We
then use the classical linkage functions single-, average-, and complete linkage
to suggest clusterings of the vertices from the input dataset, while preserving
the original order relation.

31

I. Order preserving hierarchical agglomerative clustering

Our method therefore places itself firmly in the family of acyclic graph
partitioning methodologies, but with different motivation, objective and solution,
compared to existing methods.

I.1.4.4 Hierarchical clustering as an optimisation problem

Several publications aim at solving hierarchical clustering in terms of optimisation.
However, due to the procedural nature of classical hierarchical clustering,
combined with the linkage functions, pinning down an objective function may be
an impossible task. Especially since classical hierarchical clustering is not even
well defined for complete linkage in the presence of tied connections. This leads
to a general abandonment of linkage functions in optimisation based hierarchical
clustering.

Quite commonly, optimisation based hierarchical clustering is done in terms
of ultrametric fitting. That is, it aims to find an ultrametric that is as close to
the original dissimilarity measure as possible, perhaps adding some additional
constraints [8, 15]. It is well known that solving single linkage hierarchical
clustering is equivalent to finding the so called maximal sub-dominant ultrametric.
That is; the ultrametric that is pointwise maximal among all ultrametrics not
exceeding the original dissimilarity [35]. But for the other linkage functions,
there is no equivalent result.

Optimisation based hierarchical clustering therefore generally present
alternative definitions of hierarchical clustering. Quite often based on objective
functions that originate from some particular domain. Exceptions from this are,
for example, Ward’s method [39], where the topology of the clusters are the
focus of the objective, and also the recent addition by Dasgupta [9], where the
optimisation aims towards topological properties of the generated dendrogram.

Although our method is, eventually, based on ultrametric fitting, we optimise
over a very particular set of dendrograms. Namely the dendrograms that can
be generated through classical hierarchical clustering with linkage functions. It
is therefore reasonable to claim that our method places itself between classical
hierarchical clustering and optimised models.

I.1.4.5 Clustering with constraints

A significant amount of research has been devoted to the topic of clustering with
constraints in the form of pairwise must-link or no-link constraints, often in
addition to other constraints, such as minimal- and maximal distance constraints,
and so on. Some work as also been done on hierarchical agglomerative clustering
with constraints, starting with the works of Davidson and Ravi [10]. For a
thorough treatment of constrained clustering, see [2].

Order preserving clustering (as well as acyclic partitioning) can be seen as a
particular version of constrained clustering, where the constraint is a directed,
transitive cannot-link constraint. A type of constraint that is not found in the
constrained clustering literature.

32

Introduction

I.1.4.6 Clustering in information networks

A large amount of research has been conducted on the problem of clustering
nodes in networks, and a more recent field of research is that of clustering data
organised in heterogeneous information networks, or HINs for short [34]. A HIN
is an undirected graph where both vertices and edges may have different, or
even multiple, types. RDF graphs [29] is but one example of HINs. In a sense,
we can say that the availability of multiple types allow HINs to model the real
world more closely, but with the penalty of increased complexity. It is fair to
consider HIN clustering a generalisation of classical network clustering, where,
in the classical setting, all vertices and edges are of one common type.

However, the general case in clustering both classical networks and HINs
is that although the network structure serves to influence the clustering, the
structure is usually lost in the clustering. The most classical example is where
connectedness between vertices contribute to vertex similarity, and then the
most connected vertices (clique-like subgraphs) are clustered together. Although
this can be seen as a type of relation preserving clustering, in order preserving
clustering, the opposite is taking place: the more connected two vertices are,
the more reason not to place them in the same cluster. Indeed, as we show in
Section I.4, for the theory we present in this paper, two elements can only be
clustered together if there are no paths connecting them.

An example of HIN clustering that is structure preserving is [30]. A HIN
comes with a schema, or a schematic graph, describing which types are related
to which other types. For Li et al. [30], the goal is to cluster each set of same-
type nodes according to a discovered similarity measure. The result is thus a
schematic graph where each node is a clustering of vertices of the same type.
This differs from the problem we study in that we do not know which elements
are of the same type; to discover this is the goal of the clustering. Hence, the
problems are similar but different; we could rephrase our problem as that of
deriving a directed schematic graph from unlabeled vertices, where each vertex
in the schematic graph is a set of equivalent machine parts, and the directed
edges are the part-of relations.

I.1.5 Organisation of the remainder of this paper

Section I.2 provides necessary background material.
In Section I.3, we develop optimised hierarchical agglomerative clustering for

non-ordered sets; our permutation invariant clustering model that is tailored
especially to fit into our framework for agglomerative clustering of ordered sets.

In Section I.4, we tackle the problem of order preservation during clustering:
We define what we mean by order preservation, and classify exactly the clusterings
that are order preserving. We also provide concise necessary and sufficient
conditions for an hierarchical agglomerative clustering algorithm to be order
preserving.

Section I.5 defines partial dendrograms and develops the embedding of partial
dendrograms over an ordered set into the family of ultrametrics over the same

33

I. Order preserving hierarchical agglomerative clustering

set.
Our main result, order preserving hierarchical agglomerative clustering for

strict partial orders, is presented Section I.6.
Section I.7 provides a polynomial time approximation scheme for our method,

and Section I.8 demonstrates the efficacy of the approximation on synthetic data.
Section I.9 presents the results from applying our approximation method to

a subset of the data in the parts database, comparing with existing methods,
and finally, Section I.10 closes the article with some concluding remarks, and a
list of future work topics.

I.2 Background

In this section we recall basic background material. We start by recollecting
the required order-theoretical tools together with equivalence relations, before
recalling classical hierarchical clustering.

I.2.1 Relations

Definition I.2.1. A relation R on a set X is a subset R ⊆ X × X, and we
say that x and y are related if (x, y) ∈ R. The short hand notation aRb is
equivalent to writing (a, b) ∈ R.

I.2.1.1 Strict and non-strict partial orders

A strict partial order on a set X is a relation S on X that is irreflexive
and transitive. Recall that, an irreflexive and transitive relation is also anti-
symmetric. A strictly partially ordered set, or a strict poset, is a pair
(X, S), where X is a set and S is a strict partial order on X. We commonly
denote a strict partial order by the symbol <.

On the other hand a partial order on X is a relation P on X that is
reflexive, asymmetric and transitive, and the pair (X, P) is called a partially
ordered set, or a poset. The usual notation for a partial order is ≤.

We shall just refer to strict and non-strict partial orders as orders, unless
there is any need for disambiguation: If R is an order on X, we say that a, b ∈ X
are comparable if either (a, b) ∈ R or (b, a) ∈ R. And, if every pair of elements
in X are comparable, we call X totally ordered. A totally ordered subset
of an ordered set is called a chain, and a subset where no two elements are
comparable is called an antichain. We denote non-comparability by a⊥b.
That is, for any elements a, b in an antichain, we have a⊥b.

A cycle in a relation E is a sequence in E on the form
(a, b1), (b1, b2), . . . , (bn, a). The transitive closure of E is the minimal
set E for which the following holds: If there is a sequence of pairs
(a1, a2), (a2, a3), . . . , (an−1, an) in E, then (a1, an) ∈ E.

Let (X, E) be an ordered set. An element x0 ∈ X is a minimal element
if there is no element y ∈ X − {x0} for which (y, x0) ∈ E. Dually, y0 is a
maximal element if there is no x ∈ X − {y0} for which (y0, x) ∈ E. If (X, E)

34

Background

has a unique minimal element, then this is called the bottom element or the
least element, and a unique maximal element is called the top element or
the greatest element.

Finally, a map f : (X, <X) → (Y, <Y) is order preserving if a <X b ⇒
f(a) <Y f(b), and if f is a set isomorphism (that is, a bijection) for which f−1

is also order preserving, we say that f is an order isomorphism, and that the
sets (X, <X) and (Y, <Y) are order isomorphic, writing (X, <X) ≈ (Y, <Y).

I.2.1.2 Partitions and equivalence relations

A partition of X is a collection of disjoint subsets of X, the union of which is X.
The family of all partitions of X, denoted P(X), has a natural partial order
defined by partition-refinement: If A = {Ai}i and B = {Bj}j are partitions of
X, we say that A is a refinement of B, writing A ⋐ B, if, for every Ai ∈ A
there exists a Bj ∈ B such that Ai ⊆ Bj . The sets of a partition are referred to
as blocks.

An equivalence relation is a relation R on X that is reflexive, symmetric
and transitive. Let the family of all equivalence relations over a set X be denoted
by R(X). If R ∈ R(X) and (x, y) ∈ R, we say that x and y are equivalent,
writing x ∼ y. The maximal set of elements equivalent to x ∈ X is called the
equivalence class of x, and is denoted [x]. R(X) is also partially ordered, but
by subset inclusion: that is, for R, S ∈ R(X), we say that R is less than or
equal to S if and only if R ⊆ S .

The quotient of X modulo R, denoted X/R, is the set of equivalence
classes of X under R. Notice that [x] is an element of X/R, but a subset of X.
Since the equivalence classes are subsets of X that together cover X, X/R is a
partition of X with equivalence classes being the blocks of the partition. The
family of partitions of X is in a one-to-one correspondence with the equivalence
relations of X, and the correspondence is order preserving; if A = X/A and
B = X/B, we have

A ⋐ B ⇔ A ⊆ B.

Both P(X) and R(X) have top- and bottom elements: The least element
of P(X) is the singleton partition S(X), where each element is in a block
by itself: S(X) = {{x} | x ∈ X}. The singleton partition corresponds to the
diagonal equivalence relation, given by ∆(X) = {(x, x) | x ∈ X}, which is the
least element of R(X). The greatest element of P(X) is the trivial partition
{X}, corresponding to the equivalence relation X × X, where all element are
equivalent. That is

S(X) = X/∆(X) and {X} = X/(X × X).

If A and B are partitions of X with A being a refinement of B, we say that
A is finer than B, and that B is coarser than A. We use the exact same
terminology for the corresponding equivalence relations.

For a subset A ⊆ X, let the notation X/A denote the partition of X where all
of A is one equivalence class, and the rest of X remains as singletons. Formally,

35

I. Order preserving hierarchical agglomerative clustering

this corresponds to the equivalence relation RA = ∆(X) ∪ (A × A). And finally,
the quotient map corresponding to an equivalence relation R ∈ R(X) is the
unique map qR : X → X/R defined as qR(x) = [x]. That is, qR sends each
element to its equivalence class.

I.2.2 Classical hierarchical clustering

In this section, we recall classical hierarchical clustering in terms of Jardine and
Sibson [23]. Our theory builds directly on the theory for classical hierarchical
clustering, so we need to provide a fair bit of detail, especially since there is a
general lack of standardised notation for hierarchical clustering theory.

We start by recalling the formal definition of a dendrogram, before recalling
dissimilarity measures and ultrametrics. Thereafter, we recall linkage functions,
before finally tying all the concepts together to define classical hierarchical
agglomerative clustering.

Definition I.2.2. A clustering of a set X is a partition of X, and a hierarchical
clustering is a chain in P(X) containing both the bottom and top elements. A
cluster in a clustering is a block in the partition.

Alternatively, a clustering of X is an equivalence relation R ∈ R(X), and a
hierarchical clustering is a chain in R(X) containing both the bottom- and top
elements of R(X). A cluster is, then, an equivalence class in X/R. We will refer
to clusters as equivalence classes, clusters or blocks depending on the context,
all terms being frequently used in clustering literature.

For the remainder of the paper, let R+ denote the non-negative reals. We
generally assume that R+ is equipped with the usual total order ≤.

Definition I.2.3. Given a set X, let P(X) be partially ordered by partition
refinement. A dendrogram is an order preserving map θ : R+ → P(X) for
which the following properties holds:

D1. ∀t ∈ R+ ∃ε > 0 s.t. θ(t) = θ(t + ε);

D2. θ(0) = S(X), the least element of P(X);

D3. ∃t0 > 0 s.t. θ(t0) = {X}, the greatest element of P(X).

We will use the term dendrogram to denote both the graphical and the
functional representation. If im(θ) = {Bi}n

i=0, we assume that the enumeration
is compatible with the order relation on P(X); in other words, that {Bi}n

i=0 is a
chain in P(X). We denote the family of all dendrograms over X by D(X).

A dissimilarity measure on a set X is a function d : X × X → R+,
satisfying

d1. ∀x ∈ X : d(x, x) = 0,

d2. ∀x, y ∈ X : d(x, y) = d(y, x).

36

Background

If d additionally satisfies

d3. ∀x, y, z ∈ X : d(x, z) ≤ max{d(x, y), d(y, z)},

we call d an ultrametric [35]. The pair (X, d) is correspondingly called a
dissimilarity space or an ultrametric space. The family of all dissimilarity
measures over X is denoted by M(X), and the family of all ultrametrics by U(X).

Example I.2.4 (Ultrametric). Property d3 is referred to as the ultrametric
inequality, and is a strengthening of the usual triangle inequality. In an
ultrametric space (X, u), every triple of points is arranged in an isosceles
triangle: Let a, b, c ∈ X, and let the pair a, b be of minimal distance such
that u(a, b) ≤ min{u(a, c), u(b, c)}. The ultrametric inequality gives us

u(a, c) ≤ max{u(a, b), u(b, c)} = u(b, c)
u(b, c) ≤ max{u(b, a), u(a, c)} = u(a, c)

}
⇔ u(a, c) = u(b, c).

Ultrametrics show up in many different contexts, such as p-Adic number
theory [18], infinite trees [20], numerical taxonomy [37] and also within physics
[35], just to cite a few. For hierarchical clustering, ultrametrics are relevant
because the dendrograms over a set are in a bijective relation to the ultrametrics
over the same set [6].

We shall also need the following terms, which apply to any dissimilarity space:
The diameter of (X, d) is given by the maximal inter-point distance:

diam(X, d) = max{ d(x, y) | x, y ∈ X }.

And the separation of (X, d) is the minimal inter point distance:

sep(X, d) = min{ d(x, y) | x, y ∈ X ∧ x ̸= y }.

It is a well known fact that there exists an injective map from dendrograms
to ultrametrics [23]:

ΨX : D(X) −→ U(X).

In [6] the map ΨX is shown to be a bijection. If θ ∈ D(X), the map is defined as

ΨX(θ)(x, y) = min{ t ∈ R+ | ∃B ∈ θ(t) : x, y ∈ B }. (I.1)

That is, the ultrametric distance is the least real number t for which θ maps
to a partition where x and y are in the same block. The minimisation is well
defined due to Axiom D1. The ultrametric can be read from the diagrammatic
representation of the dendrogram as the minimum height you have to ascend
to in order to traverse from one element to the other following the paths in the
tree.

Before we provide a formal definition of classical hierarchical clustering, we
need to recall linkage functions. Our definition follows the lines of Carlsson and
Mémoli [6]:

37

I. Order preserving hierarchical agglomerative clustering

Definition I.2.5. Let P(X) denote the power set of X. A linkage function on
X is a map

L : P(X) × P(X) × M(X) −→ R+,

so that for each partition Q ∈ P(X) and dissimilarity measure d ∈ M(X), the
restriction L|Q×Q×{d} is a dissimilarity measure on Q.

The classical linkage functions are defined as

Single linkage : SL(p, q, d) = minx∈p miny∈q d(x, y),

Complete linkage : CL(p, q, d) = maxx∈p maxy∈q d(x, y),

Average linkage : AL(p, q, d) =
∑

x∈p

∑
y∈q d(x, y)

|p| · |q|
.

Definition I.2.6 (Classical HC). Given a dissimilarity space (X, d) and a linkage
function L, if we follow the procedure outlined in Section I.1.2, using L as the
“notion of dissimilarity”, the result is a chain of partitions {Qi}|X|−1

i=1 together
with the dissimilarities {ρi}|X|−1

i=1 at which the partitions were formed. The
sequence of pairs Q = {(Qi, ρi)}|X|−1

i=1 corresponds uniquely to a dendrogram θQ
as follows:

θQ(x) = Qmax{i∈N | ρi≤x}. (I.2)

We define a classical hierarchical clustering of (X, d) using L to be a
dendrogram

HCL(X, d) = θQ

obtained through this procedure.

Remark I.2.7. Notice that (I.2) maps {(Qi, ρi)}|X|−1
i=1 to a dendrogram if and

only if
sep(Qi, L) ≤ sep(Qi+1, L) for 0 ≤ i < |X| − 1. (I.3)

Otherwise, the ρi will not make up a monotone sequence, and the resulting
function θQ will not be an order preserving map. Although all of SL, AL and
CL satisfy (I.3), it is fully possible to define linkage functions that do not.

Finally, two distinct pairs of elements (p1, q1), (p2, q2) ∈ Q × Q for which

L(p1, q1, d) = L(p2, q2, d) = sep(Q, L),

are referred to as tied, since they are both eligible candidates for the next merge.

I.3 Optimised hierarchical clustering

In this section we devise a permutation invariant version of hierarchical clustering
based on the classical definition. The key to permutation invariance is in dealing
with tied connections. If we consider the procedure for hierarchical clustering
outlined in Section I.1.2, we can resolve tied connections by picking a random

38

Optimised hierarchical clustering

minimal dissimilarity pair. The way the procedure is specified, this turns HCL

into a non-deterministic algorithm; it may produce different dendrograms for
the same input in the presence of ties, depending on which tied pair is selected.
But more importantly, it is capable of producing any dendrogram that can be
produced by any tie resolution order:

Definition I.3.1. Given a dissimilarity space (X, d) and a linkage function L, let
DL(X, d) be the set of all possible outputs from HCL(X, d).

A dissimilarity measure d over a finite set X can be described as an |X|× |X|
real matrix [di,j]. Hence, given an ultrametric u ∈ U(X) we can compute the
pointwise difference

∥u − d∥p = p
√ ∑

x,y∈X

|u(x, y) − d(x, y)|p. (I.4)

We suggest the following definition, recalling the definition of ΨX (I.1):

Definition I.3.2. Given a dissimilarity space (X, d) and a linkage function L, the
optimised hierarchical agglomerative clustering over (X, d) using L is
given by

HCL
opt(X, d) = arg min

θ∈DL(X,d)
∥ΨX(θ) − d∥p. (I.5)

That is; among all dendrograms that can be generated by HCL(X, d),
optimised hierarchical agglomerative clustering picks the dendrogram that is
closest to the original dissimilarity measure. In the tradition of ultrametric
fitting, this is the right choice of candidate.

As DL(X, d) contains all dendrograms generated over all possible permuta-
tions of enumerations of X, the below theorem follows directly from Defini-
tion I.3.2:

Theorem I.3.3. HCL
opt is permutation invariant. That is, the order of

enumeration of the elements of the set X does not affect the output from
HCL

opt(X, d).

And since HCSL is permutation invariant, we have
∣∣DSL(X, d)

∣∣ = 1, yielding

Theorem I.3.4. HCSL
opt(X, d) = HCSL(X, d).

Since HCAL and HCCL are not permutation invariant, there is no correspond-
ing result in these cases. For complete linkage, however, we have the following
theorem. First, notice that due to the definition of complete linkage (Defini-
tion I.2.5), if θ is a solution to HCCL

opt(X, d) and u = ΨX(θ) is the corresponding
ultrametric, then

u(x, y) ≥ d(x, y) ∀x, y ∈ X.

Hence, in the case of complete linkage we can reformulate (I.5) as follows:

HCCL
opt(X, d) = arg min

θ∈DCL(X,d)
∥ΨX(θ)∥p. (I.6)

39

I. Order preserving hierarchical agglomerative clustering

To see why this is the case, notice that if u, u′ ∈ M(X) and both d ≤ u and
d ≤ u′ pointwise, then we can produce two non-negative functions δ, δ′ on X ×X
so that u = d + δ and u′ = d + δ′. In particular, we have u − d = δ, from which
we deduce

∥u − d∥p ≤ ∥u′ − d∥ ⇔ ∥δ∥p ≤ ∥δ′∥p ⇔ ∥d + δ∥p ≤ ∥d + δ′∥p ⇔ ∥u∥p ≤ ∥u′∥p.

Theorem I.3.5. Solving HCCL
opt(X, d) is NP-hard.

Proof. Let G = (V, E) be an undirected graph with vertices V and edges
E ⊆ V × V . Recall the clique problem: Given a positive integer K < |V |, is
there a clique in G of size at least K? Equivalently: is there a set V ′ ⊆ V with
|V ′| ≥ K for which V ′ × V ′ ⊆ E? This is a known NP-hard problem [27].

To reduce clique to HCCL
opt, define a dissimilarity measure on V as follows:

d(v, v′) =
{

1 if (v, v′) ∈ E,

2 otherwise.
(I.7)

Then (V, d) is a dissimilarity space. Let θ be a solution of HCCL
opt(V, d), and set

d = ΨV (θ).
An intrinsic property of CL is that if two blocks p, q ∈ Qi are merged, then

∀v, v′ ∈ p ∪ q : d(v, v′) ≤ CL(p, q, d).

And since we have d(v, v′) = 1 ⇔ (v, v′) ∈ E, it means that for a subset V ′ ⊆ V ,
we have that

∀v, v′∈V ′ : d(v, v′) = 1 ⇔ V ′ is a clique in G. (I.8)

It follows that a largest possible cluster at proximity level 1 is a maximal clique
in G.

We claim that minimising the norm is equivalent to producing a maximal
cluster at proximity level 1: Let d be the |V | × |V | distance matrix [di,j]. Due
to the definition of CL, we have d(v, v′) ∈ {0, 1, 2}. If θ(1) = {Vi}s

i=1, then these
are exactly the blocks that are subsets of cliques, so each Vi contributes with
|Vi|(|Vi| − 1) ones in [di,j].

Having more ones reduces the norm of d. Let Vj be of maximal cardinality
in {Vi}s

i=1. Assume first that Vj has at least two elements more than the next
to largest block, and let |Vj | = P .

Removing one element from Vj reduces the number of ones in the dissimilarity
matrix by P (P − 1) − (P − 1)(P − 2) = 2(P − 1). Let the next to largest block
have Q elements. Transferring the element to this block then increases the
number of ones by (Q + 1)Q − Q(Q − 1) = 2Q. Since Q < P − 1, this means
that the total number of ones is reduced by moving an element from the largest
block to any of the smaller blocks. Hence, achieving the largest possible number
of ones implies maximising the size of the largest block.

40

Order preserving clustering

If now, Vj only has one element more than the next to largest block, moving
an element as above corresponds to keeping the number of ones. Since each Vi

for 1 ≤ i ≤ s is a subset of a clique in G, the maximal number of ones is achieved
by producing a block Vj that contains exactly a maximal clique of G.

Therefore, if I{1}(x) is the indicator function for the set {1}, the size of a
maximal clique in G can be computed as

max
1≤i≤|V |

{ |V |∑
j=1

I{1}
(
di,j

)}
,

counting the maximal number of row-wise ones in [di,j] in O(N2) time. We
therefore conclude that HCCL

opt is NP-hard. ■

The computational hardness of HCCL
opt is directly connected to the

presence of tied connections: every encounter of n tied connections
leads to n! new candidate solutions.

Since neither HCAL
opt is permutation invariant, the authors strongly believe that

this is also NP-hard, although that remains to be proven.

We cannot in general expect the mapping θ 7→ ∥ΨX(θ) − d∥p to be injective,
meaning that the answer to (I.5) may not be unique. Recall that P(X) denotes
the power set of X. We shall consider HCL

opt(X, −) to be the function

HCL
opt(X, −) : M(X) −→ P(D(X)),

mapping a dissimilarity measure over X to a set of dendrograms over X.

I.3.1 Other permutation invariant solutions

Carlsson and Mémoli [6] offer an alternative approach to permutation invariant
hierarchical agglomerative clustering. In their solution, when they face a set
of tied connections, they merge all tied the pairs in one operation, resulting in
permutation invariance.

In the case of order preserving clustering, a family of tied connections can
contain several mutually exclusive merges due to the order relation. Using the
method of Carlsson and Mémoli leads to a problem of figuring which blocks
of tied connections to merge together, and in which combinations and order.
This leads to a combinatorial explosion of alternatives. The method we have
suggested is utterly simple, but it is designed to circumvent this very problem.

I.4 Order preserving clustering

In this section, we determine what it means for an equivalence relation to be
order preserving with regards to a strict partial order, and establish precise
conditions that are necessary and sufficient for a hierarchical agglomerative
clustering algorithm to be order preserving.

41

I. Order preserving hierarchical agglomerative clustering

I.4.1 Order preserving equivalence relations

Recalling the definition of a clustering (Definition I.2.2), let (X, <) be a strict
poset. If R is an equivalence relation on X with quotient map q : X → X/R,
we have already established, in Section I.1.1, that we require

∀x, y∈X : x < y ⇒ q(x) <′ q(y).

That is, we are looking for a particular class of equivalence
relations; namely those for which the quotient map is order
preserving.

Given a strict poset (X, E), there is a particular induced relation on the
quotient set X/R for any equivalence relation R ∈ R(X) [3, §3.1]:

Definition I.4.1. Given a strict poset (X, E) and an equivalence relation
R ∈ R(X), first define the relation S0 on X by

([a], [b]) ∈ S0 ⇔ ∃x, y ∈ X : a ∼ x ∧ b ∼ y ∧ (x, y) ∈ E. (I.9)

The transitive closure of S0 is called the relation on X/R induced by E.
We denote this relation by S.

Example I.4.2. An instructive illustration of what the relation S0 looks like for
a strict poset (X, <) under the equivalence relation R is that of an R-fence [3],
or just fence, for short:

b1 b2 bn−1 bn

· · ·

a1 a2 an−1 an

Triple lines represent equivalences under R, and the arrows represent the order
on (X, <). The fence illustrates visually how one can traverse from a1 to bn

along arrows and through equivalence classes in X/R, and in that case we say
that the fence links b1 to an. The induced relation S has the property
that (a, b) ∈ S if there exists an R-fence in X linking a to b.

Recall that a cycle in a relation R is a sequence of pairs starting and ending
with the same element: (a, b1), (b1, b2), . . . , (bn, a). The below theorem is an
adaptation of [3, Thm.3.1] to strict partial orders.

42

Order preserving clustering

Theorem I.4.3. Let (X, E) be a strict poset, R ∈ R(X), and let S be the
relation on X/R induced by E. Then the following statements are equivalent:

1. S is a strict partial order on X/R;

2. There are no cycles in S0;

3. qR : (X, E) −→ (X/R, S) is order preserving.

Proof. From the definition of strict posets, they contain no cycles, so 1 ⇒ 2.
Since a non-cyclic set is irreflexive, and since S is transitive by construction,
2 ⇒ 1.

Let qR be order preserving. Notice that if S0 is the set defined in (I.9), we
have S0 = qR × qR(E). In particular, for all x, y ∈ X for which (x, y) ∈ E, we
have ([x], [y]) ∈ S0. Assume that S is not a strict order. Then there is a cycle in
S0; that is there are x, y ∈ X for which (x, y) ∈ E, but ([y], [x]) ∈ S0 also. This
yields

∃a′, b′ ∈ X : a′ ∼ x ∧ b′ ∼ y ∧ (b′, a′) ∈ E.

But, since ([x], [y]) ∈ S0, we also have

∃a, b ∈ X : a ∼ x ∧ b ∼ y ∧ (a, b) ∈ E.

This yields a ∼ a′ and b ∼ b′, so we have(
qR(a), qR(b)

)
∈ S0 ∧ qR(b) = qR(b′) ∧

(
qR(b′), qR(a′)

)
∈ S0.

But, since we have both qR(a) = qR(a′) and (a, b) ∈ E, this contradicts the fact
that qR is order preserving, so our assumption that both ([x], [y]) and ([y], [x])
are elements of S0 must be wrong. Hence, if qR is order preserving, there are no
cycles in S0, and S is a strict partial order on X/R. This shows that 3 ⇒ 1.

Finally, let S be a strict partial order, and assume that qR is not order
preserving. Then, there exists x, y ∈ X where (x, y) ∈ E and for which at least
one of ([x], [y]) ̸∈ S or ([y], [x]) ∈ S holds. Now, ([x], [y]) ∈ S by Definition I.4.1.
Therefore, ([y], [x]) ∈ S implies that S has a cycle, contradicting the fact that S
is a strict partial order. ■

Definition I.4.4. Let (X, E) be a strict poset. An equivalence relation R ∈ R(X)
is regular if there exists an order on X/R for which the quotient map is order
preserving. We denote the set of all regular equivalence relations over an
ordered set (X, <) by R(X, <). Likewise, the family of all regular partitions
of (X, <) is denoted P(X, <).

In general, we will denote the induced order relation for a strict poset (X, <)
and a regular equivalence relation R ∈ R(X, <) by <′.

43

I. Order preserving hierarchical agglomerative clustering

I.4.2 The structure of regular equivalence relations

We now establish a sufficient and necessary condition for an agglomerative
clustering algorithm to be order preserving. Recall that, if A ⊆ X, X/A denotes
the quotient for which the quotient map qA : X → X/A sends all of A to a point,
and is the identity otherwise. That is, for every x, y ∈ X, we have

qA(x) = qA(y) ⇔ x, y ∈ A.

Theorem I.4.5. If A ⊆ X for a strict poset (X, <), the quotient map qA : X →
X/A is order preserving if and only if A is an antichain in (X, <).

Proof. If A is not an antichain, then X/A places comparable elements in the
same equivalence class, so qA is not order preserving.

Assume A is an antichain. If qA is not order preserving, then there is a cycle
in (X/A, <′), and since we have only one non-singleton equivalence class, the
cycle must be on the form

b A c.

But this means we have a, a′ ∈ A for which b < a and a′ < c, but since c < b,
this implies a′ < a, contradicting the fact that A is an antichain. ■

Since a composition of order preserving maps is order preserving, this also
applies to a composition of quotient maps for a chain of regular equivalence
relations R1 ⊆ · · · ⊆ Rn. Combining this with Theorem I.4.5, we have the
following:

A clustering of a strict poset will be order preserving if it can
be produced as a sequence of pairwise merges of non-comparable
elements.

We close the section with an observation about the family of all hierarchical
clusterings over a strict poset:

Theorem I.4.6. 1 For a strict poset (X, <), the set P(X, <) of regular partitions
over (X, <) has S(X) as its least element. Unless < is the empty order, there is
no greatest element.

Proof. S(X) is always a regular partition, so S(X) ∈ P(X, <). And since S(X)
is a refinement of every partition of X, S(X) is the least element of P(X, <).

If the order relation is not empty, then there are at least two elements that
are comparable, and, according to Theorem I.4.5, they cannot be in the same
equivalence class. Hence, there is no greatest element. ■

1Thm I.4.6 has been identified to contain an error. As the theorem appears in a published
paper, it is stated here in its original form. A corrected version of the theorem is made available
in Appendix A.

44

Partial dendrograms

The situation of Theorem I.4.6 is depicted in Figure I.2, and has already
been discussed in Section I.1.2: In the case of tied connections that represent
mutually exclusive merges, choosing to merge one connection over the other may
lead to very different results. We therefore need a strategy to select one of these
solutions over the others. This will be the main focus of Sections I.5 and I.6.

I.5 Partial dendrograms

In this section we formally define partial dendrograms, and then construct the
embedding of partial dendrograms into ultrametrics.

Based on the discussion of partial dendrograms in Section I.1.2 together with
the definition of dendrograms (Definition I.2.3), we suggest the following:

Definition I.5.1. A partial dendrogram over (X, <) is an order preserving
map θ : R+ → P(X, <) satisfying properties D1 and D2 of Definition I.2.3.

The only difference between a dendrogram and a partial dendrogram is that
for a partial dendrogram we do not require the existence of a greatest element in
the image of θ. Partial dendrograms are clearly a generalisation of dendrograms.
To distinguish between the two, we will occasionally refer to the non-partial
dendrograms as complete dendrograms. We denote the family of partial
dendrograms over (X, <) by PD(X, <).

For a partial dendrogram θ, we will write θ(∞) to denote the maximal
partition in the image of θ. Since P(X, <) is finite, a partial dendrogram
θ ∈ PD(X, <) is eventually constant; that is, there exists a positive real number
t0 for which

t ≥ t0 ⇒ θ(t) = θ(∞).

We refer to this number as the diameter of θ; formally,

diam(θ) = min{x ∈ R+ | θ(x) = θ(∞)}.

We now turn to the task of constructing the embedding. Looking at the partial
dendrograms of Figure I.3, each connected component in a partial dendrogram
is a complete dendrogram over its leaf nodes. Since complete dendrograms map
to ultrametrics, each connected component gives rise to an ultrametric on the
subset of X constituted by the connected component’s leaf nodes. That is, if
θ(∞) = {Bj}k

j=1, and if θj is the complete dendrogram over Bj for 1 ≤ j ≤ k,
we can define the ultrametrics uj = ΨBj (θj) so that {(Bj , uj)}k

j=1 is a disjoint
family of ultrametric spaces, which union covers X.

Now consider the following general result.

Lemma I.5.2. Given a family of bounded, disjoint ultrametric spaces
{(Xj , dj)}n

j=1 together with a positive real number K ≥ maxj {diam(Xj , dj)},
the map

d∪ :
⋃

Xj ×
⋃

Xj −→ R+

45

I. Order preserving hierarchical agglomerative clustering

given by

d∪(x, y) =
{

dj(x, y) if ∃j : x, y∈Xj ,

K otherwise

is an ultrametric on
⋃

j Xj.

Proof. To prove that the ultrametric inequality holds, we start by showing that
d∪1,2 is an ultrametric on the restriction to the disjoint union X1 ∪X2: Let x, y ∈
X1 and z ∈ X2, and choose a positive K ≥ max{diam(X1, d1), diam(X2, d2)}.
We now have

d∪1,2(x, z) = K d∪1,2(x, y) = d1(x, y) d∪1,2(y, z) = K.

This means that every triple of points are either already contained in an
ultrametric space, or they make up an isosceles triangle. In both cases, the
ultrametric inequality holds, according to the observation in Example I.2.4.

By induction, we can now prove that
(
(X1∪X2)∪X3), d∪1,2,3

)
is an ultrametric

space, and so on, until all the (Xj , dj) are included. ■

Hence, for our partial dendrogram θ with θ(∞) = {Bj}k
j=1 and subspace

ultrametrics {uj}k
j=1, pick a K ≥ maxj{diam(Bj , uj)}, and define uθ : X × X →

R+ by

uθ(x, y) =
{
uj(x, y) if ∃j : x, y∈Bj ,

K otherwise.
(I.10)

According to Lemma I.5.2, equation (I.10) is an ultrametric on X.

Definition I.5.3. Given an ordered space (X, <) and a non-negative real number
ε, the ultrametric completion on ε is the map Uε : PD(X, <) −→ U(X)
mapping

Uε : θ 7→ uθ,

where uθ is defined as in (I.10), setting K = diam(θ) + ε.

Example I.5.4. To illustrate how the ultrametric completion turns out in the
case of the partial dendrograms of Figure I.3, we have the following figure:

The above discussion serves to show that the construction is well defined.
Our next goal is two-fold. First, we wish to provide an (explicit) function from
partial dendrograms to dendrograms that realises this map. And second, we
wish to establish conditions for this function to be an embedding; that is, an
injective map. Injectivity is not strictly required for the theory to work, but
it increases its discriminative power. An example to the contrary is provided
towards the end of the section.

We have the map ΨX : D(X) −→ U(X) from (I.1), mapping dendrograms to
ultrametrics. We now seek a map κε : PD(X, <) −→ D(X) making the following

46

Partial dendrograms

1

2

b c a d
a bc d

1

2

a d b c
c ad b

1

2

a c b d
ac bd

Figure I.4: “Completed” dendrograms corresponding to the partial dendrograms
of Figure I.3, using ε = 0.5. The completions are marked by the dashed lines.

diagram commute:

D(X) U(X)

PD(X, <)

ΨX

κε
Uε

. (I.11)

Seeing that κε must map partial dendrograms to complete dendrograms, a quick
glance at Figure I.4 suggests the following:

κε(θ)(x) =
{

θ(x) for x < diam(θ) + ε

{X} otherwise.

It is straightforward to check that κε(θ) is a complete dendrogram.

Theorem I.5.5. ΨX ◦ κε = Uε. That is; diagram (I.11) commutes.

Proof. Assume first that θ ∈ PD(X, <) is a proper partial dendrogram, and
that im(θ) = {Bi}n

i=0. Let the coarsest partition in the image of θ be given by
Bn = {Bj}m

j=1. That is, each block Bj corresponds to a connected component
in the partial dendrogram. Pick a block B ∈ Bn and assume x, y ∈ B.

If
k = min{ i ∈ N | ∃B′ ∈ Bi : B = B′ },

then Bk is the finest partition containing all of B in one block. Since B ⊆ X,
the partitions

BB
i = { B ∩ B′ | B′ ∈ Bi } for 1 ≤ i ≤ k

constitute a chain in P(B) containing both S(B) and {B}. Hence, we can
construct a complete dendrogram over B by defining

θB(x) = { B ∩ B′ | B′ ∈ θ(x) }. (I.12)

47

I. Order preserving hierarchical agglomerative clustering

This is exactly the complete dendrogram corresponding to the connected
component of the tree over X having the elements of B as leaf nodes. By
Definition I.5.3,

x, y ∈ B ⇒ Uε(θ)(x, y) = ΨB(θB)(x, y). (I.13)

Due to (I.12), we have

x, y ∈ B ⇒ (∃B ∈ θB(x) : x, y ∈ B ⇔ ∃B′ ∈ θ(x) : x, y ∈ B′)
⇒ min{ t ∈ R+ | ∃B ∈ θB(t) : x, y ∈ B }

= min{ t ∈ R+ | ∃B′ ∈ θ(t) : x, y ∈ B′ }.

Hence, by the definition of ΨX in (I.1) we conclude that

x, y ∈ B ⇒ ΨB(θB)(x, y) = (ΨX ◦ κε)(θ)(x, y).

Combining this with (I.13), we get that whenever x, y ∈ B, we have ΨX ◦κε = Uε.
On the other side, let x ∈ Bi and y ∈ Bj with i ̸= j. By definition, we have

Uε(θ)(x, y) = diam(θ) + ε. And, since there is no block in θ(∞) containing both
x and y, we find that the minimal partition in im(κε(θ)) containing x and y
in one block is {X}. But this means that ΨX(κε(θ))(x, y) = diam(θ) + ε, so
ΨX ◦ κε = Uε holds in this case too.

Finally, if θ is a complete dendrogram, we have κε(θ) = θ, so ΨX ◦ κε(θ) =
ΨX(θ). But since θ(∞) = {X}, it follows that Uε(θ) maps exactly to the
ultrametric over X defined by ΨX(θ). ■

Theorem I.5.6. Let (X, <) be a strict poset with a non-empty order relation.
Then Uε is injective if ε > 0.

Proof. Injectivity follows if κε is injective, so assume that κε(θ) = κε(θ′). Then,
for every x < diam(θ) + ε, we have κε(θ)(x) = κε(θ′)(x) ⇔ θ(x) = θ′(x). ■

Example I.5.7. If ε is not chosen to be strictly positive, the map Uε will not
necessarily be injective. Consider the below dendrograms.

1

a b c d

1

a b c d

1

a b c d

Both of the partial dendrograms are mapped to the same complete dendrogram
(on the right) for ε = 0. This illustrates what we mean by reduced discriminative
power in the case of a non-injective completion. Since the partial dendrograms
exhibit distinctively different information, it is desirable that the methodology
can distinguish them.

48

Hierarchical clustering of ordered sets

I.6 Hierarchical clustering of ordered sets

We are now ready to embark on the specification of order preserving hierarchical
clustering of ordered sets. We do this by extending our notion of optimised
hierarchical clustering from Section I.3. For the remainder of the paper, let an
ordered dissimilarity space be denoted by (X, <, d).

Consider the following modification of classical hierarchical clustering. The
only difference is that for each iteration, we check that there are elements
that actually can be merged while preserving the order relation. According to
Theorem I.4.5, this means merging a pair of non-comparable elements at each
iteration. Recall that S(X) denotes the singleton partition of X.

Let (X, <, d) be given together with a linkage function L.

1. Set Q0 = S(X), and endow Q0 with the induced order relation <0.

2. Among the pairs of non-comparable clusters, pick a pair of minimal
dissimilarity according to L, and combine them into one cluster by taking
their union.

3. Endow the new clustering with the induced order relation.

4. If all elements of X are in the same cluster, or if all clusters are comparable,
we are done. Otherwise, go to Step 2 and continue.

The procedure results in a chain of ordered partitions {(Qi, <i)}m
i=0 together

with the dissimilarities {ρi}m
i=0 at which the partitions where formed. For an

ordered set (X, <), recall that non-comparability of a, b ∈ X is denoted a⊥b.
Let the non-comparable separation of (X, <, d), be given by

sep⊥(X, <, d) = min
x,y∈X

{ d(x, y) | x ̸= y ∧ x⊥y }.

The reader may wish to compare the following lemma to Remark I.2.7.

Lemma I.6.1. The sequence of pairs {(Qi, ρi)}m
i=0 produced by the above procedure

maps to a partial dendrogram through application of (I.2) if and only if

sep⊥(Qi, <i, L) ≤ sep⊥(Qi+1, <i+1, L).

Since the singleton partition Q0 maps to a partial dendrogram, the algorithm
will produce a partial dendrogram for any ordered dissimilarity space, and since
there can be at most |X| − 1 merges, the procedure always terminates.

As for classical hierarchical clustering, the procedure is non-deterministic in
the sense that given a set of tied pairs, we may pick a random pair for the next
merge. Hence, the procedure is capable of producing partial dendrograms for all
possible tie resolution strategies:

Definition I.6.2. Given an ordered dissimilarity space (X, <, d) and a linkage
function L, we write DL(X, <, d) to denote the set of all possible outputs from
the above procedure

49

I. Order preserving hierarchical agglomerative clustering

The set DL(X, <, d) differs from DL(X, d) in two important ways:

• DL(X, <, d) contains partial dendrograms, not dendrograms.

• The cardinality of DL(X, <, d) is at least that of DL(X, d), and often
higher, due to mutually exclusive merges and the “dead ends” in P(X, <)
(see Figure I.2).

Even for single linkage we have
∣∣DSL(X, <, d)

∣∣ > 1 if there are mutually exclusive
tied connections.

In the spirit of optimised hierarchical clustering, we suggest the following
definition, employing the ultrametric completion Uε from Definition I.5.3:

Definition I.6.3. Given an ordered dissimilarity space (X, <, d) together with
a linkage function L, let ε > 0. An order preserving hierarchical
agglomerative clustering using L and ε is given by

HC<L
opt,ε(X, <, d) = arg min

θ∈DL(X,<,d)
∥Uε(θ) − d∥p. (I.14)

The next theorem shows that if we remove the order relation, then optimised
clustering and order preserving clustering coincide. Keep in mind that a
dissimilarity space is an ordered dissimilarity space with an empty order relation;
that is, (X, d) = (X, ∅, d).

Theorem I.6.4. If the order relation is empty, then order preserving optimised
hierarchical clustering and optimised hierarchical clustering coincide:

HC<L
opt,ε(X, ∅, d) = HCL

opt(X, d).

Proof. First, notice that

∀ (Q, <Q) ∈ P(X, ∅) : sep⊥(Q, <Q, L) = sep(Q, L),

where <Q denotes the (trivial) induced order. Hence, we have DL(X, ∅, d) =
DL(X, d). Since Uε|D(X) = ΨX , the result follows. ■

I.6.1 On the choice of ε

In HC<L
opt,ε(X, <, d) we identify the elements from DL(X, <, d) that are closest

to the dissimilarity measure d when measured in the p-norm. The injectivity of
Uε induces a relation ⪯d,ε on PD(X, <) defined by

θ ⪯d,ε θ′ ⇔ ∥Uε(θ) − d∥p ≤ ∥Uε(θ′) − d∥p,

and the optimisation finds the minimal elements under this order.
The choice of ε may affect the ordering of dendrograms under ⪯d,ε. We show

this by providing an alternative formula for ∥u − d∥p that better expresses the
effect of the choice of ε. Assume θ is a partial dendrogram over (X, <) with
θ(∞) = {Bi}m

i=1, and let Uε(θ) = u. We split the sum for computing ∥u− d∥p in

50

Hierarchical clustering of ordered sets

two: the intra-block differences and the inter-block differences. The intra-block
differences are independent of ε, and are given by

α =
m∑

i=1

∑
x,y∈Bi

|u(x, y) − d(x, y)|p. (I.15)

On the other hand, the inter-block differences are dependent on ε, and can
be computed as

βε =
∑

(x,y)∈Bi×Bj

i̸=j

|diam(θ) + ε − d(x, y)|p. (I.16)

This yields ∥u − d∥p = p√
α + βε. If we think of u as an approximation of d, and

saying that |X| = N , the mean p-th error of this approximation can be expressed
as a function of ε:

Ed(ε|θ, p) = 1
N

∥u − d∥p
p = α

N
+ 1

N

∑
(x,y)∈Bi×Bj

i ̸=j

|diam(θ) + ε − d(x, y)|p.

From the formula for Ed(ε|θ, p), we see that when ε becomes large, the
inter-block differences dominate the approximation error. Thus, for increasing
ε, having low error eventually equals having few inter-block pairs. As a result,
large ε will lead to clusterings where as many elements as possible are placed in
one block, since this is the most effective method for reducing the number of
inter-block pairs.

On the other hand, a low value of ε will move the weight towards optimising
the intra-block ultrametric fit and move the bias away from large block sizes.

From the authors’ perspective, focusing on block sizes seems to be less in the
spirit of ultrametric fitting, compared to optimising the intra-block ultrametric
fit. As such, it is the authors’ opinion that this points towards selecting a low
value for ε. In the process of choosing, we have the following result at our aid:

Theorem I.6.5. For any finite ordered dissimilarity space (X, <, d) and linkage
function L, there exists an ε0 > 0 for which

ε, ε′ ∈ (0, ε0) ⇒
(
DL(X, <, d), ⪯d,ε) ≈

(
DL(X, <, d), ⪯d,ε′).

That is; all ε ∈ (0, ε0) induce the same order on the partial dendrograms.

Proof. Since X is finite, DL(X, <, d) is also finite. And according to Ed(ε|θ, p),
if the cardinality of DL(X, <, d) is n, there are at most pn positive values of ε
that are distinct global minima of partial dendrograms in DL(X, <, d). But this
means there is a finite set of ε for which the order on (DL(X, <), ⪯ε,p) changes.
And since all these values are strictly positive, they have a strictly positive lower
bound. ■

51

I. Order preserving hierarchical agglomerative clustering

Since the value of ε0 depends on DL(X, <, d), it is non-trivial to compute.
For practical applications, we recommend to choose a very small positive number
for ε, but not so small that it becomes zero due to floating point rounding when
added to the diameter of the partial dendrograms.

I.6.2 Idempotency of HC<L
opt,ε

A detailed axiomatic analysis along the lines of for example Ackerman and
Ben-David [1] is beyond the scope of this paper, and is considered for future
work. We still include a proof of idempotency of HC<L

opt,ε, since this is an essential
property of classical hierarchical clustering.

Idempotency of hierarchical clustering necessarily depends on the linkage
function. We introduce the following concept, that allows us to prove this
property for a range of linkage functions: We say that L is a convex linkage
function if we always have

SL(p, q, d) ≤ L(p, q, d) ≤ CL(p, q, d).

Notice that if u is an ultrametric on X, the ultrametric inequality yields

u(a, b) = sep(X, u) ⇒ ∀c ∈ X : u(a, c) = u(b, c),

so if L is a convex linkage function and u(a, b) = sep(X, u), we have

L({a, b}, {c}) = L({a}, {c}) = L({b}, {c}) ∀c ̸= a, b.

This is to say that a convex linkage function preserves the structure of the
original ultrametric when minimal dissimilarity elements are merged. As a result,
for any u ∈ U(X), the set DL(X, u) contains exactly one element, namely the
dendrogram corresponding to the ultrametric, which is why classical hierarchical
clustering is idempotent.

For ordered spaces, the case is different. It is easy to construct an ordered
ultrametric space (X, <, u) for which u(a, b) = sep(X, u) and a < b, in which
case the ultrametric cannot be reproduced. Hence, all of U(X) cannot be fixed
points under Uε ◦ HC<L

opt,ε(X, <, −), but the mapping is still idempotent:

Theorem I.6.6 (Idempotency). For an ordered dissimilarity space (X, <, d) and
a convex linkage function L, we have

θ ∈ HC<L
opt,ε(X, <, d) ⇒ HC<L

opt,ε (X, <,Uε(θ)) = {θ}.

Proof. Let θ(∞) = {Bi}m
i=1. Then each Bi is an antichain in (X, <), so we have

∀x, y ∈ Bi : sep(Bi, u|Bi) = sep⊥(Bi, u|Bi) for 1 ≤ i ≤ m.

Since ε > 0, we also have

x, y ∈ Bi ⇒ u(x, y) < diam(X, u) for 1 ≤ i ≤ m.

52

Polynomial time approximation

And, lastly, since every pair of comparable elements are in pairwise different
blocks, we have

x < y ∨ y < x ⇒ u(x, y) = diam(X, u).

Now, since L is convex, based on the discussion preceding the theorem, the intra-
block structure of every block will be preserved. And, since every inter-block
dissimilarity is accompanied by comparability across blocks, the procedure for
generation of DL(X, <,Uε(θ)) will exactly reproduce the intra block structure
of all blocks and then halt. Hence, DL(X, <,Uε(θ)) = {θ}. ■

I.7 Polynomial time approximation

In the absence of an efficient algorithm for HC<L
opt,ε, this section provides a

polynomial time approximation scheme. The efficacy as approximation is
demonstrated in Section I.8, and a demonstration on real world data is given in
Section I.9.

Recall the set DL(X, <, d) of partial dendrograms over (X, <, d) from
Definition I.6.2. The algorithm for producing a random element of DL(X, <, d)
is described at the beginning of Section I.6; the key is to pick a random pair for
merging whenever we encounter a set of tied connections.

The approximation model is deceivingly simple; we generate a set of random
partial dendrograms, and choose the one with the best ultrametric fit.

Definition I.7.1. Let (X, <, d) be given, and let N be a positive integer. For
any random selection of N partial dendrograms {θi}i from DL(X, <, d), an N-
fold approximation of HC<L

opt,ε(X, <, d) is a partial dendrogram θ ∈ {θi}i

minimising ∥Uε(θ)−d∥p. We denote the N -fold approximation scheme by HC<L
N,ε.

I.7.1 Running time complexity

Assume that |X| = n. In the worst case, we may have to check
(

n
2
)

pairs to find
one that is not comparable, and the test for a⊥b has complexity O(n2), leading
to a complexity of O(n4) of finding a mergeable pair. Since there are up to n − 1
merges, the worst case estimate of the running time complexity for producing
one element in DL(X, <, d) is O(n5).

A part of this estimate is the number of comparability tests we have to
perform in order to find a mergeable pair. For a sparse order relation, we may
have to test significantly less than

(
n
2
)

pairs before finding a mergeable pair: if K
is the expected number of test we have to do, the expected complexity of finding
a mergeable pair becomes O(Kn2). This yields a total expected algorithmic
complexity of O(Kn3). If the order relation is empty, we have K = 1, and the
complexity of producing a dendrogram becomes O(n3), which is the running
time complexity of classical hierarchical clustering. Hence, if the order relation
is sparse, we can generally expect the algorithm to execute significantly faster
than the worst case estimate.

53

I. Order preserving hierarchical agglomerative clustering

When producing an N -fold approximation, the N random partial dendro-
grams can be generated in parallel, reducing the computational time of the
approximation. For the required number of dendrograms to obtain a good
approximation, please see Section I.8.

I.8 Demonstration of approximation efficacy on randomly
generated data

The purpose of the demonstration is to check to which degree the approximation
reproduces the order preserving clusterings of HC<L

opt,ε. We start by describing
the random data model and the quality measures we use in assessing the efficacy
of the approximation, before presenting the experimental setup and the results.

I.8.1 Random ordered dissimilarity spaces

To test the correctness and convergence ratio of the approximation scheme, we
employ randomly generated ordered dissimilarity spaces. The random model
consists of two parts: the random partial order and the random dissimilarity
measure.

I.8.1.1 Random partial order

A partial order is equivalent to a transitively closed directed acyclic graph, so
we can use any random model for directed acyclic graphs to generate random
partial orders. We choose to use the classical Erdős-Rényi random graph model
[4]. Recall that a directed acyclic graph on n vertices is a binary n × n adjacency
matrix that is permutation similar to a strictly upper triangular matrix; that is,
there exists a permutation that, when applied to both the rows and the columns
of one matrix, transforms it into the other. Let this family of n × n matrices
be denoted by A(n). For a number p ∈ [0, 1], the sub-family A(n, p) ⊆ A(n)
is defined as follows: for A ∈ A(n), let A′ be strictly upper triangular and
permutation similar to A. Then each entry above the diagonal of A′ is 1 with
probability p. The sought partial order is the transitive closure of this graph;
we denote the corresponding set of transitively closed directed acyclic graphs
by A(n, p).

I.8.1.2 Random dissimilarity measure

If |X| = n, a dissimilarity measure over X with no tied connections consists of(
n
2
)

distinct values. Hence, any permutation of the sequence {1, . . . ,
(

n
2
)
} is a

non-tied random dissimilarity measure over X.
To generate tied connections, let t ≥ 1 be the expected number of ties

per level. That is, for each unique value in the dissimilarity measure, that
value is expected to have multiplicity t. In the case where t does not divide(

n
2
)
, we resolve this by setting the multiplicity of the largest dissimilarity to((

n
2
)

mod t
)
.

54

Demonstration of approximation efficacy on randomly generated data

We write D(n, t) to denote the family of random dissimilarity measures over
sets of n elements with an expected number of t ties per level.

Definition I.8.1. Given positive integers n and t together with p ∈ [0, 1], the
family of random ordered dissimilarity spaces generated by (n, p, t) is
given by

O(n, p, t) = A(n, p) × D(n, t).

I.8.2 Measures of cluster quality

In the demonstration, we start by generating a random ordered dissimilarity space.
We then run the optimal clustering method on the space, finding the optimal
order preserving hierarchical clustering. Finally, we run the approximation
scheme on the space and study to which degree the approximation manages to
reproduce the optimal hierarchical clustering. For this, we need a quantitative
measure of clustering quality relative a known optimum.

A large body of literature exists on the topic of comparing clusterings (see for
instance [38] for a brief review). We have landed on the rather popular adjusted
Rand index [19] to measure the ability of the approximation in finding a decent
partition, comparing against the optimal result.

Less work is done on this type of comparison for partial orders and directed
acyclic graphs. We suggest to use a modified version of the adjusted Rand index
for this purpose too, based on an adaptation of the Rand index used for network
analysis [17]. For an introduction to the Rand index, and also to some of the
versions of the adjusted Rand index, see [13, 19, 36].

I.8.2.1 Adjusted Rand index for partition quality

The Rand index compares two clusterings by computing the percentage of
corresponding decisions made in forming the clusterings; that is, counting
whether pairs of elements are placed together in both clusterings or apart in both
clusterings. An adjusted Rand index reports in the range (−∞, 1], where zero is
equivalent to a random draw, and anything above zero is better than chance. We
use the adjusted Rand index (ARI) to compute the efficacy of the approximation
in finding a partition close to a given planted partition. This corresponds to
what Gates and Ahn [13] refers to as a one sided Rand index, since one of the
partitions are given, whereas the other is drawn from some distribution. In the
below demonstration, we assume that the approximating partition is drawn from
the set of all partitions over X under the uniform distribution.

I.8.2.2 Adjusted Rand index for induced order relations

When comparing induced orders on partitions over a set, unless the partitions
coincide, it is not obvious which blocks in one partition correspond to which
blocks in the other. To overcome this problem, we base our measurements on
the base space projection:

55

I. Order preserving hierarchical agglomerative clustering

Definition I.8.2. For an ordered set (X, E) and a partition Q of X with induced
order E′, the base space projection of (Q, E′) onto X is the order relation
EQ on X defined as

(x, y) ∈ EQ ⇔ ([x], [y]) ∈ E′.

This allows us to compare the induced orders in terms of different orders on X.
Notice that if the induced order E′ is a [strict] partial order on Q, then EQ is a
[strict] partial order on X.

Hoffman, Steinley and Brusco [17] demonstrate that the adjusted Rand index
can be used to detect missing links in networks by computing the similarity
of edge sets. The concept relies on the fact that a network link and a link in
an equivalence relation are not that different: Both networks and equivalence
relations are special classes of relations, and the Rand index simply counts
the number of coincidences and mismatches between two relation sets. While
Hoffman, Steinley and Brusco [17] uses the ARI to compare elements within a
network, we use the same method to compare across networks.

Let A and B be the adjacency matrices of two base space projections, and
let Ai denote the i-th row of A, and likewise for Bi. If ⟨a, b⟩ is the inner product
of a and b, we define

ai = ⟨Ai, Bi⟩ ci = ⟨Ai, 1 − Bi⟩
bi = ⟨1 − Ai, Bi⟩ di = ⟨1 − Ai, 1 − Bi⟩.

Here, ai is the number of common direct descendants of i in both relations, bi

is the number of descendants of i found in A but not in B, ci is the number of
descendants of i in B but not in A, while di counts the common non-descendants
of i in the two relations. Using this, we can compute the element wise adjusted
order Rand index

ōARIi = 2(aidi − bici)
(ai + bi)(bi + di) + (ai + ci)(ci + di)

for 1 ≤ i ≤ n,

measuring the element wise order correlation between the base space projections
in the Hubert-Arabie adjusted Rand index [19, 40]2. Notice that we compare the
i-th row in A to the i-row in B since these rows correspond to the projections’
respective descentand relations for the i-th element in X. In [17], the above
index is computed for each element pair within the network to produce the
intra-network similarity coefficient.

Since we are interested in the overall match, we choose to report on the mean
value, defining the adjusted order Rand index for A and B as

ōARI(A, B) = 1
n

n∑
i=1

ōARIi.

2This particular formulation of the adjusted Rand index relies on the networks having
known and fixed labels, so that we know which vertices map to which vertices [40], which
indeed holds for the base space projections of two different induced order relations.

56

Demonstration of approximation efficacy on randomly generated data

I.8.2.3 Normalised ultrametric fit

A natural choice of quality measure is to report the ultrametric fit ∥Uε(θ)−d∥p

of the obtained partial dendrogram θ, especially if we can compare it to the
ultrametric fit of the optimal solution. The scale of the ultrametric fit depends
heavily on both the size of the space and the order of the norm, so we choose to
normalise. Also, we invert the normalised value, so that the optimal fit has a
value of 1, and a worst possible fit has value 0. This makes it easy to compare
the convergence of the ultrametric fit to the convergence of the ARI and ōARI.

Definition I.8.3. Given a set of partial dendrograms {θi} over (X, <, d), let their
respective ultrametric fits be given by δi = ∥Uε(θi) − d∥p. The normalised
ultrametric fit are the corresponding values

δ̂i = 1 − δi − mini{δi}
maxi{δi} − mini{δi}

.

In the presence of a reference solution, we substitute mini{δi} with the ultrametric
fit of the reference.

I.8.2.4 Ultrametric fit relative the optimal ultrametric

The reference partition can be reached through different sequences of merges,
and neither AL nor CL are invariant in this respect. Neither ARI, ōARI
nor ultrametric fit captures the match between the optimal hierarchy and the
approximated hierarchy. We therefore also include plots of the difference between
the optimal ultrametric uopt and the approximated ultrametric uN,ε. Since
both ultrametrics are equivalent to their respective hierarchies, the magnitude
∥uopt −uN,ε∥p can be interpreted as a measure of difference in hierarchies. In the
below plots, this is reported as opt.fit. As for the ultrametric fit, we normalise
and invert the values for easy comparison.

I.8.3 Demonstration on randomly generated data

The experiments in the demonstration split in two. First, we demonstrate
the efficacy of the approximation relative a known optimal solution, to see to
which degree HC<L

N,ε manages to approximate HC<L
opt,ε. Second, we study the

convergence rate of the ultrametric fit for larger spaces with much larger numbers
of tied connections; spaces for which the optimal algorithm does not terminate
within any reasonable time.

For each parameter combination in Table I.1, a set of 30 random ordered
dissimilarity spaces are generated. For each space, 100 approximations are
generated according to the prescribed procedure. We then bootstrap the
approximations to generate N -fold approximations for different N .

We present the results in terms of convergence plots, showing the efficacy of
the approximation as a function of the sample size N . For the results where a
reference solution is available, the plots contain four curves:

57

I. Order preserving hierarchical agglomerative clustering

n link probability (p) expected ties (t) reference
Figure I.5 200 0.01, 0.02, 0.05 5 yes
Figure I.6 200 0.05 3, 7 yes
Figure I.7 500 0.01 10, 50, 100 no
Figure I.8 500 0.05 50, 100 no
Figure I.9 500 0.10 100 no

Table I.1: Parameter settings for the demonstrations. Each of the presented
parameter settings are executed for L ∈ {SL, AL, CL}. The right-most column
indicates whether the reference clustering is available or not. The left-most
column refers to the figure wherein the outcome of the corresponding experiment
is presented. The parameters have been chosen to illustrate how the algorithm
behaviour changes with changing expected number of ties, changing link
probability in the random partial order, and choice of linkage function.

E(ARI) - The expected adjusted Rand index of the approximated partition.
E(ōARI) - The expected adjusted Rand index of the approximated induced

order.
norm.fit - The mean of the normalised fit.
opt.fit - The mean of the normalised difference between the approximated

ultrametric and the optimal ultrametric.

For the results where no reference solution is available, we present the
distribution of the normalised fit.

The results are presented in Figures I.5, I.6, I.7 and I.9 on pages 59, 60, 61
and 62, respectively. The parameter settings corresponding to the figures are
given in Table I.1 for easy reference, and are also repeated in the figure text.

As we can see from the below results, the approximation generally performs
very well. We also see that a large expected number of tied connections requires
larger sample size for a good approximation, while a more dense order relation
(higher value of p) seems to require a smaller sample compared to a more sparse
relation. We also see that there is a seemingly strong correlation between the
ultrametric fit of the approximation and the similarity between the approximation
ultrametric and the optimal ultrametric.

Regarding choice of linkage function, the approximation only requires small
samples for both SL and AL, while CL requires larger samples for larger numbers
of tied connections.

58

Demonstration of approximation efficacy on randomly generated data

SL, p = 0.01

2 4 6 8 10

0.6

0.8

1

1

AL, p = 0.01

2 4 6 8 10

0.6

0.8

1

1

CL, p = 0.01

2 4 6 8 10

0.6

0.8

1

1
SL, p = 0.02

2 4 6 8 10

0.6

0.8

1

1

AL, p = 0.02

2 4 6 8 10

0.6

0.8

1

1

CL, p = 0.02

2 4 6 8 10

0.6

0.8

1

1
SL, p = 0.05

2 4 6 8 10

0.6

0.8

1

1

AL, p = 0.05

2 4 6 8 10

0.6

0.8

1

1

CL, p = 0.05

2 4 6 8 10

0.6

0.8

1

1

E(ARI); E(ōARI); norm.fit; opt.fit

Figure I.5: Efficacy for n = 200 and t = 5 with p ∈ {0.01, 0.02, 0.05}. The first
axis is the size of the drawn sample.

59

I. Order preserving hierarchical agglomerative clustering

SL, t = 3

2 4 6 8 10

0.6

0.8

1

1

AL, t = 3

2 4 6 8 10

0.6

0.8

1

1

CL, t = 3

2 4 6 8 10

0.6

0.8

1

1
SL, t = 7

2 4 6 8 10

0.6

0.8

1

1

AL, t = 7

2 4 6 8 10

0.6

0.8

1

1

CL, t = 7

2 4 6 8 10

0.6

0.8

1

1

E(ARI); E(ōARI); norm.fit; opt.fit

Figure I.6: Efficacy for n = 200 and p = 0.05 with t ∈ {3, 7}. The first axis is
the size of the drawn sample. The plots for t = 5 can be found in the bottom
row of Figure I.5.

60

Demonstration of approximation efficacy on randomly generated data

SL, t = 10

2 4 6 8 10

0.6

0.8

1

1

AL, t = 10

2 4 6 8 10

0.6

0.8

1

1

CL, t = 10

2 4 6 8 10

0.6

0.8

1

1
SL, t = 50

2 4 6 8 10

0.6

0.8

1

1

AL, t = 50

10 20

0.6

0.8

1

1

CL, t = 50

20 40 60 80

0.6

0.8

1

1
SL, t = 100

2 4 6 8 10

0.6

0.8

1

1

AL, t = 100

10 20

0.6

0.8

1

1

CL, t = 100

20 40 60 80

0.6

0.8

1

1

[Q1 − 1.5IQR, Q3 + 1.5IQR]; [Q1, Q3]; median

Figure I.7: Polynomial approximation rate for n = 500, P = 0.01 and
t ∈ {10, 20, 40}. The first axis is the size of the drawn sample.

61

I. Order preserving hierarchical agglomerative clustering

SL, t = 50

2 4 6 8 10

0.6

0.8

1

1

AL, t = 50

2 4 6 8 10

0.6

0.8

1

1

CL, t = 50

2 4 6 8 10

0.6

0.8

1

1
SL, t = 100

2 4 6 8 10

0.6

0.8

1

1

AL, t = 100

2 4 6 8 10

0.6

0.8

1

1

CL, t = 100

2 4 6 8 10

0.6

0.8

1

1

[Q1 − 1.5IQR, Q3 + 1.5IQR]; [Q1, Q3]; median

Figure I.8: Polynomial approximation rate for n = 500, p = 0.05 and
t ∈ {50, 100}. The first axis is the size of the drawn sample.

SL, t = 100

2 4 6 8 10

0.6

0.8

1

1

AL, t = 100

2 4 6 8 10

0.6

0.8

1

1

CL, t = 100

2 4 6 8 10

0.6

0.8

1

1

[Q1 − 1.5IQR, Q3 + 1.5IQR]; [Q1, Q3]; median

Figure I.9: Polynomial approximation rate for n = 500, p = 0.10 and t = 100.
The first axis is the size of the drawn sample.

62

Demonstration on data from the parts database

I.8.3.1 First conclusions

The first thing that strikes the eye is that the approximations converge very
rapidly. Even for moderately sized spaces (∼500 elements), it appears to be
sufficient with 20 samples for SL and AL, and for smaller spaces (∼200 elements),
even fewer samples are required. We also notice that there is a strong correlation
between the ARI, ōARI and normalised fit.

For the part of the demonstration where we have no reference clustering, we
cannot know for sure whether the best reported fit is also optimal. However,
from the convergent behaviour of the data, and the strong correlation between
optimality and normalised fit in Figures I.5 and I.6, this points in the direction
of convergence to the true optimum.

Only CL displays convergence issues, indicating that if one wishes to use CL
for large spaces or large numbers of tied connections, it may be wise to do so in
conjunction with convergence tests.

On the other hand, since SL is independent of tie resolution order, every
sequence of merges ending in the same maximal partition will produce the same
partial dendrogram. This explains why the convergence rate of SL is less affected
by the expected number of tied connections than, say, CL.

The convergence rate is very high in some of the plots of Figures I.8 and I.9.
The authors believe this is due the high probability of two random elements
being comparable (high p in O(n, p, t)), since a dense relation leads to fewer
candidate solutions. This in contrast to the larger set of candidates for a more
sparse relation, such as in Figure I.7.

On the other hand, as we can see in Figures I.7 and I.8, keeping p fixed and
increasing the number of tied connections, and thereby the number of possible
branch points, causes a slower convergence rate.

To summarise, we see that the approximation is both good and effective
for SL and AL. For CL, although the approximation method seems good, the
required sample size must be increased in the presence of large amounts of tied
connections.

I.9 Demonstration on data from the parts database

While the above demonstration shows that HC<L
N,ε performs well with respect

to approximating HC<L
opt,ε, another question is how order preserving hierarchical

clustering deals with the dust of reality. In this section, we present results from
applying the approximation algorithm to subsets of the parts database described
briefly in Section I.1.1. As benchmark, we run classical hierarchical clustering
on the same problem instances, comparing the performance of the methods
using ARI, ōARI and loop frequency (described below). As hierarchical methods
for constrained clustering do not offer a no-link constraint, we also propose a
simplified approach simulating no-link behaviour for AL and CL which we call
HC+.

63

I. Order preserving hierarchical agglomerative clustering

I.9.1 Demonstration dataset

To select data for the demonstration we proceeded as follows: We considered the
part-of relations as a directed graph, and extracted all the connected components.
As it turned out, there was one gigantic component and a large number of
singleton elements, but also a hand-full of connected components of 11 to 40
elements each. We selected these smaller connected components as our demo
dataset without any further consideration. Dissimilarities between the elements
were obtained from a dissimilarity measure produced by an ongoing project in
the company working on the very task of classifying equivalent equipment. Some
key characteristics of the data is provided in Table I.2

cc no. cc size in/out deg. p expected ties
0 12 0.92 0.17 2.36
1 14 0.93 0.14 4.79
2 13 0.92 0.15 2.17
3 40 1.27 0.07 8.97
4 20 1.35 0.14 3.96
5 11 1.18 0.24 2.20
6 20 1.10 0.12 4.22
7 20 0.95 0.10 3.96

Table I.2: Some key characteristics of the connected components selected for the
demonstration. The in/out deg. column provides the directed average degree
when the data is considered as a DAG. The column p shows the probability for
two random elements to be connected in the transitive reduction.

Due to limited labeling of the data, we do not know which elements are
copies of other elements, so we have to fake copying to produce planted
partitions. For the demonstration, we pick a connected component (X0, E0)
where X0 = {x0

1, . . . , x0
n}, and for some positive number m we make m − 1

copies of X0 and E0, leading to m partially ordered sets
{

(Xk, Ek)
}m−1

k=0 . We
then form their disjoint union (X, E) where |X| = m

∣∣X0
∣∣. X now consists of m

connected components, each a copy of the others. If x0
i ∈ X0, then the set of

elements equivalent to x0
i is the set {xk

i }m−1
k=0 ⊆ X. Hence, the clusters we

seek are the sets on this form.
If we denote the dissimilarity measure that comes with the data by d0, we

define the extension to all of X as follows: First, if both elements are in the
same component Xk for 0 ≤ k ≤ m, then we simply use d0. And if they are in
different components, indicating that they are in a copy-relationship, we increase
their dissimilarity by an offset α ≥ 0. Concretely, the extended dissimilarity
dα : X × X → R+ is given by

dα(xr
i , xs

j) =
{

d0(x0
i , x0

j) if r = s,

α + d0(x0
i , x0

j) otherwise.

64

Demonstration on data from the parts database

This means that if x and y are copies of each other, then dα(x, y) = α, and if x
and y are in the same component and if z is a copy of x, then d(z, y) = α+d0(x, y).
Furthermore, for each modified distance, we add a small amount of Gaussian
noise to α to induce some variability. As a result, two copies xr

i and xs
i are offset

by approximately α, and by varying the magnitude of α we can study how the
offset affects the clustering.

I.9.2 Simulated constrained clustering

The available methods for hierarchical constrained clustering do not easily
incorporate the partial order as a constraint. What we would like to compare
against, is hierarchical constrained clustering with do-not-cluster constraints. For
CL and AL, we can obtain this by setting the dissimilarity between comparable
elements to a sufficiently large number, causing all comparable elements to be
merged towards the end. Indeed, for CL it is sufficient to set this dissimilarity to
any value exceeding max{dα}, and as the below demonstration shows, this value
works equally well for AL. We denote hierarchical clustering with this kind of
modified dissimilarity by HC+L.

Since d0 < 1 for all pairs of elements, we chose to use 1.0 as our maximum
dissimilarity.

I.9.3 A measure of order preservation

While the ōARI measures the correlation between the induced order of the
planted partition and the induced order of the obtained clustering, the ōARI
does not convey information about whether the induced relation is a partial order
or not. Since this is a key question for applications where order preservation
is of high importance (such as acyclic partitioning of graphs), we suggest the
following simple measure.

Let (Q, E′) be a partition of (X, E), and let EQ be the base space projection
of (Q, E′) onto X (Definition I.8.2). We say that (Q, E′) induces a loop if
there are elements on the form (x, x) ∈ EQ. The number of loops induced by
(Q, E′) is thus the quantity |{ (x, y) ∈ EQ | x = y }|. There is at most one loop
per element of X, and if EQ contains a cycle, then every element of the cycle
corresponds to a loop. In the name of normalisation, we measure the amount of
loops as the fraction of elements in X that is a part of a cycle:

loops(Q, E′) = |{ (x, y) ∈ EQ | x = y }|
|X|

.

I.9.4 Picking a clustering in the hierarchy for comparison

Given a problem instance (X, <, d) and a planted partition Q ∈ P(X, <), the
planted induced partial order is necessarily the induced relation <′. But in
comparing a hierarchical clustering with a planted partition, we have to make a
choice of clustering in the hierarchy. Given a hierarchical clustering, we choose
to find the clustering in the hierarchy that has the highest ARI relative the

65

I. Order preserving hierarchical agglomerative clustering

planted partition. We then report all of ARI, ōARI and loops with regards to
this clustering.

I.9.5 Variance of the difference

In the below plots, we present the mean values of ARI, ōARI and loops together
with a visual indication of variability. For each instance of a random ordered
dissimilarity space (X, <, d), we run all of HC<L

N,ε, HCL and HC+L. Thus, we can
analyse the performance of the methods by pairwise comparison on a problem
instance level. That is, we choose to consider pairwise differences such as

ARI(HC<L
N,ε(X, <, d)) − ARI(HC+L(X, <, d))

as one random variable, and likewise for ōARI and loops. The variance of
this random variable shows the variance in the difference, and we can use this
magnitude to analyse whether the sets of results are statistically distinguishable.
For the below plots, we mark a region about each line corresponding to one
standard deviation of this random variable. This means that the regions
encompassing the lines will not overlap unless the difference between the mean
values is less than two standard deviations.

To reduce the number of plots, we choose to plot the results of all three
methods together. This is obviously impractical with respect to pairwise
comparisons, so we employ the following convention: the indicated variance about
the mean of HC<L

N,ε and HC+L is the standard deviation of the differences between
these methods. The indicated variance about the mean of HCL represents the
standard deviation of the differences between HCL and HC<L

N,ε.

I.9.6 Execution and results

The parameters given in Table I.3 define how the ordered dissimilarity spaces
are constructed for each of the connected components. For each instance of
an ordered dissimilarity space, HC<L

N,ε, HCL and HC+L are all run on the same
instance with a choice of linkage function L ∈ {SL, AL, CL}. This allows us to
compare the performance of the methods against each other on a per-instance
basis. For each parameter combination in {α} × {SL, AL, CL}, we repeated this
process 50 times. The variance of the difference is based on these sets of 50
executions.

We present three families of plots, for ARI, ōARI and loops, respectively We
have picked three connected components for the presentation that we believe
represent the span of observations. The full set of plots is provided in the
appendix.

First, connected component number 7 (cc7) is the sample on which we see
the most clear benefit from using HC<L

N,ε, significantly outperforming both HCL

and HC+L on all quality measures. Although cc7 is not representative for
the majority of observations, it is empirical evidence that there exist problem
instances for which order preserving clustering cannot be well approximated by
hierarchical constrained clustering through do-not-cluster constraints.

66

Demonstration on data from the parts database

parameter value(s) explanation
α {0.10, 0.15, . . . , 0.50} mean copy dissimilarity
σ 0.10 variance of α
L {SL, AL, CL} linkage models
m ⌈200/

∣∣X0
∣∣⌉ number of copies (see below)

N 10 sample size in the N -fold approximation
ε 10−12 ultrametric completion level
p 1 choice of norm for ultrametric fitting

Table I.3: Parameters for execution of experiments. The number m of copies is
the least number for which the total number of elements, m

∣∣X0
∣∣, is at least 200.

Connected component number 1 (cc1) represents the majority of the instances.
While HC<L

N,ε still is best in class with respect to all quality measures, we see
that for AL and CL the method HC+L performs equally well with respect to
ARI and sometimes also ōARI.

At the other extreme of cc7 there is connected component number 4 (cc4),
presented in the bottom row of Figure I.10. For this component, all the clustering
models perform equally well in all quality measures, indicating that they produce
the exact same clusterings. This can only be explained by the fact that the
original dissimilarity measure d0, when restricted to this component, both is an
ultrametric, and incorporates the order relation (Section I.6.2).

The results are also summarised in Table I.4 after the plots.

67

I. Order preserving hierarchical agglomerative clustering

ARI
SL, cc7

0.1 0.2 0.3 0.4 0.50

0.5

1
AL, cc7

0.1 0.2 0.3 0.4 0.50

0.5

1
CL, cc7

0.1 0.2 0.3 0.4 0.50

0.5

1

SL, cc1

0.1 0.2 0.3 0.4 0.50

0.5

1
AL, cc1

0.1 0.2 0.3 0.4 0.50

0.5

1
CL, cc1

0.1 0.2 0.3 0.4 0.50

0.5

1

SL, cc4

0.1 0.2 0.3 0.4 0.50

0.5

1
AL, cc4

0.1 0.2 0.3 0.4 0.50

0.5

1
CL, cc4

0.1 0.2 0.3 0.4 0.50

0.5

1

HCL; HC+L; HC<L
N,ε

Figure I.10: Performance of the different clustering methods with respect to
ARI on connected components 7, 1 and 4. The shaded regions represent one
standard deviation of the pairwise differences, as described in Section I.9.5.

68

Demonstration on data from the parts database

ōARI
SL, cc7

0.1 0.2 0.3 0.4 0.50

0.5

1
AL, cc7

0.1 0.2 0.3 0.4 0.50

0.5

1
CL, cc7

0.1 0.2 0.3 0.4 0.50

0.5

1

SL, cc1

0.1 0.2 0.3 0.4 0.50

0.5

1
AL, cc1

0.1 0.2 0.3 0.4 0.50

0.5

1
CL, cc1

0.1 0.2 0.3 0.4 0.50

0.5

1

HCL; HC+L; HC<L
N,ε

Figure I.11: Performance of the different clustering methods with respect to
ōARI on connected components 7 and 1. The shaded regions represent one
standard deviation of the pairwise differences, as described in Section I.9.5.

69

I. Order preserving hierarchical agglomerative clustering

loops
SL, cc7

0.1 0.2 0.3 0.4 0.50

0.5

1
AL, cc7

0.1 0.2 0.3 0.4 0.50

0.5

1
CL, cc7

0.1 0.2 0.3 0.4 0.50

0.5

1

SL, cc1

0.1 0.2 0.3 0.4 0.50

0.5

1
AL, cc1

0.1 0.2 0.3 0.4 0.50

0.5

1
CL, cc1

0.1 0.2 0.3 0.4 0.50

0.5

1

HCL; HC+L; HC<L
N,ε

Figure I.12: Performance of the different clustering methods with respect to
loops on connected components 7 and 1. The shaded regions represent one
standard deviation of the pairwise differences, as described in Section I.9.5.

70

Summing up

We summarise the experiment observations in Table I.4. As can be seen
from the table, HC<L

N,ε is best in class in every category. However, HC+L is also
best in class in 81% of the cases when we restrict our attention to ARI and
L ∈ {AL, CL}.

HC<L HCL HC+L

ARI ōARI loops ARI ōARI loops ARI ōARI loops
SL 8 8 8 4 4 3 4 4 2
AL 8 8 8 2 2 1 7 6 1
CL 8 8 8 2 3 0 7 6 1

100% 100% 100% 33% 37% 16% 75% 66% 16%

Table I.4: The table presents for how many of the eight selected samples the
different methods are best in class with regards to ARI, ōARI and loops. The
scores are based on visual inspection of the plots. For ARI and ōARI, we count a
one if there is less than one standard deviation to the best plot in at least half the
sampled α values and zero otherwise. For loops, we count a one if the expected
value is zero throughout. The full list of plots can be found in Appendix I.A.

To conclude, we see that if clustering is the sole objective, then HC+L is a
good alternative to HC<L whenever L ∈ {AL, CL}. If order preservation, or
acyclic partitioning, is of any importance, then HC<L

N,ε is the only viable method
among those we have tested.

Moreover, as demonstrated by the top row of Figure I.10, although HC+L

may be a good approximation of HC<L
N,ε when L ∈ {AL, CL}, there are problem

instances on which the latter outperforms the former with significant margin,
also for ARI.

I.10 Summing up

In this paper we have put forth a theory for order preserving hierarchical
agglomerative clustering for strictly partially ordered sets. The clustering uses
classical linkage functions such as single-, average-, and complete linkage. The
clustering is optimisation based, and therefore also permutation invariant.

The output of the clustering process is partial dendrograms; sub-trees of
dendrograms with several connected components. We have shown that the family
of partial dendrograms over a set embed into the family of dendrograms over
the set.

When applying the theory to non-ordered sets, we see that we have a new
theory for hierarchical agglomerative clustering that is very close to the classical
theory, but that is optimisation based rather than algorithmic. Differently from
classical hierarchical clustering, our theory is permutation invariant. We have
shown that for single linkage, the theory coincides with classical hierarchical
clustering, while for complete linkage, the clustering problem becomes NP-hard.

71

I. Order preserving hierarchical agglomerative clustering

However, the computational complexity is directly linked to the number of tied
connections, and in the absence of tied connections, the theories coincide.

We present a polynomial approximation scheme for the clustering theory,
and demonstrate its convergence properties and efficacy on randomly generated
data. We also provide a demonstration on real world data comparing against
existing methods, showing that our model is best in class in all selected quality
measures.

I.10.1 Future work topics

We suggest the following future work topics:

I.10.1.1 Complexity

While NP-hardness of HC<CL
opt,ε follows from Theorem I.3.5, the complexity classes

of order preserving hierarchical agglomerative clustering for SL and AL remain
to be established.

I.10.1.2 Order versus dissimilarity

Since the order relation is treated as a binary constraint it has a significant
effect on the output from the clustering process, and may in some cases lead
to undesirable outcomes. For example, if the dissimilarity measure associates
“wrong” elements for clustering, the induced order relation may exclude future
merges of elements correctly belonging together by erroneously identifying them
as comparable. Also, if elements are wrongly identified as comparable to begin
with, they can never be merged. Both due to Theorem I.4.5.

Together, these observations indicate that “loosening up” the stringent nature
of the order relation may be beneficial in applications where order preservation
is not a strict requirement.

I.10.1.3 Other models for clustering

While we have chosen to develop our theory based on classical hierarchical
clustering, it is likely that the theory we have presented can be extended or
adjusted to apply to generalisations of hierarchical clustering too. As an example,
we mention overlapping clusters and hierarchies of overlapping clusters [24].
While hierarchies of overlapping clusters lead to DAGs, rather than trees, it still
seems likely that a completion along the lines of Section I.5 can be applied to
the partial DAGs that necessarily arise when this type of hierarchical clustering
is applied to strict partial orders in an order preserving fashion.

Also, as mentioned in the introduction, the framework we have presented can
be applied directly to enable a theory for hierarchical agglomerative clustering in
the presence of must-link and no-link constraints: The no-link constraints give
rise to partial dendrograms that are easily evaluated via ultrametric completion.

72

Plots from the part database demo

Acnowledgements. I wish to thank each of the anonymous reviewers at
Machine Learning for constructive feedback and comments greatly improving
the exposition. I also owe a great thank you to Henrik Forssell, Department
of Informatics (University of Oslo), and Gudmund Hermansen, Department of
Mathematics (University of Oslo), for their comments, questions and discussions
leading up to this work.

I.A Plots from the part database demo

This section lists all the plots from the experiments described in Section I.9. The
plots are grouped per connected component, and present results for all clustering
methods, quality measures and linkage models. Please see Table I.2 for a list of
statistical properties of the different connected components, and Table I.3 for
the parameter settings used during the experiments.

Results for connected component no. 0.
SL AL CL

0.1 0.2 0.3 0.4 0.50

0.5

1

A
R

I

0.1 0.2 0.3 0.4 0.50

0.5

1

0.1 0.2 0.3 0.4 0.50

0.5

1

0.1 0.2 0.3 0.4 0.50

0.5

1

ōA
R

I

0.1 0.2 0.3 0.4 0.50

0.5

1

0.1 0.2 0.3 0.4 0.50

0.5

1

0.1 0.2 0.3 0.4 0.50

0.5

1

lo
op

s

0.1 0.2 0.3 0.4 0.50

0.5

1

0.1 0.2 0.3 0.4 0.50

0.5

1

HCL; HC+L; HC<L
N,ε

73

I. Order preserving hierarchical agglomerative clustering

Results for connected component no. 1.
SL AL CL

0.1 0.2 0.3 0.4 0.50

0.5

1
A

R
I

0.1 0.2 0.3 0.4 0.50

0.5

1

0.1 0.2 0.3 0.4 0.50

0.5

1

0.1 0.2 0.3 0.4 0.50

0.5

1

ōA
R

I

0.1 0.2 0.3 0.4 0.50

0.5

1

0.1 0.2 0.3 0.4 0.50

0.5

1

0.1 0.2 0.3 0.4 0.50

0.5

1

lo
op

s

0.1 0.2 0.3 0.4 0.50

0.5

1

0.1 0.2 0.3 0.4 0.50

0.5

1

HCL; HC+L; HC<L
N,ε

Results for connected component no. 2.
SL AL CL

0.1 0.2 0.3 0.4 0.50

0.5

1

A
R

I

0.1 0.2 0.3 0.4 0.50

0.5

1

0.1 0.2 0.3 0.4 0.50

0.5

1

0.1 0.2 0.3 0.4 0.50

0.5

1

ōA
R

I

0.1 0.2 0.3 0.4 0.50

0.5

1

0.1 0.2 0.3 0.4 0.50

0.5

1

HCL; HC+L; HC<L
N,ε

continued on next page. . .

74

Plots from the part database demo

Continued: results for connected component no. 2.
SL AL CL

0.1 0.2 0.3 0.4 0.50

0.5

1

lo
op

s

0.1 0.2 0.3 0.4 0.50

0.5

1

0.1 0.2 0.3 0.4 0.50

0.5

1

HCL; HC+L; HC<L
N,ε

Results for connected component no. 3.
SL AL CL

0.1 0.2 0.3 0.4 0.50

0.5

1

A
R

I

0.1 0.2 0.3 0.4 0.50

0.5

1

0.1 0.2 0.3 0.4 0.50

0.5

1

0.1 0.2 0.3 0.4 0.50

0.5

1

ōA
R

I

0.1 0.2 0.3 0.4 0.50

0.5

1

0.1 0.2 0.3 0.4 0.50

0.5

1

0.1 0.2 0.3 0.4 0.50

0.5

1

lo
op

s

0.1 0.2 0.3 0.4 0.50

0.5

1

0.1 0.2 0.3 0.4 0.50

0.5

1

HCL; HC+L; HC<L
N,ε

75

I. Order preserving hierarchical agglomerative clustering

Results for connected component no. 4.
SL AL CL

0.1 0.2 0.3 0.4 0.50

0.5

1
A

R
I

0.1 0.2 0.3 0.4 0.50

0.5

1

0.1 0.2 0.3 0.4 0.50

0.5

1

0.1 0.2 0.3 0.4 0.50

0.5

1

ōA
R

I

0.1 0.2 0.3 0.4 0.50

0.5

1

0.1 0.2 0.3 0.4 0.50

0.5

1

0.1 0.2 0.3 0.4 0.50

0.5

1

lo
op

s

0.1 0.2 0.3 0.4 0.50

0.5

1

0.1 0.2 0.3 0.4 0.50

0.5

1

HCL; HC+L; HC<L
N,ε

Results for connected component no. 5.
SL AL CL

0.1 0.2 0.3 0.4 0.50

0.5

1

A
R

I

0.1 0.2 0.3 0.4 0.50

0.5

1

0.1 0.2 0.3 0.4 0.50

0.5

1

0.1 0.2 0.3 0.4 0.50

0.5

1

ōA
R

I

0.1 0.2 0.3 0.4 0.50

0.5

1

0.1 0.2 0.3 0.4 0.50

0.5

1

HCL; HC+L; HC<L
N,ε

continued on next page. . .

76

Plots from the part database demo

Continued: results for connected component no. 5.
SL AL CL

0.1 0.2 0.3 0.4 0.50

0.5

1

lo
op

s

0.1 0.2 0.3 0.4 0.50

0.5

1

0.1 0.2 0.3 0.4 0.50

0.5

1

HCL; HC+L; HC<L
N,ε

Results for connected component no. 6.
SL AL CL

0.1 0.2 0.3 0.4 0.50

0.5

1

A
R

I

0.1 0.2 0.3 0.4 0.50

0.5

1

0.1 0.2 0.3 0.4 0.50

0.5

1

0.1 0.2 0.3 0.4 0.50

0.5

1

ōA
R

I

0.1 0.2 0.3 0.4 0.50

0.5

1

0.1 0.2 0.3 0.4 0.50

0.5

1

0.1 0.2 0.3 0.4 0.50

0.5

1

lo
op

s

0.1 0.2 0.3 0.4 0.50

0.5

1

0.1 0.2 0.3 0.4 0.50

0.5

1

HCL; HC+L; HC<L
N,ε

77

I. Order preserving hierarchical agglomerative clustering

Results for connected component no. 7.
SL AL CL

0.1 0.2 0.3 0.4 0.50

0.5

1
A

R
I

0.1 0.2 0.3 0.4 0.50

0.5

1

0.1 0.2 0.3 0.4 0.50

0.5

1

0.1 0.2 0.3 0.4 0.50

0.5

1

ōA
R

I

0.1 0.2 0.3 0.4 0.50

0.5

1

0.1 0.2 0.3 0.4 0.50

0.5

1

0.1 0.2 0.3 0.4 0.50

0.5

1

lo
op

s

0.1 0.2 0.3 0.4 0.50

0.5

1

0.1 0.2 0.3 0.4 0.50

0.5

1

HCL; HC+L; HC<L
N,ε

I.B Reference implementation

The implementation used for the experiments in Sections I.8 and I.9 is available
as open source at https://bitbucket.org/Bakkelund/ophac.

References

[1] Ackerman, M. and Ben-David, S. ‘A Characterization of Linkage-Based
Hierarchical Clustering’. In: Journal of Machine Learning Research vol. 17,
no. 231 (2016), pp. 1–17. url: http://jmlr.org/papers/v17/11-198.html.

[2] Basu, S., Davidson, I. and Wagstaff, K. Constrained Clustering: Advances
in Algorithms, Theory, and Applications. 1st ed. Chapman & Hall/CRC,
2008.

[3] Blyth, T. Lattices and Ordered Algebraic Structures. Universitext. Springer
London, 2005. url: https://www.springer.com/gp/book/9781852339050.

[4] Bollobás, B. Random Graphs. 2nd ed. Cambridge Studies in Advanced
Mathematics. Cambridge University Press, 2001.

78

https://bitbucket.org/Bakkelund/ophac
http://jmlr.org/papers/v17/11-198.html
https://www.springer.com/gp/book/9781852339050

References

[5] Buluç, A. et al. ‘Recent Advances in Graph Partitioning’. In: Algorithm
Engineering: Selected Results and Surveys. Cham: Springer International
Publishing, 2016, pp. 117–158. url: https://link.springer.com/chapter/10.
1007/978-3-319-49487-6_4.

[6] Carlsson, G. and Mémoli, F. ‘Characterization, Stability and Convergence
of Hierarchical Clustering Methods’. In: J. Mach. Learn. Res. vol. 11 (Aug.
2010), pp. 1425–1470. url: http://www.jmlr.org/papers/v11/carlsson10a.
html.

[7] Carlsson, G. et al. ‘Hierarchical Quasi-Clustering Methods for Asymmetric
Networks’. In: Proceedings of the 31st International Conference on Machine
Learning. Ed. by Xing, E. P. and Jebara, T. Vol. 32. Proceedings of Machine
Learning Research. Bejing, China: PMLR, 22–24 Jun 2014, pp. 352–360.
url: http://proceedings.mlr.press/v32/carlsson14.html.

[8] Chierchia, G. and Perret, B. ‘Ultrametric Fitting by Gradient Des-
cent’. In: Advances in Neural Information Processing Systems. Ed. by
Wallach, H. et al. Vol. 32. Curran Associates, Inc., 2019, pp. 3181–
3192. url: https : / / proceedings . neurips . cc / paper / 2019 / file /
b865367fc4c0845c0682bd466e6ebf4c-Paper.pdf.

[9] Dasgupta, S. ‘A Cost Function for Similarity-Based Hierarchical Clustering’.
In: Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of
Computing. STOC ’16. Cambridge, MA, USA: Association for Computing
Machinery, 2016, pp. 118–127. url: https: / /dl .acm.org/doi /10.1145/
2897518.2897527.

[10] Davidson, I. and Ravi, S. S. ‘Agglomerative Hierarchical Clustering with
Constraints: Theoretical and Empirical Results’. In: Knowledge Discovery
in Databases: PKDD 2005. Ed. by Jorge, A. M. et al. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2005, pp. 59–70.

[11] De Soete, G., Carroll, J. D. and DeSarbo, W. S. ‘Least squares algorithms
for constructing constrained ultrametric and additive tree representations of
symmetric proximity data’. In: Journal of Classification vol. 4, no. 2 (1987),
pp. 155–173. url: https://link.springer.com/article/10.1007/BF01896984.

[12] Fraley, C. and Raftery, A. E. ‘Model-Based Clustering, Discriminant
Analysis, and Density Estimation’. In: Journal of the American Statistical
Association vol. 97, no. 458 (2002), pp. 611–631. eprint: https : / / doi .
org /10 .1198 /016214502760047131. url: https : / / doi . org /10 .1198 /
016214502760047131.

[13] Gates, A. J. and Ahn, Y.-Y. ‘The Impact of Random Models on Clustering
Similarity’. In: Journal of Machine Learning Research vol. 18, no. 87 (2017),
pp. 1–28. url: http://jmlr.org/papers/v18/17-039.html.

79

https://link.springer.com/chapter/10.1007/978-3-319-49487-6_4
https://link.springer.com/chapter/10.1007/978-3-319-49487-6_4
http://www.jmlr.org/papers/v11/carlsson10a.html
http://www.jmlr.org/papers/v11/carlsson10a.html
http://proceedings.mlr.press/v32/carlsson14.html
https://proceedings.neurips.cc/paper/2019/file/b865367fc4c0845c0682bd466e6ebf4c-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/b865367fc4c0845c0682bd466e6ebf4c-Paper.pdf
https://dl.acm.org/doi/10.1145/2897518.2897527
https://dl.acm.org/doi/10.1145/2897518.2897527
https://link.springer.com/article/10.1007/BF01896984
https://doi.org/10.1198/016214502760047131
https://doi.org/10.1198/016214502760047131
https://doi.org/10.1198/016214502760047131
https://doi.org/10.1198/016214502760047131
http://jmlr.org/papers/v18/17-039.html

I. Order preserving hierarchical agglomerative clustering

[14] Ghoshdastidar, D., Perrot, M. and Luxburg, U. von. ‘Foundations
of Comparison-Based Hierarchical Clustering’. In: Advances in Neural
Information Processing Systems 32. Ed. by Wallach, H. et al. Curran
Associates, Inc., 2019, pp. 7456–7466. url: http://papers.nips.cc/paper/
8964-foundations-of-comparison-based-hierarchical-clustering.pdf.

[15] Gilpin, S., Nijssen, S. and Davidson, I. ‘Formalizing Hierarchical Clustering
as Integer Linear Programming’. In: Proceedings of the Twenty-Seventh
AAAI Conference on Artificial Intelligence. AAAI’13. Bellevue, Washing-
ton: AAAI Press, 2013, pp. 372–378. url: https://www.aaai.org/ocs/index.
php/AAAI/AAAI13/paper/view/6440.

[16] Herrmann, J. et al. ‘Acyclic Partitioning of Large Directed Acyclic Graphs’.
In: 2017 17th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGRID). May 2017, pp. 371–380. url: https :
//hal.inria.fr/hal-01744603.

[17] Hoffman, M., Steinley, D. and Brusco, M. J. ‘A note on using the adjusted
Rand index for link prediction in networks’. In: Social Networks vol. 42
(2015), pp. 72–79. url: http://www.sciencedirect.com/science/article/pii/
S0378873315000210.

[18] Holly, J. E. ‘Pictures of Ultrametric Spaces, the p-Adic Numbers, and
Valued Fields’. In: The American Mathematical Monthly vol. 108, no. 8
(2001), pp. 721–728. url: http://www.jstor.org/stable/2695615.

[19] Hubert, L. and Arabie, P. ‘Comparing partitions’. In: Journal of
Classification (1985), pp. 193–218.

[20] Hughes, B. ‘Trees and ultrametric spaces: a categorical equivalence’. In:
Advances in Mathematics vol. 189, no. 1 (2004), pp. 148–191. url: https:
//doi.org/10.1016/j.aim.2003.11.008.

[21] Jain, A. K. and Dubes, R. C. Algorithms for Clustering Data. Upper Saddle
River, NJ, USA: Prentice-Hall, Inc., 1988.

[22] Janowitz, M. F. Ordinal and Relational Clustering. WORLD SCIENTIFIC,
2010. eprint: https://www.worldscientific.com/doi/pdf/10.1142/7449. url:
https://www.worldscientific.com/doi/abs/10.1142/7449.

[23] Jardine, N. and Sibson, R. Mathematical Taxonomy. Wiley series in
probability and mathematical statistics. Wiley, 1971.

[24] Jeantet, I., Miklos, Z. and Gross-Amblard, D. ‘Overlapping Hierarchical
Clustering (OHC)’. In: Inteligent Data Analysis (IDA 2020). 2020. url:
https://hal.inria.fr/hal-02452729/.

[25] Johnson, S. C. ‘Hierarchical clustering schemes’. In: Psychometrika vol. 32,
no. 3 (1967), pp. 241–254. url: https://link.springer.com/article/10.1007/
BF02289588.

[26] Kamishima, T. and Fujiki, J. ‘Clustering Orders’. In: Discovery Science. Ed.
by Grieser, G., Tanaka, Y. and Yamamoto, A. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2003, pp. 194–207. url: https://doi.org/10.1007/978-3-
540-39644-4_17.

80

http://papers.nips.cc/paper/8964-foundations-of-comparison-based-hierarchical-clustering.pdf
http://papers.nips.cc/paper/8964-foundations-of-comparison-based-hierarchical-clustering.pdf
https://www.aaai.org/ocs/index.php/AAAI/AAAI13/paper/view/6440
https://www.aaai.org/ocs/index.php/AAAI/AAAI13/paper/view/6440
https://hal.inria.fr/hal-01744603
https://hal.inria.fr/hal-01744603
http://www.sciencedirect.com/science/article/pii/S0378873315000210
http://www.sciencedirect.com/science/article/pii/S0378873315000210
http://www.jstor.org/stable/2695615
https://doi.org/10.1016/j.aim.2003.11.008
https://doi.org/10.1016/j.aim.2003.11.008
https://www.worldscientific.com/doi/pdf/10.1142/7449
https://www.worldscientific.com/doi/abs/10.1142/7449
https://hal.inria.fr/hal-02452729/
https://link.springer.com/article/10.1007/BF02289588
https://link.springer.com/article/10.1007/BF02289588
https://doi.org/10.1007/978-3-540-39644-4_17
https://doi.org/10.1007/978-3-540-39644-4_17

References

[27] Karp, R. M. ‘Reducibility among Combinatorial Problems’. In: Complexity
of Computer Computations: Proceedings of a symposium on the Complexity
of Computer Computations, held March 20–22, 1972, at the IBM Thomas
J. Watson Research Center, Yorktown Heights, New York, and sponsored
by the Office of Naval Research, Mathematics Program, IBM World Trade
Corporation, and the IBM Research Mathematical Sciences Department.
Boston, MA: Springer US, 1972, pp. 85–103. url: https://doi.org/10.1007/
978-1-4684-2001-2_9.

[28] Kriegel, H.-P. et al. ‘Density-based clustering’. In: WIREs Data Mining
and Knowledge Discovery vol. 1, no. 3 (2011), pp. 231–240. eprint: https://
onlinelibrary.wiley.com/doi/pdf/10.1002/widm.30. url: https://onlinelibrary.
wiley.com/doi/abs/10.1002/widm.30.

[29] Lassila, O. and Swick, R. R. Resource Description Framework (RDF)
Model and Syntax Specification. W3C Recommendation. W3C, Feb. 1999.
url: http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/.

[30] Li, X. et al. ‘Semi-Supervised Clustering in Attributed Heterogeneous
Information Networks’. In: Proceedings of the 26th International Conference
on World Wide Web. WWW ’17. Perth, Australia: International World
Wide Web Conferences Steering Committee, 2017, pp. 1621–1629. url:
https://doi.org/10.1145/3038912.3052576.

[31] Łuczak, M. ‘Hierarchical clustering of time series data with parametric
derivative dynamic time warping’. In: Expert Systems with Applications
vol. 62 (2016), pp. 116–130. url: http://www.sciencedirect.com/science/
article/pii/S0957417416302937.

[32] Macqueen, J. ‘Some methods for classification and analysis of multivariate
observations’. In: In 5-th Berkeley Symposium on Mathematical Statistics
and Probability. 1967, pp. 281–297. url: https://projecteuclid.org/euclid.
bsmsp/1200512992.

[33] Markov, I. L., Hu, J. and Kim, M. ‘Progress and Challenges in VLSI
Placement Research’. In: Proceedings of the IEEE vol. 103, no. 11 (Nov.
2015), pp. 1985–2003. url: https://ieeexplore.ieee.org/document/7295553.

[34] Pio, G. et al. ‘Multi-type clustering and classification from heterogeneous
networks’. In: Information Sciences vol. 425 (2018), pp. 107–126. url:
https://www.sciencedirect.com/science/article/pii/S0020025516321570.

[35] Rammal, R., Toulouse, G. and Virasoro, M. A. ‘Ultrametricity for
physicists’. In: Rev. Mod. Phys. vol. 58 (3 July 1986), pp. 765–788. url:
https://link.aps.org/doi/10.1103/RevModPhys.58.765.

[36] Rand, W. M. ‘Objective Criteria for the Evaluation of Clustering Methods’.
In: Journal of the American Statistical Association vol. 66, no. 336 (1971),
pp. 846–850. url: http://www.jstor.org/stable/2284239.

[37] Sneath, P. and Sokal, R. Numerical Taxonomy: The Principles and Practice
of Numerical Classification. A Series of books in biology. W. H. Freeman,
1973.

81

https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://onlinelibrary.wiley.com/doi/pdf/10.1002/widm.30
https://onlinelibrary.wiley.com/doi/pdf/10.1002/widm.30
https://onlinelibrary.wiley.com/doi/abs/10.1002/widm.30
https://onlinelibrary.wiley.com/doi/abs/10.1002/widm.30
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
https://doi.org/10.1145/3038912.3052576
http://www.sciencedirect.com/science/article/pii/S0957417416302937
http://www.sciencedirect.com/science/article/pii/S0957417416302937
https://projecteuclid.org/euclid.bsmsp/1200512992
https://projecteuclid.org/euclid.bsmsp/1200512992
https://ieeexplore.ieee.org/document/7295553
https://www.sciencedirect.com/science/article/pii/S0020025516321570
https://link.aps.org/doi/10.1103/RevModPhys.58.765
http://www.jstor.org/stable/2284239

I. Order preserving hierarchical agglomerative clustering

[38] Vinh, N. X., Epps, J. and Bailey, J. ‘Information Theoretic Measures
for Clusterings Comparison: Variants, Properties, Normalization and
Correction for Chance’. In: Journal of Machine Learning Research vol. 11,
no. 95 (2010), pp. 2837–2854. url: http://jmlr.org/papers/v11/vinh10a.html.

[39] Ward, J. H. ‘Hierarchical Grouping to Optimize an Objective Function’.
In: Journal of the American Statistical Association vol. 58, no. 301 (1963),
pp. 236–244. url: http://www.jstor.org/stable/2282967.

[40] Warrens, M. J. ‘On the Equivalence of Cohen’s Kappa and the Hubert-
Arabie Adjusted Rand Index’. In: Journal of Classification (2008), pp. 177–
183.

82

http://jmlr.org/papers/v11/vinh10a.html
http://www.jstor.org/stable/2282967

Paper III

Machine part data with part-of
relations and part dissimilarities for
planted partition generation

Daniel Bakkelund
Published in Data in Brief, Mar 2022,
DOI: 10.1016/j.dib.2022.108065.

III

Abstract

Identifying relationships between entities in data is a central topic across
various industries and businesses, from social networks to supply chain
and heavy manufacturing industries. In this paper we present data from
a database of machinery represented in terms of machine parts. The
machine parts are originally organised in tree structures where the vertices
are machine part types, and the edges are “part-of” relations. Hence,
each tree represents a type of machinery broken down into its machine
part constituent types. The data we present is the union over these trees,
making up a directed acyclic graph describing the type hierarchy of the
machine parts.

The motivation for publishing the dataset is the following real-world
industry problem: Each tree represents a mechanical design, and over time
some designs have been copy-pasted with minor modifications. The new
instances have been given new identifiers with no reference to where from
they were copied. In hindsight, it is desirable to recover the copy-paste
links to for interchange between essentially identical designs. However,
telling which parts are copies of which other parts has turned out to be
difficult. In particular, the metadata has a tendency of displaying higher
similarities within a composite part than between a part and its copy.
Due to non-disclosure, we cannot provide the metadata, but we provide
element wise dissimilarities that are generated based on the metadata
using classical methods such as Jaccard similarity on description texts,
material types etc. The dissimilarities are obtained from a data science
project in the company owning the data, trying to tackle the very problem
of recovering the copy-paste links.

Availability of labeled data on this data set is limited, so based on our in-
depth knowledge of the problem domain, we present a data synthetisation
method that can generate arbitrarily large problem instances of the
copy-paste problem based on the sample data, that provides a realistic

131

https://doi.org/10.1016/j.dib.2022.108065

III. Machine part data with part-of relations for planted partition generation

representation of the real world problem. The problems are presented
as planted partitions of vertices of directed acyclic graphs with vertex
dissimilarities, and thus constitutes a typical classification problem along
the lines of graph- or network clustering.

The type of industry data we present is usually company confidential,
bound by intellectual property rights, and generally not available to
scientists. We therefore publish this anonymised dataset to offer real
world sample data and generated problem instances for researchers that
are interested in this type of classification problems, and on which theories
and algorithms can be tested.

The data and the problem generation methodology are backed by
a Python implementation, providing both data access and an API for
parameterised problem generation. The data is also available as raw files.

Keywords: Machine parts, part-of relations, dissimilarity,planted partition,
clustering, link recovery

III.1 Data specification

Subject Data Science
Specific sub-
ject area

Applied Machine Learning

Type of data Table of machine parts types and part-of relations
Table of dissimilarities between machine parts types
Python code

How the data
were acquired

Extraction from company database.

Data format Analysed, Raw
Description
of data collec-
tion

Machine part types: The machine part data is extracted
from a relational database. The initial raw data is organised
as trees of machine parts, where each node has a unique
identifier and a type-id. In the data collection process, the
trees have been replaced by a graph of types as follows.
The vertices of the graph corresponds to the set of types
of the tree vertices. Then, edges are added to the graph if
there is an edge in a tree between vertices of corresponding
types. The resulting graph thus represents the type part-of
structure defined by the trees. Since one type of machinery
may be a part of different types of high level machinery,
in the way a type of tire may be a part of many types of
cars, the type hierarchy becomes a graph, rather than a tree.
And moreover, since a part cannot another part of the same
type [7], the type hierarchy is a directed acyclic graph.1

1If a part contains another part of the same type as a sub-part, this leads to a cycle of
containment. Since this leads to an infinitely deep structure, it is not achievable for practical
manufacturing.

132

Value of the Data

Our particular subset of machine part types was chosen as
follows. When we generated the above graph for all machine
parts, we found that the graph had one very large connected
component and a large set of disconnected vertices, but also
eight connected component in the range of 11 to 40 vertices.
Since each of these connected component closely correspond
to single designs, we chose these eight connected components
as our sample dataset.
Dissimilarities: The dissimilarity data is obtained from an
internal project in the company owning the data trying
to tackle the very problem of recovering the mentioned
copy-paste links. The dissimilarities are generated based on
metadata about the machine part types, such as description
texts, material types, weights etc.

Data source
location

Proprietary database owned by TechnipFMC2, a privately
held company in the Oil & Gas sector.

Data accessib-
ility

Repository name: Mendeley Data
Data identification number: 10.17632/dhhxzdzm3v.1
Direct URL to data:
https://data.mendeley.com/v1/datasets/dhhxzdzm3v/

Related re-
search
article

Daniel Bakkelund, Order Preserving Agglomerat-
ive Hierarchical Clustering, Mach Learn. (2021).
https:// doi.org/ 10.1007/ s10994-021-06125-0.

III.2 Value of the Data

• The type of data we present is usually company confidential, and therefore
very difficult to come by for researchers. By publishing a small subset of
the data together with code that can proliferate the data based on our
understanding of the problem domain, we hope to allow other researchers
to test their hypotheses and methods on close to real world data.
In this respect, we particularly mention the problem of order preserving
clustering [1]. This is a field in development where there are currently no
public datasets available for benchmarking and/or testing of methods and
hypotheses. We therefore wish to publish this dataset, and the model for
generating classification problems from this dataset, to support further
development of this new branch of classification research.

• Since we present dissimilarity data with additional relations, the main
audience is likely to be researchers and practitioners within classification
and clustering that work with data that has additional structure. As a non-
exhaustive list of examples we mention graph- and network clustering [5],
order preserving clustering [3], acyclic partitioning [4] and clustering with
constraints [2].

2https://www.technipfmc.com/

133

https://doi.org/10.17632/dhhxzdzm3v.1
https://data.mendeley.com/v1/datasets/dhhxzdzm3v/
https://doi.org/10.1007/s10994-021-06125-0
https://www.technipfmc.com/

III. Machine part data with part-of relations for planted partition generation

• One of the contributions of this paper is a model for generation of planted
partitions simulating the copy-paste problem. The model is based on our in-
depth knowledge about the problem domain, and we believe that this model,
together with the published data, provides realistic representations of the
previously described copy-paste problem. Hence, models and algorithms
that perform well on these planted partitions can be expected to perform
well also on the real dataset.

• As for the mentioned industry problem, this is an excess inventory problem
in that the machine part manufacturer has an increasing amount of
machinery in stock. A traditional approach to excess inventory is that of
excess inventory disposal [8] to free up capacity. However, this is easily
sub-optimal for expensive machinery, both with respect to economy, and
also with respect to the environment, as manufacturing of complex steel
based machinery has a large CO2 footprint. Rather, TechnipFMC states
that if they can match similar machinery in the described fashion, then
this will lead to increased sales from inventory, rather than producing new
machinery. Thus, yielding a double up-side compared to decimating the
machinery in stock.

III.3 Data Description

This section describes the format of the flat files containing the machine part
data and the dissimilarity data. Note, however, that the data is also available
through the provided python API.

The data is available as two CSV3 files, one file for the machine part structures,
and one for the machine part dissimilarities.

III.3.1 The machine part file

The machine part file is named parts.csv. Each line in the machine part file is
formatted as

⟨id ⟩ (,⟨child id ⟩)*

That is, each line is a comma separated list of integers. The first integer is the
part type identifier (id), and the remaining integers (if any) are the part types
that occur as “part-of” type id.

For example, if the data was constituted by the graph

0 1
3 2

where the arrows indicate that 1 and 2 are both part-of 0 and that 2 is part-of
3, then the corresponding file would look like

3https://en.wikipedia.org/wiki/Comma-separated_values

134

https://en.wikipedia.org/wiki/Comma-separated_values

Data Description

0, 1, 2
1
2
3, 2

III.3.2 The dissimilarities file

The dissimilarities are also organised in a CSV file, dissimilarities.csv, with
each line on the format

⟨integer:a⟩,⟨integer:b⟩,⟨decimal number:d⟩

Here, the integers are part type ids, as given in parts.csv, and the dissimilarity
d is the dissimilarity between the specified types. The indices are always ordered
so that a < b, and for the dissimilarities, we always have 0 ≤ d ≤ 1.

Given the above example part type structure, a corresponding dissimilarity
file would be on the form

0, 1, 0.2021
0, 2, 0.3141
0, 3, 0.2718
1, 2, 0.1414
1, 3, 0.7071
2, 3, 0.2600

That is, the dissimilarity between 0 and 1 is 0.2021, meaning 0 and 1 are more
dissimilar than, say, 1 and 2 that has a dissimilarity of 0.1414.

III.3.3 Some statistics on the connected components

The part data constitutes eight connected components, where each connected
component is a small DAG. Table III.2 lists some typical graph statistics for the
connected components.

III.3.4 Parent-child dissimilarities

A feature of the dissimilarity data, is that there is a high probability for the
dissimilarity of a part and a sub-part to be low. This is due to a significant
overlap in metadata, stemming from the fact that a part and its sub-parts are
often closely related in several ways. For example, machinery wrought out of
steel will often have parts with similar material- and mechanical properties.
For machinery that will be used under harsh environmental conditions, the
environmental characteristics of the parts must necessarily be very similar.
Description texts describing a sub-part will often contain references to the
containing part, and so on. Deducing the dissimilarities based on this metadata

135

III. Machine part data with part-of relations for planted partition generation

cc no. cc size in/out deg. p
0 12 0.92 0.17
1 14 0.93 0.14
2 13 0.92 0.15
3 40 1.27 0.07
4 20 1.35 0.14
5 11 1.18 0.24
6 20 1.10 0.12
7 20 0.95 0.10

Table III.2: Some key characteristics of the connected components of the machine
parts dataset:

cc no. – the index of the connected component
cc size – the number of vertices in the connected component
in/out deg – the directed average degree of the connected component
p – the probability that for a pair of random vertices a and

b, the edge (a, b) exists in the transitive reduction
Note: The table is an adaptation of [1, Table 2].

therefore sometimes lead to low dissimilarity between parent and child. For the
copy paste problem, this is a complicating factor, since a part and a sub-part
can never be copy-paste related. The dissimilarity distributions between parts
and sub-parts are displayed in Figure III.1.

0 0.2 0.4 0.6 0.8 10

1
2

1

x

P
r(d

(p
,c

)<
x
)

1 step
2 steps
3 steps

Figure III.1: Probability for a part and a sub-part to have dissimilarity no
higher than x. The first axis value is the dissimilarity in the range [0, 1], and
the second axis is the probability of a parent part p and child part c to have
a dissimilarity d(p, c) no higher than x; that is, Pr

(
d(p, c) < x

)
. The curves

represent parent-child pairs that are separated by 1, 2 or 3 levels. We see that
there is a higher probability for low dissimilarity between a part and a contained
part if the containment is direct (1 step) compared to a nested containment (≥ 2
steps).

136

Experimental design, materials and methods

III.4 Experimental design, materials and methods

In this section, we describe the model for generation of planted partitions based
on the published dataset. The model is a simplified representation of the copy-
paste mechanism in the problem domain. An important goal of the model has
been to keep it simple, while at the same time not underplaying the complexity
of the copy-paste process and the following changes to the data.

It should be noted that our notion of a planted partition is not the same
as the probabilistic concept of planted partitions sometimes encountered in
clustering literature [6]. Rather, in the model we present, the generation of the
planted partitions is based on our understanding of the copy-paste problem, and
our wish to simulate this. We still choose to refer to this as planted partitions,
since they are, in name, exactly that.

On a high level, the model works as follows. Given a connected component
C from parts.csv, the dissimilarities from dissimliarities.csv, a positive
integer n, a location parameter µ and a scale parameter σ2, we generate a planted
partition with n + 1 parallel instances through the following steps:

1. Make n copies of C, providing us with the connected components {Ci}n
i=0

where C = C0. Denote the vertices of C by {v0
1 , . . . , v0

m}, and similarly
denote the vertices of Ci by {vi

1, . . . , vi
m} so that vi

k is the copy in Ci of v0
k.

2. For every connected component Ci, define the intra component dissimilar-
ities as follows:

d(vi
r, vi

s) = d0(v0
r , v0

s),

where d0 is the dissimilarity found in dissimilarities.csv. That is, the
intra component dissimilarities in the copies are the same as in the original
connected component.

3. Let Y ∼ N (µ, σ2) be a random variable where N (µ, σ2) is the Gaussian
distribution located at µ with variance σ2. We define the stochastic function
α : [0, 1] → [0, 1] by α(x) = x + Y through rejection sampling, naively
continuing to draw from Y until x + Y ∈ [0, 1]. The inter component
dissimilarities may now be defined as

d(vi
r, vj

s) = α
(

d0(v0
r , v0

s)
)

.

That is, we distort the dissimilarity between the copy-paste instances by
adding Gaussian noise.

The result is a set of machine parts with part-of relations that is the union
of all the copies Ci equipped with dissimilarities. The corresponding planted
partitions are the sets Pk = {xi

k}n
i=0 for 1 ≤ k ≤ m, defining the m sets of

copy-paste elements.
An example is depicted in Figure III.2.

137

III. Machine part data with part-of relations for planted partition generation

0 1

3 2

0′ 1′

3′ 2′

d0(0,1) α(d0(0,1))

α(0) d0(3,2)

Figure III.2: The dashed lines indicate dissimilarity links. We can see that the
dissimilarity between 2 and the copy 2′ is α(0), the dissimilarity between the
element 0 and the copy of the child 1′ is α(d0(0, 1)), which is the perturbed
dissimilarity of d0(0, 1). And finally, that the intra-component dissimilarity
between 3′ and 2′ is identical to that in the original connected component,
namely d0(3, 2).

The model is subject to at least two simplifications that deviate from the
real world case. In both cases, we chose to do this to keep the model simple.
However, we also believe that this does not compromise the problem generation
in terms of benchmarking relative the real world problem:

• The topology of the original and the copy is identical.
We do not add or remove vertices or relations when we copy. In the real
application, this happens to some extent.

• The intra component dissimilarities are unchanged when copied.
Since metadata is changed after copying, the intra component dissimilarities
will also change in the real application.

We summarise the input and output of the planted partition generation in
Tables III.3 and III.4.

parameter explanation
cc-ids The ids of the connected components that shall be duplicated
n The number of copies to make
µ The mean translation of the dissimilarities under α
σ2 The variance in the noise applied by α

Table III.3: Table of inputs to the planted partition generation process.

Now, given a generated problem instance (X, E, d, P) and a
classification procedure C, to which degree can C recover P if given
only X, E and d?

138

References

data explanation
X A set of vertices X making up the union of the original

connected components as well as all the copies
E A set of edges (a, b) ∈ X ×X denoting all the part-of relations

of both the original connected components as well as the copies
d A dissimilarity measure defined on all of X generated according

to the above procedure
P = {Pi}|X|

i=1 The planted partitions; that is, the sets consisting of machine
parts that are copies of each other.

Table III.4: Table of outputs from the planted partition generation process.

III.4.1 Python implementation

An open source python implementation of the above model is made available.
The library is most easily installed via PyPi by

python3 -m pip install machine-parts-pp [--user]

Notice that the library requires python version 3.0 or higher. For further
documentation of the provided functionality, please visit https://pypi.org/project/
machine-parts-pp/.

Acknowledgments. This work has been funded by the Department of
Informatics (The Faculty of Mathematics and Natural Sciences, University
of Oslo), the SIRIUS Centre for Scalable Data Access (Research Council of
Norway, project no.: 237898) and TechnipFMC. We also wish to express our
gratitude to TechnipFMC for sharing data with the scientific community, and
to Derek Smith and Marcel Castro at TechnipFMC for providing invaluable
support in the process of publishing the data.

Declaration of Competing Interest.

□✓ The authors declare that they have no known competing financial interests
or personal relationships that could have appeared to influence the work
reported in this paper.

□ The authors declare the following financial interests/personal relationships
which may be considered as potential competing interests:

The author (Daniel Bakkelund) holds a position as data scientist at TechnipFMC.

References

[1] Bakkelund, D. ‘Order preserving hierarchical agglomerative clustering’. In:
Mach Learn (2021). url: https://doi.org/10.1007/s10994-021-06125-0.

139

https://pypi.org/project/machine-parts-pp/
https://pypi.org/project/machine-parts-pp/
https://doi.org/10.1007/s10994-021-06125-0

III. Machine part data with part-of relations for planted partition generation

[2] Basu, S., Davidson, I. and Wagstaff, K. Constrained Clustering: Advances
in Algorithms, Theory, and Applications. 1st ed. Chapman & Hall/CRC,
2008.

[3] Ghoshdastidar, D., Perrot, M. and Luxburg, U. von. ‘Foundations
of Comparison-Based Hierarchical Clustering’. In: Advances in Neural
Information Processing Systems 32. Ed. by Wallach, H. et al. Curran
Associates, Inc., 2019, pp. 7456–7466. url: http://papers.nips.cc/paper/
8964-foundations-of-comparison-based-hierarchical-clustering.pdf.

[4] Herrmann, J. et al. ‘Acyclic Partitioning of Large Directed Acyclic Graphs’.
In: 2017 17th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGRID). May 2017, pp. 371–380. url: https :
//hal.inria.fr/hal-01744603.

[5] Malliaros, F. D. and Vazirgiannis, M. ‘Clustering and community detection
in directed networks: A survey’. In: Physics Reports vol. 533, no. 4 (2013).
Clustering and Community Detection in Directed Networks: A Survey,
pp. 95–142. url: https : / /www.sciencedirect .com/science/article /pii /
S0370157313002822.

[6] Mossel, E., Neeman, J. and Sly, A. ‘Reconstruction and estimation in the
planted partition model’. In: Probability Theory and Related Fields vol. 162,
no. 3 (2015), pp. 431–461.

[7] Rescher, N. ‘Axioms for the part relation’. In: Philosophical Studies: An
International Journal for Philosophy in the Analytic Tradition vol. 6, no. 1
(1955), pp. 8–11.

[8] Rosenfield, D. B. ‘Disposal of excess inventory’. In: Operations research
vol. 37, no. 3 (1989), pp. 404–409.

140

http://papers.nips.cc/paper/8964-foundations-of-comparison-based-hierarchical-clustering.pdf
http://papers.nips.cc/paper/8964-foundations-of-comparison-based-hierarchical-clustering.pdf
https://hal.inria.fr/hal-01744603
https://hal.inria.fr/hal-01744603
https://www.sciencedirect.com/science/article/pii/S0370157313002822
https://www.sciencedirect.com/science/article/pii/S0370157313002822

Appendix A

Correction of Theorem I.4.6
Theorem I.4.6 of Paper I has been identified to contain an error, but as the
theorem appears in a published paper, the thesis text is not changed; rather, we
supply a corrected version of the theorem here. Note that the faulty part of the
theorem is never used, and has, thus, caused no harm.

The theorem is concerned with the classification of the strictly partially
ordered sets (X, <) for which the set P(X, <) of regular partitions ordered by
partition refinement has a greatest element. Theorem I.4.6 wrongly suggests
that whenever the order relation is non-trivial, there is no greatest element of
P(X, <). In the below correction, we first present a class of strictly partially
ordered sets that we recognise as architectures of feed-forward neural networks.
We then proceed to prove that this is exactly the class of strictly partially ordered
sets where P(X, <) has a greatest element.

Definition A.0.1. An n-layered feed-forward network, (n-ffn) is a directed
acyclic graph G = (V, E) for which there exists a partition {Vi}n

i=1 of the vertices
so that

E =
n−1⋃
i=1

Vi × Vi+1.

Example A.0.2. An example of n-layered feed-forward networks is exactly the
class of feed-forward neural network architectures where the neurons are arranged
in n layers, and every neuron in one layer is connected to every neuron in the
next layer, as displayed in Figure A.1.

Figure A.1: A 5-layered feed-forward network.

Definition A.0.3. A strictly partially ordered set (X, <) is said to be of ffn-type
if the transitive reduction of (X, <) is an n-ffn for some natural number n.

Theorem A.0.4. Let (X, <) be a strictly partially ordered set. Then the family
of regular partitions P(X, <) over (X, <) ordered under partition refinement has
a greatest element if and only if (X, <) is of ffn-type.

Proof. Assume first that (X, <) is of ffn-type, and let {Xi}n
i=1 be the

corresponding partition given by Definition A.0.1. Clearly, {Xi}n
i=1 is a regular

141

A. Correction of Theorem I.4.6

partition with respect to <. Hence, since ({Xi}n
i=1, <′) is a linearly ordered set,

and since, by construction, the Xi are the only maximal antichains of (X, <), it
follows that every other regular partition is a refinement of ({Xi}n

i=1, <′). Thus,
({Xi}n

i=1, <′) is the greatest element.
Now assume that ({Xi}n

i=1, <′) is the greatest element of P(X, <). Then
each Xi is an antichain, and ({Xi}n

i=1, <′) is a linearly ordered set. We can,
thus, without loss of generality, assume that the enumeration of the Xi are
compatible with the induced relation, so that i < j ⇒ Xi <′ Xj . Furthermore,
for 1 ≤ i < j ≤ n, we must have

(x, y) ∈ Xi × Xj ⇒ x < y, (A.1)

for otherwise {x, y} would be an antichain not contained in any of the Xi,
contradicting that ({Xi}n

i=1, <′) is the greatest element of P(X, <). In particular,
(A.1) must hold for j = i + 1, which implies that the transitive reduction of
(X, <) is an n-ffn (X, E) with E = ∪1≤i≤n−1Xi × Xi+1. ■

142

	Acknowledgements
	List of Papers
	Contents
	Introduction
	Layout of the thesis
	Motivating industry problem
	Order relations, hierarchical clusterings and ultrametrics
	Order preserving flat clustering
	Summary of Papers
	Discussion
	References

	Papers
	Order preserving hierarchical agglomerative clustering
	Introduction
	Background
	Optimised hierarchical clustering
	Order preserving clustering
	Partial dendrograms
	Hierarchical clustering of ordered sets
	Polynomial time approximation
	Demonstration of approximation efficacy on randomly generated data
	Demonstration on data from the parts database
	Summing up
	Plots from the part database demo
	Reference implementation
	References

	An objective function for order preserving hierarchical clustering
	Introduction
	Order preserving hierarchical clustering
	An objective function for trees over ordered data
	Properties of g
	Properties of f=sd+g
	Approximation
	Demonstration
	Summary and future work
	References

	Machine part data with part-of relations and part dissimilarities for planted partition generation
	Data specification
	Value of the Data
	Data Description
	Experimental design, materials and methods
	References

	Correction of Theorem I.4.6

