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A B S T R A C T   

Longevity and safety of lithium-ion batteries are facilitated by efficient monitoring and adjustment of the battery 
operating conditions. Hence, it is crucial to implement fast and accurate algorithms for State of Health (SoH) 
monitoring on the Battery Management System. The task is challenging due to the complexity and multitude of 
the factors contributing to the battery capacity degradation, especially because the different degradation pro-
cesses occur at various timescales and their interactions play an important role. Data-driven methods bypass this 
issue by approximating the complex processes with statistical or machine learning models: they rely solely on the 
available cycling data, while remaining agnostic to the underlying real physical processes. This paper proposes a 
data-driven approach which is understudied in the context of battery degradation, despite being characterised by 
simplicity and ease of computation: the Multivariable Fractional Polynomial (MFP) regression. Models are 
trained from historical data of one exhausted cell and used to predict the SoH of other cells. The data are pro-
vided by the NASA Ames Prognostics Center of Excellence, and are characterised by varying loads which simulate 
dynamic operating conditions. Two hypothetical scenarios are considered: one assumes that a recent observed 
capacity measurement is known, the other is based only on the nominal capacity of the cell. It was shown that the 
degradation behaviour of the batteries under examination is influenced by their historical data, as supported by 
the low prediction errors achieved (root mean squared errors ranging from 1.2% to 7.22% when considering data 
up to the battery End of Life). Moreover, we offer a multi-factor perspective where the degree of impact of each 
different factor to ageing acceleration is analysed. Finally, we compare with a Long Short-Term Memory Neural 
Network and other works from the literature on the same dataset. We conclude that the MFP regression is 
effective and competitive with contemporary works, and provides several additional advantages e.g. in terms of 
interpretability, generalisability, and implementability.   

1. Introduction 

Transports highly contribute to greenhouse gas emissions [1], hence 
it is fundamental to optimise sustainable and low-emission solutions 
such as electric batteries. Lithium-ion batteries (LIBs) are the most 
popular battery technology, as they offer important advantages 
compared to other battery types such as lead-acid, nickel‑cadmium or 
nickel-metal-hydride [2,3]. The performance of LIBs is nevertheless 
destined to deteriorate over time (calendar ageing) and usage (cycle 
ageing): in fact, they are complex electrochemical systems sensitive to 
operating conditions, and their nonlinear characteristics are time- 

varying due to ageing. To cope with the increasing demand for high- 
performance and durability of rechargeable batteries, Prognostics and 
Health Management (PHM) received tremendous attention over the 
recent years. PHM plays a crucial role: it enables the operators to 
monitor the State of Health (SoH) of the battery and take actions to 
maintain availability and reliability. The LIB prognostics phase includes 
five steps [4]: measurement, feature extraction, SoH estimation, SoH 
prediction, and Remaining Useful Life (RUL) estimation. 

We define the battery SoH in Section 2, and throughout the article we 
distinguish between estimation, prediction and forecast according to the 
following: estimation involves evaluating SoH at a given cycle k using 

* Corresponding author. 
E-mail addresses: clarabe@math.uio.no (C. Bertinelli Salucci), azzeddib@math.uio.no (A. Bakdi), glad@math.uio.no (I.K. Glad), erik.vanem@dnvgl.com 

(E. Vanem), debin@math.uio.no (R. De Bin).  

Contents lists available at ScienceDirect 

Journal of Energy Storage 

journal homepage: www.elsevier.com/locate/est 

https://doi.org/10.1016/j.est.2022.104903 
Received 11 November 2021; Received in revised form 22 April 2022; Accepted 14 May 2022   

mailto:clarabe@math.uio.no
mailto:azzeddib@math.uio.no
mailto:glad@math.uio.no
mailto:erik.vanem@dnvgl.com
mailto:debin@math.uio.no
www.sciencedirect.com/science/journal/2352152X
https://www.elsevier.com/locate/est
https://doi.org/10.1016/j.est.2022.104903
https://doi.org/10.1016/j.est.2022.104903
https://doi.org/10.1016/j.est.2022.104903
http://crossmark.crossref.org/dialog/?doi=10.1016/j.est.2022.104903&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Journal of Energy Storage 52 (2022) 104903

2

features pertaining only to the kth cycle; prediction evaluates SoH at cycle 
k using the whole battery historical sequence, i.e. features from cycles 1, 
…, k; forecast involves evaluation of SoH in the future ageing pattern of 
the battery. 

Various approaches are proposed in the literature for SoH estimation 
and prediction of LIBs, which may be categorised as: (i) experimental 
approaches, including direct SoH testing and experiment-based models; 
and (ii) data-based methods, including filters, observers, expert systems, 
statistical and machine learning (ML) methods. This article focuses on 
the latter, particularly on statistical methods as compared to ML 
methods. 

The first class of experimental direct testing methods [5] includes 
internal resistance and impedance measurement, battery energy level, 
and incremental capacity analysis methods [6]. Common measurement- 
based models for SoH estimation include Coulomb counting, destructive 
tests [4], and other data-fitting models obtained only from test mea-
surements. The experimental methods can only be conducted offline 
from regular SoH test measurements (e.g. annual capacity tests) and are 
highly time-consuming: hence they are inappropriate for the Battery 
Management System (BMS). Indirect experimental methods do not 
explicitly depend on SoH tests, but they rely on a combination of thor-
ough testing of new batteries (e.g. OCV-SOC) and adaptive models, 
which are based on online parameter estimation and include: physical 
models such as equivalent circuits [7], and electrochemical models [8]; 
purely data-driven models; domain knowledge; hybrid models. Among 
the approximate physical models, the widest classes of SoH estimation 
methods are filters and state observers: especially, Kalman filter and its 
unscented and extended versions are widely adopted for the estimation 
of State of Charge (SoC), defined e.g. in [9], and have their applications 
successfully extended to SoH estimation [10] and sliding-mode ob-
servers [11]. Pure knowledge-based SoH estimation approaches 
comprise expert systems such as fuzzy logic [12] and Bayesian networks 
[13] with structures designed by experts; these are however limited, 
though widely integrated with the other approaches [14]. 

The second class comprises data-driven SoH estimation models which 
are abundant in the literature, due to their favourable capability of 
modelling the battery degradation while being agnostic to the underlying 
complex physical and electrochemical phenomena; they are usually 
based on partial segments of charging/discharging curves, and mainly 
rely on ML methods. For example, Liu and Xu [15] developed an energy- 
based segmentation called “energy of equal distance voltage difference” 
to estimate SoH using deep neural network (NN). A gate recurrent unit- 
convolutional NN was developed by Fan et al. [16], and deep convolu-
tional NN (CNN) by Shen et al. [17] to estimate SoH from full trajectories 
of fixed charge curves; whereas Li et al. [18] extended the idea to multiple 
cells SoH estimation from their voltage-current-temperature trajectories 
over a sliding window using Long Short-Term Memory (LSTM). A more 
comprehensive overview on data-driven models can be found in the re-
views by Ng et al. [9] and Vanem et al. [19]. 

While exhibiting good prediction abilities, ML approaches lack 
interpretability and require large amounts of data: the complexity of ML 
models, which are difficult to be handled and checked, risks replacing 
the complexity of the physical problem that was to be avoided by 
considering a data-driven approach. For instance, a NN acts as a black 
box: it provides results based on transformations unavailable to the user. 
As an example, Venugopal and Vigneswaran [20] use a transformation 
of the response among the inputs, and yet the prediction error is not 0. 
This shows that the NN may be forced to find spurious relationships, 
since the predictions would have been all equal to the true values, had 
the right relationship been identified. This case also points out that 
recognizing potential issues can be difficult when dealing with black-box 
methods; in contrast, a linear regression with the same response trans-
formation among the inputs would have provided a clear indication of 
the one-to-one relationship between the input and the outcome. 

Among the studies considering regression in connection to LIB ca-
pacity estimation or prediction we mention [21–25]. Different statistical 

methods have also been proposed. For example, Feng et al. [26] used 
support vector machines to develop a curve-similarity factor to estimate 
SoH from charging voltage segments; Richardson et al. [27] estimate 
SoH using Gaussian process regression based on another form of partial 
segments designed as n equispaced voltage points. Further methods 
require the segment to be a full cycle, such as approximate weighted 
total least squares [28] to estimate the rated discharge capacity from 
arbitrary total capacity. Due to their common idea of partial segments, 
the accuracy of these methods is subject to the availability of long deep 
monotonic segments, and they cannot be applied to SoH estimation for 
LIBs under dynamic conditions and calendar ageing. 

Conversely, history-based SoH prediction approaches can explain the 
degradation of battery health as influenced by the whole LIB history, 
and they are crucial in PHM for their simultaneous advantages of pre-
dicting the future performance and optimising the present operating 
conditions. Different operating conditions have different effects on the 
LIB ageing behaviour. A SoH prediction model with capabilities of 
predictive and prescriptive analytics, such as those considered in this 
article, enables the BMS to adjust temperature and charge/discharge 
currents to increase longevity and facilitate safe, high-performance 
operation. 

The LIB degradation emerges from a complex interplay between 
many influencing elements, degradation mechanisms (internal side re-
actions), degradation modes, and observed degradation effects [29]. The 
influencing elements include: cell and pack design factors; production 
factors; and application (stress) factors; they influence internal side re-
actions through complex irreversible physical and chemical processes, 
which in turn lead to the various degradation modes of lithium deple-
tion, active material loss, electrolyte decomposition, and increase of 
internal resistance [29]. As a result, the observed LIB degradation effects 
are capacity fade and power fade. While the design and production 
factors of influence are fixed and depend on the monitored LIB, the stress 
factors are dynamic features that may accelerate the LIB degradation 
behaviour. They can be extracted from measured variables or estimated 
states and they include: exposure to elevated and low voltages; Depth of 
Discharge (DoD); cycle bandwidth; cycling frequency; high and low 
temperatures; high discharge rates (Section 3.2). 

A critical review [4] emphasises that the degradation effects origi-
nate from various processes and their interactions; studying the ageing 
mechanism is challenging as these processes occur simultaneously, they 
have different time scales, and it should be avoided to analyse them 
independently. However, very few multi-factor SoH degradation ana-
lyses are reported in the literature: Muenzel et al. [30] studied the effects 
of current, cycling limits, and temperature on battery ageing using four 
dependent models of these factors; Zou et al. [31] conducted a weight 
analysis to study the influence of voltage, capacity and internal resis-
tance inconsistency on module capacity; Cui et al. [32] conducted 
orthogonal experiments to study the impact degree of single and mul-
tiple stress factors on capacity loss. Unfortunately, these factors are 
considered independently or in subgroups. Thus, this paper also aims at 
exploring how various combinations of stress factors affect the LIB 
degradation, and the degree of impact of different factors to ageing 
acceleration. 

Different reviews, e.g. [4,19], agree that there is not a perfect 
method for SoH estimation. As we have briefly outlined, a variety of 
different approaches are available, all presenting strengths and weak-
nesses: the best option depends strongly on the available data. In this 
paper, using data simulating realistic operating conditions, we present a 
perspective in which simple statistical models are identified via the 
Multivariable Fractional Polynomial (MFP) approach. We promote the 
MFP as a valid solution to overcome many of the downsides reported so 
far:  

1. The “black-box” feature of ML methods, and their common inability 
of providing uncertainty estimates around the point estimates or 
predictions; 
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2. The unsuitableness of complex models for the BMS; 
3. The need for researching meaningful features or specific health in-

dicators carrying electrochemical meaning;  
4. The need for long deep monotonic charge/discharge segments which 

are not likely to be available under realistic operating conditions;  
5. The limitation of considering stress factors for LIBs independently 

from each other or in subgroups. 

The advantages of MFP have never been exploited, to the knowledge 
of the authors, for modelling the LIB capacity degradation. We research 
to which extent MFP models can be used to model the battery capacity 
reduction under dynamic conditions. Besides, by comparing different 
MFP models we examine the relationship between the most relevant 
features and the battery capacity degradation itself. Finally, we compare 
our method to a ML approach based on a Deep LSTM Regression 
Network (D–LSTM–RN), and other contemporary works from the 
literature. 

The remainder of this article is organised as follows: Section 2 in-
troduces the problem of SoH degradation in relation to the battery ca-
pacity fade and presents the experimental data used for the analysis; 
Section 3 describes the MFP algorithm in the regression context, over-
views the stress factors for LIBs and the related features, presents three 
MFP models and their results, with a particular focus on the interpre-
tation of the estimated coefficients; Section 4 compares the MFP 
regression with a Long Short-Term Memory Neural Network, as well as 
with recently published methodologies applied on the same dataset; 
Section 5 summarises the main results and provides concluding remarks. 

2. Dataset description and problem formulation 

The dataset we use is part of the “Randomized Battery Usage Data 
Set” by the NASA Ames Prognostics Center of Excellence (PCoE) [33], 
which comprises ageing data for 18650 LIBs cycled under randomly 
generated profiles. The aim of the experiment was to mimic the dynamic 
operating condition of batteries used in real-life. In fact, despite their 
important role in the study of LIB deterioration, laboratory data are 
typically gathered under particular and unrealistic conditions, for 
example with small temperature variation and constant current. This 
randomised dataset constitutes an effort towards a better approximation 
of real-life conditions; it is a well-known benchmark that is widely used 
for training, testing, and comparing various methods in the literature, 
hence we adopt it to validate our work. The data considered in this study 
pertain to 11 out of the 28 battery cells that were made available by the 
NASA PCoE. The remaining 17 cells were discarded due to unrealistic 
values in the temperature data (cells 2, 3, 17 and 18) and/or in the cycle 
duration (negative values in cells 6, 16, 17, and 18), or due to the 
presence of too few observations of the response variable (cells 13, 14, 
15 and 21 to 28). The considered cells belong to four groups that were 
operated in a controlled environment in different ways, as reported in 
Table 1. All the discharge processes were randomised to recreate real 
operation, and for all groups the two modalities relevant for this analysis 

are:  

• Reference discharge: a controlled full discharge cycle, occurring 
immediately after a controlled full charge cycle, which allows to 
compute the cell capacity periodically. During a reference charge 
cycle, the cell is initially charged at a constant current of 2 A, until 
the battery reaches the maximum voltage of 4.2 V; then, the voltage 
is kept constant until the charging current drops to 0.01 A. During 
the subsequent reference discharge cycle, the cell is discharged at 1 A 
until the voltage reaches the threshold of 3.2 V  

• Random walk (RW) steps: a charge and/or discharge process where 
the current load or the duration is selected at random from a pre- 
defined set; see Table 1 for details. 

Temperature, voltage and current were recorded for each opera-
tional mode and are the only data used for this study. 

The degradation of the battery SoH entails a decrease in the battery 
capacity and an increase in the battery impedance [4,34]: hence, both 
these phenomena can be alternatively used to define SoH and analyse 
the LIB health deterioration. In this study, we consider the reduction in 
the battery capacity. The remaining capacity before and after every RW 
phase can be computed through integration of the discharging current 
over the elapsed time during the reference discharge [35], 

Cd =

∫ tcutoff

0
Id dt. (1) 

In particular, since the discharging current for the reference cycles 
throughout the experiment is always Id = 1 A for all the considered cell 
groups, the magnitude of the discharging capacity corresponds to the 
discharging time expressed in hours. It should be noted, however, that 
the batteries are not likely to be at equilibrium at the beginning of each 
reference cycle, since there were too short resting periods (or no resting 
periods at all) to allow reaching the steady state. Consequently, the 
initial voltage of the cycles is uncertain, and generally different from the 
desired value of 4.2 V. This translates into an uncertainty on the 
benchmarked capacity [36], the determination of which would involve 
an accurate study of the battery transient dynamics, possibly com-
plemented by gathering of data from cycles interspersed with longer 
resting periods of the cell. An adjustment for the transient effects is 
introduced in Section 3.3. 

The observed capacities of all the cells considered in the study, 
grouped in the four different subsets, are shown in Fig. 1. Note that there 
are sudden increases in the capacity in almost all the degradation curves: 
they are likely to be due to a prolonged rest taking place before the 
reference cycle, as it is confirmed by studies such as [37,38]. When 
modelling the capacity degradation, this is taken into account through a 
feature related to the resting time of the cell. 

It should also be noted that in some cases there are dissimilarities in 
the degradation curves of the cells even when they belong to the same 
group. This is particularly accentuated in the third group: the cell RW11 
follows a similar path to RW9 and RW10 for the first part of the 

Table 1 
Brief description of the RW procedure for each group of batteries in the NASA Randomized Data Set.   

Cells RW procedure Reference cycles 

Group 1 1, 7, 8 Charge: random duration (0.5 to 3 h, or until full). 
Discharge: random current until 3.2 V. 

Every 50 RW steps 
Rest after charge and discharge (introduced only 
halfway). 

Group 2 4, 5 Charge: not random, i.e. constant current (2 A) to 4.2 V. 
Discharge: random current for 300 s or until 4.2 V. 

Every 50 charge-discharge processes 
Rest after charge and discharge (introduced only 
halfway). 

Group 3 9, 10, 11, 
12 

Charge: random current for 300 s or until 4.2 V. 
Discharge: random current for 300 s or until 3.2 V. 
Whether the RW step is charge or discharge is also random. 

Every 1500 RW steps 
Rest after charge and discharge (introduced only 
halfway). 

Group 4 19, 20 Same as group 2, but each step lasts 60 s and the probability distribution is skewed towards higher 
currents. 

Every 50 charge/discharge 
Rest after charge and discharge.  
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experiment, but develops differently in the second half, while the cell 
RW12 has a completely different behaviour. These differences are pre-
sumably caused by differences both in the production phase and in the 
operational history of the cells; it is reasonable to expect that such dif-
ferences will be reflected in less precise predictions. 

As illustrative of the RW cycling phase, Fig. 2 shows the temperature, 
current and voltage sensed data for the cell RW9 during the first and the 
last 50 RW steps (solid red lines and dashed blue lines, respectively). 
Note that there is a significant difference between the temperatures, 
which are consistently higher in the last RW phase, as well as in the 
voltage curves: in the first steps, the voltage rarely hits the range 
boundaries of 3.2 and 4.2 V, while it happens more frequently in the last 
steps. As a result, the last RW phase is also much shorter, since many of 
the steps last for less than the default duration of 5 min. All these effects 
are a clear indication of the cell health degradation, and are to be 
considered when modelling the capacity reduction. 

3. Multivariable fractional polynomials 

3.1. Algorithm description 

The Multivariable Fractional Polynomial (MFP) approach of Sauer-
brei and Royston [39] is based on an algorithm to find the best input 
transformations in a multivariable linear regression setting. A multi-
variable linear regression assumes a linear relationship between the 
response (or target variable or outcome) y and a set of inputs (also called 
features or covariates) x1, …, xp, 

y = E
[

y |x1,…, xp
]
+ ε = β0 + β1 x1 +…+ βp xp + ε (2)  

where β0, …, βp are the regression coefficients, ε is an error term, and 
E
[
y |x1,…xp

]
= β0 + β1 x1 + … + βp xp is the expected value of y condi-

tioned on x1, …, xp. Note that linearity is assumed with respect to the 

Fig. 1. Observed capacity values for the cells used in this study. The jumps in the capacity curves are likely to be caused by a prolonged rest which is accounted for in 
our models. Note the dissimilarities in the degradation behaviours of cells pertaining to the same experiment in the groups 3 and 4. 

Fig. 2. Comparison between the measurements of temperature (upper plot), 
current intensity (middle plot) and voltage (lower plot) during the first 50 RW 
steps (red solid lines) and the last 50 RW steps (blue dashed lines) of cell RW9. 
Note the differences between the initial and final steps: the temperature is 
consistently higher in the final phase, which takes a significantly shorter time 
(upper x-axis) and hits the voltage extremes (3.2 V and 4.2 V) more frequently 
than the initial phase. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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regression coefficients β0, …, βp, not necessarily to x1, …, xp: on the 
contrary, it is important to consider possible nonlinear contributions 
from the inputs, which, if not accounted for, may lead to misspecified 
final models [39]. The MFP method, implemented in R with the mfp 
package [40], handles non-linearities by transforming the inputs 
through the most suitable FP functions. 

Given a unidimensional input x, a FP function of first degree is 
defined as xl, where the power l can be either integer or fraction, positive 
or negative, from the predefined set 

A = { − 2, − 1, − 0.5,0, 0.5, 1, 2, 3},

where x0 ≡ log x. The best l in the set A is considered to be that yielding 
the lowest deviance d = − 2ℓ(β̂ML), where ℓ(β̂ML) is the maximised log- 
likelihood function. In a multivariate setting with p > 1 covariates, a 
backfitting-like algorithm is used to fit a MFP model: a linear term for 
each covariate is initially included; then, the best transformation within 
the considered FPs is selected with the same procedure as for the uni-
variate case, and the model is updated consequently. Iterations are 
repeated until all FPs remain constant. The mfp package allows for FPs 
of degree m > 1: the second-degree polynomial is preferred over the 
first-degree on the basis of a χ2 test, and so on. Further details about the 
MFP method with FPs of a generic degree m can be found in [39,41,42]. 
For this analysis, we considered FPs with maximum permitted degree m 
= 2, but only first-degree models were eventually selected by the 
algorithm. 

Considering a training set of n labelled pairs (y, xl), where xl is the q- 
dimensional vector of transformed inputs according to the MFP algo-
rithm and l = (l1,…, lq) the set of selected powers, the linear model can 
be written as 

y = E[y | X̃ ] + ε = X̃β+ ε, (3)  

where: y is a vector of n observations of the target variable; X̃ is a n × (q 
+ 1) matrix assumed to have full rank q + 1, containing a column of 1's 
in the first position to account for the intercept term β0, and the trans-
formed inputs in the remaining columns; ε is a vector of n independent 
error terms that are here assumed to be N(0,σ2)-distributed. In general, 
q ∕= p due to the possibility of introducing an m-degree polynomial for 
each input x1, …, xp; however, q = p in our case where only first-degree 
polynomials were selected. Given the training set, one can learn the 
linear relationship through the least squares criterion, i.e. by solving 

β̂ = argmin
β∈ℝq

‖ y − X̃β‖2. (4) 

Despite constituting such a simple setup, linear regression proved to 
work extremely well in many non-trivial contexts and different appli-
cations, see e.g. [43–45]. An attractive characteristic of multiple linear 
regression is the interpretation of the regression coefficients βj for j = 1, 

…, q, which may be read as the change in E
[
y |xl1

1 ,…xlq
q

]
for an increase 

of one unit in xj
lj, holding all other features constant. Importantly, this 

enables immediate identification of the most relevant features, and al-
lows studying the effect of one single feature while adjusting for the 
effects of the others. In addition, the coefficient of determination R2 can be 
interpreted, in the context of linear regression, as the proportion of total 
variability in the outcome that is explained by the model, with 0 ≤ R2 ≤

1. For this reason, R2 provides an interesting diagnostic measure. 
However, since R2 increases every time new features are added to the 
regression equation, one should preferably consider its penalised 
version, the adjusted coefficient of determination Radj

2 , that only increases 
when newly added features increase the variability explained by the 
model. 

Finally, to avoid including features that do not add valuable infor-
mation, it is important to introduce a variable selection mechanism 
which enables to keep only the subset of the most significant variables to 
predict the outcome. In this case, we used a stepback procedure based on 

the AIC (Akaike's Information Criterion), which proceeds as follows:  

a) The full model is fitted, i.e. all the considered inputs are kept into the 
model. The AIC of the model is computed.  

b) Each variable is removed from the model, in turn. For each of the 
resulting models, the AIC is computed. If one or more models have 
higher AIC than the full model, the model with highest AIC is kept 
and all others are discarded.  

c) Point b) is repeated again and again, until there is no improvement 
with respect to the AIC. Inputs can be either removed or included 
back in the model, whenever the exclusion or inclusion produces an 
increase in the model AIC. 

Variable selection is important for both theoretical and practical 
reasons, such as: achieving a reduction of the model variance, thus 
improving the prediction accuracy; facilitating the model interpretation 
and providing a cleaner view of the data-generating process; and 
reducing the computational and usage time of the model, which makes it 
more portable. Performing variable selection is an important and deli-
cate point in particular for explanatory models such as linear regression, 
since including or excluding highly correlated features may lead to 
significantly different interpretations of their effects [46]. 

Fig. 3 provides an example of how a vector of generic inputs (a,b,c,d, 
f) might be transformed by the MFP algorithm, both without or with 
variable selection. In the former case, after a certain number of itera-
tions, the algorithm has determined that the best transformations among 

the fractional polynomials are 
(

a2, b, c− 2 + c− 1, d1
2, f0⋅f − 1

2

)
, where f0 =

log (f); instead, when variable selection is required, the variables that 
are statistically not significant are dropped, and the selected trans-
formations for those that enter the model may vary consequently. This 
reflects the fact that the model is multivariable: it does not account for 
the marginal effect of each covariate, but the effect of the different 
variables are considered simultaneously. 

For the current application, i.e. modelling the State of Health decay 
of lithium-ion batteries, it is important to emphasise that the variables 
selected and transformed by the MFP algorithm are not intended to have 
a specific physical meaning, and hence to be universally good predictor 
variables. On the contrary, they will vary from dataset to dataset as they 
constitute an approximation to real, physical relations which is found 
uniquely on the basis of the given data. 

3.2. Features extraction 

LIB capacity decrease is attributed to multiple factors and processes 
and their interactions over various timescales, including: exposure to 
elevated voltages; Depth of Discharge (DoD); cycle bandwidth; cycling 
frequency; elevated temperatures; and high discharge rates [47,48]. A 
multitude of stress factors is accounted for in our models; however, since 
it is a data-driven method that relies only on temperature-current- 
voltage data gathered in the RW discharging processes, some of the 
relevant factors need to be considered indirectly. 

A sufficient set of input features has been calculated from the sensor 
data gathered in each RW phase between two reference discharges. For 
each new capacity observation, the features are computed using only the 
data from the RW phase prior to that observation. In real-world appli-
cations, the length of the data series will vary depending on: i) the 
availability of capacity measurements for model training; ii) the specific 
application, which may require weakly/monthly SoH monitoring or less 
frequent monitoring. 

Temperature has a significant impact on performance, safety, and 
ageing of LIBs. The temperature range (− 20 ◦ C,+60 ◦ C) is considered 
acceptable [49], whereas the desired temperature range is (+15 ◦

C,+35 ◦ C) [50]. The effects of temperature on LIBs can be classified into 
low-temperature and high-temperature effects: in both cases, extreme 
temperatures affect both calendar and cycle ageing. Low temperatures 
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may cause slow chemical reactions and charge transfer, decreased ionic 
conductivity, and lithium plating [51]. Discharging at low temperatures 
results in power limitation, while low-temperature charge produces a 
reduced power capability and cold cranking [52]. High temperatures 
may cause loss of lithium and increase of internal resistance, which in 
turn produce loss of capacity and of power, respectively. Furthermore, 
the operating temperature affects the State of Charge (SoC) of the bat-
tery, and extreme temperatures may accelerate lithium plating on the 
anode. Temperature-based features are designed to account for the in-
fluence of temperature on the battery ageing behaviour. In particular, 
for each reference cycle i occurring after a RW phase having m RW 
discharge steps, we include the average of the minimum and maximum 
temperatures at each RW discharge step: 

Tmin =
1
m

∑m

k=1

(
Tmin

ik

)
;

Tmax =
1
m

∑m

k=1

(
Tmax

ik

)
.

(5) 

Note that, by construction of the linear regression methods, we 
cannot input the entire multivariate sequence of data corresponding to 
each RW phase, but we rather have to summarise the sequence to a 
single scalar for each input. 

Fast charging is a desired aspect in batteries; however, high charge- 
discharge rates may cause mechanical-induced damage of active parti-
cles in LIBs and accelerate the capacity fade [53]. Lithium plating is also 
associated with fast charging, particularly in combination with low 
temperatures. The effects of different current rates on coulombic effi-
ciency and capacity loss are studied by Madani et al. [54], and Armenta- 
Deu et al. [55] explore the impact on capacity estimation, confirming 
that the C-rate (or, equivalently, the current intensity) is an important 
feature for capacity fade prediction. In this work, we consider the 
average of the current intensities of the RW discharge steps, 

I =
1
m

∑m

k=1
(Iik). (6) 

The charge–discharge cycling frequency is related to mechanical 
stress on LIBs: it affects the degradation behaviour, especially when it is 
extreme [56], but high frequency may also come as a consequence of the 
battery ageing. The data at hand are characterised by a varying cycling 
frequency, which we consider in the analysis through: the cycle 
duration, 

Δt =
∑m+l

k=1

(
t end
ik − t start

ik

)
, (7)  

where m and l are the discharge and charge RW steps occurring before 
reference cycle i at which we are doing the prediction, respectively; the 
proportion of cycles lasting less than the default duration, 

λ =
# short steps

m
; (8)  

and the rest time, which is input as a nonlinear smooth saturation 
function of the time elapsed between the last RW step of the cycle and 
the beginning of the reference cycle, 

Δtrest =
1

1 + exp
[
− 1

4

(
t̃

σ2

t̃<20

) ] with t̃ = tstart, ref
i − tend,(m+l)

i ,

where σ2
t̃<20 

is the variance of the observations such that ̃t < 20 h. Note 

that the rest time affects the recovery effects and the charge balancing of 
the battery, and influences its lifetime [57]. The estimation of SoC is also 
affected by the rest time, besides temperature and cycle current; how-
ever, estimating the SoC is a complex process which often leads to un-
certain results, and this work advantageously avoids relying on SoC 
estimates. 

High voltages and overcharge contribute to lithium plating and 
electrolyte decomposition, which accelerate the battery ageing [58]. 
The Depth of Discharge DoD = SoC1 − SoC2 is also usually considered as 
a stress factor; however, Xu et al. [59] showed that the adopted SoC 
range (SoC1, SoC2) plays a bigger role than DoD itself: in fact, though 
batteries cycled with range (100%, 25%) degraded faster than those 
with (100%, 40%), it was also observed that (100%, 40%) degraded 
much faster than (85%, 25%), despite the same DoD. Furthermore, 
(100%, 50%) showed a faster degradation than (85%, 25%), despite the 
lower DoD. In our work, high voltages, DoD and SoC range are 
accounted for through the average initial voltage and voltage difference 
of the RW discharge steps, 

Vin =
1
m

∑m

k=1
v in

k ;

ΔV =
1
m

∑m

k=1

(
vend

ik − vstart
ik

)
.

(9) 

Note that there are redundancies in the input feature space, to ac-
count for the presence of nonlinear relationships between the features. 
For example, the cycles duration, voltage difference and cycle current 
are not independent from each other. Previously these factors were 
analysed separately in the literature; however, they should not be ana-
lysed independently as their interactions play an important role in LIBs 
ageing. This analysis models the battery capacity loss as a process of all 

Fig. 3. Arbitrary example of how a vector of generic inputs (a,b,c,d, f) might be transformed accordingly to the MFP algorithm, without variable selection (top) or 
with variable selection (bottom). 
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factors simultaneously, and investigates which combinations of features 
contribute mostly in explaining the capacity fade, measuring their de-
gree of importance. 

In addition to the aforementioned stress factors, two additional 
features are considered: the observed capacity at the last reference 
discharge cycle, 

Cprev = Ci− 1,

and an approximation, 

Capprox =
1
m

∑m

k=1
(Ĉik),

obtained as an average of rough capacity predictions at each RW 
discharge step, coming from a preliminary linear regression model 
which is described in the Supplementary Material, Section S.1. The in-
clusion or exclusion of these two additional features from the pool of 
possible inputs will enable the comparison of models representing 
different scenarios. 

3.3. Structure 

We considered three regression models:  

(a) a model including all features presented in Section 3.2, except for 
Cprev and Capprox;  

(b) a model including all features presented in Section 3.2, except for 
Cprev;  

(c) a model including all features presented in Section 3.2, with no 
exceptions. 

Model (c) assumes that Cprev, the observed capacity measured at the 
most recent reference cycle, is known and can be used to add important 
information to the regression model. Model (b) reflects the more realistic 
scenario in which Cprev is undetermined, but it includes Capprox as an 
approximate surrogate with the purpose of maximising the information 
extracted from the data sensed during the RW discharges; model (a) 
relies uniquely on the data directly gathered from the sensors, without 
additional true or predicted capacity values. In each case, the target 
variable for the analysis is the change in the battery capacity at time t 
compared to its nominal capacity, 

y = ΔC(t) = C(t0) − C(t). (10) 

The observed capacity values in Eq. (10) are not directly computed 
from Eq. (1) in Section 2: to account for the batteries not having reached 
equilibrium, the voltage curves of the reference discharges have been 
interpolated with a monotone Hermite spline, which allowed to 
extrapolate how much longer it would have taken if the cycles had 
started from the threshold voltage value of 4.2 V, instead of the observed 
ones. This is just a first step towards a more accurate capacity prediction, 
but it allows to introduce a small correction (Supplementary Material, 
section S.2). 

In the case of group 3, the final models trained on the first battery, 
RW9, are: 

MFPa: ΔCa,i = α0 + α1⋅Tmin,i + α2⋅Tmax,i + α3⋅λ3
i + εi 

MFPb: 
ΔCb,i = β0 + β1⋅C

1
2
approx,i + β2⋅Δtrest,i + β3⋅Tmin,i+

β4⋅λi + β5⋅Vin,i + εi 

MFPc: 
ΔCc,i = γ0 + γ1⋅C

1
2
prev,i + γ2⋅Δtrest,i + γ3⋅Capprox,i+

γ4⋅Tmin,i + εi 

The powers of included variable have been determined by the MFP 
algorithm (Section 3.1). It should be emphasized that the rationale for 
the selection of such polynomials is not of a physico-chemical nature: 
the transformations are suggested by the data themselves, hence are 
purely data-driven and relevant for the specific dataset rather than 

universally valid as it is the case, for example, of the health indicators 
resarchead by Zhou et al. [60] and Sun et al. [61]. This also comes as a 
consequence of the fact that the model is multivariable: it does not ac-
count for the marginal effect of each input, but rather it accounts for 
each variable in combination with the other variables in the model. It is 
however possible to attribute an effect to the selected covariates, as we 
are going to do in the Section 3.4, thanks to the interpretability of the 
model coefficients (as explained in Section 3.1). Note, finally, that many 
of the variables initially considered have been dropped by the variable 
selection mechanism, as they were not found to be statistically 
significant. 

3.4. Results 

Results for all models are shown in this section. In particular, Sub-
section 3.4.1 offers a detailed comparison of the models obtained for the 
third group (the largest), with interpretation and discussion of the 
selected features; results pertaining all other groups are shown in Sub-
section 3.4.2. 

To evaluate accuracy in prediction, we mainly consider the Root 
Mean Squared Error, 

RMSE(Ĉ,C) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(Ci − Ĉi)

2

√

. (11) 

Note that we compare RMSEs on the capacity scale, despite the target 
variable being the capacity drop between two consecutive reference 
cycles. This is done to ease the comparison with other works in the 
literature using the same data. A normalised version where the deviation 
is divided by the observed capacity is also provided: 

RMSEnorm(Ĉ,C) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
n
∑n

i=1

(
Ci − Ĉi

Ci

)2
√
√
√
√ . (12) 

Moreover, since the data-gathering for the cells in this experiment 
extended well beyond their End of Life (EoL) (70% or 80% of the cell 
nominal capacity [62,63]), we present also the counterparts computed 
on data up to the EoL, RMSEEoL and RMSEnorm

EoL . This metric is meaningful 
since SoH prediction after EoL is practically less important, and gener-
ally ignored in many works in the literature. The EoL is here defined to 
occur when the capacity is 80% of the nominal capacity. Other error 
measures can be found in the Supplementary Material, Section S.5. 

Table 2 
Results for the three models MFPa, MFPb and MFPc for group 3: estimated 
regression coefficients (Est), standard errors (Std err) and corresponding p- 
values, R2 and adjusted R2 coefficients.   

Covariate Est Std err p-Value R2 Radj
2 

MFPa Intercept  0.43  0.17 0.0142  0.985  0.984 
Tmin  0.54  0.08 5.35e− 08 
Tmax  − 0.53  0.08 9.13e− 08 
λ3  0.79  0.21 0.0007 

MFPb Intercept  7.40  0.90 1.72e− 09  0.992  0.991 

C

1
2
approx  

− 3.99  0.40 1.83e− 11 

Δtrest  − 0.26  0.07 0.60e− 03 
Tmin  − 0.06  0.01 8.39e− 09 
λ  0.62  0.24 0.0146 
Vin  − 0.10  0.04 0.0230 

MFPc Intercept  4.63  0.21 <2e− 16  0.997  0.997 

C

1
2
prev  

− 1.36  0.13 4.87e− 12 

Δtrest  − 0.34  0.04 5.23e− 10 
Capprox  − 0.87  0.13 7.83e− 08 
Tmin  − 0.03  0.005 1.05e− 05  
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3.4.1. Group 3: comparison between models and their interpretation 
The trained models for group 3 are reported in Table 2: the estimated 

regression coefficients are shown together with their standard errors, the 
corresponding p-values, and the R2 and Radj

2 coefficients. 
The table shows that MFPa is including only Tmin and Tmax, together 

with the proportion λ of steps interrupted due to the voltage reaching the 
boundaries before the default duration. The temperatures are the most 
significant variables in the model. Increasing Tmax by one degree while 
holding all other features constant implies an increase in the capacity 
drop of 0.54; this effect is counterbalanced by Tmin having an opposite 
coefficient. When they have close values, the effect of the two variables 
together is close to 0, meaning that a narrow temperature range, hence a 
controlled temperature variation, does not affect the battery health 
seriously. Concerning λ, it also appears strongly significant and it is 
included as a cubic effect with a positive regression coefficient. 

With MFPb we included the average of the approximate capacity for 
each RW step, Capprox. This led to increased values of both R2 and Radj

2 , 
and in fact, the square root of Capprox is the most significant feature of the 
model, correctly associated with a negative coefficient: a higher value of 
the square root of Capprox involves a smaller capacity gap. A mild 
beneficial effect is attributed also to Vin and Tmin: the initial voltage is 

not extremely significant; while the minimum temperature continues to 
have a very low p-value, which makes it the second most important 
feature in the model. Tmin is the only temperature variable selected for 
MFPb, and its effect is smaller than and opposite to that of MFPa: 
without Tmax in the model, Tmin is left alone to account for the effect of 
extreme temperatures. Δtrest is the third covariate for importance in the 
model, and it produces a reduction in the capacity variation: in fact, as 
discussed in Section 2, an apparent increase in the capacity of LIBs can 
be achieved by allowing the cell to rest for some time. The resting time 
was not selected in MFPa. This might be ascribed to the correlation that 
exists between Δtrest and λ, as we also see that λ has a reduced effect in 
MFPb compared to MFPa: its p-value changed from 0.0007 to 0.0146 
and the feature is now included as a linear effect with a smaller esti-
mated coefficient. Concurrently, since λ is both a cause and a conse-
quence of capacity fade in this experimental setting, it is likely that the 
reduction in its significance compared to MFPa is strongly connected to 
the presence of Capprox. 

MFPc is the result of variable selection starting from the full set of 
inputs described in Section 3.2, including the most recent observed ca-
pacity value, Cprev. The inclusion of Cprev adds a great deal of exact in-
formation to the model, which unsurprisingly results in a further 

Fig. 4. Capacity fade prediction results using the three models MFPa (left column), MFPb (middle column), and MFPc (right column), together with the considered 
error metrics. Grey bands are 90% prediction intervals. The two apparent increases in each capacity curve, produced by a prolonged rest of the cells, are in most cases 
predicted by the models. All models have good predictive accuracy with RMSEnorm and RMSEnorm

EoL ranging from 2.22% to 11.69% and from 3.21% to 7.18%, 
respectively. The higher errors affecting cells RW11 and RW12 are due to the different profiles of these cells (Section 2), but are in line with the existing literature 
(Section 4). Other error metrics can be found in the Supplementary Material, Section S.5. 
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increase of both R2 and Radj
2 , almost reaching their maximum value of 1. 

The results of MFPc seem consistent with those of MFPb: the most 
important feature is now the square root of Cprev, which also has the 
larger (in magnitude) estimated coefficient. 

Interestingly, the second most significant covariate is now Δtrest, 
with a stronger effect also in its coefficient: this could again be explained 
with its relation to λ, which is not present in this model. However, once 
again, the absence of λ should be also related to its connection with Cprev 
and Capprox: in fact, λ was strongly significant in MFPa, where neither 
Cprev nor Capprox were considered; less important in MFPb where Capprox 
was included; not present at all in MFPc where both the capacity mea-
sures are part of the model. Capprox continues to be extremely significant, 
but it is now included linearly and it is less important than in MFPb. 
Finally, Tmin has an even smaller effect than in MFPb, but persists in 
being an important input to predict the change in capacity. 

For the sake of interpretability and explanation, MFPc seems the best 
choice: it has the highest coefficients of determination, it is reasonably 
sparse and all the included variables are extremely significant. However, 
it assumes that the observed capacity is known at every previous cycle, 
which is hardly the case in real conditions; then, MFPb constitutes a 
valid alternative as it takes advantage of approximate evaluations of the 
capacity derived directly from the data gathered during the RW steps. 
However, it is noticeable that MFPa also reaches high R2 and Radj

2 while 
comprising only three features which can be very easily obtained in 
practice. 

When it comes to accuracy in prediction, the normalised RMSEs are 
presented in Fig. 4, where the predicted capacity fade according to each 
model is compared to the true values. The grey area represents the 90% 
prediction interval, which has been computed using basic asymptotic 
results at almost no additional computational cost. The first row (cell 

RW9) reports the training error of each model. The results show that the 
difference in the performances of the three considered models is not 
huge: all of them have good predictive accuracy with RMSEnorm and 
RMSEnorm

EoL ranging respectively from 2.22% to 11.69% and from 3.21% 
to 7.18%. The errors reflect the similarities and dissimilarities in the 
production phase and operational history of the four cells. In particular, 
we observe higher errors for batteries RW11 (for all three models) and 
RW12 (MFPb and MFPc): these are to be attributed to the fact that the 
batteries have been used in a different way, which is particularly evident 
when looking at the temperature-related features (Fig. 5). Different 
temperatures also have an impact on Capprox, as it is also clear from the 
figure. As a result, the cells show rather different degradation paths 
(Fig. 1). 

Considering RMSEnorm, there is a consistent improvement going from 
model MFPa to MFPb and MFPc for batteries RW10 and RW11, while the 
minimum RMSEnorm

EoL is obtained with MFPa; for RW12, remarkably, we 
obtain better results with model MFPa according to both the error 
metrics. 

3.4.2. Groups 1, 2, 4: method solidity 
Figs. 6, 7 and 8 show the predictions obtained respectively for the 

first, second and fourth cell groups. For each group, the first cell is used 
as training set: this allows to calibrate the models on the specific oper-
ational characteristics of the given set, an important step since the 
operational procedures are not homogeneous from group to group. Note 
that, as a result of retraining, the models will have a different form and 
different estimated coefficients than those reported in Section 3.3 which 
were trained on group 3. The first row in the figures reports the training 
error of each model. The results, with errors never above 10% and 
mostly within 5%, confirm that the models can effectively predict the 

Fig. 5. Temperature-related features and approximate capacity Capprox for the four cells of group 3. The cells have been operated in different ways: in particular, 
batteries RW9 and RW10 have significantly lower temperatures than RW11 and RW12, which is also reflected in different Capprox patterns and different degradation 
paths (see also Fig. 1 in Section 2). 
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Fig. 6. Capacity fade prediction results for the cells in group 1 using the three models MFPa (left column), MFPb (middle column), and MFPc (right column), together 
with the considered error metrics. Grey bands are 90% prediction intervals. Cell RW1 is used for training, while RW7 and RW8 are used for test. The range in the 
prediction errors is 5%–8.4% for RMSEnorm and 2.66%–7.22% for RMSEnorm

EoL . 

Fig. 7. Capacity fade prediction results for the cells in group 2 using the three models MFPa (left column), MFPb (middle column), and MFPc (right column), together 
with the considered error metrics. Grey bands are 90% prediction intervals. Cell RW4 is used for training, while RW5 is used for test. The range in the prediction 
errors is 4.83%–9.76% for RMSEnorm and 3.63%–6.36% for RMSEnorm

EoL . 
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capacity drop (or apparent increase) of a cell on the basis of data from 
one exhausted cell that has been cycled under similar conditions. Note 
that the features considered for the models, and then transformed with 
MFP and selected with a stepback procedure, were firstly designed with 
respect to the cycling routine of group 3, and were not changed when 
modelling group 1, 2 and 4. 

4. Comparison with other data-driven methods 

4.1. Comparison with Deep Long Short-Term Memory Regression 
Network 

In this subsection, we compare the proposed MFP approach with a 
Deep Long Short-Term Memory Regression Network (D-LSTM-RN). The 
regression network has been trained on the battery cells of group 3, 
using RW9 as training set and RW10, RW11 and RW12 as test data. It is 
composed of: an input layer through which the features are normalised 
and input to the model; two hidden layers of 200 LSTM cells each; a fully 
connected layer; and a regression layer that predicts the capacity fade. 
Background information and further details about the structure, input 
and implementation of the D-LSTM-RN can be found in the Supple-
mentary Material, Sections S.3 and S.4. Note that the capacity-fade 
prediction problem is considered as a “multivariate sequence to one 
scalar” regression problem, differently from what was done with MFP 
which could not handle input in the form of multivariate sequence. The 
outcome is also different as D-LSTM-RN enables to consider the varia-
tion in capacity compared to the last capacity prediction, whereas MFPs 
allowed the comparison to the known nominal capacity only, 

ΔC
(
tp, tn

)
= Ĉ

(
tp
)
− C(tn), (13)  

where p and n are two consecutive reference cycles, and Ĉ
(
tp
)

is the 
capacity evaluated by the D-LSTM-RN at cycle p. 

Fig. 9 depicts the capacity fade predictions obtained with the D- 
LSTM-RN. It is clear that the predictions suffer from cumulative error 
and the normalised RMSEs tend to be slightly higher than the errors 
obtained with the MFP models; however, when considering the capacity 
fade only up to the cell EoL the prediction errors are remarkably low 
(except for RW12 which, as discussed before, has a different degradation 
profile). Nevertheless, the closeness of the prediction error achieved by 
the MFP models (range 2.2%–11.7%) and those of the D-LSTM-RN 
(range 5.2%–13.5%) implies that both methods have good performance. 

It is remarkable that our simple linear regression models achieve results 
that are comparable to those of the deep learning architecture, and they 
offer several key advantages that make them absolutely worthy of 
consideration: they have a much higher computational efficiency (for 
this study, the computational time was about 10 s for training MFP 
against 1 h for D-LSTM-RN with comparable computing resources1); 
they give the chance to interpret the results and discuss the effect of each 
feature, while allowing to rank the most important ones; they easily 
provide prediction intervals by using fundamental results from the 
classic asymptotic theory; they allow feature selection, to the benefit of 
prediction accuracy, interpretability and portability; they do not require 
the tuning of many hyperparameters, as opposed not only to D-LSTM- 
RN, but to most of the ML methods commonly used for capacity pre-
diction of LIBs; and their much smaller number of parameters (4–6 
against >3 × 105 for D-LSTM-RN) grants a crucial practical advantage 
for PHM as an MFP algorithm can be easily implemented on the BMS to 
monitor and optimise the battery performance. 

4.2. Comparison with contemporary works 

Table 3 lists the results of the most recently published data-driven 
methodologies chosen to model the capacity curve for the NASA Ran-
domized dataset. A one-to-one comparison would not take into consid-
eration several differences across the studies, including the data-split 
into training and test and, more importantly, fundamental dissimilar-
ities in the aim and methodology (estimation vs prediction, using 
particular cycles or segments vs the whole historical sequence): con-
cerning the predictive objective of our study, in fact, the only work close 
enough is [64] (though different in methodology), that reports much 
higher errors than ours with a RMSE range from 2.48% to 21.95%. The 
models proposed by Venugopal and Vigneswaran [20] have very low 
prediction errors, but those results were achieved having included a 
transformation of the response among the inputs, and hence cannot be 
employed for a fair comparison. Table 3 gives an overview of general 
performances in contemporary works, and an indirect comparison 
shows the good performance of our models, which are competitive to 

Fig. 8. Capacity fade prediction results for the cells in group 4 using the three models MFPa (left column), MFPb (middle column), and MFPc (right column), together 
with the considered error metrics. Grey bands are 90% prediction intervals. Cell RW19 is used for training, while RW20 is used for test. The range in the prediction 
errors is 2.06%–3.51% for RMSEnorm and 1.21%–2.75% for RMSEnorm

EoL . 

1 Hardware/software configurations for MFP: Intel ® Core™ i7-8550U CPU; 
Memory 16 G, Programming Language R 3.6.3. Hardware/software configu-
rations for D-LSTM-RN: Intel ® 6 Core™ i7 CPU; Memory 16 G, Programming 
Language MATLAB R2018a. 
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most recent studies. A detailed report of the most commonly considered 
error metrics obtained in our analysis can be found in the Supplemen-
tary Material, Section S.5. 

5. Conclusions 

This paper has proposed a simple Multivariable Fractional Poly-
nomial regression to predict the SoH of lithium-ion batteries under 
randomised load conditions recreated in the NASA Ames Prognostics 
Center of Excellence. The State of Health capacity-related definition has 
been considered, and an adjustment to the capacity values obtained by 
integration of the discharge current has been introduced to account for 
the battery transient effects. The degradation modelling is based on 
historical data from LIBs and rely on sensor data solely. It is shown that 
the degradation behaviour of the batteries under examination is influ-
enced by their historical data, as supported by the low prediction errors 
achieved, in a multi-factor perspective which allows to study the impact 

of different factor combinations. We have shown that the use of simple 
statistical models which linearly include suitably-transformed inputs has 
competitive performance, while offering additional advantages such as: 
the opportunity to easily select the most significant inputs, and the 
interpretability of their coefficients; the capability of producing pre-
diction intervals around the outcome; the absence of large numbers of 
hyperparameters; the great computational efficiency and consequent 
implementability on the BMS, which enables the adjustment of oper-
ating conditions for potential increase of longevity and safety. Machine 
learning methods such as neural networks have become the dominant 
data-driven methodology in modelling the degradation of lithium-ion 
batteries, and there is consensus on the fact that they are highly suc-
cessful in a variety of applications; however, classical methods should 
not be overlooked just as such. It is worth mentioning that while ma-
chine learning methods are less interpretable, MFP might have diffi-
culties in handling strong correlations. Moreover, as any data-driven 
methods (including machine learning techniques), it requires 

Fig. 9. Capacity fade prediction results using D-LSTM-RN, together with the considered error metrics. The prediction suffers from cumulative error, with RMSEnorm 
ranging from 6.8% to 13.45%, but RMSEnorm

EoL from 0.9% to 9%. Other error metrics can be found in the Supplementary Material, Section S.5. 

Table 3 
Summary of the most recent publications and results for SoH/capacity analysis with the NASA Randomized Battery Usage Data Set.  

Method Dataset Train - test Evaluation metric Range 

DCNN 
DCNN-TL [17] 
DCNN-ETL 

10-year source dataset + NASA first 20 cells Train: 16 cells 
Test: 4 cells 

RMSEnorm 

MaxEnorm 
1.5%–3.68% 
9.505%–21.778% 

GP [65] Group 3 + RW21, RW22, RW23, RW24 In each group: 
Train: 3 cells 
Test: 1 cell 

MAE 
R2 

~0.045–0.090 
>0.90 

GP [64] All cells but 16 and 17 Train: even cells 
Test: odd cells 

RMSE 0.070–0.642 

GP [66] Cells RW9, RW10, RW11 Train: RW9–10 
Test: RW11 

RMSE <0.025–<0.05a 

GP-ICE [27] First 20 cells – RMSEnorm 2.48%–21.95% 
IndRNN [20] Cells RW9, RW10, RW11, RW12 Train: RW9, RW10, RW11 Test: RW12 RMSEnorm 

MAEnorm 

MaxEnorm 

RMSEnorm
EoL 

MAEnorm
EoL 

MaxEnorm
EoL 

1.736%–3.015% 
1.380%–2.462% 
3.780%–6.840% 
1.337%–2.664% 
1.140%–2.255% 
2.594%–5.152%  

a The errors are not precise as they are provided in a plot in the original publication. 
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representative and sufficient training data to learn the relationship be-
tween features and response. Since it is based on the operating history of 
the battery cells, problems might arise in case of periods of missing data, 
this being a limitation of cumulative models in general. A possible so-
lution would be multiple imputation, but more research is needed to 
address the issue. Regardless, missing data do not prevent cumulative 
models from being very useful for sizing and planning batteries at the 
design stage. 

A shortcoming of this study might be that the considered cells are all 
characterised by the same chemical composition, though they under-
went different cycling routines and show different degradation patterns: 
it should be investigated whether this could result in poor generalisation 
properties, therefore it could be interesting to extend the study to 
different cells. However, in real applications, it is often easy to find cells 
of the same composition treated under similar conditions: hence, 
training the model on one exhausted cell to predict the State of Health 
evolution of the similar ones remains a valuable possibility. Different 
sets of inputs could also have been selected, where additional care could 
have been posed on the correlations existing between the various stress 
factors. Besides, more efficient methods could have been adopted for the 
capacity adjustment, as opposed to splines which can be poor in 
extrapolating. The next sensible step would be to extend the methods, 
developed on laboratory data (albeit randomised), to the more complex 
and challenging situations that characterise real applications. 
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