

UNIVERSITY OF OSLO
Department of informatics

Design, Implementation, and
Evaluation of Network
Monitoring Tasks with the
STREAM Data Stream
Management System

Master thesis
60 credits

Kjetil Helge Hernes

1st May 2006

Preface

The work on the current master thesis commenced spring 2004 and finished spring

2006. I have written this thesis at the research group Distributed Multimedia Systems

(DMMS).

I would like to thank my supervisors Professor Vera Goebel and Professor Thomas

Plagemann for providing me with the opportunity to write this thesis. I wish to ac-

knowledge them for their advices especially regarding queries and technical difficul-

ties. In addition, I would like to thank Vibeke Søiland for her valuable linguistic as-

sistance. Furthermore, my fiancée Siri and our two lovely children Henrik and Mat-

hea have shown a great understanding and been patience throughout my work. Their

love and support has been invaluable. Finally, I would like to thank Jarle Søberg for

great companionship and teamwork. Our master theses are closely tied to each other,

and I have taken advantage of cooperating with him in many of the areas we have

encountered during our work.

Kjetil Helge Hernes

1st May 2006

Abstract

The heavy load and rich variety of data on the Internet has resulted in the need to gain

an understanding of the characteristics of the traffic to better plan, develop, and im-

plement new network devices, applications, and protocols. In order to obtain such

knowledge, network monitoring is becoming more and more important. However,

tools available for network monitoring are restricted to either offline analysis in

DBMSs or online analysis through hard-coded continuous queries. Many streaming

applications would benefit from a system where network monitoring queries effec-

tively can be inserted, deleted, modified, and processed online in a continuous and

real time manner. Data Stream Management System (DSMS) is a promising technol-

ogy with respect to the needs of network monitoring, because it is designed to meet

the above requirements generated by many streaming applications. In the present pa-

per, an experimental analysis of STREAM as a network monitoring tool is per-

formed. STREAM is a general-purpose DSMS and its continuous query language is

known as CQL (Continuous Query Language). We investigate whether the current

implementation of CQL operators provides us the possibility of expressing a wide-

ranged set of network monitoring queries. Furthermore, STREAM’s performance is

measures by accomplishing several experiments that are processed online over real

network traffic.

Results reveal that STREAM can handle network loads up to 30 Mb/s for simple que-

ries, and up to approximately 3 Mb/s complex queries. When queries are executed

concurrently, STREAM can handle network loads up to approximately 2.5 Mb/s,

strongly depending on the complexity and number of queries.

STREAM provides a well-sized set of operators that provides us the possibility of

expressing many types of queries. However, network monitoring queries are re-

stricted by lack of specific network data types and operators. Consequently, these

queries are expressed in cumbersome ways. STREAM manages to process network

monitoring queries online in a continuous manner, nevertheless at a very limited net-

work load. Thus, the applicability of STREAM as a network monitoring tool is re-

stricted.

Table of Contents

1. Introduction ... 1

1.1 Motivation and Background ... 1

1.2 Problem Description ... 3

1.3 Outline... 5

2. Streaming Applications .. 7

2.1 Sensor Networks ... 9

2.1.1 Sensor Network Applications ... 10

2.1.2 Limitations of Sensors .. 11

2.2 Push-Based Applications .. 12

2.2.1 Network Monitoring ... 12

2.2.2 Transaction Logs... 19

2.2.3 Financial Tickers... 20

2.3 Requirements Analysis ... 21

2.3.1 Sensor Networks ... 24

2.3.2 Network Monitoring ... 25

3. Data Stream Management Systems... 27

3.1 Introduction... 27

3.2 Database Management Systems.. 28

3.3 Data Stream Management Systems .. 34

3.4 Issues in Data Stream Management Systems ... 37

3.4.1 Continuous Queries and Time Windows.. 37

3.4.2 The CQ’s Building Blocks ... 38

3.4.3 Approximation and Optimisation ... 44

3.4.4 Query Languages .. 46

3.4.5 Examples of DSMSs... 48

4. STREAM.. 53

4.1 The Continuous Query Language (CQL) ... 53

4.1.1 Streams and Relations... 54

4.1.2 Abstract Semantics ... 55

4.1.3 Continuous Query Language .. 56

4.1.4 CQL Syntax .. 58

4.1.5 Examples of CQL Queries.. 59

4.2 An Architectural Overview of STREAM ... 60

4.2.1 High-Level System Architecture .. 60

4.2.2 The STREAM System Interface... 61

4.2.3 Query Plan .. 62

4.3 Concepts.. 64

4.3.1 Internal Representation of Streams and Relations................................ 64

4.3.2 Query Plans... 64

4.3.3 Performance Issues ... 66

4.3.4 Adaptivity ... 69

4.3.5 Approximation .. 70

4.4 How to Use STREAM .. 71

4.4.1 Gen_client ... 71

4.4.2 The Configuration File ... 72

4.4.3 The Scipt File.. 73

4.4.4 Table Source ... 73

5. Query Design ... 77

5.1 The Input Stream S ... 77

5.1.1 IP Addresses ... 79

5.1.2 Control Flags... 84

5.1.3 Option Fields... 86

5.1.4 Definition of Stream S .. 87

5.2 Solving Network Monitoting Tasks.. 88

5.2.1 What is the average network load measured in bytes per second?....... 89

5.2.2 What is the network load measured in packets per minute?................. 90

5.2.3 How many packets have been sent during the last five minutes to

certain ports? 90

5.2.4 How many bytes have been exchanged on each connection during the

last minute? ... 92

5.2.5 How many bytes are exchanged over the different connections during

each week? .. 99

5.2.6 How much load on the university backbone have each department used

within the past five minutes? .. 100

5.2.7 What is the load on the network measured in connections per minute?

………... 101

5.2.8 How often are HTTP and FTP ports contacted? 102

5.2.9 During the past minute, which connection contains most packets and

how many packets does it contain?... 104

5.2.10 How long does a connection last?... 106

5.2.11 For each pair of source and destination IP addresses, how many

percent of the total load has it occupied during the past five minutes? 106

5.2.12 Identify TCP SYN packets for which a SYN/ACK was sent, but no

ACK was received within a specified bound of two minutes on the TCP

handshake completion latency. ... 107

6. System Implementation .. 111

6.1 Live Data Source... 111

6.2 Packet Capturing... 112

6.3 Experiment setup .. 114

6.3.1 Experiment architecture.. 114

6.3.2 Computers ... 115

6.3.3 Programs ... 116

6.4 Preliminary Tests .. 119

6.4.1 Network load... 119

6.4.2 Packet Size .. 121

6.4.3 Fyaf Capacity .. 123

6.4.4 Accuracy of Fyaf and STREAM .. 124

6.4.5 System Resource Consumption .. 127

7. Performance Evaluation... 131

7.1 Metrics .. 131

7.2 Factors ... 133

7.3 Workload... 135

7.4 Experiments .. 137

7.4.1 Experiments with Queries Processed Seperately................................ 138

7.4.2 Experiments with Queries Processed Concurrently 150

7.5 Discussion and comparison... 160

8. Conclusions .. 163

8.1 Query Design .. 163

8.2 Performance Evaluation.. 165

8.3 Contributions... 165

8.3.1 Query Design .. 165

8.3.2 System Implementation .. 166

8.3.3 Performance Evaluation.. 166

8.4 Critical Assessment... 167

8.5 Future Work .. 168

Bibliography .. 171

Appendix A .. 177

Acronyms ... 177

Appendix B .. 179

DVD ... 179

Table of Figures

Figure 1. An overview of sensors in a sensor network... 10

Figure 2. An overview of tuples and attributes in a relation....................................... 28

Figure 3. Outline of query compilation... 29

Figure 4. The one pass algorithm.. 33

Figure 5. The two pass algorithm ... 34

Figure 6. DSMS architecture .. 37

Figure 7. Sliding, jumping, and tumbling windows ... 42

Figure 8. An overview of the Aurora DSMS.. 49

Figure 9. Classes of operators in abstract semantics... 55

Figure 10. Overview of STREAM.. 61

Figure 11. A query plan illustrating operators, queues, and synopses 63

Figure 12. A query plan illustrating synopsis sharing .. 67

Figure 13. StreaMon ... 69

Figure 14. TCP header format .. 78

Figure 15. IP header format .. 78

Figure 16. TCP connection establishment .. 93

Figure 17. Data Flow for Task 4... 94

Figure 18. Architecture of experiment setup .. 115

Figure 19. Actual network load produced by TG. .. 120

Figure 20. Percentage of total load introduced by acknowledgements 121

Figure 21. Average packet size produced by TG ... 122

Figure 22. Packet drop rate in percent for Fyaf and a sink (a) and Fyaf and a sink

compared to Fyaf and STREAM (b)... 124

Figure 23. Margin of error at different network loads.. 127

Figure 24. CPU consumption of other processes than STREAM 128

Figure 25. Relative throughput (a) and correct runs (b) for the different queries 139

Figure 26. STREAM's CPU consumption when processing Task 1 (a), Task 3 (b), and

Task 4 (c) over a network load of 5 Mb/s... 140

Figure 27. Accuracy of query answers compared to expected results for Task 1 (a),

Task 3 (b), and Task 4 (c) ... 141

Figure 28. Relative throughput (a) and correct runs (b) for the different queries 144

Figure 29. STREAM's CPU consumption when processing Task 3 (a), Task 3.1 (b),

and Task 3.2 (c) over network loads of 1 Mb/s and 8 Mb/s 145

Figure 30. Relative throughput (a) and correct runs (b) for the different queries 148

Figure 31. STREAM's CPU consumption when processing query optimised by

system (a) and query optimised by hand (b) over a network load of 5 Mb/s 149

Figure 32. Relative throughput (a) and correct runs (b) for the two versions of the

queries ... 152

Figur 33. STREAM's CPU consumption when processing queries optimised by

system (a) and queries optimised by hand (b) over a network load of 5 Mb/s......... 153

Figure 34. Relative throughput (a) and correct runs (b) for the two versions of the

queries ... 154

Figure 35. STREAM's CPU consumption when processing queries optimised by

system (a) and queries optimised by hand (b) over a network load of 5 Mb/s......... 155

Figure 36. Relative throughput (a) and correct runs (b) when processing the different

scripts .. 158

Figure 37. STREAM's CPU consumption when processing Script 1 (a), Script 2 (b),

Script 3 (c), and Script 4 (d) over a network load of 5 Mb/s 159

Figure 38. Content structure of the DVD enclosed to the thesis 180

1

1. Introduction

1.1 Motivation and Background

In the early years of the Internet, only a small collection of applications, including e-

mail, remote login, and file transfer, was employed. However, during more recent

years, many new Internet applications have emerged. Examples of such applications

are WWW, P2P File Sharing, multimedia streaming, and IP telephony. These new

applications have resulted in an Internet that today consists of an enormous and still

increasing volume and variety of data. Seeing that the Internet continues to grow rap-

idly in size and complexity, a detailed understanding of its traffic may become valu-

able in e.g. design and development of new protocols and applications, traffic engi-

neering and capacity planning, congestion and fault diagnosis, and security analysis.

In order to obtain such knowledge, the Internet must be monitored through collecting,

measuring, and analysing the data it is carrying.

Since the Internet is continuously in use, much of the network traffic is collected con-

tinuously which results in continuous streams of data. A stream of data, or data

stream, is a potentially infinite sequence of data elements, or tuples, that arrive online

in a continuous and possibly rapid manner. Several approaches are used to analyse

streams of network data. One approach is to capture network traffic and store the data

in trace files on disk for later analysis in a Database Management System (DBMS).

However, the heavy load on the Internet results in very large and fast-growing data-

bases. Since storage devices have limited capacity, it may not be possible to store

such large amounts of data. In addition, DBMSs are not designed for the rapid and

continuous arrival of data elements, and they do not directly support the continuous

2

queries that are typical for data stream applications (Babcock et al. 2002). Many such

streaming applications would benefit from online analysis and results provided in a

real time manner. Due to the insufficiency of traditional DBMSs in providing online

continuous query processing, current traffic-management tools are restricted either to

offline query processing or to online processing of simple hard-coded continuous

queries. These hard-coded continuous queries are often implemented to solve only a

very small set of possible network monitoring tasks. In order to solve new tasks, the

existing source code, if any, must be extended with additional functionality. How-

ever, it is not easy to extend the hard-coded continuous queries, because they are of-

ten written in scripting languages e.g. Perl, which make them hard to understand if

they are not well documented (Plagemann et al. 2004). A network traffic monitoring

system should provide online processing of ad hoc continuous queries over data

streams. This would allow network monitoring operators to insert, remove, and mod-

ify monitoring queries in a way that supports effective management of the network.

Recent years we have seen several research communities that are motivated from

network monitoring, as well as other streaming applications e.g. wireless sensor net-

works, in order to develop a new technology that supports a more structured approach

when solving tasks within these applications. This new technology, the Data Stream

Management System (DSMS), is in many ways related to the DBMS technology.

However, a DSMS differs from a DBMS in two fundamental ways. Firstly, a DSMS

is designed to handle online processing of multiple, continuous, unbounded, and pos-

sibly rapid data streams. Secondly, a DSMS is designed to handle continuous queries

that produce answers continuously over time. Three different query paradigms, rela-

tion-based, object based, and procedural, have been proposed for DSMSs. At present,

most research groups attend to the relation-based paradigm, which have languages

related to the declarative language, SQL (Structured Query Language). In the IEEE

Standard Computer Dictionary (Geraci et al. 1991), declarative language is defined as

a non-procedural language that permits the user to declare a set of facts and to ex-

press queries or problems that use these facts.

3

In our research group, we are concerned with network monitoring. Since DSMSs are

designed to solve challenges imposed by such streaming applications, we investigate

how suitable a DSMS is in solving network monitoring tasks online, in a continuous

manner.

1.2 Problem Description

Today, there exist several DSMSs implementations e.g. Aurora (Abadi et al. 2003),

Gigascope (Cranor et al. 2002), Niagara (Chen et al. 2000), STREAM (Arasu et al.

2004a), and TelegraphCQ (Chandrasekaran et al. 2003), whereof some are available

for example as public domain.

As part of a project at Institute Eurécom in France, some of the members in our re-

search group performed a case study by using TelegraphCQ for traffic analysis. They

concluded that TelegraphCQ is relatively useful for many online monitoring tasks

(Plagemann et al. 2004). However, several limitations regarding the TelegraphCQ

prototype available at the time, were identified. Conclusively, they found that it was

not suitable as a general tool for network analysis (Plagemann et al. 2004). Conse-

quently, we want to perform a similar, however, more comprehensive study where

the performance of another DSMS network monitoring tool is being analysed. Ini-

tially, as the present project commenced, three public domain DSMSs were available.

These were Niagara, STREAM, and TelegraphCQ. However, the research group de-

veloping Niagara was no longer active and another master thesis is focusing on Tele-

graphCQ. Consequently, we choose to focus on STREAM, which is developed at

Stanford University, California.

STREAM is developed as a general purpose DSMS. However, our focus is on net-

work monitoring and the following problem description will be discussed:

Evaluate the applicability of STREAM as a tool for online and continuous network

monitoring.

4

We evaluate the applicability by, firstly, investigating the expressiveness of network

monitoring queries with the current CQL implementation in STREAM and, secondly,

by measuring STREAM’s performance while processing queries online over a stream

of tuples captured from live network traffic. This process of evaluating STREAM’s

applicability consists of three major steps. Firstly, we design queries solving several

network monitoring tasks in order to investigate the expressiveness offered by the

implementation of operators in the current STREAM prototype. Secondly, we im-

plement an experimental setup in which we generate network traffic. The experiment

setup includes functionality for capturing network packets and pushing a stream of

tuples consisting of the packets’ header values into STREAM. Thirdly, we complete

several experiments that are designed to measure the performance of STREAM as it

processes continuous network monitoring queries over the stream of tuples produced

in the experimental setup.

• Query design: When designing queries, we are concerned with the expressive-

ness of CQL, which represents STREAM’s query language. We investigate

this expressiveness based on the collection of operators implemented in the

current STREAM prototype in the context of designing queries that solve a

wide-ranged set of network monitoring tasks.

• System implementation: We implement a system that enables packet capturing,

because STREAM is not implemented to obtain data from live sources. In ad-

dition to packet capturing, this system includes the extraction of packet header

values, as well as the transformation of these values into tuples of a representa-

tion accepted by STREAM. Furthermore, we implement an experimental setup

in order to generate network traffic in a controlled manner for our performance

evaluation. A collection of small tests is performed in order to confirm the cor-

rectness of this setup.

• Performance evaluation: We measure STREAM’s performance by completing

several experiments. We define a workload and a set of factors that decide the

5

scope of the environment for these experiments. In addition, we define a set of

metrics in order to enumerate the measurement of STREAM’s performance.

The performance of STREAM is measured as a black box. Consequently, we only

measure the performance in terms of its input and output characteristics. The system

is not evaluated in terms of program structure, nor do we add extra query processing

or monitoring functionality. However, we investigate the source code in order to gain

a better understanding of the internal mechanisms of STREAM.

The terms “bits” and “bytes” are used repeatedly throughout this thesis. To avoid

confusions, the use of the terms are clarified below. We write “bits” and “bytes” for

these terms, however, “M” is employed as an abbreviation for “mega”. When writing

“megabits” and “megabytes” we use the abbreviations “Mb” and MB”, respectively.

“Megabits per second” is applied as the metric for network load and is written as

“Mb/s”. The binary notion on “mega” is utilised, thus, one Mb is 1048576 bits and

one MB is 1048574 bytes. One byte is equivalent to eight bits.

1.3 Outline

Jarle Søberg, another master student, writes a thesis (Søberg 2006) with a similar

problem description and content as the current thesis. However, Jarle Søberg is ac-

complishing a performance evaluation of TelgraphCQ. The work on our theses is in

many ways similar. We have developed a common experimental setup, and many of

the network monitoring tasks we solve are equal. Since we both are investigating

DSMSs, we have similar motivation and background. Consequently, we collaborate

in the writing of Section 2 and Section 3, which together with Section 4 constitute the

theoretical background of the theses. These sections are similar in the two theses,

with small adjustments to fit the structure of each thesis.

In Section 2, some of the streaming applications that serve as motivation for the de-

velopment of DSMSs are described. In addition, we analyse requirements that these

applications impose on the DSMSs.

6

Section 3 presents an introduction to important concepts in the DSMS technology.

We give a more thorough description of the most important issues and challenges

imposed by this technology and describe DSMSs in general.

In Section 4, we describe STREAM in particular by presenting STREAM’s query

language, CQL, along with an architectural overview of the system. In addition, im-

portant concepts within STREAM will be discussed. Finally, we describe how to use

the system.

We start Section 5 by defining an input stream that is used throughout the rest of the

thesis. Moreover, we discuss some challenges concerning what data type to choose

when representing the different attributes in this stream. The main contribution to this

section is the design of queries that solve network monitoring tasks.

In the following section, Section 6, we describe how we make live data sources avail-

able to STREAM and how we implement a packet capturing tool. In addition, the

experimental setup is described. Finally, some tests are performed in order to assure

the correctness of these implementations.

Section 7 is concerned with presenting the performance evaluation. Initially, we de-

fine factors, workload, and metrics, followed by the design and presentation of results

for the different experiments. At the end of this section, we discuss and compare the

experiments.

In the final section, Section 8, we draw some conclusions based on our results, sum-

marise the work on the thesis, and give some critical assessments. In addition, open

problems and future work will be discussed.

Finally, an appendix that describing the organisation of the DVD-ROM attached to

this thesis will be included.

7

2. Streaming Applications

Traditional databases have been utilised in applications that require persistent data

storage and complex querying. Usually, a database consists of a set of records, with

insertions, updates, and deletions occurring less frequently than queries. The database

system executes the query when it is posed and the answer reflects the current state of

the database. However, during the recent years we have seen an emergence of appli-

cations that do not fit the data model and querying paradigm of traditional databases

(Golab et al. 2003). In these applications, data is better modelled as transient data

streams than as persistent relations. Examples of such applications include financial

applications, network monitoring, security, telecommunications data management,

Web applications, manufacturing, and sensor networks. Individual data items in a

data stream may be relational tuples e.g. network measurements, call records, Web

page visits, and sensor readings (Babcock et al. 2002). In the data stream model,

some or all of the input data that are to be operated on, are not available for random

access from disk or memory, but rather arrive as one or more continuous data

streams. Data streams differ from the conventionally stored relation in several ways

(Babcock et al. 2002; Plagemann et al. 2004):

• The data elements in the stream arrive online and remain only for a limited

time in memory. Consequently, the data elements must be handled before the

buffer is overwritten by new incoming data elements.

• The system has no control over the order in which data elements arrive in or-

der to be processed, either within a data stream or across data streams.

8

• Data streams are potentially unbounded in size and may be regarded as open-

ended relations.

• Once an element from a data stream has been processed it cannot be retrieved

easily unless it is explicitly stored in memory, which typically is small relative

to the size of the data stream.

• A data stream is append-only, which means it only consists of insertions, and

not any deletions or updates.

To integrate data collection and processing, and to enable online (as well as offline)

processing, several research communities have proposed the use of DSMSs for de-

ploying these new streaming applications. Instead of processing queries over a persis-

tent set of data that is stored in advance on disk, a DSMS processes continuous que-

ries over the arriving data elements. Continuous queries are evaluated continuously

as the data streams arrive. The answer to a continuous query is produced over time,

always reflecting the stream data seen so far. Continuous query answers may be

stored and updated as new data arrive, or they may be produced as data streams them-

selves. In Section 3, we describe the DSMS technology extensively. In Section 3.4.1,

we give a more thorough discussion of continuous queries.

Streaming applications may be divided into two different categories: pull-based and

push-based applications. In pull-based applications, data is “pulled” from the data

sources into the system, as in traditional database systems. In push-based applica-

tions, data elements are “pushed” from the data source into the system. In the current

thesis, we consider network monitoring, which is a push-based application domain.

Consequently, we emphasise the discussion of the push-based domains, with network

monitoring in particular. The main pull-based streaming application domain is sensor

network, which is the only pull-based domain that will be discussed. Pull-based and

push-based application domains generate a set of requirements that a streaming appli-

cation system e.g. a DSMS, should accommodate. At the end of this section, we per-

form an analysis of such requirements.

9

2.1 Sensor Networks

Traditional sensors deployed throughout buildings, labs, and equipment, are passive

devices that simply transmit signals based on some environmental parameter. Such

nodes are for example connected to a local area network (LAN) and attached to per-

manent power sources. However, recent advances in computing technology have led

to the production of a new class of devices: the wireless, battery-powered, computing

sensors. These new devices are active computers, capable of not only sampling real-

world phenomena, but also filtering, sharing, and combining sensor readings with

each other and nearby Internet-equipped end-points. Such sensors may be adjusted in

order to allow a suitable degree of precision, for example reporting every second or

every fifth second. The sensor nodes communicate via wireless multi-hop radio pow-

ered by small batteries (Gehrke et al. 2004; Madden et al. 2002; Yao et al. 2003) and

are made of four basic components: a sensing unit, which is usually composed of sen-

sors and analogue to digital converters (ADCs), power units, a transceiver unit, and a

processing unit. When describing sensor networks, we only consider networks con-

sisting of the wireless sensor type. In Figure 1 below, we give an example of a sensor

network. We see that the sensors communicate with each other and/or a central node

or access point, which is labelled AP in the figure. The dotted arrows show commu-

nication links. The sensors pull data (e.g. light or noise) from the environment based

on the functionality of their sensing device, and send the data through the network

back to a central node for querying and data analysis. The transmission of data from

sensor to sensor towards the central node generates a data stream consisting of sensor

readings with the elements arriving at a constant rate. However, this data transmission

is extremely expensive for sensor networks since communication using the wireless

medium consumes a considerable amount of energy (Yao et al. 2003). Since sensors

have the ability to perform local computation, part of the computation may be moved

from the central node and pushed into the sensor network. Then sensors can aggre-

gate records, or eliminate irrelevant records. Compared to traditional centralised data

extraction and analysis, in-network processing can reduce energy consumption and

bandwidth usage by replacing more expensive communication operations with rela-

tively cheaper computation operations. This may extend the lifetime of the sensor

network significantly (Yao et al. 2003). Based on this structure, sensor networks can

be applied on a wide range of applications.

Figure 1. An overview of sensors in a sensor network

2.1.1 Sensor Network Applications

It is predicted that we in the future will see a more extended use of sensor networks,

because sensors become smaller and more inexpensive (Madden et al. 2002). How-

ever, already today there are many sensor network applications. Among these are

military applications, which through military funding gave birth to many research

projects within the field of sensor networks in the early 1980s (Chong et al. 2003). In

the following, we give examples of other sensor network applications.

10

11

In a national park, sensor networks can cover large areas over large periods. They can

capture microclimates, report unusual seasonal events, and monitor animal behaviour.

For instance, as part of a project at UC Berkeley (Gehrke et al. 2004), it was used

small sensors to investigate the microclimate at the redwood trees in the UC Berkeley

botanical garden. This network played an important role in assisting the botanists in

their research and data collection.

Sensor networks can monitor roads for accidents and traffic hotspots, and warn ap-

proaching drivers about the incidents. In such cases, sensor networks can help in di-

verting traffic, thus increasing transport capacity. Other applications may be to man-

age road tolling, parking spaces and to detect illegal driving (Madden et al. 2002).

For example, sensors may be placed in streets where there is heavy traffic in order to

investigate the driving pattern by registering the number of cars passing by.

Sensor networks can assist in identifying early signs of fire in forests by helping fire

fighters to predict the direction in which the fire is likely to expand. Sensor networks

may also assist in rescue operations by locating victims or members of the rescue

team.

2.1.2 Limitations of Sensors

Though many new applications have risen following the development of wireless

sensors, these sensors also introduce limitations, which constrain their applicability.

We list some of the main limitations here:

• Power is the defining limit of sensor nodes: it is always possible to use a faster

processor or a more powerful radio, but these consume more electricity, which

is often not available. Thus, energy conservation is an essential system design

consideration of any sensor network application. An example of a sensor is the

Berkeley MICA mote (Yao et al. 2003). The mote is powered by two AA bat-

teries, which provide about 2000 mAh, powering the mote for approximately

one year in the idle state and for one week under full load.

12

• Communication: The wireless network connecting the sensor nodes has lim-

ited bandwidth (Madden et al. 2002; Yao et al. 2003), latency with high vari-

ance, high packet drop rate, and usually provides only a very limited quality of

service (Yao et al. 2003).

• Computation: Limited computing power restricts algorithmic complexity

available to a sensor. In addition, scarce memory resources restrict the amount

of intermediate results a sensor can store (Yao et al. 2003). Recently, small

operating system e.g. TinyOS (Culler et al. 2001), and small database systems

e.g. TinyDB (Madden et al. 2005), have been developed in order to handle

these computational limitations.

• Routing: For wireless networks, some of the nodes may be mobile in the

sense that they are attached to moving objects. In such cases, one has to use

special routing algorithms to identify the location of the sensor, maintain a

network topology, and verify that the sensor is working as planned. An exam-

ple of such a routing algorithm is the optimised link state routing protocol

(OLSR) (Clausen et al. 2003), which is developed for mobile ad hoc networks

(MANET) (Corson et al. 1999).

2.2 Push-Based Applications

In push-based applications, the system cannot control the rate at which data elements

arrive. These applications are concerned with data stream that are often characterised

by bursts and heavy load. We discuss three push-based application domains in this

section: network monitoring, transaction logs, and financial tickers. The discussion of

network monitoring is largely emphasised.

2.2.1 Network Monitoring

In 2002, the Internet consisted of nearly 12 000 Autonomous Systems (ASes). Each

AS is a collection of routers and links managed by a single institution, such as a com-

13

pany, university, or Internet Service Provider (ISP) (Grossglauser et al. 2002). The

evolution of the Internet is closely tied to detailed understanding of its traffic. More-

over, tools to analyse Internet traffic are becoming more and more important as the

Internet continues to grow rapidly in size as well as in complexity. Hence, operators

of large networks and providers of network services need to monitor their network by

measuring and analysing the network traffic flowing through their systems. Network

monitoring can provide a valuable insight into the dynamics of network traffic proto-

cols, traffic engineering and capacity planning, congestion and fault diagnosis, and

security analysis (Hussain et al. 2005). Many monitoring applications are complex

(e.g. reconstruct TCP/IP sessions), operate over huge volumes of data (e.g. Gigabits

and higher speed links), and have real-time reporting requirements e.g. to raise per-

formance or intrusion alerts (Cranor et al. 2002). In a network, one may collect data

at several locations (e.g. hosts and routers) both inside the network as well as at the

edges. Such data includes (Babu et al. 2001):

• Data from network packets and flow traces. Such data may contain informa-

tion like header fields and packet data. Network packets can be captured by

passively listening to the traffic on the network.

• Data obtained by measuring packet delay, loss, and throughput. Such data can

be obtained by measuring the behaviour of packets that actively are sent

through the network.

• Router forwarding tables and configuration data. The routers in the network

send data packets to each other describing network characteristics and routing

information. Such data can be used to get a total overview of the traffic at sev-

eral routers. An example is the Simple Network Management Protocol

(SNMP) (Case et al. 1990). Data from this protocol is used to communicate

network information between the gateways and the network administrators.

Broadly, network traffic monitoring can be divided into three tasks:

1. Collecting the data e.g. router configuration data.

14

2. Measuring the collected data e.g. to obtain statistics from the collected data.

3. Analysing the measured data e.g. to characterise and model traffic in various

layers.

In this section, we focus on task two and three. Firstly, we consider network traffic

measurement, whereas secondly, network traffic analysis will be discussed.

Network Traffic Measurement
Network traffic measurements play a crucial role in providing operators with a de-

tailed view of the state of their networks. These measurements are conducted on a

continuous basis and the results are compiled into reports for management that are

used in management decisions on various time scales. Traffic measurements are di-

vided into two different techniques; passive and active measurements. When using

the passive technique, one simply observes and records the traffic as it passes by.

This approach measures real traffic, is useful for characterising the Internet traffic,

and does not disturb the network traffic by adding extra load. However, one does not

have full control over the measurement process (Siekkinen 2006). When using the

active technique, one injects packets into the network, monitors them, and measures

the services obtained. This technique is useful for inferring the network characteris-

tics, and one obtains complete control over the measured traffic. However, this tech-

nique may disturb network traffic by adding extra load (Siekkinen 2006). In addition

to the active and passive techniques, we may divide network measurement into two

different approaches; online and offline measurements. With online measurements the

traffic is captured and the data is measured in a real-time manner, whereas with off-

line measurements traffic is captured into trace files for later measurements.

Examples of traffic measurement tasks, adapted from the STREAM query repository

(Anonymous 2002), are:

• For each source IP address and each five-minute interval, count the number of

bytes and number of packets resulting from HTTP requests.

15

• Find the source-destination pairs in the top five percentile in terms of total

traffic in the past 20 minutes over a backbone link B.

• Generate the flows in the packet stream, and for each flow, output the source

and destination addresses, the number of packets constituting the flow, and the

length of the flow.

Other examples are:

• For each source IP address, count the number of active flows from that address

in each five-minute interval. A flow may be defined as all packets that have

the same source and destination IP addresses, where successive packets have

an inter-arrival time less than 30 seconds.

• Maintain the fraction of packets on a particular backbone link B generated by

a particular customer network C in the past hour.

Network Traffic Analysis
In network traffic analysis, we use the measurements to maintain network state, to

detect causes of problems in the networks, and in capacity planning and optimisation.

Broadly, network traffic analysis can be divided into three different categories: Traf-

fic characterisation and modelling, network characterisation and modelling, and

anomaly detection (Siekkinen 2006).

Traffic Characterisation and Modelling
Network traffic packets may be recognised based on the characteristics of the proto-

cols they use at different layers. At the application layer the traffic may be related to

e.g. peer-to-peer file-sharing applications and Skype. At the transport layer traffic is

typical related to TCP and UDP.

After the widespread usage of peer-to-peer (P2P) networking during the late 1990s,

P2P applications have multiplied. Their diffusion and adoption are witnessed by the

fact that P2P traffic accounts for a significant fraction of Internet traffic (Spognardi et

16

al. 2005). Furthermore, there are concerns regarding the use of these applications,

particularly when they are employed to share copyright protected material. In addi-

tion, many ISPs are reluctant to let customers consume bandwidth in the file sharing

operations, which is a part of P2P applications. It is important to gain a deeper under-

standing of the characteristics of P2P traffic, because it accounts for a significant part

of the Internet traffic. Such knowledge may be valuable in further development of

P2P applications or new protocols. However, P2P traffic must be identified before it

may be measured and analysed. Identifying P2P traffic may not be easy, because it

for instance may camouflage by using TCP ports that are not well known.

Another protocol that it is important to understand in a best possible manner is TCP,

because it carries over 90 % of the network load in the Internet (Siekkinen 2006). As

for P2P applications, TCP traffic must be identified before it can be measured and

analysed. Identifying TCP packets is straightforward, because the IP header provides

this information in one of its fields. However, as indicated in Section 5.2.4, recognis-

ing TCP connections is not a trivial task, particularly not online.

Network Characterisation and Modelling
Managing a large network is a complex task, which may be conducted by a group of

human operators. These operators track the characteristics of the network to detect

equipment failure and shifts in traffic load. Network characteristics and modelling

may be based on parameters such as e.g. topology, utilisation, packet delay, and

packet loss. By joining SNMP data and/or configuration data from different network

elements, it is possible to maintain network topology, and by aggregating packet

traces or SNMP data, it is possible to maintain statistics of link and router utilisation.

Packet loss, per-hop and end-to-end delays, and network throughput are measured by

either joining packet traces collected from multiple points in the network, or using a

dedicated system that generates network traffic to measure these parameters (Babu et

al. 2001).

Traffic engineering is concerned with performance optimisation of traffic-handling in

operational networks. When optimising performance, it is important to minimise over

17

-utilisation of capacity when other capacities are available within the network. Up-

dated information on network characteristics is important in order to detect problems

with network traffic. After detecting and troubleshooting a problem, operators may

change the configuration of the equipment to improve utilisation of the network re-

sources and the performance experienced by end users. An example of a performance

problem is link congestion. A link may be congested because of an increase in de-

mand between some set of source-destination pairs or a failed link or router in a net-

work causing changes in routes. One way to detect link congestion is to calculate

utilisation statistics from SNMP.

For an ISP it is important to have knowledge regarding characteristics of bandwidth

consumption in order to make proper allocation of resources or to decide where and

when to install new equipment. Examples of decisions to make are where to put the

next backbone router, when to upgrade a peering link to higher capacity, and whether

to install a caching proxy for cable modems.

Anomaly Detection
The widespread usage of the information-sharing possibilities provided by the Inter-

net has revolutionised our society by enabling us to communicate easily with people

around the world, and to access and provide a large variety of information-based ser-

vices. However, this success has also enabled the use of Internet in ways that are con-

sidered hostile, and spam, viruses, worms, and denial-of-service attacks (DoS) are

today well known terms. As the number of network-based attacks increase, and the

variety and sophistication in these attacks grow, early detection of potential attacks

will become crucial in reducing the impact of these attacks. We show some examples

of anomalous activity by describing denial of service (DoS), worms and viruses, and

the probing for vulnerability.

A DoS is characterised by an explicit attempt by attackers to prevent clients from us-

ing a service. DoS have been among the most common form of Internet attacks. The

basic form of a DoS is to consume scarce computer and network resources, such as

kernel data structures, CPU time, memory and disk space, and network bandwidth

http://staff.washington.edu/dittrich/misc/ddos/

18

(Johnson et al. 2005). An example of a DoS is the TCP SYN flood attack, which ex-

ploits the three-way handshake used to establish a TCP connection (Johnson et al.

2005). In a normal scenario, a sender initiates a TCP connection by sending a SYN

packet i.e. a packet having the SYN bit set. The receiver responds with a SYN/ACK

packet, and the sender completes the three-way handshake by sending an ACK

packet. Following the sending of the SYN/ACK packet, the receiver allocates con-

nection resources (kernel and data structure) to remember the pending connection for

a pre-specified amount of time. The attack occurs when the attacker repeatedly sends

SYN packets, typically with different source addresses, causing the receiver to de-

plete its connection resources, preventing service to other users. In principle, the at-

tack can be identified by measuring and analysing the number of SYN packets for

which a SYN/ACK packet is sent, but no correlating ACK packet is seen within a

given delay.

A worm is a self-propagating malicious code, which exploits vulnerabilities in the

underlying operating system to inflict its damage, and to replicate and propagate itself

(Johnson et al. 2005). A virus, on the other hand, relies on user actions for its propa-

gation, and hence tends to spread slowly. Payload and specific mechanism of propa-

gation may identify known worms. For example, activity of the Slammer worm is

identifiable in a network by the presence of 376 bytes UDP packets, destined for port

1434/UDP of SQL Server (Johnson et al. 2005).

We see that attacks exploit known vulnerabilities in services. A typical precursor to

attacks is the identification of machines that have specific services available, and

hence can potentially be exploited. This takes the form of an attacker probing for

open ports on a set of host machines. To determine if a port is open, an attacker sends

a packet to a host attempting to connect to the specific port. If the target host is listen-

ing on that port, it will respond by opening a connection with the attacker. This im-

plies that during the probing phase, the attacker would not spoof the IP source ad-

dress (Johnson et al. 2005), meaning that such anomalous activity can be detected by

19

measuring and analysing the number of distinct <destination IP, destination port>

pairs with the same source IP address.

2.2.2 Transaction Logs

Massive transaction streams introduce a number of opportunities for data mining

techniques. Examples of transactions are calls on a telephone network, commercial

credit card purchases, stock market trades, and HTTP requests to a Web server

(Cortes et al. 2000). The goal is to find interesting customer behaviour patterns, iden-

tify suspicious spending behaviour that could indicate fraud, and forecast future data

values (Golab et al. 2003). A transactional data stream is a sequence of records that

logs interactions between entities. For example, a stream of credit card transactions

contains records of purchases by consumers from merchants. Data mining techniques

are needed to exploit such transactional data streams since these streams contain a

huge volume of simple records, any one of which is rather uninformative unless it is

part of a total overview (Cortes et al. 2000). However, when the records related to a

single entity are aggregated over time, the aggregate can yield a detailed picture of

evolving behaviour, in effect capturing the “signature” of that entity. A signature for

a phone number might contain directly measurable features such as when most tele-

phone calls are placed from that number, to what regions the calls are placed, and

when the last call was placed. Queries investigating these matters may be quite simi-

lar to those detecting anomalous activity in the Internet. It might also contain derived

information such as the degree to which the calling pattern from the number is “busi-

ness-like” (Cortes et al. 2000). Such information is useful for target marketing and for

developing new service offerings. Other examples of transaction log analysing tasks,

which are adapted from Golab et al. (2003), are:

• Find all pages on a particular Web server that have been accessed in the last

fifteen minutes with a rate that is at least 40% greater than the running daily

average.

20

• Examine server logs and re-route users to backup servers if the primary servers

are overloaded.

Other examples are:

• Track mobile phone records and for each mobile phone number, determine the

number of

1. Distinct base stations used during one telephone call.

2. Bytes transferred in order to open Web pages using the wireless appli-

cation protocol (WAP) (Montenegro et al. 2000).

3. Bytes transferred in order to download e.g. ring tones, games, and wall-

papers.

2.2.3 Financial Tickers

In the United States, up to 100 000 quotes and trades (ticks) are generated every sec-

ond (Zhu et al. 2002). This results in a stream of stock market transactions, which

consist of buy or sell orders for particular companies from individual investors.

Online analysis of streams of financial tickers might help a stock market trader to dis-

cover correlations, identify trends and arbitrage opportunities, and forecast future val-

ues. Traderbot, a typical Web-based financial ticker, allows its users to pose queries

such as the following (Golab et al. 2003):

• High Volatility with Recent Volume Surge: Find all stocks priced between $20

and $200, where the range between the high tick and the low tick over the past

30 minutes is greater than three percent of the last price, and where in the last

five minutes the average volume has surged by more than 300%.

• NASDAQ Large Cap Gainers: Find all NASDAQ stocks trading above their

200-day moving average with a market cap greater than $5 Billion that have

21

gained in price today between two and ten percent since the opening, and are

within two percent of today’s high.

• Trading Near 52-week High on Higher Volume: Find all stocks whose prices

are within two percent of their respective 52-week highs that trade at least one

million shares per day.

2.3 Requirements Analysis

In this section, we analyse the requirements that are imposed by the application do-

mains mentioned in the previous subsections. Firstly, we consider the common re-

quirements of these applications. Secondly, we discuss the requirements raised by

sensor networks and network monitoring. Recall that there is a major difference be-

tween standard database sources, and the data sources for the network monitoring

applications. Network monitoring applications have to handle data streams i.e. data

elements, or tuples, that are continuously produced and pushed into the system. One

important requirement raised by streaming applications is that queries over such data

streams need to be processed immediately, in real-time. This because it is expensive

to save such large amounts of data to disk and much of the data may not be of interest

later. Moreover, the streams represent real world events that need to be responded to.

Generally, all streaming applications need a system to handle large amounts of arriv-

ing data packets. If not all the data is considered interesting, it needs functionality for

choosing only the packets that are most important with respect to the application. In

cases of much important data tuples, the system some times has to aggregate on the

streams in such a way that only the most representative tuples or averages of the data

results are displayed. In addition, the systems have to respond quickly to sudden

changes in the data streams and register or output these changes. In handling this, a

set of general requirements for streaming applications emerge. In the following, we

list these requirements, many of which are collected from (Golab et al. 2003).

22

• Continuous queries: To analyse a large range of behaviours attached to the dif-

ferent applications, one would need to collect data on an ongoing basis rather

than as a one-time event. Hence, it is required that a DSMS is capable of proc-

essing data in a continuous manner. This means that the query has to be started

and stopped explicitly by a user or by a system. If not stopped, it is assumed to

run infinitely.

• Projection: To reduce the size of queues in memory and in turn improve mem-

ory utilisation, it is required that a DSMS supports projection i.e. choosing

only a subset of the attributes in a relational tuple.

• Selection: All DSMSs require support for complex filtering. The selection

should manage to fetch only data having certain values, such that much data

can be excluded from further processing at an early stage. As an optimising

factor, it should be possible to push both selections and projections as close to

the source data stream as possible.

• Joins: In order to perform a wide range of analysing tasks, a DSMS should in-

clude support for joins between multiple streams and joins between streams

and stored relations. By supporting this requirement, the DSMS may analyse

the data to find patterns that depend on correlations between many streams and

relations.

• Aggregation: By supporting aggregations, the DSMS may attach statistics to

application dependent patterns that it recognises within streams and/or rela-

tions. The aggregations, which calculate sums, maximums, minimums, counts,

and averages, may also assist in obtaining an overview of the data values in

the stream.

• Windowed queries: Many operators (e.g. aggregating operators) are blocking

i.e. the operator must see all input data before it can produce any output. How-

ever, data streams are considered infinite. Therefore, the DSMSs have to sup-

port some type of partitioning over the streams, such that blocking operators

may process data within such partitions or windows. If windowing is not sup-

ported, blocking queries can never be performed correctly, since the DSMS

needs to see all tuples of the stream in order to compare them.

• Processing multiple queries: In many scenarios, multiple users pose similar

queries over the same data streams. Since streams are append-only, there is no

reason that a particular data item should not be shared across many queries

(Madden et al. 2002). Hence, a DSMS should support multiple, concurrent

queries.

• Sub-queries: To analyse characteristics of an application, the DSMS should be

able to perform complex queries to identify mechanisms within the applica-

tion. In order to perform such complex queries (e.g. reconstructing TCP con-

nections), support for sub-queries is required. Sub-queries may appear in sev-

eral different query clauses e.g. in selections and in more complex projections.

• Nested aggregation: Complex aggregates, including nested aggregates (e.g.

comparing a minimum with a running average) may be needed to compute

trends in the data sets. A nested aggregate is an expression

, where each is an aggregate function and

 (Johnson et al. 1999). Nested aggregations must be calculated continu-

ously within windows.

))...)(...((01 Xaggaggagg nn − iagg

1≥n

• Multiplexing and demultiplexing: This requirement can be viewed as the

group-by aggregation and union set operator, respectively. The multiplexing

and demultiplexing can be used to decompose and merge logical streams, de-

pending on the answers required.

23

• Frequent item queries: These are known as top-k or threshold queries, depend-

ing on the cut-off condition. Thus, the DSMS only query for items that appear

frequently, and may be of greater importance than other items. This may, in

addition, be part of the selection such that for instance only the tenth tuple, or

values over a certain threshold are selected.

24

• Stream mining: Operations such as pattern matching, similarity searching, and

forecasting are required for on-line mining of streaming data. The mining thus

relates to a more experience-based and intelligent way of running the queries.

If, for example, a query in a weather monitoring network is told to report data

only when it is rainy, it might have to compare its input data to historical data

and other observations to get assistance in the decision process.

• Adaptive query processing: A fundamental challenge in many streaming appli-

cations is that conditions (e.g. data values) may vary significantly over time.

Since queries in these systems are usually long running, or continuous, it is

important to consider adaptive approaches to query processing. Without adap-

tivity, performance may drop drastically as stream data and arrival characteris-

tics, query loads, and system conditions change over time (Babu et al. 2004).

The above list is used throughout the thesis as a reference. We show how the DSMSs

and STREAM implement these requirements. Following is a short additional list of

requirements for the pull- and push-based data stream models, exemplified with sen-

sor networks and network monitoring, respectively.

2.3.1 Sensor Networks

The main limitation in sensor networks is based on power consumption, which pro-

vides some additional requirements to the application. As sensors are part of a pull-

based stream model, the queries are required to specify the pull interval i.e. identify-

ing when to sample data from the environment. This interval has to be relative to the

power consumption. It is also required that sensor networks distribute queries among

the nodes to reduce the amount of data, because sending data through wireless links

consumes much power. This means that each node plays a part in the total query

processing. For example, the node may perform some simple aggregations on the

data before sending it to another node.

25

In some sensor network monitoring applications, it may be necessary with a large-

scale deployment of sensor nodes. A large number of nodes may even require more

scalability in cases where additional nodes may be inserted into or removed from the

network.

2.3.2 Network Monitoring

Since networks need to be running all the time, much of the network traffic data is

collected continuously and results in very large and fast-growing databases. How-

ever, it may not be possible to save such large amount of data to disk, and queries

over such data streams need to be processed online. In addition, in many applications

data may arrive in bursts, with unpredictable peaks during which the load may exceed

system resources. Consequently, it is required that the DSMS provides good ap-

proximation techniques in order to keep the query answer as correct as possible. An

example of an approximation technique is load shedding i.e. dropping elements from

query plans and saving the CPU time that would be required to process them to com-

pletion (Arasu et al. 2004a).

The load on a network usually consists of traffic belonging to many network proto-

cols. Thus, another requirement imposed by network monitoring is that packets be-

longing to different protocols should be processed by the DSMS. Additionally, it is

important that the DSMS supports the different data operators that may be required in

a packet header. An example is the IPv4 address, which consists of four numbers

separated by dots. Moreover, a data packet may offer complexity with regard to a

varying number of header fields. For example, both the IPv4 (Postel 1981a) (hence-

forth IP) and TCP (Postel 1981b) headers have option fields, which contain optional

information. A DSMS should provide functionality for supporting these variations.

Another example is the extension headers in IPv6, which amongst others contain

routing information.

Some of the network protocols tend to be complex. For instance the TCP standard

specifies how two nodes should act when they establish and close down a connection

26

(Postel 1981b). Thus, when measuring and analysing network and protocol behav-

iour, it is required that the DSMS manages to reflect protocol states in both the net-

work and the network nodes. Hence, the declarative language provided by a DSMS

should provide a wide range of operators in order to express queries that may be used

when monitoring protocol behaviour.

3. Data Stream Management Systems

3.1 Introduction

The current section describes and discusses some of the main issues in DSMSs. A

DSMS is a system that poses queries on a stream of data. Based on the requirements

in Section 2.3, we reveal how these are designed in the DSMSs. Throughout the the-

sis we use the following definition of a stream adapted from Arasu et al. (2004b).

Given the discrete ordered time domain Τ :

Definition 1 (Stream) A stream S is a possibly infinite bag (multi-set) of elements

τ,s , where s is a tuple belonging to the schema of S and Τ∈τ is the timestamp of

the element. There is a finite but unbounded number of stream elements for any given

timestamp Τ∈τ .

As mentioned in Section 2, several applications motivate for a system that is, readily

and in real-time, able to extract relevant information from data streams. Examples of

such applications are sensor networks, financial tickers, transaction logs, and network

monitoring. As stated in Section 1, the present thesis focuses on network monitoring

and therefore, the description of the DSMS is concentrated around this application.

DSMSs are often compared to database management systems (DBMS) since both

deal with the querying of data. The following section gives a short review of the

DBMS’s main issues, terms, and characteristics. The differences are shown by com-

paring the two systems. We further discuss several of the DSMS requirements listed

in Section 2.3.

27

3.2 Database Management Systems

One of the DBMSs’ most important tasks is to generate a query plan that obtains data

such as network packet traces from the storage device (e.g. hard disk) as efficiently

and quickly as possible (Garcia-Molina et al. 2002). The data is mostly represented

using relations (or tables). Based on Garcia-Molina et al. (2002), a relation is de-

scribed as a two-dimensional array for representing data. In the following, some

terms that are used to describe certain elements in the DBMS’s relations are intro-

duced. These terms are introduced since as they describe the equivalent elements (e.g.

sequences of data) in the DSMS. We focus on the relational representation that or-

ganises the data in columns and rows. A row (henceforth tuple) consists of several

values, one for each column (henceforth attribute). The tuple has a fixed and prede-

fined amount of attributes. Figure 2 below illustrates how these terms are used. The

relations are stored in blocks on the storage device and may be joined by pairing

those tuples that in some way match each other. By join, we mean natural join or

theta join. A natural join pair are only those tuples that agree in whatever attributes

are common to the schemas of the relations. Theta joins are produced by taking the

Cartesian product, and then selecting from the product only those tuples that satisfy

the given conditions (Garcia-Molina et al. 2002). A DBMS is recognised by a number

of characteristics (Babcock et al. 2002):

Figure 2. An overview of tuples and attributes in a relation

28

1. Persistent storage. When a user stores data on the disk, he or she wants the

data to stay there, unless explicitly deleted. If the data is deleted, it is assumed

that this is done purposely. Having a persistent storage, the user wants to ma-

nipulate, delete and observe the data in the database. The user may also want

to verify that nothing has been altered unintentionally.

2. One-time transient queries. When the user wishes to collect data from the da-

tabase, a query is posed and the system calculates and outputs the results.

Hence, the DBMS has a programming interface that the user interacts with.

The DBMS first compiles i.e. parse, optimise, and transform and then executes

the query in order to obtain the correct data in an effective manner. Figure 3

below shows the three major steps involved in query compilation.

Figure 3. Outline of query compilation

29

30

The user has an idea of what he or she requires and writes the query to the

computer. Usually, this query is expressed using a query language such as

SQL, which is most commonly used (Garcia-Molina et al. 2002). The general

structure of an SQL statement is given as follows:

SELECT <attributes>

FROM <realtions>

[WHERE <conditions>]

[GROUP BY <attributes>]

[HAVING <quality>]

The SELECT clause provides the projection of attributes and the FROM clause

informs what relations to obtain the tuples from. The three following clauses

are optional. Following the WHERE clause is a list of conditions that the tuples

must satisfy in order to match the query. The GROUP BY clause divides the

relations into groups based on the values in the list of attributes. The HAVING

clause allows selection of certain groups in a way that depends on the group as

whole, rather than the individual tuples. Subsequent to the query being regis-

tered, the parser converts it into a parse tree while checking the syntax of the

query. At the following stage, the query semantics are checked and the query

is converted into a logical query plan. This query plan may be optimised by the

system after certain rules (e.g. analysing the size of the relations and number

of attributes queried for) or by using heuristics about relations if there are no

meta-data about the relations available. The system finally turns the logical

query tree into the best possible physical plan, which is then executed.

3. Random access. Storage systems, where data may be stored and accessed in

any order independent of the when it was originally recorded, are random ac-

cess. Prior to being processed the data elements are read into main memory

from the storage device. This is performed by specifying what block numbers

the relations are stored in. If the relation uses dense indexing the tuples on the

31

storage device may be accessed directly. Since the data is stored persistently,

knowing where the data is located will be sufficient for retrieval.

4. By claiming persistent storage, it is expected that the storage space has to be

viewed as unbounded or infinite by the DBMS. This is because the system

should be able to store new tuples without needing to delete previously stored

data. Additionally, the idea is that the system should not have any pre-

fabricated limit of storage, even though this is the case when using a device

with limited storage capabilities. If a disk is full, a new disk is merely added.

5. DBMSs often provide a multi-user environment. This environment has to en-

sure that only one user at the time may have write access to a given element,

such that inconsistent states cannot be found. In the case of system errors, the

DBMSs may also need to re-create the last working state. This is managed by

logging all critical operations, and is handled by the transaction manager.

6. Only current state matters. The DBMS does not use any historical to for in-

stance optimising the queries. This is not consistent with the previous point

where the transaction manager provided an overview of the transactions over

time. As previously mentioned, a query is optimised after certain rules and

heuristics that are based on e.g. knowledge about the size of the relations used

within the query. When selecting the best possible physical query plan, the

main optimising factor is the number of disk I/Os. Relative to accessing main

memory, disk I/Os are extremely time consuming.

7. The traditional DBMS does not support any real-time services such as having

deadlines determining when the result should be output. This denotes that the

system does not throw away tuples if a certain time limit is exceeded due to a

complex query or large amounts of data.

8. It is assumed that the DBMS always returns the precise answer to a query, be-

cause of the prior capability. This may, as stated above, affect the time con-

sumption and hence reduce real-time support.

9. A DBMS has relatively low update rate, which is the rate for insertion of new

tuples. Insertions, updates, and deletions usually occur less frequently than

queries. Consequently, the DBMS focuses on storing the data in a manner that

makes retrieval as efficient as possible. An example is to store a relation in

continuous blocks on the hard disk. This may force the content within blocks

to be reorganised as new tuples are stored, but reduces seek time i.e. the time

the disk head uses to move from track to track. Another example is the differ-

ent types of indexing. Dense indexing results in costlier insertions, however a

cheaper lookups. Vice versa is recognised for sparse indexing.

As indicated above, there are several points that describe the DBMS. The following

section discusses some techniques that assist the DBMS in fulfilling the requirement

of precise results. These techniques assist in processing queries over relations that are

too large to fit into main memory. In such large relations, a considerable amount of

disk I/Os are needed to produce the correct result. These techniques are known as

one-pass, two-pass, and multi-pass algorithms and are not applied on operators that

process one tuple at the time such as selection and projection. An example of a query

operator the above techniques may be applied on, is an equijoin between two rela-

tions R and S on an attribute a, which we denote . We use the equijoins as an

example even though there are several other operators that may require n-pass algo-

rithms. Understanding the n-pass algorithms assists in the comprehension of the com-

plexity that may occur for large amounts of data.

SR a<>

One-pass algorithms
One-pass algorithms are used when one of the relations fits into the memory. The

available capacity of the memory is M. The relation R is size B(R) blocks, and

1)(−≤ MRB .

This means that B(R) is equal or smaller than the available memory minus one mem-

ory block. If the DBMS performs a join between R and S, R is read into the M – 1

blocks while S is read, block for block, into remaining memory block. In memory, the

32

tuples from S are joined with corresponding tuples of R, based on equality of the at-

tributes, and sent to output. Figure 4 below illustrates the one-pass algorithm. The

lower block is the one applied to hold the block from S.

Figure 4. The one pass algorithm

Two-pass algorithms
The idea behind the two-pass algorithms is that it handles relations of size

2)(MRBM ≤< .

In these cases, only parts of R are inserted into memory, sorted on some predefined

criteria such as an attribute’s value, and subsequently written back to the hard disk.

This is considered the first pass. In the second pass, M sorted blocks are inserted into

memory and processed at the time. Figure 5 below illustrates how the two-pass join

algorithm works. As indicated by the figure, when joining, each of the relations are

sorted according to the joining attributes, and inserted into memory before they are

joined on e.g. equality. One solution is to merge the relations. A consequence is that

if for example S contains more of a certain value than R, R waits until a new value

appears in S.

33

Figure 5. The two pass algorithm

Multi-pass algorithms
The multi-pass algorithms are employed when

)(2 RBM < .

These are more complex, hence forcing considerably more disk I/Os. As the two-pass

algorithm sorts the relations into one-pass relations, the multi-pass algorithm

recursively sorts into two-pass relations, which in turn sorts up to one-pass

relations. These three algorithms reveal how the size of a relation affects the storage

device and the amount of data it is forced to send and receive to obtain correct results.

)(MO

)(2MO

3.3 Data Stream Management Systems

In contradiction to a DBMS that focuses on querying a database, the DSMS focuses

on querying streams of data. Consequently, the DSMS’s architecture is different

compared to the list above. In the following, we compare the two systems’ design to

show the differences between them.

1. Instead of persistent relations, the DSMS aims to handle transient streams. In

DSMSs, disk storage is not an issue, because data enters and leaves the system

at possibly high rates. Data elements remain in main memory only for a lim-

ited amount of time. This suggests an architecture opposite to the DBMS’s.

However, some DSMSs integrate a DBMS to allow queries over both streams
34

35

and relations, providing the user with the possibility of for instance joining

streams and relations. An example is TelegraphCQ (Chandrasekaran et al.

2003).

2. In contradiction to a DBMS, which executes the query one time, the DSMS

uses continuous queries, which are queries that continuously produce results

based on the tuples within the streams. In other words, the DBMS supports

transient queries over persistent data, while the DSMS supports persistent que-

ries over transient data. This issue is described thoroughly in Section 3.4.1. A

DSMS may process several concurrent queries continuously over several

streams. In a network monitoring scenario, several concurrent queries may aim

to obtain different information from the network.

3. Sequential access. Since the data arrives as a stream, the DSMS reviews the

tuples as a linear sequence, and does not have access to the data before or after

the access interval. Sequential access is the opposite of random access, which

is used in a DBMS. Some relational operators e.g. aggregations and most joins

are blocking, which means that all input tuples to a query must be seen before

any output may be produced. This is not possible over a stream of data, be-

cause data streams are considered infinite. When operating over streams, the

DSMSs have to support windowing to unblock blocking operators. This means

that calculations are performed on small partitions of the stream. These parti-

tions are located in main memory, which implies limitations with regard to

window size and accuracy. This will be discussed further in Section 3.4.1.

4. The DSMS does not generally aim to store tuples as they arrive in the system,

because of the heavy volume and high rates of data streams. Expensive and

time consuming disk I/Os cannot be allowed. Consequently, the DSMS is re-

stricted by the size of the available memory. This means, as deducted in the

description of the n-pass algorithms, that only one-pass algorithms may be

used.

36

5. Due to optimising, the DBMS has a set of rules which are introduced in the

query rewriting process, which is part of the query compilation as illustrated in

Figure 3. An example of an optimising rule is to push projections as far as pos-

sible down towards the source i.e. to the database or the data stream. By doing

this, less attributes are sent to the next operators, hence reducing the load.

These rules also play a role in the DSMS, but the DSMS needs to adapt to the

stream as well, by optimising the query tree on the fly, or re-allocating queue

sizes.

6. A data stream may arrive at very high rates. Consequently, the DSMS must

process the data in real-time i.e. as fast as the tuples arrive in the system. If the

DSMS cannot keep pace with the data arrival rate, it may be forced to throw

discard tuples that it does not manage to compute. Generally, this means that

not all the tuples may be computed and that the DSMS has to support a set of

approximation algorithms, which deliver results that for instance give a sam-

ple of the discarded tuples. Consequently, a DSMS possibly delivers approxi-

mately correct results in real-time, while a DBMS delivers precise results with

the possibility of large delays. These large delays may occur if complex que-

ries are posed over relations of several gigabytes.

Figure 6 below adapted from Golab et al. (2003), illustrates an abstract architecture

model of a DSMS. One or more streams enter the system and are processed by the

query processor. State information might be sent between the input monitor and the

query processor to inform about e.g. stream characteristics, such that optimising and

adaptations may be performed. When the query operators are finished processing the

tuples, the result is sent to the output buffer.

Figure 6. DSMS architecture

3.4 Issues in Data Stream Management Systems

The previous sections have presented an overview and introduction to DSMSs in ad-

dition to describing the main differences between DBMSs and DSMSs. In the follow-

ing, we explain and discuss the most important issues in DSMSs. Initially, we will

discuss some of the challenges that are associated with continuous queries and win-

dowing in Section 3.4.1. In Section 3.4.2, we outline approximation and techniques

for optimising the queries. A short overview of query language qualities and usages

are given in Section 3.4.3. Finally, a short description of some of the existing DSMSs

is presented in Section 3.4.4.

3.4.1 Continuous Queries and Time Windows

This section starts by showing how continuous queries have evolved from their first

appearance in append-only databases to how they are employed in DSMSs at present.

An append-only database is a database that only adds tuples, without deleting or up-

dating them. Research regarding continuous queries allegedly started on such data-

base systems (Golab et al. 2003). Terry et al. (1992) state that a user sometimes

wishes to receive the tuples exactly when they are inserted into the database. Such

37

tuples can have time critical values, and are only valid or interesting for a short pe-

riod. Thus, there are requirements regarding a mechanism supporting such functional-

ity. Based on these requirements, Terry et al. (1992) introduce the term continuous

queries (CQs) i.e. queries that continuously search the database to reveal if any new

entry or tuple has arrived, and possibly report the results if the tuples matches certain

criteria.

3.4.2 The CQ’s Building Blocks

CQs raise other issues than transient queries. To query the data stream, several sug-

gestions on semantics have been proposed (Arasu et al. 2004b; Krämer et al. 2005;

Terry et al. 1992). Throughout the thesis, we make use of the definition stated by

Terry et al. (1992):

Definition 2 (Continuous semantics): The results of a continuous query are the set

of data that would be returned if the query were executed at all instants in time.

Formally, this means that if),(τQA is the set that is returned by running the query

 over a data set at time Q τ , denotes the union of all sets over a time interval),(ΤQA

Τ→τ , then (Golab et al. 2003)

Equation 1: . U U
Τ

=

−−=
1

)0,())1,(),((),(
τ

ττ QAQAQATQA

Equation 1 shows that only the newest arriving tuples are handled by the query. This

equation assumes that the database has a monotonic behaviour. Monotonicity is de-

fined by a preservation of order. Thus, for a monotonic function , iff f yx ≤ , then

. In the instance of a database, this may not always be the case. Some-

times tuples are altered after they are inserted. Therefore, a non-monotonic query may

sometimes give a more correct result (Golab et al. 2003)

)()(yfxf ≤

Equation 2: . U
Τ

=

=
0

),(),(
τ

τQATQA

38

39

The problem with the non-monotonic query is that it has to query the whole data set

for each round. Given a CQ, this means that the whole set has to be queried continu-

ously. With an increasing set i.e. tuples are added to the system without being de-

leted, the time consumed, whenever the query is run, will increase linearly.

The major challenge in using the semantics in Equation 1 is to preserve this

monotonicity over a continuous stream in a deterministic way. By deterministic, we

mean that when the query has started, it will always give the same results over the

same data stream. Terry et al. (1992) illustrate this by using the following example:

A database contains messages that are inserted each timestamp t. We want to get all

the messages that have not yet been replied to.

This example shows that without any more information, this query may force the sys-

tem to non-monotonic computing. When do we know that we have all the answers?

Without any precision, this query returns all the messages as they arrive; because a

message cannot be replied to before it is sent. If the database is append-only, we

eventually get the correct results as more messages arrive, if the query runs indefi-

nitely. The system needs to view all the previous messages to see if the new message

is a reply to an older one. The problem is that an incoming data stream, as defined in

Definition 1, may require a vast amount of storage. Hence, the database has to drop

tuples to make the querying possible. This means that there is a risk of deleting mes-

sages before the replies actually appear.

Such an inconsistency leads to the term of windowing over a stream of data. A win-

dow is a partition over the stream which guarantees determinism inside it. This means

that, given a plain limit, the example stated above may be rephrased to the following:

Get all the messages that have not been replied to within five minutes after it has

been sent.

The query looks at all the messages and stores them. It also reduces the monotonicity

by only re-calculating over a five minutes window, which in turn returns the correct

tuples. Yet, re-calculations must occur, something that leads to blocking of the system

over the time window.

Blocking may be critical for the DSMS. A blocking operator is a query operator that

is unable to produce the first of its output until it has seen its entire input (Babcock et

al. 2002). For example, the DBMS blocks while it performs two- or multi-pass opera-

tions; the data is obtained from the database e.g. sorted, and then written back to disk

possibly several times before the final result is returned. This is viable when there is a

finite bag of data being handled. As pointed out in the stream definition, a data stream

is an infinite bag, thus reducing algorithms only in order to support one-pass.

In the context of joining, and that we still include the database in the DSMS model, it

is possible to join between streams, and to join between streams and relations. For

values between 1 and n we denote for n streams and for n relations.

We set i and j such that and

nSS ...1 nRR ...1

ni ≤≤1 nj ≤≤1 . In case of , it is required that

. The latter statement explicitly reduces the window sizes so that

the two windows together cannot contain more tuples than the size of the allocated

memory. This is also the case for . It has to be so that to

verify that the join is deterministic; if some of the tuples in were temporarily writ-

ten to the hard disk when the window of was in memory, the query would have

produced a wrong answer since some of the tuples were not available. Note that a

stream and a relation have different qualities, and that we require correct results from

the relation, according to the preceding DBMS presentation.

ji SS <>

MSBSB ji ≤+)()(

ji SR <>)()(ji SBMRB −≤

iR

jS

The following presents a discussion of some of the additional requirements that we

outlined in Section 2.3.

The DSMS literature discusses three main window designs (Golab et al. 2003); the

sliding window, the jumping window, and the hopping or tumbling window. In addi-

tion, Chandrasekaran et al. (2003) discuss the landmark window, which relates the

40

41

prior discussion to the following. We start by giving a short description of this type of

windows.

Landmark Window
The landmark windowing technique and the append-only database have much in

common. Gehrke et al. (Gehrke et al. 2001) defines the landmark window to have a

fixed point from which the window moves. The window increases in size while tu-

ples are added. This solution poses many of the same challenges discussed above.

One issue with the landmark windows is that they do not access historical data

(Chandrasekaran et al. 2003). As we see in the following presentation, this is a com-

mon quality for all the windowing techniques, and thus a necessity to avoid blocking.

The landmark window is illustrated in Figure 7(a) below. It shows that tuples are

added as filled squares as time elapses. Time is indicated by the vertical arrow point-

ing downwards. The horizontal arrow shows how the window evolves. As perceived,

the landmark window does not remove any tuples, thus the number of tuples in the

window increases.

Figure 7. Sliding, jumping, and tumbling windows

42

Sliding Window
The sliding window resembles the windowing technique we have discussed so far. A

window has e.g. a specified time length, l and a specified time τ , so that τ≤≤ l0 .

The example extracted from Terry et al. (1992) reveal a window of five minutes, and

all messages that have not been replied to, will be deleted after this period. Strictly

speaking, this means that a tuple that enters within the window borders remains in-

side the window for a period of l time units before it is overwritten or de-allocated.

Note that there are two different types of windows. First, physical windows make use

of time as constraint i.e. they are specified by e.g. five minutes or ten seconds. Sec-

ond, logical windows do not employ time as constraint, but rather use number of tu-

ples to determine the window size. In regards to the latter, the required memory is

known a priory, and the space may be allocated at the registration of a query. The

physical windows need to allocate memory dynamically, since the stream’s behaviour

depends on fluctuations in the data arrival rate (Chandrasekaran et al. 2003).

Figure 7(b) above illustrates the sliding window. The sliding window is recalculated

for each time stamp. One consequence is that, for the window length l, a tuple that

matches a condition is reported l times, given that the recalculations are performed

each time stamp. This is correct behaviour due to the specification, but not always

what is intended.

Jumping Window
In cases where the recalculations in the sliding window are not required, the jumping

window offers an alternative solution. Instead of sliding over the stream, the jumping

window fills the window with tuples and performs the calculations. When the calcu-

lations are completed, it starts to fill up a new window. This removes the recalcula-

tion of the tuples, but does not ensure correct results, since for instance a message can

acquire its reply in the next window. Figure 7(c) above illustrates the jumping win-

dow. The two sets of tuples are disjoint.

43

Tumbling Window
The third alternative is the hopping or tumbling window, which is illustrated in

Figure 7(d) above. If the sliding window, , is recalculated each time stamp, and a

jumping window, , is recalculated each lth time stamp, the tumbling window, ,

can recalculate by a time interval Τ such that

sw

jw tw

)()()(jts www Τ<Τ<Τ .

In addition, a fourth alternative represents the cases where the update interval is lar-

ger than the window size. This causes pausing in the updates equivalent to the differ-

ence between the end of the update interval and the end of the window.

As mentioned, windows are utilised to unblock blocking operators like joins. When

tuples from two windows intend to join, one of the windows scan the other while

blocking the input streams.

3.4.3 Approximation and Optimisation

Approximation
Next to choosing the best window size semantics, the choice of window size depends

on storage capacities, speed of the system, and input rate of the data stream. If, as a

worst-case scenario, the average data rate is M i.e. the size of the memory, per time-

stamp τ , the maximum window size Τ has to be set to τ=Τ . Such scenarios may

lead to scarce system resources, since the available memory is only used for storing

tuples. This must also be taken into consideration when using several concurrent que-

ries. If each query uses a window of size M, the system runs out of resources as soon

as the queries require the DSMS to allocate memory.

The main solution is to reduce the number of tuples. In such cases, the DSMS has to

maintain some mechanisms for removing, however, still registering the discarded

tuples known as shedded tuples. The following list sums up several of the different

solutions suggested in the DSMS literature (Golab et al. 2003):

44

• Counting. The method typically stores frequency counts for attributes selected

in a query. This may be useful for applications where the frequency of items is

important, but where the tuples’ details are not in focus.

• Hashing uses functions to hash the dropped tuples into n buckets, such that the

frequency is incremented per match in the hash table. This may be helpful if

the stream contains several equal tuples.

• Sampling reports small random samples of the streams. These random samples

often represents the stream well. However, some queries (e.g. finding the sum

of a stream) may not be reliably computed by sampling.

• Sketches use a random number chosen from some distribution with a known

expectation to decide for the tuples’ appearance. All other tuples are shedded.

• Wavelets are based on the same idea as sketches; the choosing of tuples is

based on calculations on probability of appearance over a large set of tuples.

Optimisation and Adaption
The memory consumption is a relatively important factor when handling the data

streams. Queries that only filter tuples from a single stream do not require any exten-

sive amount of memory; each tuple is compared to the filter and either ignored or sent

to output. With regards to queries that use aggregating operators like average, or op-

erators like join, some optimisation may be required. As mentioned earlier in this sec-

tion, a general optimising technique is to push projections as far as possible to the

source (Garcia-Molina et al. 2002) i.e. the entering data stream. For example, given

the two relational data streams and , and the query),,(1 CBAS),,(2 EDCS

)(21 SSA <>π .

This query may be optimised such that

))(())((21, SS CCA ππ <> .

45

46

However, there are restrictions to pushing projections down the query tree. For ex-

ample, if an operator further up the query tree projects other attributes than the cur-

rent operator, it is important that the current operator projects these tuples as well.

When joining two streams that arrive in different rates, it is also important to consider

reordering the joins i.e. adapting to the stream characteristics as they change. An ex-

ample is to prefer that one specific window searches another for join equalities in-

stead of the opposite. As an alternative, the Telegraph project has proposed a solution

called an eddy (Avnur et al. 2000), which instead of sending tuples up a query tree,

sends them to query operators which are connected only to the eddy.

In sensor networks, as described in Section 2, the sensors may perform local compu-

tation (e.g. filtering and aggregation) before they send their data towards the central

node. In network monitoring, a router may collect data and perform local computa-

tion before sending the data to a final machine that performs the final calculations.

Golab et al. (2003) suggest that it may be an optimising factor to distribute the query

operators among the participating nodes or routers. The distribution of queries

throughout a network may resemble optimisation of the query tree.

3.4.4 Query Languages

This far, the DSMS and its functionality have been formally described. However,

there are several implementations of DSMSs. Those implementations use languages

that are mainly inspired by the already existing DBMS languages. As stated in the

DBMS overview, the most common query language over relational databases is SQL

(Eisenberg et al. 1999). We base our discussion on SQL’s declarative semantics,

since SQL is the language that is most commonly utilised in relational modelling of

data.

Note that one important aspect with DSMSs is that they use a declarative language,

which makes it easy for the user to understand what the query is supposed to do. This

makes the code more portable, and makes it easier to verify. Today many applications

47

are written in Perl or other high-level languages, which often makes it complicated

for other users to understand the source code, as it tends to be complex, and not well

documented. The declarative languages therefore make it easier to share knowledge.

They also create a common platform for discussing, understanding, and further de-

velop the actual query (Plagemann et al. 2004).

If a query includes blocking operators such as aggregations, it is necessary to add

window semantics to unblock the query. If the current DSMS supports the possibility

of joining several streams, it is necessary to specify one window for each stream. In

addition, the type of window must be specified if the DSMS provides support for sev-

eral windowing techniques. Following, is a general example of windows.

In the early versions of the TelegraphCQ DSMS, a for-loop construct with a variable

t that iterates over time followed each query definition. The type and size of the win-

dow is specified by a WindowIs() statement in the loop. Let S be a stream and ST

the start time of a query. To specify a sliding window over S with size five that

should run for fifty days, the following for-loop may be appended to the query:

for (t = ST; t < ST + 50; t++)

WindowIs(S, t - 4, t)

By changing the variables in the above expression, it is possible to support all the

four windowing techniques described in this section. For example, a jumping window

may be expressed by changing the increment condition in the for-loop to t = t +

5.

Other examples of CQ models given by Golab et al. (2003) are the list-based models,

the time series models, and the sequence models. Either the query languages of these

models add extensions to SQL, which makes them better suited for their applications,

or they introduce alternative languages, such as procedural languages, where the user

defines the streams and operators by drawing arrows and boxes, respectively. How-

ever, this is beyond the scope of this thesis.

48

As in SQL99, the possibility of using sub-queries may also increase the expressive-

ness of queries in continuous query languages. In theory, it is possible to support sub-

queries if the DSMS supports multiple queries. However, we have experienced that

there are still limitations in how sub-queries may be expressed in some of the current

CQLs.

3.4.5 Examples of DSMSs

Since the data stream systems have been a topic of excitement the last few years

(Golab et al. 2003) and several have been developed, the current section is summa-

rised by presenting a short overview of some of the DSMSs that exist today. Most of

the information is adapted from Golab et al. (2003) and Goebel et al. (Goebel et al.

2005). We investigate the DSMSs with regard to the applications for which they are

intended, the input they accept, the operators they use, the windowing technique, lan-

guages, and if possible, optimisation and adaptation.

Aurora and Medusa
Aurora (Abadi et al. 2003) is developed at Brown University and Brandeis University

and mainly focus on querying sensor data. In Aurora, both streams and tables are

used as data input. Abadi et al. (2003) use the term static table to describe windows

on streams with unlimited size. Aurora has a query algebra called SQuAl (Stream

Query Algebra), which uses a procedural language as described in the prior sections.

An operator manipulates boxes, as illustrated in Figure 8 below. The boxes are repre-

sented by a set of operators used for e.g. filtering, sorting, mapping, aggregating, un-

ion and joining. According to Golab et al. (2003), Aurora also has support for fixed,

landmark, and sliding windows. Aurora uses several optimisation techniques e.g. in-

serting projections, and combining and re-ordering boxes. During run-time, a QoS

monitor investigates the streams and discovers whether optimisation is required.

When Aurora is used in tight couplings between several machines, it is called

Aurora*.

Figure 8. An overview of the Aurora DSMS

As Aurora is the few-node query engine, Medusa (Zdonik et al. 2003) offers a solu-

tion for distributing Aurora over multiple nodes and organisation networks. Medusa

is developed at MIT (Massachusetts Institute of Technology), and focuses on the in-

ter-network challenges like efficient TCP/IP multiplexing of several connections.

Borealis
Borealis (Balazinska et al. 2005) inherits elements from both Aurora and Medusa.

The system is developed as a collaboration between MIT, Brown University, and

Brandeis University. It handles both inter node query processing and the distribution

of several nodes over large networks. The idea of distributing the system is that it has

an incremental scalability in case of e.g. high load spikes, and high availability, to

monitor the system’s health and perform fast fail-over. These parallel processing is-

sues help Borealis act dynamically.

Gigascope
The Gigascope (Cranor et al. 2002) DSMS is developed at AT&T (American Tele-

phone and Telegraph Company) to monitor network traffic at ISPs. The system is

distributed in a way that some query operators are pushed to the routers to collect in-

teresting information. Gigascope uses a query language called GSQL, which supports

selection, join, aggregation, and stream merge. In contrast to the relation-based

model, Gigascope operates on the data streams directly instead of transforming the
49

data. Gigascope also tries to avoid blocking operators by assuming monotonicity and

ordering property on the joining attributes. If, for example, two joining streams, R

and S, have increasing sequence numbers a, one can join by simply moni-

toring the a values as they arrive. Since Gigascope’s intention is to obtain data from

simplex fibre optic lines, one requires data from several interfaces to gain an over-

view of the stream. Thus, the stream merge operator is used to perform a union on the

two streams before e.g. joining them. This may be considered an optimisation tech-

nique, besides from rearranging operators, which optimises Gigascope as well. If the

two streams have differing rates, there might be an overflow in the merge buffers.

This is solved by inserting punctuation tuples in the stream to release the waiting

stream. Both Aurora and Gigascope are proprietary DSMSs that aim to work com-

mercially in AT&T’s networks.

SR
aSaR

<>
.. <

Niagara
As both Aurora and Gigascope focus on low level data streams, Niagara (Chen et al.

2000) supports data streams from Web-pages and Web searching. The DSMS aims to

join millions of continuous queries by grouping similar queries together because sev-

eral queries may share equalities. To identify similarities, Niagara’s continuous query

language (NiagaraCQ) uses an XML-like syntax to execute the multiple continuous

queries. The queries are e.g. expressed as follows (Chen et al. 2000):

Where <Quotes> <Quote>

<Symbol>INTC</>

</> </> element_as $g

in ‘‘http://www.cs.wisc.edu/db/quotes.xml’’

construct $g

The query obtains tuples from quotes.xml and projects the values from the field

INTC. If the equality operator is used and many queries gain results from the same

50

51

source (e.g. a stock exchange XML file) an XML table is constructed to include the

equalities and destinations in the source files.

STREAM
STREAM is developed at the Stanford University, and is a general purpose DSMS

that aims to investigate resource sharing and adaptive query processing. The input

stream is tuples, and the attribute data types can be integer, char(n), float, or byte.

STREAM supports the sliding windowing technique to unblock the data streams. In

addition, it uses a set of operators; stream-to-relation, relation-to-relation, and rela-

tion-to-stream. The stream-to-relation operator employs the windowing technique to

map the data stream to a relation. The relation-to-relation operator uses SQL to oper-

ate on the tuples, which are represented in a relation. Finally, the relation-to-stream

operator may stream the content of the relation in three different ways, as described

in Section 4.

TelegraphCQ
TelegraphCQ (Chandrasekaran et al. 2003) is developed at UC Berkeley and aims to

be a general purpose relational DSMS. It is constructed as part of the public domain

DBMS PostgreSQL and inherits much of PostgreSQL’s functionality. Nevertheless,

TelegraphCQ offers some adaptation techniques distinguishing it from PostgreSQL.

This also implies that TelegraphCQ is not implemented including all the functions

PostgreSQL supports. The query syntax used in TelegraphCQ is called StreaQuel,

and is similar to SQL except from the windowing semantics. A module called an

eddy creates the main adaptivity. This module sends and receives tuples that are proc-

essed by different operators. This poses an alternative to the static query tree that is

utilised by other DSMSs. TelegraphCQ’s windowing technique makes it possible to

use sliding, jumping, and tumbling windows. In contradiction to STREAM, Tele-

graphCQ only manages to use one type of streams, which is created using a CREATE

STREAM statement. However, TelegraphCQ provides functionality for storing the

stream to disk such that it later can be queried as a relation in PostgreSQL.

52

53

4. STREAM

In the STREAM project at Stanford University, California, they are investigating data

management and query processing for the class of applications that we discussed in

Section 2. As part of their project, they are building a general-purpose prototype

DSMS which supports a large class of declarative continuous queries over continuous

streams and traditional stored data sets. This prototype is also known as STREAM.

The STREAM prototype targets environments where streams may be rapid, stream

characteristics and query loads may vary over time, and system resources may be lim-

ited. The first STREAM prototype, STREAM 0.5.0, was released as a public domain

DSMS in November 2004. In February 2005, the second prototype, STREAM 0.6.0,

was issued. Even though we are familiar with the first prototype, we base all discus-

sions and analyses in the current thesis on STREAM 0.6.0. When there is no ambigu-

ity present, we use the term “STREAM” interchangeably to describe both the project

and the name of the prototype.

4.1 The Continuous Query Language (CQL)

For simple continuous queries over streams, it may be sufficient to use a relational

query language (e.g. SQL) replacing references to relations with references to

streams, registering the query with the stream processor, and waiting for answers to

arrive (Arasu et al. 2003b). For simple monotonic queries over complete stream histo-

ries, this approach is nearly sufficient. However, as queries grow more complex (e.g.

with the addition of aggregation, sub-queries, windowing constructs, and joins of

streams and relations) the semantics of a conventional relational language applied to

these queries quickly becomes unclear (Arasu et al. 2004a). In the STREAM project,

they have defined a formal abstract semantics to address this problem. In addition,

they have designed CQL, which implements the abstract semantics. CQL is an ex-

pressive SQL-based declarative language for registering continuous queries against

streams and updatable relations.

4.1.1 Streams and Relations

The abstract semantics are based on two data types, streams and relations. In this sec-

tion, we show how a formal model of streams and updatable relations are defined. As

in the standard relational model, each stream and relation has a fixed schema consist-

ing of a set of named attributes. A discrete, ordered time domainΤ is introduced for

stream element arrivals and relation updates. A time instant is any value from Τ .

Time domain Τ models an application’s notion of time, not particularly system or

wall-clock time. As we mention in Section 3.1, we use one definition of a stream

throughout the thesis. The definition is repeated below for convenience:

(Stream) A stream S is a possibly infinite bag (multi-set) of elements τ,s , where s

is a tuple belonging to the schema of S and Τ∈τ is the timestamp of the element.

There is a finite but unbounded number of stream elements for any given timestamp

Τ∈τ .

There are two classes of streams: base streams, which are the source data streams that

arrive at the DSMS, and derived streams, which are intermediate streams produced

by operators in a query.

Definition 3 (Relation) A relation R is a mapping from Τ to a finite but unbounded

bag of tuples belonging to the schema of R.

A relation R defines an unordered bag of tuples at any time instant Τ∈τ , denoted

)(τR . Note the difference between this definition for a relation and the standard one:

in the standard relational model, a relation is simply a set (or bag) of tuples, with no

notion of time as far as the semantics of relational query languages are concerned.

54

4.1.2 Abstract Semantics

In addition to being based on the two data types, streams and relations, the abstract

semantics is based on three classes of operators over streams and relations. These

classes are shown in Figure 9 below adapted from Arasu et al. (2004a).

Figure 9. Classes of operators in abstract semantics

• A stream-to-relation operator takes a stream as input and produces a relation

as output.

• A relation-to-relation operator takes one or more relations as input and pro-

duces a relation as output.

• A relation-to-stream operator takes a relation as input and produces a stream

as output.

Stream-to-stream operators are absent; they are composed from operators of the

above three classes. The inputs to a continuous query are either streams or relations,

and the output is either a stream or a relation, depending on the class of the root op-

erator in the tree representing the query. Arasu et al. (2003b) define the abstract se-

mantics presented by the STREAM project:

Definition 4 (Continuous Semantics) Consider a query Q that is any type-consistent

composition of operators from the above three classes. Suppose the set of all inputs to

the innermost (leaf) operators of Q are streams and relations nSS ,...,1)0(≥n

55

mRR ,...,1)0(≥m . We define the result of continuous query Q at a time τ , which de-

notes the result of Q once all inputs up to τ are “available.” There are two cases:

• Case 1: The outermost (topmost) operator in Q is relation-to-stream, producing

a stream S (say). The result of Q at time τ is S up to τ , produced by recur-

sively applying the operators comprising Q to streams up to nSS ,...,1 τ and re-

lations up to mRR ,...,1 τ .

• Case 2: The outermost (topmost) operator in Q is stream-to-relation or rela-

tion-to-relation, producing a relation R (say). The result of Q at time τ is

)(τR , produced by recursively applying the operators comprising Q to streams

 up to nSS ,...,1 τ and relations up to mRR ,...,1 τ .

4.1.3 Continuous Query Language

In this section, we present the operators that constitute the concrete CQL language.

These operators are defined by implementing the above abstract semantics.

Stream-to-Relation Operators
Currently, all stream-to-relation operators in CQL are based on the concept of a slid-

ing window over a stream; a window that at any point of time contains a historical

snapshot of a finite portion of the stream (Arasu et al. 2003b). There are three classes

of sliding window operators in CQL: time-based, tuple-based, and partitioned. These

windows are expressed using a window specification language derived from SQL-99

(Arasu et al. 2004a).

Time-Based Sliding Window
A time-based sliding window on a stream S takes a time interval Τ as a parameter

and produces a relation R. It is specified by following the reference to S with [Range

]. More formally, the output relation R of “S [Range Τ Τ]” is defined as (Arasu et al.

2003b):

56

() () { }(){ }0,max''',| Τ−≥∧≤∧∈= ττττττ SssR

Tuple-Based Sliding Window
A tuple-based sliding window on a stream S takes a positive integer N as a parameter

and produces a relation R. It is specified by following the reference to S with [Rows

N]. More formally, the output relation R of “S [Rows N]”,)(τR consists of the N tu-

ples of S with the largest timestamps τ≤ (or all tuples if the length of S up to τ is

) (Arasu et al. 2003b). However, when timestamps are not unique, tuple-based

sliding windows may be nondeterministic. For example, given a sliding window of N

tuples, several tuples with the Nth most recent timestamp, and that the other N – 1

more recent timestamps are unique. Then one of the tuples with the Nth most recent

timestamp must be chosen in some fashion to generate exactly N tuples in the win-

dow.

N≤

Partitioned Sliding Windows
A partitioned sliding window on a stream S takes an integer N and a set of attributes

 of S as parameters and is specified by following S with [Partition By

 Rows N]. It logically partitions S into different sub-streams based on equal-

ity of attributes computes a tuple-based sliding window of size N independ-

ently on each sub-stream, then takes the union of these windows to produce the out-

put relation. More formally, a tuple s with values for attributes oc-

curs in output instantaneous relation

{ kAA ,...,1 }

kAA ,...,1

kAA ,...,1

kaa ,...,1 kAA ,...,1

)(τR iff there exists an element

τττ ≤∈ ',', Ss such that τ is among the N largest timestamps of elements whose

tuples have values for attributes (Arasu et al. 2003b). kaa ,...,1 kAA ,...,1

Relation-to-Relation Operators
CQL uses SQL constructs to express its relation-to-relation operators, and much of

the data manipulation in a typical CQL query is performed using these constructs.

The current CQL implementation in STREAM offers only a small subset of the SQL

operators that usually are provided through a DBMS.
57

Relation-to-Stream Operators
CQL has three relation-to-stream operators: Istream, Dstream, and Rstream. In the

following formal definitions, the operators are assumed to be the bag versions (Arasu

et al. 2003b).

• Istream (for “insert stream”) applied to relation R contains a stream element

<s, τ> whenever tuple s is in R(τ) ─ R(τ ─ 1). Assuming R(-1) = φ for nota-

tional simplicity, we have:

Istream(R) = { }U
0

)))1()(((
≥

×−−
τ

τττ RR

• Analogously, Dstream (for “delete stream”) applied to relation R contains a

stream element <s, τ> whenever tuple s is in R(τ ─ 1) ─ R(τ). Formally:

Dstream(R) = { }U
0

)))()1(((
>

×−−
τ

τττ RR

• Rstream (for “relation stream”) applied to relation R contains a stream ele-

ment <s, τ> whenever tuple s is in R(τ). Formally:

Rstream(R) = { }U
0

))((
≥

×
τ

ττR

4.1.4 CQL Syntax

We illustrate the CQL syntax by giving some grammar rules. These rules only repre-

sent a subset of the CQL grammar. Note that the HAVING clause is not included in

this illustration. The reason for this is that the HAVING clause is not supported in the

current STREAM prototype. When a CQL query is parsed, it is converted into a

parse tree, which is a tree whose nodes correspond to either atoms or syntactic cate-

gories. The representation of atoms and syntactic categories in the grammar are col-

lected from (Garcia-Molina et al. 2002). “Non_mt” means “non empty,” and “opt”

means “optional.” The symbol “::=” means “can be expressed as.”

58

59

<Query> ::= SELECT <Opt_distinct> <Non_mt_select_clause>

 FROM <Non_mt_relation_list>

 <Opt_where_clause>

 <Opt_group_by_clause>

<Query> ::= <xstream_clause> (<Query>)

All syntactic categories need further rules attached to them in order to define a com-

plete grammar. One example that parses a syntactic category into atoms is (the sym-

bol “|” means “or”):

<xstream_clause> ::= ISTREAM | DSTREAM | RSTREAM

4.1.5 Examples of CQL Queries

The following examples show how queries are expressed in CQL.

Example 1
The following continuous query filters a stream S:

ISTREAM(

SELECT * FROM S [ROWS 100]

WHERE S.A < 50)

Stream S is converted into a relation by applying a tuple-based sliding window. The

relation-to-relation filter “S.A < 50” acts over this relation, and the inserts to the fil-

tered relation are streamed as the result.

Example 2
The following query is a windowed join of two streams S1 and S2:

SELECT * FROM S1 [ROWS 100], S2 [RANGE 1 MINUTE]

WHERE S1.A = S2.A AND S1.A < 50

60

The answer to this query is a relation. At any given time, the answer relation contains

the join (on attribute A with A < 50) of the last 100 tuples of S1 with the tuples of S2

that have arrived in the previous minute.

4.2 An Architectural Overview of STREAM

In this section, we present an architectural overview of the STREAM system. In addi-

tion, we introduce some important concepts and show how they are linked together.

4.2.1 High-Level System Architecture

A simplified and high-level view of STREAM is shown in Figure 10 below adapted

from Arasu et al. (2003a). On the left hand side are the incoming data streams, which

produce data indefinitely and drive query processing. Processing of continuous que-

ries typically requires an intermediate state, which is labelled Scratch Store in the

figure. Although the main concern is online processing of continuous queries, in

many applications stream data may also be copied to an Archive for preservation and

possible offline processing of expensive analysis or mining queries (Arasu et al.

2003a). At the top of the figure, we see users or applications registering continuous

queries, which remain active within the system until they are explicitly deregistered.

Results of continuous queries are generally transmitted as output data streams, but

they could also be relational results that are updated over time (similar to materialised

views).

Figure 10. Overview of STREAM

4.2.2 The STREAM System Interface

In the STREAM project, they have developed a graphical query and system visualiser

for the STREAM system. The visualiser allows the user to (Arasu et al. 2004a):

• View the structure of query plans and their component entities (operators,

queues, and synopses).

• View the detailed properties of each entity.

• Dynamically adjust entity properties.

• View monitoring graphs that display time-varying entity properties such as

queue sizes, throughput, overall memory usage, and join selectivity, draw dy-

namically against time.

The visualiser is an extension to STREAM and takes the form of a client, transferring

tuples to the server (DSMS) via TCP connections. Results are streamed back to the

client. In our analysis, we only consider the server side of this composition. We use a

61

62

generic command-line client, which was released together with the prototype. This

client implements the external interface of STREAM, nevertheless, the implementa-

tion of the client only streams data from files and into the system. Consequently, we

change the client to make it possible to stream live network data into STREAM. In

Section 6.1, we will describe how we make these changes. We do not discuss the

visualiser any further, because it does not take any part of our analysis. The generic

command-line client will be described in Section 4.4.1.

4.2.3 Query Plan

When a continuous query specified in CQL is registered with the STREAM system, a

query plan is compiled from it. Query plans are trees consisting of operators, queues,

and synopses. Operators perform the actual processing, and they are connected by

queues, which buffers tuples (or references to tuples) as they move between opera-

tors. Synopses, which store operator data, are connected to operators as required

(Arasu et al. 2004a). The query plan is merged with existing query plans whenever

possible in order to share computation and state (Arasu et al. 2003b).

Example Query Plan
We use the query in Example 2, Section 4.1.5, in order to illustrate how a query plan

is generated. The original query is repeated here for convenience:

SELECT * FROM S1 [ROWS 100], S2 [RANGE 1 MINUTE]

WHERE S1.A = S2.A AND S1.A < 50

The query plan corresponding to this query is shown in Figure 11 below adapted

from Arasu et al. (2004a).

Figure 11. A query plan illustrating operators, queues, and synopses

A careful reader may observe that the query plan may be optimised by pushing the

select operator down into one or both branches below the binary-join operator,

and also below the seq-window operator on S2. However, Arasu et al. (2004a)

states that tuple-based windows do not commute with filter conditions, and therefore

the select operator cannot be pushed below the seq-window operator on S1.

Note that the contents of synopsis1 and synopsis3 are similar (as are the contents of

synopsis2 and synopsis4), since both maintain a materialisation of the same window,

but at slightly different positions in stream S1. In Section 4.3.3, we will demonstrate

how STREAM eliminates such redundancy through synopsis sharing.

63

64

4.3 Concepts

In this section, we give a more thorough presentation of the most important concepts

in STREAM.

4.3.1 Internal Representation of Streams and Relations

Recall the formal definitions of streams and relations in Section 4.1.1. A stream is a

bag of tuple-timestamp pairs, which may be expressed as a sequence of timestamped

tuple insertions. A relation, which is a time-varying bag of tuples, can also be repre-

sented as a sequence of timestamped tuples, except now we have both insertion tu-

ples and deletion tuples to capture the changing state of the relation (Arasu et al.

2003b). In the implementation, these two types are unified as a sequence of time-

stamped tuples, where each tuple additionally is flagged as either an insertion (+) or

deletion (-). The tuple-timestamp-flag triples are referred to as elements (Arasu et al.

2004a). Streams only include + elements, while relations may include both + and –

elements.

4.3.2 Query Plans

A query plan in STREAM runs continuously and is, as we mentioned in Section

4.2.3, composed of three different types of components: operators, queues, and syn-

opsis. When a query plan is executed, a scheduler selects operators in the plan to exe-

cute in turn. In this section, we provide a more thorough description of the query

processing architecture of STREAM.

Operators
Query operators correspond to the three types of operators in the abstract semantics

(Section 4.1.2). Each query plan operator reads from one or more input queues, proc-

esses the input based on its semantics, and writes any output to an output queue

(Arasu et al. 2004a). Since queues encode both streams and relations, query plan op-

erators can implement all three operator types in the abstract semantics and CQL

namely stream-to-relation, relation-to-relation, and relation-to-stream (Arasu et al.

2003b).

Queues
A queue in a query plan connects its input operator to its output operator . At

any given time, a queue contains a (possibly empty) sequence of elements represent-

ing a portion of a stream or relation. The elements that produces are inserted into

the queue and are buffered there until they are processed by (Arasu et al. 2004a;

Arasu et al. 2003b). Many of the operators in STREAM require that elements on their

input queues is read in non-decreasing timestamp order. Consider, for example, a

window operator on a stream S. If receives an element

IO OO

IO

OO

WO WO +,, τs and its input

queue is guaranteed to be in non-decreasing timestamp order, than knows it has

received all elements with timestamp

WO

ττ <' , and it can construct the state of the win-

dow at time 1−τ . If, on the other hand, does not have this guarantee, it can never

be sure it has sufficient information to construct any window correctly. Thus,

STREAM requires all queues to enforce non-decreasing timestamps (Arasu et al.

2004a).

WO

Synopses
Logically, a synopsis belongs to a specific plan operator, storing state that may be

required for future evaluation of that operator. For example, to perform a windowed

join of two streams, the join operator must have access to all tuples in the current

window on each input stream. Thus, the join operator maintains one synopsis (e.g. a

hash table) for each of its input (Arasu et al. 2004a; Arasu et al. 2003b). On the other

hand, operators such as selection and duplicate-preserving projection do not require

any synopses. The most common use of a synopsis in STREAM is to materialise the

current state of a (derived) relation, such as the contents of a sliding window or the

relation produced by a sub-query (Arasu et al. 2004a).

65

66

4.3.3 Performance Issues

Straightforward generation and execution of query plans can be very inefficient. Sev-

eral techniques to improve performance are available such as the Eddy in Tele-

graphCQ (Avnur et al. 2000). In this section, we present techniques for performance

improvement implemented in STREAM.

Resource Sharing
When continuous queries contain common sub-expressions, it is possible to share

resources and computation within their query plans. Two such resource-sharing tech-

niques are queue sharing and synopsis sharing.

Queue Sharing
The implementation of a shared queue maintains a pointer to the first unread tuple for

each operator that reads from the queue, and it discards tuples once they have been

read by all parent operators (Motwani et al. 2003). The number of tuples in a shared

queue at any time depends on the rate at which tuples are added to the queue, and the

rate at which the slowest parent operator consumes the tuples. If two queries have

common queues, and the two distinct output operators to those queues have very dif-

ferent consumption rates, it may be preferable not to utilise a shared queue.

Synopsis Sharing
In Section 4.2.3, we observed that multiple synopses within a single query plan might

materialise nearly identical relations. By introducing a single store to hold the actual

tuples, and replacing the two synopses with lightweight stubs, STREAM is able to

eliminate such redundancy. These stubs implement the same interface as non-shared

synopsis. Thus, operators can be ignorant to the details of sharing, and as a result,

synopsis sharing can be enabled or disabled on the fly (Arasu et al. 2004a).

When synopses are shared, logic in the store tracks the progress of each stub, and pre-

sents the appropriate view (subset of tuples) to each of the stubs. The store contains

the union of its corresponding stubs: A tuple is inserted into the store as soon as it is

inserted by any of the stubs, and it is removed only when it has been removed from

all the stubs.

To further decrease state redundancy in STREAM, multiple query plans involving

similar intermediate relations can share synopses as well. For example, suppose the

following query is registered in addition to the query in Section 4.2.3:

SELECT A, MAX(B) FROM S1 [ROWS 200] GROUP BY A

Since sliding windows are contiguous in STREAM, the window on S1 in this query

is a subset of the window on S1 in the other query. Thus, the same data store can be

used to materialise both windows. The combination of the two query plans with both

types of sharing is illustrated in Figure 12 below adapted from Arasu et al. (2004a).

Figure 12. A query plan illustrating synopsis sharing

67

68

Exploiting Constraints
Streams may contain data or arrival patterns, which are possible to explore in order to

reduce run-time synopsis sizes. Such constraints can either be specified at stream reg-

istration time, or by gathering statistics over time (Arasu et al. 2004a; Arasu et al.

2003b).

In STREAM, they have identified several types of useful constraints over data

streams. The constraints they have considered in their work are many-to-one join and

referential integrity constraints between two streams, and clustered-arrival and or-

dered-arrival on individual streams (Arasu et al. 2003b). To make effective optimisa-

tion possible, even when the constraints are not strictly met, they have defined an ad-

herence parameter k that captures how closely a given stream or pair of streams ad-

heres to a constraint of that type. They refer to these as k-constraints (Arasu et al.

2004a). As the value of k for each constraint becomes smaller, more and more state

can be discarded. A thorough description of k-constraints is presented by Babu et al.

(2004a).

Operator Scheduling
An operator consumes elements from its input queues and produces elements on its

output queue. Selectivity is the ratio, over one time unit, between the memory size an

operator processes from its input queues, and the memory size it produces on its out-

put queue. The selectivity s is at most one for the select and project operators, but it

may be greater than one for a join. Depending on the selectivity of an operator, the

scheduling algorithm having the best performance may vary in different input stream

scenarios. Examples of such scenarios are presented by Arasu et al. (2004a) and Bab-

cock et al. (2003). Due to the uncertainty in which algorithm performs best, they de-

velop a new scheduling algorithm, named chain scheduling, in STREAM. This algo-

rithm forms blocks (“chains”) as follows: Start by marking the first operator in the

query plan as the “current” operator. Next, find the block of consecutive operators

starting at the “current” operator that maximises the reduction in total queue size per

time unit (smallest selectivity). Mark the first operator following this block as the

“current” operator and repeat the previous step until all operators are assigned to

chains. Chains are scheduled according to the greedy algorithm, but within a chain,

execution proceeds in FIFO order (Arasu et al. 2004a). Further descriptions of chain

scheduling are presented by Babcock et al. (2003).

4.3.4 Adaptivity

Over time, data and arrival characteristics of a stream may vary significantly. In addi-

tion, query loads and system conditions may vary. Therefore, an adaptive approach to

query processing is important to prevent performance to drop drastically as the envi-

ronment change. The STREAM system includes a monitoring and adaptive query-

processing infrastructure called StreaMon. StreaMon has three components as shown

in Figure 13 below adapted from Arasu et al. (2004a). Firstly, the Executor, which

runs query plans to produce results, secondly, the Profiler, which collects and main-

tains statistics about streams and query plan characteristics, and thirdly, the Reopti-

miser, which ensures that the plans and memory structures are the most efficient for

current characteristics. A thorough description of StreaMon is provided by Babu et al.

(2004b).

Figure 13. StreaMon

69

70

4.3.5 Approximation

In many applications, data streams arrive with bursts that may cause unpredictable

peaks during which the load may exceed available system resources. For many appli-

cations it is acceptable to degrade accuracy by providing approximate answers during

such load spikes. A DSMS may be resource limited in two primary ways. It may be

memory-limited or CPU-limited (Arasu et al. 2004a).

Memory-Limited Approximation
When the total state required for all registered queries exceeds available memory, the

DSMS becomes memory-limited. Recall that STREAM’s chain scheduling algorithm

is greedy (when scheduling chains) based on selecting operators that maximises the

reduction in total queue size. In addition, the constraint-aware execution strategy,

which was described in Section 4.3.3, minimises the synopsis sizes. A thorough de-

scription of this topic is presented by Babu et al. (2004a). Even by the use of these

memory-reducing strategies, memory may become limited. In such a scenario, mem-

ory usage can be reduced at the cost of accuracy by reducing the size of synopses at

one or more operators. Examples of methods for reducing synopsis size are maintain-

ing a sample of the intended synopsis content, using histograms or wavelets when the

synopsis is used for aggregation or even for a join, and using Bloom filters for dupli-

cate elimination (Arasu et al. 2004a). However, other memory reducing methods than

chain scheduling and exploiting k-constraints are not implemented in the current

STREAM prototype.

CPU-Limited Approximation
When the data arrival rate is so high that there is insufficient CPU time to process

each stream element the DSMS becomes CPU-limited. CPU usage can be reduced by

load shedding i.e. dropping elements from query plans and saving the CPU time that

would be required to process them to completion (Arasu et al. 2004a). In STREAM,

they implement load shedding by introducing sampling operators that may drop

stream elements as they are input to the query plan. Load shedding is introduced at

71

the cost of accuracy, however, it is not implemented in the current STREAM proto-

type.

4.4 How to Use STREAM

In this section, we illustrate how to use the STREAM by providing a brief description

of the most important concepts. A more detailed explanation of how to use the system

is given in the STREAM user guide and design document (Anonymous 2004). We

start by describing the generic command-line client, gen_client. Secondly, we de-

scribe the different arguments that are necessary when running gen_client. Finally,

the sources of the streams and relations involved in queries will be considered.

4.4.1 Gen_client

When running STREAM, we use the generic command-line client, gen_client, which

use the STREAM library. Briefly, the steps involved in using STREAM as an em-

bedded library are; registering a new Server object, configuring the server by provid-

ing a configuration file, registering the input streams and relations, registering the

queries, generating a query plan, and starting the server. The usage syntax of the

gen_client program is:

gen_client -l [log-file] -c [config-file] [script-file]

[log-file] is the output file where the execution log of the program is written, and this

file is created if it does not already exist. [config-file] is an input file that specifies

values of various server configuration parameters, whereas, [script-file] is an input

file that contains the queries to be executed, and the streams and relations involved in

the queries.

72

4.4.2 The Configuration File

The configuration file parameter to gen_client contains values that configure

STREAM. Throughout our analysis, we use one configuration file. We have changed

the values for memory size and run time compared to the example configuration file

that is included in the STREAM prototype release.

MEMORY_SIZE = 805306368

QUEUE_SIZE = 30

SHARED_QUEUE_SIZE = 300

INDEX_THRESHOLD = 0.85

RUN_TIME = 10000

None of the configuration parameters are strictly necessary. If the value for some pa-

rameter is not specified, the system assumes default values. MEMORY_SIZE contains

the size of the memory in bytes that is used during the execution of the system.

805 306 368 bytes equals 768 MB. QUEUE_SIZE contains the size of the queues,

which have fixed sizes. A smaller value of QUEUE_SIZE means that the operators

execute in a more tightly coupled manner. This should be an integer value larger than

one. The queue size is specified in number of pages. A page is set to 4096 bytes.

SHARED_QUEUE_SIZE contains shared queue sizes in pages. A shared queue is a

queue that has one write operator and many read operators. It is useful to set this

value higher than QUEUE_SIZE. INDEX_THRESHOLD should be a fraction between

zero and one. It is similar to the threshold value used in a disk-based linear hash table.

When the ratio between the number of tuples and the number of buckets exceeds the

threshold, buckets are added and the table is rehashed. A smaller value leads to

cheaper index updates but lookups could be costlier and vice-versa. RUN_TIME is the

number of times STREAM receives empty tuples from the table source before exit-

ing.

73

4.4.3 The Scipt File

In the current STREAM prototype, four data types are implemented. These are in-

teger, float, char(n), and byte, where the n in char(n) is the length of the string

in bytes, including the string terminator. In the following example, we only show

how to register a stream and how to query it.

Table : register stream S (A integer, B float, C
char(10));

Source : hernes/examples/Example.dat

Query : select B, C from S where A < 20;

Dest : hernes/examples/ExampleOutput

The first line in this example defines the table’s schema. If a relation is registered, the

word “stream” is replaced with “relation”. The next line provides the location of the

source file. The actual query is given in the line that starts with “Query”, and the des-

tination for the file containing the query answer is given in the line starting with

“Dest”. One should realise that each statement must be given in one line without a

line break. The STREAM user guide and design document (Anonymous 2004) gives

a detailed descriptions on how to for example define windows and views. In addition,

the document explains several semantic similarities.

4.4.4 Table Source

As we described in the previous section, the word “stream” can be replaced with the

word “relation” when defining the table’s schema. However, the source file repre-

senting a stream is different from a source file representing a relation. In this section,

we give a brief description of their characteristics.

Stream Source
The file representing the stream contains the stream’s tuples. However, the first line

must be a description corresponding to the tables schema. For the example in the pre-

vious section, the first lines may look like:

74

i, i, f, c10

0, 1, 1.11, text1

1, 2, 2.22, text2

The “i” means integer, “f” means float, and “c10” means a string of ten bytes. The

first “i” represents the timestamp. The timestamp is not an attribute and may not be

queried.

Relation Source
If replacing the word “stream” with “relation” in the query example, the file repre-

senting the relation may look like:

i, b, i, f, c10

0, +, 1, 1.11, text1

0, +, 2, 2.22, text2

In a DBMS, deleted tuples are not registered within a relation; they are simply re-

moved. Thus, a relation stored on file that is registered within STREAM should nor-

mally only contain insertions although it is possible to let the file contain deletions as

well. However, the deletions have most value in the intermediate relations or when

writing a relation to file to track changes in the relation. Notice that the relation’s tu-

ples contains timestamps. The timestamps too have most value in the intermediate

relations and when tracking changes in the relation. However, the timestamps intro-

duce a problem when joining a relation stored on file with a stream. Recall from Sec-

tion 4.3.2 that when an operator receives an element with timestamp t, it knows it has

received all elements with timestamp t’ < t. If each tuple in the relation should be

joined with each tuple in a window over the stream, they should all have zero as time-

stamp, at least if they should be joined with the tuples in the stream that also have

zero as timestamp. We assume that the stream is long lasting with a wide range of

timestamps in increasing order. The problem is that the join operator cannot join any

of the tuples from such a relation before it has seen a tuple, from the relation, with a

timestamp larger than zero. If such a tuple is inserted, this tuple will not be joined

before a timestamp larger than this tuple’s timestamp is seen. Thus, when defining

75

relations we use a dummy-tuple as the last tuple. This tuple has a very large number

as timestamp, thus, the tuple will never be a part of the join. However, it unblocks the

rest of the relation. Such a tuple takes the form of a heartbeat in the relation. Heart-

beats are not in the scope of this thesis, however, a thorough description of heartbeats

are provided by Srivastava et al. (Srivastava et al. 2004).

76

77

5. Query Design

In this section, we consider different network monitoring tasks and design queries

solving them. We will use some of these queries in our performance evaluation in

Section 7. The design of the queries is affected by possibilities and limitations of the

current STREAM implementation. As mentioned in Section 4, we use the latest

STREAM implementation, STREAM 0.6.0, in our work with this thesis.

Prior to designing the different queries, we perform some analysis regarding which

data types to use when defining attributes of network data. In addition, we define an

input stream that we use throughout the rest of the thesis. After defining the input

stream, we design queries solving the different network monitoring tasks.

5.1 The Input Stream S

In all tasks, outlined later in this section, we use a generic input stream S, which con-

sists of TCP/IP packet header values. In S, one tuple contains values from all TCP

and IP header fields. Figure 14 below illustrates the TCP header format.

Figure 14. TCP header format

The IP header format is shown in Figure 15 below. S only contains header informa-

tion from packets where IP headers encapsulate TCP packets. Header fields from the

MAC layer are not included. The reason for this is that we do not consider any net-

work monitoring tasks that analyse header fields from this layer.

Figure 15. IP header format

In STREAM, no data types may directly represent IP addresses or the TCP control

flags URG, ACK, PSH, RST, SYN, and FIN. Consequently, we perform some analy-

ses in order to decide which data type to use when defining these attributes. We use

several different queries in these analyses. Each query is executed offline, and re-

78

79

peated ten times for each representation. We execute the queries on computers B,

which will be described in Section 6.3.2. In addition to these analyses, we discuss

how we represent the TCP and IP option fields.

5.1.1 IP Addresses

In IP headers there are two fields containing IP addresses. There is one field for

source IP address, and one field for destination IP address. In STREAM, there is no

data type made explicitly for representing IP addresses such as cidr in PostgreSQL.

Hence, either integer or char(n) must be used to present these addresses. For

example, the IP address 10.10.10.10 may be represented in three different ways:

1. As four integers: 10, 10, 10, 10

2. As four char(4): 10, 10, 10, 10

3. As one char(16): 10.10.10.10

There is also a fourth representation, namely the whole address as an unsigned

integer. This is possible since both integers and IP addresses use 32 bits. The ex-

ample address is in this case written as 168430090. Normally, the 32-bits address is

split into four parts of one byte. Consequently, we prefer one of the three representa-

tions in the list.

In the Internet, data streams arrive with bursts, and the load may exceed available

system resources. The data arrival rate may be so high that there is insufficient CPU

time to process each stream element. In this case, the system may drop elements be-

fore they are processed and, thus, provide approximate query answers. Though it in

many streaming applications is acceptable to degrade accuracy by providing ap-

proximate answers during load spikes (Arasu et al. 2004a), it is essential to keep

processing time as low as possible. During load spikes, the system may also become

memory limited. The total state required for all registered queries may exceed avail-

able memory. Consequently, it is important to keep memory usage to a minimum,

80

favouring those representations requiring the least number of bytes. A couple of bytes

saved on each tuple, may result in several MB saved in large windows. Hence, proc-

essing time and memory usage are the main metrics when deciding which of the three

IP address representations to choose. However, each representation requires 16 bytes

to represent an IP address. This makes each representation equally suitable when

compared to memory usage. The representation resulting in the lowest processing

time may vary from query to query. Therefore, we construct different types of queries

in this analysis. In addition to processing time and memory usage, we compare repre-

sentations in how applicable they are i.e. each representation is measured in the

availability of operators that we consider necessary when solving network traffic

monitoring tasks.

Processing Time
All queries consider an input stream of the same format as S. However, in this analy-

sis we do not stream real internet traffic into the system. Instead, we create some files

containing dummy data. The two first representations in the list above require four

attributes for each IP address. To represent source IP addresses, we use sourceA,

sourceB, sourceC, and sourceD, while we use destA, destB, destC, and

destD to represent destination IP addresses. For the last representation, it is suffi-

cient with sourceIP and destIP. We only show queries made for the last repre-

sentation. In the queries, sourceIP and destIP may be replaced with the first at-

tributes. The first query, Query1, projects source IP addresses.

SELECT sourceIP

FROM S

The next query, Query2, groups by source IP address and destination IP addresses,

and for each such combination it counts the number of packets i.e. the number of

packets sent from a source to a destination. Query2a uses a one-second window,

while Query2b uses a window size of ten seconds. We only present Query2a here.

SELECT sourceIP, destIP, count(*)

81

FROM S [RANGE 1 SECOND]

GROUP BY sourceIP, destIP

In the last query, Query3, we introduce a second stream, T, which has the same at-

tributes as S. This query finds, for all packets in S and T, the total number of bytes

sent to each destination IP address. First, we create one view querying S, and one

view querying T. Each view selects, for each packet, the destination IP address, and

the total length. A third view selects the union of the two previous views. In the final

query, we query the third view grouping by destination IP, and summarising the num-

ber of bytes. In Query3a, this is done over a one-second window, while Query3b uses

a window size of ten seconds. We only present Query3a here.

VS (destIP, totalLength):

SELECT destIP, totalLength

FROM S

VT (destIP, totalLength):

SELECT destIP, totalLength

FROM T

VU (destIP, totalLength):

VS UNION VT

RSTREAM(

SELECT destIP, sum(totalLength)

FROM VU [RANGE 1 SECOND]

GROUP BY destIP)

When creating S and T, we randomly choose IP addresses in a range from 10.10.10.0

to 10.10.10.255. This address range corresponds to an eight-bit subnet. Both streams

simulate a rate of 50 packets per second, over a total of 900 seconds, or 15 minutes.

This results in 45.000 packets in each stream. We use the time command in Linux to

monitor for how long STREAM has been processing. Average processing time for

these ten executions is presented in Table 1 below. The processing time is given in

seconds. The table shows that the third representation uses least time to process its

input streams.

Table 1. Average processing time in seconds when processing streams
with 15 minutes duration.

We perform another round of executions with new files simulating the input streams.

In these files, the streams simulate a rate of 100 packets per second, over a total of

1800 seconds, or 30 minutes. This results in 180.000 packets in each stream. Average

processing time for these ten executions is presented in Table 2 below. This table

shows an equal tendency as in Table 1, with the third representation using least time

to process its input streams.

82

83

Table 2. Average processing time in seconds when processing streams
with 30 minutes duration.

Applicability
One obvious restriction of the two last representations is that attributes of data type

char(n) cannot be included in arithmetic expressions. However, we do not con-

sider such operations necessary regarding IP addresses. In addition, there are restric-

tions to using char(n) when applying logical operators. For example, consider

what happens if we have a ten bits subnet with addresses between 10.10.0.0 and

10.10.3.255, and the third representation of IP addresses. The WHERE clause in a

query checking if a destination IP address belongs to this subnet may look like:

WHERE destIP >= “10.10.0.0” AND destIP <= “10.10.3.255”.

This statement would not only select correct IP addresses, because of how strings are

compared e.g. 10 is smaller than 2. Mistakenly, an address like e.g. 10.10.10.10

would be considered a member of the given subnet. The only logical operators that

give correct results when comparing IP addresses, defined with char(n), are !=

and =. The only task that could make use of subnet matching is Task 6, which will be

discussed in Section 5.2.6.

Conclusion
When measuring processing time, the third representation, where IP addresses are

represented with char(16), is most suitable. However, when comparing how ap-

plicable the representations are, the most suitable solution is the first representation

where IP addresses are represented with four integers. We choose the third repre-

sentation of IP addresses due to the following two reasons. Firstly, the difference in

how applicable the representations are does not become visible in any of the tasks

considered in this document and, secondly, we consider processing time to be a more

important metric.

84

5.1.2 Control Flags

A TCP header contains six control flags: URG, ACK, PSH, RST, SYN, and FIN.

Each flag uses one bit to indicate whether it is set. The smallest data type in

STREAM is B, which occupies one byte. However, STREAM is not implemented to

operate on this data type. Consequently, the control flags can be defined using in-

teger or char(2). When analysing the performance of these two representations

we use the same metrics as in the analysis of IP addresses. The only values control

bits may have are zero or one, because they are represented by one bit. Consequently,

the only necessary operation on these attributes is to check whether they are set e.g.

SYN = “1”, or SYN = “0”, assuming char(2) representation. No arithmetic

operations are necessary, hence, both representations are equally suitable with respect

to applicability.

Memory Usage
The char(2) representation occupies two bytes, while the integer representation

occupies four bytes. The two-bytes difference between these representations results in

12 bytes difference for all control bits in a tuple. To illustrate the magnitude of these

12 bytes, consider an Ethernet with constant traffic at a bit rate of 100 Mb/s, and all

packets carrying the Ethernet’s Maximum Transfer Unit (MTU) with a packet size of

1500 bytes (12 000 bits). The arrival rate on the Network Interface Card (NIC) is then

8 738.1333 packets per second. With 12 bytes (96 bits) per packet this equals

104 857.6 bytes per second. With a window size of one minute, this results in 6 MB.

Processing Time
To compare processing time between the two different representations, we consider

two queries, Query 1 and Query 2. The first query selects all control flags from the

input stream.

SELECT URG, ACK, PSH, RST, SYN, FIN

FROM S

85

In the second query, TCP connections are recognised, and a detailed discussion of

this query will be described in Section 5.2.4. This query consists of two views, both

querying S, and a final query joining these views with S. The final query recognises

connections over a three-minute window.

SYN (sourceIP, destIP, sourcePort, destPort, seqNum,
ackNum):

SELECT sourceIP, destIP, sourcePort, destPort,
seqNum, ackNum

FROM S

WHERE SYN = “1” AND ACK = “0”

SYNACK (sourceIP, destIP, sourcePort, destPort,
seqNum, ackNum):

SELECT sourceIP, destIP, sourcePort, destPort,
seqNum, ackNum

FROM S

WHERE SYN = “1” AND ACK = “1”

SELECT DISTINCT SYN.sourceIP, SYN.destIP,
SYN.sourcePort, SYN.destPort

FROM SYN [RANGE 3 MINUTES], SYNACK [RANGE 3
MINUTES], S [RANGE 3 MINUTES]

WHERE SYN.sourceIP = SYNACK.destIP AND SYN.sourceIP
= S.sourceIP AND SYN.destIP = SYNACK.sourceIP AND
SYN.destIP = S.destIP AND SYN.sourcePort =
SYNACK.destPort AND SYN.sourcePort = S.sourcePort
AND SYN.destPort = SYNACK.sourcePort AND
SYN.destPort = S.destPort AND SYN.seqNum + 1 =
S.seqNum AND SYNACK.seqNum + 1 = S.ackNum

We use an input stream similar to S in the execution of both queries. We create S to

simulate a stream with an arrival rate of 100 packets per second, with a 30 minutes

duration. Three of the 100 packets are used to establish a connection, which means

that one connection is established every second. Each query is executed ten times for

each representation, and we calculate the average processing time for the ten execu-

tions. Table 3 below presents the average processing time. It shows that STREAM

processes the queries slightly faster when using char(2) rather than integer.

Table 3. Average processing time in seconds when processing streams
with 30 minutes duration.

Conclusion
The representation using char(2) has shortest processing time, and occupies less

memory than the representation using integer. Consequently, we choose

char(2) to represent the control flags.

5.1.3 Option Fields

The IP and TCP headers include one field each that describe the length of the header

in 32-bits words. These fields are known as Header Length and Data Offset, respec-

tively, and they consist of four bits. That results in a maximum header length of 15

i.e. 15 words of 32 bits. Since five is the minimum length of both headers, there are

ten 32 bits words left for the option field. In order to represent the option field as one

attribute, we may only use the data type char(n). Consequently, we give the option

fields in hexadecimal numbers. Then 80 hexadecimal numbers are required to repre-

sent the possible 320 bits in an option field. In STREAM, we require one character

for each hexadecimal number, in addition to the string terminator. Thus, option fields

are defined as char(81).

86

87

5.1.4 Definition of Stream S

A schema over S is defined with the following data definition language (DDL) state-

ment:

REGISTER STREAM S(

version integer,

ip_headerLength integer,

tos integer,

totalLength integer,

id integer,

flags integer,

fragOffset integer,

ttl integer,

protocol integer,

headerChecksum integer,

sourceIP char(16),

destIP char(16),

ip_options char(81),

sourcePort integer,

destPort integer,

seqNum integer,

ackNum integer,

tcp_headerLength integer,

reserved integer,

URG char(2),

ACK char(2),

PSH char(2),

RST char(2),

SYN char(2),

88

FIN char(2),

window integer,

checkSum integer,

urgent integer,

tcp_options char(81))

5.2 Solving Network Monitoting Tasks

In this section, we design queries solving the different network traffic monitoring

tasks. The four tasks discussed in the sections from Section 5.2.3 to Section 5.2.6 are

adapted from Plagemann et al. (2004), where they were solved in TelegraphCQ. For

these tasks, we consider whether it is possible to use similar solutions within

STREAM. For the remaining tasks, we discuss whether they are possible to solve

online with continuous queries in STREAM. If they cannot be solved with continu-

ous queries, we will attempt to explain why. In addition, prior to presenting the dif-

ferent solutions here, we test the queries offline by processing data stored in files.

Thus, all queries presented in this section are accepted by STREAM and produces the

query answer that is expected based on the data to be queried. All tasks assume a ge-

neric input stream S, which was defined in the previous section.

In Section 4.4.3, we described the script file used to define sources, queries, and des-

tinations. A script-based language is used when implementing the script file. How-

ever, to make the queries more readable, we maintain syntax as close as possible to

SQL in this section. The syntax is adopted from the STREAM Query Repository

(Anonymous 2002) and the STREAM User Guide and Design Document

(Anonymous 2004). The largest syntactic difference between the adopted syntax and

the syntax in the script file is found in the creation of views.

As we explained in Section 4.1.3, CQL includes stream-to-relation operators, which

are used to unblock blocking queries. As the name suggests, a stream is converted

into a relation. Then relation-to-relation operators are executed on the (derived) rela-

tion, with a relation as the result. If desirable, this relation may be transformed back

89

into a stream, using one of the relation-to-stream operators: Istream, Dstream, or

Rstream.

When referring to the different tasks, we use the word “Task” followed by a number.

This number agrees with the paragraph number of the section describing the task e.g.

the task described in Section 5.2.1 is referred to as Task 1 and the task described in

Section 5.2.2 is referred to as Task 2.

5.2.1 What is the average network load measured in bytes per
second?

To calculate bytes per second, we summarise the total length from all headers within

a one-second window. We then calculate the average of this sum. Thus, one may ex-

pect that this solution require a nested aggregation. Nested aggregation is one of the

requirements that were discussed in Section 2.3. However, STREAM does not sup-

port nested aggregation as defined there. Besides, an aggregating operator is blocking

and must therefore be calculated within a window. Unless used in relation to the

GROUP BY clause, the SUM operator in a nested aggregation e.g. AVG(SUM(total

length)), produces one tuple within a window. The average produced by the AVG

operator is then equal to the sum, because the average is calculated over one tuple.

Thus, when using the AVG operator to calculate the average, we first calculate the

sum in a view using a window size of one second. Then, we query this view with a

larger window size to calculate average network load. For statistics, average can be

calculated over a day, or a week. In such cases, and if storage is not a limitation, this

task is probably better-solved offline with the well-established DBMS technology. If

we want to respond as fast as possible to situations in which average grows over a

certain threshold, a smaller window should be used. In such scenarios, a suitable win-

dow size may be five, or ten seconds. In our solution, we use a window size of ten

seconds. Thus, first we create a view that selects bytes per second. This view is que-

ried to calculate average network load over the ten last seconds. To stream the state of

the intermediate relation as the window slides, we encapsulate the view and the final

query by Rstream.

90

Load (bytesPerSec):

RSTREAM(

SELECT SUM(totalLength)

FROM S [RANGE 1 SECOND])

RSTREAM(

SELECT AVG(bytesPerSec)

FROM Load [RANGE 10 SECONDS])

5.2.2 What is the network load measured in packets per minute?

This task requires a similar solution as the previous one. The query solving the task

first creates a view where packets are counted over a one-minute window. Next, this

view is queried in order to calculate the average load. Once more, a suitable window

size when calculating average may be ten seconds.

Load (packetsPerMinute):

RSTREAM(

SELECT COUNT(*)

FROM S [RANGE 1 MINUTE])

RSTREAM(

SELECT AVG(packetsPerMinute)

FROM Load [RANGE 10 SECONDS])

5.2.3 How many packets have been sent during the last five
minutes to certain ports?

In order to solve this task, we first create a relation containing ports of interest. What

ports being of interest may vary, depending on the monitoring application. The query

is an example of a join operation between a stream and a relation. A solution similar

to the one suggested by Plagemann et al. (2004) would in STREAM look like:

91

REGISTER TABLE Services (port integer);

SELECT R.port, COUNT(*)

FROM S [RANGE 5 MINUTES], Services AS R

WHERE S.destPort = R.port

GROUP BY R.port

However, this solution does not work within STREAM. Tests show that it is not pos-

sible to aggregate over joins where the total amount of attributes from the sources is

more than 20. The total number of attributes in the join between S and Services is 30.

S has 29 attributes, and Services has one. Hence, we rewrite the query to solve this

task. In order to reduce the number of attributes, we first create a view, DestPorts,

where only destination port numbers are projected from the stream. This view is not

blocking, and the packets simply stream from the input queue to the output queue.

DestPorts (destPort):

SELECT destPort

FROM S

We use the same definition of Services as identified above. Finally, DestPorts is

joined with Services in order to find the number of packets that have been sent during

the last five minutes to certain ports.

RSTREAM(

SELECT R.port, COUNT(*)

FROM DestPorts [RANGE 5 MINUTES] AS P, Services AS R

WHERE P.destPort = R.port

GROUP BY R.port)

92

5.2.4 How many bytes have been exchanged on each connection
during the last minute?

In the solution proposed by Plagemann et al. (2004), a simple heuristic was employed

in order to define a connection. During a one-minute window, all packets with the

same sender and receiver IP addresses and port numbers belong to the same connec-

tion. Consequently, the query contained the GROUP BY clause followed by the quad-

ruple sourceIP, sourcePort, destIP and destPort as grouping attributes

over a one minute window. However, a TCP connection has two sides, a client, and a

server. The values in the quadruple at one side is opposite on the other side e.g. the

client’s IP address is sourceIP when the client sends packets, and destIP when

the server sends packets. Hence, the solution proposed by Plagemann et al. (2004)

defines a connection as data moving, in one direction from one port to another. In

addition, their solution does not consider that some of the TCP connection initiatives

may not lead to established connections e.g. SYN flood attacks. However, recognis-

ing established connections requires a series of sub-queries, and this feature was not

supported in the TelegraphCQ prototype.

We propose a solution, which takes into account that connections are established

through the accomplishment of a three-way-handshake (Postel 1981b; Tanenbaum

2003). In addition, the solution defines a connection to contain data flowing in both

directions between a pair of port numbers, represented by the quadruple sourceIP,

sourcePort, destIP, and destPort. Since a connection has different represen-

tations, depending on which direction the data flows, we choose to represent a con-

nection by values collected at the client’s side.

As mentioned above, a connection is established through a three-way handshake as

illustrated in Figure 16 below. The client opens the connection through an active

open, while the server opens it through a passive open. The client sends a SYN mes-

sage i.e. a message with the SYN flag set. This message has the sequence number x.

Upon receiving this message the server responds with a SYN message containing

sequence number y, and an ACK message containing acknowledgment number x +

1. However, as an optimising effort these two messages are combined in one, a

SYN/ACK message i.e. a message with both the SYN flag and the ACK flag set. Fi-

nally, upon receiving the SYN/ACK message, the server sends an ACK message i.e.

a message with the ACK flag set. This message has the sequence number x + 1 and

the acknowledgement number y + 1.

Figure 16. TCP connection establishment

To identify connections, we first create two different views where SYN, and

SYN/ACK, messages in S are identified. Based on equality of IP addresses, port

numbers, sequence numbers, and acknowledgement numbers, these views are joined

with S in order to identify ACK messages corresponding to the third step in the hand-

shake. This information is collected in a view, Conn, where each tuple represent an

established connection. The data flow in our solution is portrayed in Figure 17 below.

Rectangular boxes represent views. The lowest rectangular box, with rounded cor-

ners, represents the final query solving this task.

93

Figure 17. Data Flow for Task 4

The join in Conn is unblocked using a windowing operator. The size of this window

decides the time available for connections to be established. For each step in the con-

nection establishment, retransmissions may be experienced due to TCP congestion

control mechanisms (Tanenbaum 2003). A packet is retransmitted when it is not ac-

knowledged within some retransmission timeout (RTO) interval (Postel 1981b). Ac-

curate dynamic determination of an appropriate RTO is essential to TCP perform-

ance. RTO is determined by estimating the mean and variance of the measured round-

trip time (RTT) i.e. the time interval between sending a packet and receiving an ac-

knowledgment for it (Jacobson et al. 1992). In Linux, tcp_syn_retries (found

in /proc/sys/net/ipv4/) holds the number of times initial SYNs are retransmitted. The

default value of this variable is five, which corresponds to approximately 180 sec-

onds. For SYN/ACKs the default value is also five, corresponding to another 180

seconds (Postel 1981b). Hence, as a worst-case scenario, it may take as much as 360

94

95

seconds before the client receives the SYN/ACK message. The third step in the con-

nection establishment may also experience retransmissions. The maximum number of

retransmissions is in Linux found in tcp_retries2 (found in /proc/sys/net/ipv4/).

The default value is 15, which corresponds to a duration of approximately 13 to 30

minutes, depending on the retransmission timeout (Postel 1981b). Implementations of

retransmission numbers may vary among different operating systems. In addition,

RTOs are calculated dynamically. Consequently, it is difficult to give a worst-case

estimate of how much time is required to establish connections. Hence, it is difficult

to decide the window size in Conn.

In addition to deciding the time available for a connection to establish, the window

size in Conn furthermore decides how long a connection stays alive. Figure 17 illus-

trates that Conn is joined with S in order to calculate the load for each of the connec-

tion ends. CPayload selects, for each connection, all packets sent from the client,

while SPayload selects, for each connection, all packets sent from the server. It is no

longer possible to identify packets belonging to a connection when that connection

slides out of the window in Conn.

Depending on which application requesting a connection, connection duration may

vary significantly e.g. loading a Web page versus transferring a large file. This leads

to another problem with Conn’s window size. For example, if we use a large window

the load belonging to long-lasting connections are recognised for a longer period.

However, this may result in several short-lasting connection, using the same quadru-

ple, being counted as one. To solve the problem we may include recognition of con-

nection closing, and the EXCEPT operator may be used to subtract the closed connec-

tions from established connections to recognised connections still staying alive. How-

ever, recognising closed connections is more complicated than recognising estab-

lished connections, since the closing procedure includes more states. To complicate

matters further, connections may be closed without accomplishing the steps involved

in proper TCP connection termination. Hence, for simplicity we decide to merely in-

clude identification of connection establishment in our solution.

96

In our analysis, the window size is not of crucial importance. Our concern is that the

query is syntactically and semantically correct, and that it produces the result we may

expect. Thus, we use a three-minute window in Conn when presenting the solution.

Independent of this window size, there are several limitations to our solution to Task

4. We present these limitations in the context of the three-minute window.

• All connections are considered to be alive for three minutes, regardless of

when they actually are closed.

• Connections using more than three minutes to establish are not considered.

• If multiple connections are established over the same IP addresses, and port

numbers, within the three minutes window, these connections are counted as

one.

• The three-minute window starts based on the arrival time of the SYN packet

in stream S, regardless of how much time is employed in order to accomplish

the two following steps.

Our solution starts with the creation of the view Syn. This view contains packets

where the SYN flag is set, and where the ACK flag is not set. These packets corre-

spond to the first step in the handshake.

Syn (sourceIP, destIP, sourcePort, destPort, seqNum,
ackNum):

SELECT sourceIP, destIP, sourcePort, destPort,
seqNum, ackNum

FROM S

WHERE SYN = “1” AND ACK = “0”

We also create a view Synack, where packets corresponding to the second step are

selected. In these packets, both the SYN flag and the ACK flag are set.

Synack (sourceIP, destIP, sourcePort, destPort,
seqNum, ackNum):

97

SELECT sourceIP, destIP, sourcePort, destPort,
seqNum, ackNum

FROM S

WHERE SYN = “1” AND ACK = “1”

The next step is to join Syn, Synack, and S, in the view Conn. This view contains

connections where all steps in the handshake are accomplished. We use the distinct

operator to exclude duplicates that would appear if packets in the connection estab-

lishment were retransmitted.

Conn (sourceIP, destIP, sourcePort, destPort):

SELECT DISTINCT SYN.sourceIP, SYN.destIP,
SYN.sourcePort, SYN.destPort

FROM Syn [RANGE 3 MINUTES], Synack [RANGE 3
MINUTES], S [RANGE 3 MINUTES]

WHERE Syn.sourceIP = Synack.destIP AND Syn.sourceIP
= S.sourceIP AND Syn.destIP = Synack.sourceIP AND
Syn.destIP = S.destIP AND Syn.sourcePort =
Synack.destPort AND Syn.sourcePort = S.sourcePort
AND Syn.destPort = Synack.sourcePort AND
Syn.destPort = S.destPort AND Syn.seqNum + 1 =
S.seqNum AND Synack.seqNum + 1 = S.ackNum

Notice that Conn is an intermediate relation. The content of Conn is not streamed as

the window slides. It contains the IP addresses and port numbers from the client’s

side of an established connection. The next step is to join Conn with S to extract all

packets in S, belonging to established connections in Conn. Since the solution pro-

posed by Plagemann et al. (2004) only consider data bytes, a similar approach is

taken here. To calculate the number of data bytes, we subtract header bytes from total

number of bytes. Since IP- and TCP- header length are given in 32-bits words, we

first multiply these header lengths by four to get header length in bytes. We use a

one-minute window to unblock S. Consequently, we get packets received the last

minute belonging to connections with a lifetime of three minutes. Two views are cre-

ated, one for packets belonging to the client, and one for packets belonging to the

server, respectively. Note that we in Spayload select the attributes in a different order.

This is to represent the server’s side by the client’s representation.

98

Cpayload (sourceIP, sourcePort, destIP, destPort,
dataBytes):

SELECT S.sourceIP, S.sourcePort, S.destIP,
S.destPort, S.totalLength – ((S.ip_headerLength +
S.tcp_headerLength) * 4)

FROM Conn, S [RANGE 1 MINUTE]

WHERE Conn.sourceIP = S.sourceIP AND Conn.destIP =
S.destIP AND Conn.sourcePort = S.sourcePort AND
Conn.destPort = S.destPort

Spayload (sourceIP, sourcePort, destIP, destPort,
dataBytes):

SELECT S.destIP, S.destPort, S.sourceIP,
S.sourcePort, S.totalLength – ((S.ip_headerLength +
S.tcp_headerLength) * 4)

FROM Conn, S [RANGE 1 MINUTE]

WHERE Conn.sourceIP = S.destIP AND Conn.destIP =
S.sourceIP AND Conn.sourcePort = S.destPort AND
Conn.destPort = S.sourcePort

We use two more views to summarise the bytes belonging to each side of the connec-

tion, because STREAM does not support aggregations over arithmetic expressions..

CSUM represents the client’s side, while SSUM represents the server’s side.

CSUM (sourceIP, destIP, sourcePort, destPort,
dataBytes):

SELECT sourceIP, destIP, sourcePort, destPort,
SUM(dataBytes)

FROM Ipayload

GROUP BY sourceIP, destIP, sourcePort, destPort

SSUM (sourceIP, destIP, sourcePort, destPort,
dataBytes):

SELECT sourceIP, destIP, sourcePort, destPort,
SUM(dataBytes)

FROM Spayload

GROUP BY sourceIP, destIP, sourcePort, destPort

99

Finally, these views are joined to find how many bytes that have been exchanged on

each connection during the last minute. As the window slides every second, we are

interested in the sum of data bytes for all connections present in the window at that

time instant, and not only the connections that include updates. Consequently, we use

Rstream instead of Istream in the final query.

RSTREAM(

SELECT C.sourceIP, C.destIP, C.sourcePort,
C.destPort, C.dataBytes + S.dataBytes

FROM CSUM AS C, SSUM AS S

WHERE I.sourceIP = S.sourceIP AND I.destIP =
S.destIP AND I.sourcePort = S.sourcePort AND
I.destPort = S.destPort)

5.2.5 How many bytes are exchanged over the different
connections during each week?

This task is rather similar to the previous one, except that it implies a window size of

one week rather than one minute. This tasks is probably more suitable for statistics

than for monitorin, because of the large window size. Hence, it may be solved better

offline in a DBMS, than online in a DSMS. However, the task raises interesting chal-

lenges within the DSMS technology. As we mentioned in 5.2.4, the TelegraphCQ

prototype used by Plagemann et al. (2004) did not support sub-queries. Another defi-

ciency with that prototype was revealed when trying to solve this task. The window

size must be smaller than one week, because all incoming data is kept in main mem-

ory until the entire window has been computed. With sliding window, each packet

would contribute several times to intermediate results when the inter arrival time of

packets is smaller than the window size. It is necessary to remove this redundant in-

formation to compute a correct result. To calculate absolute statistics, tumbling win-

dows are needed (Plagemann et al. 2004). Tumbling windows were neither supported

in the TelegraphCQ prototype, nor is it supported within STREAM. Consequently,

this task is not possible to solve online with continuous queries in STREAM. In the

100

latest TelegraphCQ prototype, there is support for both sub-queries and tumbling

windows.

5.2.6 How much load on the university backbone have each
department used within the past five minutes?

To solve this task, stream S must contain all packets from the university backbone. A

stored relation, containing IP addresses belonging to departments, is joined with S.

The content of this relation depends on the distribution of IP addresses in the univer-

sity backbone. One subnet may contain several departments, with no ordered distribu-

tion of addresses. Alternatively, all addresses belonging to one department are found

in a given range e.g. with each department having its own subnet. The University of

Oslo’s backbone has several departments on each subnet, with no ordered distribution

of addresses within a subnet. Consequently, the stored relation must contain all IP

addresses used by each department including the name of the department. This solu-

tion is similar to the one in (Plagemann et al. 2004). First, we define the relation:

REGISTER TABLE Departments (name char(30), ip_addr
char(16))

This relation is joined with S, based on equality of IP addresses. For each department,

we summarise the number of bytes. Similar to Section 5.2.4, we are interested in data

bytes. Consequently, header bytes are multiplied by four and subtracted from the total

number of bytes. However, the STREAM prototype does not support aggregation

over arithmetic expressions. Consequently, we first create a view, projecting source

IP addresses and the arithmetic expression calculating data bytes. Finally, we join this

view with the Departments relation in order to summarise bytes belonging to each

department. Each second, as the window slides, the output should contain the number

of bytes for all departments having traffic the past five minutes. Consequently, we

encapsulate the query with Rstream.

Payload(sourceIP, dataBytes):

SELECT sourceIP, totalLength – ((ip_headerLength +
tcp_headerLength) * 4)

101

FROM S

RSTREAM(

SELECT D.name, SUM(S.dataBytes)

FROM Payload [RANGE 5 MINUTES] AS P, Departments AS
D

WHERE D.ip_addr = P.sourceIP

GROUP BY D.name)

5.2.7 What is the load on the network measured in connections per
minute?

First, we recognise connections using the same approach as proposed in 5.2.4, where

a connection is recognised through the views Syn, Synack, and Conn. We now count

the connections per minute to solve the task. However, this is not as straightforward

as it may initially appear. It is not possible to query Conn using windows, because it

is an intermediate relation. In addition, if we count connections from Conn, we get

the number of connections per three minutes. Thus, it may be tempting to use one of

the relation-to-stream operators over Conn, and then query this stream using a one-

minute window. However, such a query would not produce a correct result. As an

example, consider a stream that only contains one connection. If we use Rstream,

the connection is present in the stream every second. When counting connections

from this stream over a one-minute window, the result would be 60. An obvious solu-

tion to this problem would be to use the DISTINCT operator, as in

COUNT(DISTINCT *). However, this solution is not supported within STREAM.

If we use Istream, a connection is only present in the stream at the time when it is

registered in Conn. When counting connections from this stream over a one-minute

window, the result would be one. This is a correct result, but the problem is that this

result would only be produced for one minute, because this solution would reduce a

connection’s lifetime from three minutes to one minute. In the solution we present,

we do not stream the content of Conn. Instead, we unblock S using a one-minute win-

dow, and join S with Conn. The content of this view, which we call ConnMinute, is

102

connections with a lifetime of three minutes that have exchanged packets during the

last minute. It may be regarded as a weak point that the connections must transmit

data during the last minute to contribute to the count. Nevertheless, a strong point

may be that connections with an actual lifetime less than one minute only contribute

to the count for one minute.

ConnMinute (sourcePort, destPort, sourceIP, destIP):

SELECT DISTINCT S.sourcePort, S.destPort,
S.sourceIP, S.destIP

FROM Conn, S [Range 1 minutes]

WHERE Conn.sourceIP = S.sourceIP AND Conn.destIP =
S.destIP AND Conn.sourcePort = S.sourcePort AND
Conn.destPort = S.destPort;

The final query counts the number of connections present in ConnMinute. We use

Rstream to get the connections per minute each second.

RSTREAM(

SELECT COUNT(*)

FROM ConnMinute)

5.2.8 How often are HTTP and FTP ports contacted?

HTTP and FTP are application layer protocols and they both use TCP as transport

protocol. FTP is divided into two modes: active and passive. We do not discuss the

details of the FTP protocol and the difference of active FTP and passive FTP. How-

ever, in both modes a client initiates the FTP session by contacting the FTP port at a

server. We define “contacting” as an attempt to open a connection i.e. the SYN bit is

set and the ACK bit is not set. HTTP connections are initiated through port number

80, while FTP connections are initiated through port number 21. We define “how

often” as the number of packets contacting HTTP and FTP ports during the past sec-

ond. The following query should solve this task.

RSTREAM(

SELECT COUNT(*)

103

FROM S [RANGE 1 SECOND]

WHERE (destPort = 80 OR destPort = 21) AND SYN = “1”
AND ACK = “0”

GROUP BY destPort)

However, the current STREAM prototype does not support the OR operator. Conse-

quently, another approach is necessary. We start by creating one view for all packets

contacting http ports, and one view for packets contacting ftp ports.

HTTP (destPort):

SELECT destPort

FROM S

WHERE destPort = 80 AND SYN = “1” AND ACK = “0”

FTP (destPort):

SELECT destPort

FROM S

WHERE destPort = 21 AND SYN = “1” AND ACK = “0”

Next, we create another view, Contacts, where we calculate the union of the HTTP

and FTP views.

Contacts (destPort)

HTTP UNION FTP

In the final query, we count the number of occurrences of each port number over a

one-second window.

RSTREAM(

SELECT destPort, COUNT(*)

FROM Contacts [RANGE 1 SECOND]

GROUP BY destPort)

104

5.2.9 During the past minute, which connection contains most
packets and how many packets does it contain?

Yet again we use the same approach as proposed in 5.2.4, where a connection is rec-

ognised through the views Syn, Synack, and Conn. Next, we create two views where

we collect all packets sent during the past minute that belong to the different connec-

tions in Conn. Cpackets collects all packets sent from the client, while Spackets col-

lects all packets sent from the server. Notice that we have turned around the order of

the connection attributes to get a port number as the first attribute. The reason for this

is that the count operator only manages to count tuples with an attribute of data type

integer as the first attribute. When projecting attributes in Spackets, we also turn

around the order of port numbers and IP addresses. This is to represent the server side

of the connection in a similar manner as the client side.

Cpackets (sourcePort, destPort, sourceIP, destIP):

SELECT S.sourcePort, S.destPort, S.sourceIP,
S.destIP

FROM Conn, S [Range 1 minutes]

WHERE Conn.sourceIP = S.sourceIP AND Conn.destIP =
S.destIP AND Conn.sourcePort = S.sourcePort AND
Conn.destPort = S.destPort

Spackets (sourcePort, destPort, sourceIP, destIP):

SELECT S.destPort, S.sourcePort, S.destIP,
S.sourceIP

FROM Conn, S [Range 1 minutes]

WHERE Conn.sourceIP = S.destIP AND Conn.destIP =
S.sourceIP AND Conn.sourcePort = S.destPort AND
Conn.destPort = S.sourcePort

In the two previous views, it should be possible to group by connection and count the

number of packets belonging to each group. However, STREAM does not accept this

solution, and we are unable to explain why. The only error message we receive is

“Error: Unknown error: -1.” Consequently, we create two more views, CC and SC.

105

These views query Cpackets and Spackets, respectively, in order to count the number

of packets at each side of the connections.

CC (sourceIP, destIP, sourcePort, destPort,
pkCount):

SELECT sourceIP, destIP, sourcePort, destPort,
COUNT(*)

FROM Cpackets

GROUP BY sourceIP, destIP, sourcePort, destPort

SC (sourceIP, destIP, sourcePort, destPort,
pkCount):

SELECT sourceIP, destIP, sourcePort, destPort,
COUNT(*)

FROM Spackets

GROUP BY sourceIP, destIP, sourcePort, destPort

Next, we create another view, Connpackets, where we join CC and SC to summarise

their count attributes. The two previous views do not contain any duplicates, because

they include the GROUP BY clause. Thus, the join in Connpackets is a one-to-one

join. Consequently, there are no duplicates in Connpackets.

Connpackets (sourceIP, destIP, sourcePort, destPort,
packetCount):

SELECT CC.sourceIP, CC.destIP, CC.sourcePort,
CC.destPort, CC.pkCount + SC.pkCount

FROM CC, SC

WHERE CC.sourceIP = SC.sourceIP AND CC.destIP =
SC.destIP AND CC.sourcePort = SC.sourcePort AND
CC.destPort = SC.destPort

In the next view, we query Connpackets to find the maximum number of packets dur-

ing the last minute. We name the view Maxpackets.

MaxPackets (maxPacket integer):

SELECT MAX(packetCount)

FROM Connpackets

106

Next, we join Maxpackets with Connpackets based on equality of the number of

packets. We select those connections having their total number of packets equal to

the maximum number of packets. If several connections have equally many packets

as the maximum, all these connections are selected.

RSTREAM(

SELECT C.sourceIP, C.destIP, C.sourcePort,
C.destPort, M.maxPacket

FROM Connpackets as C, MaxPackets as M

WHERE C.packetCount = M.maxPacket)

5.2.10 How long does a connection last?

The time at which a connection is established, and the time at which the connection is

terminated, must be known in order to calculate the connection duration. Thus, con-

nection duration may be defined as the difference in time between these two time-

stamps. Unfortunately, timestamps are not included among the attributes in S, nor

does STREAM add any attribute, containing implicit timestamp, when tuples arrive

in the system. A timestamp is added, but this is a timestamp used internally by the

system, and not an attribute that may be queried. Consequently, queries discovering

connection duration is not possible within the current STREAM prototype. However,

if timestamps were included in S, we still have to recognise both connection estab-

lishment and connection termination. In 5.2.4, we discussed the complexity of con-

nection recognition and termination.

5.2.11 For each pair of source and destination IP addresses, how
many percent of the total load has it occupied during the past five
minutes?

We still consider input stream S, representing data from the IP and IP layers, though

we in this task only consider data from the IP layer. We define “load” to include the

IP header i.e. we apply the total length field in the IP header. In our solution, we start

107

by creating two views, one finding the total load of the network, and one finding the

load for each pair of IP addresses, respectively.

TotalLoad (TLoad integer):

RSTREAM(

SELECT SUM(totalLength)

FROM S [Range 5 minutes])

FlowLoad (sourceIP, destIP, FLoad):

RSTREAM(

SELECT sourceIP, destIP, SUM(totalLength)

FROM S [Range 5 minutes]

GROUP BY sourceIP, destIP)

The final query joins the two previous views in order to calculate how many percent

of the total load each pair of source and destination IP addresses have occupied dur-

ing the past five minutes. We use the window size NOW to unblock both streams. This

is equal to RANGE 1 SECOND, because windows in STREAM always slide each

second.

RSTREAM(

SELECT F.sourceIP, F.destIP, (F.FLoad*100)/T.TLoad

FROM FlowLoad [NOW] AS F, TotalLoad [NOW] AS T)

5.2.12 Identify TCP SYN packets for which a SYN/ACK was sent,
but no ACK was received within a specified bound of two minutes
on the TCP handshake completion latency.

This task is fetched from the STREAM Query Repository (Anonymous 2002). The

solution proposed there, assumes implementation of user defined methods, sub-

queries in the WHERE clause, the EXISTS operator, and negation e.g. NOT EXISTS.

These features are not implemented in STREAM-0.6.0. Hence, we make another ap-

proach to solve this task. We start by creating two views Syn and Synack, which rec-

108

ognise the first two steps in the three-way handshake in TCP connection establish-

ment. These views are similar to the ones we described in 5.2.4. Next, we create a

third view, Ack, by joining Syn and Synack. Both streams are unblocked with a 120-

seconds window. The tuples in ack represent the client’s side of connections that

have fulfilled the first two steps in the three-way-handshake. We use the relation-to-

stream operator Dstream to stream tuples as they are deleted from the derived rela-

tion. The streamed tuples represent SYNs and SYNACKs that are two minutes old.

Ack (sourceIP char(16), destIP char(16), sourcePort
integer, destPort integer, seqNum integer, ackCheck
integer):

DSTREAM(

SELECT DISTINCT Syn.sourceIP, Syn.destIP,
Syn.sourcePort, Syn.destPort, Syn.seqNum,
Synack.seqNum from Syn [Range 120 seconds], Synack
[Range 120 seconds]

WHERE Syn.sourceIP = Synack.destIP and Syn.destIP =
Synack.sourceIP and Syn.sourcePort = Synack.destPort
and Syn.destPort = Synack.sourcePort and Syn.seqNum
+ 1 = Synack.ackNum)

Next, we use a similar approach as in 5.2.4 to create the view Conn, where all estab-

lished connections are collected. However, in this solution we join the view Ack with

S. Similar to section 5.2.4, we search S for packets belonging to the third step in the

TCP connection establishment. Note that we use a window size of 121 seconds to

unblock S in Conn. The reason for this is that we use Dstream and a window size of

120 seconds in Ack. This means that Ack produces results after 120 seconds have

passed. At time t, Ack produces tuples with timestamp t, while S [Range n seconds]

produces tuples with timestamps in the range t – n to t – 1. As described in Section

4.3.2, STREAM requires that all queues enforce non-decreasing timestamps. The join

does not know that it has received all tuples from S with timestamp t – 1 before it

sees a tuple with timestamp t. This happens at time t + 1. However, Ack streams tu-

ples with timestamp t + 1 at time t + 1. Thus, the join operator can never join tuples

from the two streams if we use a window size of 120 seconds to unblock S.

109

Conn (sourceIP char(16), destIP char(16), sourcePort
integer, destPort integer, seqNum integer, ackNum
integer):

Istream (

SELECT DISTINCT Ack.sourceIP, Ack.destIP,
Ack.sourcePort, Ack.destPort, Ack.seqNum,
Ack.ackCheck

FROM Ack [Now], S [Range 121 seconds]

WHERE Ack.sourceIP = S.sourceIP and Ack.destIP =
S.destIP and Ack.sourcePort = S.sourcePort and
Ack.destPort = S.destPort and Ack.seqNum + 1 =
S.seqNum and Ack.ackCheck + 1 = S.ackNum)

In Ack, we have attributes from SYN packets where the corresponding SYNACK

packet is sent. In Conn, we have established connections. Thus, to find SYN packets,

where no acknowledgement was received within a specified bound of two minutes on

the TCP handshake completion latency, we calculate the difference between Ack and

Conn. In the final query, we use the EXCEPT operator to calculate this difference.

ISTREAM (Ack EXCEPT Conn)

The solution in the STREAM Query Repository (Anonymous 2002) projects all at-

tributes belonging to a packet. To accomplish this, we could create a view of the final

query. Then we would join this view with S to identify the SYN packets and extract

all the attributes. However, STREAM does not support this solution, because it con-

flicts with a constant, named MAX_INSTR, in the source code. We may easily change

this constant and recompile STREAM. However, we do not change the source code,

because we treat STREAM as a black box.

110

111

6. System Implementation

In this section, we implement the experiment setup for the performance evaluation.

We first add functionality to STREAM to make it possible to receive data from

online sources, because this is not implemented in the current prototype. In addition,

we implement a packet capturing system to capture packets from the network. Next,

we present the experiment architecture along with descriptions of computers, pro-

grams, and system monitors used within the experiment. We also perform some pre-

liminary tests to investigate the capacity and accuracy of our system, the overhead

introduced by other processes than STREAM, and the packet sizes produced by the

traffic generator.

Recall from Section 2.2.1 that traffic measurements are divided into two different

techniques; passive and active measurements. The experiment setup we implement

simply observes and records the traffic as it passes by. Consequently, we use passive

measurement technique in our experiments.

6.1 Live Data Source

STREAM provides three classes: Server, TableSource, and QueryOutput, which con-

stitute its external interface. The main method in TableSource is getNext(), which

the server uses to pull the next tuple of the stream or relation whenever it desires. In

the generic client, gen_client, there are two classes implementing the TableSource

interface; RelationSource and StreamSource. As the names suggest, their

getNext() methods read data belonging to relations and streams, respectively.

However, both methods are implemented to only read data from stored files, and do

112

not support reading data from live sources. Consequently, we implement a third class,

SocketSource, to allow reading of data from live streams. As this name suggests, the

getNext() method reads data from a socket. To avoid packet loss due to a full

socket buffer, we choose to receive data over a TCP connection, which guarantees

correct and orderly delivery of data across the network. Moreover, compared to other

sources of data e.g. a Linux pipe, a TCP connection may receive data from a distant

source. Although we implement SocketSource to allow only one TCP connection, it

can easily be expanded to read data from many streams, each arriving over one TCP

connection. This allows distributed data collection, and introduces new applications

such as comparing traffic from distant locations in the network. As described in Sec-

tion 4.4.3, a source is required when defining a table. When the source is a file, the

location of the file is given. To read data from the socket, the word “Socket” is given

as source. As described in Section 4.4.4, the first line in the table source file repre-

sents data types according to the table’s schema. Thus, such a schema-describing line

is sent to STREAM prior to sending any tuples.

In Section 5, we designed queries to solve network traffic monitoring tasks. The que-

ries are posed over an input stream where a tuple consists of TCP and IP header field

values. Thus, in addition to implementing streaming of data to STREAM over a TCP

connection, we also implement a system that captures packets from the NIC. In turn,

the packet headers are sent over the TCP connection to STREAM for further process-

ing.

6.2 Packet Capturing

Many packet-capturing tools are available as freeware. One well-known packet-

capturing tool is Tcpdump. Tcpdump captures packets and writes their content to

screen according to a rich variety of options. Tcpdump does not send this output over

a TCP connection, nor does it produce packet header fields as tuples of comma-

separated values (CSV), which is the representation used in STREAM. There are sev-

eral solutions to these problems:

113

1. We may use Tcpdump as released, writing packet header fields in a hexa-

decimal notion (optional) to screen. We then implement a filter that reads

from standard in, and transforms the hexadecimal notion into CSV tuples. The

filter then sends these tuples to STREAM. A Linux pipe is used between

Tcpdump and the filter.

2. We may add extra functionality to the current Tcpdump implementation.

Tcpdump then captures packets, transforms header fields into CSV tuples, and

sends these tuples to STREAM.

3. We may implement a program from scratch in order to capture packets from

the NIC, extract header fields from the raw data, transform the header fields

into CSV tuples, and send these tuples to STREAM.

The first solution introduces a problem with determinism. We are interested in meas-

uring the performance of STREAM, and not how a Linux pipe performs. If the TCP

buffer in STREAM gets full, TCP congestion control mechanisms slows down the

rate at which the filter sends packets. In turn, this leads to more data in the pipe be-

tween Tcpdump and the filter. If the pipe consumes to much memory resources, data

in this pipe is written to disk. This slows down reading and writing in the pipe. In

turn, this may force the operating system to schedule more processing time to other

processes than STREAM. Consequently, we prefer one of the two last solutions.

Tcpdump is a relatively large program with many functionalities that mostly are un-

necessary for our purpose. Consequently, we decide to implement a packet capturing

and filtering program that are dedicated to meet our requirements. We implement this

program from scratch and make it Fyaf. In Fyaf, we also include some monitoring

applicability that we use in our performance evaluation. Fyaf will be further de-

scribed in Section 6.3.3.

114

6.3 Experiment setup

Prior to completing experiments used to measure STREAM’s performance, we de-

scribe the architecture of the setup for these experiments. In addition, we describe the

computers and the software that are included in the experiments.

6.3.1 Experiment architecture

In Section 5.2, we described several tasks that recognise TCP connections. We crate

an experiment setup that may generate traffic over several TCP connections, because

of these tasks. In addition, we want an experiment setup that is both as close to the

real world as possible and that offers the ability to recreate the workload from execu-

tion to execution i.e. it is repeatable. The architecture of our experiment setup is illus-

trated in Figure 18 below. It consists of two computers, which are referred to as com-

puter A and B. These computers are connected to one another via an Ethernet cross-

over cable. Up to n instances of the traffic generator TG run on each computer, one

instance on A communicating over a TCP connection with one instance on B. TG

allocate a unique socket number for each connection. Consequently, we have the pos-

sibility of creating distinct TCP connections based on the quadruple described in Sec-

tion 5.2.4. The TG instances on A are the client sides of the connections, while the

TG instances on B are the server sides. On computer B, packets are captured from the

NIC, and delivered to Fyaf. Further, Fyaf transforms TCP/IP header values into CSV

tuples and sends these tuples over a TCP connection to STREAM.

Figure 18. Architecture of experiment setup

6.3.2 Computers

As illustrated in Figure 18, we use for our experiments two different computers, com-

puter A and B. These computers have equal specifications. They both run a SuSE

Linux 9.2 with a 2.6 kernel, and have a memory size of 1.00 GB. The computers have

115

116

two processors each, all of which are an Intel® Pentium® 4 CPU 3.00 GHz with a

cache size of 1024 KB. Both computers have Gigabit Ethernet cards.

6.3.3 Programs

The experiment setups make use of several programs to generate traffic, capture

packets, filter packets, and to automate the execution of our experiments. In this sec-

tion, we give a short description of these programs.

TG
There are many traffic-generating tools available as freeware (e.g. Iperf and TG).

When testing different tools we find that TG is easy to understand, and it has a simple

user interface that is uncomplicated to use. Consequently, we choose TG as our traf-

fic-generating tool.

TG is developed at SRI International, and is implemented to characterise the per-

formance of packet-switched network communication protocols. The TG program

generates and receives one-way packet traffic streams transmitted from the UNIX

user level process between traffic source and traffic sink nodes in a network

(McKenney et al. 2002). The traffic is described in terms of inter arrival times and

packet lengths. TG allows packets to be sent from one client to one server. To send

data over multiple connections, we run multiple instances of TG. When sending TCP

packets, TG sends 12 bytes in the TCP option field, which results in a TCP header

size of 32 bytes. The TG program records all notable events in a log file for post-test

analysis. With the exception of the header descriptor, the TG log file is encoded in

binary form to conserve storage space.

Fyaf
We implement Fyaf to use the Pcap library in order to capture packets from the NIC.

This library is also used by Tcpdump. In addition to capturing packets, transforming

117

them to CSV tuples, and sending them to STREAM, Fyaf also writes monitoring in-

formation to files:

• slog.log logs the number of packets received on the NIC and the number

of packets dropped due to system resources. This information is provided by

Pcap. In addition, we log the number of packets that is captured by Fyaf i.e.

the number of packets received on the NIC that is not dropped.

• f2.log logs the traffic duration i.e. the number of seconds at which Fyaf has

registered traffic.

Fyaf is mainly implemented by Jarle Søberg, and a thorough description of the pro-

gram is provided by Søberg (2006).

Scripts
In order to automate the execution of the different experiments, we introduce some

scripts that accomplish this task.

• Computer A

o experiment_server.pl establishes a connection with experi-

ment_client.pl on Computer B. This connection is used to ex-

change commands and synchronise the traffic generation. The script

uses the commands received by experiment_client.pl to exe-

cute other scripts.

o change_template.pl is executed by one of the commands re-

ceived by experiment_client.pl. This script uses the different

parameters sent from experiment_client.pl to calculate differ-

ent values that are used to characterise the TG stream. In addition, it

calls create_clients.sh with these values.

o create_clients.sh creates files that describe the TG clients.

These files contain information such as packet size.

118

o tg_client_run.pl is executed by one of the commands received

by experiment_client.pl. This script starts the number of TG

clients that are used in the experiment.

• Computer B

o sscript.pl contains information of the experiments we perform.

Examples of such information are what experiments are to be executed,

how many connections that should generate traffic, which network load

to use, and how many times to perform the experiment.

o super_script_2.pl is called by sscript.pl. It iterates over

the number of executions. For each iteration, the script starts and stops

STREAM, calls experiment_client.pl, and copies all necessary

files to the folder for this iteration after it is finished.

o experiment_client.pl is called by super_script_2.pl.

This script starts Fyaf, TG's packet transfer, and the system monitors. In

addition, it calls create_servers.sh and tg_server_run.pl.

o create_servers.sh is called by experiment_client.pl. It

creates files that describe the TG servers. These files contain informa-

tion such as packet size.

o tg_server_run.pl is called by experiment_client.pl. It

starts the number of TG servers that are used in the experiment.

System Monitors
• Top allows us to view the process table in order of CPU or memory usage, by

user, and at varying refresh rates. It is useful for viewing real-time process be-

haviour.

• Sar produces system utilisation reports based on the data collected by Sadc,

which collects system utilisation data and writes it to a file for later analysis.

119

• Vmstat produces an overview of process, memory, swap, I/O, system, and

CPU activity.

6.4 Preliminary Tests

The architecture of the experiment setup in Figure 18 illustrates that one instance of

TG is running on computer B for each TCP connection between computer A and

computer B. In addition, Fyaf, scripts, and system monitors are running on this com-

puter. Prior to introducing the performance evaluation, we perform some preliminary

tests on our experiment setup. The first test investigates whether TG produces the

requested network load. The second test investigates whether TG produces packets

with the requested packet size. The third test investigates the capacity of Fyaf. The

fourth test investigates whether Fyaf and STREAM are accurate. Finally, the fifth test

investigates whether the scripts and monitors introduce any significant consumption

of system resources.

6.4.1 Network load

To be able to include network load as a factor in our performance evaluation, we per-

form a small test where we request TG to generate traffic and use Sar to see how well

it has been done. Sar reports how many bytes are received on the NIC. In this test, we

use the experiment setup described in Section 6.3. STREAM processes the query

from Task 1 under varying network load. The network load that is registered on the

NIC is portrayed in Figure 19 below. Each curve represents a requested network load,

and illustrates the actual network load measured on B. Figure 19 shows that the net-

work load is very much as we request up to 10 Mb/s, and that it produces 1 Mb/s or 2

Mb/s less when requesting 30 Mb/s and 50 Mb/s.

Figure 19. Actual network load produced by TG.

In our experiment setup, we capture packets on Computer B. On the NIC, there are

packets sent from A to B, but also packets sent from B to A. Packets sent in both di-

rections are captured. However, there are only acknowledgements sent from B to A,

because the TG client generates the actual traffic. Some of our network-monitoring

queries produce an answer that is composed by both the original packets and their

acknowledgements, because they query the total load on the network, they. When we

calculate the accuracy of the query answers, we use the requested network load as an

expected answer. Consequently, we investigate how many percent of the total load

that is composed by acknowledgments, because the network load used as factor only

represent traffic in one direction. We perform this test over the same Sar files as we

used to generate Figure 19. The result from this test is illustrated in Figure 20 below.

We see that acknowledgements constitute approximately 6.3 % of the total load at 1

Mb/s, and that the percentage decrease as the network load increase.

120

Figure 20. Percentage of total load introduced by acknowledgements

6.4.2 Packet Size

To confirm accuracy in queries counting packets we may use the network load and

the packet size to calculate an expected number of packets per second. We instruct

TG to send packets of a given size and at a given inter-arrival time. Together these

parameters decide the network load. However, when investigating packets received

on the NIC, we find that not all packets have the requested size. If we request small

packets to be sent at a given network load, and large packets are sent instead, this

may have great impact on the number of packets per second. Consequently, we per-

form a small test to find the average packet size at different network loads. We run

TG and Fyaf, but instruct Fyaf to write the tuples to file. For each network load, we

then insert the tuples into a PostgreSQL relation, which we query to obtain the aver-

age packet size. We use a small collection of network loads and only one run for

121

each. The runs have a duration of 15 minutes, and a requested segment size of 576

bytes, which does not include TCP and IP headers. When including TCP and IP head-

ers, the packet size should be 628 bytes. The average packet sizes of the packets sent

by TG at different network loads are presented in Figure 21 below. The mechanisms

attached to TCP include fragmenting segments in order to send as large packets as

possible. This is to reduce the overhead on the network introduced by packet headers.

Thus, TG probably sends segments of 576 bytes to the TCP layer, which handles

these packets, as it desires. From Figure 21, we see that as the network load increase,

the gap between the requested packet size and the average packet size also increases.

Figure 21. Average packet size produced by TG

122

123

6.4.3 Fyaf Capacity

In this test, we investigate the capacity of Fyaf to decide whether Fyaf is a bottleneck

in the experiment setup described in Section 6.3. However, instead of sending packets

from Fyaf to STREAM, we implement a sink that Fyaf connects and sends packets

to. This sink only reads data from the TCP buffer. It does not process the data in any

way. We instruct TG to generate traffic for five minutes, and we vary the network

load at which data is sent from A to B. For each network load, we execute five runs

and measure the average percentage of packets dropped due to system resources. The

result of this test is presented in Figure 22(a) below. We see that less than 0.04 % of

the packets are dropped for all network loads. For most network loads, less than 0.02

% of the packets are dropped. If we subtract 0.04 % from 50 Mb/s, this results in

49.98 Mb/s. To find whether Fyaf is a bottleneck, we run a test on the experiment

setup from Section 6.3, which means that Fyaf sends packets to STREAM instead of

the sink. STREAM processes the query from Task 1 over traffic with a duration of

five minutes. For each network load, we repeat the run five times. The result from

this test is presented in the Figure 22(b) below. The red curve in Figure 22(b) is the

same as the curve in Figure 22(a). In Figure 22(b), we see that the packet dropping is

close to zero when STREAM is not included. When we include STREAM, packet

dropping increases more rapidly as network load increase, especially from 30 Mb/s.

Thus, Fyaf is not a bottleneck in our experiment setup.

Figure 22. Packet drop rate in percent for Fyaf and a sink (a) and Fyaf and
a sink compared to Fyaf and STREAM (b)

6.4.4 Accuracy of Fyaf and STREAM

As mentioned in Section 6.3.3, Fyaf reports the number of packets that are seen on

the NIC, the number of packets that are dropped due to system resources, and the

number of packets Fyaf captures. Since load shedding is not implemented in

STREAM, the only statistics we have on packet dropping are the numbers reported

by Fyaf. Consequently, we use the statistics produced by Fyaf when measuring

STREAM’s performance. Thus, prior to the measurement of performance, we evalu-

ate the correctness of these statistics. We investigate whether the number of packets

reported by Fyaf agree with the number of packets received by STREAM. They

should correspond, because data is sent from Fyaf to STREAM over a TCP connec-

tion, which guarantees correct and orderly delivery of data across the network. Fur-

124

125

ther, we investigate whether STREAM processes these data correctly by comparing

the query results of two queries with the number of tuples received from Fyaf. We

add new functionality to Fyaf to make these comparisons possible. We count the

number of packets captured by Fyaf that are TCP/IP packets, and how many are not.

If packets that are not TCP/IP packets appear in Fyaf, we print their content to file for

further analysis. The number of packets that are TCP/IP packets are the number of

packets that Fyaf sends to STREAM. We define two different queries for this test:

Query 1
SELECT *

FROM S

Query 2
SELECT COUNT(*)

FROM S

We execute the queries over streams with duration of 60 seconds and vary the net-

work load at which data is sent from A to B. Furthermore, we define four require-

ments that the results from this test must fulfil in order for us to accept accuracy of

the interaction between Fyaf and STREAM.

1. The number of packets received on the NIC minus the number of packets

dropped must equal the number of packets captured by Fyaf.

2. The number of packets captured by Fyaf minus the number of packets sent to

STREAM must equal the number of packets registered in Fyaf that are not

TCP/IP packets.

3. The number of TCP/IP packets captured by Fyaf must equal the number of

packets received by STREAM.

4. The number of packets received by STREAM must equal the number of pack-

ets in STREAM’s query result.

126

To ensure that the fourth requirement is fulfilled we investigate the result files from

the two queries. Regarding Query 1, we count the number of lines in the result file,

whereas we in Query 2 use the last result in the result file. The reason for this is that

STREAM writes each update of the intermediate relation to file. When counting,

each tuple that arrives the count operator represents an update.

The results from our test indicate that all four requirements are fulfilled. In addition,

the results reveal that not all packets received by Fyaf are TCP/IP packets, even

though we instruct TG only to send data over TCP connections. When investigating

these packets, we find that they are all Address Resolution Protocol (ARP) packets.

An ARP packet typically looks like (in hexadecimal notion):

00118560ff0e001185172ca10806000108000604000100118517
2ca181f0434100000000000081f0433c

The number 0806, in letter 25 to 28, identify it as an ARP packet. Further descrip-

tions of ARP are given in (Plummer 1982). The ARP packets compose a part of the

statistics provided by Fyaf, but not a part of the packets sent to STREAM. Since we

use these statistics to evaluate the results of our experiments, we need to investigate

the margin of error composed by the ARP packets. We calculate the margin of error

by comparing the number of ARP packets to the total number of packets captured by

Fyaf. Figure 23 below shows this rate in percent. The red line is hidden behind the

green from 1 Mb/s to 5 Mb/s. We see that the margin of error is less than 0.025 % at a

rate of 1 Mb/s, and that it approaches 0 % as the network load increases. Conse-

quently, we consider this margin of error as insignificant.

Figure 23. Margin of error at different network loads

6.4.5 System Resource Consumption

As we described in Section 6.3, we introduce many programs in our experiment

setup. Some of these programs create several processes. In this section, we investi-

gate whether these processes introduce any significant consumption of system re-

sources. We use the online experiment setup to run the query from Task 3 and define

the relation to consist of all 65536 port numbers. We run the test one time, and we

produce traffic over one TCP connection at a rate of 5 Mb/s. In order to analyse sys-

tem resource consumption, we use the file produced by Top. Top is instructed to re-

port every second.

Figure 24 below presents CPU consumption introduced by other user processes than

STREAM. Only three processes, Sadc, Tcp_server, and Top are present in the figure.

127

The reason for this is that Top reports CPU and memory consumption with a preci-

sion down to one-tenth percent. When a process consumes very little CPU resources,

this is registered as 0.0 % by Top. Two of the curves in Figure 24 are not easily sepa-

rated from each other. The Top process, which is represented by the red curve, con-

sumes two percent or less, while Sadc, represented by the green curve, consumes one

percent or less. The Tcp_server process periodically consumes up to 60 % of the CPU

resources. About 120 seconds elapse between each peak. Between the peaks,

Tcp_server consumes 0.0 %. We search the files produced by Top, Sar, and Vmstat

without finding any reasons for these peaks. However, by investigating the same

files, we find that STREAM’s CPU consumption is not influenced by this process

and its peaks. Consequently, CPU consumption introduced by other processes than

STREAM is not significant.

Figure 24. CPU consumption of other processes than STREAM

128

The memory consumptions, introduced by other processes than STREAM are pre-

sented in Table 4 below. We see that none of these processes consumes more than 0.3

%. The data files, suggests that the memory consumption is constant throughout the

run. One of the Vmstat processes is registered with a memory consumption of 0.0 %.

This is due to the Top precision. The total memory consumption introduced by these

processes is 2.9 %. The fact that STREAM allocates memory statically, based on the

configuration file, signify that STREAM consumes approximately 76.8 % of the total

memory. Thus, the memory consumption introduced by other processes that

STREAM is insignificant.

Table 4. Memory consumption of other processes than STREAM

129

130

131

7. Performance Evaluation

In this section, we present the performance evaluation. We start by defining evalua-

tion technique, metrics, factors, and workload. Then, we design different experiments

to use in the evaluation. To accomplish the performance evaluation, we use a similar

approach as described by Jain (1991).

Jain (1991) divides performance evaluation into three techniques: analytical model-

ling, simulation, and measurement. He also states that analytical modelling and simu-

lation may be used in situations where measurement is not possible. Moreover, we

are interested in measuring the performance of the prototype under real, but con-

trolled, network traffic. Consequently we choose measurement as our evaluation

technique.

Recall that we evaluate STREAM’s performance in the context of regarding it as a

black box, which was defined in Section 1.2. We do not change the source code in

order to implement additional functionality. However, we investigate the source code

to better understand the internal mechanisms in STREAM.

7.1 Metrics

Metrics are the criteria in which to measure the performance. In general, the metrics

are related to responsiveness, productivity, and utilisation (Jain 1991). Responsive-

ness is the time taken to perform a service, productivity is the rate at which the ser-

vice is performed, and utilisation is the resources consumed while performing the

service. A DSMS continuously produces results, because it processes a continuously

arriving stream of data elements. Consequently, it continuously performs services and

132

it is therefore not possible to measure responsiveness of a single service without add-

ing monitoring capabilities to STREAM. We use relative throughput as a productiv-

ity metric, and consumption as a utilisation technique. In addition, we measure

STREAM’s accuracy.

• Relative throughput: We use relative throughput to measure how many per-

cent of the offered network load that has been handled by Fyaf and STREAM.

We use the statistics reported by Fyaf to calculate the relative throughput.

Consequently, relative throughput is the number of packets captured and proc-

essed by Fyaf and STREAM relative to the total number of packets registered

on the NIC, measured in percent. Recall from Section 6.4.3 and 6.4.4 that Fyaf

introduces no overhead compared to STREAM and that the number of TCP/IP

packets captured is equal to the number of tuples received in STREAM. Since

STREAM may crash under heavy load, we only consider the relative through-

put for those runs that are executed correctly. If there are no correct runs, rela-

tive throughput equals zero.

• Consumption: We use consumption as a measurement for the system re-

sources occupied by STREAM. We measure consumption in terms of CPU

usage. We do not measure memory consumption, because STREAM allocates

memory statically based on the memory parameter in the configuration file.

Thus, STREAM’s memory consumption is constant.

• Accuracy: In addition to relative throughput and consumption, we also meas-

ure the accuracy of STREAM. To measure accuracy we investigate the query

results produced by STREAM. We compare these results with the results we

expect based on the given workload. Several factors make such an measure-

ment difficult. For example, the network load produced by TG is neither con-

stant over time, nor does it exactly match the requested network load, as de-

scribed in Section 6.4.1. In addition, the packets sent by TG are of varying

sizes, as indicated in Section 6.4.2. Thus, it is difficult to calculate the answer

to expect. Nevertheless, analyses of the query answers should implicate

133

whether the query answer is correct or not. A drop in relative throughput may

have influence on the query result e.g. when the querying the network load.

Consequently, we should only analyse accuracy on answers produced under a

relative throughput close to 100 %. Since there are several factors of uncer-

tainty in this matter, we accept a relative throughput down to 98 % when in-

vestigating the accuracy of the query results.

7.2 Factors

Parameters affect the system performance, and are divided into system parameters

and workload parameters (Jain 1991). System parameters include both hardware and

software parameters, which generally do not vary among the various executions of

the system. User requests, which may vary from one execution to another, character-

ise workload parameters. Further, parameters may be divided into two parts; those

that will be varied during the evaluation and those that will not. The parameters to be

varied are called factors and their values are called levels (Jain 1991). The factors we

use in our evaluation are the following.

• Relation size: There are several conventions used for describing the size of a

relation R. In Section 3.2, we described the relation size as the number of

blocks that are needed to hold all the tuples of R. This number of blocks is de-

noted B(R). It is also possible to represent the relation size with the number of

tuples in R. We denote this quantity by T(R) (Garcia-Molina et al. 2002).

When experimenting with different relation sizes in joins between relations

and streams, we use the latter convention i.e. we represent the size of a relation

by its number of tuples.

• Network load: A network monitoring tool may be used to analyse network

traffic on links with varying network load. The network load may range from

some kilobits to several megabits, or even gigabits. Consequently, we run all

experiments, designed in Section 7.4, with increasing network load. However,

134

a network may be described at different layers e.g. peer-to-peer networks, us-

ing the network load to describe the load on each layer. Consequently, the net-

work load differs from layer to layer. When using network load as a factor in

our experiment, we consequently refer to network load at the MAC layer i.e.

Ethernet headers are included in the network load. We describe network load

in terms of Mb/s.

• Query complexity: Network-monitoring tasks may be simple or complex. The

load queries from e.g. Task 1 and Task 2 are relatively simple, while the TCP

connection recognition queries from e.g. Task 4 and Task 7 are relatively com-

plex. A network monitoring tool should be able to process both simple and

complex queries. Hence, we investigate how STREAM performs under vary-

ing complexities. We divide the queries from our query design section into

three categories of different complexity. The category with least complexity

includes Task 1, Task 2, Task 8, and Task 11. The next category includes Task

3 and Task 6, while the last category includes Task 4, Task 7, Task 9, and

Task 12. It is difficult to decide which of the two latter categories is the most

complex in its nature. The queries in the last category create numerous views,

and join these views several times. However, the queries in the middle cate-

gory performs a join between a base stream and a base relation. Besides, the

queries in the middle category has the largest window sizes. Thus, depending

on what we measure complexity against, the complexity of the two last catego-

ries may vary.

• Number of queries: One of the requirements in Section 2.3 is that a DSMS

should be able to handle several concurrent queries. Thus, we design experi-

ments with only one query executed at the time, and experiments with a vary-

ing number of queries executed concurrently.

135

7.3 Workload

If we capture packets from a network carrying traffic from several protocols, some of

this traffic would not belong to TCP/IP. Traffic that is not TCP/IP may contribute to a

significant part of the network load. Since Fyaf only sends tuples of TCP/IP headers,

collected from TCP/IP packets, to STREAM, the network load that these packets

contributes to may be artificially low compared to the actual load on the network. In

order to control the factors concerning the input stream e.g. network load, we need to

control the network traffic. Consequently, we use a network consisting of only two

computers, and generate traffic merely carrying TCP/IP packets. This corresponds to

the experiment setup presented in Section 6.3. In Section 6.4.4, we showed that ARP

packets contribute to an insignificant part of this traffic. Thus, the number of TCP/IP

tuples sent from Fyaf to STREAM is almost equal to the number of packets in the

network. In terms of network traffic, such a workload is synthetic. However, with

synthetic workloads it is possible to reconstruct the load for each execution of an ex-

periment.

The experiments we design in Section 7.4 include tasks and parameters in a varying

manner. However, some parameters are equal for all experiments and are listed be-

low.

• Number of executions: We run all experiments five times.

• Number of connections: We generate traffic over one TCP connection.

• Stream duration: We monitor a stream of TCP/IP header data with duration of

15 minutes. This size does not include the TCP header.

• Packet size: We instruct TG to send packets with a TCP segment size of 576

bytes. This does not include TCP and IP headers. This results in a packet size

of 628 bytes, including TCP and IP headers, but not Ethernet header, which

would add another 14 bytes to the size.

136

• STREAM configuration file: As mentioned in Section 4.4.2, we use one con-

figuration file throughout our analysis. We have changed the memory size and

the run time compared to the configuration file included in the STREAM pro-

totype release. The example configuration file used a memory size of 32 MB.

We consider this value as far too small when we have a GB of total memory.

As we described in Section 6.4.5, other processes than STREAM occupies 2.9

% of total memory. However, we do not allocate all the remaining memory to

STREAM, because we are uncertain of how the operating system’s kernel util-

ises memory. In addition, we cannot perform any tests investigating this mat-

ter, because of time constraints. Consequently, we introduce a buffer of ap-

proximately 20 % and allocate 768 MB, which corresponds to 76.8 %. Thus,

STREAM and other user processes together consume approximately 80 % of

total memory. Using a run-time value of 10 000 makes STREAM run for ap-

proximately ten seconds after receiving the last tuple. A smaller value may

lead to termination before all tuples are seen. A larger value results in spend-

ing an excess of time on waiting for new tuples. This is not favourable when

processing many experiments at different network loads with several itera-

tions. We repeat the values in the configuration file below for convenience.

o MEMORY_SIZE = 805306368. This is the number of bytes that

STREAM allocates. The number corresponds to 768 MB.

o QUEUE_SIZE = 30. The queue size is given in terms of pages. One

page is set to 4096 bytes.

o SHARED_QUEUE_SIZE = 300. The shared queue size given in terms

of pages.

o INDEX_THRESHOLD = 0.85. This value is similar to the threshold

value used in a disk-based linear hash table.

o RUN_TIME = 10000. The number of times STREAM receives empty

tuples from the table source before exiting.

137

7.4 Experiments

Many of the queries implementing the tasks presented in Section 5.2 are semantically

and syntactically similar. In addition, some tasks analyse traffic characteristics e.g.

SYN flood attacks, which we cannot easily generate with a traffic-generating tool.

Consequently, we do not include all the queries from Section 5.2 in the actual ex-

periments. The queries we include are collected from Task 1, Task 2, Task 3, Task 4,

and Task 7. We choose these queries, because they are collected from all the three

complexity categories described in 7.2, and we may easily generate traffic to these

queries. As mentioned in Section 5.2, all the queries are tested offline. They are all

accepted by STREAM with respect to semantics and syntax, and they all produce the

expected query answer.

We structure the experiment section as follows: First, we design experiments where

STREAM processes one query at the time. Next, we design experiments investigating

the performance of STREAM as it processes several queries concurrently. For each

experiment within these categories, we design the experiment, present the results, and

conclude. We present the results according to the metrics defined in Section 7.1. Con-

cerning relative throughput, we reveal how the relative throughput develops as we

increase the network load. In addition, we show how many of the five runs are exe-

cuted correctly i.e. STREAM does not crash, and consequently contributes to the cal-

culation of relative throughput. For CPU consumption, we examine how CPU con-

sumption develops throughout the 15 minutes stream duration. Calculating the aver-

age of CPU consumption from all contributing runs would not give a precise picture

of the development, because the consumption may increase or reduce at slightly dif-

ferent points in time. Consequently, we choose one network load and one run to show

the percentage of total CPU resources consumed by STREAM. Finally, we reveal

how accurate the query answers are by comparing them with the answers that are ex-

pected at each network load. As discussed in Section 7.1, it is not straightforward to

calculate such an expected answer. The first experiment includes three different tasks.

One or more of these tasks are included in all experiments. In addition, all queries are

138

tested offline and they all produce correct query answers. Consequently, we only

show accuracy for the three queries involved in the first experiment.

7.4.1 Experiments with Queries Processed Seperately

In this section, we investigate how STREAM performs when processing separate

queries. We start by comparing the performance of STREAM when processing que-

ries with different complexity. Next, we investigate the significance of relation sizes

in joins between relations and streams. Finally, we investigate how well STREAM

optimises queries with respect to pushing projections down the query plan.

Queries with Different Complexity
We start with an experiment that investigates the performance of STREAM when

processing three tasks of different complexity.

Design
We choose Task 1, Task 3, and Task 4 from the three complexity categories. Recall

that Task 1 measures the load on the network in terms of bytes per second, Task 3

performs a join between a relation and a stream, while Task 4 recognises connections

and measures each connection’s load. For Task 3, we create a relation consisting of

all 65536 port numbers. In the next experiment, we investigate the significance of

relation sizes. In this experiment, we use the workload outlined in Section 7.3, and

we generate traffic with network loads ranging from 1 Mb/s to 15 Mb/s.

Results
Figure 25(a) presented below reveal the relative throughput for this experiment. We

see that the relative throughput is 100% for network loads from 1 Mb/s to 15 Mb/s

when processing Task 1. Though not illustrated in this graph, our experiment shows

that the relative throughput for Task 1 is close to 100 % for network loads up to 30

Mb/s. In addition, Figure 25(a) indicates that Task 3 and Task 4 have a similar devel-

opment of relative throughput compared to each other. They have 100 % relative

throughput up to 3 Mb/s and 2.5 Mb/s, respectively. Task 4 has 93.32 % relative

throughput at 3 Mb/s. However, the relative throughput for Task 3 is 0 % at network

loads from 10 Mb/s to 15 Mb/s. The reason for this is that Task 3 does not have any

correct runs at these network loads. The number of correct runs, given in percent, are

presented in Figure 25(b) below. Task 1 and Task 4 have 100 % correct runs for all

network loads from 1 Mb/s to 15 Mb/s. The blue curve, which represents Task 4,

covers the red curve, which represents Task 1. The green curve, which represents

Task 3, is hidden behind the blue curve from 1 Mb/s to 8.5 Mb/s.

Figure 25. Relative throughput (a) and correct runs (b) for the different que-
ries

Figure 26 presented below reveal the amount of CPU resources STREAM consumes

when processing the three tasks. We create the curves from data that Top collects

from one of the runs with a network load of 5 Mb/s. We see that STREAM consumes

least CPU resources when processing Task 1, which is represented by the curve in

Figure 26(a). Figure 26(b) and Figure 26(c) show CPU consumption when processing

Task 3 and Task 4, respectively. Figure 26(b) shows that STREAM consumes close

139

to 100 % of the CPU resources, over a period of approximately 350 seconds, when

processing Task 3. The curves also show that STREAM consumes CPU resources in

a very different manner when processing the three tasks.

Figure 26. STREAM's CPU consumption when processing Task 1 (a), Task
3 (b), and Task 4 (c) over a network load of 5 Mb/s

Figure 27, presented below reveal the accuracy of the three tasks in this experiment.

For each task, we draw two curves. The red curves show the query results produced

by STREAM, while the green curves show the expected query results. Task 1 queries

the stream to calculate network load measured in bytes per second. We achieve this

by summarising total length fields in the IP headers. However, the network load used

as factor includes the Ethernet header. Thus, to calculate the expected result at a

given network load, we first add 14 bytes, which is the size of the Ethernet header, to

the average packet size for different network loads. We use the average packet sizes

140

from Section 6.4.2. Next, we divide the network load by this packet size, which in-

cludes the Ethernet header, to obtain the number of packets per second. Following

this, we multiply number of packets per second with the average packet size, repre-

senting packet sizes at the IP layer, to find the number of bytes per second. However,

we add the load constituted by acknowledgements to the last result, because packets

transmitted in both directions are captured from the NIC. We calculate the additional

load introduced by acknowledgements in Section 6.4.1. We follow a similar proce-

dure to calculate the expected results for Task 3 and Task 4. Indicated by the curves,

we comprehend that the difference between the query result and the expected result

increase as network load increases, with the query result smaller than the actual re-

sult. For Task 1 it is 4.09 % smaller, for Task 3 it is 3.16 % smaller, and for Task 4 it

is 2.09 % smaller at 15 Mb/s, 3 Mb/s, and 2.5 Mb/s, respectively.

Figure 27. Accuracy of query answers compared to expected results for
Task 1 (a), Task 3 (b), and Task 4 (c)

141

142

Conclusion
This experiment shows that relative throughput decreases as network load and query

complexity increase. In addition, it shows that STREAM crashes when processing

Task 3 at 10 Mb/s and above. STREAM neither provides us with information about

its problems through its log file, nor do we find anything in the STREAM source

code revealing any problems. Consequently, we do not know what internal mecha-

nisms cause it to crash. However, we assume that the problems are due to heavy load,

because it crashes at 10 Mb/s and above. We only show CPU consumption at 5 Mb/s.

At this network load, we see that STREAM’s CPU consumption increases as the

complexity of queries increases. When designing this experiment, we describe the

uncertainties with calculating a query answer to expect e.g. the usage of average

packet sizes. In addition, we calculate accuracy for network loads with relative

throughput down to 98 %. By taking these factors and the results shown in Figure 27

into consideration, we conclude that STREAM produces accurate query answers in

this experiment.

Joining Streams with Relations of Different Sizes
In this experiment, we investigate the impact of different relation sizes when

STREAM processes the query from Task 3, which includes a join between a relation

and a stream. Recall that the join in this query is a theta-join, where the condition is

equality of port numbers in the relation, and destination port numbers in the stream.

All tasks in this experiment are executed from 1 Mb/s to 10 Mb/s.

Design
Since port numbers are defined as data type short, which consists of 16 bits, there

are 65536 different port numbers. We create three relations of different sizes. The

first relation consists of all 65536 port numbers, ranging from zero to 65535. The sec-

ond relation consists of 1024 port numbers, ranging from 60000 to 61023. The third

relation consists of only a single port number namely 60010. We refer to these three

different versions of Task 3 as Task 3, Task 3.1, and Task 3.2, respectively.

143

A careful reader may observe that it is unnecessary with a relation containing all

65536 port numbers. If all ports are of interest, a more effective solution is to query

the stream with a GROUP BY clause and the necessary aggregation. However, opti-

misation is not an issue in this experiment. Besides, the semantics of the queries

should be equal for the comparison to make any sense.

The stream contains two different port numbers, because acknowledgments are part

of TCP. Packets that are sent from computer A to computer B carries 60010 as their

destination port number. In the Linux implementation on these computers, the client

side of a TCP connection allocates port numbers from 1024 to 29999. Consequently,

packets transferred in the other direction, from B to A, have destination port number

in this range. Since Task 3 contains all port numbers, the join matches two destina-

tion port numbers in the stream, one in each direction. Task 3.1 and Task 3.2, on the

other hand, only match one of the two destination port numbers in the stream.

Results
Figure 28(a) presented below shows the relative throughput when processing the dif-

ferent tasks included in this experiment. It reveals that the relative throughput is al-

most equal for the three different relation size implementations of the query in Sec-

tion 5.2.3. Actually, the curves are so similar that only one curve is visual throughout

much of the graph. Task 3.1 and Task 3.2 have relative throughput of approximately

100 % up to 2.5 Mb/s, while Task 3 has relative throughput of approximately 100 %

up to 3 Mb/s. For all tasks, the relative throughput drops from approximately 37 % at

9.5 Mb/s to 0 % at 10 Mb/s. The reason for this is that the three tasks do not have any

correct runs at 10 Mb/s, as shown in Figure 28(b) below. In this graph, the blue curve

covers the green curve from 1 Mb/s to 9 Mb/s, while the red curve is hidden from

view behind the blue curve up to 8 Mb/s, and behind the green curve from 9 Mb/s to

10 Mb/s.

Figure 28. Relative throughput (a) and correct runs (b) for the different que-
ries

Figure 29 below, reveals STREAM’s CPU consumption while processing the data

streams according to the three queries in this experiment. In each of the three figures,

we draw curves representing CPU consumption at 1 Mb/s and 8 Mb/s, using a red

and a green curve, respectively. Figure 29(b), which represent Task 3.1, and Figure

29(c), which represents Task 3.2, are rather similar. Figure 29(a), which represents

Task 3, differs from the others. STREAM consumes most CPU resources when proc-

essing Task 3, which use the relation containing most tuples. With a network load of

1 Mb/s the CPU consumption has a sudden increase after approximately 400 seconds

for all three tasks. With a network load of 8 Mb/s the CPU consumption increases

from 0 % to 100 % after approximately 300 seconds.

144

Figure 29. STREAM's CPU consumption when processing Task 3 (a), Task
3.1 (b), and Task 3.2 (c) over network loads of 1 Mb/s and 8 Mb/s

Conclusion
With respect to relative throughput, this experiment demonstrates that the size of the

relation does not influence the performance of STREAM when processing the query

from Task 3. In addition, it illustrates that relative throughput decreases as network

load increases. With respect to CPU consumption, this experiment shows that

STREAM consumes more CPU resources as the relation size increase and that CPU

consumption increase as we increase the network load. The reason why CPU con-

sumption suddenly increases after 300 seconds at 8 Mb/s may be that these queries

perform a join with a five minutes window over the stream. We have no explanation

to why there is an increase in CPU consumption after 400 seconds at 1 Mb/s.

145

146

Optimising Queries by Pushing Projections Down the Query plan
In the following experiment, we investigate the impact of pushing projections down

the query plan. In order to accomplish this, we compare the execution of two differ-

ent script files. In one of the script files, we use the query as designed in Section 5.2.4

and leave all optimisation to STREAM. In the other script file, we try to optimise by

rewriting the query in the script file. In the next section, we investigate other optimi-

sation techniques. We use common descriptions of these script files in all experi-

ments investigating optimisation to avoid confusion. When we use the queries with-

out any optimising efforts, we refer to the scripts as “System optimisation”. We refer

to the script we try to optimise as “Optimise by hand”.

Design
As mentioned in Section 4.3.5, the DSMS may find itself in a state where it is either

CPU or memory limited. To avoid the occurrence of such states, it is important to

maintain a best possible utilisation of these resources. The query compiler transforms

a query several times, as noted in Section 3.2. When creating a physical query plan

out of the logical query plan, the query compiler makes use of several algebraic ex-

pressions for improving the query plan (Garcia-Molina et al. 2002). One group of

such algebraic expressions is related to pushing projections as far down the query

plan as possible. By pushing projections down the query plan, we may reduce the

tuple sizes, which in turn may lead to less memory consumption. To illustrate the im-

pact of pushing projections we consider the following query.

SELECT sourceIP, destIP, COUNT(*)

FROM S [RANGE 10 MINUTES]

GROUP BY sourceIP, destIP

A tuple created by Fyaf, consisting of TCP and IP header values from a packet sent

form A to B, typically looks like:

4, 5, 0, 628, 18681, 2, 0, 64, 6, 25901,
129.240.67.60, 129.240.67.65, 0, 5862, 60010,
993126829, 1870095210, 8, 0, 0, 1, 1, 0, 0, 0, 1460,
28707, 0, 0101080a2a3bae1391b5b6ec

147

The attribute values are represented in ASCII when entering STREAM, and exclud-

ing commas and spaces, this tuple occupies 119 bytes. In STREAM, the attributes are

transformed to their respective data types according to how they are defined. The tu-

ple consists of 19 integers, two char(81), two char(16), and six char(2).

This results in 282 bytes when representing the tuple in STREAM. Consider packets

with a packet size of 1500 bytes, sent at 10 Mb/s. Then 873,8113 packets are sent

each second. When transformed to tuples of 282 bytes, these packets constitute 0.235

MB each second. Over a ten-minute window, this results in 141 MB. To optimise the

query above, we first create a view that projects all necessary attributes. This view is

then queried to obtain the semantics of the example.

PROJECT (sourceIP, destIP):

SELECT sourceIP, destIP

FROM S

SELECT sourceIP, destIP, COUNT(*)

FROM PROJECT [RANGE 10 MINUTES]

GROUP BY sourceIP, destIP

With such an approach, the tuples in the final query occupies 32 bytes. With the pa-

rameters given above, this results in 16 MB over the ten-minute window. In this ex-

ample, we save 125 MB by pushing the projection down the query plan.

In this experiment, we choose to optimise Task 4 by pushing projections down the

query plan. We create a view in a similar manner as above. All queries in Task 4 then

query this view instead of S. The attributes projected in the view are

ip_headerLength, totalLength, sourceIP, destIP, sourcePort, dest-

Port, seqNum, ackNum, tcp_headerLength, ACK, SYN.

We expect that the query compiler in STREAM optimises the query in a best possible

manner. By performing this experiment, we try to clarify the impact of how a user

writes a query. If STREAM optimises the system by pushing projections down the

query plan, the introduction of a new view may only introduce more overhead to the

system, and consequently reduce performance. When performing the experiment, we

use the workload described in Section 7.3, and we generate traffic with network loads

ranging from 1 Mb/s to 15 Mb/s.

Results
Figure 30(a) below reveals the development of relative throughput when processing

the two queries with increasing network load. The two queries have almost equal

relative throughput on all network loads from 1 Mb/s to 15 Mb/s. For both queries,

the relative throughput is close to 100 % up to 2.5 Mb/s. They have a relative

throughput of approximately 50 % at 7 Mb/s. Figure 30(b) below, indicates that

STREAM execute without any crash from 1 Mb/s to 15 Mb/s. The green curve cov-

ers the red curve in this graph.

Figure 30. Relative throughput (a) and correct runs (b) for the different que-
ries

148

Figure 31 below shows STREAM’s CPU consumption when processing the two dif-

ferent queries. The curves are created from one of the runs at 5 Mb/s. Figure 31(a)

shows CPU consumption when processing the original task that do not have any

pushed projections. Figure 31(b) reveals CPU consumption when processing the new

version of Task 4 that have projections pushed down the query plan. The two curves

are almost exactly equal. There is an increase in CPU consumption after approxi-

mately 140 seconds, and it stays relatively high the next 230 seconds. After 370 sec-

onds, the CPU consumption shifts from 0 % to 100 % for the rest of the executions.

Figure 31. STREAM's CPU consumption when processing query optimised
by system (a) and query optimised by hand (b) over a network load of 5
Mb/s

149

150

Conclusion
Optimising the query from Task 4 by pushing projections into a view has no effect on

STREAM’s performance with respect to relative throughput and CPU consumption.

It would be interesting to investigate how STREAM consumes memory when proc-

essing the two queries, because pushing projections down the query plan primarily

reduces memory consumption. This is not possible, because we treat STREAM as a

black box. Consequently, we cannot add such monitoring functionality. Moreover,

we cannot use the monitoring programs for this purpose, because STREAM allocates

memory statically.

7.4.2 Experiments with Queries Processed Concurrently

In this section, we design different experiments investigating system behaviour as we

introduce concurrent execution of queries. First, we design two experiments investi-

gating how well STREAM shares resources between queries with common sub-

expressions. Recall from Section 4.3.3 that STREAM shares queues and synopsis

when queries with common sub-expression appear. Next, we investigate STREAM’s

performance as we increase the number of concurrent queries.

Sharing Resources
When continuous queries contain common sub-expressions, it is possible to optimise

execution by sharing resources and computation within their query plans. Two such

resource-sharing techniques are queue sharing and synopsis sharing. In this section,

we perform two experiments that investigate how well these techniques work within

STREAM. To accomplish this experiment we create two different script files. We

compare the executions of these script files against each other. In the first script file,

we include queries that have semantically equal sub-expressions. However, we give

these sub-expressions different names to distinguish them from one another and let

STREAM optimise. In such a scenario, STREAM should share both queues and syn-

opsis based on the common semantics of these queries’ sub-expressions. In the sec-

ond script file, we optimise the queries by hand through assembling the common sub-

151

expressions into one sub-expression used by all queries. When performing these ex-

periments, we use the common workload, as described in Section 7.3, and we gener-

ate traffic with network loads ranging from 1 Mb/s to 15 Mb/s.

Design

Sharing Resources between the Different Versions of Task 3
In this experiment, we implement script files that include the three different versions

of Task 3. As explained in Section 5.2.3, we create a view to solve this task, because

the total number of attributes from the two sources in this join is too high. Recall that

the three versions of Task 3 differ from each other based on the relation size.

Sharing Resources between Task 4 and Task 7
In this experiment, we implement script files where Task 4 and Task 7, which both

recognise connections, are processed concurrently. Recall that Task 4 finds the num-

ber of bytes that have been exchanged on each connection during the last minute,

while Task 7 finds the network load measured in connections per minute. The sub-

expression these tasks have in common includes the three views, Syn, Synack, and

Conn, which are involved in recognising established connections.

Results

Sharing Resources between the Different Versions of Task 3
Figure 32 presented below shows the relative throughput and the number of correct

runs for this experiment. Figure 32(a) indicates that the relative throughput is equal

when processing the two different script files. They have 100 % relative throughput

up to 1.5 Mb/s. The relative throughput starts to level off at 50 %. This happens at

approximately 4 Mb/s. At 15 Mb/s the relative throughput is approximately 35 %. In

Figure 32(b), showing the number of correct runs, reveals that all runs contribute to

the relative throughput up to a network load of 12 Mb/s. From 12 Mb/s to 15 Mb/s

the number of correct runs decreases to 40 % for the execution that is optimised by

the system. The green curve covers the red curve from 1 Mb/s to 12 Mb/s.

Figure 32. Relative throughput (a) and correct runs (b) for the two versions
of the queries

Figur 33 reveals the amount of CPU resources STREAM consumes when processing

the two different script files. Both figures are created from one of the runs at 5 Mb/s.

Figur 33(a) represents CPU consumption when processing the script where optimisa-

tion was left to STREAM, while Figur 33(b) represents the script that we optimise by

hand. The two curves are almost equal. They have a steep rice in CPU consumption

after approximately 300 seconds. From 300 seconds to 600 seconds they have 100 %

CPU consumption, with sudden drops that last a couple of seconds approximately

every 15 second. After approximately 600 seconds, the CPU consumption stays more

constant at 100 %. The CPU consumption drops to 0 % at 950 seconds, indicating

that the last element in the input stream has arrived within STREAM.

152

Figur 33. STREAM's CPU consumption when processing queries optimised
by system (a) and queries optimised by hand (b) over a network load of 5
Mb/s

Sharing Resources between Task 4 and Task 7

153

Figure 34 below presents the relative throughput and the number of correct runs in

this experiment. The red curve represents executions where STREAM optimises the

queries. The green curve represents executions where we optimise the queries by

hand. From Figure 34(a), which shows relative throughput, we see the relative

throughput is higher when we optimise by hand. With system optimisation, the rela-

tive throughput is approximately 100 % up to 2 Mb/s, while the relative throughput is

approximately 100 % up to 2.5 Mb/s when we optimise by hand. At 2.5 Mb/s the sys-

tem optimisation has a relative throughput of 89.75 %. We find the largest difference

between the two curves at a network load of 5 Mb/s, where system optimisation and

the optimisation by hand have relative throughputs of 53.25 % and 66.26 %, respec-

tively. The curves have almost equal values from 10 Mb/s, they have a relative

throughput of approximately 30 %. At 15 Mb/s, they have a relative throughput of

approximately 20 %. Figure 34(b) shows the number of correct runs. The green curve

covers the red curve from 1 Mb/s to 12 Mb/s. For system optimisation the number of

correct runs drops to 80 % at 15 Mb/s, while all runs are correct when optimising by

hand.

Figure 34. Relative throughput (a) and correct runs (b) for the two versions
of the queries

Figure 35 below illustrates the CPU consumption when processing the queries at a

network load of 5 Mb/s. Figure 35(a) and Figure 35(b) show CPU consumption when

STREAM optimises and when we optimise by hand, respectively. Both curves show

a steep rice in CPU consumption after approximately 130 seconds. System optimisa-

tion and optimisation consumes close to 100 % of the CPU resources up to 450 sec-

onds and 360 seconds, respectively. Throughout the rest of the runs their CPU con-
154

sumptions shifts from 100 % to lower percentages, with system optimisation having

longer periods with a CPU consumption of 100 %.

Figure 35. STREAM's CPU consumption when processing queries opti-
mised by system (a) and queries optimised by hand (b) over a network load
of 5 Mb/s

Conclusion
In the first experiment, there is no difference in STREAM’s performance when proc-

essing queries optimised by system and queries optimised by hand. In the second ex-

periment, we increase the number and complexity of the shared resources. This re-

sults in a difference in performance, where STREAM has a better performance when

optimising by hand then when it optimises itself. Section 4.3.3 described that

STREAM shares sub-expressions by introducing stores and stubs. In order to share

the resources in the second experiment, STREAM makes use of one store for the

155

156

three different types of views and one stub for each view. Thus, in order to share

these sub-expression, STREAM requires three stores and nine stubs. This results in

more overhead and resource consumption by STREAM, which in turn leads to a drop

in performance. Consequently, a user may improve STREAM’s performance by op-

timising the script files, at least when several complex queries, with several complex

sub-expressions in common, are executed concurrently.

Concurrency with Varying Number of Queries and Complexity

Design
In this experiment, we investigate the performance of STREAM by processing sev-

eral different script files with a varying collection of queries. We vary the script files

by including queries with different complexity. In addition, we vary the number of

concurrent queries in these files. Two of these script files include combinations of

queries from the two previous experiments. We use the script files where queries use

one common sub-expression. We refer to the different scripts by the word “Script”

and a number to avoid listing all tasks when referring to them. The different combina-

tions of tasks are as follows:

1. Script 1: This script includes Task 3, Task 3.1, and Task 3.2. This combina-

tion is adapted from Experiment 4.

2. Script 2: This script includes Task 4 and Task 7, and is adapted from Experi-

ment 5.

3. Script 3: This script in includes Task 1, Task 2, Task 3, Task 3.1, and Task

3.2.

4. Script 4: This script includes Task 1, Task 2, Task 3, Task 3.1, Task 3.2, Task

4, and Task 7.

In addition, we are interested in combinations including Task 9 e.g. the combination

of Task 4, Task 7, and Task 9. We try this combination of queries with both separate

and common sub-expressions. However, when executing these scripts STREAM exits

157

with the message “Error: Unknown error: -1.” By investigating the source code, we

find that this is due to the constants MAX_OUT_BRANCHING and MAX_STUBS, re-

spectively. Task 9 alone does not cause these errors, but they are rather caused by the

combination of many complex queries. We do not try any new combinations with

Task 9, because of these errors and because we already use two queries from its com-

plexity category.

When performing this experiment, we use the common workload from Section 7.3,

and we generate traffic with network loads ranging from 1 Mb/s to 15 Mb/s.

Results
Figure 36 below indicates the relative throughput and number of correct runs for this

experiment. Figure 36(a) shows that the relative throughput for Script 2, which in-

cludes Task 4 and Task 7, is close to 100 % for network loads up to 2.5 Mb/s. The

network load is 100 % only at 1 Mb/s when processing Script 4, which includes all

seven tasks. Script 1, Script 3, and Script 4 has a relative throughput of approximately

50 % at 4 Mb/s, where the curves starts to layer off. The curve representing Script 2,

layers off at 6.5 Mb/s where the relative throughput is approximately 50 %. Relative

throughput for Script 3 drops from 34.55 % at 12 Mb/s to 0 % at 15 Mb/s. At 15

Mb/s Script 1, Script 2, Script 3, and Script 4 have relative throughputs of 35.36 %,

21.70 %, 0 %, and 12.80 %, respectively. The number of correct runs is presented in

Figure 36(b). At the network loads where only the purple curve is visible, the other

curves are hidden in view behind it. The number of correct runs for Script 3 drops

from 100 % at 12 Mb/s to 0 % at 15 Mb/s, while the number of correct runs for the

other scripts is 100 % for all network loads.

Figure 36. Relative throughput (a) and correct runs (b) when processing the
different scripts

Figure 37 below reveals STREAM’s CPU consumption in this experiment. Figure

37(a), which represents Script 1, and Figure 37(c), which represents Script 3, both

show an increase in CPU consumption after approximately 300 seconds. After that,

CPU consumption is close to 100 %. Script 3 leads to more CPU consumption than

Script 1. Figure 37(b), which represents Script 2, and in Figure 37(d), which repre-

sents Script 4, indicate an increase in CPU consumption after approximately 120 sec-

onds. Script 4 leads to more CPU consumption that Script 2. Script 4 consumes more

resources at the beginning of the execution. Script 3 consumes most after 300 sec-

onds. The same difference applies to Script 1 and Script 2. Script 2 consumes most

CPU resources in the beginning, while Script 1 consumes most CPU resources from

300 seconds. We cannot decide which script file consumes most CPU resources and

which script file consumes the least CPU resources, because the CPU consumption is

158

different over time. However, Script 3 and Script 4 consume more CPU resources

than Script 1 and Script 2.

Figure 37. STREAM's CPU consumption when processing Script 1 (a),
Script 2 (b), Script 3 (c), and Script 4 (d) over a network load of 5 Mb/s

Conclusion

159

With respect to both CPU consumption and relative throughput, we see that

STREAM’s performance drops as the number of concurrent queries increase. This is

also the case when we compare these results to experiments where tasks are executed

separately. However, all the versions of Task 3 have a relative throughput of 0 %

when executed separately. Thus, STREAM performs better up to 10 Mb/s when proc-

essing Task 3 separately, with respect to relative throughput. From 10 Mb/s it per-

forms better when Task 3 is executed concurrently with other tasks. One surprising

result in this experiment is that the relative throughput for Script 3 drops to 0 % at 15

160

Mb/s, because there are no correct runs. This is not surprising in itself, but the relative

throughput of Script 4, which includes two queries in addition to all the queries from

Script 3, does not drop to 0 % at 15 Mb/s.

7.5 Discussion and comparison

When processing tasks separately, STREAM has a relative throughput of 100 % up to

approximately 3 Mb/s. The only exception is when executing Task 1, where

STREAM has a relative throughput of 100 % up to approximately 30 Mb/s. With re-

spect to processing, this shows that there are large differences in complexity between

the three tasks processed separately. Another complexity factor is window size. Task

1 uses a view to summarize total lengths over a one-second window and then query

this view to calculate average over a ten-second window. Consequently, the view

produces one tuple every second. This results in ten tuples in the final query’s win-

dow. These numbers are independent of the network load. Task 3 uses a window size

of five minutes to unblock the input stream. The number of tuples in this window in-

creases as the network load increases. Given a network load of 1 Mb/s and a packet

size of 1500, the five-minute window contains approximately 26 214 tuples after the

first five minutes have passed. Thus, window size is an important factor with respect

to query complexity.

When processing two or more queries concurrently, STREAM has a relative through-

put of 100 % from one to approximately 2 Mb/s or 3 Mb/s. However, this depends on

the number of concurrent queries, and the complexity of the concurrent queries.

As far as documentation shows, approximation techniques based on data reduction

(e.g. samples and histograms) are not implemented in STREAM. This is confirmed

by the test we perform in Section 6.4.4, where we demonstrate that the tuples re-

ceived by STREAM equals the number of tuples in the query answer. Consequently,

no packets are dropped within STREAM. For many queries (e.g. queries involving

the aggregating operators SUM and COUNT) a drop in relative throughput would lead

161

to query answers that are not correct compared to the network traffic it is measuring.

For other queries (e.g. queries involving the aggregating operators MIN, MAX, and

AVG) a drop in relative throughput may only have a small effect on the correctness of

the query answers. For STREAM, correct query answers under low relative through-

put is purely based on luck, because approximation techniques are not implemented.

As we see from many of the experiments, the relative throughput levels off at ap-

proximately 40 % to 50 % when the network load reaches approximately 4 Mb/s to 5

Mb/s. However, this varies from experiment to experiment, and strongly depends on

the number of queries executed concurrently. Nevertheless, if we were able to reduce

the amount of data with approximately 60 %, using an approximation technique, the

query answers would be fairly accurate for all network loads used in the experiments.

However, when recognising connections, such a reduction in number of tuples is far

from trivial, because connections cannot be recognised without the presence of cer-

tain packets. It is possible to not drop SYN and SYN/ACK packets. However, the

ACK packets involved in the third step in the connection-establishing handshake do

not differ from other ACK packets. Most of the packets in a TCP session contain ac-

knowledgements due to optimisation efforts within TCP. Thus, it is difficult to sepa-

rate acknowledgements used in the handshake from other acknowledgements.

A surprising result from the second experiment is that the relation sizes do not have

any influence on relative throughput. Actually, relative throughput is highest, though

by very small margin, when processing the relation containing most tuples. However,

with respect to CPU consumption, STREAM performs better when processing rela-

tions of smaller sizes. The similarity of performance when processing these relation

sizes may be due to the monitoring and adaptive query-processing infrastructure

called StreaMon, which is included in the STREAM system. A short description of

this infrastructure is given in Section 4.3.4. The join in the query from Task 3 is

based on matching port numbers from the relation with destination port numbers in

the input stream. There are only two destination port numbers represented by the tu-

ples in the input stream. Consequently, it is possible for StreaMon to obtain and ex-

ploit this knowledge by monitoring the input stream.

162

We always compare relative throughput and CPU consumption to different network

loads. Recall that the network load is based on a requested packet size of 628 bytes.

Though the average packet size is somewhat larger, as described in Section 6.4.2, a

packet size close to 1500 bytes would lead to fewer packet headers on the network,

and in turn fewer tuples entering STREAM. Thus, using our workload, relative

throughput may be 100 % up to 3 Mb/s, while it may be 100 % up to 5 Mb/s when

we use larger packets.

As described in Section 4.4.3, STREAM writes query results to file. Queries produc-

ing many tuples every second, leads to large result files. From time to time, as the

buffers containing the results fill up, they must be flushed to disk. This happens more

often as the query produce more output. Writing query answers to file may have a

significant effect on STREAM’s performance, because disk I/O is very expensive.

163

8. Conclusions

In this section, we start by drawing some conclusions based on the results we

achieved from designing continuous network monitoring queries (Section 8.1) and by

measuring STREAM’s performance (Section 8.2). Furthermore, we summarise our

contributions (Section 8.3) and give some critical assessments (Section 8.4) about the

work related to the current thesis. Finally, we present possible directions that future

work may take (Section 8.5).

8.1 Query Design

We have designed several queries in order to explore the expressiveness of CQL in

the current STREAM prototype. In this section, we list the most important aspects

revealed.

• STREAM does not include a database that allows insertions, updates, or dele-

tions.

• Only four data types are supported in STREAM. None of them are imple-

mented to deal with network data types such as IP addresses.

• No network operators such as subnet matching are supported in STREAM.

• STREAM does not support tumbling windows.

• In the current STREAM prototype, there are too many hard-coded constants

limiting the expressiveness of CQL.

164

• As tuples arrive within STREAM, no timestamp attributes are added to the tu-

ples. Consequently, it is not possible to process queries that are occupied with

the order of tuples in time.

In addition to these limitations, our work with designing queries has also revealed

some aspects with STREAM that are more positive.

• STREAM supports sub-queries through the creation of views. This enriches

the expressiveness of continuous queries with STREAM. We use sub-queries

in all the queries we have designed.

• The possibility of joining streams with relations stored in files provides many

opportunities.

• STREAM provides an acceptable set of operators such as the traditional arith-

metic operators, average operators, and the bag operators UNION and

EXCEPT.

• Even though join is a binary operator, STREAM allows three or more streams

or relations to join sequentially within one expression.

• The possibility to choose if the output of a query should be a stream or a rela-

tion is extremely advantageous. In addition, the three relation-to-stream opera-

tors enrich the expressiveness of continuous network monitoring queries all

the more.

Based on the experiences we have acquired while designing network monitoring que-

ries, we conclude that the expressiveness provided by the CQL implementation in

STREAM is relatively rich. It is possible to express a wide range of network monitor-

ing queries. However, some limitations exclude certain queries and force us to ex-

press other queries in cumbersome ways.

165

8.2 Performance Evaluation

Related to simple queries, STREAM has a relative throughput of 100 % up to ap-

proximately 30 Mb/s, while the relative throughput is 100 % up to approximately 3

Mb/s for more complex queries. Additionally, we have seen that CPU consumption

increases as complexity increases. Concurrently executed queries reveal that relative

throughput decreases and CPU consumption increases as number of concurrent que-

ries and query complexity increases. All experiments investigating concurrency in-

cludes a collection of relatively complex queries. One of these collections has a rela-

tive throughput of 100 % up to 2.5 Mb/s. The relative throughput of the other collec-

tions started decreasing at a lower network load.

In some experiments, we accomplished successful investigations of how well

STREAM optimises queries. The results reveal that it for many queries is irrelevant

whether the user optimises queries prior to executing them in STREAM. This implies

that STREAM has good optimisation techniques. However, one of our experiments

suggested that when queries have common sub-expressions that are large and com-

plex the relative throughput increases and the CPU consumption decreases when the

user optimises the queries prior to execution.

Even though good optimisation techniques seem to be implemented in STREAM, we

conclude that STREAM may be used as a network monitoring tool only in very lim-

ited environments. We base this conclusion on the results from the experiments,

which show that STREAM cannot process continuous network monitoring queries

over the high transfer rates revealed in today’s networks.

8.3 Contributions

8.3.1 Query Design

In order to recognise limitations and possibilities introduced by STREAM and its

continuous query language, CQL, queries solving a wide range of network monitor-

166

ing tasks were designed. We selected a collection of tasks that would challenge

STREAM as a network monitoring tool. Some of the tasks were relatively straight-

forward to solve with continuous queries in CQL. Among the not so straightforward

tasks, our main occupation was to express queries related to TCP connections. Chal-

lenges in expressing these queries included recognising connection establishment,

connection lifetime, connection closure, and measuring load throughout the lifetime

of connections. We managed to recognise established connections based on the three-

way handshake included in TCP. We did not manage to recognise connection closure,

because this involves many phases and connections may be closed without accom-

plishing these phases. By changing the connection recognising technique slightly, we

managed to identify SYN packets for which a SYN/ACK packet was sent, but no

ACK packet received within two minutes. This technique may be used to recognise

SYN flood attacks.

8.3.2 System Implementation

By adding functionality to gen_client, we have made it possible for STREAM to

process live network traffic online. In addition, we have implemented a packet cap-

turing system that capture packets, extracts header field values from TCP/IP packets,

creates a tuple based on these values, and sends these tuples to STREAM. We have

also implemented an experimental setup that allows measurements of STREAMs per-

formance. This experimental setup includes several scripts allowing the execution of

a number of experiments in an automatic manner.

8.3.3 Performance Evaluation

We designed several experiments that we used to measure STREAM’s performance

and investigate aspects within STREAM. The specific impact query complexity and

relation size have on STREAM’s performance was investigated. Furthermore, we

created some experiments that examined the importance of optimising queries by

hand, prior to executing them in STREAM. Finally, the performance of STREAM

167

when processing script files of different complexity and number of queries was exam-

ined.

8.4 Critical Assessment

Our initial work was related to the first STREAM prototype released, and we soon

implemented pushing of live network data into it. However, after some months, a

new STREAM prototype was released. We decided to use the newest prototype in

our thesis, because it included bug fixes and new operators. Consequently, we had to

get familiar with this release and re-implement the live data streaming, because the

external interface was altered in the newest prototype.

We have used the term “relatively straightforward” to describe the implementation of

some continuous queries. This is relative to the most complex queries we have de-

signed. All queries are designed through several iterations. As our understanding of

the continuous query semantics have increased we have realised that earlier solutions

are incorrect. Our experience is that semantics of continuous queries are difficult, and

that it is a gradual process to gain a sufficient understanding of the subject.

The network traffic produced when we use TG as a traffic generator consists of pack-

ets of varying sizes. The reason for this is that TG does not turn of the TCP Nagel

algorithm, which delays messages in order to assemble several messages in one

packet. This algorithm may be deactivated setting the NO_DELAY flag. In addition,

the TG server consumes a considerable amount of CPU resources during a couple of

seconds approximately every 120 seconds. Over time, we consider this consumption

insignificant. We understand that we should have implemented our own traffic gen-

erator in order to avoid these problems. However, this was never a subject, because of

time constraints related to the project.

Compared to the real world, we have executed the experiments in a restricted envi-

ronment. The reason for this is that we want to execute all experiments in as equal as

possible environments. We have selected parameters as neutral as possible, because

168

we may easily produce an environment that would have resulted in “better” or

“worse” results for STREAM. Two important parameters in this matter are number of

attributes and packet size. Many of the attributes in the input stream are never queried

and by reducing the number of attributes, we would reduce the load of data into

STREAM. In addition, using a large packet size would lead to fewer packet headers

on the network and in turn fewer tuples in STREAM.

8.5 Future Work

The work we have done in this thesis is merely a beginning within this field of re-

search. Consequently, research may take many possible future directions. In this sec-

tion, we describe some of the directions this research may take.

Performance Improvement
To become more applicable as a network monitoring tool, STREAM needs to have a

relative throughput of 100 % at much higher network loads. Several steps may be

taken to achieve this.

• It is possible to reduce the amount of data pushed into STREAM by only in-

cluding the most relevant header fields in the tuples. It may also be possible to

implement some kind of filtering at the NIC.

• Some queries produce an enormous amount of output. For example, queries

that use Rstream and the GROUP BY clause over large windows may cause

a high output every second, especially if the stream contains many groups. If

the results of these queries are written to file, this may lead to much disk I/O,

which is extremely expensive. Consequently, performance may be improved if

query results are streamed to e.g. a program that displays the results for in-

stance graphically instead of writing the query results to file.

169

• The functionality we have implemented in Fyaf may be integrated in

gen_client to capture packets directly into the system. This would remove the

TCP connection between Fyaf and STREAM.

• We have not tried to find the best configuration of the system by tuning the

configuration file. STREAM’s performance may be improved by doing this.

Tumbling Windows
Another factor that probably would improve performance is the implementation of

tumbling windows. In Section 7.5, we discussed what impact window sizes might

have with respect to query complexity. By comparing the windows used in Task 1

and Task 3 we illustrated how many tuples these windows might contain. If

STREAM supported tumbling windows, we might reduce the number of tuples in

Task 3’s window substantially by, firstly, aggregating tuples in small windows and,

secondly, in a window, with a size corresponding to the task, aggregating the tuples

produced by the first window. In terms of optimizing, this would be like “pushing

aggregations” down the query tree. However, this does not apply to the operator AVG.

In order to calculate average, the operators COUNT and SUM must be utilised. In order

to count the tuples, the small window should use the COUNT operator and the larger

window should use the SUM operator. The three other aggregating operators may be

used in both windows. In queries containing a GROUP BY clause, the gain in per-

formance much depends on how many groups are represented in the stream. With

sliding windows, pushing aggregations into smaller windows would lead to incorrect

results, because of the redundancy introduced by this window type. In sliding win-

dows, each tuple contributes to the results several times.

Approximation
In the current STREAM prototype, no approximation techniques are implemented.

To preserve a certain correctness of query results as system resources are exceeded, it

is necessary with techniques that drop packets or tuples in a controlled manner. In

general, approximation techniques reduce data by using summary structures. Exam-

170

ples of such techniques are samples, histograms, and wavelets. An appropriate ap-

proximation technique should be implemented in STREAM.

Distributed Stream Processing
In the current thesis, we have considered a DSMS where all data collection and proc-

essing take place in a single computer. In many applications, the stream data is actu-

ally produced at distributed sources and sent to a centralised DSMS. Examples of

such data are the router forwarding tables and configuration data produced at routers.

Moving some processing to the sources instead of moving data to a central system

may lead to a more efficient use of processing and network resources.

171

Bibliography

Abadi, D. J., Carney, D., Cetintemel, U., Cherniack, M., Convey, C., Lee, S., Stone-
braker, M., Tatbul, N., and Zdonik, S. Aurora: a New Model and Architecture
for Data Stream Management. International Journal on Very Large Data
Bases 12(2), pp. 129-139, August 2003.

Anonymous. Stream Query Repository: Network Traffic Management, 2002.

http://www-db.stanford.edu/stream/sqr/netmon.html.

Anonymous. STREAM: The Stanford Stream Data Manager. User Guide and Design

Document, 2004. http://www-db.stanford.edu/stream/code/user.pdf.

Arasu, A., Babcock, B., Babu, S., Cieslewicz, J., Datar, M., Ito, K., Motwani, R.,

Srivastava, U., and Widom, J. STREAM: The Stanford Data Stream Manage-
ment System. Technical Report, 2004a.

Arasu, A., Babcock, B., Babu, S., Datar, M., Ito, K., Motwani, R., Nishizawa, I.,

Srivastava, U., Thomas, D., Varma, R., and Widom, J. STREAM: The Stan-
ford Stream Data Manager. IEEE Data Engineering Bulletin 26(1), pp. 19-26,
March 2003a.

Arasu, A., Babu, S., and Widom, J. The CQL Continuous Query Language: Semantic

Foundations and Query Execution. Technical Report, Stanford University,
2003b.

Arasu, A. and Widom, J. A Denotational Semantics for Continuous Queries Over

Streams and Relations. SIGMOD Record 33(3), pp. 6-11, September 2004b.

Avnur, R. and Hellerstein, J. Eddies: Continuously Adaptive Query Processing. In

Proceedings of the ACM SIGMOD International Conference on Management
of Data, Dallas, Texas, USA, May 2000.

Babcock, B., Babu, S., Datar, M., Motwani, R., and Widom, J. Models and Issues in

Data Stream Systems. In Proceedings of the 21st ACM SIGMOD-SIGACT-

http://www-db.stanford.edu/stream/sqr/netmon.html
http://www-db.stanford.edu/stream/code/user.pdf

172

SIGART Symposium on Principles of Database Systems (PODS 2002), Madi-
son, Wisconsin, USA, June 2002.

Babu, S., Subramanian, L., and Widom, J. A Data Stream Management System for

Network Traffic Management. In Proceedings of the 2001 Workshop on Net-
work-Related Data Management (NRDM 2001), Santa Barbara, California,
USA, May 2001.

Babu, S. and Widom, J. StreaMon: An Adaptive Engine for Stream Query Process-

ing. In Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data, Paris, France, June 2004.

Balazinska, M., Balakrishnan, H., Madden, S., and Stonebraker, M. Fault-Tolerance

in the Borealis Distributed Stream Processing System. In ACM SIGMOD In-
ternational Conference on Management of Data, Baltimore, Maryland, USA,
June 2005.

Case, J., Fedor, M., Schoffstall, M., and Davin, J. RFC 1157 - Simple Network Man-

agement Protocol (SNMP), 1990. http://www.faqs.org/rfcs/rfc1157.html.

Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M. J., Hellerstein, J. M.,

Hong, W., Krishnamurthy, S., Madden, S., Raman, V., Reiss, F., and Shah, M.
TelegraphCQ: Continuous Dataflow Processing for an Uncertain World. In
Proceedings of the 1st Biennial Conference on Innovative Database Research
(CIDR 2003), Asilomar, California, January 2003.

Chen, J., DeWitt, D., Tian, F., and Wang, Y. NiagaraCQ: A Scalable Continuous

Query System for Internet Databases. In Proceedings of ACM SIGMOD Inter-
national Conference on Management of Data, Dallas, Texas, USA, May 2000.

Chong, C.-Y. and Kumar, S. Sensor Networks: Evolution, Opportunities, and Chal-

lenges. IEEE Special Issue on Sensor Networks and Applications 91(8), pp.
1247-1256, August 2003.

Clausen, T. and Jacquet, P. RFC 3626 - Optimized Link State Routing Protocol

(OLSR), 2003. http://www.faqs.org/rfcs/rfc3626.html.

Corson, S. and Macker, J. RFC 2501 - Mobile Ad hoc Networking (MANET): Rout-

ing Protocol Performance Issues and Evaluation Considerations, 1999.
http://www.faqs.org/rfcs/rfc2501.html.

Cortes, C., Fisher, K., Pregibon, D., Rodgers, A., and Smith, F. Hancock: A Lan-

guage for Extracting Signatures from Data Streams. In Proceedings of the 6th
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, Boston, Massachusetts, USA, August 2000.

http://www.faqs.org/rfcs/rfc1157.html
http://www.faqs.org/rfcs/rfc3626.html
http://www.faqs.org/rfcs/rfc2501.html

173

Cranor, C. D., Gao, Y., Johnson, T., Shkapenyuk, V., and Spatscheck, O. Gigascope:
High Performance Network Monitoring with an SQL Interface. In Proceed-
ings of the 21st ACM SIGMOD International Conference on Management of
Data / Principles of Database Systems, Madison, Wisconsin, USA, June 2002.

Culler, D. E., Hill, J., Buonadonna, P., Szewczyk, R., and Woo, A. A Network-

Centric Approach to Embedded Software for Tiny Devices. In Proceedings of
the First International Workshop on Embedded Software (EMSOFT), Tahoe
City, California, USA, October 2001.

Eisenberg, A. and Melton, J. SQL:1999, Formerly Known as SQL3. SIGMOD Re-

cord 28(4), pp. 131-138, March 1999.

Garcia-Molina, H., Ullman, J. D., and Widom, J. Database Systems: The Complete

Book. 1st ed. 1119 pages. Prentice Hall, Inc, Upper Saddle River, New Jersey,
2002.

Gehrke, J., Korn, F., and Srivastava, D. On Computing Correlated Aggregates over

Continual Data Streams. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, Santa Barbara, California, USA, May
2001.

Gehrke, J. and Madden, S. Query Processing in Sensor Networks. IEEE Pervasive

Computing 3(1), pp. 46-55, January-March 2004.

Geraci, A., Katki, F., McMonegal, L., Meyer, B., and Porteous, H. IEEE Standard

Computer Dictionary: A Compilation of IEEE Standard Computer Glossaries.
92 ed. 217 pages. IEEE, 1991.

Goebel, V. and Plagemann, T. Data Stream Management Systems - a Technology for

Network Monitoring and Traffic Analysis? In Proceedings of the 8th Interna-
tional Conference on Telecommunications (ICT 2005), Zagreb, Croatia, June
2005.

Golab, L. and Özsu, M. T. Issues in Data Stream Management. SIGMOD Record

32(2), pp. 5-14, June 2003.

Grossglauser, M. and Rexford, J. Passive Traffic Management for IP Operations. The

Internet as a Large-Scale Complex System (K. Park and W. Willinger eds.),
Oxford University Press, 2002.

Hussain, A., Bartlett, G., Pryadkin, Y., Heidemann, J., Papadopoulos, C., and

Bannister, J. Experiences with a Continuous Network Tracing Infrastructure.
In Proceeding of the ACM SIGCOMM 2005 Workshop on Mining Network
Data (Mine-Net 2005), Philadelphia, Pennsylvania, USA, August 2005.

174

Jacobson, V., Braden, R., and Borman, D. RFC 1323 - TCP Extensions for High Per-
formance, 1992. http://www.faqs.org/rfcs/rfc1323.html.

Jain, R. The Art of Computer Systems Performance Analysis. 1st ed. 685 pages. John

Wiley & Sons, Inc., New York, 1991.

Johnson, T. and Chatziantoniou, D. Extending Complex Ad Hoc OLAP. In Proceed-

ing of the Eight ACM International Conference on Information and Knowl-
edge Management (CIKM 1999), Kansas City, Missouri, USA, November
1999.

Johnson, T., Muthukrishnan, S., Spatscheck, O., and Srivastava, D. Streams, Security

and Scalability. In Proceeding of the 19th Annual IFIP WG 11.3 Working
Conference on Data and Applications Security (DBSec 2005), Storrs, Con-
necticut, USA, August 2005.

Krämer, J. and Seeger, B. A Temporal Foundation for Continuous Queries over Data

Streams. In Proceedings of the Eleventh International Conference on Man-
agement of Data (COMAD 2005), Goa, India, January 2005.

Madden, S. and Franklin, M. J. Fjording the Stream: An Architecture for Queries

Over Streaming Sensor Data. In Proceedings of the 18th International Confer-
ence on Data Engineering (ICDE 2002), San Jose, California, USA, February
2002.

Madden, S., Franklin, M. J., Hellerstein, J. M., and Hong, W. TinyDB: An Acquisi-

tional Query Processing System for Sensor Networks. ACM Transactions on
Database Systems 30(1), pp. 122-173, 2005.

McKenney, P. E., Lee, D. Y., and Denny, B. A. Traffic Generator Software Release

Notes, 2002. http://www.postel.org/tg/tg2002.pdf.

Montenegro, G., Dawkins, S., Kojo, M., Magret, V., and Vaidya, N. RFC 2757 -

Long Thin Networks, 2000. http://www.faqs.org/rfcs/rfc2757.html.

Motwani, R., Widom, J., Arasu, A., Babcock, B., Babu, S., Datar, M., Manku, G.,

Olston, C., Rosenstein, J., and Varma, R. Query Processing, Resource Man-
agement, and Approximation in a Data Stream Management System. In Pro-
ceedings of the 2003 Conference on Innovative Data Systems Research (CIDR
2003), Asilomar, California, USA, January 2003.

Plagemann, T., Goebel, V., Bergamini, A., Tolu, G., Urvoy-Keller, G., and Biersack,

E. W. Using Data Stream Management Systems for Traffic Analysis - a Case
Study. In Proceedings of the 5th International Workshop on Passive and Ac-
tive Network Measurement (PAM 2004), Antibes Juan les Pins, France, April
2004.

http://www.faqs.org/rfcs/rfc1323.html
http://www.postel.org/tg/tg2002.pdf
http://www.faqs.org/rfcs/rfc2757.html

175

Plummer, D. C. RFC 826 - Ethernet Address Resolution Protocol: Or Converting

Network Protocol Addresses to 48.bit Ethernet Address for Transmission on
Ethernet Hardware, 1982. http://www.faqs.org/rfcs/rfc826.html.

Postel, J. RFC 791 - Internet Protocol, 1981a. http://www.faqs.org/rfcs/rfc791.html.

Postel, J. RFC 793 - Transmission Control Protocol, 1981b.

http://www.faqs.org/rfcs/rfc793.html.

Siekkinen, M. Measuring the Internet: State of the Art and Challanges, Guest Lec-

ture, inf5090, Spring 2006, Department of Informatics, University of Oslo,
2006.

Spognardi, A., Lucarelli, A., and Pietro, R. D. A Methology for P2P File-Sharing

Traffic Detection. In Proceedings of the Second International Workshop on
Hot Topics in Peer-to-Peer Systems (HOT-P2P), San Diego, California, USA,
July 2005.

Srivastava, U. and Widom, J. Flexible Time Management in Data Stream Systems. In

Proceedings of the 23rd ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems (PODS 2004), Paris, France, June 2004.

Søberg, J. Design, Implementation, and Evaluation of Network Monitoring Tasks

with the TelegraphCQ Data Stream Management System. Master's thesis, De-
partment of Informatics, University of Oslo, Oslo. Feb. 2006.

Tanenbaum, A. S. Computer Networks. 4th ed. 891 pages. Prentice Hall PTR, Upper

Saddle River, NJ, 2003.

Terry, D., Goldberg, D., Nichols, D., and Oki, B. Continuous Queries over Append-

only Databases. In Proceedings of ACM SIGMOD International Conference
on Management of Data, San Diego, California, USA, June 1992.

Yao, Y. and Gehrke, J. E. Query Processing for Sensor Networks. In Proceedings of

the 2003 Conference on Innovative Data Systems Research (CIDR 2003), Asi-
lomar, California, USA, January 2003.

Zdonik, S., Stonebraker, M., Cherniack, M., Cetintemel, U., Balazinska, M., and

Balakrishnan, H. The Aurora and Medusa Projects. In Bulletin of the Techni-
cal Committee on Data Engineering, IEEE Computer Society, March 2003.

Zhu, Y. and Shasha, D. StatStream: Statistical monitoring of thousands of data

streams in real time. In Proceedings of the 28th International Conference on
Very Large Data Bases (VLDB), Hong Kong, China, August 2002.

http://www.faqs.org/rfcs/rfc826.html
http://www.faqs.org/rfcs/rfc791.html
http://www.faqs.org/rfcs/rfc793.html

176

177

Appendix A

Acronyms

ADC Analogue to Digital Converter

ARP Address Resolution Protocol

AS Autonom System

CPU Central Processing Unit

CQ Continuous Query

CQL Continuous Query Language

DBMS Database Management System

DoS Denial-of-Service

DSMS Data Stream Management System

FTP File Transfer Protocol

HTTP Hypertext Transfer Protocol

IP Internet Protocol

IPv4 Internet Protocol, Version 4

IPv6 Internet Protocol, Version 6

ISP Internet Service Provider

LAN Local Area Network

MANET Mobile Ad Hoc Networking

MTU Maximum Transmission Unit

178

NIC Network Interface Card

OLSR Optimised Link State Protocol

P2P Peer-to-Peer

RAM Random Access Memory

RTO Retransmission Timeout

RTT Round Trip Time

SNMP Simple Network Management Protocol

TCP Transport Control Protocol

UDP User Datagram Protocol

WAP Wireless Application Protocol

179

Appendix B

DVD

Enclosed to the thesis is a DVD that contain such as scripts, experiment results, pre-

liminary tests, and offline tests. A graphical illustration of the content structure on the

DVD is presented in Figure 38 below. The different directories have content as de-

scribed in the following.

• Design contains one sub-directory for each of the queries designed in Section

5.2, except for the tasks in Section 5.2.5 and Section 5.2.10, which was not

possible to solve with continuous queries in STREAM. Each sub-directory

contains results from the offline tests that confirmed the correctness of the

queries.

• Experiments contains four sub-directories; performance, preliminary, queries,

and results. These the contents of the sub-directories are described in the fol-

lowing. The performance directory contains such as figures and scripts gener-

ating these figures for all the six experiments described in Section 7.4. The

preliminary directory contains for instance scripts for the tests performed prior

to the experiments. These tests are described in Section 6.4. The queries direc-

tory contains script files describing the queries used in the six experiments.

The results directory contains results from all experiments.

• STREAM contains one tar-file for STREAM-0.6.0 and one tar-file with the

changes done to gen_client in order to allow a live data source.

• Scripts contains two sub-directories; computerA and computerB. These direc-

tories contains the different scripts described in Section 6.3.3.

In addition to these the directories described above, we have enclosed the a PDF file

containing the thesis.

Figure 38. Content structure of the DVD enclosed to the thesis

180

	1. Introduction
	1.1 Motivation and Background
	1.2 Problem Description
	1.3 Outline
	2. Streaming Applications
	2.1 Sensor Networks
	Sensor Network Applications
	2.1.2 Limitations of Sensors

	2.2 Push-Based Applications
	2.2.1 Network Monitoring
	Network Traffic Measurement
	Network Traffic Analysis
	Traffic Characterisation and Modelling
	Network Characterisation and Modelling
	Anomaly Detection

	2.2.2 Transaction Logs
	2.2.3 Financial Tickers

	2.3 Requirements Analysis
	2.3.1 Sensor Networks
	2.3.2 Network Monitoring

	3. Data Stream Management Systems
	3.1 Introduction
	3.2 Database Management Systems
	One-pass algorithms
	Two-pass algorithms
	Multi-pass algorithms

	3.3 Data Stream Management Systems
	Issues in Data Stream Management Systems
	3.4.1 Continuous Queries and Time Windows
	3.4.2 The CQ’s Building Blocks
	Landmark Window
	Sliding Window
	Jumping Window
	Tumbling Window

	3.4.3 Approximation and Optimisation
	Approximation
	Optimisation and Adaption

	3.4.4 Query Languages
	3.4.5 Examples of DSMSs
	Aurora and Medusa
	Borealis
	Gigascope
	Niagara
	STREAM
	TelegraphCQ

	4. STREAM
	4.1 The Continuous Query Language (CQL)
	4.1.1 Streams and Relations
	4.1.2 Abstract Semantics
	4.1.3 Continuous Query Language
	Stream-to-Relation Operators
	Time-Based Sliding Window
	Tuple-Based Sliding Window
	Partitioned Sliding Windows

	Relation-to-Relation Operators
	Relation-to-Stream Operators

	4.1.4 CQL Syntax
	4.1.5 Examples of CQL Queries
	Example 1
	Example 2

	4.2 An Architectural Overview of STREAM
	4.2.1 High-Level System Architecture
	The STREAM System Interface
	4.2.3 Query Plan
	Example Query Plan

	4.3 Concepts
	4.3.1 Internal Representation of Streams and Relations
	4.3.2 Query Plans
	Operators
	Queues
	Synopses

	4.3.3 Performance Issues
	Resource Sharing
	Queue Sharing
	Synopsis Sharing

	Exploiting Constraints
	Operator Scheduling

	4.3.4 Adaptivity
	Approximation
	Memory-Limited Approximation
	CPU-Limited Approximation

	4.4 How to Use STREAM
	4.4.1 Gen_client
	4.4.2 The Configuration File
	4.4.3 The Scipt File
	4.4.4 Table Source
	Stream Source
	Relation Source

	5. Query Design
	5.1 The Input Stream S
	5.1.1 IP Addresses
	Processing Time
	Applicability
	Conclusion

	5.1.2 Control Flags
	Memory Usage
	Processing Time
	Conclusion

	5.1.3 Option Fields
	5.1.4 Definition of Stream S

	5.2 Solving Network Monitoting Tasks
	5.2.1 What is the average network load measured in bytes per second?
	5.2.2 What is the network load measured in packets per minute?
	5.2.3 How many packets have been sent during the last five minutes to certain ports?
	5.2.4 How many bytes have been exchanged on each connection during the last minute?
	5.2.5 How many bytes are exchanged over the different connections during each week?
	5.2.6 How much load on the university backbone have each department used within the past five minutes?
	5.2.7 What is the load on the network measured in connections per minute?
	5.2.8 How often are HTTP and FTP ports contacted?
	5.2.9 During the past minute, which connection contains most packets and how many packets does it contain?
	5.2.10 How long does a connection last?
	5.2.11 For each pair of source and destination IP addresses, how many percent of the total load has it occupied during the past five minutes?
	5.2.12 Identify TCP SYN packets for which a SYN/ACK was sent, but no ACK was received within a specified bound of two minutes on the TCP handshake completion latency.

	6. System Implementation
	6.1 Live Data Source
	6.2 Packet Capturing
	6.3 Experiment setup
	6.3.1 Experiment architecture
	Computers
	6.3.3 Programs
	TG
	Fyaf
	Scripts
	System Monitors

	6.4 Preliminary Tests
	6.4.1 Network load
	Packet Size
	Fyaf Capacity
	Accuracy of Fyaf and STREAM
	Query 1
	Query 2

	System Resource Consumption

	7. Performance Evaluation
	7.1 Metrics
	7.2 Factors
	7.3 Workload
	7.4 Experiments
	7.4.1 Experiments with Queries Processed Seperately
	Queries with Different Complexity
	Design
	Results
	Conclusion

	Joining Streams with Relations of Different Sizes
	Design
	Results
	Conclusion

	Optimising Queries by Pushing Projections Down the Query plan
	Design
	Results
	Conclusion

	7.4.2 Experiments with Queries Processed Concurrently
	Sharing Resources
	Design
	Sharing Resources between the Different Versions of Task 3
	Sharing Resources between Task 4 and Task 7

	Results
	Sharing Resources between the Different Versions of Task 3
	Sharing Resources between Task 4 and Task 7

	Conclusion

	Concurrency with Varying Number of Queries and Complexity
	Design
	Results
	Conclusion

	7.5 Discussion and comparison

	8. Conclusions
	8.1 Query Design
	8.2 Performance Evaluation
	8.3 Contributions
	8.3.1 Query Design
	8.3.2 System Implementation
	8.3.3 Performance Evaluation

	8.4 Critical Assessment
	8.5 Future Work
	Performance Improvement
	Tumbling Windows
	Approximation
	Distributed Stream Processing

