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Abstract

Background: Evidence-based medicine propagates that medical/clinical decisions are made by taking into account
high-quality evidence, most notably in the form of randomized clinical trials. Evidence-based decision-making
requires aggregating the evidence available in multiple trials to reach –by means of systematic reviews– a conclusive
recommendation on which treatment is best suited for a given patient population. However, it is challenging to
produce systematic reviews to keep up with the ever-growing number of published clinical trials. Therefore, new
computational approaches are necessary to support the creation of systematic reviews that include the most
up-to-date evidence.
We propose a method to synthesize the evidence available in clinical trials in an ad-hoc and on-demand manner by
automatically arranging such evidence in the form of a hierarchical argument that recommends a therapy as being
superior to some other therapy along a number of key dimensions corresponding to the clinical endpoints of interest.
The method has also been implemented as a web tool that allows users to explore the effects of excluding different
points of evidence, and indicating relative preferences on the endpoints.

Results: Through two use cases, our method was shown to be able to generate conclusions similar to the ones of
published systematic reviews. To evaluate our method implemented as a web tool, we carried out a survey and
usability analysis with medical professionals. The results show that the tool was perceived as being valuable,
acknowledging its potential to inform clinical decision-making and to complement the information from existing
medical guidelines.

Conclusions: The method presented is a simple but yet effective argumentation-based method that contributes to
support the synthesis of clinical trial evidence. A current limitation of the method is that it relies on a manually
populated knowledge base. This problem could be alleviated by deploying natural language processing methods to
extract the relevant information from publications.
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Background
The evidence-basedmedicine (EBM) paradigm fosters the
use of the best available evidence when making decisions
in treating individual patients [1]. Best evidence mainly
refers to the evidence in the form of randomized clini-
cal trials (RCTs) (Cf. GRADE guidelines [2]). Identifying
such best evidence requires the aggregation of the infor-
mation from multiple clinical trials, an activity that is
typically performed in the form of systematic reviews
and/or meta-analyses [3]. Yet, the process of extracting
and aggregating evidence from multiple published trials
represents a significant effort.
In order to help reduce the effort in aggregating evi-

dence as a crucial step in elaborating a systematic review,
in this paper we present an argument-based approach that
automatically generates a conclusion from a given body of
semantically captured clinical trials. The main goal of a
systematic review is to identify which of a number of exist-
ing treatments is superior to other treatments. Therefore,
our methodology automatically generates a conclusion
together with a justification in how far one treatment can
be seen as superior to another one, where the backing
evidence comes from a knowledge base in which clinical
trials are semantically described. The conclusion and cor-
responding justification are provided in the form of a tree
consisting of an overall conclusion on the superiority of
one treatment over another at the root of the tree, and
interim conclusions regarding the hierarchically ordered
sub-dimensions along which the treatments can be com-
pared. The sub-dimensions are ordered in a dimension
tree in which the nodes correspond to standard primary
and secondary endpoints considered in a given therapy
area (e.g., safety → hypoglycemia → nocturnal hypo-
glycemia). Our proposed methodology generates such a
hierarchical, tree-shaped argument from a given knowl-
edge base automatically, but most importantly makes the
process of generating such a conclusion interactive and
dynamic. By changing the weights, and thus the relative
importance of each comparative dimension (e.g., weight-
ing safety higher than efficacy), a user can perform a
sensitivity analysis to understand under which condi-
tions and assumptions a certain treatment can be assumed
to be superior to another one. Themethod is also dynamic
in the sense that it can incorporate new evidence as it
becomes available instantly, and the users can inspect
how the newly added evidence affects the overall con-
clusion. We thus call our method Dynamic Interactive
Argumentation Trees (DIAeT).
Little work exists on addressing reasoning through argu-

mentation on the analysis and synthesis of clinical trial
information. There have been efforts on using argumenta-
tion theory in the biomedical domain that rather focus on
decision-making and the explanation of individual treat-
ments (e.g., [4, 5]), but not on the synthesis of information

of various clinical trials. The argumentation approach of
Hunter and Williams [6] is the closest to the goal of our
method of supporting the synthesis of clinical trial evi-
dence and generating conclusions in different scenarios
considering the expert users’ preferences on the studied
clinical trial endpoints. Hunter and Williams’ approach
is a formal framework that uses an abstract argumen-
tation model to generate and aggregate arguments for
claiming superiority of treatments based on the provided
evidence, and considering preferences over the outcome
indicators. The framework consists of a directed graph
where the nodes are arguments and the arrows are attack
relations. The groups of non-conflicting arguments are
formed by accepting/rejecting arguments according to a
defined semantics of acceptance. The evidence consists of
relative risk values for clinical outcome indicators (or end-
points) with respect to the outcomes and side effects of
the applied drug treatments (or control) for a given health
problem.
In contrast to Hunter and Williams’ approach, our

method does not rely on abstract argumentation but
rather on Toulmin-style argumentation [7], which is a
practical approach to argumentation by focusing on the
justificatory aspects, such that no explicit distinction
between attacking and supporting arguments is needed.
Other methods to synthesize clinical trial evidence that

do not follow an argumentation-based approach use sta-
tistical approaches. For example, the Aggregation Data
Drug System (ADDIS) [8] supports the generation of
network meta-analyses through statistical methods (e.g.,
Bayesian meta-analysis) and the quantitative benefit-risk
analysis of treatments (e.g., using stochastic simulation).
ADDIS relies on a data model in XML format that does
not fully model clinical trials but supports evidence syn-
thesis. It also counts on a semi-automatic procedure
to import clinical trial information from existing data
sources into their XML model. Our approach differs from
ADDIS in that it does not apply statistical methods to
determine the superiority of treatments. Instead, it uses
argument concepts to infer conclusions on the superiority
of therapies that can be further analyzed by expert users.
Besides, our method uses a knowledge base that semanti-
cally represents the clinical trials and that allows querying
such information more richly than in XML data sources.
While ADDIS and Hunter and Williams’ framework are

formally rigorous, we believe that the conceptual sim-
plicity of our method is a useful feature as it is easy
to adapt to other types of interventions and health con-
ditions and it is straightforward to specify preferences
between dimensions via weights on the single dimensions.
In this paper, we describe the method sketched above

for the automatic generation of conclusions that summa-
rize the evidence available in a set of clinical trials. We
describe the method technically, in particular showing
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that it supports sensitivity analysis. As a proof-of-concept,
we demonstrate that the main conclusions of two pub-
lished systematic reviews can be reproduced with our
approach. We further present the results of a usability
study showing that medical practitioners find the tool
easy to use, and they understand how conclusions are
generated from the available evidence.

Method
Our method generates a conclusion from the existing evi-
dence with respect to the superiority of a given treatment
in comparison to another treatment. While we focus on
the direct comparison between two treatments in our
exposition of the method, the approach can be extended
to comparing multiple treatments.
The conclusion generated has the form of a tree in the

sense that it consists of an overall conclusion about the
superiority of the treatment at the root level which points
to several children representing the (interim) conclusions
for specific comparison criteria. Take the following exam-
ple of an automatically generated conclusion comparing
two types of insulin, the Neutral Protamine Hagedorn
insulin (NPH) and insulin glargine (IGlar) as treatments
for Type 2 Diabetes Mellitus (T2DM):

�→ IGlar is overall superior to NPH insulin in terms of
safety (considering nocturnal hypoglycemia) and
efficacy (considering HbA1c reduction) when
weighted equally.

⇒ IGlar is superior to NPH insulin in terms of efficacy.

→ Benedetti et al. [9] show that IGlar is superior
to NPH insulin in reducing HbA1c.

→ Hsia et al. [10] show that IGlar is NOT
superior to NPH insulin in reducing HbA1c.

→ “n other arguments from corresponding
studies” show that IGlar is superior to NPH
insulin in reducing HbA1c.

⇒ IGlar is superior to NPH insulin in terms of safety.

→ Benedetti et al. [9] shows that IGlar is
superior to NPH insulin in terms of nocturnal
hypoglycemia.

→ No study shows that IGlar is NOT superior to
NPH insulin in terms of nocturnal
hypoglycemia.

→ “n other arguments from corresponding
studies” show that IGlar is superior to NPH
insulin in terms of nocturnal hypoglycemia.

The overall conclusion (pointed with �→) claims the
superiority of IGlar with respect to NPH insulin when
efficiency and safety are weighted equally. As a justifi-
cation of this overall conclusion, we have the (interim)

conclusions/arguments claiming superiority of IGlar with
respect to NPH insulin in terms of safety and efficacy,
respectively (pointed with ⇒). As a child of the (interim)
conclusion claiming the superiority of IGlar compared to
NPH insulin with respect to efficacy, we have an argument
claiming superiority of IGlar compared to NPH insulin
in terms of higher effectiveness in reducing HbA1c. As
a child of the (interim) conclusion regarding the superi-
ority of IGlar compared to NPH insulin regarding safety,
we have an (interim) conclusion that IGlar is superior to
NPH insulin regarding the reduction of nocturnal hypo-
glycemia. Finally, the children of the last two (interim)
conclusions point to claims in specific publications back-
ing up the claim of superiority with respect to higher
effectiveness in reducing HbA1c as well as reducing cases
of nocturnal hypoglycemia. Each node in the argumenta-
tion tree thus represents an (intermediate) conclusion that
is justified by the nodes below, until reaching the claims
of specific publications. The specific conclusions derived
from claims of specific publications are called Atomic
Arguments while the arguments generated by our method
and aggregating the results across clinical trials are called
Aggregated Arguments.
The method relies on a knowledge base in which all

relevant trials have been semantically described in the
Resource Description Framework (RDF) following the
C-TrOOntology [11]. We note that any other correspond-
ingly expressive ontology could be used. The argumenta-
tion tree is computed using a recursive procedure starting
from the root of the tree, invoking procedures to gen-
erate the children arguments recursively. Thus, the first
arguments/conclusions that are generated are the atomic
arguments, with information flowing up to higher levels
of the tree where the information is aggregated.
In the following, we first describe the C-TrO ontology

and how it is used in our approach to semantically capture
the results from clinical trials in a knowledge base. We
further describe the procedure for automatically generat-
ing the Dynamic Interactive Argumentation Tree (DIAeT)
representing the hierarchical conclusion on the basis of
the given knowledge base. We present the relevant defini-
tions and other important concepts needed to expose our
approach before describing the method formally. We also
hint at requirements that NLPmethods that automatically
extract evidence from publications need to fulfill.

The C-TrO ontology and knowledge base
In order to provide a proof-of-concept for our method,
we have manually populated an RDF knowledge base fol-
lowing the structure of the C-TrO ontology [11]. Existing
clinical ontologies [12–15] have been designed to sup-
port the searching, question formulation, and retrieval
of evidence from the scientific literature, and focus on a
coarse-grained representation of the PICO elements. For
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example, in the PICO ontology [14], the outcomes are rep-
resented as textual descriptions but not in more detail
as numerical values for each result of the interventions.
Although the Study Cohort Ontology (SCO) [15] con-
siders some pertinent entities for clinical trials such as
diseases, drugs, and populations, it does not include all the
entities and relationships useful for clinical trial synthesis
(e.g., quantitative results of endpoints). In contrast, C-TrO
was designed to support the aggregation/synthesis of clin-
ical evidence. It describes fine-grained information about
results comparing a certain interventional group (or arm)
to a baseline condition and allowing to claim differences
from the mean, reductions, size-of-effect, etc. Figure 1
shows the schema of C-TrO used in this work.
C-TrO has been developed as a general schema to rep-

resent the design and results of clinical studies, and it is
independent of a particular data source. We used Protégé
[16] to populate the C-TrO knowledge base by manually
extracting the information from the clinical trials studied
in the meta-analyses on glaucoma and on T2DM that are
included in the use cases presented later. As a result, the
information of the relevant clinical trials is captured in the
form of RDF triples in the knowledge base. The example
in Fig. 2 illustrates part of the description of the results
in a published clinical trial on glaucoma [17] (PMID
8628544) that has been formalized in the knowledge base.
An excerpt of the triple representation describing the cor-
responding study in RDF is given in Table 1. The full
RDF file can be downloaded from the repository indicated
in “Availability of Data and Materials”. Once the informa-
tion is in the knowledge base, the method, implemented
as a tool, retrieves the information with a SPARQL query
formed according to the parameters selected in the user

interface (see Table 2). The retrieved information is the
base evidence used in the construction of the DIAeTs.

Natural language processing (NLP) requirements
While we have modeled the evidence manually for this
work, the option of applying NLP methods to extract
the evidence from publications automatically is appeal-
ing. However, there are a number of requirements to
be fulfilled by such NLP methods to be applicable in
our context. Such methods should be able to generate
a machine-readable representation of a publication that
comprises the study design, population characteristics,
in particular the condition, inclusion and exclusion cri-
teria, age of participants, duration of a study, and most
importantly the arms of the study with the corresponding
treatment information including dosage information, fre-
quency of application, etc. Further, the central outcomes
including values and units need to be extracted for every
endpoint, primary and secondary, comparing the different
arms. Corresponding semantic medical vocabularies such
as the Medical Subject Headings (MeSH) or the Interna-
tional Classification of Diseases (ICD) should be used to
normalize treatments, conditions, etc.

Definition of concepts
Arguments Structured arguments consist of a set of
premises and a conclusion or claim in which the premises
are statements that support the conclusion. In our
approach, arguments represent a valid conclusion about
the superiority of a therapy/intervention that can be
reached on the basis of the clinical trial evidence available
in a given knowledge base. The arguments can be nested
in the sense that each argument consists of a set of

Fig. 1 Diagram of the main classes of C-TrO. Data properties are in green and Object properties in black. The arrows start at the domain classes and
end at the range classes
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Fig. 2 Annotated excerpt from a glaucoma clinical trial. Only the pieces of information related to the latanoprost intervention and one of its
outcomes are annotated for illustrative purposes. (The annotations were made with INCEpTION [31])

premises and a conclusion where each premise itself can
be an argument. In this context, we define an argument A
as a 5-tuple (C, t, {t1, ..., tn}, d, {p1, ..., pm}) where:

• C is a conclusion about the superiority of therapy t
compared to other therapies {t1, ..., tn},

• d is a dimension (i.e., a clinical endpoint) along which
therapy t is compared to the alternative therapies,

• {p1, ..., pm} is a set of premises from which the
conclusion follows. A premise pi can be an argument
or a set of facts from a knowledge base.

For demonstrative purposes, in the remainder of this
article we only consider a singleton set for the competing
therapies, i.e., {t′}. We distinguish between two types of
arguments: Atomic Arguments (AtAs) and Aggregated
Arguments (AgAs).

Atomic Arguments (AtA) represent a single result from
a published clinical trial that warrants a superiority con-
clusion with respect to a specific dimension d. An example
of an atomic argument is in the annotated statement
taken from a published clinical trial (PMID 12734781
[9]) depicted in Fig. 3. This statement claims that insulin
glargine (IGlar) is superior in reducing HbA1c to NPH
insulin, since it decreases the HbA1c levels in a signifi-
cant amount from the baseline (i.e., 0.46 vs 0.38, where
“-” refers to reduction). In this example, the comparative
dimension d is HbA1c reduction.

Aggregated Arguments (AgA) are arguments whose
premises are atomic arguments or other aggregated
arguments, and their conclusion is an aggregated claim.
An example of an aggregated argument would be an

argument generated by considering the results from mul-
tiple papers comparing the IGlar therapy to the NPH
insulin therapy, claiming that in a certain percentage (e.g.,
80%) of studies, it has been demonstrated that IGlar is
superior to NPH insulin in terms of HbA1c reduction.

The dimension tree is a tree that hierarchically encodes
the relevant dimensions to be used to compare to treat-
ments in a tree representation. In the dimension tree,
each node corresponds to a certain dimension (i.e.,
clinical endpoint) that can be used to compare thera-
pies with each other. The dimensions are hierarchically
ordered along the tree in the sense that there is a spe-
cialization/generalization relation between children and
parent nodes. For example, the dimension safety for a

Table 1 Triples corresponding to some information from the
clinical trial PMID 8628544
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Table 2 SPARQL query to retrieve clinical evidence from the C-TrO knowledge base. The values for variables ?drugName1,
?drugName2, ?endpointDesc, and ?AEName are passed from the system

given treatment, could have the sub-dimensions “risk
of mortality”, “mild/high pressure”, and “nausea”. Each
dimension is associated with a weight according to the
importance given to the corresponding clinical endpoint.
The dimension tree is specific to a certain therapeutic

area or indication, representing the community consen-
sus on which endpoints are relevant and accepted as
evidence in clinical trials. An example of a dimension tree
is depicted in Fig. 4.

Degree of confidence Since the clinical trial evidence
may be affected by inconsistencies or contradictions (i.e.,
called ‘attacks’ in the computational argumentation liter-
ature [18]) by other pieces of evidence, the conclusion
about the superiority of one therapy over other thera-
pies may not be unanimously warranted. To address this,
we indicate the degree of confidence to which the conclu-
sion of an argument is warranted by the premises. This
is the certainty/confidence that a certain claim holds by

Fig. 3 Example of an annotated statement that involves an atomic argument. “%" refers to the Diabetes Control and Complications Trial (DCCT) unit
used to measure HbA1c levels. (Annotations made with INCEpTION [31])
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Fig. 4 Example of a dimension tree for glaucoma. The tree contains the dimensions: efficacy, safety, IOP reduction and conjuntival hyperaemia, and
their respective weights

quantifying the number of studies in which the given
results have been shown in relation to the overall number
of studies.
Being �A� the degree of confidence of an argument A,

we compute the degree of confidence for a specific claim
as follows:
For atomic arguments, the degree of confidence �AtA�

is 1 if a certain study claims superiority of t compared
to t′, and 0 otherwise. That is, 1 denotes a supporting
statement, and 0 a contradictory one. For example, when
comparing IGlar to NPH insulin, for the atomic argu-
ment AtA1 “Benedetti et al. [9] show that IGlar is superior
to NPH insulin in reducing HbA1c”, �AtA1� = 1, while
for the atomic argument AtA2 “Hsia et al. [10] show that
IGlar is NOT superior to NPH insulin in reducingHbA1c”,
�AtA2� = 0.
For aggregation arguments, the degree of confidence

written as �AgA� is computed as follows:

�AgA� = 1
Z

∑

Ai∈{A1,...,Ak}
wAi ∗ �Ai� (1)

Where {A1, . . . ,Ak} is the set of arguments to be aggre-
gated, wAi is the weight of the corresponding dimension
(assigned in the dimension tree) for the argumentAi being
aggregated, and the normalization factor Z is:

Z =
∑

Ai∈{A1,...,Ak}
wAi (2)

Note that the weights are non-negative values and
�AgA� ∈[ 1, 0] since the weights are normalized.

Confidence acceptance threshold As in the general case
the evidence can not be assumed to be homogeneous
with studies having contradictory findings, our method

introduces a confidence threshold τ that needs to be
reached or surpassed by the confidence of an aggregation
argument to be accepted. The interpretation of the thresh-
old corresponds to the relative share of clinical studies
that need to agree on a certain result (e.g. superiority of
therapy A compared to B for a specific outcome).
If a user wants to consider only results for which no con-

tradictory evidence exists, then the threshold has to be set
to 1. In the general case, a user can set the threshold to
a value corresponding to the inconsistency he/she is will-
ing to accept regarding the conclusion. The default value
for the threshold is 0.5 (or 50%), indicating that at least
half of clinical trials need to agree on a certain outcome.
A user can set the threshold higher to impose a stricter
requirement on the homogeneity of the evidence.

Construction of a DIAeT
The DIAeT is a tree where the nodes represent arguments
and the edges connect arguments with sub-arguments.
The atomic arguments correspond to the leaf nodes and
the aggregated arguments to the inner nodes. The chil-
dren of a node are sub-arguments (or sub-conclusions)
that occur in the premises of the given argument node.
The construction of the DIAeT is driven by a given

dimension tree and follows a recursive procedure. Each
node recursively calls the procedure that generates sub-
arguments that support the conclusion at the node in
question. The procedure starts at the general conclusion
located at the root node of the argument tree and stops at
the leaf nodes that correspond to atomic arguments.
The end of the recursion coincides with the

generation of as many atomic arguments A
= (C, t, t′, d, factsd(p, t, t′)) for a leaf dimension node d
for each publication p that compares treatments t and t′
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with respect to dimension d, where factsd(p, t, t′) repre-
sents the evidential facts in publication p that justifies the
claim of superiority of t over t′ w.r.t. d.
The depth of the generated argument tree is bound by

the depth of the dimension tree, which is a finite tree.
Therefore, the recursive process can never fall into an end-
less loop and stops at the leaf nodes of the dimension
tree.
The instantiation of atomic arguments follows the supe-

riority criteria defined for each dimension. These criteria
state how superiority is considered based on the evidence
retrieved from the knowledge base. For example, a supe-
riority criterion for the dimension efficacy in the case of
T2DM would be to consider as superior the drug treat-
ment that reduces the highest amount of protein HbA1c.
At an inner node dinner of the dimension tree with chil-

dren d1, ..., dn, an aggregated argument is constructed as
follows:
AgAinner = (Cinner , t, {t′}, dinner , {Ad1 , ...,Adn}), where

Adi are atomic arguments (if di is a leaf dimension) or
aggregated arguments (else). In both cases Adi claims
superiority of treatment t over treatment t′ with respect
to dimension di.
An aggregated argument is accepted if its degree of con-

fidence �AgA� is not less than the user-defined (or default)
acceptance threshold τ . Thus, if the degree of confidence
�AgA� ≥ τ for t, then the conclusion (C) will state that
treatment t is superior to treatment t′ w.r.t. dimension
di. Afterwards, the generated arguments are verbalized by
domain-specific templates. The procedure to construct a
DIAeT is summarized in Algorithm 1.

Example of the construction of a DIAeT
Figure 4 depicts a dimension tree for glaucoma. We can
see that the dimensions IOP reduction and conjunctival
hyperemia have weights of 1 because they are leaf nodes
and therefore there are no other dimensions with which
they could be compared. Next, both efficacy and safety
have weights of 0.5 meaning that both dimensions are
equally important in this example.
Figure 5 depicts the construction of a DIAeT derived

from the dimension tree in Fig. 4. The weight of all the
atomic arguments is 1. The next level in the recursive
process corresponds to the leaf nodes of the dimension
tree (i.e., d4 and d5). For IOP reduction (d4), there are 11
out of the 11 clinical trials that state that latanoprost is
more effective in reducing IOP than timolol, such that
�Ad4� = 1 (i.e., (11/11)). For conjunctival hyperemia
(d5), only in one of the six clinical trials that report this
adverse effect, it was found that fewer patients suffered
conjunctival hyperemia when applying latanoprost, such
that �Ad5� = 0.17 (i.e., (1/6)). Further, �Ad2� = 1 and
�Ad3� = 0.17 because the weights of their children nodes
(d4 and d5 respectively) are 1. Finally, �Ad1� = 0.59 is

Algorithm 1 Construction of a DIAeT for two therapies
Input: Dimension tree DT, dimension node d, therapies t and

t′ to be compared, knowledge base KB, dimension weights
w, acceptance threshold τ

Output: ArgumentA (where C is the conclusion ofA)
1: function CREATEDIAET(DT , d, t, t′,KB, 	w, τ )
2: if leaf(d) then
3: ArgumentSet ← empty
4: Execute query qd over the knowledge base
5: for set of facts f retrieved from the knowledge base

do
6: if t is superior to t′ according to f then
7: score ← 1
8: C ← “t is superior to t′ w.r.t. dimension d

according to f "
9: else

10: score ← 0
11: C ← “t is NOT superior to t′ w.r.t. dimen-

sion d according to f "
12: AtA ← (C, t, t′, d, f )
13: [ [AtA] ]← score
14: ArgumentSet.add(AtA)
15: AgA ← (C, t, t′, d,ArgumentSet)
16: else (d is an inner node of the dimension tree DT)
17: D ← children of dimension d in DT
18: ArgumentSet ← empty
19: score ← 0
20: for dinner ∈ D do
21: Argument ← CREATEDIAET

(DT , dinner , t, t′,KB, 	w, τ )
22: ArgumentSet.add(Argument)
23: score ← score+[ [Argument] ] ∗wdinner
24: score ← score/

∑
i wi

25: if score ≥ τ then
26: C ← “t is superior to t′ w.r.t. dimension d

according to ArgumentSet"
27: else
28: C ← “t is NOT superior to t′ w.r.t. dimension d

according to ArgumentSet"
29: AgA ← (C, t, t′, d,ArgumentSet)
30: [ [AgA] ]← score
31: return AgA

the result of the weighted sum of �Ad2� + �Ad3� (i.e.,
(0.5 ∗ 1) + (0.5 ∗ 0.17) = 0.59)1. We thus obtain the
following conclusions:

• Efficacy: “the evidence shows that latanoprost is
superior to timolol”, as �Ad4� = 1 > 0.5 = τ .

• Safety: “the evidence does not show that latanoprost
is superior to timolol”, as �Ad3� = 0.17 < 0.5 = τ .

1 Note that the normalization factor in our examples is 1 since the sum of the
weights of the sub-dimensions of the given dimensions is always 1 for these
examples.
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Fig. 5 Example of the construction of a DIAeT for glaucoma. The confidence acceptance threshold used in this example is τ = 0.5

• Overall conclusion: “latanoprost is superior to
timolol”, as �Ad1� = 0.59 > 0.5 = τ

Exploration of other scenarios (Sensitivity analysis)
Our approach allows to modify the weights of the dimen-
sions and/or exclude certain evidence points. For example,
studies that are biased or where the methodology applied
is unclear, can be excluded by adjusting the parameters.
One could also explore other scenarios (or “what-if” sim-
ulation) by filtering different criteria, such as publication
year, duration of the study, and number or age of the
participants in the clinical trials.
In the previous example, we could for instance explore

other scenarios by assigning a higher weight of 0.7 to
safety and a lower weight of 0.3 to efficacy. The new
weights would generate different degrees of confidence.
For example, the degree of confidence for Ad1 would be

now �Ad1� = 0.3 ∗ 1 + 0.7 ∗ 0.17 = 0.42, and since
0.42 < 0.5, then the new overall conclusion would be
opposite to the one obtained before:

Overall conclusion: “it can not be concluded that
latanoprost is superior to timolol”, as �Ad1� = 0.42 <

0.5 = τ

Further, if one excludes a study that compares the two
drug treatments but that does not mention any result
about conjunctival hyperemia (e.g., Mishima et al.,1996
in the tool demo), then the degree of confidence of Ad4
would change to 0.9 (i.e., 10/11). In contrast, �Ad5� would
remain the same as 0.17 (i.e., 1/6). As a consequence:
�Ad2� = 0.9, �Ad3� = 0.17, and �Ad1� = 0.53. Thus, the
overall conclusion would change to “latanoprost is supe-
rior to timolol”. Table 3 summarizes the given example

Table 3 Conclusions generated with different settings

Weights No. CTs Conclusions

E50/S50 11/11 Overall: Lat > Tim ; Efficacy: Lat > Tim ; Safety: Lat �> Tim

E70/S30 11/11 Overall: Lat > Tim ; Efficacy: Lat > Tim ; Safety: Lat �> Tim

E30/S70 11/11 Overall: Lat �> Tim ; Efficacy: Lat > Tim ; Safety: Lat �> Tim

E50/S50 10/11 Overall: Lat > Tim ; Efficacy: Lat > Tim ; Safety: Lat �> Tim

E/S stands for efficacy/safety weights, Lat(anoprost), Tim(olol), No. CTs is the number of studies considered out of the total available studies, > means “treatment1 is superior
to treatment2”, and �> means “it can NOT be concluded that treatment1 is superior to treatment2”
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Table 4 Conclusions generated according to different acceptance threshold ranges

Threshold range Overall Conclusion Safety Conclusion Efficacy Conclusion

[ 0, 0.44] IGlar > NPH insuline IGlar > NPH insuline IGlar > NPH insuline

[ 0.45, 0.70] IGlar > NPH insuline IGlar > NPH insuline IGlar �> NPH insuline

[ 0.71, 1] IGlar �> NPH insuline IGlar > NPH insuline IGlar �> NPH insuline

in which we can observe that when safety has a signif-
icantly higher weight than efficacy (e.g., 0.7 vs. 0.3), the
overall conclusion changes to “It cannot be concluded that
latanoprost is superior to timolol”. Otherwise, the con-
clusion indicates that “Overall, the evidence showed that
latanoprost is superior to timolol”, including the case when
one study is excluded.

Different acceptance thresholds
The user can also explore the conclusions generated
according to different acceptance thresholds. For example,
Table 4 shows the conclusions generated according to dif-
ferent threshold ranges. This example compares two kinds
of insulin treatments for a T2DM case, where balanced
dimension weights and no evidence filters are consid-
ered. It can be seen that the low thresholds lead to the
conclusion stating that IGlar is superior to NPH insulin
overall and with respect to safety and efficacy. Thresh-
olds between 0.45 and 0.70 lead to the conclusion that the
superiority of IGlar over NPH with regard to efficacy is
not supported by the available evidence. Stricter thresh-
olds ranging from 0.71 to 1 lead to the conclusion that the
superiority of IGlar over NPH insulin overall and in terms
of efficacy is not supported by the given evidence.
Figure 6 depicts an example of the effect of changing

the acceptance threshold. When the degree of confidence
of an argument is not less than the acceptance thresh-
old, then the argument is accepted, otherwise is rejected.
The higher the threshold (i.e., closer to one), the stricter
the acceptance of the argument becomes. In the opposite
direction (i.e., closer to zero), the lower the threshold, the
less restrictive the acceptance becomes.
Figure 7 shows the DIAeTs generated when using

relaxed, majority and strict acceptance thresholds and
three different dimension weight configurations to gen-
erate arguments on the superiority of the IGlar insulin
treatment over the NPH insulin treatment. The thresh-
old represents an acceptance condition for this statement,
which implies the relative share of clinical evidence that
supports (i.e., agrees with) the argument at the overall
conclusion node, and the arguments at the dimension
nodes that correspond to sub-conclusions. Setting the
confidence threshold to 1 (strict) requires the evidence to
be unanimous without any contradicting results. Setting
the threshold to 0.5 (majority) requires the majority of
studies to support the conclusion, while a value between
0 and 0.5 is very “lenient”, leading do the generation of

arguments given very weak evidence. Along the table in
Fig. 7, we can see that the stricter the threshold is, the
more red nodes that are in the generated tree, that is, the
more superiority arguments are rejected. Whereas with
more relaxed thresholds, there are more green nodes,
meaning that more superiority arguments are accepted.

The DIAeT approach implemented as a web tool
The DIAeT approach has been implemented as a web
tool as a proof of concept to support its evaluation with
end users. Figure 8 provides an overview of the steps in
the processing of the implemented method. The knowl-
edge base that contains the clinical trial information and
the weighted dimension tree are the starting-point for
the system. The evidence is retrieved from the knowl-
edge base via predefined SPARQL queries that are aligned
with the dimensions in the dimension tree. Based on
these elements, an argument synthesis process, in which
evidence can also be filtered, generates a DIAeT that rep-
resents a nested conclusion about the superiority of some
therapies compared to other therapies. The DIAeT is ver-
balized relying on domain-specific templates that make
the conclusion accessible to the user. By defining filters or
modifying weights, the users can interactively change the
generated argument tree and thus explore the impact of
certain choices on the synthesis of results.
Figure 9 depicts the user interface of the DIAeT tool.

The user can select treatments to compare, set the con-
fidence acceptance threshold, and assign the weights
for each dimension of a predefined dimension tree2.
The reached conclusion for each dimension is repre-
sented in a hierarchical fashion along the hierarchically
ordered criteria in the dimension tree. Each section can
be expanded/hidden interactively. At the lowest level,
the atomic arguments are displayed and it is indicated
whether they support or contradict the conclusion. Sup-
porting statements are displayed in green color and con-
tradictory statements in orange.
Figure 10 shows an example for conjunctival hyper-

emia where there are five atomic arguments attacking a
single supportive evidence (study CT_7). Supportive argu-
ments in this example are those that state that latanoprost
causes less conjunctival hyperemia cases than timolol,
while attacking arguments are those that imply a contra-
diction to the supportive arguments by stating that either

2The weights of sibling dimensions have to sum up 100%



Sanchez-Graillet et al. Journal of Biomedical Semantics           (2022) 13:16 Page 11 of 19

Fig. 6 Example of confidence acceptance threshold. An argument is accepted if its degree of confidence [[A]] is not less than a given acceptance
threshold, and rejected otherwise

Fig. 7 Trees generated with different confidence acceptance thresholds and weights. Where OS: Overall Conclusion, E: Efficacy, S: Safety, Hb:
reduction of HbA1c, NH: Nocturnal hypoglycemia. The nodes in green are accepted arguments and in red rejected arguments on the superiority of
IGlar insulin

Fig. 8 Overview of the DIAeT framework
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Fig. 9 User interface of the DIAeT web tool. Left: evidence filters, confidence threshold (in the red square), and dimension tree weights. Right:
generated conclusion tree and clinical evidence table

latanoprost causes more conjunctival hyperemia cases, or
that there are equal number of cases caused by both drugs
(i.e., “latanoprost is not superior to timolol”). The evi-
dence used to generate the DIAeT is displayed in the
clinical evidence table. In this table, the user can find
more information about the clinical trials, such as dura-
tion, number of patients, sources of possible biases, etc.
(see Fig. 11)
Once the conclusions are generated, the tool allows the

user to explore different scenarios by changing parameters

(e.g. publication year, number and age of the participants,
etc.), weights, confidence threshold, and exclude/include
clinical studies (i.e., rebuttal of data), and then re-generate
the conclusions. For example, specific studies can be
excluded from the considered evidence if the user deems
that the study does not meet certain criteria. All the stud-
ies that are considered by the system as supporting evi-
dence are ticked in the evidence table. The user can then
decide to untick them if he wants to explore what hap-
pens by not including them. Figure 11 depicts an example
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Fig. 10 Atomic arguments for conjunctival hyperemia. For each atomic argument, contradictory (attacks) and supportive information is displayed.
The values in bold font denote “superiority” of the respective drug (i.e., the drug that provokes less cases of conjunctival hyperemia). Supportive
arguments are in green and contradictory arguments in orange

in which there are two studies in the evidence table. Only
the ticked study will be considered in the construction of
the arguments3.
Although the final decision on the best treatment is

made by medical expert users, the method implemented
as a tool would help them in the exploration of the infor-
mation by, for example, narrowing the search space or
helping her to understand under which conditions and
assumptions it can be assumed that a certain treatment
is superior to other treatments. If the medical experts
find some interesting, unexpected or contradictory con-
clusions, they can directly check possible explanations for
these conclusions in the published clinical trials.

Results
In this section, we first describe the results of two use
cases designed to evaluate whether our method is able to
produce similar conclusions to the ones of published sys-
tematic reviews. Next, we describe a survey conducted to
assess the possible benefits and the use of our method as
a web tool.

Use cases
As a proof of concept of our method, we present two use
cases. One use case is on glaucoma and another on Type 2
Diabetes Mellitus (T2DM). The aim is to analyse whether
our method is able to generate similar conclusions com-
pared to the ones reached in the existing published sys-
tematic reviews selected for these two diseases.
We first formalized the evidence of each of the tri-

als considered in the respective systematic reviews for

3A demo of our tool can be accessed as indicated in the “Availability of data
and materials” section.

glaucoma and T2DM [19, 20] as described in the section
“The C-TrO ontology and knowledge base”.
We then defined the dimension trees for each disease.

Both dimension trees contain dimensions for efficacy and
safety, which are common aspects of interest in clinical
trials. The sub-dimensions of these dimensions were spec-
ified according to the main endpoints (i.e., outcomes and
adverse effects) analyzed for each disease when applying
the medical treatments studied in the respective system-
atic reviews. Although our approach allows any number
of dimensions, we only include one endpoint and one
adverse effect as sub-dimensions for simplifying the use
cases. Equal weights were assigned to efficacy and safety
(i.e., 50% each). Table 5 summarizes the characteristics of
the use cases.
The inferential criteria for efficacy and safety used in

both use cases to establish superiority of a treatment over
other treatments are the following (Cf. [21]):

Efficacy: If the drug1 treatment changes a given disease
indicator in the desired direction from the baseline – in
terms of an aggregationmethod – in greater magnitude
than the drug2 treatment, then the drug1 treatment is
more effective than the drug2 treatment.

Safety: If the administration of the drug1 treatment
leads to fewer incidences of a given adverse effect com-
pared to the administration of the drug2 treatment,
then the drug1 treatment is safer than the drug2 treat-
ment with respect to the given adverse effect.

Note that these criteria can be changed or augmented to
include more complex cases. For example, the efficacy cri-
terion could include combined therapies that involve the
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Fig. 11 Clinical evidence table. The unticked study (on top) is not considered in the generation of the DIAeT

application of more than one drug treatment to the same
interventional arm at different time points and duration.
However, because the use cases presented here refer to
single-drug treatments, we use a simple efficacy criterion
that involves a single treatment.
Given the initial configuration, the respective DIAeTs

were generated without applying any filter to the evidence
retrieved from the knowledge base.
For glaucoma, the conclusions obtainedwith the DIAeT

tool for efficacy, safety, and overall superiority when com-
paring latanoprost to timolol are:

“The evidence in 11 clinical studies shows that
latanoprost is superior to timolol in terms of efficacy
(weight of diurnal IOP: 1).”
“The evidence in 11 clinical studies does not show
that latanoprost is superior to timolol in terms of
safety (weight of conjunctival hyperemia: 1).”
“Taking into account the evidence from 11 clinical
studies comparing latanoprost to timolol, it can be
concluded that latanoprost is superior to timolol
(weight of safety: 1; weight of efficacy: 1)”.

The conclusions reached in the systematic review by
Zhang et al. [19] with respect to efficacy in terms of IOP

reduction and safety in terms of conjunctival hyperaemia,
and overall are respectively:

“Latanoprost showed better IOP lowering effects
than timolol with an additional 4–7% reduction. The
differences were all statistically significant except for
the result from a single 12 months study.”
“Latanoprost caused hyperaemia and iris
pigmentation in more patients than timolol. The risk
for hyperaemia was over twice that seen with timolol
(RR = 2.20, 95% CI 1.33,3.65).
“Latanoprost is superior to timolol for reducing
intraocular pressure.”

Zhang et al. conclude that, overall, latanoprost is supe-
rior to timolol despite the different side effects that
it might provoke. This conclusion is in line with the
ones obtained by our tool that states that in general
latanoprost is superior to timolol, and in particular in
terms of efficacy considering IOP reduction. However, in
terms of safety, considering hyperaemia, latanoprost is not
superior to timolol.
For T2DM, the conclusions on efficacy, safety and over-

all superiority generated by our tool when comparing
Glargine Insulin (IGlar) to NPH Insulin are:

Table 5 Characteristics of the use cases

Disease SRs No. RCTs Dimensions {sub-dimensions} Compared drugs

Glaucoma Zhang et al. [19] 11 efficacy {IOP reduction}, safety {conjunctival hyperemia} latanoprost / timolol

T2DM Rys et al. [20] 9 efficacy {reduction of HbA1c}, safety {hypoglycemia} insulin glargine / NPH insulin
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“The evidence in 9 clinical studies does not show that
Glargine Insulin is superior to NPH Insulin in terms
of efficacy (weight of HbA1c: 1).”
“The evidence in 9 clinical studies shows that
Glargine Insulin is superior to NPH Insulin in terms
of safety (weight of nocturnal hypoglycemia: 1).”
“Taking into account the evidence from 9 clinical
studies comparing Glargine Insulin to NPH Insulin, it
can be concluded that Glargine Insulin is superior to
NPH Insulin (weight of safety: 1; weight of efficacy:
1).”

Therefore, the evidence shows that overall IGlar is supe-
rior to NPH insulin despite IGlar not being superior to
NPH Insulin in terms of efficacy.
In the systematic review conducted by Rys et al. [20],

the conclusions with respect to efficacy in terms of reduc-
tion of HbA1c levels, safety in terms of nocturnal hypo-
glycemia, and overall are respectively:

“The study demonstrated a difference in HbA1c
reduction in favor of twice daily NPH insulin...”
“The analysis of individual endpoints demonstrated
comparable reduction of HbA1c in each arm, but
with concomitantly lower rate of symptomatic and
nocturnal hypoglycemia in IGlar group.”
“In conclusion, for the majority of examined efficacy
and safety outcomes, IGlar use in T2DM patients was
superior or at least non-inferior to the alternative
insulin treatment options.” (i.e., NPH insulin and the
other insulins studied).

These conclusions coincide with the ones generated by
our tool in that overall IGlar is superior to NPH insulin, in
particular with respect to safety and in reducing the risk
of nocturnal hypoglycemia, but not superior in efficacy in
terms of the reduction of HbA1c levels.
The presented use cases include only some relevant

dimensions for each disease. However, other important
dimensions could be defined. For example, for T2DM
the dimension long-term harm can be added, which may
include conditions such as myocardial infarction, stroke,
or kidney failure. Although these use cases contain few
dimensions (i.e., study endpoints), they demonstrate that
the method can automatically generate similar conclu-
sions for these endpoints as the conclusions reached in
manually produced systematic reviews. Moreover, a main
benefit of our approach is that it supports exploring the
consequences of different preferences and weights inter-
actively and reasoning under different assumptions.

Evaluation of the web application
To evaluate the use and acceptance of the DIAeT tool,
we conducted an on-line survey in which 17 medical
experts (13 men and 4 women) from different hospitals

in Germany took part. The participants were between 25
and 54 years old, most of them in the range of 35-44 years.
They had different medical specializations and at least one
year of experience in their fields (number of participants
per specialization: anesthesiology (4), pediatrics (2), gen-
eral medicine (2), emergency medicine (2), cardiology (2),
oral surgery (1), otorhinolaryngology (2), and neurology
(1), internal medicine (1)).
The survey consists of three sections, and most of the

responses are based on a 5-points Likert-scale [22] where
1: strongly disagree, 2: disagree, 3: neither agree nor dis-
agree, 4: agree, 5: strongly agree. The first section is
concerned with testing the level of understanding of the
central aspects of the method regarding the conclusion
of the system, how the filters and weight modifications
would affect the conclusion, etc. The second section is
about the benefit of using the tool in terms of exploring
and summarizing clinical evidence. The last section is for
assessing the usability of the method as a web tool.
The results for the first section are shown in Table 6.

Most of the answers agree or strongly agree with the
statements relative to the aim of the tool and how to
use it, including the objective and setting-up of the fil-
ters on the clinical evidence to be considered, how to
change the dimension weights, and how these weights
influence the resulting conclusions. The responses of the
participants suggest that they could understand how the
conclusions are generated based on the included/excluded
studies. However, the low percentage of strong agreement
(17.67%) on the sufficiency of the metadata about studies
(question 10) suggests that the participants would need
more information to be able to judge whether the inclu-
sion of the study is warranted. In general, these results
suggest that the goal and use of the tool were clear for the
users.
Table 7 shows the answers for the questions in the sec-

ond section. Most of the participants agree or strongly
agree with the given statements. This suggests that the
participants found the tool useful for the exploration
of clinical evidence. The perceived benefits of the tool
include the time-efficient comparison of drug treatments,
decision-making-support in cases where insufficient or
outdated information is provided in clinical guidelines, or
where no guidelines exist at all (64.71% strongly agree).
However, the participants were rather unsure to agree on
whether the tool would help when the characteristics of
a particular patient deviate from the average population
studied in the guidelines (question 7). This suggests that
further information (e.g., study protocol and population
characteristics) is needed to decide on the best treatment
for an individual patient.
In the third section, we use the System Usability Scale

(SUS) [23], which is a standard method to measure system
usability. The SUS consists of the ten questions presented
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Table 6 Section 1 of the survey: questions related to the
understanding of the objective and use of the tool, and the
percentages obtained for each type of answer

Questions %S-1 %S-2 %S-3 %S-4 %S-5

1. The motivation and goals
behind the development of
the tool are clear to me.

0.00 5.88 5.88 23.53 64.71

2. The explanations in the
video on using the tool are
understandable.

0.00 5.88 11.76 11.76 70.59

3. I understand how to set a
filter on the clinical studies
being considered.

5.88 0.00 5.88 17.65 70.59

4. I understand what setting
a filter does.

5.88 0.00 0.00 23.53 70.59

5. I understand how to
change the weights of the
individual dimensions.

11.76 5.88 5.88 23.53 52.94

6. I understand the
influence of the weighting
of the different dimensions
(safety, efficacy) on the
conclusion of the system.

0.00 11.76 11.76 11.76 64.71

7. The conclusion of he
system is clear and
understandable.

0.00 0.00 17.75 29.41 52.94

8. It is understandable how
the system comes to the
conclusions based on the
selected clinical studies.

0.00 11.76 23.53 11.76 52.94

9. It is clear how to include or
exclude a study in the
calculation of the
conclusion.

0.00 0.00 0.00 41.18 58.82

10. The metadata shown for
the individual studies is suffi-
cient to assess the relevance
of the study with regard to
its inclusion.

0.00 11.76 35.29 35.29 17.65

S-1: strongly disagree, S-2: disagree, S-3: neither agree nor disagree, S-4: agree, S-5:
strongly agree

in Table 8 that are answered on a 5-points scale. For details
on how the SUS score is calculated, the reader is referred
to Brooke et al. [23].
The responses and obtained scores are presented in

Table 9. The average SUS score is 76.91 (95%CI, [69.91,
83.91]), which indicates that the participants found the
web tool easy to understand and operate.
Overall, the results of the conducted survey suggest that

our method implemented as a web tool can be useful
for medical practitioners to support the exploration and
summarization of clinical evidence.

Discussion
The creation of systematic reviews is a long-term pro-
cess requiring substantial personnel and efforts [24], and

Table 7 Section 2 of the survey: questions related to the benefits
of the tool and the percentages obtained for each type of answer

Questions %S-1 %S-2 %S-3 %S-4 %S-5

Imagine that the system and
all the relevant studies were
available for your subject:

1. I can imagine using this
system in my daily work to
support therapy decisions.

0.00 17.65 17.65 35.29 29.41

2. The system would help
me to determine the best
therapy option based on the
current studies.

0.00 11.76 23.53 41.18 23.53

3. I believe that this system
can save me time if I have to
choose between two
treatments based on the
current study situation.

0.00 0.00 17.65 41.18 41.18

I can imagine a good use of
the system in the following
situations:

4. When there are no
guidelines.

0.00 0.00 5.88 29.41 64.71

5. As a complement to the
existing guidelineswhen the
information in the guideline
is insufficient.

0.00 0.00 23.53 35.29 41.18

6. When guidelines are
outdated.

0.00 0.00 23.53 41.18 35.29

7. When the characteristics
of a given patient deviate
significantly from the
average population in the
guidelines.

0.00 11.76 35.29 29.41 23.53

S-1: strongly disagree, S-2: disagree, S-3: neither agree nor disagree, S-4: agree, S-5:
strongly agree

Table 8 System Usability Scale (SUS) questions

N. Questions

1 I think that I would like to use this system frequently

2 I found the system unnecessarily complex

3 I thought the system was easy to use

4 I think that I would need the support of a technical person to
be able to use this system

5 I found the various functions in this system were well
integrated

6 I thought there was too much inconsistency in this system

7 I would imagine that most people would learn to use this
system very quickly

8 I found the system very cumbersome to use

9 I felt very confident using the system

10 I needed to learn a lot of things before I could get going with
this system
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Table 9 Responses to the System Usability Scale (SUS) questions
of the 17 participants. The calculated SUS scores are in the last
column

Participants Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 SUS

p1 3 1 5 1 4 1 5 1 5 1 92.50

p2 4 1 5 2 5 1 5 1 4 1 92.50

p3 4 1 5 1 5 2 5 1 5 1 95.00

p4 4 3 3 1 3 3 5 2 4 1 72.50

p5 3 1 4 1 5 2 5 1 3 1 85.00

p6 4 1 5 1 4 2 5 2 4 1 87.50

p7 3 3 3 2 3 4 4 3 3 4 50.00

p8 5 1 5 1 4 1 5 1 4 1 95.00

p9 3 2 3 2 3 2 3 2 2 3 57.50

p10 3 2 3 2 4 3 3 3 4 2 62.50

p11 3 2 4 2 4 2 4 2 3 2 70.00

p12 3 1 5 1 4 2 5 1 5 1 90.00

p13 2 3 4 1 4 3 4 2 4 2 67.50

p14 4 2 4 1 4 2 4 1 3 3 75.00

p15 3 1 5 1 2 2 5 1 5 1 85.00

p16 3 2 3 1 2 3 4 2 4 2 65.00

p17 4 2 4 3 4 3 4 2 3 3 65.00

Average SUS 76.91

keeping them up-to-date represents a significant chal-
lenge [25, 26]. To alleviate this situation, the International
Collaboration for the Automation of Systematic Reviews
(ICASR) is exploring tools and methodologies that can
partially automatize or at least reduce the effort involved
in the creation of systematic reviews [27]. The DIAeT
method can support different steps in the creation of sys-
tematic reviews, such as supporting the synthesis process
by helping users to explore and analyze different set-
tings (populations, trial designs, etc.) and to determine
which trials contain evidence worthy to be included in the
review and useful in the analysis and generation of con-
clusions about the superiority of treatments. Furthermore,
the DIAeT tool can be used to support the formulation of
review questions since the users can try different config-
urations that help them to identify questions of interest.
Prioritizing questions can save time and avoid duplicated
and irrelevant questions. In the screening of abstracts and
titles of published trials, the DIAeT tool could help to
quickly exclude several studies that may be irrelevant for
the systematic review. The DIAeT tool could also help
to close the evidence-practice gap (or knowing to doing
gap) by the aggregation of contradictory or incomplete
clinical evidence - according to the criteria and prefer-
ences of the expert users - that leads to the generation
of textual and justified conclusions. Further, it could help
to facilitate the selection of evidence and the calibration

of parameters that allows a more effective production of
systematic reviews.
The DIAeT approach presented in this article is

argument-based and similar to the practical aspect
of Toulmin’s model of argumentation [7]. Toulmin’s
model has gained relevance in Evidence-Based-Medicine
because it is able to bring explicitness to the role of evi-
dence in clinical reasoning [28]. It is a practical approach
to argument analysis that identifies interrelated compo-
nents of an argument in a given order and structure. The
model focuses on the justificatory aspect of argumenta-
tion by effectively representing justifications (or warrants)
that support a given conclusion. It also makes the rela-
tionship between the claims, their evidential support, and
the possibly conflicting information explicit. The DIAeT
approach to synthesizing the results of clinical trials is
similar to Toulmin’s model in that it focuses on the jus-
tification of the conclusions warranted by the available
evidence.
The abstract framework of Hunter and Williams [6] is

also concerned with the aggregation of clinical evidence.
It presupposes a certain aggregation level of such evi-
dence in the sense that the relative risk values, used as
evidence, have already been calculated based on multiple
studies. In contrast, our DIAeT method is applicable to
the raw evidence available in clinical studies. Besides, the
DIAeT method explicitly deals with confidence degrees
that allows to express uncertainty that is key when evi-
dence not always consistently supports a conclusion. In
contrast, Hunter and Williams’ framework does not allow
to represent the level of inconsistency and uncertainty in
the evidence. Furthermore, the actual reasons for treat-
ment superiority can not be read off from the final argu-
ment graph in the framework of Hunter and Williams,
while the full nested argument can be inspected by the
users in our tool, giving the full reasons for the overall
conclusion on treatment superiority.
Regarding the semantic technology aspect, the DIAeT

method requires clinical trial information formalized in a
knowledge base following a suitable ontology and the inte-
gration of semantic vocabularies. While this may seem to
be a bottleneck for the large-scale implementation of the
proposed approach, there are currently signs that this will
indeed not be a limiting factor. For one, it is possible to
develop intuitive interfaces that guide authors of clinical
trial publications, voluntaries or crowd-sourcing partici-
pants to describe the main results of a clinical trial with
respect to a given ontology. In a recent study [29], we have
shown that the semantic modelling of clinical trials based
on the C-TrO ontology is feasible using an editor called
CTrO-Editor that has been designed for this purpose. We
showed that medical students take a couple of hours to
capture the information of a clinical study using CTrO-
Editor. Furthermore, other clinical trial evidence sources
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could be linked or integrated to the clinical trial pub-
lication knowledge base, such as the information from
clinicaltrials.gov.
The method is generic since the core elements to build

the argument tree, such as dimension tree and superior-
ity criteria, can be adapted to other health conditions or
diseases. For this purpose, it would be necessary that the
knowledge base contains the information relative to these
conditions. If the method was used in a context other
than clinical trials, a knowledge base with the appropriate
information would be needed.
Although recent text mining and NLP solutions have

progressed in the extraction of the core ‘evidence tables’
from clinical trial publications [30], a limitation of these
methods is that they need training data for different ther-
apy areas/diseases that a system has to support. Further,
these systems would require handling the errors intro-
duced by the information extraction systems, or at least a
process by which errors can be corrected by the research
community. This would also require appropriate inter-
faces, as mentioned before.

Conclusions
In this article, we have presented a method that facilitates
the synthesis of clinical evidence via an argument-based
approach that automatically generates a tree-shaped con-
clusion on the basis of clinical trials semantically captured
in a knowledge base. Our approach allows users to explore
the impact of filtering the evidence as well as of setting
weights for different comparison dimensions interactively
and dynamically on the generated conclusion, thus sup-
porting to carry out sensitivity analyses.
The method has been implemented as a web tool that

can be adapted to different indications or therapeutic
areas. The web tool allows users to systematically explore
the implications of excluding certain points of evidence,
or indicating relative preferences of endpoints via weight
setting. Our argument-based approach has been shown
to be able to generate conclusions that are comparable to
those of the manually produced systematic reviews. It has
also shown to be generic in the sense that it can be applied
to different health conditions, as shown in the use cases
presented in two different diseases.
Our evaluation with medical experts has revealed that

the tool is easy to understand and use and that it has
the potential to support experts in assessing the current
evidence as a complement or extension to existing guide-
lines, helping them to reach better decisions. The method
can also support the automation of systematic reviews,
as explored by the International Collaboration for the
Automation of Systematic Reviews (ICASR).
In future work, we intend to develop the method-

ology further to support the development of continu-
ally updated (“living”) systematic reviews. We will also

develop information extraction methods that can auto-
matically extract relevant evidence from published trials.
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