
Classification of Aurora Borealis
Using Svalbard All-Sky Imager Data

and EfficientNet Convolutional
Neural Network

Kristina Othelia Lunde Olsen

Thesis submitted for the degree of
Master in Space Physics and Space Technology

60 credits

Department of Physics
Faculty of Mathematics and Natural Sciences

UNIVERSITY OF OSLO

Spring 2022





Classification of Aurora Borealis
Using Svalbard All-Sky Imager Data

and EfficientNet Convolutional
Neural Network

Kristina Othelia Lunde Olsen



© 2022 Kristina Othelia Lunde Olsen

Classification of Aurora Borealis Using Svalbard All-Sky Imager Data and
EfficientNet Convolutional Neural Network

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/


Abstract

All-Sky Imagers located in the Arctic and Antarctic regions capture images
of the sky at regular intervals throughout the winter season. Data from the
last decades make up millions of images where auroral researchers have no
way of filtering the data without time-consuming manual investigation. We
implemented the convolutional neural network family called EfficientNet
for automatic classification of All-Sky Imager data. We manually labeled
7,980 images from Ny-Ålesund, Svalbard, into classes based on the appear-
ance of aurora or no visible aurora. As a goal were to classify different aurora
shapes, we used the 3 classes arc, diffuse and discrete, while images without
detectable aurora were classified as no aurora. We found that EfficientNet
successfully detected aurora in All-Sky Imager data. Training several Ef-
ficientNet models with various hyper-parameters, the highest performing
model achieved an classification accuracy of 88% on unseen test data. By ag-
gregating the 3 aurora classes, we archive an binary classification accuracy of
96% on the same test data. The methods shown in this thesis can be applied
to data from any auroral All-Sky Imager. We created a data set of 665,865
unlabeled Ny-Ålesund all-sky images (5577 Å and 6300 Å for the same time
periods for 2014, 2016, 2018 and 2020) [1], and matched each image to ap-
proximate solar wind parameters from NASA’s OMNI data [2]. Our model
were applied to the data set, and statistical results show that variations in
solar wind speed and IMF Bz do not determine the observed aurora shape.
Further, our classifier labeled more images as diffuse for the 6300 Å emis-
sion line (red aurora), which indicates good predictions. This was expected,
as red aurora is a weaker, more diffuse form of aurora. Statistics were also
made based on an hourly distribution, where we could observe dayside and
nightside aurora. During polar nights, Svalbard is optimal for observing
dayside aurora, but we found that the location is probably to high north to
observe stronger nightside aurora events, like substorms. Our results for the
hourly distributions indicate a (weak) double-peak feature for dayside au-
rora, which have been observed before [3][4][5]. The feature is strongest for
2020, with one peak around 6-8 local time and a second peak around 14-15
local time (for discrete aurora). Our time points (in magnetic local time) do
not match the previous observations, but are +3 hours shifted.
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1 Introduction

In space physics, solar wind and the Earth’s magnetosphere are two prominent
avenues of research. The solar wind originates from the Sun, and consists of
plasma and the frozen-in interplanetary magnetic field (IMF). Due to events on
the surface of the Sun, there is a constantly changing solar wind that propagates
away from the Sun in all directions. The portion of the incoming solar wind
that reaches Earth, based on the current properties, may lead to solar wind-
magnetosphere coupling. This is when IMF lines reconnect with Earth’s mag-
netic field lines, and the Dungey cycle [7] allows energetic particles from Earth’s
geomagnetic tail to interact with Earth’s ionosphere. The process results in a
display of mesmerising light in various colours and shapes in the sky. This
phenomenon is known as the nightside aurora, and are a physical phenomena
around Earth’s geomagnetic poles we can observe with our own eyes, and with
ground based cameras. The weaker dayside aurora is caused by (low) energetic
particles entering the ionosphere through the polar cusps. The aurora shape and
brightness observed from the ground, map to physical processes in the magne-
tosphere, which allow the study of magnetospheric process.

Every winter, ground-based All-Sky Imagers (ASIs) in the Arctic and Antarctic
regions take images of the sky and the aurora light. These images are captured at
regular intervals for periods when the Sun is below the horizon. The motivation
for this thesis lies in the difficulty to extract the correct information from the ASI
data. It is difficult to determine if the imaged sky contains features of aurora,
cloud or light pollution. If we can automatically label aurora images according
to their shape, we can eliminate the process of manually sort and label images.
Data from the last decades make up millions of images that can be used for large-
scale image data analysis if they can be automatically labeled.

Previous study on automatic aurora classification achieved an 91% classification
accuracy with classes: aurora, no aurora, and cloudy, using Support Vector Ma-
chines [8]. Classifications with classes: clear/no aurora, cloudy, moon, arc, dif-
fuse, and discrete (Clausen and Nickisch), have achieved an 82% accuracy with
a pretrained deep neural network and a Ridge classifier [9], and an 91% accuracy
with a SimCLR model [10]. Other work exclude all ambitious images, and only
classify the aurora into subclasses, archiving results around 90% accuracy [11].

Using the same classes as Clausen and Nickisch, we want to use a state-of-the-
art convolutional neural network to make an aurora classifier. The network will
be trained and tested on data from the Svalbard ASI database [1]. The best per-
forming model will then be applied on a dataset containing 665,865 images from
Svalbard ASI database. We use data from years included in the last solar cy-
cle, which is an measurement of the Sun’s surface activity. Higher activity, leads
to more intense solar wind streams, which affect the solar wind-magnetosphere
coupling process. We will also use the IMF Bz component. We will make statis-
tical results to research how the aurora is affected by changes in the solar wind
during solar minimum and a solar maximum years.
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2 Theoretical Background

This chapter gives a short introduction to the solar wind and the interplanetary
magnetic field, before moving on to Earth’s magnetosphere. The solar wind-
magnetosphere coupling is explained through the Dungey cycle. Lastly, the au-
rora and geomagnetic substorms are introduced.

2.1 Space weather

Space weather is the varying conditions in the space environment between the
Sun, the Earth and the rest of the solar system. The weather phenomena are
mainly caused by surface activity on the Sun. Space weather can affect Earth’s
magnetosphere and ionosphere, and during large space weather events, even
human space missions and technology can be impacted. For instance, satellite
electronics and on-Earth power grids can be damaged. Our modern society is
therefore dependent on knowledge about space weather and to make the neces-
sary precautions to ensure the safety of our technology, and astronauts. Better
knowledge can lead to new insights into the science behind the mesmerizing
aurora display.

2.1.1 The solar wind and IMF

The Sun is a layered near-perfect sphere consisting mainly of plasma, or electri-
cally charged particles. An important feature is the constantly moving plasma in
the convection layer, resulting in electric currents and solar magnetic fields. The
outer layer of the Sun’s atmosphere is called the Corona. From the Corona, there
is a constant stream of charged particles, known as the solar wind, traveling into
interplanetary space. Changes in the solar wind are dependent on activity on
the surface of the Sun as well as changes in the Corona. In coronal holes, the
magnetic field lines are open, and plasma flows gets easier access to the solar
wind, powering it up by increasing the velocity and density. The solar wind
travels with an average speed of 400 km/s towards Earth [12], but can travel
with speeds from 200-800 km/s. It is mainly the solar wind ejected from the
Sun’s equator, in the Earth-Sun line, that interact with Earth’s magnetosphere.
Therefore, the condition of the Sun’s equator is important. When the magnetic
field around the equator is calm, the solar wind is calm (300-600 km/s). When
solar activity increases, the magnetic field gets stronger and more erratic, creat-
ing more sunspots along the equator. The solar wind speed from active regions
like sunspots, create a fast moving solar wind (600-800 km/s).

Closed magnetic field lines create magnetic loops above the Sun’s surface. These
large structures, known as solar loops and solar prominences, have hot interior
plasma flowing along the loops. The solar exit and entrance of these loops can be
seen on the surface as dark sunspots. Sunspots appear dark because the area is
cooler than the surroundings. The magnetic loops often tangle with other loops
because of the constantly moving gasses on the Sun. The tangled up loops stretch
and twist, which may lead to magnetic reconnection, see chapter 2.3, and bro-
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ken loops. This event, a coronal mass ejection (CME), releases large amounts of
plasma into the solar wind, as well as open magnetic field lines. CMEs often oc-
cur in active regions with many sunspots. Both CMEs and coronal hole dynamics
create shock waves which temporarily interfere with Earth’s magnetosphere.

The solar wind largely behaves as an ideal plasma. This means that the so-
lar magnetic field lines are ”frozen-in” to the solar wind, being dragged along
into interplanetary space [13]. This is referred to as the interplanetary magnetic
field (IMF). The properties of the IMF lines are important for the solar wind-
magnetosphere coupling, explained in chapter 2.3. The IMF strength B, in the
GSM coordinate system, has a Bz component in the north-south direction. When
the direction is northward, the value is positive, while it is negative when south-
ward. The Bz direction determines the outcome of the magnetic reconnection
between the IMF and Earth’s magnetic field.

2.1.2 The solar cycle

The solar cycle is a measurement of the Sun’s activity, which are determined by
the number of sunspots in the Sun’s photosphere. A solar cycle starts with a solar
minimum, when the sunspot counts are low. When the magnetic field activity
increases, so does the number of sunspots, and the solar maximum is when the
count is at its highest. This occurs about halfway through the cycle. After the
solar maximum, the activity again decreases into a new solar minimum as the
cycle ends. Solar observations show that the Sun follows a periodic cycle of 11
years [[14], p. 4]. However, sources do not always agree on the exact year of a
solar minimum or maximum, which is why it is more correct to called it a nearly
periodic cycle.

The last 13 years of recorded/observed sunspots, by the Royal Observatory of
Belgium, are visualized in figure 2.1.1. The graph shows that the most recent
solar minimum occurred in 2020, and the last solar maximum occurred in 2014.
The 11-year cycle seem accurate this cycle as the graph indicates the previous
solar minimum was approximately in year 2009. The sunspot numbers since the
mid 1950s are plotted in figure 2.1.2. The graph indicates that the most recent
solar cycle was a relatively weak one among the last 6 recorded cycles, with the
solar maximum only having approximately half the recorded sunspots as the
maximum in the late 1950s.
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Figure 2.1.1: International sunspot numbers for 2009/2010 until the end of 2021. The
graph also display a sunspot forecast for 2022. The graph is from: SILSO data/image,
Royal Observatory of Belgium, Brussels [15].

Figure 2.1.2: International sunspot numbers that show the registered sunspots since late
1950s. The graph shows the monthly mean (blue line) number of sunspots, and the 13-
month smoothed sunspot numbers (red line). The graph is from: SILSO data/image,
Royal Observatory of Belgium, Brussels [15].
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2.2 The magnetosphere

Earth’s (geo)magnetic field extends into space and protects the planet and its at-
mosphere against solar wind and cosmic radiation. The field is magnetic dipole
approximated, directed northward. Earth’s magnetosphere is the region that
stretches from Earth’s ionosphere out to the extent of the magnetic field. Figure
2.2.1 shows an illustration of the magnetosphere, with incoming solar wind from
the Sun. Most of the solar wind heading towards Earth gets deflected and decel-
erated by the bow shock [14]. The shocked solar wind that passes the bow shock,
enters the magnetosheath, the region between the bow shock and the magne-
topause. The magnetopause is the outer area of the magnetosphere, creating a
boundary between the solar wind plasma and Earth’s magnetic field. The mag-
netopause is also where the solar wind pressure and the pressure from Earth’s
magnetic field is balanced [14]. The interaction between the solar wind and the
magnetosphere distorts the magnetic field, creating a bullet or comet shape. The
outer loops of the magnetic field lines get compressed by the solar wind pressure
on the dayside of Earth (the side facing the Sun), while they get stretched out into
a long magnetotail on the nightside. The dayside has closed magnetic field lines,
while the nightside have both open and closed magnetic field lines. Closed mag-
netic field lines means both ends of the field line is connected to Earth. As the
solar wind pressure is dynamic, it puts pressure on the magnetosphere, defining
the location of the magnetopause. When the solar wind pressure increases or de-
creases, the magnetopause is pushed closer or further away from Earth. A polar
cusp is where plasma is able to enter Earth’s ionosphere.

Figure 2.2.1: Illustration of Earth’s magnetosphere. Distances and objects are not to scale.
After Russel (1972), figure 10.1 [14]
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2.3 The Dungey cycle

Figure 2.3.1: Illustrations of the magnetic reconnection between the IMF and Earth’s
magnetosphere for southward IMF (left) [after Dungey, 1961] and northward IMF (right)
[after Dungey, 1963] [14]. ”N” marks a neutral point where magnetic reconnection oc-
curs.

The Dungey cycle is the process of magnetic reconnection between the IMF and
Earth’s magnetosphere, or any other body with a magnetic field [Dungey, 1961].
Magnetic reconnection is when two anti-parallel magnetic field lines couple and
reconnect, so the interesting mechanisms unfold when the IMF points south-
ward. The reconnection occurs in a neutral point, marked ”N” in figure 2.3.1. The
reconnection process creates open field lines, connecting IMF lines with Earth’s
magnetic field. The frozen-in plasma gets access to these new field lines that are
connected to the ionosphere above the polar cusps.

The Dungey cycle for the southward solar wind-magnetosphere coupling is il-
lustrated to the left in figure 2.3.1. There is a dayside reconnection at the magne-
topause and nightside reconnection in the magnetotail. Figure 2.3.2 by Kivelson
and Russel [14] shows a more detailed illustration of the cycle based on Dungeys
theory. This illustration also include the field line motions and plasma flow (ar-
rows) across the polar cap. From the supersonic solar wind there is a southward
magnetic field line that crosses the bow shock, gets slowed down, and travels
across the magnetosheath. The IMF line 1’ meet Earth’s field line 1 at the magne-
topause, where they break up and reconnect (dayside reconnection), creating an
open field line. This allows some plasma to follow field-aligned currents into the
polar cusps. The field line is then dragged anti-sunwards across the polar cap
into the stretched out magnetotail (field line at points 2-4) and wraps around the
Earth. At point 5, field lines are stacked up, building up plasma and magnetic
flux in the magnetotail. This also occurs for the southern tail (2’-5’), where the
field lines have the opposite direction. When reconnection occurs in the mag-
netotail due to the built up stress (nightside reconnection), field line 6 and 6’ of
opposite direction connect and reconnect, dividing the plasma flow in the plasma
sheet, see figure 2.2.1. One part of the plasma flow/sheet continues away from
Earth, carrying field line 7’, which now is back to being an IMF line. Line 7 is
now a closed terrestrial field line, connected to the ionosphere. The plasma from
the sheet flows down the to the polar caps into the ionosphere, creating night-
time auroras (on both hemispheres). After the reconnection in the magnetotail,
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the closed field line moves sunwards to the dayside across the auroral zone (7-9).

Figure 2.3.2: The Dungey cycle with southward IMF (Bz < 0). The illustration shows
the interaction between the solar wind and the magnetosphere. After the magnetic re-
connection on the dayside (1), the new open field line is dragged anti-sunwards to the
nightside, into the magnetotail. The open field line (2-5) reconnects in the magnetotail
(6), accelerating plasma down the polar caps. The new closed field line then moves sun-
wards to start a new cycle (7-9). Distances and objects are not to scale. After Kivelson
and Russel, 1995 [14].

The polar cap is the region inside the auroral oval (chapter 2.4.1). The size of the
polar cap is defined by the boundary between open field lines and closed field
lines, called the open-closed boundary (OCB). The OCB encloses the polar cap,
setting the location for the auroral oval. During dayside reconnection, previously
closed (high latitude) field lines open, causing the open magnetic flux increases
and the OCB to widen equatorward [16]. When the open magnetic field lines
reconnect in the magnetotail, they close (and releases the stored magnetic en-
ergy into the ionosphere), causing the OCB to contract and move back to higher
latitudes [16].
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2.4 Aurora

Figure 2.4.1: The aurora as seen from space. The image shows green aurora at lower
altitudes and red aurora at higher altitudes. Diffuse aurora can be observed at the lower
left and discrete aurora at the top and to the right. ”Auroral beads seen from the Inter-
national Space Station, Sept. 17, 2011 (Frame ID: ISS029-E-6012). Credit: NASA”.

The polar light, also known as the Aurora Polaris or simply aurora, is a dynamic
light show in Earth’s ionosphere that varies in colour, shape, brightness and loca-
tion. The light phenomenon occur in the auroral ovals around the northern and
the southern geomagnetic poles, giving the Latin names Aurora Borealis (north-
ern lights) and Aurora Australis (southern lights). Figure 2.4.1 is an image taken
from the International Space Station, showing red and green aurora. The image
capture different types/shapes of aurora, with diffuse aurora at the lower left
and discrete aurora at the top and to the right. Aurora shapes will be further
explained in chapter 5.2, where the classes for the classification are explained.

The ionosphere is a part of Earth’s outer atmosphere that is partially ionized
by, among others, solar radiation and charged particles. The lower boundary of
the region is located about 80 km above the surface of the Earth. Bright aurora
is mainly caused by reconnection in the magnetotail, where charged particles
from the plasma sheet enter the ionosphere and collide with ionospheric gases.
Ionospheric gases receives energy, which leads to excitation of electrons in atoms
and molecules. Thereafter, excited electrons return to the ground state, causing
photons to be emitted with energy equal to the initially absorbed energy by the
atom or molecule. The emitted photons make the auroral light, and the colour of
the light is further explained in chapter 2.4.3.

The science behind the auroras was a mystery for a long time, but with the re-
search of Norwegian scientist Kristian Birkeland (1867–1917) the aurora had to
let some of its secrets go. Birkeland proposed that charged particles emitted from
the Sun produced the atmospheric lights after striking the Earth’s magnetic field
[[14], p. 346]. The particles would be slowed down by the atmosphere, causing
the ionospheric particles to light up due to the energy transfer caused by fric-
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tion [17]. Although Birkeland never got to prove his northern light theories, they
were confirmed decades later when satellites could perform measurements of
the solar wind and Earth’s magnetic field [17].

2.4.1 The auroral oval

Aurora occurs in a oval-shaped belt around the geomagnetic pole where mag-
netic field lines connect with the ionosphere. The belt is known as the auroral
oval, illustrated in figure 2.4.2 for the northern and southern hemisphere. The
intensity of the auroral oval, the width and location, are dependent on the geo-
magnetic activity cause by solar wind and IMF properties. When the geomag-
netic activity increases, so does the width of the oval. The illustration further
shows how the location of the ovals moves (following the OCB) to lower lati-
tudes during a geomagnetic storm or substorm. Only geomagnetic substorm will
be explained further, see chapter 2.5, because they are shorter events that lasts a
few hours and they can occur quite frequently. The illustration also shows that
the oval is slightly shifted around the geomagnetic pole. This effect is caused by
the solar wind pressure on the magnetic field, slightly shifting the oval towards
the nightside [18]. The all-over auroral oval is narrower on the dayside than the
nightside. The widest region is located at (local) midnight at the nightside, a fea-
ture the illustration fails to show. The oval is always oriented with local noon
towards the Sun, meaning the oval is not rotating, but the Earth is rotating be-
low the oval. All aurora data for this thesis is gathered from Svalbard, which is
located on the southern edge of the auroral oval in the northern hemisphere.

Figure 2.4.2: The auroral ovals for the northern and southern hemispheres, with mark-
ings of Svalbard and the geomagnetic poles. The oval latitudes are not exact, but gives
an idea of the extent of the auroras during different solar activity intensities. Illustration
by © William Copeland [19], with Svalbard edit.
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2.4.2 Dayside and nightside aurora

Aurora can be divided into dayside and nightside aurora. Nightside aurora is
a result of the Dungey cycle explained in chapter 2.3. The (accelerated) high-
energy particles from the plasma sheet allows them to reach far down into the
ionosphere. The collisions at lower altitudes, 100-200 km, means the aurora is
dominated by green light. Nightside aurora have more discrete shapes, from a
single arc to fast moving pattern covering the night sky. Nightside aurora can be
observed at various latitudes based the incoming solar wind conditions, as the
OCB expands and contracts. During average conditions, quiet auroral arcs are
common, while an increase in solar wind speed and density (southward IMF)
cause the auroral oval to widen and relocate southward. Svalbard is therefor not
the most ideal location to observe nightside aurora during strong auroral events
like substorms. A quiet aurora means that the shape and movement, as well as
the brightness, only experience minor changes.

As seen from figure 2.2.1, a polar cusp is a dip in the magnetosphere where the
magnetosheath plasma has direct access to the ionosphere. It is field-aligned
currents (Birkeland currents) following the magnetic field lines than funnels the
plasma into the ionosphere through the cusps, creating dayside (cusp) aurora
[20]. The polar cusps existence are independent of the direction of the IMF [21],
but the size and location are not. The slowed solar wind/magnetosheath parti-
cles have less energy than the particles causing the nightside aurora. As the par-
ticles mainly interact with oxygen atoms at altitudes from above 200 km, dayside
aurora mainly consist of red light. The low-energy particles are long-lived, with
a lifetime of 110 seconds. When the red photon finally radiates, the aurora have
moved. The result is that the detailed structures of the aurora become blurred
and lead to diffuse red aurora. This make the dayside aurora a weak display
compared to the vibrant colors and shapes of the nightside aurora. Dayside au-
rora also have some green, and sometimes blue-violet, aurora present below the
red layer, which creates more discrete shapes.

Both aurora mechanisms feeds the auroral oval with energetic particles, but at
different locations on the oval. The cusp aurora is a smaller belt on the dayside
of the auroral oval, illustrated in figure 2.4.3. Magnetotail reconnection feeds
the nightside of the auroral oval in a broader belt than the cusp aurora. It has
been found that the location of the center of the cusp is located at an average
invariant latitude 80.3◦ at noon, and 78.7◦ at 0800 and 1600 MLT (Magnetic Local
Time) [22]. The latitude varies about ±6◦ based on solar wind conditions, and
the width of the cusp widens slightly for increased solar wind conditions. With
an increased northward IMF value, the center of the cusp barely move, but with
an increased southward IMF value (∼ 10nT), the center move toward equator to
about 73◦ [22].
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Figure 2.4.3: An illustration of the cusp and cusp aurora [23]. Cusp aurora appear in
a smaller belt on the day side of Earth. Because of the tilt of the Earth, locations like
Svalbard have periods with polar nights, allowing the cusp aurora to be studied as the
Sun is below the horizon.

2.4.3 Aurora colours/emission lines

The main distinctive colours of the aurora are dependent on the altitude and the
composition of the ionosphere. Red aurora occur at altitudes 200 km or above,
where nitrogen molecules and oxygen atoms collide with energetic particles.
This process mainly emits photons/light at 6300 Å for oxygen and higher wave-
lengths for nitrogen. Green-yellow aurora comes from collisions with atomic
oxygen, and occurs at lower altitudes around 100-200 km. This is the strongest
emission line and has a wavelength of 5577 Å. Green aurora is also the most
striking because the human eye is more sensitive to green light. Blue-violet au-
rora comes from ionized nitrogen, and only occurs during intense events. The
strongest emission line has a wavelength of 4278 Å.

Table 2.4.1 shows some details over the most common aurora colours. For green
aurora, the energy is higher, and therefor the aurora appears at a lower altitude
than red aurora [18]. At the bottom of the aurora, the colour often looks blue-
violet, where some dark red light is mixed in. It is also normal to see yellow
aurora near the top, between the green and red aurora.

Table 2.4.1: Colours of the aurora light at various altitudes. Energetic particles react/col-
lide with atmospheric oxygen [O] and nitrogen [N]. The altitudes are not exact, various
sources states different to-from limits.

Colour Wavelength [Å] Reaction with Altitude [km]

Red 6300 O Atom ∼ 200→

Green-Yellow 5577 O Atom ∼ 100 - 200

Dark Red 6500-6800 N2 Molecule ∼ 80 - 100

Blue-Violet 4278 N+
2 Ion ∼ 80 - 100
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2.5 Geomagnetic substorms

Figure 2.5.1: Auroral substorm temporal evolution. Drawing by S.-I. Akasofu [24].

Substorms are a result of the solar wind-magnetospheric reconnection. Figure
2.5.1 illustrates a substorm based on observations done by All-Sky Imager data
from different locations around the hemisphere [24]. A substorm is divided into
three phases; the growth phase, the expansion phase and the recovery phase [25].

The growth phase begins when dayside reconnection (southward IMF) occurs
at the magnetopause. During this phase it is an increase of geomagnetic flux in
the magnetotail, the OCB expands, and it is the phase before the aurora becomes
active. There is a quiet auroral arc that drift equator wards, as seen in figure
2.5.1, ”A”. The active part of the substorm, the expansion phase, starts when
nighttime reconnection occurs. This is when the auroral arc suddenly brightens,
as seen in ”B” in the figure. During this phase the geomagnetic disturbance in
the ionosphere increases. The phase lasts about 30 minutes, and there is a rapid
expansion of the polar cusp size, meaning the auroral oval widens and moves
to lower latitudes. As seen in the figure (”C”-”E”), the auroral display explodes,
forming moving arcs and discrete aurora. The recovery phase, when nightside
reconnection dominates, ends the substorm and can last for about an hour. Dur-
ing this phase the plasma sheet recovers, the OCB contracts and the aurora dis-
play quiets down into diffuse aurora. After the substorm, the OCB is back to the
initial state, and quiet auroral arcs reappears, if any.
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3 Machine Learning and Neural Networks

Machine Learning (ML), a subfield of Artificial Intelligence, allows computer al-
gorithms to learn through data observations without explicit instructions. The al-
gorithms learn to detect meaningful patterns and improve automatically through
experience [26]. ML is divided into two main field: supervised and unsupervised
learning. In supervised learning, a ML model learns from pre-labled data. In un-
supervised learning, a ML model learns from unlabeld data where the output is
unknown. This thesis uses supervised learning, more specifically, the subcate-
gory classification. In classification the goal is to make a model that can predict
class labels on unseen data based on previous observations.

Neural network (NN) is one of the most used ML methods in computer science
today. NN are supervised machine learning techniques that are inspired by the
biological neural system in the brain, where neurons (are modeled) to send in-
formation in form of mathematical functions between layers. These networks
can be trained to solve arbitrary complex problems, such as speech recognition,
object detection in images and finances. A widely used network for image clas-
sification is a convolutional neural network (CNN) [27]. The CNN architecture
is specifically designed for image processing as the network directly processes
pixel data as input and learns how to extract features like shapes, textures and
patterns to detect objects [28]. Other ML methods need to preprocess the image
to extract these features. To further explain CNNs, we will use the basic feed-
forward neural network (FFNN) to explain the main building blocks of neural
networks. The chapter is based on lecture notes by Morten Hjorth-Jensen [28].

3.1 Feedforward neural network

The FFNN, or multilayer perceptron, consists of three basic components: the in-
put layer, one or more hidden layers and the output layer. Each layer is made
up by a number of neurons, or nodes. Each neuron in a layer is connected to
all the neurons in the next layer, making it a fully connected network, see figure
3.1.1. The input layer, holding the input neurons, represents the real valued in-
puts from the data given to the network. The output layer, holding the output
neurons, gives the predicted values after the network has processed the input.
The network dimension is defined by the depth (the number of layers) and the
width (the number of neurons in a hidden layer) [29].

The connections between neurons means the output from one layer is used as
input in the next layer. Each connection is represented by this input, as well as
a respective weight variable w and an added bias b. The connections in a FFNN
can only process information in a forward direction, meaning the neurons can’t
form a cycle [27].
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Figure 3.1.1: Fully connected feedforward neural network architecture with two hidden
layers [27]. The circles represent neurons and the arrows represent the connection be-
tween neurons in different layers. All the arrow heads are connected to a neuron in the
next layer, meaning information is only processed in one direction (forward).

When constructing a mathematical model for the network, we start by examining
the case for a single hidden layer and n input neurons. The weighted linear sum
zj for each neuron j is given by

zj =
n−1

∑
i=0

wijxi + bj, (1)

where xi is the data input for input neuron i. The weight goes from the i-th
neuron to the j-th neuron in the hidden layer and bj is the bias for the j-th neuron.
The resulting zj is the input argument to the activation function σ (see chapter
3.2) for output yj.

yj = σ(zj) = σ

(
n−1

∑
i=0

wijxi + bj

)
. (2)

For a deeper network with multiple layers, the equation for an arbitrary layer l
is given by

yl
j = σ(zl

j) = σ

(
∑
k

wl
jkyl−1

k + bl
j

)
, (3)

where yl
j is the activation of the j-th neuron in the l-th layer. The sum goes over

the k neurons in the previous layer l − 1. The input activation yl−1
k is the output

activation of the previous layer [30]. The expression can be generalized for a net-
work with an arbitrary number L of fully connected layers, indexing l = 1, ..., L.
Introducing vector and matrix notation, we let vectors yl and bl be the output
and biases for layer l. σl is the activation function for layer l. We also introduce
the weight matrix W l that contain all the weights between every neuron from
layer l − 1 to neurons in layer l. Thus the activation from (3) becomes [27]

yl = σl(zl) = σl
(

W lyl−1 + bl
)

. (4)
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The final output of the process can be expressed as [28]

ŷ = yL = σL
(

WLσL−1
(

WL−1
(

...σ1
(

W1x + b1
)

...
)
+ bL−1

)
+ bL

)
. (5)

Note that input x = y0, where x is the independent input layer from the data.
The shape of W l is an Nl−1 × Nl matrix and yl and bl are Nl × 1 column vectors.

3.2 Activation functions

The universal approximation theorem [31] loosely states that a neural network
with one or more hidden layer can give outputs that approximate any real-valued
function to an arbitrary degree/accuracy. This is the case as long as the network
has any ”squashing” activation function [29]. The Sigmoid function, defined as
(6), is a good option and makes sure the network can output non-linear functions
of the input x [28]. The outputs of the function are values between 0 and 1.

σsigmoid(x) =
1

1 + e−x (6)

Figure 3.2.1: The shape of the SiLU and
the ReLU activation functions [32].

The rectified linear unit (ReLU) activation
function has become recently more popu-
lar, and is often used with convolutional
neural networks. ReLU is defined as

σReLU(x) = max(0, x), (7)

and was proposed by Nair and Hinton
in 2010 [33]. It is known for its simplic-
ity. ReLU is equal to x if x ≥ 0 and
equal to 0 if x < 0, while the differ-
entiation outputs 0 or 1. The simplicity
of the function gives faster computations
and have showed improved performance
results compared to deep NN using the Sigmoid activation function [34][35].

More recently, a variation called the Sigmoid-weighted linear unit (SiLU) activa-
tion function has given even better results than Sigmoid, and is included in this
thesis because of its use in the EfficientNet models. SiLU is the Sigmoid activa-
tion function multiplied with its input [32], defined as

σSiLU(x) = x · σsigmoid(x). (8)

When researchers have tested various activation functions on ImageNet [36],
SiLU have performed similarly or better than the go-to ReLU when comparing
classification accuracy [32][37]. In figure 3.2.1 we can see the different shapes of
SiLU and ReLU. SiLU have a smoother shape, and allows some negative weights,
while ReLU sets all negative weights to zero [32]. This leads to more active neu-
rons, and a slightly more computational expensive option, when using SiLU.
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For classification problems it is normal to add the Softmax activation function
in the last layer. This function outputs values between 0 and 1 and the outputs
also sum up to 1. These final outputs can therefore be interpreted as the network
probabilities for a class to be true or false. The softmax function is derived by

σsoftmax(x)i =
exi

∑K
j=1 exj

, (9)

where x is the input vector and xi are the input vector elements. The sum is the
normalization term, ensuring that the output values sums up to 1 for each class K
in the classification problem. If we have multiple output classes, but only want
to view the class with the highest probability, the argmax function [38] can be
added to extract the class index with the highest probability.

3.3 Propagation, cost function and gradient descent

To make a neural network perform well the network has to be optimized, or
trained. This is done by minimizing a cost function by optimizing the weights
and biases for the network. The method used for this purpose is the so-called
backpropagation combined with gradient descent. This chapter is based on chap-
ter 2 of the book Neural Networks and Deep Learning by Nielsen (2015) [27].

From chapter 3.1 we know that the final network output for a FFNN can be ex-
pressed by matrix-vector multiplications. The initial information from the input
x propagates through the network by forward propagation and outputs an pre-
diction ŷ [29]. The output neuron with the highest activation is the prediction
the network assumes as the best match for the corresponding input. The predic-
tion is then compared with the true target y, or the ground truth. The degree
of error between them is calculated by the cost function C, also called the loss
function, which tells the computer how well the network performs. A normal
cost function to use is the mean squared error (MSE) derived as

CMSE(y, ŷ) = mean[(y− ŷ)2] (10)

For this thesis, the so-called cross-entropy function was used, as it is a go-to
function when working with CNN classification problems. The cross-entropy is
derived as

CCrossEntropy(y, ŷ) = −
K

∑
i=1

yi log ŷi + (1− yi) log(1− ŷi), (11)

where K is the number of outputs/classes [30].

The weights and biases in the network are randomly initialized, which most
likely results in a large error between the prediction and the true target. To re-
duce the error, we use gradient descent, or stochastic gradient descent, to min-
imize the cost function. The goal is to increase the value for the correct output
neutron, and decrease the values for the incorrect output neurons. To calculate
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the gradients based on the cost function for the gradient descent algorithms we
have to use the backpropagation algorithm (Rumelhart et al., 1986) [30][39]. With
backpropagation, information from the cost function can propagate backwards
to calculate gradients by the partial derivatives

∂C
∂wl

jk
and

∂C
∂bl

j
. (12)

The weight parameters and bias associated with every neuron are updated by
gradient descent methods

wl
jk = wl

jk − η
∂C

∂wl
jk

, bl
j = bl

j − η
∂C
∂bl

j
, (13)

where η is the learning rate. Next we introduce an intermediate quantity δl
j . This

quantity is the error in the j-th neuron in the l-th layer, and z is the weighted sum
as introduced in (3).

δl
j ≡

∂C
∂zl

j
(14)

For the output layer, in matrix-based form, the error is given by

δL = ∇ŷC(y, ŷ)� σL′(zL). (15)

∇ŷC(y, ŷ) is the derivative of the loss function with respect to the output predic-
tion and � is the Hadamard product. zL is the input for the activation function
from (5). The error for a layer l can be expressed by

δl =
(
(W l+1)Tδl+1

)
� σl ′(zl), (16)

where (W l+1)T is the transpose of the weight matrix in layer l + 1 and zl is the
input for the activation function from (4). This means we need to know the er-
ror in the l + 1 layer, which would be the output layer as the first calculation.
The transpose of W propagate the error backwards to the output of layer l. The
Hadamard product �σl ′(zl) propagates the error backwards through the activa-
tion function in layer l. Backpropagation gives us a way to calculate the rate of
change of the cost function with respect to any weight parameter and biases in
the network. The rate of change is given by the two equations

∂C
∂wl

jk
= yl−1

k δl
j and

∂C
∂bl

j
= δl

j (17)

The process can be thought of as when the gradients are calculated, we take a
small step in the negative direction to close in on a local minimum of the cost
function, to minimize the error between the output and the ground truth. This
process is performed layer by layer, but the input layer is not updated with new
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parameters as it contains the input data. The universal approximation theorem
guarantees that there exist a weight and bias combination that results in an arbi-
trarily small error. However, it does not offer any method on how that combina-
tion can be found. For that reason, gradient descent based algorithms coupled
with backpropogation is used.

3.4 Convolutional neural network

A convolutional neural network is an important deep learning algorithm that
uses raw image data directly to extract features in the image. The CNN auto-
matically learns which image features are important for predicting the correct
class. CNNs are a subset of neural networks and they are mainly used for image
related analysis.

Similar to a FFNN, a CNN architecture consists of an input layer, hidden layers
and an output layer. The fundamental hidden layers are the convolutional layer
and the pooling layer, as well as an activation function. The architecture of a ba-
sic CNN can be seen in figure 3.4.1, where we see that the network uses multiple
convolutional layers and pooling layers. Different convolutional layers will en-
able the network to detect and learn different features (such as: edges, colors or
shapes/objects). The network will make sense of these features while training on
a set of images with a known ground truth. A CNN can also include layers like
a normalization layer and a dropout layer. At the end of the network architec-
ture there is a fully-connected layer, also known as a dense layer, with a softmax
activation function that outputs the network predictions. The reason we add a
fully-connected layer is that not all neurons in one layer are fully connected to
all neurons in the previous layer, unlike from a FFNN [28].

Figure 3.4.1: Illustration of a typical CNN architecture. The network use convolutional
layers + ReLU functions and pooling layers for feature extraction. The output feature
maps are flattened into a single array and serves as input for multiple fully connected
layers who classifying the input. At the end, the network uses a softmax activation
function to output class probabilities. Image Source: Google Images. The illustration is
slightly altered by changing the input image and outputs.
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3.4.1 Convolutional layer

The most important layer in a CNN is the convolutional layer. The main job of
this layer is to extract features from the input image, or feature map, by scanning
over the input with a smaller kernel, or filter. The feature map is represented as a
three-dimensional grid, where each grid value represents a pixel value [29]. The
height and width of the grid are the image dimensions, and the depth (different
from network depth) is represented by the image RGB channels. The kernel is
systematically applied left to right and top to bottom, as visualized in figure 3.4.2.
A normal kernel size is 3x3 or 5x5 pixels, and the kernel moves with a stride of
n-pixels. One kernel location above the input map calculates a single value for
the three-dimensional output feature map, due to element-wise multiplication.
Note that the figure shows a two-dimensional example, e.g. a grey image with
only one depth channel. The bottom example in the image shows an input image
with zero padding. This padding preserves the input size and helps preserving
features located at the edges.

This process outputs a new feature map that highlights the areas the kernel fea-
ture correlates to features in the image. Normally, the convolutional layer have
multiple kernels, each detecting different types of features. This means that the
layer creates a stack of new output images/feature maps. Lastly, the output is
passed through a non-linearity, like the ReLU activation function, before becom-
ing the input of the next layer in the network.

Figure 3.4.2: The convolutional layer with one input and one output channel, kernel of
size 3x3 and stride of 1. The upper output calculation is for y1,1 and the lower calculation
is for y2,2, where the output is with zero padding to preserve the input image shape.
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3.4.2 Pooling layer

The purpose of the pooling layer is to reduce the spatial size of the feature maps
while keeping the most important feature information intact. This process re-
duces the total amount of network parameters and thus results in fewer param-
eters the network needs to learn. This results in less computational time and
the memory constraint is also reduced. The visualisation in figure 3.4.3 shows
how average pooling, min pooling and max pooling works on a 4x4 input ma-
trix with a 2x2 kernel matrix and stride of 2. The average pooling layer calculates
the average of each patch covered by the kernel, while min/max pooling keeps
the lowest/highest value in a region. Average and max pooling are the two most
commonly used.

Figure 3.4.3: Illustration of average pooling, min pooling and max pooling. Kernel ma-
trix size of 2x2 and stride of 2.

The pooling layer is normally added after the convolutional layer and activation
function in the CNN architecture, but it does not have to be added every time. A
downside of using pooling layers are that important feature information can be
lost in the transformation, since the original matrix size is reduces by removing
(feature) values.

3.4.3 Fully connected layer

After the feature extraction performed by the multiple layers of convolutions
and padding, the CNN needs to perform classification. The classification part is
performed by fully connected layers, making them the last layers of the CNN. As
the name suggests, the main purpose of these layers is to connect all the neurons
in the network, just like a feedforward neural network.

The feature maps from the previous output layer first gets flattened into a one-
dimensional feature array, before being used as the input for the fully connected
layers. Now, every value in the fully connected layer gets a say in what the final
output of the classification will be. By using the softmax activation function at the
end, the model’s predicted outputs are presented as a probability distribution.
This distribution holds the probability score (between 0 and 1) for each possible
class label the input image can have.
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3.4.4 Overfitting, dropout layer and data augmentation

Overfitting is when the network performs well on the training data, but not on
the unseen validation/test data. This often occurs if the network trains too long.
The network stops learning which features are important for the various classes,
but memorizes the training data instead.

One way to detect overfitting is to follow the training vs. validation loss (or error)
during a number of epochs. Figure 3.4.4 illustrates what underfitting, overfitting
and the optimal solution looks like. We know the network fits to closely to the
training set when the validation loss increases, and the training and validation
losses diverge. Finding the optimal solution can be difficult, and is dependent
on finding a good learning rate for the network to efficiently reduce loss. A good
optimizer that handles the learning rate for a CNN is the gradient-descent based
algorithm ADAM (Adaptive moment estimation) [40]. Another way to detect
overfitting is to compare the validation accuracy and test accuracy. We do not
want the test accuracy to be significantly lower than the validation accuracy.

Figure 3.4.4: Error/Loss as a function of epochs. The graph shows which areas that
increase the chance of underfitting and overfitting. The optimal point/area is in between.

Two techniques to prevent overfitting when building a CNN are dropout and
data augmentation.

When implementing a dropout layer in the network, a percentage of random
neurons are temporarily switched off during the training process. This means
that the connections between neurons are switched off as well. The network
learning should in theory improve, because the chance of memorizing specific
training set features instead of learning features are reduced. Dropout is nor-
mally used with/after the fully connected layer.

Data augmentation is a method of artificially increasing the size of the training
data without adding new data. Instead, by implementing random data transfor-
mations, we increase the data with slightly modified versions of existing data.
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This prevents overfitting by creating more variation in the training set, reducing
the model’s chance of focusing to much on a few specific features. Examples
of data augmentation are image rotating, flipping, scaling, or padding. These
are related to image position. Colour augmentation can also be used, where for
example the image contrast or brightness can be altered.

3.4.5 Imbalanced data

When working with classification problems, it is normal for the amount of data
for each class to differ. With an imbalanced dataset, the accuracy is biased toward
the dominant class. If e.g. 95% of the data is class D, the model will get a 95%
accuracy if all samples are classified as class D. This model is not able to correctly
predict the non-dominant class, making it useless. For this thesis, we looked at
two methods to solve this problem.

The first method tackles the problem by oversampling with Pytorch’s weighted
random sampler.The second method is to use the weight parameter in Pytorch’s
Cross-Entropy loss function. Both methods uses the same re-scaling weights
based on the sizes of the classes. For the first method, the class weight has to
be assigned to every image in a tensor, while the second method used the four
weights directly (weight=[wclass x, wclass y, wclass z, ...]).

Both methods helps to reduce overfitting, and they were tested during network
training. A weight is calculated by

wclass x =
Size of the largest class

Size of class x
(18)
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3.5 Model evaluation

To evaluate the performance of the classifier some useful metrics are introduced
in the following sub-chapters.

3.5.1 Confusion matrix and F1 score

A confusion matrix describes the performance of the classifier by counting the
model predictions and arranging them in a matrix according to the actual class.
The matrix is therefore used on a data set where the true classes are known, e.g.
in supervised learning. For this thesis, the confusion matrix will be used on the
validation and test sets of the pre-labeled images.

Figure 3.5.1: Confusion matrix for a binary classification problem.

Figure 3.5.1 shows a confusion matrix for two classes; Positive and Negative. The
confusion matrix tells us that the classifier indicates the class correctly if we have
True, and incorrectly if we have False. The four outputs of the confusion matrix
is the TP, TN, FP (type 1 error) and FN (type 2 error).

TP The nr. of correct predictions, when the actual class was Positive.

TN The nr. of correct predictions, when the actual class was Negative.

FP The nr. of wrong predictions when the actual class was Positive.

FN The nr. of wrong predictions when the actual class was Negative.

From the output, we can calculate the precision, recall and F1 scores [41]. The
precision score is defined as the ratio between the true Positives and the total
number of Positives predicted by the classifier [42]. In other words, the precision
score is how often the predicted Positives are actually correct.

Precision =
TP

TP + FP
. (19)

The recall score, or sensitivity, is defined as the ratio between the true Positives
and the true Positives plus the false Negatives [43]. In other words, the recall
score is how often the observed Positives are actually predicted correctly.

Recall =
TP

TP + FN
. (20)
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The F1 score is calculated to evaluate the classifiers accuracy based on the preci-
sion and recall, as the harmonic mean [44].

F1 = 2 ∗ Precision ∗ Recall
Precision + Recall

(21)

All three scores have output between 0 and 1, where 1 is a perfect score, and can
easily be implemented by using scikit-learn [45]. The F1 score is very useful for
classification problems with imbalanced classes, where classification accuracy
can be misleading, see chapter 3.4.5 and 3.5.3. By maximizing the F1 score we
find a good balance between the precision and recall.

3.5.2 Multi-class confusion matrix and F1 score

When we have a classification problem with multiple classes, like classifying
aurora shapes, the metric calculations have to be done for each class. The scores
are calculated for the chosen class against all the confusion matrix outputs of the
remaining classes.

Figure 3.5.2: Confusion matrix for a multi-class classification problem. a, f, k and p are
the True Positive values.

The single class precision score is calculated as the ratio between the class TP
value and the class TP value plus the remaining values of the (actual) class row.
The single class recall score is calculated as the ratio between the class TP value
and the class TP value plus the remaining values of the (predicted) class column.
The confusion matrix in figure 3.5.2 will further help to explain the calculations
for class 1 by using (19) and (20);

Precision[class=1] =
a

a + (b + c + d)

Recall[class=1] =
a

a + (e + i + m)

The F1 score is calculated for each class by equation (21) and inserting the preci-
sion and recall for that class. The overall F1 score for the classifier is calculated
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as an weighted average. This may result in a score not between precision and re-
call [44]. When using a weighted F1 score, each class is weighted by the number
of samples of that class. Weighted averages can also be calculated for precision,
recall and accuracy.

3.5.3 Classification accuracy

The classification accuracy measures the performance of the classifier. The score
is the ratio between correctly predicted classes/targets ti and total predictions
made n, as defined in equation (22) [28]. The score is a intuitive metric, but is
not considered the best for data sets that have imbalanced classes. This makes
the classifier biased and and the classifier struggles to correctly predict minority
classes. A perfect score equals to 1.

Accuracy =
∑n

i−1 I(ti = yi)

n
(22)

From the equation we have that the correctly predicted targets is the same as the
model output yi. I is the indicator function, where

I =

{
1, ti = yi

0, ti 6= yi
(23)

It is normal to see Top-5 accuracy scores in scientific articles and model compar-
ison, normally with the ImageNet data set. The Top-5 score is the accuracy score
for the actual class to be one of the five highest predicted classes. For this the-
sis, the conventional version of accuracy, the top-1 accuracy is used. This means
when making a prediction, only the class with the highest probability output is
accounted for.
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4 Instruments and Locations

4.1 Aurora data

4.1.1 All-Sky Imager

When studying auroral activity and collecting data in form of images, the area of
interest is the entire sky from horizon to horizon. To achieve the wanted effect,
a 180 degree field-of-view is required. These images are taken by the All-Sky
Imager (ASI), a ground-based camera with a circular fish-eye lens.

The instrument is light sensitive, pointing upwards, and protected by a trans-
parent dome. Important components are the photon counter and the filter wheel
[46]. The filter wheel holds one or more filters of certain emission wavelengths
characteristic for auroral activity. The intensity/brightness of the aurora is mea-
sured by the photon counter. Due to the relative low brightness, images is taken
with a 2 second exposure time, and only when the sky is dark [46]. The ASI takes
an image with the different filters at different times. During 1 minute, the ASI
takes four images with the 5577 Å filter, but only two images with 6300 Å filter.

Rain, snow and cloudy weather are the largest disadvantages for ASIs. Obser-
vations are also not possible when the moon is visible in the field-of-view, as the
moonlight is to bright.

4.1.2 Ny-Ålesund, Svalbard

An ideal location for collecting aurora data is Svalbard. Therefore our data is
collected from the ASI located close to the Sverdrup Research Station in Ny-
Ålesund. The data and ASI is maintained by the University of Oslo.

The ASI has a Keo Sentry 4ix Monochromatic Imager from Keo Scientific. The
camera takes 512x512 pixel images, and is equipped with 5577 Å and 6300 Å
filters on a single-filter wheel [46]. Svalbard is considered an arctic desert, and
therefor has low yearly precipitation. The seasons on Svalbard are characterized
by the midnight sun and the dark period [47]. The dark period is when the Sun
is located below the horizon, and two important periods are the astronomical
twilight and polar nights. During the polar nights from early November to early
February, the only light illuminating the sky is caused by auroras or the moon.
This makes Svalbard the perfect place to observe dayside cusp aurora. The as-
tronomical twilight expands the period (mid-to-late October to mid February),
with a twilight effect during mid-day [48][47]. The climate and lighting condi-
tions on Svalbard are due to the high latitude at 78.92◦N (geomagnetic (AACGM)
76.24◦N) [46].
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4.2 Solar wind data

4.2.1 Advanced Composition Explorer spacecraft

The Advanced Composition Explorer (ACE), figure 4.2.1, is a spacecraft part of
the NASA Explorers program. ACE observes the IMF and the solar wind, as well
as energetic particles originating from regions outside our solar system [49]. A
part of the ACE mission is to examine and collect data on the solar wind, and
transmit the data to Earth. With the data, it is possible to investigate the so-
lar wind (plasma) interaction with Earths magnetosphere and ionosphere. Real-
time data can also be used for space weather forecasting and warnings of solar
storms. ACE is orbiting the L1 Lagrange point, an unstable point along the Earth-
Sun line where the two gravitational forces between the masses are balanced [50].
ACE has been operating since 1998, and is predicted to continue its mission until
2024 [49].

4.2.2 Wind spacecraft

The Wind spacecraft, figure 4.2.2, is part of the Global Geospace Science program
and is a solar wind laboratory [51]. Similar to ACE, Wind measures solar wind
properties before it reaches and interacts with Earths magnetosphere. The IMF
is also measured. The data is collected and transmitted to Earth. Wind has been
operating at the L1 Lagrange point in the Earth-Sun system since 2004 [51]. In
this orbit, ACE has enough fuel to continue its mission until 2074 [52].

Figure 4.2.1: The ACE spacecraft. Mea-
sures solar wind and magnetic fields.
Credit: NASA/B. Dunbar [53]

Figure 4.2.2: The Wind spacecraft. Mea-
sures solar wind properties. Credit:
NASA/L. B. Wilson [54]
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5 Data and Methodology

This chapter describes the data, classes and methodology used for this thesis.
We started the thesis by manually labeling all original ASI data based on their
features, and create a training database for the convolutional neural networks.
The data described in chapter 5.1 include Ny-Ålesund ASI data from Svalbard
All-Sky Imager Data [1] and OMNI data from NASA [2]. Since all our ASI data
comes from Ny-Ålesund, we only work with northern lights images, which in
general will be referred to as aurora. Chapter 5.2 gives an overview and exam-
ples of the four classes the aurora is divided into.

The next sections describe how the network was selected and trained by high-
lighting some of the implementation details. The final sections describe how
the network was used to predict the class of unseen aurora images and statistics
based on these predictions.

All programming was done in the programming language Python. For imple-
mentation, we used the Anaconda platform. Table 5.0.1 gives an overview of the
main software and hardware specifications used. We trained all networks on a
Nvidia RTX2080Ti GPU. To make a thesis that is not code based, all important
scripts can be found in the following GitHub repository. Larger data sets are
available from Dropbox.

• GitHub: https://github.com/kristinaothelia/AuroraCNN

• Dropbox: https://www.dropbox.com/sh/3pt4b8aeoh1xb4w/AADmpwf
DE 1btXlbJjBsglUra?dl=0

Table 5.0.1: The main software and hardware specifications.

Name Version Description

Software

Python 3.8.5 Programming language [55]

Anaconda 4.9.1 Python distribution platform [56]

NumPy 1.20.0 Used for implementation [57]

Matplotlib 4.3.4 Used for data visualization [58]

Scikit-Learn 1.0.2 Used for model analysis [59]

PyTorch 1.7.0 Open source ML library [60]

CUDA 11.3 Used for PyTorch, GPU

Hardware

CPU Intel Core i5-5200, Windows 10, 4 GB RAM

GPU Nvidia RTX2080Ti, Linux, 11 GB memory
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5.1 Data

The overview of available data at the ASI data site shows many days without
entries. Missing ASI data from time points are mainly caused by the camera not
operating. This could be caused by light pollution or if the moon was located
in the camera field-of-view. Missing data in the OMNI data set are replaced by
variations of ”9”-s combinations, see data explanation as mentioned above.

5.1.1 Data pre-processing

The camera used in the ASI has a 512x512 px resolution. Due to the camera lens,
there is a black border around the area of interest in the image. The black border
is removed during the calibration phase, and the final images on the ASI data
site have a lower resolution, see table 5.1.1.

When the data is downloaded from the site, the images have very low intensity,
making them look almost black. The images are therefore transformed using a
Python script, 1, with Numpy’s percentile method. The process brightens the
image and brings out the different weather conditions and auroral shapes.

Algorithm 1 Scaling image intensity
img: raw input array
imgS: scaled output array

1: imgS = img
np.percentile(img, 99)

2: imgS[imgS > 1] = 1
3: imgS = (imgS (216 − 1)).astype(np.uint16)

OMNI data are gathered directly from NASA and how the data is processed are
explained at NASA’s OMNIweb [61].
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5.1.2 ASI data for CNNs

The data used for training a CNN model, were received in separate turns creating
four sets of data, as listed in table 5.1.1. Data set 1 was received first, by a random
draw of images from the data library. Further into the thesis, the data amount
was increased by 6000 images, data set 2, 3 and 4. Green and red aurora data
have almost identical timestamps. Since data set 1 and 2 were not generated
at the same time, the dates do not exactly match. Generating the data sets at
different times also resulted in a few overlapping images. Thus, the total data
consists of 7980 images.

There is no definite way the data should be split during network training. For
this thesis, we first extracted approximately 10% of the data for each class, cre-
ating a test set of unseen data (6: ASI test). The remaining ∼ 90% makes up the
data for training the classifier (5: ASI train valid).

Table 5.1.1: List of data sets consisting of All-Sky Imager data [1] of red and green Aurora
Borealis above Ny-Ålesund, Svalbard.

Set Name Nr. of images Resolution [px] Wavelength [Å]

1 Green1 2000 471x471 5577

2 Red1 2000 469x469 6300

3 Green2 2000 471x471 5577

4 Red2 2000 469x469 6300

Combined green and red aurora data sets

5 ASI train valid 7182 469x469, 471x471 5577, 6300

6 ASI test 798 469x469, 471x471 5577, 6300

5.1.3 ASI data for aurora predictions

ASI data of unseen aurora borealis to be classified by the CNN model were
downloaded from the data library. The data chosen were from the Ny-Ålesund
station, in 5577 Å and 6300 Å, as listed in table 5.1.2. Data for January, November
and December from the years 2014, 2016, 2018 and 2020 were downloaded. Only
these three months were chosen because of the the light conditions on Svalbard,
as explained in chapter 4.1.2. All images went through a simple transformation,
as explained by algorithm 1. The year 2014 and 2020 were chosen because they
are solar maximum and solar minimum, respectively. The years 2016 and 2018
were included to have more data to compare statistical results with. The reason
for the different data set sizes comes from the ASI taking twice as many 5577 Å
images during a given time interval.
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Table 5.1.2: Red and green Ny-Ålesund ASI data. Both data sets include available data
for January, November and December from the years 2014, 2016, 2018 and 2020. All data
are downloaded from the Svalbard All-Sky Imager Data website.

Set Name Nr. of images Wavelength [Å]

1 ASI red1,2 221 004 6300

2 ASI green1,2 441 861 5577

1: Insert wanted wavelength and year in the web link
http://tid.uio.no/plasma/aurora/nya6/wl/yr

2: For January 2014, the data is from camera nya4, hence
http://tid.uio.no/plasma/aurora/nya4/wl/2014/

5.1.4 High resolution OMNI data

OMNI data is solar wind magnetic field and plasma data in a 1-min interval.
Each entry is made up of a large number of parameters, which are time-shifted
to the Earth’s bow shock nose [61]. The OMNI data sets are generated at NASA
OMNIWeb: High Resolution OMNI [2]. NASA gathers the data from spacecrafts
like ACE and Wind. For this thesis, data sets for 2014, 2016, 2018 and 2020 were
generated, with only a few selected parameters, including time point, Bz param-
eters, speed and density. To reduce the size of the data sets more, only data for
the chosen months were included. The main purpose of this was to make the
Python code run faster when matching OMNI data to ASI data.

Table 5.1.3: High-Resolution 1-min OMNI data sets [61].

Set Name Year Months Spacecraft1

1 omni min2014 2014 Jan, Nov, Dec 51, 71, 99

2 omni min2016 2016 Jan, Nov, Dec 51, 71, 99

3 omni min2018 2018 Jan, Nov, Dec 51, 71, 99

4 omni min2020 2020 Jan, Nov, Dec 51, 99

1: 51: Wind, 71: ACE, 99: Missing data

Further information about the data can be found under One min and 5-min solar
wind data sets at the Earth’s bow shock nose, 4b at OMNIWeb [61].
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5.2 Classes

The images from the ASI train valid and ASI test data, see chapter 5.1.2, need
assigned class labels to act as the training, validation and test data for the super-
vised learning done by the CNN classifier. For the four classes y ∈ [0, 1, 2, 3] in
table 5.2.1, we have the named labels No Aurora, Arc, Diffuse and Discrete, re-
spectively. The classes used for this thesis are slightly altered from the six classes
defined by Clausen and Nickisch [9]. Compared to Clausen and Nickisch, we
combined their cloudy and clear/noaurora into a single class, No Aurora. Their
class for moon were not used.

Table 5.2.1: Description of the four classes y ∈ [0, 1, 2, 3], which are based on Clausen
and Nickisch definition [9].

Class Label Explanation

y

0 No Aurora

No auroral activity.
The image shows a clear sky, where stars and planets
can be visible (dependent on the light intensity), or
the sky is dominated by clouds or fog.
The camera dome can be contaminated, for example
by water or snow.

1 Arc

This label is used for images that show one or
multiple bands of aurora that stretch across the
field-of-view; typically, the arcs have well-defined,
sharp edges.

2 Diffuse

Images that show large patches of aurora, typically
with fuzzy edges, are placed in this category.
Structured, but not well-defined.
The auroral brightness is of the order of that of stars.

3 Discrete

The images show auroral forms with well-defined,
sharp edges, that are, however, not arc like.
Well-defined structures/shapes. The auroral
brightness is high compared to that of stars.

Each image from the ASI data are labeled with one of the four classes by manu-
ally inspecting each image. They were inspected in black and white. Figure 5.2.1
and 5.2.2 contains example images of various (weather) conditions and which
class they were assigned. Note that all the images in figure 5.2.1 were relatively
easy to assign a single class. A good amount of the data are images with weak
aurora display and/or images that could fit multiple classes.
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Figure 5.2.1 shows three images for each of the classes arc, diffuse and discrete.
In panels a)-c) there are images of arcs, where b) shows an example of a multi-
arc. Panels d)-f) show example images of diffuse aurora and panels g)-i) show
examples of discrete aurora.

a) Class 1: Arc b) Class 1: Multi-arc c) Class 1: Arc

d) Class 2: Diffuse e) Class 2: Diffuse f) Class 2: Diffuse

g) Class 3: Discrete h) Class 3: Discrete i) Class 3: Discrete

Figure 5.2.1: ASI data of classes Arc, Diffuse and Discrete. Various forms of arcs are in
panel a)-c), diffuse in d)-f) and discrete in g)-i).
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Figure 5.2.2, panel a)-c), shows examples of images placed in the no aurora class.
This includes clear sky and weather conditions like fog and clouds. The images
in panel d)-f) show examples where multiple conditions are met, or correct la-
beling is difficult. Panel d) show an example where we have clouds and aurora.
Panel e) show an image with aurora detected, but where the dome is contami-
nated. In this case the class was set to diffuse. Panel e) and f) are examples of
images that are difficult to assign a single class.

a) Class 0: Fog, mist b) Class 0: Clouds c) Class 0: Clear sky

d) Class 1: Clouds and two
arc-like bands

e) Class 2: Some aurora with
dome contamination

f) Class 2: Aurora image
hard to label correctly

Figure 5.2.2: ASI data of classes No Aurora, Arc and Diffuse. No aurora occurs in panel
a)-c), and the weather conditions are foggy, cloudy and clear sky, respectively. The clear
sky image has some light pollution that can be misinterpreted as an arc by the classifier.
In panel d), the weather condition is partly cloudy and some (multi) arcs can be detected.
As we want to detect aurora, the image was classified as Arc. The images in panel e)-f)
were labeled Diffuse. Panel e) shows an image with detectable aurora, but where the
dome is contaminated.

In practice, the threshold between classes was hard to define when labeling im-
ages. The most dominant class feature ultimately determined the assigned label.
Images that contains detectable aurora, at least by the human eye, and fog/-
clouds, were set to an aurora class. Most of these images were set to diffuse
because of dominating clouds hiding much of the aurora features. This means
the actual aurora above the clouds may be arcs or discrete. Very dim and/or
scattered aurora was also labeled diffuse.
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5.3 Data sets

All data sets for this thesis are in JSON (JavaScript Object Notation) format.

5.3.1 ASI data sets for CNNs

The labeled data from ASI train valid and ASI test, from chapter 5.1.2, were
made into JSON data sets by using the python script data to json.py.

• ASI train valid.json, ASI test.json

The training set was further split 80/20 into training and validation containers
directly in Python. This was accomplished with a split function that randomly
splits the data set. After some network training with unsatisfactory results, we
had a new run through of the data using correct classes.py. The class labels
were manually corrected or approved image by image. The new information
was directly saved to the JSON file.

Each entry in the data sets contains information about the image as shown in the
example below. When testing the model and making predictions, a new JSON
data test set is made with updated score values.

• ASI test predicted efficientnet.b3.json

The data distribution between the four classes is listed in table 6.2.1. ASI CNN is
the distribution between the total 7980 images from the combined ASI train valid
and ASI test data, while the ASI train container represents only the training im-
ages. ASI train contains ∼ 72% of the total data. We can see from the table that
our data is imbalanced, where the no aurora class consists of 41% of the data. Arc
is the smallest class, with 10%. Diffuse contains 21% and discrete contains 28%
of the data.

The imbalance problem was corrected by using oversampling/class weighting
for the training data set. ”Weights1” is the weights used to get balanced classes.
”Weights2” was used to highlight the importance of the underrepresented aurora
classes. We used weights1 x1.5 for the three aurora classes, and let the no aurora
class be. When training the network for two classes, the single class Aurora is a
combination of the three aurora classes arc, diffuse and discrete. ”Weights3” was
used when training with two classes.
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Table 5.3.1: Data distribution (# of images) for the ASI CNN and ASI train data sets
used for CNN training. ASI train contains ∼ 72% of the data. Weights1 is to even out
the unbalanced classes and Weights2 is for raising the importance of the aurora features
during training, with x1.5 compared to Weights1. The weights are for balancing the
training set. The validation and test sets are not weighted.

Set No aurora Arc Diffuse Discrete Total

ASI CNN 3280 823 1649 2228 7980

Distribution 41% 10% 21% 28% 100%

ASI train 2332 602 1203 1610 5747

Weights1 1.0 3.9 1.9 1.5

Weights2 1.0 5.8 2.9 2.2

ASI train, 2 classes 2332 3415 5747

Weights3 1.5 1.0

5.3.2 ASI data sets for aurora predictions

The data from ASI red and ASI green, from chapter 5.1.3, are made into unla-
beled data sets made for predictions and statistics (ASI R.json and ASI G.json).
Different to the data sets used for network training and testing, these sets in-
clude information about the solar wind and IMF. The most important OMNI
parameters for this thesis is the north-south magnetic field strength component
Bz, named ”Bz, nT (GSM)” and solar wind speed (”Speed, km/s”).

As we wanted to match an aurora image to the associated OMNI parameters,
we encountered a problem. The image of the aurora and the associated Bz value
is not the Bz value at the identical time in the OMNI data set. Therefore, we
had to get creative to match (time shift) the data. For daytime/dayside aurora
(no Dungey cycle), the time the solar wind uses from the bow shock nose to the
ionosphere above the magnetic poles are in the span of minutes. This is based on
an average solar wind speed, and the distance of approximately 90,000 km from
the bow shock to Earth [62]. For this thesis, we defined dayside aurora for hours
between 06-17. Therefore, the mean of the Bz timepoint ±3 minute time interval
were added as the parameter values. The standard deviation was also calculated
and exported to the ”solarwind” dictionary in the JSON files.

For nighttime/nightside aurora (with Dungey cycle), the time the energetic par-
ticles use from the bow shock nose to the ionosphere are longer than for the
dayside. For this thesis, we defined nightside aurora for hours between 18-05.
This exact time is dependent on multiple variables, and hard to calculate exactly.
Therefore we used the Bz timepoint for one hour before the aurora timepoint, as
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well as a mean over half an hour (timepoint ±15 minutes). The time-shift of one
hour was chosen because of the temporal evolution of substorms, see chapter
2.5. If the recorded Bz values were missing, the entry was dropped, giving fewer
points to calculate the mean and standard deviation. However, if all values dur-
ing the time interval were missing, the no-data number was added (a combina-
tion of 9’s, dependent on the OMNI data parameter). Calculating the mean and
standard deviation were done for all parameters and added to the JSON file.

The next step is using the model to add a class label (”label”) and predicted class
scores (”score”). To keep the original data set unchanged, we made new datasets
with these prediction results. A file entry from the dataset with predictions made
looks like the example below. At the end, we have two JSON files for the same
data. One with and one without a class label and prediction scores.

• ASI R.json, ASI R predicted efficientnet-b3.json

• ASI G.json, ASI G predicted efficientnet-b3.json
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5.4 EfficientNet

When designing a convolutional neural network for the thesis, we ended up with
unsatisfactory accuracy results on self-made networks. We therefore looked into
well-known CNNs and ended up with using the state-of-the-art network called
EfficientNet. EfficientNet is a CNN that consists of a family of scaled networks,
where the network complexity increases from the baseline network (EfficientNet-
B0). EfficientNet was released open source by Google Brain in 2019, with the
paper ”EfficientNet: Rethinking Model Scaling for Convolutional Neural Net-
works” [63]. The EfficientNet information and results are from this paper.

One of the main advantages of using EfficientNet is to take advantage of the
effort made to efficiently scale up the baseline network of the family, gaining
higher classification accuracy while keeping the number of parameters low. In-
stead of only scaling up e.g. the number of layers, EfficientNet uniformly scales
the network depth (number of layers in the network), width (number of channel-
s/feature maps in each layer) and resolution (input image) by using fixed scaling
coefficients [63]. The architecture of EfficientNet-B0, the baseline network, is de-
scribed by table 5.4.1 [63]. EfficientNet uses the SiLU activation function, see eq.
(8).

Table 5.4.1: EfficientNet-B0 (baseline network) architecture [63].

Stage Operator Resolution #Channels #Layers

1 Conv3x3 224× 224 32 1

2 MBConv1, k3x3 112× 112 16 1

3 MBConv6, k3x3 112× 112 24 2

4 MBConv6, k5x5 56× 56 40 2

5 MBConv6, k3x3 28× 28 80 3

6 MBConv6, k5x5 14× 14 112 3

7 MBConv6, k5x5 14× 14 192 4

8 MBConv6, k3x3 7× 7 320 1

9 Conv1x1 & Pooling & FC 7× 7 1280 1

38

https://ai.googleblog.com/2019/05/efficientnet-improving-accuracy-and.html


A way to see how good an image classification model performs is to test it on
ImageNet. ImageNet is a very large database of about 14 million hand-labeled
images over 20 000 different classes/categories. A subset ILSVRC (Russakovsky
et al., 2015. [36]) is widely used for testing models, with approximately 1.2 mil-
lion labeled test images over 1000 different classes/categories.

The EfficientNet performance results on ImageNet (ILSVRC) showed how the
scaling method lead to better accuracy and efficiency than existing CNN mod-
els. EfficientNet-B0 achieved an Top-1 accuracy of 77.1%, with 5.3M parameters
0.39B FLOPS (Floating Point Operations Per Second). Compared to DenseNet-
169 (Huang et al., 2017. [64]) with 76.2% accuracy, have 14M parameters and
3.5B FLOPS. The scaled up model, EfficientNet-B7, achieved state of the art Top-
1 accuracy of 84.3%, with only 66M parameters and 37B FLOPS. In comparison,
CNN model GiPipe (Huang et al., 2018. [65]) with the same accuracy, had 8.4x
as many parameters [63]. Figure 5.4.1 shows EfficientNet models Top-1 accuracy
as a function of parameters compared to other CNN models.

Figure 5.4.1: Model size vs. Top-1 accuracy on ImageNet [63].

Checking the leaderboard for ”Image Classification on ImageNet” (19.9.21 [66]),
EfficientNet based models are no longer ranking as the best, but they are doing
very good based on accuracy vs number of parameters. In #6, Meta Pseudo La-
bels - EfficientNet-B6-Wide, has 390M parameters, while better ranking models
have 1470M-2440M parameters. The Top-1 accuracy differ less than 1%.
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5.5 Training, validation and testing

5.5.1 Models and hyper-parameters

EfficientNet was implemented through the CRAI-Nets project [6]. We chose to
mainly focus on EfficientNet-B3 as this model have a good accuracy-parameter
ratio, providing a usable training time. Table 5.5.1 lists the dropout rate, width
coefficient, depth coefficient and image resolution for for each model.

Table 5.5.1: The EfficientNet family [63] parameter coefficients for models B0 to B7.

Model Image Width Depth Dropout

resolution [px] coefficient coefficient rate

EfficientNet-B0 224 1.0 1.0 0.2

EfficientNet-B1 240 1.0 1.1 0.2

EfficientNet-B2 260 1.1 1.2 0.3

EfficientNet-B3 300 1.2 1.4 0.3

EfficientNet-B4 380 1.4 1.8 0.4

EfficientNet-B5 456 1.6 2.2 0.4

EfficientNet-B6 528 1.8 2.6 0.5

EfficientNet-B7 600 2.0 3.1 0.5

Before training the CNN, the input data has to be transformed. Torchvision’s
transforms function were used for this purpose, where the data are first made
into numpy float objects and then torch tensors. The data augmentation tech-
nique of randomly rotating the data was implemented to reduce overfitting. We
used torch’s interpolation function to interpolate the data, where modes bilin-
ear and bicubic were tested. The size parameter is set to the image resolution
associated with the model, see table 5.5.1. The data were standardized.

The various hyper-parameters used during training are listed in table 5.5.2. The
number of parameters are dependent on the network, and does not change when
altering hyper-parameters. During training, the full training dataset has to be
passed through the network. As the dataset is to large to be passed through as
one unit, it is divided into smaller parts called batches. These batches are fed
to the network. The batch size is the number of training images in one batch.
When all batches have been through the network, more specifically done one
forward and one backward pass, we have fulfilled one epoch. The gradient de-
cent method upgrades the weights and biases through backpropagation for ev-
ery epoch. Therefore, we need multiple epochs to minimize the cost function and
optimize the learning.

All network configurations were trained for 200 or 300 epochs and various batch
sizes were tested. A smaller batch size requires less memory space and we
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quickly found out we were constricted by the GPU memory when training EfficientNet-
B4, even with really small batch sizes. For EfficientNet-B3, memory issues arose
when using a batch size of 64.

Table 5.5.2: Tested hyper-parameters during training for EfficientNet models. For Py-
Torch’s StepLR learning rate scheduler, the learning rate decays by γ every step size
epochs.

Model #Params. Batch Epochs Step Learning γ

[mill] size size rate

EfficientNet-B2 7.7 8, 16, 24, 32 200, 300 50, 75 0.1, 0.01 0.1, 0.5

EfficientNet-B3 10.7 8, 16, 24, 32 200, 300 50, 75 0.1, 0.01 0.1, 0.5

EfficientNet-B41 17.6 8, 16 200, 300 50, 75 0.1, 0.01 0.1, 0.5

1: Batch size > 16 gave GPU memory error.
Note: With the Adam optimizer and a learning scheduler, we use an initial learning rate that

decreases with a factor g after x (step size) epochs.

5.5.2 Neural network training and validation

To create a model that classifies the data as desired, the model has to be trained.
This is a step-wise process that iterates through the data numerous times to op-
timize the weights and biases in the network. Before training starts, the data is
split 80/20 into training and validation sets, and undergoes training and valida-
tion transformations as mentioned above. For this thesis, the difference between
the two transformation setups is that the validation data are not randomly ro-
tated. Next, the chosen EfficientNet model has to be initialized, the initial learn-
ing rate set and the cross-entropy loss function has to be created. Weighing up for
imbalanced classes can be done by passing weight parameters to the loss func-
tion, or use torch’s Weighted Random Sampler (WRS) directly when creating
torch data loaders. With WRS, we do not use the weights as four class weights,
but an individual weight for each image in the data. The image weight is the is
set by the associated label, meaning every image labeled arc, will receive the arc
weight.

For each epoch, the network is fed one batch of data at a time. The data gets
passed through the network and the loss is calculated based on the differences
between the target (ground truth) and the predicted values. This loss, or error,
is backpropagated through the network by the Adam optimizer (with learning
rate input and default parameters). This is when the weights and biases are
updated. The optimizer uses the learning rate to decide how fast the network
should learn.For each epoch, we calculate the mean loss by the losses from each
batch iteration. The process is repeated until all training data have gone through
the network once, and the training for one epoch is completed. Next, valida-
tion is performed for the same epoch. This is to check how the model is actually
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performing, by seeing if the model is underfitting or overfitting the data. Vali-
dation is basically the same process as training. The difference is that the data
batches now come from the smaller validation set, and weights and biases are
not updated. The model validation accuracy is also calculated. When validation
is done, we move on to the next epoch and repeat the training and validation
processes. When a model achieved a higher validation accuracy than the current
highest validation accuracy, the model was saved.

We used a learning scheduler to implement a learning rate decay during training.
The scheduler takes the Adam optimizer and the two hyper-parameters, step size
and γ, as input. This learning rate decay helps fine tune the model to get closer
to a loss-function minimum and optimize the learning. The main learning rate
used when fine tuning models was an initial learning rate lr = 0.01, with a decay
factor of γ every step size epochs.

To visually determine how the network model was evolving, the mean train-
ing loss, mean validation loss and mean validation accuracy for each epoch was
calculated and stored. When all epochs were done, we could plot the result to
see the loss and accuracy development. Sometimes the validation accuracy were
highest after the model started to overfit, thus saving a bad model. If epochs near
the ”sweet spot” between underfitting and overfitting had an high accuracy, we
tried early stopping to test the model further.

5.5.3 Model testing and evaluation

Models with good potential, e.g. good validation accuracy, were further tested
on completely unseen data for the network, the ASI test set. We use the same
data transformation as for the validation data. The model predicts and sets a
class label for each image, and we use the result to compare with the ground
truth. By this, we can calculate the test accuracy, as well as precision, recall and
F1 score. We also create a confusion matrix to see where the model predicts
correctly and wrong. Note that the metric scores and CM were also generated
when performing validation, and the metrics and CM plot were saved for the
model with the highest validation accuracy. This made it possible to compare all
metrics between the validation and test result of the model.
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6 Results

In this chapter we present the results for the network training, validation and
testing, details about the highest performing EfficientNet model (AuroraB3) and
statistical prediction results made by AuroraB3 on unseen and unlabeled data.

6.1 EfficientNet

6.1.1 Models

Many models were trained when testing different network parameters. Table
6.1.1 contains some of the models that achieved the best performance results.
From the table we can see that the combination of an initial lr = 0.01, step size
= 75 and γ = 0.1 gave good results. We can see that for EfficientNet-B3, a batch
size of 24 proved to give good results.

Model 2, marked in table 6.1.1, was chosen as the best model to use further for
this thesis. The model was weighted for prioritizing aurora features for the three
aurora classes, while the no aurora class was kept at its original size. This model,
further referred to as AuroraB3, achieved the best results by adding the weight
parameters to the Cross-Entropy loss function. AuroraB3 was trained to an vali-
dation accuracy of 0.90, and achieved an test accuracy of 0.88 on unseen ASI data.
Model 3, with mode Bicubic, resulted in overall better training and validation re-
sults, but because of slightly more overfitting, the test accuracy became slightly
lower than for AuroraB3. We saw a trend where models achieved a very low
diffuse test accuracy, and a very high no aurora test accuracy, when using bal-
anced classes. Models with aurora weighted classes achieved a more balanced
per-class accuracy.

Table 6.1.1: Metrics and network parameters for four selected EfficientNet models. Pre-
cision, recall and F1 scores are for the validation results. Accuracy are for both the vali-
dation results and the test results on unseen ASI data. Footnote 1-4, see section 3.4.5.

Model Batch Step Lr. g Precision Recall F1 Accuracy

size size rate score score score Valid. Test

1: B31,3,6 16 75 0.01 0.1 0.90 0.90 0.90 0.90 0.88

2: B32,3,5 24 75 0.01 0.1 0.91 0.90 0.90 0.90 0.88

3: B31,3,6 24 75 0.01 0.1 0.91 0.91 0.91 0.91 0.87

4: B42,4,5 8 75 0.01 0.1 0.90 0.89 0.90 0.89 -

1: Balanced classes
2: Aurora weighted classes

3: Weights added to Pytorch’s Cross-Entropy loss function
4: Pytorch’s Weighted Random Sampler
5: Pytorch’s interpolation mode: Bilinear
6: Pytorch’s interpolation mode: Bicubic
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6.1.2 Validation predictions

After training various models, we had a quick look at some of the images that
were predicted badly, or wrong, during validation. The panel captions in figure
6.1.1 tells which class the model classified the image as, as well as the classes the
model was struggling between.

The model struggled between two classes for panel a)-d), where the scores were
divided almost equally, and divided between three classes for e)-f). Panel f) in
figure 6.1.1 is a good example of an image that is hard to label correctly, as it
includes clouds, arc-like light in form of light pollution and a weak veil that
can be light fog or diffuse aurora. This would possibly have been easier to detect
using real-colored ASI data. Panel g) and h) are examples of a mismatch between
the model prediction and the manual labeling. Panel g) shows aurora covered by
clouds, where the model predicted diffuse aurora. By the human eye, it looks like
discrete aurora is hiding behind the clouds. The image in panel h) is predicted
as an arc, but its CCD bleeding misinterpreted as an arc.

a) Class 3 [1, 3] b) Class 2 [1, 2] c) Class 3 [2, 3] d) Class 0 [0, 2]

e) Class 2 [0, 1, 2]
.

f) Class 0 [0, 1, 2]
.

g) Class 2: Aurora
covered by clouds

h) Class 1: Wrong,
CCD bleeding

Figure 6.1.1: Images the model found hard to label with high certainty. Panel a)-d) all
have a probability distribution that are approximately equal between two classes, these
are stated inside the brackets of each image. Panel e) and f) are the same but between
three classes. Panel g) shows aurora covered by clouds, where the model predicted the
image to include diffuse aurora. By human eye, it looks like discrete aurora is hiding
behind the clouds. The image in panel h) is predicted as including an arc, but its CCD
bleeding misinterpreted as an arc. Reminder: [0: No Aurora, 1: Arc, 2: Diffuse, 3: Discrete].
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6.1.3 AuroraB3

The normalized confusion matrix, figure 6.1.2, for AuroraB3 was made to gain
a better understanding of the model performance during the training and vali-
dation phase. We observe that the model performs well for the no aurora, arc
and discrete classes, where the model correctly predicted the class 93%, 92% and
90% of the times, respectively. The class-accuracy drops to 83% for the diffuse
class. We observe that the two most common class-combinations that the model
gets confused by are diffuse/discrete (6%+6%) and arc/diffuse (7%+4%). The
confusion matrix in figure 6.1.3 shows the model performance on unseen ASI
data from data set ASI test. The highest score for the correctly predicted classes,
is the arc class with 93%. model predicts 89% correctly for both the no aurora
and the discrete class, but only 84% for the diffuse class. The class-combinations
AuroraB3 is confused about, commonly include the diffuse aurora class.

Figure 6.1.2: A normalized confusion matrix for the trained AuroraB3 model on a 20%
validation portion of the ASI train valid data set. The diagonal is the percentage of cor-
rectly predicted labels, the per-class accuracy. The off-diagonal elements are mislabeled.

The graph in figure 6.1.4 shows the validation accuracy, validation loss and train-
ing loss as functions of epochs for the network training that resulted in AuroraB3.
The save point (epoch 162), marks the epoch where the model with the highest
achieved validation accuracy was saved. We observe that the training loss de-
creases for the first 150 epochs, while the validation loss flattens out with small
fluctuations, after the learning rate reduction at epoch 75. After the additional
learning rate reduction at epoch 150, both losses are relatively stable around 0.17
for training and 0.27 for validation. The validation accuracy is more or less sta-
ble after epoch 75. Up to epoch 75 there are larger fluctuations and an increase in
accuracy. The network has some overfitting tendencies after around epoch 150.
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Figure 6.1.3: A normalized confusion matrix for the trained AuroraB3 model on the
unseen ASI test data. The diagonal is the percentage of correctly predicted labels, the
per-class accuracy. The off-diagonal elements are mislabeled.

Figure 6.1.4: Validation accuracy, validation and training cross-entropy loss as functions
of epochs for the network. The save point marks the epoch (162) where model AuroraB3
was saved. At the save point, the training loss is 0.18 and the validation loss is 0.27.
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6.1.4 AuroraB3, 2 classes

The same parameters as for AuroraB3 in the previous chapter were also used to
train a model for two classes. The confusion matrix in figure 6.1.5 shows that
the model predicted both classes very well, with identical true positives as the
test accuracy of 96%. The train/validation loss graph can be seen in figure 6.1.6.
The graph shows that the model did not overfit the data significantly, and that
the training and validation loss are relatively small. We can also see that the
validation accuracy is stable around 0.96 for the last 100 epochs. The weighted
precision, recall and f1 score are all 0.96.

Figure 6.1.5: A normalized confusion matrix for the two class B3 model with identical
training parameters as AuroraB3. The CM were made on the unseen data ASI test.

Figure 6.1.6: Validation accuracy and validation and training cross-entropy loss as func-
tions of epochs. The save point marks the epoch where the model was saved.
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6.2 Prediction results on unlabeled ASI data

When AuroraB3 was decided to use for the rest of the thesis, we used the model
on the ASI G.json and ASI R.json datasets (with OMNI data). These datasets do
not have pre-labeled images (ground truth), so when making predictions, both a
class label and class prediction scores were saved to a new dataset, as mentioned
in chapter 5.3.2.

The process of making statistical results started with downloading the green au-
rora ASI data for years 2014 and 2020. The images were downloaded and pre-
processed, as described in chapter 5.1.1. The image information was saved to
the ASI G.json file, before OMNI data were matched to the dates and updated
in the file. When the datasets were made, we used AuroraB3 to predict the class
of each image. Later, data for 2016 and 2018 were downloaded. This was done
to easier observe statistical differences between years closer to a solar minimum
or maximum. These results were merged with the 2014 and 2016 results. Lastly,
the same process was made for the total amount of red aurora images. The rea-
son for making predictions on only parts of the desired data at a time, was the
amount of data. The total of 665,865 images needed more storage space than
we had available. Therefore, we downloaded, predicted and deleted the data in
three turns. We could now make statistical results of the predicted data.

6.2.1 Distribution of classified ASI data

In terms of programming, when finding a general distribution, we simply count
the number of entries/images that were classified to a specific class when we
iterated through the a dataset. By making an ”if statement”, the distribution
could be made for separate years or months by matching the wanted time period
to the entry timestamp. We also made error bars that indicate the prediction
accuracy. This is an artificial error, that only show the error compared to the
other entries. This was done by adding an error score based on the prediction
score. If the highest prediction score was greater or equal to 0.9, a low error of
ε = 0.1 was added. If score∈ [0.5, 0.9), we used ε = 0.4, and scores below 0.5 got
ε = 0.8.

The total number of images from the ASI green and ASI red data, that have been
predicted and classified by AuroraB3, are listed in table 6.2.1. The table also list
the number of images that have been classified with one of the aurora labels.

The distribution of classified images is shown in figure 6.2.1 and 6.2.2, for green
and red aurora, respectively. For green aurora, the bar chart shows that the no
aurora class generally have the highest count. If we exclude the no aurora class,
we see that the discrete class is the most dominant for all years, with a peak
with 39.5% for 2016. This makes up 55.3% of the predicted images if we only
consider the aurora classes. The arc class is the least dominant class for all years
except 2016, where the predicted data contains 19% arcs, compared to 12-15% for
the other years. Diffuse aurora increases the two years before and during solar
minimum, with 21-22%, compared to 13-16% for the two years during and after
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Table 6.2.1: Total number of images for each year, with the Aurora column that shows
the number of images that were predicted to one of the three aurora classes.

Year Data Total Aurora

2014
ASI green 112 000 061 000

ASI red 058 000 035 000

ASI green 124 000 089 000
2016

ASI red 062 000 046 000

2018
ASI green 083 000 055 000

ASI red 041 000 027 000

ASI green 119 000 081 000
2020

ASI red 059 000 043 000

solar maximum.

Figure 6.2.1: Distribution of classified 5577 Å ASI data for years 2014, 2016, 2018 and
2020. Each year only include data for January, November and December.

For the classification distribution of the red aurora images, we see one clear dif-
ference from the green aurora. That is the roughly 10% increased of diffuse au-
rora for 2014, 2016 and 2018. For 2014 there is a relative large decrease for the
no aurora class, while it stays more stable for 2016 and 2018. The predicted arc
events are the least dominant for all years. For year 2020, the occurrence of dis-
crete aurora have increased by approximately 6%, while the discrete class have
decreased for all the other years by 1-5%.

Monthly distribution plots can be found on GitHub, under e.g. stats/Red/b3/Pie.
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Figure 6.2.2: Distribution of classified 6300 Å ASI data for years 2014, 2016, 2018 and
2020. Each year only include data for January, November and December.

6.2.2 Predictions with equal class probabilities

When the model predicts the class of an image, it gives a prediction probability
score to each possible class. The class with the highest score is the Top-1 class and
the class with the second highest score is the Top-2 class, and so on. Sometimes,
the model struggles to predict an image with a clear result, meaning a Top-1 class
with a single high score. When this happens, we thought it would be interesting
to research which class combinations the model struggled the most with. By
iterating through the dataset, we added entries with the Top-1, Top-2 and Top-
3 class label and scores, to a dictionary if the two or three highest scores were
equal, with a fairly large 10% error margin. This process was done separately
for two or three equal scores. Below are some dictionary examples of entries we
were looking for

• {Arc: 0.46, Discrete: 0.45}

• {No aurora: 0.51, Diffuse: 0.47}

• {No aurora: 0.34, Diffuse: 0.32, Arc: 0.31}

From the two dictionaries, we made tables for all class combinations, and counted
the number of occurrences for each combination. This was done separately for
red and green aurora. Table 6.2.2 was made to highlight which class-combinations
the model struggles with between two equal scores. For green aurora, the two
classes diffuse and discrete, is the class-combination which the model struggles
the most. This combination makes up for 32.3% of the cases. Second, the no
aurora and diffuse class combination makes up for 26.2%.

The same statistical results are found for red aurora, where no-aurora and diffuse
makes up 25.8% of the data set, while diffuse and discrete makes up 38.0%. The
combination no aurora and discrete has the lowest account for both green and
red aurora, with only 0.8% and 0.4%, respectively.
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Table 6.2.2: Class predictions on ASI green and ASI red data with two equal class out-
puts. The distribution does not take into account whether the prediction is correct or not.
The total percentage of ASI green data was 2.3%, and 2.5% for the total ASI red data.

Class a Class b Equal prob. [5577 Å] Equal prob. [6300 Å]

no aurora arc 11.0 % 10.8 %

no aurora diffuse 26.2 % 25.8 %

no aurora discrete 00.8 % 00.4 %

arc diffuse 15.1 % 16.6 %

arc discrete 14.5 % 08.3 %

diffuse discrete 32.3 % 38.0 %

The table does not take into account the order of the Top-1 class and the Top-
2 class, just that the probabilities are similar. Even with a fairly generous limit,
only approximately 2.5% of the total data falls under the category with two equal
probability scores. Most of the data the model predicts a class for, have a high
Top-1 score. The percentage of images that have a Top-1 class with a prediction
score higher than 85%, makes up ∼ 81% for ASI green and ∼ 79% of ASI red.

For three equal probabilities, two class-combinations stands out. The combina-
tion of no-aurora/arc/diffuse and arc/diffuse/discrete. For ASI green, the two
combinations account for ∼ 33% and ∼ 52%, respectively. The images that have
this kind of prediction scores only makes up 0.07% of the total data. For ASI red,
the two combinations account for ∼ 47% and ∼ 49%, respectively. This make up
0.06% of the data set. Text files with results can be found on GitHub under stats.
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6.2.3 Hourly distribution of classified ASI data

In terms of programming, the hourly class distribution was made similar as the
process in chapter 6.2.1. The hourly distribution was made by extracting the
hour from the entry timestamp and adding an error as described in chapter 6.2.1.
The error was now added to a dictionary that holds 24 (hour) keys. The error
value and an error count for that hour were added as a value list. The hourly
distribution was extracted class for class, year for year, for both red and green
aurora. This was done so that we could make subplots to see how the various
aurora classes behaved on average for all four years. The normalized plots were
made by counting the entries within an hour, divided by all entries. This means
the sum of all four classes, each year, sums up to 1. Plots were also made for each
separate month, available on GitHub.

In figure 6.2.3 we have an hourly overview of the class distribution for green
aurora. The y-axis shows the class occurrence for each hour (local time), nor-
malized on the total amount of data for each year. In the upper panel, we can
see that arcs appeared mostly during nighttime, apart from year 2016. 2016 have
a peak around noon, as well as high nighttime occurrence. In the second and
third panel, we observe that diffuse and discrete aurora were common from early
morning to afternoon. Both classes have little activity between ∼17/18-24 local
time. This time period is part of the defined nighttime, and we also observe from
the fourth and fifth panel that almost no aurora is imaged during this time. The
last panel is a combination of the three aurora classes. The panel indicates that
for 2014, most aurora was observed from hours 04-12. The two later years, had a
more even distribution of aurora occurrences during daytime. The data for 2020
shows a very clear two-peak distribution, with a occurrence dip around noon.
The error bars are based on the prediction probability scores, where the higher
top-1 class score gives a lower error. So, the error gives an indication if the (av-
erage) prediction for a specific hour is correct. We can see from figure 6.2.3 and
6.2.4 that the prediction uncertainties are clearly larger for the diffuse class. We
can also observe that the error bars are slightly larger for the arc class for red
aurora compared to green aurora.

The statistical results for the red aurora classification in figure 6.2.4 share many of
the same tendencies as for the green aurora. As expected from earlier distribution
presentations, we see an increase in the occurrence of diffuse aurora. This is the
case for all four years, with a small peak around hours 08-10 for 2018 and 2020.
For the discrete aurora, we see an even clearer two-peak distribution for dayside
aurora, compared to the green aurora, for 2018 and 2020. The main peak occur
around 06-08 local time, while the second peak occur around 15 local time.
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Figure 6.2.3: Hourly distribution from the ASI green data. The distributions show the
normalized aurora count for each (local) hour of the day for each year of data.
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Figure 6.2.4: Hourly distribution from the ASI red data. The distributions show the
normalized aurora count for each (local) hour of the day for each year of data.
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6.2.4 Yearly solar wind speed distribution

The programming setup of creating and visualizing the distribution for the so-
lar wind Bz component (chapter 6.2.5) and the speed were made almost identi-
cal. Which solar wind parameter the distribution was made for, could easily be
changed by editing a function input between Bz and speed. The two parameters
also used different bin sizes, as the speed parameter values are larger than the Bz
values. A difference is that the Bz distribution is visualized separately for day-
time (06-17 local time) and nighttime (18-05 local time). As mentioned in chapter
5.3.2, with daytime aurora and no Dungey cycle, the average Bz value should be
more accurate and have a smaller standard deviation.

The function we made goes through the dataset entry by entry. If a year parame-
ter was activated, meaning we want the distribution for a specific year, a simple
if statement was used to filter out the desired images by the timestamp. The next
if statement matches the image label with the desired class. If they match, the
OMNI parameter and standard deviation parameter were added to a dictionary.
When the function finished iterating through the entire dataset, dictionaries for
classes no aurora, arc, diffuse, discrete and the additional classes aurora (arc, dif-
fuse and discrete combined) and All (all four classes combined) were made. If
an OMNI parameter were a no data-value, the entry was dropped.

The next step was to visualize the distribution. This was done by creating bins
and using Numpy’s histogram function. The function outputs the histogram val-
ues and bin edges. For Bz-distribution, we used bins Bz ∈ [−20, 20, 41]nT, mak-
ing a bin width of 1 nT. For speed-distribution, we used bins Speed ∈ [200, 800, 31]
km/s, making a bin width of 20 km/s. With a bin width 6= 1, we had to normal-
ize the histogram output values even with ”Density=True” in np.histogram().
The last step was to plot the histogram values as a function of the bins. Based
on the dictionaries used, we could plot the distributions for separate classes or
the entire dataset. We also added error bars made out of the associated standard
deviations for each bin. The error bars are horizontal, along the Bz- or speed val-
ues/bins. An error bar wider than the bin width means the mean value could be
so off that the actual value could lie in one of the neighbouring bins.
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Figure 6.2.5 shows the solar wind speed distribution for all four years, indepen-
dent of the emission line. For 2014, the measured solar wind speeds are between
300-600 km/s (slow wind), with an average speed around 400 km/s. About 30%
of the data belong to the highest range with speeds between 340-380 km/s. The
distribution for 2018 and 2014 are very similar, but 2018 have some occurrences
of fast solar winds (600-800 km/s). 2018 have the highest peak of speeds be-
tween 380-400 km/s. 2016 have measured solar wind speeds between 240-720
km/s. The range is more evenly distributed, with only a 10% occurrence for a
speed around 550 km/s as the highest peak. 2016 is the year with the highest
occurrence of fast solar winds. The year of the solar minimum is 2020, and we
observe an average solar wind speed around 320 km/s. Speeds between 300-360
km/s belong to approximately 70% of the data.

Figure 6.2.5: Solar wind speed distribution for the time points for all four years in our
data set. The distribution for all classes under one, are identical for both emission lines.
Each point is a histogram bin that spans for 20 km/s.

The error bars are fairly small, indicating that the mean speed of the images
belonging to a bin width are quite accurate. Overall, we see a slightly larger
error for 2014 and 2016. We also observe a larger error when the speed is higher.
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Figure 6.2.6 and 6.2.7 are the solar wind distribution graphs for emission lines
5577 Å and 6300 Å, respectively. The graphs shows the speed distribution for
each individual class. The main thing we observe, is that the general distribution
shape of the two plots follows the all-over distribution shape from figure 6.2.5.

Figure 6.2.6: Solar wind class distribution for ASI green data. Each panel show the
yearly distribution for each year, and each point is a histogram bin that spans 20 km/s.
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Figure 6.2.7: Solar wind class distribution for ASI red data. Each panel show the yearly
distribution for each year, and each point is a histogram bin that spans 20 km/s.
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6.2.5 Yearly IMF Bz distribution

The programming basics for the following results are explained in chapter 6.2.4.
In figure 6.2.8-6.2.10 we have the separate distributions of the southward (Bz <
0) and westward (Bz > 0) Bz (GSM) solar wind component for daytime and
nighttime aurora. The text information printed in the plot are the percentage of
data that have a positive or negative associated Bz value. This is also divided for
daytime and nighttime aurora.

We start by looking at the graphs for 2014 and 2020 separately. We excluded 2016
and 2018 as they are very similar as the distribution in figure 6.2.10. These, and
the plots for red aurora can be found on GitHub. The plots for red aurora was
excluded from the report as they are almost identical to the distribution for the
green aurora. We do not pay a lot of attention to the no aurora class, as the Bz
values can lead to misleading interpretations. In hindsight, the no aurora class
should have been divided into clear and cloudy. This is because we wont know
if there was aurora activity behind the cloudy weather, and can’t draw any con-
clusions about the relationship between the Bz value and no aurora occurrence.

2014

• arc |We observe that the distribution have more negative than positive Bz
values, where roughly Bz ∈ [−8, 5] nT for both daytime and nighttime. The
peak for daytime aurora lies evenly around the center, while the center is
slightly shifted towards the negative Bz range for nighttime aurora.

• diffuse | We observe more positive Bz values than for arc, where we have
a number of Bz values with ∼ 15% occurrence. The main peaks of the
distribution lies on the positive side of the Bz range.

• discrete | The distribution have evenly distributed occurrences for positive
and negative Bz for nighttime aurora, while its slightly shifted towards the
positive side for daytime aurora. The range of the main distribution lies
within Bz ∈ [−6, 6] nT.

2020

• arc | We observe that the distribution have more negative than positive
Bz values, where roughly Bz ∈ [−6, 5] nT for both daytime and nighttime
aurora. The main occurrence lies around Bz ∈ [−3, 3] nT. Approximately
60% of the entries have Bz < 0.

• diffuse || The graph shows quite evenly distributed occurrences around
Bz ∈ [−5, 6] nT. The range for the highest occurrences are a little narrower.
The highest occurrence, of approximately 25%, for a single Bz bin is for
Bz =1-2 nT.

• discrete | Approximately 60% of the entries have Bz < 0, and range Bz ∈
[−5, 6] nT. The distribution is very similar to the one for arc.
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Figure 6.2.8: Distribution of positive and negative Bz values for all classes in 2014. Bin
width of 1nT. The blue, circular-pointed line shows the distribution of daytime aurora,
while the orange, star-pointed line shows the distribution of nighttime aurora.

Figure 6.2.9: Distribution of positive and negative Bz values for all classes in 2020. Bin
width of 1nT. The blue, circular-pointed line shows the distribution of daytime aurora,
while the orange, star-pointed line shows the distribution of nighttime aurora.
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Figure 6.2.10 shows the average distribution for all years combined. All classes
have an approximate normal distribution around Bz = 0 ± 2 nT. Arc (and no
aurora) have more occurrences of a negative Bz value than a positive, while it is
the other way around for diffuse and discrete. We also observe that the range for
the three aurora classes are Bz ∈ [−6, 6] nT.

2014 stands out in form of having a broader distribution of data as a function of
Bz values, compared to the other years. For 2014, the occurrence for a Bz value
lies at maximum 16%, while 2020 have peaks where a Bz value represents 20-
28% of the data. An observation is that the closer we are to solar minimum, the
narrower the distribution gets.

Figure 6.2.10: Distribution of positive and negative Bz values for all classes. Bin width
of 1nT. The blue, circular-pointed line shows the distribution of daytime aurora, while
the orange, star-pointed line shows the distribution of nighttime aurora.

The error bars have something in common for all years, they are much wider for
nighttime aurora, indicating entries may not be placed in the correct bin. The
larger uncertainty comes from the calculating the average Bz value over a larger
time interval during dayside reconnection.
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6.2.6 Hourly Bz-dependent distribution of classified ASI data

The statistical results for the hourly Bz distribution were made similarly to the
hourly distribution in chapter 6.2.3. The result is basically the same, but the
graphs shows separate results for southward (Bz < 0) and northward (Bz > 0)
IMF. The method however works the same, but the extraction of the entry hour
timestamp was saved to two individual lists for a negative or positive Bz value.
The two lists were plotted as a function of hours.

Figure 6.2.11-6.2.14 shows the hourly distribution of classified ASI data based
on the associated Bz value for each entry. The figures are for every two years
from 2014 to 2020, for green aurora. Each graph shows the normalized class
occurrence, per hour, for a year of data.Plots for red aurora can be found on
GitHub under stats/Red/b3. These were excluded from the report as they did
not indicate large variations from the green aurora distribution.

For 2014, figure 6.2.11, we see that the aurora takes the form of arcs throughout
the day, but they are mostly appearing as nighttime aurora. Discrete and diffuse
aurora are more common during the day, where we have a peak around 08-09
local time for diffuse aurora. A smaller peak appears around 15 local time for
Bz > 0. For discrete aurora, there are similar amount of events for both positive
and negative Bz, mainly between 05-13. Again, we wont focus to much on the
no aurora class, but we observe an even distribution of daytime and nighttime
aurora for Bz > 0. For Bz < 0, we observe two peaks around the boundary for
daytime and nighttime aurora.
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Figure 6.2.11: Positive and negative Bz classification for all classes, for January, Novem-
ber and December 2014. The y-axis show the normalized occurrence.
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For 2016, we observe that the diffuse class have very even, low count, through
the day. We only see one peak around 16-18 local time. Discrete aurora domi-
nates from early hours to afternoon, while arcs are more common from afternoon
to early hours. This distribution is more or less equal for red aurora, with the ex-
ception of an all over higher count of diffuse aurora. This happens to also be the
case for 2014 and 2018. For 2020, the occurrence tendencies are similar, but with
an all over higher count of discrete aurora, and lower for diffuse.

Figure 6.2.12: Positive and negative Bz classification for all classes, for January, Novem-
ber and December 2016. The y-axis show the normalized occurrence.
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For 2018, we see arc with high occurrence except for the time between 03-10 local
time. There is an higher peak for southward Bz around 11-12 local time. Dif-
fuse again have a peak around 08-10 local time, for both southward and north-
ward Bz. For northward, we also see an increase around 15-18. Discrete have
a peak around 06-08 for southward Bz and a peak around 12-14 for northward
Bz. Again, we observe that images are classified as no aurora from afternoon to
midnight.

Figure 6.2.13: Positive and negative Bz classification for all classes, for January, Novem-
ber and December 2018. The y-axis show the normalized occurrence.

For 2020, just like the previous years, we have close to none discrete aurora from
afternoon (∼17-18) to midnight, while we in this period have aurora arcs as the
dominant aurora events. The diffuse aurora have a significant peak for Bz > 0
around 07-09 local time. We also observe an peak around 15-17. Discrete con-
tinues with a two-peak distribution, with the main peak at 05 and the secondary
peak at 13-14. These peaks are one hour later for Bz > 0.
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Figure 6.2.14: Positive and negative Bz classification for all classes, for January, Novem-
ber and December 2020. The y-axis show the normalized occurrence.

Figure 6.2.15 and 6.2.16 are the distribution for all years combined, for green and
red aurora, respectively. The green auroral arcs have the highest occurrence from
11 to 01, while the occurrence are lower during morning. The southward Bz have
the clearest peak around 11-12 local time. The occurrence of the red auroral arcs
are lower during the day, compared to green arcs. The occurrence is also a little
lower during night/morning for nighttime arcs. Overall, when we have a high
occurrence of arcs for a timepoint/hour, the bin data only counts for about 1%
of the total data. This is the same for a normal occurrence of diffuse aurora,
where high occurrence can on average account for approximately 2%. The green
diffuse aurora show a two-peak distribution, for northward Bz, with the main
peak around 08-09 local time, and the secondary peak from 15-17 local time. We
see the same tendency for southward Bz, but they are not as dominant. The two-
peak distribution is not as clear for red diffuse aurora, but the main peak is there
for northward Bz. The occurrence of diffuse red aurora are all-over a little higher
than for green diffuse aurora.
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Discrete aurora show a two-peak distribution for both Bz directions for red au-
rora, with the main peak around 07-08 local time. The secondary peak appears
around 14-15 local time. The peaks appears an hour shifted, where the peaks for
southward Bz discrete red aurora occur an hour earlier. The two-peak distribu-
tion is not as clear for the green diffuse aurora. For southward Bz we have the
main peak, but the distribution for the northward Bz is high for daytime discrete
aurora.

Figure 6.2.15: Positive and negative Bz classification for all classes, for January, Novem-
ber and December combined for all four years.

The no aurora class stands out with high occurrence during nighttime, for images
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taken with both the red and green filter. The highest rounded peak around 19-21
local time, is slightly higher for images taken with the green filter.

For the combined auroral classes in the last panel of the two figures, we see that
the aurora occurrence follow the same distribution, but it is shifted for approx-
imately one hour between northward and southward Bz. The main peak is still
dominant at 06-08 for the southward Bz, and 07-09 local time for the northward
Bz. The aurora occurrence is on average for the four years low during night time,
when we would expect to see nighttime aurora.

Figure 6.2.16: Positive and negative Bz classification for all classes, for January, Novem-
ber and December combined for all four years.
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7 Discussion

Our study uses the state-of-the-art EfficientNet in an attempt to improve past
results in automatic aurora classification [8][9][11]. Our EfficientNet AuroraB3
classifier was trained on manually labeled ASI data from Ny-Ålesund, Svalbard.
On a 4-class classification problem (no aurora, arc, diffuse and discrete), AuroraB3
achieved a classification accuracy of 88% on unseen ASI data. Aggregating the
3 aurora classes, AuroraB3 archived a 96% classification accuracy on the same
unseen test data.

AuroraB3 was applied on 665,865 unlabeled images from the same data source
as the training and testing data. Our statistical results of the predicted labels,
and their associated solar wind parameters, shows that variations in solar wind
speed and IMF Bz do not determine the observed aurora shape. The most striking
factor of the hourly distribution, were that nightside/nighttime aurora seams to
be missing for diffuse and discrete aurora. Further, the no aurora class have
many entries, showing that the images for the timepoints are labeled. From 15-
00 local time, we mainly observe arcs when aurora is present.

7.1 Image labeling and AuroraB3

AuroraB3 achieved an validation accuracy of 90% and an test accuracy of 88%,
with classes: no aurora, arc, diffuse and discrete. It is expected for the test accu-
racy to be slightly lower since AuroraB3 was tested on unseen data (Aurora test).
This indicate some overfitting by the network, which were expected from the
train-validation loss evolution from figure 6.1.4. The small overfitting trend were
not viewed as problematic, and the accuracy decrease of only 2% confirms this.
When we only distinguished between the binary classification aurora and no au-
rora, the accuracy increased to 96%. An important step to achieve this accuracy
was to correct for imbalanced classes. When we also weighted the three aurora
classes a little more important than the no aurora class, the confusion matrix
6.1.3 shows an fairly even per-class accuracy. Without increasing the importance
of the aurora features, the classifier tended to overfit the no aurora class at the
expense of the diffuse class accuracy.

The largest error in not achieving an higher accuracy arise from misclassification
between classes. The misclassification probably originate in the training data,
where ambiguous images are wrongly labeled by humans. The confusion ma-
trices from chapter 6.1.3 and table 6.2.2, shows that misclassification between
no aurora/diffuse and discrete/diffuse are more common than for other class-
combinations. Aurora belonging to these classes, are also the most common to
be labeled ambiguously by the classifier. Image labeling was especially a prob-
lem between diffuse and discrete aurora, as the aurora takes all forms and levels
of brightness, blurring the boundary between them. Sometimes, it also proved
difficult to distinguish between no aurora and diffuse, e.g. between a thin layer
of high altitude clouds and weak aurora shapes, or between fog/mist and diffuse
glow-like aurora. Another problem that made labeling difficult, was that an im-
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age could often include different types of aurora. Diffuse aurora was often seen
with either an arc or discrete aurora. Many images that contains no aurora, had
some light pollution in the form of arc-like light because of e.g. moon rising. The
images we labeled were from random time points. It would be an advantage to
label time-series of images, as it would be easier to distinguish between aurora
classes and unclear weather conditions.

Although some previous work did achieved an higher accuracy (∼91%) [8][11][10],
the data and classes are often quite different. This makes it difficult to compare
results directly. Previous work show a wide range of studies using different num-
bers and definitions of classes, from 2-3 broad classes including clouds to specific
aurora sub-classes [8][9][67]. Another step some studies [11] take for achieving
an greater accuracy is to only use non-ambiguous images, excluding e.g. images
with light pollution and weather pollution. Creating a clean data set of well-
defined aurora images. It is understandable to archive an greater accuracy if the
classifier is trained and tested on these well-defined classes, as the classifier have
clear features combined to each label. Kvammen et al. [11] achieved an 92%
accuracy with ResNet-50 when excluding clearly ambiguous auroral forms and
only using aurora sub-classes. The motivation behind creating a clean data set is
to avoid confusing the network during training, we chose not to do this as real,
untouched data the classifier is designed for include all these types of pollution’s
and ambiguous images. We believe the prediction results on the unseen data
could included incorrect predictions hard to catch.

7.2 EfficientNet AuroraB3 aurora predictions

Statistical results were made from image labels and their associated solar wind
parameters after AuroraB3 was applied on 665,865 unlabeled images. This thesis
main focus have been creating a labeled data set, and training and testing various
CNN models. The statistical results are only based on the occurrence of different
types of aurora, based on the predicted labels. The results cannot say anything
specific about location of e.g. the polar cusp or the position of the aurora in the
imaged sky. The result can not say anything about the intensity/brightness or
the dynamic of the aurora. This is because we are labeling single images. If we
had used time-series, we could have made results e.g. for a substorm period.

Similar distributions between green and red aurora is expected, as the images
are of the same aurora/time periods. What we observe from the different dis-
tributions is that red aurora have more entries classified as diffuse. This would
indicate green aurora at lower altitudes show more discrete/clear shapes, and
that the red aurora at a higher altitude start to loose these distinct shapes. This
is accurate with the theory explained in chapter 2.4.2. It also indicates that the
model predicts the labels correctly.

The solar wind and Bz distributions show that closer to solar minimum, we have
a slower average solar wind speed (chapter 6.2.4) and a narrower Bz distribution
(chapter 6.2.5). The same distributions that show the variations between classes,
indicate that solar wind properties do not effect the shape of the aurora, as they
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all follow the trend of the average distribution. Since our results indicates the
intensity of the solar wind speed or direction of the IMF is an unsignificant source
of determine the shape of the aurora, other more relevant factors need to be in
play. This could be magnetospheric processes or ionospheric currents, which
have not been a part of this study.

2014 is the period closest to the solar maximum, it would be expected for this
year to display the highest solar wind speeds, but both 2016 and 2018 have an
higher average SW speed. This could maybe be explained by coincidences of
Earth’s location compared to sunspot locations. The increased solar wind origi-
nate from sunpots, but the sunspot has to face the Earth during eruption for the
fast solar wind speed to interact with Earth’s magnetosphere. Solar minimum,
year 2020, have an average low solar wind speed, but we did not observe less dif-
fuse and discrete aurora. The low solar wind speed could have caused weaker
substorms, keeping the OCB at a higher latitude, making the aurora visible in
Ny-Ålesund.

Previous research on the statistical distribution of aurora occurrence, showing
two distinct dayside aurora emission regions, have been done with satellite data
(electron acceleration events and ultraviolet image observation) [3][4], and by
three emission-line ASIs (4278 Å, 5577 Å and 6300 Å) [5]. The two regions are
located in the prenoon and postnoon sectors of the aurora oval, and the ”midday
gap” is observed. The observations find the highest occurrence peak, the ”hot
spot” or ”bright spot”, at 14-15 magnetic local time (MLT). The weaker ”warm
spot” were found at around 6-9 MLT for two observations [5][3], and at 10 MLT
for the ultraviolet image observation (1700 Å) [4]. These spots are located around
75◦ magnetic latitude (MLAT) [4].

We can also observe a double-peak feature for (some) diffuse/discrete dayside
aurora from the distribution plots. Dayside aurora shows occurrence peaks in
diffuse and discrete aurora at one or two recurring time points, around 06-09 and
14-16 local time. This means our observed peaks matches their, but for local time.
When converting our time points to MLT, our observed peaks are approximately
shifted +3 hours.

When we investigate the hourly distribution results, we observe that arcs occurs
mainly from midday to midnight. Our high occurrence of images labeled no
aurora during nighttime, for all four years, indicates the reason is caused by
something other than e.g. clouds. The reasonably explanation is that Svalbard
is located to high north to capture all the diffuse and discrete aurora caused by
stronger events like substorms. Substorm will widen the OCB, and lower the
aurora oval center equatorward. Since substorms are a result of the Dungey
cycle, it explains why the absence of aurora occur for nightside aurora only.
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8 Conclusions and future work

8.1 Conclusions

The time consuming task of classifying and labeling aurora images is an obsta-
cle for auroral researchers in performing large-scale analysis of ground-based
data. With convolutional neural networks constantly being improved and reach-
ing new benchmarks (on ImageNet) it shows great promise for automatic aurora
classification. We labeled 7,980 images from an All-Sky Imager located in Ny-
Ålesund, Svalbard. Our EfficientNet-B3 convolutional neural network classifier,
although trained and tested on data that include ambiguous images, achieved
an accuracy of 88% on unseen data. The most important method we used for
reducing overfitting was to correct for our imbalanced dataset. As many pre-
vious studies train their networks on datasets that exclude all or some of the
ambiguous images, and only score about 3% better, we would conclude that our
classifier does as designed. We classified arcs with an per-class accuracy of 93%,
while the difficult diffuse aurora class achieved an 84% accuracy.

A new set of data, containing the available data for 2014, 2016, 2018 and 2020
(Jan, Nov and Dec) for both 5577 Å and 6300 Å emission, were constructed from
Ny-Ålesund All-Sky Imager data. The images were matched with solar wind
parameters from NASA’s OMNI data. We used the total of 665,865 unlabeled
images for a statistical analysis after applying our classifier on the data. Previous
studies [3][4][5] have presented a double-peak feature for dayside aurora. The
dominant ”hot spot” (14-15 MLT) and the weaker ”warm spot” (around 6-9 MLT)
peak are divided by the ”midday gap” at local noon. Our results indicate the
same double-peak feature, but the intensity of the peak are switched, and the
times are shifted approximately +3 hours for MLT. Without knowing more about
the location of the polar cusp, it’s hard to conclude something from these results.

The main result we can conclude with from the statistical analysis is that Sval-
bard is perfect for observing dayside aurora, at least with ASIs. The occurrence
of dayside aurora are not affected much by the variations in solar wind param-
eters. This can be explained by the constant stream of charged particles into the
polar cusp. We can also say that observing strong aurora event on Svalbard can
be a letdown, as the discrete aurora is visible on the sky on locations further
south. There are however still an high occurrence of arc and some diffuse au-
rora. Further, our classifier labeled more images diffuse for the 6300 Å emission
line, which were expected and hoped for, as red aurora have a weaker, and more
diffuse display because of the time it takes the photon to be emitted.
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8.2 Future work

Many different adaptations, tests, and experiments can still be performed for au-
tomatic aurora classification. Some ideas for future work within automatic clas-
sification of auroral images include multi-labeling images, creating a benchmark
test dataset of auroral images and classifying time-series of data.

• After labeling the original data for this thesis, it is clear that a labeling sys-
tem with multiple assigned labels (ranged by priority) would be beneficial.
This would hopefully make classification easier for ambiguous data.

• Researchers are not agreeing on how auroras should be classified, but hav-
ing one set of classes would enable researchers to easier compare classifi-
cation results. If there was an agreement of classes, a larger labeled dataset
could be composed, including all-sky images from various locations. This
set could then be used for both training and testing of new classification
methods.

• To make statistics directed more towards aurora dynamics or auroral event
intensity, classification of time series could be a good experiment, using
recurrent neural networks.

• A more computational expensive model could be trained with a stronger
GPU.

For our own results, a further step could be to include the solar wind By compo-
nent. We would also split the no aurora class into clear and cloud. Another step
we could take would be to test the model on data from other ASI’s. To test the
accuracy for a different camera and different sky location. A test set with labeled
images would have to be composed/provided.
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