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In this Letter, we introduce the nonlinear partial differential equation ∂2
τπ ∝ ð∇⃗πÞ2 showing a new type

of instability. Such equations appear in the effective field theory (EFT) of dark energy for the k-essence
model as well as in many other theories based on the EFT formalism. We demonstrate the occurrence of
instability in the cosmological context using a relativistic N-body code, and we study it mathematically in
3þ 1 dimensions within spherical symmetry. We show that this term dominates for the low speed of sound
limit where some important linear terms are suppressed.
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I. INTRODUCTION

One of the main goals of the upcoming large cosmo-
logical surveys [1–4] is to understand the physical mecha-
nism behind the mysterious late-time accelerating
expansion of the Universe [5–7]. Accurate modeling of
the current viable dark energy (DE) and modified gravity
(MG) candidates over all scales of interest is critical for the
highly precise datasets that these surveys will deliver over
the coming decade.
To study many possible models that include a DE

component, or where the theory of gravity is altered, the
effective field theory (EFT) framework has been suggested
[8–11]. In the EFT scheme, a general form of the action is
considered up to a certain energy scale, and the idea is that
only some degrees of freedom are relevant below that scale,
while those degrees of freedom that describe properties of a
system at higher energy scales can be integrated out [12,13].
The EFTofDE is particularly useful for cosmologists, as one
can map most of the interesting MG/DE theories to this
language by choosing the set of free parameters appropri-
ately. The EFTofDE thus provides a framework for a generic
study of DE/MG theories [14–16].
As a first step toward implementing the EFT of DE in an

N-body simulation, we have developed the k-evolution
code [17] based on gevolution [18,19]. k evolution is able
to simulate nonlinear structure formation with k-essence
dark energy [20,21].
Our extensive numerical studies using k evolution have

led us to the discovery of a new type of nonlinear instability
that appears naturally in such EFT expansions and is not

limited to the k-essence type of theories. This instability is
not in the form of rapid growth of the scalar field but rather
is an instability in the mathematical sense, in which the
scalar field solution ceases to exist at a finite “blowup”
time, leading to the breakdown of the EFT framework.

II. EFT EQUATIONS OF MOTION
FOR k-ESSENCE

The action for a general scalar field theory constructed
from the scalar field ϕ and the kinetic term X ≐ gμν∂μϕ∂νϕ
can be written as

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
PðX;ϕÞ; ð1Þ

where P is in general an arbitrary scalar function of its
arguments, g is the determinant of the metric, and the
integral is taken over the four-dimensional space-time. This
class of theories is known as k-essence [20,21]. In the EFT
of DE framework, assuming small scalar field fluctuations,
a 3þ 1 split of space-time can be defined by using the
scalar field as a “clock” to define constant-time hyper-
surfaces. Writing the action as an expansion in terms of
geometric scalars, we obtain [11,22]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

pl

2
R − ΛðtÞ − cðtÞg00 þM4

2ðtÞ
2

ðδg00Þ2
�
;

ð2Þ

where Mpl is the Planck mass; R is the four-dimensional
Ricci scalar; ΛðtÞ, cðtÞ, and M4

2ðtÞ are time-dependent
functions; and δg00 is the perturbation of g00 around its*farbod.hassani@astro.uio.no
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background value. We have ignored terms that are of higher
order in the fluctuations δg00 because these terms are
negligible in the weak-field expansion relevant for cosmol-
ogy. The scalar field and its perturbation π can be
reintroduced, as usual in this framework, with the
Stückelberg trick. See Ref. [23] for more details. Our
starting point for studying the phenomenology of the k-
essence scalar field is the EFT of DE action Eq. (2). As
mentioned earlier, the action Eq. (1) of the full theory can
give rise to any number of additional parameters that are
relevant in the ultraviolet limit of the particular theory. The
utility of the EFT approach stems from the fact that we do
not need to specify what these are.
The variation of the action (2) with respect to the metric

results in the gravitational field equations [18], while the
variation with respect to the scalar field perturbation π
results in a nonlinear partial differential equation (PDE) for
the k-essence scalar field,

∂2
τπþHð1− 3wÞ∂τπþ ð∂τH− 3wH2 þ 3c2sðH2 − ∂τHÞÞπ

− ∂τΨþ 3Hðw− c2sÞΨ− 3c2s∂τΦ− c2s∇2π

¼N ðπ;∂τπ; ∇⃗π; ∇⃗∂τπ;∇2πÞ; ð3Þ

whereN ðπ; ∂τπ; ∇⃗π; ∇⃗∂τπ;∇2πÞ includes all the nonlinear
terms in the equation,

N ðπ;∂τπ;∇⃗π;∇⃗∂τπ;∇2πÞ

¼−
H
2
ð5c2s þ3w−2Þ ð∇⃗πÞ2

þ2ð1−c2sÞ∇⃗π · ∇⃗∂τπ− ½ðc2s −1Þð∂τπþHπ−ΨÞ
þ c2sðΦ−ΨÞþ3Hc2sð1þwÞπ�∇2πþð2c2s −1Þ∇⃗Ψ · ∇⃗π

−c2s∇⃗Φ · ∇⃗πþ3ðc2s −1Þ
2

∂ið∂iπð∇⃗πÞ2Þ: ð4Þ

We have parametrized the model with an equation of state
w and a speed of sound cs which, respectively, relate to the
EFT parameters through

w ¼ c − Λ
cþ Λ

; c2s ¼
c

cþ 2M4
2

: ð5Þ

In these expressions, H > 0 is the (conformal) Hubble
parameter that gives the expansion rate of the Universe, and
Φ, Ψ are the two gravitational potentials in longitudinal
gauge. The equation of state parameter w is close to −1 if
the k-essence field is to play the role of the dark energy.
The equation of motion as well as the stress-energy

tensor are discussed in detail in Ref. [23]. However, in this
letter, we only focus on the PDE and the instability which is
caused by the first term on the right-hand side of Eq. (4).

III. NEW INSTABILITY

Numerical simulations using k-evolution empirically
show that the evolution under Eq. (3) is unstable for small
values of the speed of sound cs. We also find that there is a
critical value c�s such that for a speed of sound lower than c�s
the evolution becomes singular at a finite time, before the
Universe reaches its present age. On the other hand, for
speeds of sound much larger than the critical value, the
singularity is avoided altogether. The instability forms in
the regions with the highest curvature of the gravitational
potential (center of halos), and the blowup time depends on
the initial curvature of the potential wells.
In Fig. 1, we show the evolution of the scalar field

perturbation π times the Hubble parameter H on a two-
dimensional (2D) slice taken from a cosmological simu-
lation. As we can see, the instability is formed suddenly at a
certain redshift, and the scalar field solution ceases to exist
at this time.
By considering subsets of the terms in N , we find that

the nonlinear instability is generated by the term quadratic

in the gradient, ð∇⃗πÞ2 in Eq. (3). However, for large speed
of sound, Eq. (3) is dominated by the linear terms rather
than the nonlinear ones. This is expected because in this
limit the sound horizon of the scalar field is of order of the
Hubble scale and the scalar field perturbations decay inside
the sound horizon. Thus, we do not expect to have
nonlinear effects at small scales. On the other hand, in

FIG. 1. From left to right: the evolution of the absolute value of the scalar field perturbation times the Hubble parameter, Hπ, from
k-evolution in time is shown. At the time corresponding to z ≈ 0.45, the system blows up due to the nonlinear instability. This instability
acts very quickly and leads to a divergence of π in finite time. Note that for the sake of illustration we plot the absolute value of the scalar
field and that the blowup occurs at a local minimum.
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the low speed of sound limit, the corresponding sound
horizon is small, and in Eq. (3), the linear restoring force,

c2s∇⃗2
π, is suppressed. As a result, the nonlinear terms

become important, and the instability forms.

IV. MATHEMATICAL RESULTS

In this section, we are going to mathematically show that
the problematic nonlinear term in Eq. (4) will inevitably
give rise to a singularity in finite time once it dominates the
dynamics. We only focus on the single problematic term
rather than the whole PDE. In other words, we consider the
simple nonlinear equation in 3þ 1 dimensions,

∂2
τπ ¼ α∇⃗π · ∇⃗π; ð6Þ

where α is the coefficient of the problematic term.1 Around

the local extrema x� where ∇⃗πjx� ¼ 0, we choose spherical
coordinates to study the behavior of the solution. This is a
reasonable choice as, according to Eq. (6), such a point
remains an extremum at all times.2 Moreover, the spherical
symmetry is preserved under time evolution. Thus, for such
points and for spherically symmetric initial conditions, we
have the following PDE:

∂2
τπðτ; rÞ ¼ α½∂rπðτ; rÞ�2: ð7Þ

This PDE is unstable independently of the sign of α; in the
case of positive α, the singularity occurs at local minima of
the scalar field, whereas for negative α, it occurs at local
maxima. For the EFT of k-essence, α > 0, and the
instability is formed in the minima which generally
coincide with the centers of halos.
We may choose units such that α ¼ 1, and we solve this

equation for the initial conditions πðτ0; rÞ and ∂τπðτ0; rÞ. It
is worth noting that, even if we assume πðτ0; rÞ ¼ 0 and
∂τπðτ0; rÞ ¼ 0 in a cosmological scheme, the gravitational
potential Ψ would eventually source the scalar field, as is
evident from Eq. (3). Here, we instead consider a general
initial condition for the scalar field and do not keep the
gravitational source term. One particular solution to the
nonlinear PDE (7) is given by

πsðτ; rÞ ¼ κðτÞr2; ð8Þ
where 2κðτÞ represents the curvature of the scalar field
πsðτ; rÞ in time and κðτÞ is a solution to the ordinary
differential equation (ODE)

∂2
τ κðτÞ ¼ 4½κðτÞ�2: ð9Þ

The initial conditions κðτ0Þ and ∂τκðτ0Þ can be obtained
based on the assumed initial condition for πðτ0; rÞ and
∂τπðτ0; rÞ. We can think of this ODE as Newton’s second
law with the force FðxÞ ¼ 4x2, which corresponds to a
potential VðxÞ ¼ − 4

3
x3. No matter what the initial con-

ditions for xð0Þ and dx
dτ ð0Þ or equivalently κð0Þ and dκ

dτ ð0Þ
[except κð0Þ ¼ dκ

dτ ð0Þ ¼ 0] are, a particle on this potential
rolls to þ∞ eventually. Here, we are going to show that in
fact the particle (in our case the curvature of the scalar field)
goes to infinity in a finite time τb. To solve Eq. (9), we
multiply both sides by κ0 ¼ dκ

dτ,

1

2

dðκ0ðτÞ2Þ
dτ

¼ 4

3

dðκðτÞ3Þ
dτ

: ð10Þ

Integrating results in the following expression:

κ0ðτÞ2 ¼ κ0ð0Þ2 þ 8

3
κðτÞ3 − 8

3
κð0Þ3: ð11Þ

Integrating once more, we obtain

Z
κðτÞ

κð0Þ

dκffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ0ð0Þ2 þ 8

3
κ3 − 8

3
κð0Þ3

q ¼
Z

τ

0

dτ0 ¼ τ: ð12Þ

Changing the integration variable from κ to s for s3 ¼ 8
3
κ3

C
and C ¼ κ0ð0Þ2 − 8

3
κð0Þ3, we find that τ is bounded by

τb ¼
�
3

8

�1
3

�
1

C

�1
6

Z
∞

sðκ0Þ

dsffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s3

p ; ð13Þ

i.e., the solution blows up in finite time. In the cosmological
context, we can set κð0Þ ¼ 0 so that C > 0 and sðκ0Þ ¼ 0,
giving us a blowup time of

τb ¼
�
3

8

�1
3

�
1

κ0ð0Þ
�1

3 2Γ½13�Γ½76�ffiffiffi
π

p : ð14Þ

We can also see that a solution of the nonlinear ODE
corresponding to a specific choice of initial condition for
κðτ0Þ and κ0ðτ0Þ is

κðτÞ ¼ 3

2ðτ − τbÞ2
; ð15Þ

which is the blowup behavior for all solutions κðτÞ near the
blowup time τb; it is characterized by a critical exponent
of 2.
We summarize our observations about the PDE in a

cosmological framework as follows, where some of them
are discussed extensively in a mathematical study being
carried out by some of us [24–26]:

1In a general EFT of DE theory, α depends on the
EFT parameters. For the EFT of k-essence, we have α ¼
−H

2
ð5c2s þ 3w − 2Þ.

2In addition to ∇⃗πjx� ¼ 0, we also need to have ∇⃗ ∂π
∂τ jx� ¼ 0 at

initial time, which is a reasonable assumption. In our numerical
studies, we consider the scalar field and its time derivative to be
zero at initial time and the scalar field being generated solely by
the gravitational coupling to the matter perturbations.
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(i) The equation∂2
τπ ¼ ð∂rπÞ2 is unstable andblowsupat

time τb given by Eq. (14). For certain initial conditions
which are relevant in cosmology, i.e., when the scalar
field and its time derivative vanish initially, this is a
local phenomenon, in the sense that the blowup point
(at a minimum) does not move during its evolution.

(ii) Assuming a small initial value for the scalar field (as a
result, small jκð0Þj), we can see that jκ0ð0Þj is sourced
by the gravitational potential and the blowup time
depends on ∼jκ0ð0Þj−1=3 ∼ j∂2

rΦðτiniÞj−1=3; a higher
curvature of the initial gravitational potential (or
equivalently a higher density) leads to a faster
instability of the system.

(iii) Based on the solution, we expect that the minima
become more curved in time and finally at τ ¼ τb the
curvature becomes infinite. It is important to note
that the mathematical discussion here was based on
considering the particular solution (8) that is quad-
ratic in r. However, in our mathematical papers,
we also study this PDE for a more general gravi-
tational potential form [e.g., ΨðrÞ ¼ 1 − cosðrÞ ¼
1
2
π2r2 − 1

24
π4r4 þ � � �], where corrections of higher

order than r2 contribute,

πðτ; rÞ ¼ bðτÞ r
2

2
þ dðτÞ r

4

4!
þ… ð16Þ

In that case, we find a leading-order blowup behav-
ior bðτÞ ¼ 3=2

ðτ−τbÞ2 as discussed above, as well as

dðτÞ ¼ const
ðτb − τÞ2β−2 þ � � � ; ð17Þ

where β ¼ −1.25þ ffiffiffiffiffi
97

p
=4 ¼ 1.212… is a new

critical exponent.
Equation (17) implies that, even for nonquadratic initial
conditions, the instability exists. In Fig. 2, we show the
numerical solution of Eq. (7) in a 3þ 1-dimensional
(3þ 1D) spherically symmetric setup. As we can see,
the minimum of the scalar field becomes sharper in time
and develops the instability in a finite time (here at redshift
z ¼ 1.45). Resemblance between our numerical 3þ 1D
cosmological results with the simplified PDE in Eq. (7)

suggests that we have correctly identified the source of
instability in the full PDE in Eq. (3).
Except for being second order in time, the PDE is similar

to the Hamilton-Jacobi equation, ∂τπ ¼ ð∇⃗πÞ2, and even
though this does not a priori imply that there should be any
relation between the solutions of the two PDEs in our
mathematical studies, we show that certain aspects of the
time evolution of the problem in fact do reflect this analogy.

V. CONCLUSIONS

This Letter presents a new instability appearing in non-
linear PDEs that arise naturally in EFT descriptions of
physical problems.We discovered the instability while study-
ing the equations for k-essence dark energy in the EFT
framework with 3þ 1D cosmological N-body simulations.
A mathematical study shows that such nonlinear PDEs are
unstable and blow up in finite time. This PDE is rich and
interesting from a mathematical point of view, as it does not
seem to fit into any mathematical scheme developed so far.
The potential presence of this instability in the EFT of

DE framework for cosmology seems unavoidable, as the
relevant term, ð∇⃗πÞ2, appears generically for models
beyond the standard model of cosmology ΛCDM. This
is almost independent of the physics that the EFT approach
is applied to. For example, in the EFT of inflation [22],
similarly to the EFTof DE, this term appears in the second-
order equations. Moreover, in the EFT of gravity [27], we
also expect to have such a term in the equations of motion
beyond linear order. Whenever this term is present, and is

not balanced by a pressure term ∝∇⃗2
π with sufficiently

large coefficient, then we expect that the solutions cease to
exist at finite time, effectively signaling the breakdown of
the whole EFT scheme.
In Refs. [28–31], it has been found that some covariant

k-essence theories with Lagrangian PðXÞ form instabilities
in a finite time. In our approach, we study the scalar field
equations rather than the fluid equations (usually being
studied in the covariant approaches), where we obtain a
second-order (rather than a first-order) partial differential
equation. As a result, as shown in Figs. 1 and 2, this
instability is of a different type than what has been found in
the covariant approaches (caustic formation). Furthermore,

FIG. 2. From left to right: the evolution of the scalar field π for a spherically symmetric scenario when only the ð∂xπÞ2 is considered as
a nonlinear term and all linear terms in Eq. (3) are considered. According to the figure, we see similar behavior compared to the blowup
we see in the cosmological N-body simulations.
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the instability we found is formed in a realistic cosmo-
logical setup where the weak-field approximation is
expected to be valid. We have demonstrated that this is
a relevant instability for cosmology, as its characteristic
timescale can be much shorter than the age of the Universe.
Whether the breakdown of the EFT scheme is a sign that

suchmethods cannot be applied to these problemsorwhether
it points to a fundamental issuewith the physical models that
it describes [29,32–35] is not yet clear. In the latter case, large
classes of models, including low speed of sound k-essence,
become unviable and would effectively be ruled out. This
could, for example, be due to shell crossing in a scalar theory
that leads to divergences in the field and the stress-energy
tensor. If it is only the EFT that fails, then it might be a hint
that strong-field effects become important. In this case,
and in the cosmological context, it could be that black holes
are formed that screen or modify the divergent dynamics.
Thatwould be an extremely interesting result, as it could help

to explain the presence of supermassive black holes in
the centers of galaxies. These questions are the subject of
ongoing work. What we can say is that our numerical and
analytic studies show that this instability is formed first in the
regions with highest density and that the blowup can happen
at early times (z ∼ 30) depending on the density of the center
of halos. Moreover, based on numerical studies, this phe-
nomenon is localized, meaning that it does not affect regions
that are located well away from the blowup point.
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