
The Rapidly exploring Random Tree Funnel
Algorithm

1st Ole Petter Orhagen
Department of Physics

University of Oslo
Oslo, Norway

olepor@matnat.uio.no

2nd Marius Thoresen
Defence Systems Division

Norwegian Defence Research Establishment, FFI
Kjeller, Norway

marius.thoresen@ffi.no

2nd Kim Mathiassen
Norwegian Defence Research Establishment, FFI
Dept. Technology Systems, University of Oslo

Kjeller, Norway
kim.mathiassen@ffi.no

Abstract—This paper shows the feasibility of combining robust
motion primitives generated through the Sums Of Squares
programming theory with a discrete Rapidly exploring Random
Tree algorithm. The generated robust motion primitives, referred
to as funnels, are then employed as local motion primitives,
each with its locally valid Linear Quadratic Regulator (LQR)
controller, which is verified through a Lyapunov function found
through a Sum Of Squares (SOS) search in the function space.
These funnels are then combined together at execution time by
the Rapidly-exploring-Random-Tree (RRT) planner, and is shown
to provide provably robust traversal of a simulated forest envi-
ronment. The experiments benchmark the RRT-Funnel algorithm
against an RRT algorithm which employs a maximum distance
to the nearest obstacle heuristic in order to avoid collisions, as
opposed to explicitly handling uncertainty. The results show that
employing funnels as robust motion primitives outperform the
heuristic planner in the experiments run on both algorithms,
where the RRT-Funnel algorithm does not collide a single time,
and creates shorter solution paths than the benchmark planner
overall, although it takes a significantly longer time to find a
solution.

Index Terms—Collision avoidance, Motion planning, Nonlinear
control systems, Robot control

I. INTRODUCTION

Motion planning concerns the problem of finding a dynam-
ically feasible path from an initial configuration to a defined
end state in a safe manner. In order for a motion planner to
handle real world motion planning tasks it needs to handle
the uncertainty that comes with a real-life planning problem.
This is especially difficult for nonlinear dynamical systems.
Knowledge of the system’s state, the environment and the
dynamics of the system are all uncertain to some degree.
Limited measurement precision and use of imperfect world
and vehicle models will therefore leave error terms in the
state and world estimations. Thus, in order for a planner to
guarantee safe traversal through a real world environment, a
motion planner needs to handle uncertainties.

In the face of uncertainty, some planners choose to ig-
nore these error sources and instead apply heuristics such as
maximizing the distance to the obstacles in the environment
or setting a fixed safety radius [1]. However, this adds the
disadvantage that the plans can become overly conservative.
Explicitly handling the uncertainties in the planning stage
enables the planner to employ more aggressive maneuvers,

such as going through two obstacles that are close together,
as opposed to going around the difficult area. If uncertainties
are accounted for, going straight through is an acceptable
maneuver for a planner that has guarantees on the whereabouts
of the dynamical system, and hence is not afraid to get close
to an obstacle. This means that a robust motion algorithm can
perform more aggressive maneuvers than one that is inherently
conservative about its environment and maneuvers [2].

In motion planning, there is a separation between global
and local methods [1], where global methods assumes a known
map of the environment and local methods assumes only local
knowledge. Thus, global methods can plan paths from the start
state to the goal, whereas local methods can only plan a part
of the way. As local methods explicitly consider the end goal
during planning, they are more susceptible to getting trapped
in local minima.

Previous efforts to handle uncertainties in global path plan-
ning include using the Rapidly-exploring Random Tree (RRT)
algorithm with robust motion primitives. This approach is
taken by Tedrake [3], where a tree consisting of robust Linear-
Quadratic Regulator (LQR) controllers are created, in order to
guarantee safe traversal of the planning environment. Van den
Berg [4] has a similar approach of creating motion primitives
where a LQR is used, and a Gaussian process is used to
model uncertainty, thus allowing robust control along with an
uncertain system. Luders generate robust motion primitives in
real-time for an RRT* algorithm through chance constraints
in [4], but also ensures asymptotic optimality. Another robust
extension to the RRT algorithm can be found in Melchior [5],
where each extension to the tree is treated as a stochastic
process, and simulated multiple times, and since pruned based
on the expected probability of successful execution.

A recent approach to the local path planning problem
has been to use Sum of Squares (SOS) theory with motion
planning. As mentioned above, this is the approach taken by
Tedrake in [3]. In [6], Majumdar expands upon this idea and
seeks to limit the size of the area in which a controller will take
a dynamic system, while at the same time giving guarantees of
safe traversal. This enables real-time motion planning in highly
complex environments with advanced vehicle models, as long
as the controllers are generated off-line. The offline generation
is a requirement due to the time they take to generate. The

current research on the topic is limited, but interesting due to
the formal general robustness guarantees it provides.

However, the method is a local method, and thus has a
limited planning horizon. In [6], a simulated experiment with
large-scale environments is conducted, but only by repeating
the local process several times. If we instead can use the theory
and framework introduced here and combine it with a global
planner, we can achieve longer planning horizons and thereby
reduce likelihood of getting trapped in local minima.

This paper builds upon the work done on verifying re-
gions of attraction — referred to as funnels — for nonlinear
dynamical systems through the use of Lyapunov functions.
Verification is achieved for a polynomial system through the
use of SOS programming. We combine the theory of funnels
with a discrete RRT motion planner in order to provide a prov-
ably robust global motion planner for a nonlinear dynamical
system. To the best of the authors’ knowledge, this is the only
known RRT algorithm which implements verified reachable
sets generated through SOS programming as discrete motion
primitives as extension operators for the an RRT algorithm.
The novel method is then compared with a RRT algorithm
that maximize the distance to the nearest obstacles, in order
to show which handles the planning task best. The result
of this work is the RRT-Funnel motion planning algorithm,
a discrete motion planning algorithm which can guarantee
safe passage through an obstacle space, given the assumption
that the uncertainty in the system is bounded. The funnel
definitions in this paper is taken from a series of articles on
funnels [3], [6]–[9], with the main focus being on [6].

II. METHOD

This paper develops the RRT-Funnel algorithm, by two
means: First it employs robust motion primitives generated by
the the SOS programming framework based on the work in [6],
and second, deploy these funnels as robust motion primitives
in a discrete RRT robust motion planner based on [10]. Using
robust motion primitives has several advantages. Firstly, they
handle uncertainty, and thus, as long as the uncertainties in
the system are akin to the assumptions on the incoming
uncertainty parameters, the dynamical system will not leave
the funnel, and hence if the funnel is not in collision, neither
will the system be. Secondly, as the motion primitives are
robust, there is no need for more conservative maneuvers and
heuristics, such as maximizing the distance to an obstacle,
which is a naive way for motion planners to handle uncertainty.
Since the primitives are robust, the system might as well
choose a primitive that is close to an obstacle, as one that
is far away, since the funnel is guaranteed to be collision-free
in both cases. This means that a robust motion algorithm can
perform more aggressive maneuvers than one that is inherently
conservative about its environment and maneuvers [2].

A. Problem Statement

Given the nonlinear dynamical system

ẋ = f
(
x(t), u(t), w(t)

)
, (1)

with state x(t) ∈ R3, u(t) ∈ R, and w(t) ∈ R. Then create a
set of robustly verified discrete motion primitives through the
use of SOS programming to verify the reachable set for each
of the trajectories in a base set of trajectories T0. Next, apply
these trajectories, with the robust reachable set surrounding
them as motion primitives for a discrete RRT motion planning
algorithm and compare the results to a RRT algorithm which
does not employ the reachable sets around the base trajectories,
but instead relies on maximizing the distance to the nearest
obstacles, in order to handle uncertainty.

B. Funnels

The uncertainty guarantees in this paper is given through
the creation of funnels. Funnels are the parameterizations of
the finite time reachable sets for the dynamic system in 1.

This means that a Funnel holds all the states the dynamical
system can be in during a planning task. Mathematically the
reachable set of the system is defined as

x(0) ∈ X0 =⇒ x(t) ∈ F (t),∀t ∈ [0, T],

where X0 is the set of initial conditions, [0, T] the time
interval, and F (t) is the set of states that the system can
be in at time t [6]. Although this paper concerns itself with
approximating the reachable set through Lyapunov functions,
a useful analogy is imagining the funnel created through a
Monte-Carlo simulation, where the funnel is the set of all the
paths traversed by the dynamic system.

1) Generating Trajectories: In order to verify the robust
regions surrounding a trajectory, first the trajectories them-
selves have to be created. Generating optimal trajectories
is a rich field in the motion planning literature [11]. The
initial trajectories can be generated by many different methods,
however the direct collocation method [12] suited the needs
of this paper best. It was chosen as it builds locally optimal
trajectories from a discrete set of sampled points along a
sought trajectory, which is beneficial for the discrete funnel
verification employed. For this problem the cost function
chosen for the solver to minimize is:

J =

∫ T

0

[
1 + u0

TRu0
]

dt, (2)

where R = 1, because it will minimize the system input, and
thus give a smooth output trajectory [8].

2) Initializing the Funnel Calculations: The funnel calcula-
tion algorithm has to be initialized with a candidate Lyapunov
function. In the same way as in Majumdar [8], the funnel
generation algorithm will be initialized with a Time Varying
Linear Quadratic Regulator (TV-LQR) as the initial Lyapunov
function employing a cost function of the form

J= xT (tf)F (tf)x(tf) (3)

+

∫ tf

t0

(
xTQx + uTRu + 2xTNu

)
dt,

Fig. 1. Two funnels that can be successfully composed, as the outlet of the
first one is fully contained in the inlet of the second. The system start position
is the left side of the figure and the goal position to the right.

3) Generating Funnels around the Initial Trajectories:
With the set of initial trajectories generated from the direct
collocation method in II-B1, using SoS optimization it is
possible to generate an area around the trajectories which are
able to handle a bounded uncertainty parameters. This is done
through the SOS optimization framework from Majumdar [6].
This method takes as input the initial trajectories, and an initial
Lyapunov function, and outputs a verified region around the
trajectories which are guaranteed to be collision free as long
as the system uncertainties are bounded.

4) Sequential Funnel Composition: Once funnels have been
generated as discrete motion primitives, it is time to handle
the overarching goal of creating a plan consisting of multiple
funnels chained from start to finish, so that safe traversal
can be guaranteed along the given planning trajectory. In
order for two funnels to create one extended motion primitive
from multiple smaller primitives, the funnels in use must be
composable. In order for two funnels to be composable, the
outlet of one funnel needs to be completely contained within
the inlet of the other [8]. An abstract pictorial representation
of two funnels composed together can be seen in Fig. 1 to
emphasize this observation.

Since the funnels can be shifted freely around the config-
uration space along the cyclic coordinates of the system to
create new motion primitives [8], the funnels can be composed
together by the RRT algorithm in the planning environment
and create a guaranteed robust motion plan through chaining
multiple verified funnels together into a longer and verified
motion primitive.

C. RRT

With the basic framework for dealing with funnels as
motion primitives constructed, it is time to build the RRT
part of the RRT-Funnel algorithm. The reason for basing the
global path planning framework on the RRT motion planning
algorithm is twofold. Firstly, it has the ability to quickly
expand deep into the search-space, and then later progress
towards a finer sampling, which is valuable as it avoids local
minima. Secondly, the RRT algorithm is extensible to larger
state spaces, and the RRT-Funnel algorithm can therefore be
adapted to fit a wide range of dynamical systems. Extending
the RRT algorithm to a larger state space requires modifying
the three main components; the probability distribution to
sample from, the distance metric for the nearest neighbor and
the extension step. The RRT algorithm is beneficial as most

Fig. 2. The original funnel created from the point model, with a funnel
expanded by a radius of 0.1 surrounding it.

of the complexity accompanied with the planning problem
(like uncertainty and controller calculations) is handled by
the SOS framework, and hence the RRT algorithm need only
concern itself with stacking one robust motion primitive after
the other without any concern for the complexities associated
with uncertain dynamical systems.

1) Distance in Configuration Space: The RRT-Funnel al-
gorithm will use the same metric for both the closest node and
the extend operation on the funnel graph. The metric chosen
is a modified Euclidean metric which weights the angle θ
depending on how close the dynamical system is to the final
configuration, and is defined as

ρ(x1, x2) = w1‖X −X‖+ w2f(θ1, θ2),

where ‖X − X‖ is the standard Euclidean metric, f is
a positive scalar function giving the angle between head-
ings [13]. The rotations and distance is then scaled relative
to the translation distance by w1 and w2. Which helps solve
some of the problems with the Euclidean distance metric [10].

2) Optimize the Selection Step: It is helpful to associate
some structure along with the funnels which the RRT-Funnel
algorithm employs at the planning stage [8]. This is because
not all funnels are compatible, as one funnels outlet might
not fit into the outlet of another. Thus the funnels generated
can be imagined as a directed graph, where an edge from
funnel A to funnel B means that (A,B) are composable.
Thus a brute-force search for compatible funnels at planning
time is eliminated. Hence the funnels are organized into a
graph structure G where each funnel is an edge in the graph.
Therefore no test to see if two funnels in the motion primitive
set are compatible is needed.

3) Expanding the Size of the Funnels: In general the
funnels generated are computed only for the point model in
Eq. (1), and hence, in order to run the algorithm with a model
of some defined size, the funnels have to be expanded by
the largest radius of the model. Since the funnels are ellipsis
around the point at the trajectory that they verify, the funnels
can be expanded by any radius with a linear transformation.
An expansion of a funnel around the point model used in this
paper can be seen in Fig. 2.

III. EXPERIMENTS

The experiments will run the RRT-Funnel against a bench-
mark regular RRT planner with the motion primitive set pic-

tured in Fig. 3 on a forest traversal problem. The benchmark-
planner is a RRT algorithm employing the same motion
primitive set as the RRT-Funnel algorithm, with the same LQR
controller, and the same distance metric. The difference is that
the benchmark planner does not take uncertainty into account,
and instead maximizes the distance to the nearest obstacle as
the extension operator i.e.,

max
i

min
t,j

(
xi(t), oj

)
(4)

where xi(t) ∈ T , is a trajectory from the basic motion
primitive set, and oj ∈ O is an obstacle in the configuration
space C. Note also that in order to guide the expansion towards
the goal, a goal bias of 10% is given to the benchmark
planner, which is beneficial for decreasing the dispersion of
the algorithm [10]. This is introduced to counter the distance
metric, which tries to maximize the distance to the obstacles.

The end goal is set so that it will not take pose into account,
and will only be concerned with getting within an ε of the
(x, y) in the test map. For all the experiments an ε of 5m is
given to the planners.

Each test-run will be run in a forest generated with a Poisson
process method, see [14] for an introduction to Poisson
processes.

The experiments records the number of collisions for each
algorithm across all test-runs. The planners will run in the
same environment for each test, with the same initial starting
point. The environment will be redrawn using the Poisson
process to generate the obstacle forest for each consecutive
run. With this test setup the difference between the planners
should become evident.

Before the experiments are run, all individual funnels in the
base set are run with a hundred simulations runs from random
starting positions in its inlet, to check if the invariant holds, and
that the model stays within the funnel at all times. Uncertainty
is added in terms of an additive noise with w = 0.3 m/s in
the world x-direction, imitating a cross-wind.

A. Experiment Setup

The algorithm is tested by generating a random strip of
forest of depth 25m, and then letting the RRT-Funnel, along
with the benchmark algorithm find a way through the en-
vironment to the other side. Three seperate experiments are
conducted where the amount of crosswind will vary. The first
experiment will have a crosswind of 0 m/s, in order to set
up the experiment baseline. The second experiment will have
a crosswind of 0.3 m/s, which is the maximum crosswind
modelled in the RRT-Funnel algorithm. This experiment will
show the difference between explicitly handling uncertainty in
comparison to handling it heuristically. Lastly, an experiment
with a 0.6 m/s is perfomed, to verify the assumed result that
if the uncertainty assumptions are broken the RRT-Funnel
algorithm does no longer guarantee safe traversal.

The obstacles are imagined to be trees with trunks modelled
as circles with a radius of 0.1 m, and are placed randomly on
the area O = {x | −50 ≤ x1 ≤ 50 and 5 ≤ x2 ≤ 25}, as
the realization of a Poisson process with density λ = 0.2. For

-1.5 -1 -0.5 0 0.5 1 1.5

x1

0

0.5

1

1.5

2

2.5

3

x2

Fig. 3. The initial trajectories used in the RRT-Funnel algorithm.

each trial run, a new forest is generated in this random fashion,
and the algorithms are given the task to traverse the generated
map in turn.

The funnels for the RRT-Funnel algorithm are in this case
made to handle uncertainty, in the form of a cross-wind up to
and including 3 m/s in the x-direction of the airplane, but does
not currently have any control over the y-direcction. Since
the model used is single input, and only controls the angle
of travel, not the speed of the aircraft. A maximum of 5000
nodes is set as an upper treshold on both of the algorithms’
exploration trees.

B. Generating Robust Motion Primitives

This paper employs the simple unicycle model from [10]
which is modified slightly into

x =

xy
θ

 , ẋ =

−v sin(θ)
v cos(θ)

u

 , (5)

which is a first-order unicycle model with a constant speed.
Although this is the only model used in this paper, the method
can be adapted into accommodating a different and more
complex model.

The trajectories for the base set of motion primitives is gen-
erated through the direct collocation method on the dynamical
system given in (5).

The basis set of motion primitives should be small, yet cover
enough of the finer movements of the dynamical system so that
the motion of the planning unit can be near continuous when
composed together. Thus in order to generate a dense set of
motion primitives, points along the arc of a circle with N
different radii as the initial points for the trajectory generator
described in Section II-B1. The initial trajectories employed
in the experiments can be seen in Fig. 3.

C. Initializing the Funnel Calculations

As noted in Section II-B2, the funnel calculations need to be
initialized with a candidate Lyapunov function. For this paper,
this is a TV-LQR controller.

Then to get the initial Lyapunov function, the system error
dynamics are linearized.

˙̄x ≈ A(t)x̄(t) +B(t)ū(t) (6)

˙̄x ≈

0 0 −v cos(θ)
0 0 −v sin(θ)
0 0 0

 x̄(t) +

0
0
1

 ū(t), (7)

which is an an initial candidate Lyapunov function of the form

V (t, x̄) = x̄TSix̄, (8)

where Si is a solution of the Ricatti equation

− Ṡ(t) = ATS(t) + S(t)A− (S(t)B +N)R−1 (9)(
BTS(t) +NT

)
+Q

associated with the LQR controller. The feedback is gained
from

K(t) = R−1
(
BS(t) +NT

)
,

and enables the system dynamics Eq. (5) to be written fcl(t, x)
by direct substitution of u = −Kx, where K is a 1×3 matrix,
and hence making the system in Eq. (5) dependent only on t
and x,

x =

xy
θ

 , ẋ =

−v sin(θ)
v cos(θ)
−Kx

 . (10)

Which means that

Vi(t, x) = xTSix

as needed, where Vi(t, x) is a quadratic Lyapunov function,
which is used by the SoS optimizer to generate the funnels.

D. Generating the Funnels around the Initial Trajectories

With the inital trajectory set defined, it is time to generate
the funnels around them, so that safe traversal can be guaran-
teed. Thus for this to happen, the funnel generator needs an
initial condition set from which to start. This is given by the
hyper-ellipsoid

X0 = {x ∈ R3 | xTQx} (11)

Q =

2 0 0
0 2 0
0 0 4

 . (12)

which means that the dynamical system can start in a wide
variety of initial states, and the controller will be able to take
it safely to the outlet of the funnel. This is also beneficial, as
this means it is easier to compose with another funnel, as the
inlet is bigger.

E. Funnel Transformation and Invariance
Given the model from Eq. (5) the cyclic coordinates of the

system are found from:

L = T − V =
1

2
mv2 +

1

2
Iθ̇2

=
1

2

(
m
(
ẋ2 sin2 θ + ẋ2 cos2 θ

)
+ Iθ̇2

)
=

1

2

(
mẋ2 + Iθ̇2

)
which shows that the Lagrangian is invariant to shifts in the
(x, y, θ) variables, since ∂L

∂qi
= 0, qi = x, y, θ. Now any

funnel in the base set can be shifted freely around in the
cyclic coordinates of the system without changing the solution
to the system dynamic equation, and thus create an infinite
set of funnels in the state space for the planner to work
with. Through the partitioning of coordinates into cyclic- and
non-cyclic coordinates of the form x = [xc xnc]

T , the state
dynamics Eq. (5) only depends on the cyclic coordinates of the
system. Thus, a trajectory of the form t→

(
x(t), u(t)

)
which

solves ẋ = f
(
x(t), u(t)

)
can then be transformed through a

shift Ψc along the cyclic coordinates of the system to yield a
valid solution of the form

t→
(
Ψx(x(t)), u(t)

)
where the transform Ψ is given by

Ψ
([xc
xnc

])
=

{
xc → x

′

c

xnc → xnc .

However, since dim(x) = dim(xc), for the dynamics equation
in 5, it is not necessary to handle the non-cyclic case for the
model in this experiment.

F. Funnel Composition
The funnel robustness guarantees are only valid if the

funnels are composable. Unfortunately, the funnels do not
compose, and the off-line composition testing of the algorithm
has to be left out. Thus the experiments are run with a funnel
graph that is complete, and all funnels are checked on-line if
they compose with each other, at the cost of on-line complexity
during the algorithm’s execution. This is because the one
dimensional controller employed has no influence on the speed
of the airplane, and hence there is no way to make the system
converge in the direction of speed. This is exemplified in
Fig. 4, where the inlet is overlaid the outlets for the projected
xy-funnel, and it can be seen that the controller is able to
converge the xy-funnel in the x-direction, but not in the y-
direction, as it has no control over this dimension at all. The
framework can be expanded with this functionality. however,
this is referred to as future work.

In order to remedy this off-line compositional robustness
guarantees, the RRT-Funnel algorithm keeps track of whether
the model has left the funnel during execution, and aborts the
simulation with the emergency maneuver if the airplane leaves
one of the funnels at runtime. This happens if the value of the
Lyapunov function is larger than one. In the experiments, this
counts as a collision on the part of the RRT-Funnel algorithm.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
xy-projection

Inlet
Outlet

Fig. 4. The projection of the funnel inlet and outlet onto the xy-plane, in
meters. It is seen that the controller is able to make the funnel converge in
the x-direction as expected, however, it has no control in the y-direction, as
there is no controller steering the speed of the vehicle.

G. The Size of the Airplane and the Obstacles Models

The funnels generated thus far are created from a point
model of the airplane, and its dynamics. If the grid that the
simulations are run on are set to have an unit size of one
meter, then the funnels from the basic set are given a velocity
of [v(t)] = m/s, [θ] = rad, and [θ̇] = rad/s, where [·] is the
unit operator. In this experiment we assume that the aircraft if
a small radio controlled aircraft with a maximal speed of 10
m/s and a size of 10×20 cm, however the speed and size of the
aircraft can be set arbitrary. The mass is not relevant for our
first order dynamics, but still the airplane is assigned a mass
of 1 kilogram, so that the translation of the model dynamics
is not irrelevant.

H. Expanding the Funnels around the Airplane Model

The size of the airplane in the original model is a single
point, and as such, the expanded airplane model is not ac-
counted for in the current funnels. Therefore the funnels have
to be expanded in order for them to accommodate the airplane
model. However, the size of the airplane only affects the size
of the funnel ellipsis projected down into the xy-plane. There-
fore, first extract the projected size of the funnel, through a
projection map: P : R3 → R2, where P =

[
I2×2 02×2

]
such

that for the projected ellipsoid Ep = {x̄ ∈ R2 | x̄TS(p)
k x̄ ≤ 1},

with S(p)
k given by S(p)

k =
(
PS−1k PT

)−1
, is the set containing

the funnel projected down into the xy-plane. Here Ep is the
projected set of the ellipsoid in the xy-plane. In general an
ellipse centered at the origin is a linear transformation of
the unit circle [15]. Exploiting this fact, the funnel ellipsoids
can be expanded to encompass the airplane model. Take note
that the matrix Sk is Positive semidefinite, and hence can be
Cholezky factorized [15]. The expanded ellipsis (which now
contains all the possible states of the airplane model) is given

Fig. 5. Visualized is the expansion of the RRT-Funnel algorithm at 101
iterations of the algorithm with the funnels shown. Both axis are in meters.

by:

S
(P)
k = RTR

x = R−1y

C = {y ∈ R2 | yT y ≤ 1 + ra}
Eexp = {R−1y | y ∈ C}

where Eexp are the ellipsoids which contains the volume of
the airplane for all verified states in the funnel, and ra is
the widest part of the model at hand, which in this case is
the wingspan. A picture of the initial funnel and the funnel
expanded around the airplane model can be seen in Fig. 2.

IV. RESULTS

The results from the given simulations are summarized
through the number of collisions, the total length of the
solution trajectories, and the number of branches added to
each search tree. These performance measures are shown in
Table I, Table II and Table III respectivly. For each column
total of hundred simulation is performed. In the first table a
count of how many of the simulations runs that resulted in a
collision is given, while in the latter two tables an average of
the hundred simulation runs are given. Visualizations of the
simulations can be seen in Fig. 5 where the funnels are shown,
and in Fig. 6 where only the search tree is shown. A plot of
the Lyapunov values for a simulation run can be seen in Fig. 7.

V. DISCUSSION

Currently the algorithm handles uncertainties in position,
but not in the environment, and must therefore be run in a
known environment, and is hence a strictly off-line motion

-50 -40 -30 -20 -10 0 10 20 30 40 50

y1

-5

0

5

10

15

20

25

30

35

40

y2

Fig. 6. Visualized is the expansion of the RRT-Funnel algorithm at 101
iterations of the algorithm with the tree shown. Both axis are in meters.

TABLE I. THE TOTAL NUMBER OF COLLISIONS FOR EACH
ALGORITHM OVER A TOTAL OF 100 SIMULATION RUNS, WITH THREE

DIFFERENT VALUES FOR THE CROSS-WIND (W).

Number of Collisions w = 0m/s w = 3m/s w = 6m/s

RRT− Funnel 0 0 4

Benchmark 0 6 10

TABLE II. THE TOTAL LENGTH OF THE SOLUTIONS FOUND FOR EACH
ALGORITHM OVER A TOTAL OF 100 SIMULATION RUNS, WITH THREE

DIFFERENT VALUES FOR THE CROSS-WIND (W).

Solution Trajectory’s Length w = 0m/s w = 3m/s w = 6m/s

RRT− Funnel 1.506 3.418 4.754

Benchmark 3.582 4.162 3.174

TABLE III. THE TOTAL NUMBER OF ITERATIONS FOR EACH
ALGORITHM OVER A TOTAL OF 100 SIMULATION RUNS, WITH THREE

DIFFERENT VALUES FOR THE CROSS-WIND (W).

Number of Iterations w = 0m/s w = 3m/s w = 6m/s

RRT− Funnel 447.646 190.713 213.638

Benchmark 29.120 52.768 33.936

planner. However, it is possible to generalize the algorithm to
handle unknown environments.

In general, the funnels generated are tight outer approxi-
mations of the true reachable set for the system. However,
note that since the Lyapunov function employed is quadratic,
it will always be symmetric around the trajector verified. This
means that even though the real nonlinear system dynamics
can have a tight reachable set on one side of the trajector,
the symmetry of the quadratic Lyapunov function might lead

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fig. 7. The plot of the Lyapunov values for a simulation run at the sampling
times tk .

the funnel to be too conservative on one side of the trajector.
For this paper however, the system dynamics are symmetrical,
so this is not an issue. That the funnels generated do provide
tight outer approximations was verified through a Monte-Carlo
simulation of the nonlinear system with bounded uncertainty.
Over the course of 100 simulations the system never left any
of the funnels. Thus showing that the funnels did provide tight
outer approximations of the dynamics of the system.

The strength of the algorithm lies in that it can separate han-
dling the uncertainty into an off-line pre-computation phase.
Therefore, the global motion planner does not need to be
significantly more complex than if it had not taken uncertainty
into account. In fact, it can remain oblivious to the overarching
problem difficulty of handling uncertainties for a complex
nonlinear system. In fact, once the motion primitives have
been calculated and verified off-line, they might as well be
employed in any global motion planner able to handle discrete
motion primitives.

Even though the robustness guarantees of the SOS frame-
work could not be guaranteed in the off-line phase, due to
the planner not handling multiple controller inputs, and hence
the funnels did not compose off-line. Still, the RRT-Funnel
algorithm did run-time verification of funnel abidance. Even
though the model leaving a non-composable funnel at run-
time was theoretically possible, this did not cause the airplane
to collide a single time over the course of 300 simulation
runs. This was in starch contrast to the benchmark planner,
which did not handle uncertainty at all, and instead relied on
avoiding the obstacles by as big a margin as possible, and
therefore consistently had a collision rate of 6% or higher. This
collission rate can be expected to be a lot higher in a denser
planning environment, but this would also significantly add
to the time of the off-line planning phase. As can be seen in
the last column, when the cross-wind added to the experiment
violated the upper bound of 3 m/s, the RRT-Funnel algorithm
did also start crashing. It is seen that the RRT-Funnel algorithm
performs better in terms of robustness up to and including
its uncertainty bound of w = 3 m/s, while the benchmark

planner does collide in the same environment, with the same
uncertainty.

Although the RRT-Funnel algorithm performed better in
terms of collisions, it does a lot worse in terms of exploring the
planning space, than does the benchmark planner. This only
increases with the difficulty of the planning space, and hence
the time spent by the RRT-Funnel algorithm is significantly
longer.

VI. CONCLUSION

This paper has shown that the RRT-Funnel motion planning
algorithm does provide robust feedback motion planning for
a nonlinear dynamic system. It shows that a motion planning
algorithm employing discrete verified robust motion primitives
outperforms a traditional motion planning algorithm signifi-
cantly in terms of safe traversal through a known environment.
It has also shown that the robust planner is only reliable
up to and including its uncertainty bounds, and will start
misbehaving, just like the benchmark motion planner, once the
uncertainty assumptions on the algorithm are broken. All in all,
it is shown that the RRT-Funnel algorithm is a viable option
for a global motion planner in an uncertain environment.

REFERENCES

[1] M. Hoy, A. S. Matveev, and A. V. Savkin, “Algorithms for collision-
free navigation of mobile robots in complex cluttered environments:
A survey,” vol. 33, no. 03, pp. 463–497. [Online]. Available:
http://www.journals.cambridge.org/abstract S0263574714000289

[2] S. Singh, A. Majumdar, J.-J. Slotine, and M. Pavone, “Robust online
motion planning via contraction theory and convex optimization,” in
2017 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, pp. 5883–5890. [Online]. Available: http://ieeexplore.
ieee.org/document/7989693/

[3] R. Tedrake, “LQR-trees: Feedback motion planning on sparse
randomized trees,” in Robotics: Science and Systems V. Robotics:
Science and Systems Foundation. [Online]. Available: http://www.
roboticsproceedings.org/rss05/p3.pdf

[4] B. D. Luders, S. Karaman, and J. P. How, “Robust sampling-based mo-
tion planning with asymptotic optimality guarantees,” in AIAA Guidance,
Navigation, and Control (GNC) Conference, 2013, p. 5097.

[5] N. A. Melchior and R. Simmons, “Particle rrt for path planning with
uncertainty,” in Proceedings 2007 IEEE International Conference on
Robotics and Automation. IEEE, 2007, pp. 1617–1624.

[6] A. Majumdar and R. Tedrake, “Funnel libraries for real-time robust
feedback motion planning,” vol. 36, no. 8, pp. 947–982. [Online].
Available: http://journals.sagepub.com/doi/10.1177/0278364917712421

[7] M. M. Tobenkin, I. R. Manchester, and R. Tedrake, “Invariant Funnels
around Trajectories using Sum-of-Squares Programming,” vol. 44,
no. 1, pp. 9218–9223. [Online]. Available: https://doi.org/10.3182%
2F20110828-6-it-1002.03098

[8] A. Majumdar and R. Tedrake, “Robust Online Motion Planning with
Regions of Finite Time Invariance,” in Algorithmic Foundations of
Robotics X, E. Frazzoli, T. Lozano-Perez, N. Roy, and D. Rus, Eds.
Springer Berlin Heidelberg, vol. 86, pp. 543–558. [Online]. Available:
http://link.springer.com/10.1007/978-3-642-36279-8 33

[9] A. A. Ahmadi and A. Majumdar, “DSOS and SDSOS optimization: LP
and SOCP-based alternatives to sum of squares optimization,” in 2014
48th Annual Conference on Information Sciences and Systems (CISS).
IEEE, pp. 1–5.

[10] S. M. LaValle, Planning Algorithms. Cambridge University Press,
available at http://planning.cs.uiuc.edu/.

[11] J. T. Betts, “Survey of Numerical Methods for Trajectory Optimization,”
vol. 21, no. 2, pp. 193–207. [Online]. Available: https://doi.org/10.
2514%2F2.4231

[12] O. Von Stryk, “Numerical solution of optimal control problems by direct
collocation,” in Optimal Control. Springer, pp. 129–143.

[13] J. Kuffner, “Effective sampling and distance metrics for 3D rigid body
path planning,” in IEEE International Conference on Robotics and
Automation, 2004. Proceedings. ICRA ’04. 2004. IEEE, pp. 3993–3998
Vol.4. [Online]. Available: http://ieeexplore.ieee.org/document/1308895/

[14] D. P. Kroese and Z. I. Botev, “Spatial Process Generation,” p. 41.
[15] D. C. Lay, “Linear Algebra and its Applications, 3rd updated Edition.”

