
1.  Introduction
Marine phytoplankton play a key role in food webs of the oceans as they are responsible for nearly half 
of the earth’s net primary production (Chassot et al., 2010; Field et al., 1998), and have a strong impact 
on climate as they are major players in the global cycles of nitrogen, phosphorus, and carbon (Beaugrand 
et  al.,  2010; Park et  al.,  2015). Ocean warming will likely impact phytoplankton as temperature affects 
phytoplankton indirectly via stratification and thus nutrient flux (Cermeño et al., 2008), as well as directly 
by affecting community composition and metabolic rates (Regaudie-De-Gioux & Duarte,  2012; Thomas 
et al.,  2012). Therefore, predicting the effects of future ocean warming on marine productivity and car-
bon-sequestration demands a proper understanding of how temperature variation affects phytoplankton 
production and biomass (Taucher & Oschlies, 2011).

A critical question is whether there are unimodal relations between temperature and marine chlorophyll 
a concentration (Chla), and if thresholds between positive and negative temperature effects can be identi-
fied. This is a critical question related to the current warming of surface waters (Cheng et al., 2019; Conroy 
et al., 2009), with potential abrupt changes in ecosystem processes (Beaugrand et al., 2019). Previous studies 
have reported negative relationships between sea-surface temperature (SST) and Chla in warm low latitude 
waters, while positive at high latitudes with annual or seasonal observations (Behrenfeld et al., 2006; Boyce 
et al., 2010, 2014; Doney, 2006; Irwin & Finkel, 2008; Racault et al., 2012; Roxy et al., 2016). This pattern 
is also supported by experimental studies (Lewandowska et al., 2014; O'Connor et al., 2009) and models 
(Hofmann et al., 2011; Taucher & Oschlies, 2011). However, less is known about the strength of the SST-
Chla relationship, especially the regional patterns. As SST generally decreases with latitude, we may expect 
that strengths of the SST-Chla relationships will differ under different temperature regimes, and shift from 
positive to negative effects as SST exceeds a threshold temperature.
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Additionally, several studies on the effect of ocean warming on surface phytoplankton chlorophyll mainly 
address responses to annual mean temperatures (Behrenfeld et al., 2006; Lewandowska et al., 2014; Llope 
et al., 2012), which may fail to capture the SST-Chla relationships at finer temporal scales, especially for 
temperate oceans with large seasonality (Giovannoni & Vergin, 2012). Although previous studies often have 
failed to detect significant SST-Chla relationships in temperate regions based on annual data, a recent study 
analyzing monthly data revealed that bell-shaped relationships between SST and Chla were common in the 
Atlantic and Pacific temperate oceans (Feng et al., 2015).

In this paper, using monthly satellite data from a publicly available database of global chlorophyll concen-
trations and SST, we test the hypothesis that warming effects on ocean chlorophyll are temperature depend-
ent, i.e., that the sign and strength of SST-Chla relationships depend on baseline temperature, measured 
as the region-specific and season-specific long-term average SST. Furthermore, the threshold temperature 
at which temperature effects shifted from positive to negative was quantified. We focus on ocean provinces 
from 55°S–55°N and 180°W–180°E, which cover the global tropical and temperate oceans (McClain, 2009) 
(Figure S1). We first investigated how interannual variability in SST is associated with Chla on a monthly 
basis for every ocean province. Subsequently we quantified how the SST-Chla relationships varied with 
baseline temperature, and estimated the threshold temperature. Lastly, with data on in situ nitrate con-
centrations, as well as half-saturation constants for nitrate and experimental growth rate data drawn from 
literature, the mechanisms involved in this SST-Chla relationship were examined by model analysis.

2.  Materials and Methods
2.1.  Research Region and Data

Our analysis was based on 30 ocean provinces classified as temperate or tropical oceans (Longhurst, 2010). 
The names, abbreviations, and locations of each province are listed in Supplementary Table S1 and Fig-
ure S1. The southern ocean gyres (SATL, ISSG, and SPSG) were each divided into two subprovinces (SATL1, 
SATL2, ISSG1, ISSG2, SPSG1, and SPSG2) by the Tropic of Capricorn (23°26′S) in order to compare them 
with corresponding provinces in the northern oceans (NPSE, NPSW, and NPTG in the North Pacific; NASW, 
NASE, and NATR in the North Atlantic). The coastal regions (provinces) were excluded from our analysis 
due to the fact that Chla in these areas is mainly regulated by variations in upwelling and nutrient runoff 
and is usually orders of magnitude higher than Chla in the open oceans. Further, the remote sensing of 
Chla in coastal regions is frequently impacted by riverine inputs of dissolved and particulate organic matter.

In our analysis, merged 1° grid level-3 monthly case I ocean time series data on surface chlorophyll a con-
centration (Chla, in mg m−3) from 1998 to 2017 were obtained from the European Space Agency’s GlobCol-
our project (Version 2.0) (http://www.globcolour.info/). The merged data sets were created with a Garver, 
Siegel, and Maritorena (GSM) model and normalized water-leaving radiance observations from the SeaW-
iFS, MODIS-AQUA, and MERIS ocean color missions (Maritorena & Siegel, 2005). Compared to data from 
single sensors, the merged products have approximately twice the mean global coverage and lower uncer-
tainties (Maritorena et al., 2010). We also used the weighted average (AVW) Chla product provided by the 
GlobColour project to do a comparative analysis with GSM Chla. (More information about AVW and GSM 
derived Chla are provided on http://www.globcolour.info/.) The 1° grid monthly time series SST data from 
1998 to 2017 were obtained from the NOAA Extended Reconstructed SST data set (ERSST V3b) (http://
www.esrl.noaa.gov/psd/data/gridded).

We are unaware of large-scale spatially resolved time series data on nutrients and mixed layer depth (MLD) 
that allow exploring the explicit nutrient impact on the SST-Chla associations, thus we here analyze month-
ly long-term mean MLD and SST data (monthly mean climatologies) to illustrate the SST association with 
MLD (which subsequently also may affect mixing, nutrients regimes, and thus phytoplankton). The 1° grid 
monthly mean MLD data were derived from potential temperature and obtained from the NODC (Levi-
tus) World Ocean Atlas (http://www.esrl.noaa.gov/psd/data/gridded/data.nodc.woa94.html). The 1° grid 
monthly mean SST data for the years 1971–2000 were obtained from the NOAA Optimum Interpolation 
(OI) Sea-Surface Temperature (SST) Version 2 data set (http://www.esrl.noaa.gov/psd/data/gridded/data.
noaa.oisst.v2.html).
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2.2.  Quantifying the Chla-SST Relationships and Threshold Temperature

To quantify monthly Chla-SST relationships for each ocean province, we first averaged the Chla and SST 
data per province, year, and month. Then both significant and nonsignificant linear regressions were used 
to quantify the association between interannual variability in SST and Chla for each month. Original and 
log-transformed Chla data were both used in this analysis, which provided qualitatively similar results. For 
comparison, annually averaged data were analyzed similarly.

Season-dependent warming effects on Chla were analyzed using varying-coefficient generalized additive 
models (vGAMs) (Hastie & Tibshirani, 1990), as implemented in the “mgcv” library in the R environment 
(Wood, 2006). In this analysis, the monthly resolved SST and Chla data for all 12 months and a given ocean 
province were analyzed jointly. Chla was modeled as a function of season (month), Chla anomaly of the 
previous month and temperature anomaly. Chla data were log-transformed. The predictor variables were 
centered by subtracting the monthly mean values from the observations (annotated by a “Δ” in the variable 
name). That way, the predictor variables measured the interannual anomalies around the mean seasonal 
values. The model formula was

              ij 1 j 2 j 3 j ij iji j 1logChla Month Month ΔlogChla Month ΔSSTf f f‐� (1)

Here, logChlaij is ln(Chla) for month j in year i. ΔlogChlai(j−1) is the logChla anomaly for month j − 1 in 
year i or year i − 1 for January, ΔSSTij is the SST anomaly for month j in year i. μ is an intercept; f1, f2, and 
f3 are smooth functions (natural cubic splines) of month (1, 2, ..., 12). f1 is the month-dependent intercept. 
f2 quantifies the month-dependent effect of lagged chlorophyll, which accounts for the possible temporal 
dependence in the time series. More specifically, this function gives the coefficient for a predictor effect that 
is linear for any given month but potentially variable in magnitude and sign between months. The function 
thus shows how the association between the interannual fluctuations in the predictor and response change 
across the season. The statistical significance of the term refers to a null hypothesis that the coefficient is 
zero for all months. f3 is the month-dependent effect function of temperature. εij is a normally distributed 
and independent noise term. To avoid overfitting, the degrees of freedom were restricted to maximum 11 for 
f1, which quantifies the mean seasonal pattern for each ocean province, and to maximum 4 for the f2 and f3 
terms, which explain interannual variability around this mean pattern. Preliminary analyses that allowed 
more complex shapes of f2 and f3 provided functional forms that were complicated to interpret and likely 
overfitted.

To address the relationship between baseline temperature and strength of SST effects on Chla (warming 
effects) across the global ocean, we extracted all the coefficients for the SST effect on Chla from signifi-
cant or nonsignificant linear regression between SST and Chla for every month for each ocean province. 
These regression slopes, which we here refer to as “warming effect” (mg m−3 °C−1), were plotted against 
the monthly baseline SST values. A steeper regression slope with a greater absolute value thus indicates a 
stronger (positive or negative) warming effect. For ease of interpretation, these analyses were conducted on 
original-scale Chla data, but we confirmed that results were qualitatively similar using log-transformed data 
(logChla). A corresponding analysis was also performed on annual scale data.

Regression models were used to quantify the possible relationships between the warming effect (as response 
variable) and baseline SST (predictor) on a global scale. These relationships were quantified by three meth-
ods: Generalized additive models (GAMs), piecewise linear regression (“piecewise LM”), and linear regres-
sion (“LM”) separately for temperate and for tropical and equatorial ocean provinces For the GAMs, the 
predictor effect was modeled as a natural cubic spline function with a maximum of 4 degrees of freedom. 
The threshold temperature (including the 95% confidence intervals), defined as the baseline SST where 
warming effects on Chla change from positive to negative, was extracted from each of these three models by 
root finding algorithms. To account for heterogeneity in the uncertainty of the response variable, the inverse 
of the standard errors of the warming effects was used as weights in these three models.
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2.3.  Temperature-Dependent Phytoplankton Community Growth Without Nutrient Limitation

Phytoplankton growth rate is directly influenced by temperature (Grimaud et al., 2017). We here estimated 
the temperature-growth rate relationship using growth rate and temperature data synthesized by Thomas 
et al. (2012). This global data set includes temperature-limited growth rates of major phytoplankton groups 
in the ocean, based on >5,000 growth rate measurements for >130 species. The mean growth rates in the 
data set were estimated for all strains belonging to phytoplankton species between 1980 and 2010. These 
estimates were based on monthly temperature records at their isolation location and each strain’s ther-
mal tolerance curve, and depend on the assumption that growth is limited solely by temperature (Thomas 
et al., 2012). The influence of temperature on growth rates (g) when nutrients are not limiting growth is 
commonly described by the Q10 model (e.g., Kremer et al., 2017; Sherman et al., 2016) (Equation 2)

    
0

10
0 10 10Q model

T T

g T g Q
‐

� (2)

Here, g0 is the reference growth rate (day−1) at the reference temperature T0 = 30°C, and the Q10 tempera-
ture coefficient is a factor of the change in growth rate as a consequence of increasing the temperature, T, 
by 10°C. These coefficients above were estimated from growth rate and temperature data by the nonlinear 
least-squares method. Other commonly used functions are the exponential function (Equation 3) and the 
log-linear function (Equation 4) (Eppley, 1972). 

    exp Tg T K T� (3)

     log g T a T b� (4)

Here, KT, a, and b are the temperature-dependence coefficients. These functions were simultaneously con-
sidered in this study. We determined the best model by comparing their goodness of fit (R2 and Akaike’s 
Information Criterion) to the observed data (Thomas et al., 2012). The coefficients in Equations 3 and 4 
were estimated by the least-squares method.

2.4.  Relationship Between Temperature and Nitrate

Nitrate is commonly the key limiting factor for phytoplankton growth rates in the open ocean (Moore 
et al., 2013) and high temperatures generally coincide with low nitrate concentrations in the upper water 
layers (Thomas et al., 2017). This is due to the stratification of the water column induced by temperature, 
which prevents the resuspension of nutrients from deeper waters and sediments after nutrients have been 
depleted. We here quantified the association between temperature and concentrations of nitrate using data 
from the uniformly calibrated open ocean data set, containing temperature and nutrient variables (www.
glodap.info/index.php/merged-and-adjusted-data-product/). The data sets used in this study generally 
cover the global ocean (38°S–50°N, 180°W–180°E) and were recorded from 1972 to 2012. In addition, we 
removed some abnormal data, such as high nitrate values with high temperature in coastal areas. An expo-
nential function was used because of better fit to the observed data than a linear model

     expN f T mT� (5)

Here, N is the concentration of nitrate and m is the temperature-dependent coefficient estimated by the 
least-squares method.

2.5.  Combined Direct and Indirect Effects of Temperature on Phytoplankton

Phytoplankton growth is driven by temperature and nutrients (under sufficient light conditions), and the 
nutrient limitation could be accentuated by high temperature and increased thermal stability (Thomas 
et al., 2017). We thus incorporated a functional nutrient (nitrogen) response in terms of a functional re-
sponse, represented by Michaelis-Menten kinetics, N/(N + Ks(N)) (e.g., Marinov et al., 2010), N is the ni-
trate concentration and Ks(N) is the half-saturation constant. Equations 2–4 and 5 were combined as a joint 

FENG ET AL.

10.1029/2020GB006808

4 of 13

http://www.glodap.info/index.php/merged-and-adjusted-data-product/
http://www.glodap.info/index.php/merged-and-adjusted-data-product/


Global Biogeochemical Cycles

function of direct and indirect effects of temperature on the growth rate (Marinov et al., 2010; Thomas 
et al., 2017), which is listed below

     
    



f T
T g T

f T Ks N
� (6)

Here, µ(T) is the growth rate driven by the temperature and nitrate, the function  f T  is the same as Equa-
tion 5, the function of g(T) was the best model of Equations 2–4 that was determined by their goodness of fit 
to the observed data.  Ks N  is the half-saturation constant obtained from 26 marine phytoplankton species 
from eight previous studies (Table S2), the mean of which used in the model was calculated by bootstrap 
method from these phytoplankton species.

3.  Results
The analysis revealed different SST-Chla relationships in different months. For example, in the temper-
ate North Atlantic Drift (NADR) region in the Northeast Atlantic, logChla and SST are significantly pos-
itively correlated in March (p < 0.05), under relatively low temperatures (12.5 ± 0.5°C) (Figure 1), while 
negative relationships were found in August and September (p < 0.05), with relatively high temperatures 
(17.5 ± 1.5°C). While contrasting SST-Chla relationships were found in warm and cold seasons, the annual 
logChla and SST data revealed an overall significant negative relationship in this ocean region (Figure 1). 
Linear regression analysis of SST and logChla in other ocean provinces provided similar results, with often 
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Figure 1.  Relationships between sea-surface temperature (SST) and ocean chlorophyll concentrations (log-
transformed) with mean monthly and annual data from the North Atlantic Drift (NADR) province. Black lines 
represent linear regression relationships. The proportions of variance explained (R2) and p-values are shown for 
significant relationships (p < 0.05).
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contrasting SST-Chla relationships in different seasons (Figure S2). Note that the p-values for individual 
provinces and months should be interpreted with caution due to the large number of tests involved. Across 
all tests, 113 among 390 p-values were <0.05, which is four times higher than the expected number to arise 
just by chance.

We then used seasonal VGAMs (Hastie & Tibshirani, 1990) to test if there were significant seasonally vary-
ing SST-Chl relationships for the 30 ocean provinces, and found significant season-dependent SST effects in 
24 of the 30 ocean provinces (Figure 2 and Table S3). In temperate ocean provinces, positive relationships 
(denoted by a positive coefficient) were generally found in the cold season, while negative relationships 
were found in the warm season (Figure 2a). In contrast, consistently negative relations were generally found 
in tropical oceans (Figure 2b).

Both the monthly and annual SST-Chla regression analyses showed that the warming effect on Chla tended 
to be positive at low baseline temperatures and negative at relatively high baseline temperatures (points in 
Figure 3). The magnitude of the warming effect estimated by monthly data (Figures 3a–3c) decreased with 
a rate about −0.006 ± 0.001 mg m−3 °C−1°C−1 (Table S4). Here, the rate means the slope of the regression 
models showing how warming effects vary with baseline SST. The magnitude of the warming effect estimat-
ed by annual scale analysis displayed a similar pattern (Figures 3e–3g). The conclusion that the SST effects 
depend on baseline temperature (Figure 3) was also supported by analyses where the strengths of SST-Chla 
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Figure 2.  The seasonally variable coefficient for the linear effect of temperature on phytoplankton chlorophyll in temperate oceans (a) and tropical oceans (b). 
Each panel represents one ocean province (see details in Figure S2). The black lines with gray shading represent the seasonally variable coefficient with 95% 
confidence intervals. The seasonally variable coefficient represents how much logChla is expected to deviate from the long-term mean for that month for a 1°C 
anomaly in SST in that month. Temperature effects are significantly different from zero for months for which the confidence intervals do not overlap with the 
red, dotted zero-effect lines. Baseline SST (right axis, average monthly SST) are plotted with points and broken lines.
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Figure 3.  Decreasing warming effect on chlorophyll concentrations with increasing baseline sea-surface temperature. 
Each point represents the estimated warming effect, i.e., the slope of a linear regression between interannual variability 
in SST and Chla, in an ocean province for one calendar month (a)–(c) or for the whole year (d)–(f). Three different 
regression models describe the effect of baseline (i.e., long-term average) SST on the estimated warming effect. 
Nonlinear effect estimated with GAM (p < 0.001) (a, d, dotted black line, with gray shading representing 95% CI). 
Piecewise linear effect estimated using a segmented function (p < 0.001) (b, e, dotted black line, with gray shading 
representing 95% CI). Linear relationships estimated separately for temperate and tropical and equatorial ocean 
provinces (c, f, dotted blue lines, with dotted black lines representing 95% CI). Model results are listed in Table S3. 
Threshold temperatures identified with monthly data were (a) 13.6 ± 0.7°C; (b) 14.3 ± 0.5°C; (c) 14.6  0.6°C, with 
annual data, (d) 14.0 ± 0.7°C; (e) 14.3 ± 1.3°C; (f) 13.7  1.1°C. More details are presented in Table S5.
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relationships were calculated as Pearson correlation coefficients (Figure S3), and where an alternative Chla 
data set was used (where data from different satellites were merged using AVW instead of GSM model as in 
the main analysis) (Figure S4).

GAM analyses for all ocean provinces combined suggested that the threshold temperature was near 14°C 
(13.6 ± 0.7°C for monthly data, Figure 3a and Table S5). Both piecewise linear and linear regression analy-
sis quantified similar threshold temperatures (14.3 ± 0.5°C, Figure 3b and 14.6  0.6°C, Figure 3c). For the 
annual data, the threshold temperatures estimated by all three models were also nearly 14°C (14.0 ± 0.7°C, 
Figure 3d; 14.3 ± 1.3°C, Figure 3e; 13.4  1.1°C, Figure 3f), which were slightly lower than the value esti-
mated by seasonal data (Table S5).

The mechanisms involved in the above SST-Chla relationship were supported by model analysis with inde-
pendent field and experimental growth rate data. We investigated the direct effect of SST on phytoplankton 
growth rate using solely temperature-limited phytoplankton growth rates data from the Thomas et al. data-
base (Thomas et al., 2012). As expected, a generally positive relationship was found between SST and phy-
toplankton growth rate under nonnutrient-limited conditions (Figure 4a). The Q10 model showed a better 
fit to the observed data with the Q10 = 1.592 and g0 = 1.0625 (day−1) than the other two models (Q10 model: 
R2 = 0.382; exponential function: R2 = 0.145; linear function: R2 = 0.158; Figure S5). For the indirect effect 
of SST on phytoplankton, we found a negative relationship between the nitrate concentration and SST 
(Figure 4b). This negative relationship was better described by an exponentially decreasing function with 
c = 38.73, m = −0.16 (Figure 4b) than by a log-linear model. Last, combining the direct and indirect effects 
of SST on the phytoplankton community growth rate together (Equation 6 in Section 2), we found that the 
growth-temperature relationship is a distinctive threshold temperature above which increasing SST has 
negative effect on growth rate under nutrient limitation (red lines in Figure 4c). This pattern is true not only 
for different regions but also for different seasons. The histogram of the estimated threshold temperature 
values considering the variability of half-saturation constants (Ks(N) in Table S2) and the parameters in 
Equations 2 and 5 (Table S6) is shown in Figure 4d. The threshold temperature values were quantified at 
14.1 ± 6.9°C (Figure 4d).

4.  Discussion
By analyzing 20 years of ocean chlorophyll concentration and sea-surface temperature data, we estimated 
the strengths of the SST-Chla relationships under different temperature regimes, and quantified the thresh-
old temperature at which the temperature effects shift form positive to negative. Our analyses confirm 
other studies suggesting that future climate warming will decrease phytoplankton chlorophyll in surface 
waters in the typically nutrient-limited tropical regions (low latitude and midlatitude), while promoting 
phytoplankton chlorophyll at higher latitudes (Chust et al., 2014). Furthermore, we found that the warming 
effects on chlorophyll concentration were more positive in areas, and seasons, where sea-surface temper-
atures generally were lower (Figure 3). Specifically, with increasing SST from 3 to 30°C, the magnitude of 
the warming effect decreased from 0.08 ± 0.02 mg m−3 °C−1 at the lowest temperatures to a minimum of 
−0.02 ± 0.015 mg m−3 °C−1at around 16°C with a rate of about −0.007 ± 0.001 mg m−3 °C−1°C−1, and then 
remained constant at −0.02 ± 0.005 mg m−3 °C−1 above that temperature. A corresponding regional pattern 
has been described in other studies (Behrenfeld et al., 2006; Boyce et al., 2010; Feng et al., 2015), but to our 
knowledge, not quantitatively linked to the pattern in baseline temperature as well as to seasonal changes 
in temperature effects.

This spatial-temporal pattern in the SST-Chla relationship could be due to a combination of direct physi-
ological impacts (e.g., the ratio of respiration to C-fixation increases with temperature, reducing net C-ac-
quisition) and indirect effects related to nutrient scarcity with shallower mixing depth. Meta-analysis of 
various phytoplankton groups over a wide latitudinal gradient has shown that the optimum temperature 
for growth generally exceeds the mean ambient temperature by several degrees (Thomas et al., 2012). This 
implies that an above-average temperature (of up to around +5°C compared to the local mean) will al-
ways promote phytoplankton growth given that other factors such as light and nutrients are not limiting. 
However, ocean warming could also increase water column stability, which will inhibit vertical mixing 
and consequently the supply of nutrients to the mixed layer (Dave & Lozier, 2013). Monthly MLD and SST 
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clearly showed that MLD generally decreased with elevated SST (Figures S7 and S8), supporting that nu-
trient limitation and photoacclimation could be the ultimate cause of the negative temperature effects on 
phytoplankton chlorophyll in warm areas.

The abovementioned mechanism involved in this SST-Chla relationship was also clearly supported by the 
regression and GAM analysis with independent field and experimental data. Temperature exerts a large 
effect on the phytoplankton community growth rates (Eppley, 1972; Thomas et al., 2017). The direct effect 
of SST on the phytoplankton community growth rate generally shows an exponential positive relation-
ship (Sherman et al., 2016; Thomas et al., 2012) as shown in Figure 4a. Nitrate concentration also plays a 
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Figure 4.  The relationship between temperature and phytoplankton community growth rate. (a) Observed 
phytoplankton community growth rate across a gradient of ocean temperature. The blue line is the regression line with 
95% confidence intervals (blue region). The regression line shown is for the best model, which displays the growth-
temperature relationship with the best fit to the Q10 model (R2 = 0.38, p < 0.0001). (b) Observed nitrate concentration 
is plotted vs. sea-surface temperature. The blue line and 95% confidence bands (blue) display the modeled nitrate-
temperature relationship with the best fit to the exponential model (R2 = 0.86, p < 0.0001). (c) Phytoplankton 
community growth rate with and without nitrate limitation is plotted vs. the temperature. The blue line shown is the 
growth-temperature relation modeled by Q10 equation without nitrate limitation. The solid red line with dotted lines 
representing 95% CI display the effect of temperature on the growth with nitrate limitation under the average value 
of Ks(N). The black dotted lines represent the effect of temperature on the growth with the maximum Ks(N) (8.6) 
and minimum Ks(N) (0.1), respectively. (d) Histogram of the estimated threshold temperature values considering the 
uncertainty of the parameters in Equations 2 and 5 and Table S2.
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significant role in the phytoplankton growth rates (Moore et al., 2013). We represented the indirect effect of 
SST through a temperature effect on nutrient limitation. Nitrate concentration exponentially declines with 
increasing temperature and maintains a low level when approximately above 15°C (Figure 4b). Marinov 
et al. (2010) proposed the existence of a critical nutrient threshold corresponding to 45°S and 45°N in the 
open sea. In the 45°S–45°N region (tropical and equatorial ocean provinces), high temperature leads to low 
nitrate concentration due to temperature-induced stratification of the water column (Marinov et al., 2010). 
The combined effects of SST and nitrate limitation induced by high temperature are modeled with a mul-
tiplicative term (Equation 6). The results indicated that the phytoplankton growth rates begin to decline 
at around 14°C under the combined effect (Figure 4c), which is consistent with the observed satellite data 
analysis.

The threshold effect of temperature on chlorophyll a was affected by the half-saturation constant Ks(N) 
(Figure 4c, Figure S6). We noticed that the standard deviation of the threshold temperature is about 7°C 
(Figure 4d), which suggested that the range of possible threshold temperature values where nitrogen limita-
tion causes growth rates to decline is broad [7.18°C, 21.06°C]. This variability in threshold temperature like-
ly reflects differences in phytoplankton community composition, as well as their physiological status. While 
latitudinal patterns in the thermal traits of phytoplankton have been observed (Chakraborty et al., 2020; 
Thomas et  al.,  2012), far less is known about the distribution of Ks(N) values within communities and 
across latitudes. For example, small phytoplankton with lower Ks(N) are influenced strongly by nutrient 
limitation in high temperature conditions, whereas diatoms with higher Ks(N) are also limited by nutrients 
in low temperature conditions. Our analysis was based on the mean of half-saturation constants Ks(N) for 
26 disparate marine species (Table S2), which is only a small portion of the species included in the growth 
rate vs. temperature analysis (Figure 4a). While the predictions should be read with some caution due to the 
variability of Ks(N) across species and communities, the detected threshold in chlorophyll a to temperature 
(e.g., Figure 3) may arise due to an intensification of nitrogen limitation, supported by our modeling work 
with the threshold temperature value about 14°C.

These analyses suggest that a possible net balance between positive and negative effects was reached at 
around 14°C, which is consistent with observed unimodal temperature responses in many temperate ocean 
provinces (Feng et al., 2015). Similarly, Behrenfeld et al. (2006) suggested a threshold of annual mean SST 
of around 15°C separating permanently stratified tropical regions with predominantly negative SST-Chla 
associations from temperate regions with indications of positive associations. By showing that such a global 
pattern is statistically significant when data for additional years are available and that it extends to seasonal 
changes in SST-Chla associations, we can have increased confidence in the robustness of the association.

Many studies addressing potential effects of climate change on ocean phytoplankton have been performed 
on an annual basis (Chavez et al., 2011; Lewandowska et al., 2014), which may fail to detect biologically im-
portant season-dependent responses (Boersma et al., 2016). Interestingly, we found that the global pattern 
in the association between baseline SST and the sign and strength of warming effects on Chla is reproduced 
at a seasonal scale (Figure 3). For regions with large seasonality in temperature, it follows that warming 
is likely to influence chlorophyll a differently in different seasons. For example, for NADR (Figure S2) we 
found that a relatively weak negative Chla-SST association at an annual scale was caused by strongly neg-
ative associations in summer, which were partly, but not fully, compensated by positive associations in 
winter. Significant season-dependent SST effects were detected in 24 of the 30 ocean provinces (Figure 2), 
suggesting globally wide-spread SST effects on phytoplankton phenology. For food-web dynamics, these 
seasonal changes may be more important than the interannual fluctuations.

Chlorophyll a concentration is the most wide-spread proxy for estimating large-scale phytoplankton bi-
omass patterns through remote sensing (Kahru et  al.,  2014; Moses et  al.,  2009; Sipelgas et  al.,  2006). 
Chla:C-ratio of phytoplankton may, however, be modified by variables such as nutrient concentration and 
light level (Behrenfeld et al., 2016; Toseland et al., 2013). Thus, increased light exposure and spectral chang-
es related to optical properties in the water column could affect photoacclimation and mass-specific chloro-
phyll (Falkowski & LaRoche, 1991). SST may also, as discussed above, covary with nutrient concentration 
through associations with stratification and mixing regimes. Adding to this, there will also be some varia-
tions in Chla:C-ratio related to phytoplankton community composition (Geider & La Roche, 2002), which 
may vary both spatially, seasonally, and also interannually (Alvain et al., 2008; Dandonneau et al., 2004). 
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Species adapted to fluctuating light environments seem to have narrower ranges of Chla:C compared to spe-
cies adapted to more stable light environments (Talmy et al., 2013). More work is needed to fully account for 
the effects of varied nutrient stoichiometry and photoacclimation on the relationship between C and Chla 
(or other biomass proxies). Despite these potential modifications, Chla is a widely used and good proxy of 
phytoplankton biomass in open waters, and directly related to photosynthesis (Boyce et al., 2010).

Nevertheless, we acknowledge some limitations of our study. First, SST has a positive effect on micro-
zooplankton grazing rate and indirectly influences the phytoplankton growth rate (Sherman et al., 2016), 
which was not considered in the model analysis. In addition, light and iron are also important factors limit-
ing growth in phytoplankton (Edwards et al., 2016; Moore et al., 2013). Dispersal may also affect community 
composition and may reflect both current conditions and species sorting due to historical exposure to abiot-
ic conditions (Doblin & van Sebille, 2016). Finally, one important covariate to consider when studying tem-
perature effects is cell size (Kremer et al., 2017), which affects both growth rate and nutrient uptake. Com-
munities composed of large vs. small cells will likely possess differences in Ks(N) and then also affect the 
estimated threshold temperature. Understanding the combined effect of multiple factors on phytoplankton 
growth is a challenging goal that is nevertheless necessary in order to accurately forecast the phytoplankton 
dynamics under ocean warming expectations.

5.  Conclusions
By analyzing 20 years of ocean chlorophyll a concentration and SST data with GAM, we found that signs 
and magnitudes of warming effects on Chla were consistently associated with the region-specific and sea-
son-specific long-term average temperature. The results showed that a shift between positive and negative 
effects of temperature on Chla was found around 14°C. These findings suggest that the ocean warming 
effects on Chla are consistently associated with baseline temperature, both with regard to seasonal effects 
within regions and regional effects between high and low latitude provinces. We do not claim a universal 
threshold at 14°C, clearly this will depend on phytoplankton community composition, nutrient regimes 
and nutrient regeneration, thermal stratification, and other factors. Still a temperature threshold around 
the 14°C isotherms is in support of previous studies, and can be used as a first approximation to separate 
areas and seasons where warming has opposite signed effects. Our findings also provide a new method to 
explain complex, nonlinear temperature effects: As global warming continues, we expect that the areas and 
months with temperatures <14°C, in which warming appears to be positive for ocean Chla, will decrease.

Data Availability Statement
We thank the GlobColour project, NASA Ocean Color Processing Group and NOAA NODC for satellite 
data provided at their website (http://www.globcolour.info/; http://www.esrl.noaa.gov/psd/data/gridded; 
http://www.esrl.noaa.gov/psd/data/gridded/data.nodc.woa94.html). We also thank Bjerknes Climate Data 
Centre and the ICOS Ocean Thematic Centre who hosted the GLODAP website (https://www.glodap.info/).

References
Alvain, S., Moulin, C., Dandonneau, Y., & Loisel, H. (2008). Seasonal distribution and succession of dominant phytoplankton groups in the 

global ocean: A satellite view. Global Biogeochemical Cycles, 22, GB3001. https://doi.org/10.1029/2007GB003154
Beaugrand, G., Conversi, A., Atkinson, A., Cloern, J., Chiba, S., Fonda-Umani, S., et al. (2019). Prediction of unprecedented biological 

shifts in the global ocean. Nature Climate Change, 9, 237–243. https://doi.org/10.1038/s41558-019-0420-1
Beaugrand, G., Edwards, M., & Legendre, L. (2010). Marine biodiversity, ecosystem functioning, and carbon cycles. Proceedings of the 

National Academy of Sciences of the United States of America, 107(22), 10120–10124. https://doi.org/10.1073/pnas.0913855107
Behrenfeld, M. J., O’Malley, R. T., Boss, E. S., Westberry, T. K., Graff, J. R., Halsey, K. H., et al. (2016). Revaluating ocean warming impacts 

on global phytoplankton. Nature Climate Change, 6(3), 323–330. https://doi.org/10.1038/nclimate2838
Behrenfeld, M. J., O’Malley, R. T., Siegel, D. A., McClain, C. R., Sarmiento, J. L., Feldman, G. C., et al. (2006). Climate-driven trends in 

contemporary ocean productivity. Nature, 444, 752–755. https://doi.org/10.1038/nature05317
Boersma, M., Gruner, N., Signorelli, N. T., Gonzalez, P. E. M., Peck, M. A., & Wiltshire, K. H. (2016). Projecting effects of climate change 

on marine systems: Is the mean all that matters? Proceedings of the Royal Society B: Biological Sciences, 283(1823), 20152274. https://doi.
org/10.1098/rspb.2015.2274

Boyce, D. G., Dowd, M., Lewis, M. R., & Worm, B. (2014). Estimating global chlorophyll changes over the past century. Progress in Ocean-
ography, 122, 163–173. https://doi.org/10.1016/j.pocean.2014.01.004

Boyce, D. G., Lewis, M. R., & Worm, B. (2010). Global phytoplankton decline over the past century. Nature, 466(7306), 591–596. 
https://doi.org/10.1038/nature09268

FENG ET AL.

10.1029/2020GB006808

11 of 13

Acknowledgments
This work was supported by the 
National Key R&D Program of China 
(2018YFC1406403) and the Nord-
forsk-funded GreenMAR project.

http://www.globcolour.info/
http://www.esrl.noaa.gov/psd/data/gridded
http://www.esrl.noaa.gov/psd/data/gridded/data.nodc.woa94.html
https://www.glodap.info/
https://doi.org/10.1029/2007GB003154
https://doi.org/10.1038/s41558-019-0420-1
https://doi.org/10.1073/pnas.0913855107
https://doi.org/10.1038/nclimate2838
https://doi.org/10.1038/nature05317
https://doi.org/10.1098/rspb.2015.2274
https://doi.org/10.1098/rspb.2015.2274
https://doi.org/10.1016/j.pocean.2014.01.004
https://doi.org/10.1038/nature09268


Global Biogeochemical Cycles

Cermeño, P., Dutkiewicz, S., Harris, R. P., Follows, M., Schofield, O., & Falkowski, P. G. (2008). The role of nutricline depth in regulating 
the ocean carbon cycle. Proceedings of the National Academy of Sciences of the United States of America, 105(51), 20344–20349. https://
doi.org/10.1073/pnas.0811302106

Chakraborty, S., Cadier, M., Visser, A. W., Bruggeman, J., & Andersen, K. H. (2020). Latitudinal variation in plankton traits and ecosystem 
function. Global Biogeochemical Cycles, 34, e2020GB006564. https://doi.org/10.1029/2020GB006564

Chassot, E., Bonhommeau, S., Dulvy, N. K., Mélin, F., Watson, R., Gascuel, D., & Le Pape, O. (2010). Global marine primary production 
constrains fisheries catches. Ecology Letters, 13(4), 495–505. https://doi.org/10.1111/j.1461-0248.2010.01443.x

Chavez, F. P., Messie, M., & Pennington, J. T. (2011). Marine primary production in relation to climate variability and change. Annual 
Review of Marine Science, 3(3), 227–260. https://doi.org/10.1146/annurev.marine.010908.163917

Cheng, L., Abraham, J., Hausfather, Z., & Trenberth, K. E. (2019). How fast are the oceans warming? Science, 363(6423), 128–129. https://
doi.org/10.1126/science.aav7619

Chust, G., Allen, J. I., Bopp, L., Schrum, C., Holt, J., Tsiaras, K., et al. (2014). Biomass changes and trophic amplification of plankton in a 
warmer ocean. Global Change Biology, 20(7), 2124–2139. https://doi.org/10.1111/gcb.12562

Conroy, J., Restrepo, A., Overpeck, J., Steinitz-Kannan, M., Cole, J. E., Bush, M. B., & Colinvaux, P. A. (2009). Unprecedented recent 
warming of surface temperatures in the eastern tropical Pacific Ocean. Nature Geoscience, 2, 46–50. https://doi.org/10.1038/ngeo390

Dandonneau, Y., Deschamps, P. Y., Nicolas, J. M., Loisel, H., Blanchot, J., Montel, Y., et al. (2004). Seasonal and interannual variability 
of ocean color and composition of phytoplankton communities in the North Atlantic, equatorial Pacific and South Pacific. Deep-Sea 
Research Part II-Topical Studies in Oceanography, 51(1–3), 303–318. https://doi.org/10.1016/j.dsr2.2003.07.018

Dave, A. C., & Lozier, M. S. (2013). Examining the global record of interannual variability in stratification and marine productivity in 
the low-latitude and mid-latitude ocean. Journal of Geophysical Research: Oceans, 118, 3114–3127. https://doi.org/10.1002/jgrc.20224

Doblin, M. A., & van Sebille, E. (2016). Drift in ocean currents impacts intergenerational microbial exposure to temperature. Proceedings of 
the National Academy of Sciences of the United States of America, 113(20), 5700–5705. https://doi.org/10.1073/pnas.1521093113

Doney, S. C. (2006). Plankton in a warmer world. Nature, 444, 695–696. https://doi.org/10.1038/444695a
Edwards, K. F., Thomas, M. K., Klausmeier, C. A., & Litchman, E. (2016). Phytoplankton growth and the interaction of light and tem-

perature: A synthesis at the species and community level. Limnology and Oceanography, 61(4), 1232–1244. https://doi.org/10.1002/
lno.10282

Eppley, R. W. (1972). Temperature and phytoplankton growth in the sea. Fishery Bulletin, 70(4), 1063–1085.
Falkowski, P. G., & LaRoche, J. (1991). Acclimation to spectral irradiance in algae. Journal of Phycology, 27(1), 8–14. https://doi.

org/10.1111/j.0022-3646.1991.00008.x
Feng, J., Durant, J. M., Stige, L. C., Hessen, D. O., Hjermann, D. Ø., Zhu, L., et  al. (2015). Contrasting correlation patterns be-

tween environmental factors and chlorophyll levels in the global ocean. Global Biogeochemical Cycles, 29, 2095–2107. https://doi.
org/10.1002/2015GB005216

Field, C. B., Behrenfeld, M. J., Randerson, J. T., & Falkowski, P. (1998). Primary production of the biosphere: Integrating terrestrial and 
oceanic components. Science, 281(5374), 237–240. https://doi.org/10.1126/science.281.5374.237

Geider, R., & La Roche, J. (2002). Redfield revisited: Variability of C:N:P in marine microalgae and its biochemical basis. European Journal 
of Phycology, 37(1), 1–17. https://doi.org/10.1017/s0967026201003456

Giovannoni, S. J., & Vergin, K. L. (2012). Seasonality in ocean microbial communities. Science, 335(6069), 671–676. https://doi.org/10.1126/
science.1198078

Grimaud, G. M., Mairet, F., Sciandra, O., & Bernard, O. (2017). Modeling the temperature effect on the specific growth rate of phytoplank-
ton: A review. Reviews in Environmental Science and Biotechnology, 16(4), 625–645. https://doi.org/10.1007/s11157-017-9443-0

Hastie, T., & Tibshirani, R. (1990). Generalized additive models. In Monographs on statistics and applied probability (Vol. 43). London: 
Chapman & Hall.

Hofmann, M., Worm, B., Rahmstorf, S., & Schellnhuber, H. J. (2011). Declining ocean chlorophyll under unabated anthropogenic CO2 
emissions. Environmental Research Letters, 6(3), 034035. https://doi.org/10.1088/1748-9326/6/3/034035

Irwin, A. J., & Finkel, Z. V. (2008). Mining a sea of data: Deducing the environmental controls of ocean chlorophyll. PLoS ONE, 3(11), 
e3836. https://doi.org/10.1371/journal.pone.0003836

Kahru, M., Kudela, R., Anderson, C., Manzano-Sarabia, M., & Mitchell, B. (2014). Evaluation of satellite retrievals of ocean chlorophyll-a 
in the California Current. Remote Sensing, 6(9), 8524–8540. https://doi.org/10.3390/rs6098524

Kremer, C. T., Thomas, M. K., & Litchman, E. (2017). Temperature- and size-scaling of phytoplankton population growth rates: Recon-
ciling the Eppley curve and the metabolic theory of ecology. Limnology and Oceanography, 62, 1658–1670. https://doi.org/10.1002/
lno.10523

Lewandowska, A. M., Boyce, D. G., Hofmann, M., Matthiessen, B., Sommer, U., & Worm, B. (2014). Effects of sea surface warming on 
marine plankton. Ecology Letters, 17(5), 614–623. https://doi.org/10.1111/ele.12265

Llope, M., Licandro, P., Chan, K.-S., & Stenseth, N. C. (2012). Spatial variability of the plankton trophic interaction in the North Sea: A new 
feature after the early 1970s. Global Change Biology, 18(1), 106–117. https://doi.org/10.1111/j.1365-2486.2011.02492.x

Longhurst, A. R. (2010). Ecological geography of the sea. Cambridge, MA: Academic Press.
Marinov, I., Doney, S. C., & Lima, I. D. (2010). Response of ocean phytoplankton community structure to climate change over the 21st centu-

ry: Partitioning the effects of nutrients, temperature and light. Biogeosciences, 7(12), 3941–3959. https://doi.org/10.5194/bg-7-3941-2010
Maritorena, S., d'Andon, O. H. F., Mangin, A., & Siegel, D. A. (2010). Merged satellite ocean color data products using a bio-optical model: 

Characteristics, benefits and issues. Remote Sensing of Environment, 114(8), 1791–1804. https://doi.org/10.1016/j.rse.2010.04.002
Maritorena, S., & Siegel, D. A. (2005). Consistent merging of satellite ocean color data sets using a bio-optical model. Remote Sensing of 

Environment, 94(4), 429–440. https://doi.org/10.1016/j.rse.2004.08.014
McClain, C. R. (2009). A decade of satellite ocean color observations. Annual Review of Marine Science, 1, 19–42. https://doi.org/10.1146/

annurev.marine.010908.163650
Moore, C. M., Mills, M. M., Arrigo, K. R., Berman-Frank, I., Bopp, L., Boyd, P. W., et al. (2013). Processes and patterns of oceanic nutrient 

limitation. Nature Geoscience, 6, 701–710. https://doi.org/10.1038/ngeo1765
Moses, W. J., Gitelson, A. A., Berdnikov, S., & Povazhnyy, V. (2009). Estimation of chlorophyll-a concentration in case II waters using MODIS 

and MERIS data-successes and challenges. Environmental Research Letters, 4(4), 045005. https://doi.org/10.1088/1748-9326/4/4/045005
O'Connor, M. I., Piehler, M. F., Leech, D. M., Anton, A., & Bruno, J. F. (2009). Warming and resource availability shift food web structure 

and metabolism. PLoS Biology, 7(8), e1000178. https://doi.org/10.1371/journal.pbio.1000178

FENG ET AL.

10.1029/2020GB006808

12 of 13

https://doi.org/10.1073/pnas.0811302106
https://doi.org/10.1073/pnas.0811302106
https://doi.org/10.1029/2020GB006564
https://doi.org/10.1111/j.1461-0248.2010.01443.x
https://doi.org/10.1146/annurev.marine.010908.163917
https://doi.org/10.1126/science.aav7619
https://doi.org/10.1126/science.aav7619
https://doi.org/10.1111/gcb.12562
https://doi.org/10.1038/ngeo390
https://doi.org/10.1016/j.dsr2.2003.07.018
https://doi.org/10.1002/jgrc.20224
https://doi.org/10.1073/pnas.1521093113
https://doi.org/10.1038/444695a
https://doi.org/10.1002/lno.10282
https://doi.org/10.1002/lno.10282
https://doi.org/10.1111/j.0022-3646.1991.00008.x
https://doi.org/10.1111/j.0022-3646.1991.00008.x
https://doi.org/10.1002/2015GB005216
https://doi.org/10.1002/2015GB005216
https://doi.org/10.1126/science.281.5374.237
https://doi.org/10.1017/s0967026201003456
https://doi.org/10.1126/science.1198078
https://doi.org/10.1126/science.1198078
https://doi.org/10.1007/s11157-017-9443-0
https://doi.org/10.1088/1748-9326/6/3/034035
https://doi.org/10.1371/journal.pone.0003836
https://doi.org/10.3390/rs6098524
https://doi.org/10.1002/lno.10523
https://doi.org/10.1002/lno.10523
https://doi.org/10.1111/ele.12265
https://doi.org/10.1111/j.1365-2486.2011.02492.x
https://doi.org/10.5194/bg-7-3941-2010
https://doi.org/10.1016/j.rse.2010.04.002
https://doi.org/10.1016/j.rse.2004.08.014
https://doi.org/10.1146/annurev.marine.010908.163650
https://doi.org/10.1146/annurev.marine.010908.163650
https://doi.org/10.1038/ngeo1765
https://doi.org/10.1088/1748-9326/4/4/045005
https://doi.org/10.1371/journal.pbio.1000178


Global Biogeochemical Cycles

Park, J.-Y., Kug, J.-S., Bader, J., Rolph, R., & Kwon, M. (2015). Amplified Arctic warming by phytoplankton under greenhouse warm-
ing. Proceedings of the National Academy of Sciences of the United States of America, 112(19), 5921–5926. https://doi.org/10.1073/
pnas.1416884112

Racault, M.-F., Le Quéré, C., Buitenhuis, E., Sathyendranath, S., & Platt, T. (2012). Phytoplankton phenology in the global ocean. Ecological 
Indicators, 14(1), 152–163. https://doi.org/10.1016/j.ecolind.2011.07.010

Regaudie-De-Gioux, A., & Duarte, C. M. (2012). Temperature dependence of planktonic metabolism in the ocean. Global Biogeochemical 
Cycles, 26, GB1015. https://doi.org/10.1029/2010GB003907

Roxy, M. K., Modi, A., Murtugudde, R., Valsala, V., Panickal, S., Prasanna Kumar, S., et  al. (2016). A reduction in marine prima-
ry productivity driven by rapid warming over the tropical Indian Ocean. Geophysical Research Letters, 43, 826–833. https://doi.
org/10.1002/2015GL066979

Sherman, E., Moore, J. K., Primeau, F., & Tanouye, D. (2016). Temperature influence on phytoplankton community growth rates. Global 
Biogeochemical Cycles, 30, 550–559. https://doi.org/10.1002/2015GB005272

Sipelgas, L., Raudsepp, U., & Kõuts, T. (2006). Operational monitoring of suspended matter distribution using MODIS images and numer-
ical modelling. Advances in Space Research, 38(10), 2182–2188. https://doi.org/10.1016/j.asr.2006.03.011

Talmy, D., Blackford, J., Hardman-Mountford, N. J., Dumbrell, A. J., & Geider, R. J. (2013). An optimality model of photoadaptation in 
contrasting aquatic light regimes. Limnology and Oceanography, 58(5), 1802–1818. https://doi.org/10.4319/lo.2013.58.5.1802

Taucher, J., & Oschlies, A. (2011). Can we predict the direction of marine primary production change under global warming? Geophysical 
Research Letters, 38, L02603. https://doi.org/10.1029/2010GL045934

Thomas, M. K., Aranguren-Gassis, M., Kremer, C. T., Gould, M. R., Anderson, K., Klausmeier, C. A., & Litchman, E. (2017). Tempera-
ture-nutrient interactions exacerbate sensitivity to warming in phytoplankton. Global Change Biology, 23(8), 3269–3280. https://doi.
org/10.1111/gcb.13641

Thomas, M. K., Kremer, C. T., Klausmeier, C. A., & Litchman, E. (2012). A global pattern of thermal adaptation in marine phytoplankton. 
Science, 338(6110), 1085–1088. https://doi.org/10.1126/science.1224836

Toseland, A., Daines, S. J., Clark, J. R., Kirkham, A., Strauss, J., Uhlig, C., et al. (2013). The impact of temperature on marine phytoplankton 
resource allocation and metabolism. Nature Climate Change, 3(11), 979–984. https://doi.org/10.1038/nclimate1989

Wood, S. N. (2006). Generalized additive models: An introduction with R. Chapman &Hall/CRC. https://doi.org/10.1201/9781420010404

FENG ET AL.

10.1029/2020GB006808

13 of 13

https://doi.org/10.1073/pnas.1416884112
https://doi.org/10.1073/pnas.1416884112
https://doi.org/10.1016/j.ecolind.2011.07.010
https://doi.org/10.1029/2010GB003907
https://doi.org/10.1002/2015GL066979
https://doi.org/10.1002/2015GL066979
https://doi.org/10.1002/2015GB005272
https://doi.org/10.1016/j.asr.2006.03.011
https://doi.org/10.4319/lo.2013.58.5.1802
https://doi.org/10.1029/2010GL045934
https://doi.org/10.1111/gcb.13641
https://doi.org/10.1111/gcb.13641
https://doi.org/10.1126/science.1224836
https://doi.org/10.1038/nclimate1989
https://doi.org/10.1201/9781420010404

	A Threshold Sea-Surface Temperature at 14°C for Phytoplankton Nonlinear Responses to Ocean Warming
	Abstract
	1. Introduction
	2. Materials and Methods
	2.1. Research Region and Data
	2.2. Quantifying the Chla-SST Relationships and Threshold Temperature
	2.3. Temperature-Dependent Phytoplankton Community Growth Without Nutrient Limitation
	2.4. Relationship Between Temperature and Nitrate
	2.5. Combined Direct and Indirect Effects of Temperature on Phytoplankton

	3. Results
	4. Discussion
	5. Conclusions
	Data Availability Statement
	References


