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Abstract
In standardized testing, equating is used to ensure comparability of test scores across multiple test
administrations. One equipercentile observed-score equating method is kernel equating, where
an essential step is to obtain continuous approximations to the discrete score distributions by
applying a kernel with a smoothing bandwidth parameter. When estimating the bandwidth,
additional variability is introduced which is currently not accounted for when calculating the
standard errors of equating. This poses a threat to the accuracy of the standard errors of equating.
In this study, the asymptotic variance of the bandwidth parameter estimator is derived and a
modified method for calculating the standard error of equating that accounts for the bandwidth
estimation variability is introduced for the equivalent groups design. A simulation study is used to
verify the derivations and confirm the accuracy of the modified method across several sample
sizes and test lengths as compared to the existing method and the Monte Carlo standard error of
equating estimates. The results show that the modified standard errors of equating are accurate
under the considered conditions. Furthermore, the modified and the existing methods produce
similar results which suggest that the bandwidth variability impact on the standard error of
equating is minimal.

Keywords
achievement testing, classical test theory, equating, item response theory, standard errors

Standardized testing is commonly used for assessing individual achievement and its results greatly
influence high-stakes decisions ranging from university admissions to various industry certifi-
cations. Standardized testing generally requires alternate test forms to be administered on multiple
occasions. As a consequence, the tests often differ in difficulty from one administration to another,
which poses a challenge with respect to comparability and fairness of the resulting test scores. In
order to address this challenge, a statistical procedure known as equating is employed with the
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paramount goal of adjusting the scores on the test forms so that they yield interchangeable results
(Kolen & Brennan, 2014).

Observed-score equating is one of the fundamental methods used in test equating. Rooted in
classical test theory, it is concerned with establishing the equivalence of the observed scores on
two test forms and includes both linear and equipercentile equating functions (von Davier, 2011).
In this study, we focus on an equipercentile observed-score equating method called kernel
equating, which was initially introduced by Holland and Thayer (1989) and further developed by
von Davier et al. (2004).

The conceptual framework of kernel equating follows that of equipercentile observed-score
equating and posits a series of steps to obtain the equated scores: (1) pre-smoothing of the data to
reduce sampling variability, (2) obtaining discrete score probability distributions, (3) obtaining
continuous approximations to the discrete score distributions, (4) calculating the equating
function, and (5) calculating the standard errors of equating (SEEs) (von Davier, 2011; von Davier
et al., 2004). A feature that distinguishes kernel equating from other equipercentile methods is that
the continuous approximations of the score probability distributions are achieved through kernels
that utilize bandwidth parameters. The bandwidths allow the density functions to be as smooth as
possible while retaining the properties of the original distributions. Estimating such parameters,
however, introduces additional sampling variability. This variability is typically not accounted for
when calculating the standard errors of kernel equating, and therefore constitutes a threat to their
accuracy (Holland et al., 1989; von Davier et al., 2004).

Accurate estimation of the SEE is integral to making correct inferences and comparisons. When
estimated incorrectly, it can lead to unjustified certainty. One previous study derived modified
standard errors of kernel equating when using a variant of the Silverman’s rule of thumb for
bandwidth estimation (Andersson et al., 2014). The current study derives modified SEEs when
using the more commonly applied approach to estimate the bandwidth by minimizing a penalty
function. Such an approach is more generally appropriate and does not rely on a particular
distributional assumption for the test scores. Thus, the objective of this article is to introduce a
modified method of calculating the SEE which accounts for the additional variability stemming
from the bandwidth estimation. The new approach is compared via simulations to the current
method of calculating the SEE (Holland et al., 1989) across several sample sizes and test lengths.

We structure this article as follows. In the subsequent section, we give a brief background to the
kernel method of equating and expand on the issue of bandwidth estimation and how it influences
sampling variability. We also discuss how the standard errors of kernel equating are currently
estimated. Next, the asymptotic variance of the bandwidth parameter estimator is derived and is
incorporated in a modified method for calculating the SEE. This modified method is further
verified and compared to the existing method in a simulation study. Lastly, the results are reported
and discussed.

The Kernel Method of Test Equating

Data Collection Designs

An observed-score equating procedure consists of two fundamental components, namely, the data
collection design and the equating method (von Davier et al., 2004). Hence, before we focus on the
equating itself, it is essential to review, if only briefly, the common approaches to collecting the
data. There are several data collection designs widely used in practice and they can roughly be
divided into two categories: designs which use examinees from a common population taking both
test forms and designs which use common items on the test forms (von Davier et al., 2004). The
first category of data collection designs includes the equivalent groups, the single group, and the
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counterbalanced designs, and the second category includes the common-item non-equivalent
groups design. In this study, we focus on the equivalent groups design, where two independent
random samples are drawn from a common population, P, and one group takes test form X, while
the other takes test form Y. In the following, we will use X and Y to denote both the test forms and
the random variable corresponding to the test scores from each of the test forms.

The choice of an appropriate data collection design is subject to considerations like the
available sample size, time, and costs. The designs subsequently affect the equating procedure
implying that some designs, such as the equivalent groups design, allow for a relatively
straightforward comparison between the test forms. Other designs are much more complex, such
as the common-item non-equivalent groups design. A more detailed account of the considerations
and procedures involved in various data collection designs can be found in von Davier et al.
(2004).

Kernel Equating

In the following, we adopt the notation of von Davier et al. (2004). Let the target population be T,
the possible score values on the test form X be xj for j = 1,…, J; and let the possible score values
on the test form Y be yk for k = 1, …, K. Thus, we define the score probabilities as

rj ¼ Prob
�
X ¼ xj

��T�, (1)

and

sk ¼ ProbfY ¼ yk jTg: (2)

Further, an equipercentile equating function is defined in terms of the cumulative distribution
functions (CDFs) which are given by

FðxÞ ¼ ProbðX ≤ xÞ ¼
X
j,xj ≤ x

rj, (3)

and

GðyÞ ¼ ProbðY ≤ yÞ ¼
X
k,yk ≤ y

sk : (4)

When the CDFs are continuous, we obtain the equipercentile equating function of X to Y from

y ¼ EquiYðxÞ ¼ G�1ðFðxÞÞ: (5)

Strictly speaking, however, most score distributions are discrete, and their continuous ap-
proximations are required. Kernel equating addresses this problem by introducing a series of steps
which can be applied to various data collection designs and which provides continuous CDFs. The
steps of kernel equating are pre-smoothing, estimation of the score probabilities, continuous
approximation to the discrete score distributions, equating, and calculating the SEE (von Davier
et al., 2004). We now briefly review the first two steps and dedicate subsequent subsections to
present the remaining steps in more detail as they pertain to the subject at hand.

Pre-Smoothing. In the pre-smoothing step, a parametric statistical model is fitted to the observed
data. This can be done by fitting log-linear or item response theory (IRT) models to the data. The
methods are described in detail in Andersson andWiberg (2017), and Holland and Thayer (1987),
and are not repeated here.
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Estimation of the Score Probabilities. Having estimated the score distributions with a pre-smoothing
model, the score probabilities can be obtained using a linear or non-linear transformation which,
following von Davier et al. (2004), we call the design function. The design function depends on
the data collection design. For instance, consider the equivalent groups design and let r ¼
ðr1,…, rJ Þt denote the column vector of the score probabilities of X and s ¼ ðs1,…, sKÞt denote the
column vector of the score probabilities of Y. The design function (DF) is then a simple identity
function, that is

DFðr,sÞ ¼
 
IJ 0
0 IK

! 
r
s

!
¼
 
r
s

!
, (6)

where IJ and IK are J × J and K × K identity matrices. Design functions for other data collection
designs are given explicitly in von Davier et al. (2004).

Continuous Approximation and Equating

The third step in kernel equating, distinguishing it from other equipercentile methods, is how the
continuous approximations to the discrete CDFs, FhX ðxÞ andGhYðyÞ to F(x) andG(y), are obtained.
In kernel equating, this is achieved by applying a kernel with a smoothing bandwidth parameter
(von Davier et al., 2004). There are different kernels available in the literature (Lee et al., 2008),
but in this study we focus on the Gaussian kernel, which is most commonly used. Following the
notation of von Davier et al. (2004), let Φ(�) denote the CDF of the Gaussian distribution, and let
hX denote the bandwidth parameter. Then, the Gaussian kernel smoothing of the distribution of X
has the CDF defined by

FhX ðxÞ ¼
X
j

rjΦ
�
RjX ðxÞ

�
, (7)

where RjX(x) is given by

RjX ðxÞ ¼ x� aX xj � ð1� aX ÞμX
aX hX

, (8)

and aX, μX, and σ2X are functions of r, that is

μX ¼
X
j

xjrj, (9)

σ2X ¼
X
j

�
xj � μX

�2
rj, (10)

aX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2X
σ2X þ h2X

s
: (11)

bGhYðyÞ is defined analogously.
It is evident from equations (7)–(11) that for the continuous approximation to be carried out, the

bandwidth parameters hX and hY have to be estimated. The primary goal of introducing such
parameters is to make the density functions as smooth as possible while retaining the properties of
the original distributions. Various methods of estimating the bandwidth parameter have been suggested
in previous research (Andersson et al., 2014; von Davier et al., 2004). Of particular interest to this study
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is a method described in Holland and Thayer (1989) and von Davier et al. (2004), which estimates the
bandwidth parameter by minimizing a penalty function, named PEN1 (hX) in von Davier et al. (2004),
with respect to the bandwidth. The penalty function itself is based on the squared distances between
proportions and the density function and is given by

PEN1ðhX Þ ¼
X
j

�
rj � fhX

�
xj
�2�

, (12)

where fhX ðxjÞ is the density function, found by differentiating Equation 7 with respect to x, that is

fhX ðxÞ ¼
X
j

rjf
�
RjX ðxÞ

� 1

aX hX
, (13)

and RjX(x) is given in Equation 8. The density obtained as a result of estimating the bandwidth by
minimizing PEN1 is typically a good approximation of the discrete score distribution. Note that
sometimes it can be beneficial to smooth the density function further, in which case an additional
component named PEN2 in von Davier et al. (2004) can be applied combined with PEN1.
However, because of the complexity in accounting for estimation variability with PEN2, we focus
exclusively on PEN1 in the present study.

Once the continuous approximations are obtained, the equating function estimator for equating
X to Y is given by

beY�x; r̂,ŝ� ¼ bG�1

hY

�bFhX

�
x; r̂
�
; ŝ
�
: (14)

The equating function for equating Y to X is analogous and found by substitution.

Standard Error of Kernel Equating

The SEE is the measure of random equating error or uncertainty which stems from the equating
function being subject to estimation and thereby sampling variability. We largely base this
subsection on the work of Holland et al. (1989), who derived the asymptotic standard error for the
kernel method of equating using the standard delta method for computing large sample ap-
proximations to the sampling variances of functions of statistics. Before proceeding, we see it
appropriate to briefly introduce the multivariate delta method (Rao, 1973).

Adopting the notation of Rao (1973), let the (k × 1)-dimensional random vector
ffiffiffi
n

p ðTkn � θkÞ
converge to a multivariate normal distribution with zero mean and covariance Σ, where Tkn is an
estimator, θk is the true parameter vector, and n denotes the sample size. Let g denote a vector-
valued function with components g1,…, gq, such that all the entries of g are differentiable. Then,ffiffiffi
n

p ðgðTknÞ � gðθkÞÞ converges to a multivariate normal distribution with zero mean and co-
variance of GΣG0, that is ffiffiffi

n
p ðgðTknÞ � gðθkÞÞ→d N

�
0,GΣG0�, (15)

whereG is the (q × k) Jacobian matrix of partial derivatives of gwith respect to θk. In this study, the
equivalent of Tkn, θk, and g are the estimator of the score probabilities, the true score probabilities,
and the equating function, respectively. The delta method was employed by Holland et al. (1989),
where they defined the SEE for equating X to Y by
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SEEY ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðêY ðx; r̂, ŝÞÞ

p
: (16)

The SEE for equating Y to X is defined analogously.
Treating the bandwidth parameters hX and hY as constants, Holland et al. (1989) assert that all

the uncertainty in the equating function comes from the estimation of the score probabilities
r and s. Hence, the variance of the equating function, and in turn the SEE, reflects the data
collection design, the choice of the pre-smoothing technique used in the estimation of the
population score probabilities, and the equating function itself.

Reiterating the notation used previously, let r and s define the vectors of the pre-smoothed score
distributions. The calculation of the SEE per Holland et al. (1989) then requires two components:
the vector ∂eY with derivatives of the equating function eY with respect to r and s, and the as-
ymptotic covariance matrix Σðr̂, ŝÞ. Using the delta method (Rao, 1973), the variance of the
equating function êY can then be expressed as

VarðêY ðx; r̂, ŝÞÞ ¼ ∂eYΣðr̂, ŝÞ½∂eY �0, (17)

where s and Σðr̂, ŝÞ is the covariance matrix of the independently estimated score probabilities,
given by

Σðr̂,ŝÞ ¼
"
Σr̂ 0
0 Σŝ

#
: (18)

The matrix Σðr̂, ŝÞ has dimensions (J + K) × (J + K) where J is the dimension of r and K is the
dimension of s (von Davier et al., 2004). The calculation of Σðr̂, ŝÞ for different equating designs can
be found in Andersson and Wiberg (2017), Holland et al. (1989) and von Davier et al. (2004).

The second component, ∂eY , can be defined as follows

∂eY ¼
�
∂eY
∂r

,
∂eY
∂s

	
: (19)

Recalling Equation 14, the derivatives needed to compute ∂eY are defined in Holland et al. (1989)
as

∂eY
∂rj

¼ 1

G0
∂Fðx, rÞ

∂rj
, (20)

∂eY
∂sk

¼ � 1

G0
∂GðeY ðxÞ; sÞ

∂sk
, (21)

where ∂eY
∂r is a row vector with dimensions 1 × J, ∂eY∂s is a row vector with dimensions 1 ×K, andG0 is

the density evaluated at eY (x), that is

G0 ¼ ∂GðeY ðxÞ; sÞ
∂y

, (22)

and

∂Fðx; rÞ
∂rj

¼ Φ
�
RjX ðx; rÞ

��MjX ðx; rÞ ∂Fðx; rÞ∂x
, (23)

where ∂Fðx; rÞ
∂x is given in Equation 13, RjX (x; r) in Equation 8, and
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MjX ðx; rÞ ¼ 1

2
ðx� μX Þ

�
1� a2X

�
z2jX þ ð1� aX Þxj, (24)

where zjX is defined as

zjX ¼ xj � μX
σX

: (25)

The derivatives of eX are analogous to those above and can be computed by substitution.
At this point, it is important to emphasize that the method of SEE calculation described above

treats the bandwidth parameters hX and hY as fixed and not as functions of r and s. Hence, the
additional variability introduced by the bandwidth estimation is currently not accounted for in the
calculation of the SEEs, and consequently poses a challenge with respect to their accuracy
(Holland et al., 1989; von Davier et al., 2004).

Accounting for Bandwidth Estimation Variability in Kernel Equating

In this section, we first derive the bandwidth parameter estimator variance and then introduce a
modified method for the calculation of the analytical SEE that accounts for bandwidth estimation
variability.

Asymptotic Variance and Standard Error of the Bandwidth Parameter Estimator

Recalling the standard delta method restated in the previous section (Rao, 1973), it is important to
note that the bandwidth parameter estimator is not defined explicitly but rather as an implicit
function of other asymptotically normal variables. Therefore, we use a generalization of the delta
method presented by Benichou and Gail (1989) which facilitates computing the asymptotic
variance of the implicitly defined bandwidth parameter estimator. Following the notation of von
Davier et al. (2004), hX denotes the bandwidth parameter selected to minimize PEN1 defined by
Equation (12) and r denotes the vector of estimated score probabilities. Consider further that PEN1

is a continuously differentiable function of the estimated score probabilities r in hX, and the
function is minimized so that ∂PEN1

∂hX
¼ 0. Applying the implicit function theorem (Rao, 1973), we

can then define hX as a function of r such that hX ¼ ghX ðrÞ, and compute the partial derivatives of
ghX ðrÞ with respect to r as

∂ghX ðrÞ
∂r

¼ �


∂2PEN1

∂h2X

��1
∂2PEN1

∂hX∂r0
, (26)

where ∂2PEN1

∂h2X
is a scalar second order partial derivative of PEN1 with respect to hX and ∂2PEN1

∂hX ∂r0
is a

1 × J vector of second-order partial derivatives of PEN1 with respect to r. The ∂2PEN1

∂h2X
and ∂2PEN1

∂hX ∂r0

derivatives are unequivocally calculated using the chain rule and implicit differentiation. The
equations, however, are lengthy, and we summarize them in the appendix.

Let Σr̂ denote the asymptotic covariance matrix of the estimated score probabilities r with
dimensions J × Jwhere J is the dimension of r. By applying the delta method for implicit functions
(Benichou & Gail, 1989), we can define the asymptotic variance of the bandwidth parameter
estimator bhX as

Var
�bhX � ¼ ∂ghX ðrÞ

∂r
Σr̂

�
∂ghX ðrÞ

∂r

	0
, (27)
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and its standard error as

SE


bhX� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var


bhX�
s

: (28)

The variance and the standard error of bhY are analogous to those given for bhX and can be
computed by substituting X by Y and r by s.

Standard Error of Equating Accounting for Bandwidth Variability

To account for the bandwidth estimation variability when computing the SEEs, we apply the
chain rule together with the delta method and obtain a modified expression for the SEEs (Cox,
1984). Treating bhX and bhY as functions of the score probability estimators r̂ and ŝ, we redefine
Equation 14 by adding a term which accounts for the bandwidth estimation variability to
obtain

Var


beY
x; r̂, ŝ,bhX ðr̂Þ,bhY ðŝÞ�� ¼ ∂eY ðxÞ
∂ðr, sÞΣðr̂,ŝÞ

�
∂eY ðxÞ
∂ðr, sÞ

	0
þ ∂ðhX ðrÞ, hY ðsÞÞ

∂ðr, sÞ
∂eY ðxÞ

∂ðhX , hY Þ

×Σðr̂,ŝÞ

�
∂ðhX ðrÞ, hY ðsÞÞ

∂ðr, sÞ
∂eY ðxÞ

∂ðhX , hY Þ
	0
,

(29)

where ∂eY ðxÞ
∂ðr,sÞ is presented in equations (19)–(25) and Σðr̂,ŝÞ in Equation 18. When evaluating these

expressions in practice, the true parameters are replaced by the parameter estimates. The additional
components are then a (2 × (J + K))-matrix of partial derivatives of the bandwidth parameters as
functions of the estimated score probabilities with respect to the estimated score probabilities,
∂ðhX ðrÞ,hY ðsÞÞ

∂ðr,sÞ , calculated following Equation (26), that is

∂ðhX ðrÞ, hY ðsÞÞ
∂ðr, sÞ ¼

2666664

 
�


∂2PEN1

∂h2X

��1
∂2PEN1

∂hX ∂r
0

!
0

0

 
�


∂2PEN1

∂h2Y

��1
∂2PEN1

∂hY∂s
0

!
3777775, (30)

and ∂eY ðxÞ
∂ðhX ,hY Þ, a (2 × J)-matrix of first-order derivatives of the equating function with respect to the

bandwidth parameters, hX and hY, defined by

∂eY
∂hX

¼ 1

G0
X
j

rj
∂Φ
�
RjX ðxÞ

�
∂hX

, (31)

where

∂Φ
�
RjX ðxÞ

�
∂hX

¼
X
j

rjf
�
RjX ðxÞ

� ∂RjX ðxÞ
∂hX

, (32)

and

∂eY
∂hY

¼ � 1

G0
X
k

rk
∂ΦðRkY ðyÞÞ

∂hY
, (33)

where

8 Applied Psychological Measurement 0(0)



∂ΦðRkY ðyÞÞ
∂hY

¼
X
k

rkfðRkY ðyÞÞ ∂RkY ðyÞ
∂hY

, (34)

and G0 is defined in Equation 22, with RjX(x) and RkY(y) given in Equation 8. Lastly, we define the
SEE which accounts for bandwidth variability by

SEEY ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var


beY
x; r̂, ŝ,bhX ðr̂Þ,bhY ðŝÞ��
s

: (35)

Simulation Study

To confirm the accuracy of the presented derivations, we conducted a simulation study to evaluate
the estimators of the standard error of the bandwidth parameter estimator and the modified SEEs.
We evaluated the estimated standard errors with respect to the Monte Carlo standard errors and
compared the modified standard errors to the original standard errors that do not account for the
bandwidth estimation.

Simulation Design

Data for two test forms X and Y were simulated using the two-parameter logistic (2-PL) model
within the framework of IRT (de Ayala, 2009), where test lengths of 20, 40, and 80 items were
considered. The discrimination parameters for both test forms were selected from the U (0.5, 2)-
distribution and the difficulty parameters for one test form were selected from the N (0.25, 1)-
distribution and the other from the N (�0.25, 1)-distribution. These distributions were considered
to mimic realistic item parameters found in standardized testing (National Center for Education
Statistics, 2004).

The equivalent groups design was used in which two independent random samples of indi-
viduals are drawn from a single common population and where each random sample takes either
of the test forms X and Y (von Davier et al., 2004). Dictated by the design, no differences in the
latent distributions were present between the groups. The latent distributions were set to the
standard normal distribution. The equivalent groups design was considered because of its
simplicity. Relative to other data collection designs, it provided an opportunity for direct
comparison of the results on the test forms X and Y without additional considerations or as-
sumptions. The score distributions for the tests X and Y with 20, 40, and 80 items are provided in
Figure 1. The means (SD) of the test score distributions with 20, 40, and 80 items were 10.35
(4.52), 21.40 (8.43), and 44.03 (16.06) for test X and 7.58 (4.24), 18.17 (8.22), and 35.95 (16.89)
for test Y.

In order to systematically verify the accuracy of the modified method of calculating the SEE as
well as to explore how well it performs in a variety of sample sizes, sample sizes 1000, 4000, and
16,000 were considered. The study was conducted using version 3.6.2 of the statistical software
environment R (R Core Team, 2019), primarily employing the packages kequate (Andersson et al.,
2013), mirt (Chalmers, 2012), and numDeriv (Gilbert & Varadhan, 2019), while also utilizing
newly written code implementing the modified SEEs (available in the Supplementary material). In
each simulation setting, we used 10,000 replications which enabled us to all but eliminate the
simulation random error. The convergence rate for all simulation settings was 100%.
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The study followed the recommended kernel equating procedure (von Davier et al., 2004),
albeit with a few adjustments to verify the derivations presented in this article. For each generated
data set, the following steps were carried out:

(1) Pre-smoothing. The package mirt (Chalmers, 2012) was used to pre-smooth the irregu-
larities of the raw data by estimating two separate 2-PL models to obtain item parameter estimates
pertaining to each of the two groups and tests. The expectation-maximization (EM) algorithm was
used for estimation (Bock & Aitkin, 1981), with the tolerance level 0.0001 and maximum number
of iterations equal to 500. The asymptotic covariance matrix was estimated based on the method
described in Oakes (1999).

(2) Estimation of score probabilities. Under the equivalent groups design, the score proba-
bilities brj and bsk were estimated based on the item parameter estimates and the assumed dis-
tribution of the latent variable (Andersson & Wiberg, 2017; von Davier et al., 2004).

(3) Continuous approximation. By adapting code from the package kequate (Andersson et al.,
2013), continuous approximations to the discrete distributions were obtained by applying a

Gaussian kernel with an optimal bandwidth parameter. Optimal bandwidth parameters bhX and bhY
were obtained by minimizing the first part of the penalty function, PEN1 (von Davier et al., 2004).

When optimizing the penalty function, a golden section search with successive parabolic in-

terpolation (Brent, 1973) using the default tolerance of 1.50 × 10�8 was used.
The analytical derivations for the bandwidth parameter estimator variance were paramount to

the study. Hence, upon obtaining the optimal bandwidths, the average standard errors of the
bandwidth parameters were computed following the equations introduced in the previous section,
and their accuracy was assessed using the Monte Carlo standard error (MCSE) as the criterion.
When calculating the asymptotic variance of the bandwidth parameter estimator, the bandwidth
parameters hX and hY were replaced with the estimated parameters bhX and bhY , and the asymptotic
covariance matrices of the estimated score probabilities Σr̂ and Σŝ were calculated based on the
implementation in kequate (Andersson et al., 2013).

(4) Equating. Upon obtaining continuous CDFs, an equipercentile equating function was
applied to equate the test forms X and Y.

(5) Calculating the SEE. The average analytical SEEs were computed using the original
method for calculating the SEE without accounting for the bandwidth variability (Holland et al.,
1989), and the modified method of calculating the SEE accounting for the bandwidth variability.
The Monte Carlo SEEs (MCSEE) were used as a criterion for comparing the accuracy of the
modified and the original methods of the SEE calculation.

Figure 1. Score distributions with 20, 40, and 80 items, for each test X and Y.
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Furthermore, two measures were used to assess the performance and the accuracy of the
modified method as compared to the original method. We computed the absolute differences of
the means of the SEEs calculated with the original and the modified methods. Additionally, the
average coverage probabilities were considered which explored the average proportion of time
that the 95% confidence intervals calculated employing the original and the modified methods
contained the true values of the equated results. The confidence intervals were estimated withbeY ± z0:975 ×cSEðbeY Þ, with z0.975 indicating the 0.975 quantile of the standard normal distribution.

The analytical derivations used in computing the bandwidth estimator variance and standard
errors, as well as the SEE, were verified numerically using the R package numDeriv (Gilbert &
Varadhan, 2019). The R code is available for review in the Supplementary material.

Simulation Results

The study largely depended on the accuracy of the asymptotic variance and standard error of the
bandwidth parameter estimator derivations. The results of the simulation for the standard errors of
the bandwidth parameter estimators bhX and bhY given in Table 1 confirmed that the derivations
were correct, and the asymptotic standard errors of the bandwidth parameter estimator (ASE) were
accurate as witnessed by the comparison to theMCSE. As can be expected for asymptotic variance
approximation (Ferguson, 1996), the differences between the ASEs and the MCSEs were larger in
smaller sample sizes.

Subsequently incorporating the bandwidth estimation variability into computing the modified
SEEs, Table 2 presents two performance measures used to compare the accuracy of the original
standard errors of equating (ASEE) and the modified asymptotic standard errors of equating
(ASEEmod). These measures are the absolute aggregate differences between the SEEs for two
pairs, ASEE -MCSEE and ASEEmod - MCSEE, and the average coverage for both the original and
the modified methods. From the average differences, it was evident that when compared to the
MCSEE estimates, the modified asymptotic SEEs which take bandwidth variability into account
were accurate for all sample sizes and test lengths. Furthermore, the modified asymptotic SEEs in
most cases appeared to be nearly identical to those not accounting for bandwidth variability,
suggesting that the bandwidth estimation influence on the SEEs was minimal. This finding was

Table 1. Asymptotic Standard Errors (ASE) and Monte Carlo Standard Errors (MCSE) for the Bandwidth
Parameters hX and hY With Sample Sizes N and Test Lengths Of 20, 40, and 80 Items.

hX Parameter hY Parameter

N ASE MCSE ASE MCSE

20 items
1000 0.0035 0.0035 0.0035 0.0035
4000 0.0018 0.0017 0.0018 0.0017
16000 0.0009 0.0009 0.0009 0.0009

40 items
1000 0.0034 0.0034 0.0037 0.0037
4000 0.0017 0.0017 0.0019 0.0019
16000 0.0009 0.0009 0.0009 0.0009

80 items
1000 0.0033 0.0033 0.0036 0.0036
4000 0.0016 0.0016 0.0018 0.0018
16000 0.0008 0.0008 0.0009 0.0009
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further supported by the average coverage for both the original and the modified methods.
Although the modified method performed better in most settings, the differences in coverage were
small.

Discussion

The kernel method of equating is an equipercentile equating method in which number-correct
scores are transformed into percentile rank scores from test form X to the scale of test form Y, and
the scores from the two test forms with the same percentile rank are considered to be equivalent
(von Davier et al., 2004). However, in order to obtain those equivalent scores, continuous ap-
proximations to the discrete score distributions are needed. To satisfy this requirement, kernel
equating uses a Gaussian kernel with a smoothing bandwidth parameter that determines the
characteristics of the continuous approximations to the raw discrete distributions (von Davier
et al., 2004). The most commonly used method for bandwidth estimation is minimizing a penalty
function with respect to the bandwidth parameter (von Davier et al., 2004). The bandwidth, in turn,
is influenced by the estimated score probabilities and therefore is subject to variability. This
variability, however, is not currently accounted for when calculating the SEE (Holland et al.,
1989), challenging its accuracy and, ultimately, the fairness of the equated results.

The present study explored the issue of the additional variability stemming from the bandwidth
estimation and its impact on the SEE. Building on the existing methodology of Holland et al.
(1989) and von Davier et al. (2004), we derived the asymptotic variance of the bandwidth
parameter estimator using the delta method for implicit functions (Benichou & Gail, 1989) and
incorporated those derivations to expand the existing formulas for calculating the SEE (Holland
et al., 1989). Thus, we have introduced SEEs that account for bandwidth estimation variability.
A simulation study with 18 data sets generated for a wide range of sample sizes and test lengths
was used to illustrate the results of the modified method as compared to the current method of the
SEE calculation (Holland et al., 1989) and the MCSEEs.

The results offered several observations which are valuable to the testing industry. Firstly, the
newly introduced SEE were accurate and close to the MCSEE estimates for all sample sizes and

Table 2. Absolute Average Differences for the Original Asymptotic Standard Errors of Equating (ASEE) and
the Modified Asymptotic Standard Errors of Equating (ASEEmod) to the Monte Carlo Standard Errors of
Equating (MCSEE) and Average Coverage of 95% Confidence Intervals Based on the ASEE and the ASEEmod.

Average Differences Average Coverage

N ASEE-MCSEE ASEEmod-MCSEE ASEE ASEEmod

20 items
1000 0.0012 0.0016 94.97 95.03
4000 0.0002 0.0004 95.07 95.13
16000 0.0004 0.0004 94.87 94.93

40 items
1000 0.0021 0.0019 94.97 94.99
4000 0.0012 0.0011 94.82 94.84
16000 0.0011 0.0011 94.66 94.69

80 items
1000 0.0038 0.0041 94.87 94.90
4000 0.0050 0.0054 95.39 95.42
16000 0.0004 0.0006 94.90 94.93
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test lengths, suggesting that the method is suitable for practical use. Secondly, using the MCSEE
as a criterion, the results of the study indicate that the original (Holland et al., 1989) and the
modified SEEs produce similar results, suggesting that the bandwidth estimation impact on the
SEE is minimal.

The presented results apply directly to any pre-smoothing method, provided that the asymptotic
covariance matrix of the score probabilities has been defined for such a method. However, in this
study we only utilized IRT as the pre-smoothing method and the results may be different if instead
using, for example, log-linear models. However, previous research has indicated that the SEEs are
fairly accurate even when not accounting for the bandwidth estimation with the penalty function,
and so we do not anticipate that the results will differ substantially when using pre-smoothing with
log-linear models instead of IRT models.

The method for accounting for bandwidth estimation that we used in the present study can be
generalized to additional kernels and equating designs by modifying the presented results to
account for the different expressions of the equating function and score probabilities with such
approaches. It is furthermore possible to utilize the delta method for implicit functions with other
bandwidth estimation methods provided that those specify a function that is minimized which
fulfills the properties required for the implicit function theorem and the delta method. One
approach which does not fulfill these requirements is the method based on PEN2, since the
function PEN2 is not differentiable and can have multiple local minima.

It is important to note that in this study, we derived the modified asymptotic SEE for two
test forms in the setting of the equivalent groups data collection design. It can be the case
that the bandwidth estimation influence on the SEE is greater for other data collection and
equating designs. It would, therefore, be beneficial for future theoretical and empirical
studies to focus on determining the bandwidth estimation impact on the SEE in these
additional scenarios.

As a final note, we believe that it is theoretically more sound to use a method which suc-
cessfully accounts for all sources of variability, however negligible those may be. Introducing the
modifications to the formulas for the SEE calculation akin to those explored in this study can
improve the accuracy of the standard errors of equating, and consequently, facilitate fairness and
comparability of the equated results.

Appendix

Computation of the Penalty Function

In order to compute Equation 26, two partial derivatives of the PEN1 (hX) function need to be
defined, the second-order partial derivative of PEN1 (hX) with respect to hX and the second-order
partial derivative of PEN1 (hX) with respect to hX and r. Hence, we first need to compute the partial
derivative of PEN1 (hX) with respect to hX.

Recalling equations (8)–(13), we define the first partial derivative of PEN1 (hX) with respect to
hX as

∂PEN1

∂hX
¼ ∂

∂hX

"X
j

�
rj � fhX

�
xj
�2#

¼ �2
X
j


�
rj � fhX

�
xj
�� ∂fhX�xj�

∂hX

�
:

(36)
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We then need to calculate
∂fhX ðxjÞ
∂hX

as

∂fhX
�
xj
�

∂hX
¼ ∂

∂hX

"X
j

rjf
�
RjX ðxÞ

� 1

aX hX

#

¼
X
j

rj



∂
�
f
�
RjX ðxÞ

�
∂hX

1

aX hX
þ f

�
RjX ðxÞ

� ∂
∂hX

�
1

aX hX

	�
,

(37)

where ∂½fðRjX ðxÞÞ�
∂hX

is

∂
�
f
�
RjX ðxÞ

�
∂hX

¼ �f
�
RjX ðxÞ

� ∂RjX ðxÞ
∂hX

RjX ðxÞ, (38)

with

∂RjX ðxÞ
∂hX

¼ ∂
∂hX

�
x� aX xj � ð1� aX ÞμX

aX hX

	
¼ ∂aX

∂hX

�
μX � xj

� 1

aX hX
þ �x� aX xj � ð1� aX ÞμX

� ∂
∂hX

�
1

aX hX

	
:

(39)

The remaining components needed for computing the first partial derivative of PEN1 (hX) with

respect to hX are then ∂
∂hX

�
1

aX hX

	
and ∂aX

∂hX
. Thus we calculate

∂
∂hX

�
1

aX hX

	
¼ �a�2

X

∂aX
∂hX

1

hX
� 1

aX h2X
, (40)

∂aX
∂hX

¼ ∂
∂hX

264 σXffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2X þ h2X

p
375 ¼ � σX

2
�
h2X þ σ2X

�3
2

∂h2X
∂hX

þ ∂σ2
X

∂hX

¼ � σX hX�
h2X þ σ2

X

�3
2

:

(41)

Using equations (36)–(41), we can compute the second partial derivative of PEN1 (hX) with
respect to hX as

∂2PEN1

∂h2X
¼ ∂

∂hX

"
�2
X
j


�
rj � fhX

�
xj
�� ∂fhX�xj�

∂hX

�#

¼ �2
X
j

 
∂2fhX

�
xj
�

∂h2X

�
rj � fhX

�
xj
��� �∂fhX�xj�

∂hX

	2!
,

(42)

where
∂fhX ðxjÞ
∂hX

is defined in Equation 37 and
∂2fhX ðxjÞ

∂h2X
is given by
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∂2fhX
�
xj
�

∂h2X
¼ ∂

∂hX

"X
j

rj



∂
�
f
�
RjX ðxÞ

�
∂hX

1

aX hX
þ f

�
RjX ðxÞ

� ∂
∂hX

�
1

aX hX

	�#

¼
X
j

rj



∂2
�
f
�
RjX ðxÞ

�
∂h2X

1

aX hX
þ ∂
�
f
�
RjX ðxÞ

�
∂hX

∂
∂hX

�
1

aX hX

	�

þ
X
j

rj



∂
�
f
�
RjX ðxÞ

�
∂hX

∂
∂hX

�
1

aX hX

	
þ f

�
RjX ðxÞ

� ∂2

∂h2X

�
1

aX hX

	�
:

(43)

Recall that ∂½fðRjX ðxÞÞ�
∂hX

is given in Equation 38 and ∂RjX ðxÞ
∂hX

in Equation 39. Hence, we define ∂2½fðRjX ðxÞÞ�
∂h2X

and ∂2RjX ðxÞ
∂h2X

as

∂2
�
f
�
RjX ðxÞ

�
∂h2X

¼ ∂
∂hX

�
�f
�
RjX ðxÞ

� ∂RjX ðxÞ
∂hX

RjX ðxÞ
	

¼ �∂
�
f
�
RjX ðxÞ

�
∂hX

∂RjX ðxÞ
∂hX

RjX ðxÞ � f
�
RjX ðxÞ

� ∂2RjX ðxÞ
∂h2X

RjX ðxÞ

�f
�
RjX ðxÞ

��∂�RjX ðxÞ


∂hX

�	2
,

(44)

∂2RjX ðxÞ
∂h2X

¼ ∂
∂hX

�
∂aX
∂hX

�
μX � xj

� 1

aX hX
þ �x� aX xj � ð1� aX ÞμX

� ∂
∂hX

�
1

aX hX

		

¼ �μX � xj
�
∂2aX

∂h2X

1

aX hX
þ ∂aX
∂hX

∂
∂hX

�
1

aX hX

	�

þ�μX � xj
� ∂aX
∂hX

∂
∂hX

�
1

aX hX

	
þ �x� aX xj � ð1� aX ÞμX

� ∂2

∂h2X

�
1

aX hX

	
:

(45)

Consider further that ∂
∂hX

�
1

aX hX

	
is defined in Equation 40 and ∂aX

∂hX
in Equation 41. We can then

observe that ∂2

∂h2X

�
1

aX hX

	
can be computed as

∂2

∂h2X

�
1

aX hX

	
¼ 1

hX a2X



2

aX

�
∂aX
∂hX

	2
� ∂2aX

∂h2X
þ ∂aX
∂hX

1

hX

�

þ


∂aX
∂hX

1

a2X h
2
X

þ 2

aX h3X

�
,

(46)

and

∂2aX
∂h2X

¼ ∂
∂hX

"
� σX hX�

h2X þ σ2X
�3
2

#
¼ �σX�

h2X þ σ2X
�3
2

� 3h2X�
h2X þ σ2

X

�5
2

: (47)

Lastly, we can compute the second partial derivative of PEN1 (hX) with respect to r as follows
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∂2PEN1

∂hX ∂ri
¼ ∂

∂ri

"
�2
X
j


�
rj � fhX

�
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� ∂fhX ðxj

�
∂ri

�
∂fhX ðxj
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#
,

(48)

where ∂rj
∂hX ∂ri

¼ 1 if i = j and ∂rj
∂hX ∂ri

¼ 0 if i ≠ j. Note that
∂fhX ðxjÞ
∂hX

is given in Equation 37. Then, the

components needed for computing Equation 48 are
∂fhX ðxjÞ

∂ri
and

∂2fhX ðxjÞ
∂hX ∂ri

. We define
∂fhX ðxjÞ
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(49)

where ∂RjX

∂ri
and ∂

∂r

�
1
aX

	
are given in Holland et al. (1989) as

∂
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�
1

aX
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2
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h2X
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X

x2i � μ2X
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X

, (50)

and
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�
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: (51)

We further define
∂2fhX ðxjÞ
∂hX ∂ri

as

∂2fhX
�
xj
�

∂hX ∂ri
¼ ∂

∂hX

�
∂fhX
�
xj
�

∂ri

	
: (52)

Given Equation 49 is a lengthy expression, we further simplify the notation such that

∂
∂hX

�
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�
xj
�

∂ri
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(53)

where

P ¼ ∂
�
f
�
RjX ðxÞ

�
∂hX
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:

(54)

Noting the three components in Equation 54, ∂P
∂hX

can then be presented as follows
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∂P
∂hX

¼ ∂P1
∂hX

� ∂P2
∂hX

þ ∂P3
∂hX

: (55)

∂P1
∂hX

is given by
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where ∂½fðRjX ðxÞÞ�
∂hX

is given in Equation 38. ∂P2
∂hX

is defined as
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where ∂RjX ðxÞ
∂ri

is defined in Equation 51, ∂½fðRjX ðxÞÞ�
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in Equation 38, and ∂2RjX ðxÞ
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It remains to calculate ∂P3
∂hX

as follows
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where ∂
∂ri

�
1
aX


is given in Equation 50, ∂aX

∂hX
in Equation 41, and ∂½fðRjX ðxÞÞ�

∂hX
in Equation 38.
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The partial derivatives of the PEN1 (hY) with respect to hY,
∂PEN1
∂hY

, ∂
2PEN1
∂hY

and ∂2PEN1
∂hY∂sι

, are computed
analogously.
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