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Abstract 
Dissolved organic matter (DNOM) is a mixture of heterogeneous hydrophobic and 

hydrophilic organic molecules that is ubiquitous in surface waters. It is formed from 

biodegradation of plant and microbial remains. DNOM differs in molecule size, polarity, light 

absorbing qualities, and bioavailability. This DNOM has a great impact on the water 

chemistry and the aquatic ecosystems living there by affecting the acidity, as well as transport 

of heavy metals and organic pollutants. Moreover, drinking water treatment plants (DWTP) 

that uses surface waters as a source of raw water are greatly affected by DNOM as it causes 

taste and odour problems as well as formation of harmful disinfection by-products in 

purification processes.  

There has been an increasing concentration of DNOM in surface waters over the past decades 

in many regions with acid soils. The drivers of this increase is known to be decrease in acidic 

rain, alternation in precipitation pattern and increased temperature. Also, catchment 

characteristics are found to highly influence the amount and quality of DNOM in surface waters 

and the effect of the drivers of increased DNOM.   

Increasing concentrations of DNOM causes the DWTP to have to adapt their raw water 

purification processes by increasing the coagulant and disinfection doses. It may even be 

necessary to modify the purification process in the treatment plants in order to adjust to the 

changes in raw water quality. Monitoring of the changes in the water quality is therefore key to 

generate the knowledge and awareness that is needed in order to sustain drinking water quality.  

In this thesis, the temporal and spatial differences in the amount and quality of DNOM in runoff 

from catchments in the southeast of The Czech Republic are assessed. Moreover, data on the 

regional temporal drivers for changes in DNOM have been data mined and compiled and the 

spatial differences in the catchment characteristic are addressed. 

The aim of this thesis is to reveal the temporal and spatial differences between the amount and 

quality of DNOM, as well as the physicochemical characteristics, of raw water samples 

collected from a set of catchments used as raw water sources in the Czech Republic. This is 

achieved by studying changes in the regional drivers (e.g., amount of biomass, temperature, 

precipitation and sulphur deposition) at the sites as well as the spatial difference sin catchment 

characteristics.  
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Mapping of causes for increase in dissolved 
natural organic matter in a Czech watershed  
 
 
1. Introduction 

Over the past decades here has been observed an increase in colour in many surface waters in 

Eastern North America as well as central Europe (Erlandsson et al.,2008; Skjelkvåle et al., 

2005; Worrall et al. 2003). This increase has been found to be mainly due to increased 

concentrations of dissolved natural organic matter (DNOM) (Eikebrokk et al., 2004; Hongve et 

al., 2004; Monteith et al., 2007; Skjerkvåle et al., 2003). DNOM is a heterogenous mixture of 

hydrophobic and hydrophilic organic molecules of aromatic and aliphatic carbon, 

encompassing a wide range of molecule size, polarity, light absorbing qualities, and 

bioavailability. It has great impact on the water chemistry and the aquatic ecosystems by 

affecting the acidity, as well as transport of heavy metals and organic pollutants (Matilainen et 

al., 2011). DNOM is in addition a source of nutrients and energy for heterophilic bacteria. The 

DNOM quality controls the extent to which DNOM is bioavailable for microorganisms. The 

degree to which DNOM is consumed by microorganisms depend on its size and structure. When 

addressing the quality of DNOM it is useful to distinguish between high molecule weight 

(HMW) and low molecule weight (LMW) moieties. HMW humic DNOM consist of more 

aromatic DNOM with longer conjugated double bonds than LMW DNOM. LMW is more 

oxygenated and hydrogen saturated. This LMW DNOM is thus more bioavailable for 

microorganisms and easier biodegradable than HMW DNOM. The HMW DNOM is on the 

other hand more responsible for most of the colouring of surface waters.  

Moreover, DNOM affects the raw water quality for drinking water treatment plants (DWTP) 

by causing taste and odour problems, in addition to promoting formation of  harmful 

disinfectant by-products (Reckhow and Singer, 1990) and biological growth in water 

distribution networks (i.e., fouling, Eikebrokk et al., 2004). Due to this the level and quality of 

DNOM are important factors in development and operation of water treatment processes. The 

increasing concentrations of DNOM causes the DWTP to have to adapt their raw water 

purification processes by increasing the coagulant and disinfection doses (Eikebrokk et al., 

2004). It may even be necessary to modify the purification process in the treatment plants in 

order to adjust to the changes in raw water quality. Monitoring of the changes in the water 
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quality is therefore key to generate the knowledge and awareness that is needed in order to 

sustain drinking water quality 

 

DNOM in dystrophic surface waters is manly derived from the watershed (i.e., allochthonous) 

while in eutrophic lakes the main DNOM fraction is produced in the lake (i.e., autochthonous). 

The origin of allochthonous DNOM is mainly degradation products of plant, animal, microbial 

remains and excretion. The quantity and quality of DNOM in dystrophic surface waters is thus 

mainly controlled by the amount and type of biomass in the watershed.  The amount of biomass 

is found to be increasing in the many boreal and nemoral regions due to climate change (longer 

growing season), accumulation of reactive nitrogen and increase atmospheric CO2, as well as 

land-use change. The flushing of DNOM is governed by amount and intensity of precipitation, 

by dictating the flow regime in the catchment, and by the water chemistry governing the 

solubility of DNOM. Elevated ionic strength due to e.g. carbonates in the soil (i.e., hard water) 

decreases its solubility. The past decrease in acid rain has led to a substantial decrease in ionic 

strength as well as loss of labile aluminium, which acted as a precipitating agent of the DNOM. 

The observed increases in DNOM quantity and changes in quality in surface water, is thus 

mainly governed by the increased biomass and precipitation amount and intensity, as well as 

decreased acid rain loading. The relative importance of these drivers is determined by 

catchment characteristics (Fikstvedt, 2021). There is therefore a need to link DNOM quantity 

and quality to both the changing regional pressures as well as catchment characteristics in order 

to understand and predict future trends in DNOM. This is a prerequisite for the DWTP enabling 

them to adjust water treatment efficacy (Vogt et al., 2004; Hongve et al., 2004).  

Summing up, in order to understand the change in DNOM concentration and quality in surface 

waters over time there is need to know how its main drivers (i.e., climate change, amount of 

biomass, loading of sulphur deposition) have been changing. There is also a need to recognize 

important catchment characteristics governing the impact of these changes. 

 

1.1 Aim of study  

This thesis work is an integral part of the project “Drinking Water Readiness for the Future 

(DWARF)” within the KAPPA program financed through EEA and Norway Grants. The 

project is inspired from a cooperation among water basin authorities, drinking water producers 

and Czech and Norwegian research partners for drinking water readiness for the future.  
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The aim of this thesis is to reveal the temporal and spatial differences between the amount and 

quality of DNOM, as well as the physicochemical characteristics, of raw water samples 

collected from a set of catchments used as raw water sources in the Czech Republic. This is 

achieved by studying changes in the regional drivers (e.g., amount of biomass, temperature, 

precipitation and sulphur deposition) at the sites as well as the spatial difference sin catchment 

characteristics.  

 

2. Theory  
2. 1 Dissolved natural organic matter (DNOM) characteristics  

Natural organic matter (NOM) is used as a common denominator for all forms of natural 

organic biomass. Dissolved natural organic matter (DNOM) is limited to the fraction of NOM 

that is found in the aqueous phase and passes through a 0.45µm membrane filter. DNOM is 

ubiquitously in surface waters and in soil- and groundwater (Bolan et al., 2011; Vogt et al., 

2004). DNOM is a heterogeneous mixture of hydrophobic and hydrophilic organic molecules 

of aromatic and aliphatic carbon (Matilainen et al., 2011). The relatively hydrophobic fraction, 

generally accounting for more than 50% of the DNOM in surface waters, is commonly referred 

to as humic substance (HS) that consists mainly of a complex mix of uncharacterizeable 

compounds. This high molecular weight and aromatic DNOM is more coloured and is thus 

mainly responsible for the “browning” of surface waters (Clark et al., 2010; Gjessing, 2013). 

The remaining DNOM is the non-humic fraction that is made of more identifiable organic 

compounds such as carbohydrates, lipids, carboxylic acids, amino acids, proteins and 

hydrocarbons. 

The distinguishable non-humic portion of the DNOM constitutes the fulvic moieties of the 

DNOM pool. DNOM that is bioavailable for heterogeneous microorganisms undergo 

biodegradation reaction and may be completely mineralized or partly oxidized forming 

proteins, carbohydrates and lipids that have lower molecule weight (Gjessing, 2013). Likewise, 

the humic moieties of DNOM, that absorbs radiation due to conjugated double bond 

chromophores, may be photo-oxidized (i.e., photo bleached) to smaller, less aromatic and more 

hydrophilic and saturated organic compounds. 

The degradation products and metabolic bi-products, as well as more recalcitrant polymers such 

as lignin, can again undergo various synthesis reactions forming larger molecules that are more 
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robust and resistant to further microbial degradation. This again forms the humic part of 

DNOM.  

 

The dissolution from NOM to DNOM in soil depends on the structure of the DNOM molecule 

as well as the chemical properties of the soil solution. Small saturated and polar NOM 

molecules are more hydrophilic and thus more soluble in water compared to larger aromatic 

NOM molecules. Moreover, the solubility of DNOM is controlled by its content of weak acid 

functional groups. Proteolysis of these weak acids renders the DNOM negatively charged. This 

increases the solubility due to that the negatively charged molecules are more polar and thus 

more hydrophilic. The charge depends on pH and the level of trivalent cations in the solution 

(Clark et al., 2010). If the pH in the soil solution is relatively low, the degree of proteolysis is 

low. In addition, a low pH increases the dissolution of aluminium and iron in the soil solution. 

Protolyzed negatively charged DNOM form complexation with trivalent cations. This reduces 

the hydrophilicity and the solubility of DNOM in water. 

The negative charge on DNOM is balanced by a diffuse layer of polyvalent cations around the 

molecule. This positively charged outer- and negatively charged inner layer of the molecule is 

referred to as the diffused double layer (DDL) (Håland, 2017). The thickness of the DDL layer 

affect the solubility of DNOM. This is controlled by the ionic strength of the soil solution. 

Increased ionic strength reduces the thickness of the DDL layer and reduces thereby the 

repulsion between the molecules allowing for a greater flocculation and thus decreased 

solubility (de Wit et al., 2007; Håland, 2017; Vogt et al., 2004). 

 

 
2.1.1 Chromophoric DNOM  

The change in watercolour is due to DNOM´s chromophores qualities that enable it to absorb 

light. Chromophoric (i.e., coloured) DNOM (CDNOM) consist of many aromatic rings and 

aliphatic chains constructed by conjugated double bonds that absorb ultraviolet (UV= λ10-

400nm) and visible (Vis= λ310-1100nm) wavelengths of the electromagnetic spectrum.  

 

DNOM absorbance in the UV and Vis spectra is mainly caused by different lengths of 

conjugated double bonds. Single carbon-carbon double bonds (C=C) adsorb UV radiation at 

λ180 nm. The absorption wavelength increases with increasing length of the conjugated chain, 

stretching way up into the Vis spectra. In addition aromatic carboxylic groups and phenolic 

groups absorb UV radiation at λ205 nm, and λ270 nm, respectively. The specific UV 
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absorbance (sUVa) is referring to the normalized UV absorbance achieved by a unit amount of 

DOC (Abs@λ254nm/mg C L-1) and varies according to the aromaticity and size of DNOM. 

Likewise, the specific Vis absorbance (sVISa) is referring to the absorbance in the Vis part of 

the spectra relative to the amount of DOC (Abs@λ254nm /mg C L-1). I.e., this proxy is referring 

to the CDNOM that absorb light in the visual part of the spectra. HMW DNOM commonly has 

high sUVa and sVISa and are coloured. Vice versa  LMW has low sUVa and sVIS, and is less 

coloured.  

 

The specific absorbance ratio (SAR = Abs@λ254nm/Abs@λ400nm) is controlled by the 

molecule size. LMW CDNOM is known to have relatively high absorbance in the lower 

wavelength (i.e., blue shift) and has high SAR values. On the other hand, HMW CDNOM has 

relatively higher absorbance at longer wavelength (i.e., red shift) and thus a low SAR value. 

The reason for this is that as the length of the conjugated double bonds increases the absorbance 

also occurs at longer wavelength. Long conjugated double bonds are associated with increased 

aromaticity and molecule weigh. 

 

Light absorption by CDNOM causes darkening of surface waters by inhibiting light from 

reaching lower part of the water column. Reduction in the amount and depth of 

photosynthetically active radiation (PAR 400 – 700 nm) available for phototropic aquatic 

organisms causes a reduction in the autotrophic activity. As a consequence of this there will be 

a decrease in primary production. Moreover, this forces the phototrophic organisms upward 

through the water column. In addition, when the colour becomes darker the water temperature 

rises due to the adsorption of the radiation energy. This can cause longer and stronger summer 

stratification of surface water lakes. (Arrigo & Borwn, 1996; Nima et al., 2019) 

 

 

2.2 Catchment characteristics 

A catchment is defined as a morphological landscape enclosure confined by where water that 

flows out at a given point is collected, with the highest point always on the edge of the 

catchment. Water flows in the catchment according to gravity, from the highest point in the 

landscape to the lowest. Depending on the porosity of the soil and its water saturation the 

percolating rainwater finds different flow-paths down into and through the soil and ends up into 

the watercourse. Catchments vary in size and shape and can be divided into sub-catchments, 

meaning smaller sub-units contributing with surface water tributaries within the catchment. The 
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vegetation type, soil cover and properties, bedrock geology, land use, water resident time, and 

catchment size influences the amount and quality DNOM that is exported from the soil organic 

matter (SOM) to surface waters (Sepp et al., 2019).  

 

2.2.1 Type of vegetation cover  

Surface waters draining catchments that have a high coverage of swamps, bogs and peat land 

are usually rich in DNOM. Catchments with forest cover have dense biomass and therefor also 

much NOM for degradation. This provides potentially more DNOM for transport from the 

terrestrial landscape to surface waters (Finstad et al., 2016; Larsen et al., 2011). Much of this 

DNOM is nevertheless sorbed to mineral soil along its flow-path towards the watercourse. The 

water in streams draining coniferous forest cover have higher concentrations of DNOM 

compared to deciduous forests (Sepp et al., 2019). Change in land use from outfield grazing to 

forest increases the biomass and thus the amount of available NOM for degradation and thereby 

the export of DNOM.  

The Czech Republic has a high forest coverage. The forests have been expanding during the 

second half of the 20th century due to long term afforestation of infertile cropland. In 2015 

33.8% of the Czech territory consisted of forest, of which 72.3 % of the forest cover was 

coniferous forest and 26.6 % broadleaved forest (Ministry of the Environment of the Czech 

Republic, 2017).  

 

2.2.2 Soil organic matter (SOM)  

The soil is differenced in six horizontal 

layers that generically differs from each 

other in terms of mineral- and organic 

matter content, density, colour, texture, 

structure, and thickness (Figure 1). The 

density generally increases downwards in 

the layers as the soil get more packed 

(Sciencefact, 2021).   

 

The decomposition of dead plant and biomass naturally starts in the organic layer (O) as this 

layer is rich in fresh organic matter. Topsoil (A) is the mineral layer beneath the O layer with 

Figure1: Soil layers (From: https://www.sciencefacts.net/soil-
horizons.html)  
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the most organic matter. An important aspect of this A layer is its density as it is relatively 

porous and therefore more exposed for sub-lateral runoff flow during periods with much and 

intense precipitation (Sciencefact, 2021). Water that flows sub-laterally through the O and A 

soil layers to surface waters is usually referred to as surface runoff. This flow-path conduit a 

high content of DNOM from the soil to surface waters due to less sorption to mineral soil. The 

amount and quality of DNOM that is transported to surface waters is thus depending on the 

flow paths in the catchment, which is governed by precipitation pattern and seasonally 

fluctuations.  

 
 

 
2.3 Drivers for changes in DNOM concentration 

The increase of DNOM in surface waters are to found to be governed by previous decrease in 

acidic rain (de Wit et al., 2007; Finstad et al., 2016; Garmo & Skancke et al., 2018; Skjelkvåle 

et al., 2003, 2008), changes in climate factors such as increase intensity and amount of 

precipitation (Hongve et. al., 2004) and increased biomass (Laesen et al., 2011a).  

 

2.3.1 Decreased acid deposition  

Emissions of sulphur dioxide and nitrogen oxides was a huge environmental problem in the 

second half of the 20th century, mainly because it led to acidic rain containing sulphuric and 

nitric acid. These strong mineral acids had a strong impact on aquatic ecosystems in rivers and 

lakes, as well as in forest and soil. In acid soil with poor buffering capacity the acid rain 

stimulated the release of toxic inorganic aqueous aluminium (EEA, 2011). In the water systems 

the acid rain caused a decrease in DNOM, as well as loss of acid neutralization capacity and 

nutrients. 

There is a strong correlation between decrease sulphur deposition and increased DNOM 

concentration in surface waters that have been exposed to acidic rain (Finstad et al., 2016; 

Garmo & Skancke, 2018). Furthermore, the highest increase is found in surface waters that has 

had the largest decrease in acid deposition. This is caused by an increased solubility of the 

DNOM due to a combination of increased charge density of the DNOM and reduced ionic 

strength of the soil solution (de Wit et al., 2007; Ekström et al., 2011; Haaland et al., 2010; 

Monteith et al., 2007). Humic charge density is affected by the complexation of trivalent metal 

cations and protons to weak acid binding sites. When the acid deposition decreased the 

dissolution of the trivalent Al metal cations decreased along with the H+-ions in the soil 
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solution. This led to a reduction in occupation of metal cations and protons to weak organic 

acid binding sites (Monteith et al., 2007) and thereby to a higher charge density of the DNOM, 

causing it to be more hydrophilic and thus more soluble. The decline in acid deposition lead 

also  to a reduction in ionic strength because there are less ions in the solution, mainly  due to 

the loss of the sulphate ion that was the major anion during acidic rain epochs. Decreased ionic 

strength leads to an increased repulsion between the DNOM molecules by stimulating increase 

thickness of the DDL (de Wit et al., 2007; Vogt et al., 2004). As a result of this the solubility 

of DNOM increases. This is especially the case for the less soluble moieties of DNOM. These 

fractions are often higher in molecule weight and more aromatic with a lower density of week 

acid functional groups. The decrease in sulphur emission has subsided and is no longer 

considered a present strong driver for increased concentration of DNOM in surface waters 

(Finstad et al., 2016) 

 

2.3.2 Climate changes 

Emissions of greenhouse gases causes the temperature to increase, this furthermore causes 

changes in the precipitation pattern and increased seasonal fluctuations. In addition, the changes 

in climate has expanded the growing season in the boreal and nemoral biomes. This leads to 

increased terrestrial biomass that subsequently is decomposed to DNOM.  This contribute to 

the increase of DNOM in surface waters. 

 

 

2.3.2.1 Increased temperature 

According to the Global Climate Report (NOAA, 2020) the global temperature has increased 

by +0.08 oC per decade between 1880 to 1981, and by +0.18 oC since 1981. The Czech Republic 

is in the Temperate and humid continental climate region in the northern hemisphere. The 

lowest temperatures are found in the regions with mountains along the norther, eastern and 

south-western borders. While the warmest region is found in the lowlands along the south-

western borders.  

In humid climates, as in the Czech Republic, the temperature is a key factor for plant growth 

since a higher annual temperature causes a longer growing season (Larsen et al., 2011b). A 

longer growing season leads to more terrestrial carbon fixation, thereby a larger biomass 

density, also known as greening (Finstad et al., 2016). Increased temperature has also led to 
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elevated treelines, where forest limits are moving up so that the forests are expanding towards 

higher altitudes (Forsgren et al., 2015). Moreover, increasing winter-temperature at higher 

latitudes affects if the precipitation falls as snow or rain, in addition to alternation in the soil 

frost duration.  Hence, affecting the pattern of leaching and watershed runoff. An increasing 

temperature also increases the rate of the decomposition reactions. This speeds up the 

transformation of plant- and microbial remains to NOM.  With more available plant remains 

and a higher decomposition rate more terrestrial fixed carbon can be transported to surface 

waters as DNOM (Eikebrokk et al., 2004). 

3.3.2.2 Alternation in precipitation pattern  

The water cycle is highly depending on the air temperature, since higher temperature causes 

more water to evaporate as well as warmer air has the ability to hold more water vapour. As a 

consequence of global warming the precipitation pattern is becoming more intense with more 

flooding and short-term heavy rainfall as well as more severe droughts. This causes regions of 

the world that already have heavy rainfall to get wetter as well as the areas that have dry air and 

drought is at risk of becoming drier and warmer (IPCC, 2020). The alternation in precipitation 

pattern is therefore a strong indicator for global warming.  

 

The flux of DNOM from the terrestrial landscape to surface waters increases with more intense 

precipitation and heavy flooding. This change is caused by the changes in water flow-path in 

the catchment as the soil gets saturated with water and thereby the runoff from soil to surface 

waters increases. As described in Chapt. 2.2.2 the soil profile gets denser downwards in the soil 

layers. This makes the upper organic rich O and A layers better conduits for the DNOM rich 

water facilitating sub-lateral transport from the terrestrial landscape to surface waters, thereby 

bypassing the absorptive capacity of the deeper mineral soil layer (Haaland et al., 2010).  

 

 

2.4 Data Analysis 

2.4.1 Normalized Difference Vegetation Index (NDVI) 

Normalized Difference Vegetation Index (NDVI) is a graphical indicator that determines the 

fraction of radiation mainly absorbed for photosynthesis as a measure for the fraction of 

vegetation cover, generally referred to as greenness. This is thus a proxy for the density of 

biomass on the earth surface. The remote satellite monitoring is based on the sensing of distinct 

wavelength of visible red (λ620–750 nm) and near-infrared (λ800 to 2500 nm) sunlight reflected 
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by plants. Chlorophyll, the pigment in plant leaves that also makes them appear green absorb 

visible red light that is used in photosynthesis. On the other hand, the cell structure of the plant 

leaves reflects near-infrared (NIR) light. By measuring the intensity of red and NIR radiation 

coming off the Earth it is possible to quantify the photosynthetic capacity of the vegetation in 

a given pixel (e.g., of 1 km2). The calculation of one NDVI value for the pixel is given from 

Equation (3) (The Earth Observatory, 2000). 

(3) 𝑁𝐷𝑉𝐼 = ("#$%$&')
("#$)$&')

 

NDVI calculation is always a number between plus one and minus one. A value close to zero 

indicates no vegetation (rock or bare soil) while a value close to plus one indicates the highest 

possible density of green leaves. Negative values are due to clouds, water and or snow. Where 

there is dense vegetation the reflected radiation in NIR wavelength is much greater than in the 

Red wavelength. If there is very little difference between NIR and Red reflected, then the 

vegetation is likely sparse and may consist of grassland, tundra or dessert (The Earth 

Observatory, 2000). 

 

2.4.2 Statistical analysis – Loess regression  

Loess regression is a non-parametric statistic approach that relaxes the linear assumptions of 

conventional regression methods. Instead it focuses on a fitted curve. Non-parametric 

regression is a category of regression analysis in which the predictor does not take a 

predetermined form but is constructed according to information obtained from the data. 

This regression method fits multiple regressions in a local neighbourhood, and the fitted points 

are estimated based on the whole curve rather than one particular estimate. Loess regression is 

resourceful if the X variables are bound in a specific range and the dataset is large. The curve 

shows the moving average, a calculation for analysing data points by making a series of 

averages of different subsets of the whole dataset. A moving average is often used for time 

series data to smoot out short-term fluctuations and mark long-term trends or cycles.  

(Prabhakaran, 2017) 

 

 

 

 

3. Material and Method  
The catchments that are studied in this thesis belong to the Otava River Blanice watercourses 

that are located in the southwest Bohemian region. All of the sampling points are along the 
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main river or tributaries to the rivers. Figure 2 points out the location of the sampling points. 

From the map one can see that Pisek, Černíčský potok, Volšovkou and Locenice are located 

along the Otava River and Putim and Podedvory are located along the Blanice River. The 

arrows indicate direction of water flow.  

 

 
Figure 2: Sampling points in the Otava catchment along the Otava- and Blanice river. 

 

The study in this thesis includes: 1) data mining for changes in drivers governing DNOM 

increase (i.e., sulphur deposition, temperature and precipitation, and biomass) over time; and 

2) assessing temporal trend in previous water chemistry data sets, new results of the chemical 

analysis of water samples collected in 2021; as well as 3) comparing the water chemistry in the 

studied Czech catchment to lakes in southeast Norway.   

 

 

3.1 Data mining for changes in DNOM drivers 

3.1.1 Sulphur deposition  
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Data of temporal trends in estimated deposition of Sulphur (S) and Nitrogen in The Czech 

Republic was downloaded from the European Monitoring and Evaluation Program (EMEP, 

2005, 2011, 2020). This is a co-operative program monitoring of long-range transmission of air 

pollutants in Europe. This scientifically based and policy driven program is under the 

Convention of Long-range Transboundary Air Pollution (CLRTAP) for solving the 

transboundary air pollution problems.  

 

3.1.2 Temperature and precipitation  
 

Climate maps of the Czech Republic as well as annual temperature and rainfall for the regions 

South Bohemia and Plzeň were downloaded from Czech Hydrometeorological Institute  

(CHMI, 2021). The aim was to get an overview over spatial differences in climate and the 

temporal climate  development in The Czech Republic as well as locally in the regions of the 

sub-catchments in Otava.  

Maps for the years from 1981-2010 are compiled with maps for each year from 2011-2020 in 

order to assess the development in annual temperature and precipitation.  

 

3.1.3 Biomass 
 
The Copernicus Global Land Service is a European flagship program of Earth Observation that 

monitors changes on continental biomass by monitoring biophysical variables describing the 

state, dynamism and the distribution of terrestrial vegetation (Copernicus, 2021a). As an 

integral part of this surveillance, they use NDVI as described in Chapt. 2.4.1 (Copernicus, 

2021b). The NDVI indexes were used as a proxy for vegetation cover to detect if the biomass 

density had changed over time in the catchments.  

 

The NDVI data are in the form of NetCDF files (i.e., .nc files) that contain NDVI data for the 

whole world. There are three NetCDF data files that are generated each month, finalized on the 

1th, 11th and 21th, i.e. a total of 36 files a year. Each NDVI product covers accumulated 

observations for a period of 10 days, up to the 10th, 20th and the last day of the month. If there 

are three or more observations from the last 10 days, then only observations from these 10 days 

are used (Tavares et al., 2020). Otherwise, observations from the last 16 days were used. In the 

NetCDF file all the NDVI values are linked to coordinates as decimal degrees from the World 

Geodetic System 84 (WGS 84) (Bruno Smets et al., 2020: Fikstvedt, 2021).  
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Trends in vegetation density over time was assessed by studying the NDVI data in months of 

the year where the vegetation cover is found to be most dense; i.e., June, July and August 

(Finstad et al., 2016). Thus, nine NetCDF files were extracted for each year from 2000 to 2019. 

This resulted in 174 files in the time period 2000 to 2020. The NetCDF files divides the world 

into pixels with a 300m x 300m and 1000m x 1000m resolution. The 1km2 was downloaded in 

this case because the 300m x 300m was not available for the time period 1999-2016. The NDVI 

data was processed in the statistic program R-studio. This program is an integrated development 

environment for the R-langue that is well suited for making data analysis scripts, reports, graphs 

and more (R-studio, 2021). In R-studio R packages can be downloaded based on the required 

analysis. These packages are collections of functions and data sets that increase the power of R 

by improving existing base R functionalities, or by adding new ones. Several R packages were 

downloaded in the R-script, but most importantly the package “ncdf4” was downloaded to R-

studio so that the netCDF could be read by R-studio and the NDVI data could be accessed.  

 

 The catchments that are included in this thesis had a shapefile (.shp) of the polygons in the 

catchments and the catchment outlines. The number of polygons in the shapefiles included in 

this analysis varied from 1 to 115. The sum of these polygons makes up the area within the 

shapefile. Due to how the shapefiles varied in the number of polygons the R-script was made 

to extract NDVI data for every year 

from 2000 to2020 (i.e., 9 files a year, a 

total of 180 files), and take the mean of 

every year in every polygon. Figure 3 

shows as an example the shapefile of 

the watershed of Černíčský potok, 

which contained 5 polygons 

representing 5 cub-catchments. The 

mean of all the five polygons was bind 

together in one table including the 

standard derivation for each year. The 

combined mean of all polygons was so 

on plotted with a Loess regression to 

show the time trend in NDVI development over 20 years.  

 

3.2 Assessing temporal trends in water chemistry 

Figure 3: Shape of Černíčský potok catchment including the lines that show the 5 
polygons constituting the catchment.. 
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 3.2.1 Old monitoring data  

The old monitoring data were used to study temporal longer, trends as well as seasonal 

fluctuations. The old data were compiled with data generated from fresh samples (Chapt. 3.2.2) 

in an attempt to study a longer time trend. The old data was combined in a excel sheet, and the 

min, quartiles (25% and 75%), median was calculated for the chemical parameters that was of 

interest, these are used to compare the water chemistry of the surface waters in the Otava-

catchment in chapter 4.2.2 and 4.3.2 and with the 100-lakes Project. The same calculations of 

25%, median and 75% quartile was done for the 100-Lakes Project.  

 

3.2.2 Analysis of fresh water samples 

The 17 water samples that were received from the Czech Republic were delivered in 0.5L flask 

and had been filtrated through a 0.4 µm filter at the sample site. These samples were analysed 

for biodegradability of the DNOM, DOC, Total N and UV-Vis spectra. Combining these recent 

data with the older monitoring data allowed a comparison of the data.  

 

3.2.2.1 Sample preparation 

Upon arrival to the University of Oslo they were stored in the dark at 10 °C. Further sample 

preparation was done according to analysis requirements described in the following.  

 
3.2.2.2 Biodegradation 

The analysis was carried out at the Section for Environmental chemistry, Dept. of Chemistry, 

University of Oslo (UiO), using SensorDish® Reader to measure the O2 concentration in the 

samples.   

At day 0, asap. after sample arrival to UiO, the samples were prepared by filtrating trough a 0.2 

µm syringe filter to remove most of the bacteria and filled into 30 mL containers. The syringe 

was flushed with the sample and the container was washed with filtrated samples as well as 

Type 1 water (ultra pure water) to remove any impurities. At day 1 the inoculum was prepared.  

The incubation starts at day 4 were the bacterial community goes through four phases: 

1. “Lag phase” where the bacterial community adapts to the new environment.  

2. “Exponential growth” where the bacterial community grows due to cell division.  

3. “Stationary growth” where the amount of cell derived from metabolism is balanced by 

the number of cell deaths.  

4. “Death phase” where cell death exceed cell growth.  
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During the “exponential growth” phase the bacteria uses oxygen and the concentration of O2 in 

the water samples decreases. The slope of the oxygen concentration curve relates to the 

respiration rate of the bacterial community. This provides a proxy of degradation rate of DNOM 

and thus the biodegradability of the DNOM. (Crapart et al., 2021).   

 

3.2.2.3 Dissolved Organic Carbon (DOC) and Total Nitrogen (TotN) 

The DOC concentration is used as a proxy for DNOM in the water samples because it is the 

main component in DNOM, constituting about 50 w/w%. The analysis was measured at the 

Department of Bioscience, UiO, adhering to the ISO 8245 (1999) method. 

The samples is deliverd to the combustion furnace with purified air. The samples undergoes a 

combustion trough heating up to 680C with a platinum catalyst. It undergoes a decomposition 

reaction when it converts to carbondioxide and NO gas. Then, the CO2/NO generated is cooled 

and dehumidified and sendt to the detectore. The concentration of the TC/TN in the samples 

are so on compared to a calibration curve. The standards making the calibration curve were 

made in the range of the ToTN og DOC from the old monitoring data from 2000-2006.  

 

 

 
3.3.4 UV-Vis Absorbency  

Ultraviolet-Visible (UV-Vis) spectroscopy is used to measure the absorbance of the DNOM In 

the water samples over the ultraviolet and visible part of the spectra. A Shimadzu UV-1800 

UV-Visible Spectrophotometer with 1 cm quartz cuvettes was used to measure the spectrum of 

absorbance for the water samples. The wavelength (λ) was scanned from 200 nm to 800 nm. 

To background correct the spectrophotometer prior to the analysis one scanning with both 

cuvettes was filled with Type 1 water, moreover one of the cuvettes was filled with Type 1 

water during the analysis as a reference. Values of absorbency at λ = 254 and λ = 400 were used 

to calculate sUVa, sVISa and SAR as described in Chapt. 2.1.1). 

 

 

 

 
4. Results and discussion 
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The results of the data analysis and experimental laboratory work explained in Chapt. 3 

“Materials and methods” are presented and discussed in this chapter. The time trends in regional 

factors that control the DNOM increase are presented, i.e. sulphur deposition, temperature and 

precipitation.  

 

For each catchment area, the characteristics and development of biomass over time is presented. 

To achieve a better perspective of the catchment, some key parameters of their surface water 

chemistry are compared to results from a 100-Lakes Project studying surface waters in 

southeast Norway.  

 

At the onset of this study, an important goal was to assess the trends of DNOM in surface 

waters, however only a limited number of catchments have monitoring data with proxies for 

this parameter, and only over a limited period of time. This made this difficult. However, the 

datasets of the three main catchments (i.e., Pisek, Volšovkou and Blanice Podedvory) have 

DOC data. This only made it possible to say something about changes in season from 2000-

2006 and compare the levels of DOC to the water sample taken at January 18. 2021.  

 

The spatial comparisons analysis of water chemistry is based on the monitoring data from 2000 

to 2006.  This temporal frequency of these dataset varied in extent between the catchments. 

This sets restraints for the assessment. Due to the lack of old data the results from the 

experimental lab work (UV-vis, TotN and biodegradability) are not included, though the result 

of these analysis are attached in the Appendix. The dataset from Czechia and 100-Lakes Project 

are provided in Appendix. 

 

4.1 Time trends in drivers for increased DNOM concentration  

4.1.1 Acid rain deposition  
Temporal trends in deposition of Sulphur (S) and Nitrogen (N) in the Czech Republic are shown 

in Figure 4 (EMEP, 2005, 2014, 2020). The strong decline in acid deposition lasted until the 

turn of the century. By 2000 the S deposition had decreased by 83%, from 483 in 1980 to 83 

Gg S in 2000. During the last 20 years the S deposition has decreased an additional 8% to a 

total of 91%. The same trends are seen for reduced and oxidized N, though the decrease are not 

so strong (i.e., 57 and 50%, respectively).  
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Figure 4:Decrease in Sulphur (S) and oxidized and reduced Nitrogen (N)  deposition in Czech republic (EMP, 2005, 2014, 
2020) 

 

Figure 5 shows the spatial distribution in deposition of oxidised sulphur (mg S/m2) (top), 

oxidised nitrogen (mg N/m2)(middle) and reduced nitrogen (mg N/m2)(lower) in Czechia 

(EMEP, 2020). 
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Figure 5:Spatial distribution in deposition of oxidised sulphur (mg S/m2) (top), oxidised nitrogen (mg N/m2)(middle) and 
reduced nitrogen (mg N/m2)(lower) in Czechia (EMEP, 2020). 

 

Sulphur deposition in Czechia is lowest in the study region (between 200 – 350 mg S/m2 in 

2018), though the deposition of oxidized (500 to 750 mg N/m2) and especially reduced N (750 

– 1000 mg N/m2) is high along the border to Germany and Austria.  For comparison the S, 

oxidized N and reduced N deposition in Birkenes, southernmost Norway, receiving the highest 

acid rain loading in Norway, was in 2012 measured to 448 mg S/m2, 756 mg N/m2 and 648 mg 

N/m2, respectively, implying rather similar acid rain loading. 
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4.1.2 Temperature and precipitation  

The average annual rainfall in The Czech Republic varies spatially between 450 mm to 1250 

mm during the time period 1981-2010 and by years from 2011 – 2020, as shown in Figure 6. 

The darkness of the colour in the map answers to the amount of precipitation, i.e. the darker the 

colour the more precipitation in that graphical area that period or year. Apparently, the annual 

amount of precipitation varies and there was no significant development from 2010 – 2019. On 

the other hand, it is clear that 2013 and 2017 were exposed to more rainfall, while 2015 and 

2018 were dryer years. In 2020, the amount of precipitation was high, especially in regions in 

southeast, in north and at one area in the middle. This indicates that the areas that had the most 

precipitation in 1981 to 2010 were even wetter in 2020.  

The mean annual temperature varies spatially within the Czech Republic from 2 °C to 11 °C 

from 1981 – 2010. The year-to-year variation from 2011 to 2019 is show in Figure 7 From the 

figure it is clear that the temperature has increased over time. From 1980-2010, compared to 

2011, 2012 and 2013 the colour is gradually getting darker. However, from 2013 to 2014 the 

temperature seems to rise significantly. This development continues to 2020, which indicates 

that the annual air temperature is rising in The Czech Republic. 

 

 
Figure 6: Climate maps of rainfall in The Czech Republic (CHMI, 2020). 
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Figure 7 Climate maps of temperature in The Czech Republic (CHMI, 2020). 

 

 
Figure 8 presents the annual rainfall from 1980 to 2020 in the region South Bohemia and Plzeň. 

The development of average rainfall over the last forty years does not indicate an increase. 

However, the temperature shows an increase for both regions (Figure 9).  

 

 
Figure 8: Average rainfall from 1980-2020 in the region South Bohemia and Plzeň (CHMI, 2020).  
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Figure 9: Average temperatures from 1980-2020 in the region South Bohemia and Plzeň (CHMI, 2020) 

 
 
 
 
Summing up, both Sulphur- and reactive nitrogen deposition in Czech is greatly reduced during 

the last 40 years, although of which the studied region has the lowest sulphur deposition in 

Czechia. The temperature was found to have a significant increasing trend, however there was 

no indication of any specific seasonal changes. The amount and intensity of rainfall do not show 

any temporal trends.  
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4.2 Catchments characteristics  

 

The compiled data on the studied catchments from the data mining are described in this chapter.  

All of the sampling points of the Otava catchment lies within a range of 922 square kilometers 

and are all tributaries to Otava River. However, quantitative analysis of their land composition 

cover shows that there are wide spatial difference in the land-use composition between the 

catchments. Although data exists, due to the limited time period, analysis of temporal difference 

was not within the scope of this study. In order to achieve some understanding of the water 

chemistry in the surface waters of the catchments only the key chemical parameters (i.e., pH, 

alkalinity, SO42-, Ca2+, total N and total P) were assessed. Importantly, the project is in an early 

phase and therefore the spatial comparison of the parameters is limited to the average, min, 

max, median, and quartiles. 

 

Figure 10 shows the outlines of all the sub-catchments to Otava catchment, this illustrates the 

shape of the catchments. Also, the small lines within each catchments indicates the number of 

polygons (as described in 3.1.3). Figure 12a to 12gdisplay pie charts of the relative land cover 

composition, regarding forest, cropland, grassland, water and urban land. (Copernicus, 2019).  

 



 
 
23 

 
Figure10: The scape of the catchments outlines as well as polygons for all the sub-catchments in Otava. 

 

Otava - Pisek nad sampling site is located just 

west of the city center of Pisek, one of the last 

city’s the Otava river runs through before it 

merges with the larger Vltava river. This 

catchment covers thus the entire watershed of 

Otova and Blanice watercourse. This high 

order river has a high coverage of cropland 

(51.5%). The rest is forest (45.8%). The 

surface water  has the highest Ca2+ 

concentration, almost 5 times higher than the 

low order Volšovka - Červené Dvorce and over 

2 times more than the low order Blanice - Podedvory, as presented in Table 1. 

Figure 11a: Land cover composition in the entire Otava 
catchment. 
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Blanice Putim pod comprises the entire 

Blanice watercourse, including the Blanice 

– Podedvory sub catchment. The sampling 

point is at the mouth of the watercourse 

where Blanice river meets Otava river. The 

Blanice watershed accounts for about a 

third of the Pisek catchment, Land-use 

composition is thus similar to Pisek, with 

domination of cropland (51.4%) and forest 

(43.6%). This similarity is mainly 

reflecting the similar stream. 

order of these two watercourses.   

 Blanice Podedvory is the upper part of 

Blanice river. This catchment differs 

from the lower part of the river (i.e., 

Blanice Putim) with a much higher forest 

cover (94.3%). Of all the catchment, 

Blanice Podedvory has the highest 

amount of forest cover.  
 
 

 
Figure11c: Land cover composition in Blanice Podedvory catchment. 

Figure 11b: Land cover composition in Blanice Putim  
catchment.  
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Volyňka - Strakonice is located in the 

lower part of the Otava river including 

thesub-catchments Peklov - Nemětice and 

Volyňka - Vimperk nad. The catchment has 

a land composition dominated by forest 

(80.7%). Although relatively scattered, this 

catchment has the highest percentage cover 

of urban land (6.3%).  

 
 
 
 

 

  

Černíčský potok – Bojanovice, has the 

highest coverage of cropland (70.6%) of all 

the catchments. The catchment is located 

in the Otava river lowland, representing 

one of the first tributaries to Otava river.  

The water chemistry in the runoff from this 

sub-catchment has the highest values in 

regards to all key chemical parameters, 

compared to the other Otava catchments 

(Table 1). The concentration of sulfate is 

almost 7 times higher than Volšovkou, further up-stream, and over 2 times higher than found 

in main Pisek river. This is mainly due to high evapotranspiration in the cropland fields.  
 

Figure15: Land cover composition in Černíčský potok catchment  

Figure 11d: Land cover composition of Volyňka - Strakonice 
catchment. 

Figure 11e:  Land cover composition of Černíčský potok 
catchment. 
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Otava - nad Volšovkou (Červené  

Dvorce) is located in the Otava river north 

of Losenice, and just south of the city 

Sušice. The catchment has a land 

coverage dominated by forest (92.1%) 

and has the lowest concentration of Ca2+ 

and nitrogen in the water chemistry.  
 
 
 
 

 
 
 

 

Losenice is a sub-catchment of Otava - nad 

Volšovkou, located south of Volšovkou in 

the river of the town Rejštejn. Locenice lies 

near the head catchment of the Otava river. 

The catchment has a high forest coverage 

(85.3%), as well as some cropland (13.8%).  
 
 
 
 

The quartiles (Table 1) are used to 

illustrate the spred in the variables, since this removes 25% of the upper (75%) and lower scale 

(25%), and so removes any outliers and makes the remaining 50% of the data more generic. In 

order to set the levels of the chemical parameters from the Czech catchments in a familiar 

context they were compared to the levels found in the 100-lakes project in Norway. This 

provides information regarding how the catchments in the Czech Republic are similar or 

different compared to our familiar lakes found southeastern Norway. 

 

 

 

Table 1: Quartiles and means of key chemical parameters (i.e., pH, alkalinity, sulfate, calcium, 

nitrogen and phosphate) from monitoring data between 2000-2006 for the catchment in Czechia 

Figure 11f: Land cover composition in Volšovkou 
catchment. 

Figure 14: Land cover composition in Losenice catchment. 

Figure 11g: Land cover composition of Losenice catchment.  
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and the same parameters from the spatial variation in the 100-Lakes Project. The same table 

including min max is provided in in Appendix. “Table1A“ denote no data. 
 

Otava 
- Písek  

Blanice 
- Putim 
pod Volyňka  

Černíčský 
potok  Volšovkou Losenice  

 
 
 
Podedvory 

 
 
100-
Lakes  

pH 25% 7.70 7.70 7.75 8.10 7.50 7.40 7.60 5.95 

Median 
7.50 7.50 7.60 7.80 7.10 7.20 7.50 

6.50 

75% 
7.30 7.30 7.40 7.78 7.10 7.10 7.30 

6.70 

Alkanility 
(mmol/L) 

25% 0.67 - 0.94 - 0.19 - 0.38 0.09 

Median 
0.830 - 1.00 - 0.250 - 0.440 

0.l53 

75% 0.96 - 1.10 - 0.31 - 0.53 0.256 

SO4
2- 

(mg/L) 
25% 17.0 - - 37.0 5.5 - - 1.516 

Median 
21.0 - - 43.5 7.0 - - 

2.22 

25% 
28.0 - - 97.8 9.00 - - 

3.725 

Ca2+ 

(mg/L) 
Median 9.73 - - - 2.00 - 4.00 1.475 

25% 
14.0 - - - 2.80 - 4.50 

2.44 

Median 18.0 - - - 4.00 - 7.00 4.635 

TotN 
(mg/L) 

25% 2.03 2.26 2.67 2.84 1.06 1.23 1.59 0.1845 

Median 
2.39 2.73 3.13 3.44 1.26 1.50 1.86 

0.27 

75% 
3.22 3.26 3.73 4.95 1.59 1.77 2.23 

0.4225 

TotP 
(mg/L) 

25% 0.08 0,11 0.09 0.10 0.03 0.04 0.03 0.0055 

Median 
0.10 0.13 0.11 0.150 0.03 0.06 0.032 

0.0089 

75% 0.13 0.19 0.16 0.24 0.04 0.07 0.05 0.0147 

 

Compared to the Norwegian surface waters all catchments in Otava have a higher pH value (8 

> pH > 7) compared to the southeastern Norwegian lakes, especially Černíčský potok that had 

a pH of 8.10. This is significantly different from the pH in 100-Lakes Project, where median is 

6.50, and the quartiles vary from 5.95 - 6.70, i.e. slightly on the more acidic side of the pH 

scale. Likewise, the median alkalinity is higher in Pisek and Blanice Podedvory compared to 

what we find in our local surface waters in Norway. For Volšovkou the alkalinity is about the 

same as the 75% quartile of Norway. This can be seen in connection with pH, since the 

alkalinity is the capacity of water to resist acidification. In waters with pH above 6.3 this 

alkalinity is basically made up of a high bicarbonate (HCO3-) concentration. The levels of SO42- 

and Ca2+ in the three Otava catchments that have data for these parameters indicate that the 

concentrations are higher than in Norway. In fact, the median sulphate value in Pisek is almost 

10 times higher than the median found in the 100-lakes project. This is also the same for Ca2+ 

and TotN. The highest concentration of Ca2+ in Otava (Pisek) is almost 6 times higher than 

found in Norway. The high levels of HCO3- (based on alkalinity) and Ca2+ imply that there is 

easy weatherable carbonates in the soils.  The largest differences between the Czech and 

Norwegian sites are in the levels of nutrients. The TotP concentrations are much higher in in 
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the Czech sites, where the highest median value found in Černíčský potok (0.15) is almost 17 

times higher than the highest median value in the Norwegian lakes. The highest median value 

for TotN (Černíčský potok) is likewise almost 13 times higher. This clearly shows that the 

studied Czech watersheds are strongly influenced by agricultural activities and/or sewage.   

 

4.3 Time trend analysis 

4.3.1 NDVI 

Temporal changes in biomass, based on NDVI data for the years 2000 to 2019, are presented 

for each catchment in this chapter. The Loess regression technique creates a smooth regression 

line based on the moving average of each year. The vertical lines for each point indicate the 

standard derivation of the set of NDVI measurement that year, this includes all the 

measurements in the polygons (see 3.1.3) of the catchment. Temporal changes in biomass, 

based on NDVI data for the years 2000 to 2019, are presented for each catchment in this chapter. 

The Loess regression technique creates a smooth regression line based on the moving average 

of each year. The vertical lines for each point indicate the standard derivation (STD) of the set 

of NDVI measurement that year, this includes all the measurements in the polygons (see 3.1.3) 

of the catchment. This means that the STD in data for each polygon in the catchment is 

determined and so on the spread between the polygons are found. These STD values are 

combined and make up for the average spread in the whole catchment for each year. For 

example, Černíčský potok has five polygons (see 3.1.1), for each polygon there are NDVI 

measurements at the 1st, 11th and 21th of the months June, July and August. This makes up for 

9 files a year and a total of 180 NDVI observations for every polygon from 2000-2019. To 

combine the data of the 180 observations the average NDVI and the standard derivation for 

each year is found for all the polygons. To find the NDVI for the whole catchment the NDVI 

measurements from all the polygons are combined, the standard derivation is so on also 

calculated from the standard derivations from each polygon, this leads to the standard derivation 

shown as vertical lines for each point. 

 

The NDVI increases in all the catchments between 2000 and 2010, based on the positive 

increase of the moving average (i.e., blue lines in Figs. 12 – 18). A slight exception is for 

Volšovkou that peaks in 2007. After 2010 the trends in biomass differ more between the 

catchments. The biomass in Pisek, Volyňka and Černíčský potok decreases slightly until 2019. 

While for the catchments Blanice Putim Pod, with its upper sub-catchment Blanice Podedvory, 

Volšovkou and Losenice, the biomass increases again from around 2012 to 2019. There are no 
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clear differences in the watershed characteristics between these two different NDVI trends since 

2012. 

 

Quartiles and median value of NDVI from year 2000-2019 for the catchments is presented in 

Table 1. Losenice and Blanice Podedvory is the two catchments with the highest quartile and 

mean NDVI value, thus the highest vegetation density. These catchments have a forest cover 

of 85% and 94%, respectively.   

 

Table 2: Median and quartile NDVI values of the watersheds from 2000-2019.  

 

Písek  

Blanice 

Putim  Volyňka  

Černíčský 

potok  Volšovkou Losenice  

Blanice  

Podedvory 

25% 0.654 
 

0.639 
 

0.665 
 

0.632 

 

0.685 
 

0.709 
 

0.708 
 

Median 0.682 
 

0.665 
 

0.691 
 

0.668 
 

0.708 
 

0.728 
 

0.729 
 

75% 0.610 
 

0.688 
 

0.714 
 

0.691 
 

0.735 
 

0.756 
 

0.754 
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Figure 12: NDVI for Pisek nad from 2000-2019. 

 
Figure 13: NDVI for Blanice Putim Pod  from 2000-2019. 
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Figure 14: NDVI for Volynka from 2000-2019 

 
Figure 15: NDVI for Černíčský potok from 2000-2019. 
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Figure 16: NDVI for Volšovkou from 2000-2019. 

 
Figure 17: NDVI for Locenice from 2000-2019. 
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Figure 18: NDVI for Blanice Podedvory from 2000-2019. 

 
To sum up, all of the catchments show an overall increasing trend in biomass from 2000-2010.  

Differences in temporal trends in biomass do not appear to be governed by the catchment 

characteristics assessed in this study.  

The highest biomass are found in the mainly forested Blanice Podedvory and Losenice.  

The causes for changes in vegetation density are not well documented, but it is likely to be 

linked to higher air temperature (Figure 9), accumulation of N and changes in land use. The 

amount of vegetation growth is affected by the increasing temperature, as it lengthens the 

growing season leading to more vegetation. Increased biomass causes the SOM pool to increase 

and be available for degradation and possible leaching of more DNOM in surface waters.  

 

4.3.2 Water chemistry  

The Czech waterworks monitor the water chemistry in the runoff from the watersheds described 

in Chapt 4.2. These data that were presented in Table 1 had been compiled by our Czech 

partners for the period from 2000 to 2006. Of the studied sites only Pisek, Volšovkou and 

Blanice Podedvory had data for DOC. In addition the DOC concentration of the water samples 

taken in the Czech Republic in January 2021 are presented in Table 2. This provides DOC data 
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to the catchments that have no current DOC data (Table 1). As seen in Table 2 the DOC 

concentration varies from 1.64 mg C/L in Losenice to 6.30 mg C/L in Černíčský potok. The 

high levels at Černíčský potok is likely due to that agriculture accounts for more than 75% of 

the catchment area. There are also large differences in evapotranspiration between the 

mountainous Losenice and the Černíčský potok lowland, causing dilution in Losenice and up 

concentration in Černíčský potok.  

 

Table 3: Measured DOC concentration (mg C/L) of the water samples taken 21.January 2021. 

 

Písek  

Blanice 

Putim  Volyňka  

Černíčský 

potok  Volšovkou Losenice  

Blanice  

Podedvory 

DOC 3.43 4.96 4.52 6.30 2.24 1.64 3.23 

 

Considering the large seasonal fluctuations any time-trend based analysis would be unreliable 

due to the limited duration of the monitoring data. The median and quartile DOC concentrations 

at the three watersheds with DOC data are compared to the DOC levels in the Norwegian lakes 

from the 100-Lakes Project (Table 3). The DOC concentrations of the new sample from Pisek, 

Blanice Podedvory and Volšovkou collected in January 2021 are compared to the DOC 

concentrations in the runoff from these catchments in January to February 2000 to 2006 

(Figures 24 and 25).  

 

Table 4: Median and quartile DOC concentrations (mg C/L) of the watersheds with DOC 

monitoring data and 100-Lakes Project 

DOC 

Písek  Volšovkou 

Blanice  

Podedvory 

100-Lakes  

25% 4.85 2.80 3.83 4.44 

Median 6.10 4.65 5.45 7.32 

75% 7.70 5.60 6.20 11.0 

 

 

For the three catchments that have DOC data from 2000-2006 (Table 3) their median DOC 

concentrations are ranked as Pisek > Blanice Podedvory> Volšovkou. The relatively high levels 

at Pisek may be due to anthropogenic input from agriculture, comprising more than half of the 

watershed, and sewage due to several large villages with this large watershed. The variation 
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between the 25% and 75% quartile in Table 3 reflect the amplitude of seasonal fluctuations in 

DOC concentration. Smallest variation is found at Blanice Podedvory, which is a headwater 

catchment dominated by 94% forest.  The 25% quartile DOC concentration in Pisek is higher 

compared to the 100-lakes 25% quartile; otherwise, the overall DOC concentrations are lower 

in the Otava catchments compared to the 100-lakes.  

 

Only Blanice Putim and Volyňka have DOC concentrations in 2021 (Table 2) that are  within 

the ranges of the median values of the monitored DOC concentrations in 2000-2006 presented 

in Table 3.  Volsovkou and Losenice have a lower DOC concentration in 2021 than the 25 

quartile values in 2000-2006.  The concentration of the water sample of Černíčský potok (Table 

2) is higher than the median DOC concentrations found in 2000-2006, but in the range of the 

values in 100-lakes.  

 

From the Figure 19, Figure 20 and Figure 21 it is clear that the DOC concentration of the water 

samples taken in 2021 is lower than the seasonally average DOC concentrations in January-

February 2000-2006 at the three catchments with DOC monitoring data. 

 

 
Figure 19: Annual DOC concentration in January-February (2000-2006) and measured DOC concentration January 18.2021 
Pisek.  
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Figure 20: Annual DOC concentration in January-February (2000-2006) and measured DOC concentration January 18.2021 
Blanice Podedvory.  

 

 

 
Figure 21: Annual DOC concentration in January-February (2000-2006) and measured DOC concentration January 18.2021 
Volsovkou.   

 

 
To sum up, the DOC levels in the runoff from the Czech catchments are somewhat lower than 

what we find in our local surface waters. The spatial variation in levels of DOC appear to be 

mainly governed by the fraction of agricultural land-use in the watersheds. This may also reflect 

a higher evapotranspiration and thus up-concentration in the lowland regions. Based on the 

existing data there is no cause to conclude that the levels of DNOM in the studied Czech surface 
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waters has increased – rather the opposite. This we may speculate can be due to decreased loss 

of manure through surface runoff from agriculture, as well as improved sewage treatment.  

  
5. Conclusion  

 

The study of long term trends in drivers of DNOM increase showed that there from 2000 to 

2020 have been a significant decrease in acid rain loading, as well as an increase in temperature 

and in biomass. Based on this one would expect to see an increase in the levels of DNOM in 

the runoff from the studied catchments. On the contrary, none of the DNOM proxies (e.g., DOC, 

Colour or UV absorbance, nor COD_Mn) indicate any increase in DNOM. This may be due a 

too limited record of monitoring data (i.e., only 6 years) with large seasonal  fluctuations. Still, 

the water samples from 2021 also support that there has been no increase in DNOM. 

The pH in these surface waters are slightly alkaline, indicating the presence of carbonates in 

the soil. This is supported by relatively high levels of Calcium.  This generates high ionic 

strength renders a low solubility of the DNOM. The amount of DNOM leached from these non-

acid forest soils is thus expected to be low. The main sources of DNOM are then instead 

anthropogenic runoff from agriculture and possibly sewage from stormflow or network leakage. 

The apparent decline in DNOM may thus be due to improved agricultural management and 

sewage network renovation. 

 

5.1 Future work 

To get a more complex picture of the water chemistry and the concentration and quality of 

DNOM in the Otava catchment there is need for more data of physical and chemical parameters 

of the surface waters and more water samples taken for this purpose. There is need to look at 

the catchments characteristic in more detail, due to how the catchments characteristics affect 

the DNOM and its quality greatly. This project is thus only in a starting phase, there is ongoing 

work with our Czech partners to get more information and hopefully better understanding of 

the chemical and physical parameters affecting DNOM concentrations in the surface waters in 

the Otava catchment so that the DWTP can gain knowledge about changes in raw water quality. 
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6.Appendix 
Data Availability Statement: The data from the 100-lakes project in this study is 
available on the open access :  
https://osf.io/r39ng/?view_only=d1b8c4c2c68c4ca59bb4c78a817fc64b. 
 
 
 
 
6.1 Experimental lab-work  
Table A1: Result of the experimental lab-work of the waters samples for the Czech Republic.  

Description Date Catchment  DOC mg/L TN/mg/L RR tmax_h BdgT ox_initial Abs. 254 Abs. 400 

Písek 18.01.2021 
Otava river 
catchment 3,426 2,291 0,58473625 15,406375 3,119 301,29562 0,13 0,017 

Putim pod 18.01.2021 
Otava river 
catchment 4,960 3,208 0,99002506 15,0303333 2,62033333 243,777575 0,172 0,018 

Volyňka  18.01.2021 
Otava river 
catchment 4,520 4,937 1,094214 14,32025 2,76425 301,29562 0,135 0,013 

Peklov  18.01.2021 
Otava river 
catchment 3,287 3,837 1,06264887 16,3911667 3,26275 275,715526 0,107 0,012 

Černíčský 
potok  18.01.2021 

Otava river 
catchment 6,296 2,312 1,00610943 17,1519167 3,57558333 275,715526 0,171 0,015 

Nezdický 
potok  18.01.2021 

Otava river 
catchment 3,100 3,430 0,98958226 16,167125 5,41841667 281,118129 0,101 0,012 

Ostružná  18.01.2021 
Otava river 
catchment 2,727 2,736 1,20832197 15,8629167 3,77 281,11813 0,095 0,01 

Volšovka  18.01.2021 
Otava river 
catchment 1,958 1,819 1,76509005 13,0565833 2,291 301,29562 0,067 0,008 

Volšovkou 18.01.2021 
Otava river 
catchment 2,238 0,870 1,27697156 12,8198333 2,36683333 301,29562 0,113 0,015 

Losenice  18.01.2021 
Otava river 
catchment 1,642 1,192 0,9121973 14,33725 3,11091667 301,29562 0,067 0,009 

Hamerský 
potok  18.01.2021 

Otava river 
catchment 2,231 0,460 1,17669301 14,7979167 2,35841667 243,777575 0,122 0,017 

Vydra  18.01.2021 
Otava river 
catchment 2,556 0,767 0,04217158 15,2161667 1,85091667 243,777575 0,145 0,022 

Volyňka  18.01.2021 
Otava river 
catchment 2,301 0,834 0,94576191 14,9711667 2,51075 275,715526 0,088 0,01 

Podedvory 18.01.2021 
Otava river 
catchment 3,228 1,308 1,1275736 14,6500833 2,56125 243,777575 0,136 0,017 

Karhov1 19.01.2021 
Karhov 
catchment 12,570 0,894 1,13181861 14,3837083 3,16983333 243,777575 0,553 0,061 

Karhov2 19.01.2021 
Karhov 
catchment 9,648 0,808 1,95334765 14,7049167 2,67133333 275,715526 0,454 0,054 

Karhov3 19.01.2021 
Karhov 
catchment   10,710 0,831 1,05482946 16,1629583 3,10225 275,715526 0,462 
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6.2 NDVI raw data  
Under is the raw data for the NDVI graphs presented in Figure … - Figure …, with annual 
NDVI for 2000-2019 including standard derivation for each catchment is presented in Figure 
1A and Figure 2A.  

 
Figure 1A: Annual NDVI data and standard derivation for the catchments Pisek, Putim Pod and Volynka.  
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Catchment 5. Černíčský potokSTD 9. VolšovkouSTD 10. Losenice STD 14. PodedvorySTD
2000 0,6208832 0,05993455 0,6820992 0,06987419 0,717146 0,05284148 0,6781174 0,05832546
2001 0,6352209 0,03992265 0,6630313 0,0550179 0,6818338 0,05734011 0,6813235 0,04900812
2002 0,6311732 0,03784036 0,6897443 0,0470241 0,7067038 0,03639993 0,7196301 0,03480017
2003 0,5755368 0,05712595 0,6821284 0,06358024 0,6935977 0,05692989 0,6868904 0,0420536
2004 0,636935 0,04908715 0,6833914 0,05400217 0,6895703 0,05547628 0,7042403 0,04307435
2005 0,6546368 0,02513652 0,7203691 0,0620747 0,7276798 0,05474149 0,7181351 0,05358248
2006 0,6843531 0,06780344 0,7042493 0,09637689 0,7166874 0,07782143 0,7261871 0,06493417
2007 0,6721289 0,04582964 0,6982734 0,05388043 0,7347731 0,03249402 0,7275749 0,03738812
2008 0,6875797 0,04406178 0,7355504 0,06978756 0,7435 0,06595436 0,7674858 0,04986699
2009 0,6911714 0,03711527 0,662699 0,07327863 0,7059843 0,05628535 0,7047076 0,05627403
2010 0,6903342 0,03506611 0,6896531 0,08960961 0,7284612 0,06423377 0,7450417 0,06129367
2011 0,69476 0,03451218 0,7213023 0,06893434 0,7294014 0,0674541 0,7525433 0,06006366
2012 0,708839 0,03244655 0,7026386 0,06811823 0,7259987 0,06923445 0,7542506 0,05786202
2013 0,6913194 0,02801272 0,7321402 0,06776767 0,760107 0,07432394 0,7397797 0,07770496
2014 0,67642 0,03760636 0,7122322 0,05935319 0,7242617 0,07853477 0,7304163 0,05934988
2015 0,5965886 0,10667662 0,7219266 0,04883045 0,7359221 0,05312326 0,7249706 0,05306262
2016 0,7306027 0,03393042 0,7563613 0,05529678 0,8007154 0,04611756 0,7760567 0,04242773
2017 0,6635356 0,0507703 0,7436107 0,05359218 0,7738234 0,05191674 0,7601225 0,04445368
2018 0,617791 0,04997603 0,739744 0,04649683 0,7596103 0,04752176 0,7394172 0,04118424
2019 0,6565649 0,07734099 0,7659561 0,05298462 0,7739876 0,06694697 0,7908692 0,04483747

Figure 2A: Annual NDVI data and standard derivation for the catchments CP, Volsovkou, Losenice and Podedvory.  
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6.3. Land composition cover.  
Data for caulated land cover composition is presented in Figur 3A and Figure 4A.  

 
Figure 3A:Raw data for pie chart of land cover composition. 

 

 
Figure 4A:Raw data for pie chart of land cover composition. 
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6.R-script  
The R-skript used to extract and calculate NDVI in the Otava catchments: 
 

#install packages ----- 
install.packages("dplyr") 
install.packages("ncdf4") 
install.packages("raster") 
install.packages("sf") 
install.packages("stringr") 
install.packages("rgdal") 
install.packages("writexl") 
install.packages("xlsx") 
#get packages ---- 
library(dplyr) 
library(ncdf4) 
library(raster) 
library(sf) 
library(stringr) 
library(rgdal) 
library(ggplot2) 
library(RColorBrewer) 
library(dplyr) 
library(xlsx) 
library(openxlsx) 
#functions  
 
mean_of_shapefile <- function(catchment_polygon, start_year, stop_year){ 
   
  table <- data.frame() 
   
   
  for (year in start_year:stop_year){ 
    if (year <= 2011){ 
      setwd("C:/Martine/") 
    } else{ 
      setwd("~/") 
    } 
    path1 <- paste("NDVI_data", year, sep = "/") #lag navn til NDVI mappe 
    filenames <- list.files(path1, full.names=TRUE) #lag liste over alle filer i mappa 
     
    for (i in 1:length(filenames)){ 
      ndvi_map <- raster(filenames[i], varname="NDVI") #f?r NDVI representert med et kart 
      ndvi <- handle_shapefile(catchment_polygon, ndvi_map) #f?r snitt-NDVI i nedb?rsfeltet 
      total_date <- filenames[i] 
      total_date <- str_sub(total_date, start = 27, end = 34) 
      trow <- c(total_date, ndvi) 
      table <- rbind(table, trow)  
    } 
  } 
  colnames(table) = c("Date", "NDVI") 
  return(table) 
}     
 
handle_shapefile <- function(catchment_polygon, ndvi_map){ 
  spdf <- as_Spatial(catchment_polygon$geometry,IDs=as.character(catchment_polygon$station_id)) #change of format in some way 
  ndvi_vals <- extract(ndvi_map,spdf) #linking the catchment_polygon to the NDVI map 
  #print(ndvi_vals) 
  ndvi <- mean(ndvi_vals[[1]], na.rm = TRUE) #ta gjennomsnittet og kast NA verdier 
 
 
return(ndvi) 
} 
annual_NDVI <- function(catchment_table){ 
  #transform NDVI elements to numeric 
  ndvi <- as.numeric(catchment_table[,2]) 
  years <- catchment_table[,1] %>% str_sub(0,4) %>% unique() 
  NDVI <- c() 
  NDVI_SD <- c() 
  #make a list where the indexes are every 12th element 
   
  for(i in years){ 
    l <- grep(i, catchment_table[,1]) 
    ndvi_mean <- ndvi[l] %>% mean(na.rm = T) 
    ndvi_sd <- ndvi[l] %>% sd(na.rm = T) 
    NDVI <- append(NDVI,ndvi_mean) 
    NDVI_SD <- append(NDVI_SD, ndvi_sd) 
  } 
  ndvi_df <- data.frame(years,NDVI, NDVI_SD) 
  return(ndvi_df) 
} 
 
 
#function for returning NDVI for specific years 
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pathS<-"~/catchment_outlines/catchment_outlines/Sampling/odberyHBU.shp" 
testS<-st_read(pathS) 
 
#nr.1 Pisek nad 
path1<-"~/catchment_outlines/catchment_outlines/1/Otava-O1.shp" 
test1<-st_read(path1) 
 
#nr.2 Blanice - Putim Pod  
path2<-"~/catchment_outlines/catchment_outlines/2/Otava-O2.shp" 
test2<-st_read(path2) 
 
#nr.3 Volyňka 
path3<-"~/catchment_outlines/catchment_outlines/3/Otava-O3.shp" 
test3<-st_read(path3) 
 
#nr.5 Černíčský potok 
path5<-"~/catchment_outlines/catchment_outlines/5/Otava-O5.shp" 
test5<-st_read(path5) 
 
#nr. 9 Volsovkou 
path9<-"~/catchment_outlines/catchment_outlines/9/Otava-O9.shp" 
test9<-st_read(path9) 
 
#nr. 10 Locenice 
path10<-"~/catchment_outlines/catchment_outlines/10/Otava-O10.shp" 
test10<-st_read(path10) 
 
 
#nr.14 Blanice - Podedvory  
path14<-"~/catchment_outlines/catchment_outlines/14/Otava-O14.shp" 
test14<-st_read(path14) #24 deler 
 
 
 
#nr.1 Pisek 
Otava1_nr1<-test1[1,] 
 
#nr.2 Blanice -Putim Pod 
Otava2_nr1<-test2[1,] 
Otava2_nr2<-test2[2,] 
Otava2_nr3<-test2[3,] 
Otava2_nr4<-test2[4,] 
Otava2_nr5<-test2[5,] 
Otava2_nr6<-test2[6,] 
Otava2_nr7<-test2[7,] 
Otava2_nr8<-test2[8,] 
Otava2_nr9<-test2[9,] 
Otava2_nr10<-test2[10,] 
Otava2_nr11<-test2[11,] 
Otava2_nr12<-test2[12,] 
Otava2_nr13<-test2[13,] 
Otava2_nr14<-test2[14,] 
Otava2_nr15<-test2[15,] 
Otava2_nr16<-test2[16,] 
Otava2_nr17<-test2[17,] 
Otava2_nr18<-test2[18,] 
Otava2_nr19<-test2[19,] 
Otava2_nr20<-test2[20,] 
Otava2_nr21<-test2[21,] 
Otava2_nr22<-test2[22,] 
Otava2_nr23<-test2[23,] 
Otava2_nr24<-test2[24,] 
Otava2_nr25<-test2[25,] 
Otava2_nr26<-test2[26,] 
Otava2_nr27<-test2[27,] 
Otava2_nr28<-test2[28,] 
Otava2_nr29<-test2[29,] 
Otava2_nr30<-test2[30,] 
Otava2_nr31<-test2[31,] 
Otava2_nr32<-test2[32,] 
Otava2_nr33<-test2[33,] 
Otava2_nr34<-test2[34,] 
Otava2_nr35<-test2[35,] 
Otava2_nr36<-test2[36,] 
Otava2_nr37<-test2[37,] 
Otava2_nr38<-test2[38,] 
Otava2_nr39<-test2[39,] 
Otava2_nr40<-test2[40,] 
Otava2_nr41<-test2[41,] 
Otava2_nr42<-test2[42,] 
Otava2_nr43<-test2[43,] 
Otava2_nr44<-test2[44,] 
Otava2_nr45<-test2[45,] 
Otava2_nr46<-test2[46,] 
Otava2_nr47<-test2[47,] 
Otava2_nr48<-test2[48,] 
Otava2_nr49<-test2[49,] 
Otava2_nr50<-test2[50,] 
Otava2_nr51<-test2[51,] 
Otava2_nr52<-test2[52,] 
Otava2_nr53<-test2[53,] 
Otava2_nr54<-test2[54,] 
Otava2_nr55<-test2[55,] 



 
 
48 

Otava2_nr56<-test2[56,] 
Otava2_nr57<-test2[57,] 
Otava2_nr58<-test2[58,] 
Otava2_nr59<-test2[59,] 
Otava2_nr60<-test2[60,] 
Otava2_nr61<-test2[61,] 
Otava2_nr62<-test2[62,] 
Otava2_nr63<-test2[63,] 
Otava2_nr64<-test2[64,] 
Otava2_nr65<-test2[65,] 
Otava2_nr66<-test2[66,] 
Otava2_nr67<-test2[67,] 
Otava2_nr68<-test2[68,] 
Otava2_nr69<-test2[69,] 
Otava2_nr70<-test2[70,] 
Otava2_nr71<-test2[71,] 
Otava2_nr72<-test2[72,] 
Otava2_nr73<-test2[73,] 
Otava2_nr74<-test2[74,] 
Otava2_nr75<-test2[75,] 
Otava2_nr76<-test2[76,] 
Otava2_nr77<-test2[77,] 
Otava2_nr78<-test2[78,] 
Otava2_nr79<-test2[79,] 
Otava2_nr80<-test2[80,] 
Otava2_nr81<-test2[81,] 
Otava2_nr82<-test2[82,] 
Otava2_nr83<-test2[83,] 
Otava2_nr84<-test2[84,] 
Otava2_nr85<-test2[85,] 
Otava2_nr86<-test2[86,] 
Otava2_nr87<-test2[87,] 
Otava2_nr88<-test2[88,] 
Otava2_nr89<-test2[89,] 
Otava2_nr90<-test2[90,] 
Otava2_nr91<-test2[91,] 
Otava2_nr92<-test2[92,] 
Otava2_nr93<-test2[93,] 
Otava2_nr94<-test2[94,] 
Otava2_nr95<-test2[95,] 
Otava2_nr96<-test2[96,] 
Otava2_nr97<-test2[97,] 
Otava2_nr98<-test2[98,] 
Otava2_nr99<-test2[99,] 
Otava2_nr100<-test2[100,] 
Otava2_nr101<-test2[101,] 
Otava2_nr102<-test2[102,] 
Otava2_nr103<-test2[103,] 
Otava2_nr104<-test2[104,] 
Otava2_nr105<-test2[105,] 
Otava2_nr106<-test2[106,] 
Otava2_nr107<-test2[107,] 
Otava2_nr108<-test2[108,] 
Otava2_nr109<-test2[109,] 
Otava2_nr110<-test2[110,] 
Otava2_nr111<-test2[111,] 
Otava2_nr112<-test2[112,] 
Otava2_nr113<-test2[113,] 
Otava2_nr114<-test2[114,] 
Otava2_nr115<-test2[115,] 
 
 
#nr.3 Volyňka 
Otava3_nr1<-test3[1,] 
Otava3_nr2<-test3[2,] 
Otava3_nr3<-test3[3,] 
Otava3_nr4<-test3[4,] 
Otava3_nr5<-test3[5,] 
Otava3_nr6<-test3[6,] 
Otava3_nr7<-test3[7,] 
Otava3_nr8<-test3[8,] 
Otava3_nr9<-test3[9,] 
Otava3_nr10<-test3[10,] 
Otava3_nr11<-test3[11,] 
Otava3_nr12<-test3[12,] 
Otava3_nr13<-test3[13,] 
Otava3_nr14<-test3[14,] 
Otava3_nr15<-test3[15,] 
Otava3_nr16<-test3[16,] 
Otava3_nr17<-test3[17,] 
Otava3_nr18<-test3[18,] 
Otava3_nr19<-test3[19,] 
Otava3_nr20<-test3[20,] 
Otava3_nr21<-test3[21,] 
Otava3_nr22<-test3[22,] 
Otava3_nr23<-test3[23,] 
Otava3_nr24<-test3[24,] 
Otava3_nr25<-test3[25,] 
Otava3_nr26<-test3[26,] 
Otava3_nr27<-test3[27,] 
Otava3_nr28<-test3[28,] 
Otava3_nr29<-test3[29,] 
Otava3_nr30<-test3[30,] 
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Otava3_nr31<-test3[31,] 
Otava3_nr32<-test3[32,] 
Otava3_nr33<-test3[33,] 
Otava3_nr34<-test3[34,] 
Otava3_nr35<-test3[35,] 
Otava3_nr36<-test3[36,] 
Otava3_nr37<-test3[37,] 
Otava3_nr38<-test3[38,] 
Otava3_nr39<-test3[39,] 
Otava3_nr40<-test3[40,] 
Otava3_nr41<-test3[41,] 
Otava3_nr42<-test3[42,] 
Otava3_nr43<-test3[43,] 
Otava3_nr44<-test3[44,] 
 
#nr.5 Černíčský potok 
Otava5_nr1<-test5[1,] 
Otava5_nr2<-test5[2,] 
Otava5_nr3<-test5[3,] 
Otava5_nr4<-test5[4,] 
Otava5_nr5<-test5[5,] 
 
 
#nr.9 Volsovkou 
Otava9_nr1<-test9[1,] 
Otava9_nr2<-test9[2,] 
Otava9_nr3<-test9[3,] 
Otava9_nr4<-test9[4,] 
Otava9_nr5<-test9[5,] 
Otava9_nr6<-test9[6,] 
Otava9_nr7<-test9[7,] 
Otava9_nr8<-test9[8,] 
Otava9_nr9<-test9[9,] 
Otava9_nr10<-test9[10,] 
Otava9_nr11<-test9[11,] 
Otava9_nr12<-test9[12,] 
Otava9_nr13<-test9[13,] 
Otava9_nr14<-test9[14,] 
Otava9_nr15<-test9[15,] 
Otava9_nr16<-test9[16,] 
Otava9_nr17<-test9[17,] 
Otava9_nr18<-test9[18,] 
Otava9_nr19<-test9[19,] 
Otava9_nr20<-test9[20,] 
Otava9_nr21<-test9[21,] 
Otava9_nr22<-test9[22,] 
Otava9_nr23<-test9[23,] 
Otava9_nr24<-test9[24,] 
Otava9_nr25<-test9[25,] 
Otava9_nr26<-test9[26,] 
Otava9_nr27<-test9[27,] 
Otava9_nr28<-test9[28,] 
Otava9_nr29<-test9[29,] 
Otava9_nr30<-test9[30,] 
Otava9_nr31<-test9[31,] 
Otava9_nr32<-test9[32,] 
Otava9_nr33<-test9[33,] 
Otava9_nr34<-test9[34,] 
Otava9_nr35<-test9[35,] 
Otava9_nr36<-test9[36,] 
Otava9_nr37<-test9[37,] 
Otava9_nr38<-test9[38,] 
Otava9_nr39<-test9[39,] 
Otava9_nr40<-test9[40,] 
Otava9_nr41<-test9[41,] 
Otava9_nr42<-test9[42,] 
Otava9_nr43<-test9[43,] 
Otava9_nr44<-test9[44,] 
Otava9_nr45<-test9[45,] 
Otava9_nr46<-test9[46,] 
Otava9_nr47<-test9[47,] 
Otava9_nr48<-test9[48,] 
Otava9_nr49<-test9[49,] 
Otava9_nr50<-test9[50,] 
Otava9_nr51<-test9[51,] 
Otava9_nr52<-test9[52,] 
Otava9_nr53<-test9[53,] 
Otava9_nr54<-test9[54,] 
Otava9_nr55<-test9[55,] 
 
#nr.10 Locenice  
Otava10_nr1<-test10[1,] 
Otava10_nr2<-test10[2,] 
Otava10_nr3<-test10[3,] 
Otava10_nr4<-test10[4,] 
Otava10_nr5<-test10[5,] 
 
#nr.14 Podedvory  
Otava14_nr1<-test14[1,] 
Otava14_nr2<-test14[2,] 
Otava14_nr3<-test14[3,] 
Otava14_nr4<-test14[4,] 
Otava14_nr5<-test14[5,] 



 
 
50 

Otava14_nr6<-test14[6,] 
Otava14_nr7<-test14[7,] 
Otava14_nr8<-test14[8,] 
Otava14_nr9<-test14[9,] 
Otava14_nr10<-test14[10,] 
Otava14_nr11<-test14[11,] 
Otava14_nr12<-test14[12,] 
Otava14_nr13<-test14[13,] 
Otava14_nr14<-test14[14,] 
Otava14_nr15<-test14[15,] 
Otava14_nr16<-test14[16,] 
Otava14_nr17<-test14[17,] 
Otava14_nr18<-test14[18,] 
Otava14_nr19<-test14[19,] 
Otava14_nr20<-test14[20,] 
Otava14_nr21<-test14[21,] 
Otava14_nr22<-test14[22,] 
Otava14_nr23<-test14[23,] 
Otava14_nr24<-test14[24,] 
Otava14_nr25<-test14[25,] 
 
 
#Nummer 1 Pisek 
table1_1 <- mean_of_shapefile(Otava1_nr1,2000,2019) 
mean1_1 <- annual_NDVI(table1_1) 
mean1_1$geometry <- Otava1_nr1$geometry 
mean1_1$id <- "Otava1_nr1" 
 
#2 Blanice - Putim pod 
table1_2 <- mean_of_shapefile(Otava2_nr1,2000,2019) 
mean1_2 <- annual_NDVI(table1_2) 
mean1_2$geometry <- Otava2_nr1$geometry 
mean1_2$id <- "Otava2_nr1" 
 
table2_2 <- mean_of_shapefile(Otava2_nr2,2000,2019) 
mean2_2 <- annual_NDVI(table2_2) 
mean2_2$geometry <- Otava2_nr2$geometry 
mean2_2$id <- "Otava2_nr2" 
 
table3_2 <- mean_of_shapefile(Otava2_nr3,2000,2019) 
mean3_2 <- annual_NDVI(table3_2) 
mean3_2$geometry <- Otava2_nr3$geometry 
mean3_2$id <- "Otava2_nr3" 
 
table4_2 <- mean_of_shapefile(Otava2_nr4,2000,2019) 
mean4_2 <- annual_NDVI(table4_2) 
mean4_2$geometry <- Otava2_nr4$geometry 
mean4_2$id <- "Otava2_nr4" 
 
table5_2 <- mean_of_shapefile(Otava2_nr5,2000,2019) 
mean5_2 <- annual_NDVI(table5_2) 
mean5_2$geometry <- Otava2_nr5$geometry 
mean5_2$id <- "Otava2_nr5" 
 
table6_2 <- mean_of_shapefile(Otava2_nr6,2000,2019) 
mean6_2 <- annual_NDVI(table6_2) 
mean6_2$geometry <- Otava2_nr6$geometry 
mean6_2$id <- "Otava2_nr6" 
 
table7_2 <- mean_of_shapefile(Otava2_nr7,2000,2019) 
mean7_2 <- annual_NDVI(table7_2) 
mean7_2$geometry <- Otava2_nr7$geometry 
mean7_2$id <- "Otava2_nr7" 
 
table8_2 <- mean_of_shapefile(Otava2_nr8,2000,2019) 
mean8_2 <- annual_NDVI(table8_2) 
mean8_2$geometry <- Otava2_nr8$geometry 
mean8_2$id <- "Otava2_nr8" 
 
table9_2 <- mean_of_shapefile(Otava2_nr9,2000,2019) 
mean9_2 <- annual_NDVI(table9_2) 
mean9_2$geometry <- Otava2_nr9$geometry 
mean9_2$id <- "Otava2_nr9" 
 
table10_2 <- mean_of_shapefile(Otava2_nr10,2000,2019) 
mean10_2 <- annual_NDVI(table10_2) 
mean10_2$geometry <- Otava2_nr10$geometry 
mean10_2$id <- "Otava2_nr10" 
 
table11_2 <- mean_of_shapefile(Otava2_nr11,2000,2019) 
mean11_2 <- annual_NDVI(table11_2) 
mean11_2$geometry <- Otava2_nr11$geometry 
mean11_2$id <- "Otava2_nr11" 
 
table12_2 <- mean_of_shapefile(Otava2_nr12,2000,2019) 
mean12_2 <- annual_NDVI(table12_2) 
mean12_2$geometry <- Otava2_nr12$geometry 
mean12_2$id <- "Otava2_nr12" 
 
table13_2 <- mean_of_shapefile(Otava2_nr13,2000,2019) 
mean13_2 <- annual_NDVI(table13_2) 
mean13_2$geometry <- Otava2_nr13$geometry 
mean13_2$id <- "Otava2_nr13" 
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table14_2 <- mean_of_shapefile(Otava2_nr14,2000,2019) 
mean14_2 <- annual_NDVI(table14_2) 
mean14_2$geometry <- Otava2_nr14$geometry 
mean14_2$id <- "Otava2_nr14" 
 
table15_2 <- mean_of_shapefile(Otava2_nr15,2000,2019) 
mean15_2 <- annual_NDVI(table15_2) 
mean15_2$geometry <- Otava2_nr15$geometry 
mean15_2$id <- "Otava2_nr15" 
 
table16_2 <- mean_of_shapefile(Otava2_nr16,2000,2019) 
mean16_2 <- annual_NDVI(table16_2) 
mean16_2$geometry <- Otava2_nr16$geometry 
mean16_2$id <- "Otava2_nr16" 
 
table17_2 <- mean_of_shapefile(Otava2_nr17,2000,2019) 
mean17_2 <- annual_NDVI(table17_2) 
mean17_2$geometry <- Otava2_nr17$geometry 
mean17_2$id <- "Otava2_nr17" 
 
table18_2 <- mean_of_shapefile(Otava2_nr18,2000,2019) 
mean18_2 <- annual_NDVI(table18_2) 
mean18_2$geometry <- Otava2_nr18$geometry 
mean18_2$id <- "Otava2_nr18" 
 
table19_2 <- mean_of_shapefile(Otava2_nr19,2000,2019) 
mean19_2 <- annual_NDVI(table19_2) 
mean19_2$geometry <- Otava2_nr19$geometry 
mean19_2$id <- "Otava2_nr19" 
 
table20_2 <- mean_of_shapefile(Otava2_nr20,2000,2019) 
mean20_2 <- annual_NDVI(table20_2) 
mean20_2$geometry <- Otava2_nr20$geometry 
mean20_2$id <- "Otava2_nr20" 
 
table21_2 <- mean_of_shapefile(Otava2_nr21,2000,2019) 
mean21_2 <- annual_NDVI(table21_2) 
mean21_2$geometry <- Otava2_nr21$geometry 
mean21_2$id <- "Otava2_nr21" 
 
table22_2 <- mean_of_shapefile(Otava2_nr22,2000,2019) 
mean22_2 <- annual_NDVI(table22_2) 
mean22_2$geometry <- Otava2_nr22$geometry 
mean22_2$id <- "Otava2_nr22" 
 
table23_2 <- mean_of_shapefile(Otava2_nr23,2000,2019) 
mean23_2 <- annual_NDVI(table23_2) 
mean23_2$geometry <- Otava2_nr23$geometry 
mean23_2$id <- "Otava2_nr23" 
 
table24_2 <- mean_of_shapefile(Otava2_nr24,2000,2019) 
mean24_2 <- annual_NDVI(table24_2) 
mean24_2$geometry <- Otava2_nr24$geometry 
mean24_2$id <- "Otava2_nr24" 
 
table25_2 <- mean_of_shapefile(Otava2_nr25,2000,2019) 
mean25_2 <- annual_NDVI(table25_2) 
mean25_2$geometry <- Otava2_nr25$geometry 
mean25_2$id <- "Otava2_nr25" 
 
table26_2 <- mean_of_shapefile(Otava2_nr26,2000,2019) 
mean26_2 <- annual_NDVI(table26_2) 
mean26_2$geometry <- Otava2_nr26$geometry 
mean26_2$id <- "Otava2_nr26" 
 
table27_2 <- mean_of_shapefile(Otava2_nr27,2000,2019) 
mean27_2 <- annual_NDVI(table27_2) 
mean27_2$geometry <- Otava2_nr27$geometry 
mean27_2$id <- "Otava2_nr27" 
 
table28_2 <- mean_of_shapefile(Otava2_nr28,2000,2019) 
mean28_2 <- annual_NDVI(table28_2) 
mean28_2$geometry <- Otava2_nr28$geometry 
mean28_2$id <- "Otava2_nr28" 
 
table29_2 <- mean_of_shapefile(Otava2_nr29,2000,2019) 
mean29_2 <- annual_NDVI(table29_2) 
mean29_2$geometry <- Otava2_nr29$geometry 
mean29_2$id <- "Otava2_nr29" 
 
table30_2 <- mean_of_shapefile(Otava2_nr30,2000,2019) 
mean30_2 <- annual_NDVI(table30_2) 
mean30_2$geometry <- Otava2_nr30$geometry 
mean30_2$id <- "Otava2_nr30" 
 
table31_2 <- mean_of_shapefile(Otava2_nr31,2000,2019) 
mean31_2 <- annual_NDVI(table31_2) 
mean31_2$geometry <- Otava2_nr31$geometry 
mean31_2$id <- "Otava2_nr31" 
 
table32_2 <- mean_of_shapefile(Otava2_nr32,2000,2019) 
mean32_2 <- annual_NDVI(table32_2) 



 
 
52 

mean32_2$geometry <- Otava2_nr32$geometry 
mean32_2$id <- "Otava2_nr32" 
 
table33_2 <- mean_of_shapefile(Otava2_nr33,2000,2019) 
mean33_2 <- annual_NDVI(table33_2) 
mean33_2$geometry <- Otava2_nr33$geometry 
mean33_2$id <- "Otava2_nr33" 
 
table34_2 <- mean_of_shapefile(Otava2_nr34,2000,2019) 
mean34_2 <- annual_NDVI(table34_2) 
mean34_2$geometry <- Otava2_nr34$geometry 
mean34_2$id <- "Otava2_nr34" 
 
table35_2 <- mean_of_shapefile(Otava2_nr35,2000,2019) 
mean35_2 <- annual_NDVI(table35_2) 
mean35_2$geometry <- Otava2_nr35$geometry 
mean35_2$id <- "Otava2_nr35" 
 
table36_2 <- mean_of_shapefile(Otava2_nr36,2000,2019) 
mean36_2 <- annual_NDVI(table36_2) 
mean36_2$geometry <- Otava2_nr36$geometry 
mean36_2$id <- "Otava2_nr36" 
 
table37_2 <- mean_of_shapefile(Otava2_nr37,2000,2019) 
mean37_2 <- annual_NDVI(table37_2) 
mean37_2$geometry <- Otava2_nr37$geometry 
mean37_2$id <- "Otava2_nr37" 
 
table38_2 <- mean_of_shapefile(Otava2_nr38,2000,2019) 
mean38_2 <- annual_NDVI(table38_2) 
mean38_2$geometry <- Otava2_nr38$geometry 
mean38_2$id <- "Otava2_nr38" 
 
table39_2 <- mean_of_shapefile(Otava2_nr39,2000,2019) 
mean39_2 <- annual_NDVI(table39_2) 
mean39_2$geometry <- Otava2_nr39$geometry 
mean39_2$id <- "Otava2_nr39" 
 
table40_2 <- mean_of_shapefile(Otava2_nr40,2000,2019) 
mean40_2 <- annual_NDVI(table40_2) 
mean40_2$geometry <- Otava2_nr40$geometry 
mean40_2$id <- "Otava2_nr40" 
 
table41_2 <- mean_of_shapefile(Otava2_nr41,2000,2019) 
mean41_2 <- annual_NDVI(table41_2) 
mean41_2$geometry <- Otava2_nr41$geometry 
mean41_2$id <- "Otava2_nr41" 
 
table42_2 <- mean_of_shapefile(Otava2_nr42,2000,2019) 
mean42_2 <- annual_NDVI(table42_2) 
mean42_2$geometry <- Otava2_nr42$geometry 
mean42_2$id <- "Otava2_nr42" 
 
table43_2 <- mean_of_shapefile(Otava2_nr43,2000,2019) 
mean43_2 <- annual_NDVI(table43_2) 
mean43_2$geometry <- Otava2_nr43$geometry 
mean43_2$id <- "Otava2_nr43" 
 
table44_2 <- mean_of_shapefile(Otava2_nr44,2000,2019) 
mean44_2 <- annual_NDVI(table44_2) 
mean44_2$geometry <- Otava2_nr44$geometry 
mean44_2$id <- "Otava2_nr44" 
 
table45_2 <- mean_of_shapefile(Otava2_nr45,2000,2019) 
mean45_2 <- annual_NDVI(table45_2) 
mean45_2$geometry <- Otava2_nr45$geometry 
mean45_2$id <- "Otava2_nr45" 
 
table46_2 <- mean_of_shapefile(Otava2_nr46,2000,2019) 
mean46_2 <- annual_NDVI(table46_2) 
mean46_2$geometry <- Otava2_nr46$geometry 
mean46_2$id <- "Otava2_nr46" 
 
table47_2 <- mean_of_shapefile(Otava2_nr47,2000,2019) 
mean47_2 <- annual_NDVI(table47_2) 
mean47_2$geometry <- Otava2_nr47$geometry 
mean47_2$id <- "Otava2_nr47" 
 
table48_2 <- mean_of_shapefile(Otava2_nr48,2000,2019) 
mean48_2 <- annual_NDVI(table48_2) 
mean48_2$geometry <- Otava2_nr48$geometry 
mean48_2$id <- "Otava2_nr48" 
 
table49_2 <- mean_of_shapefile(Otava2_nr49,2000,2019) 
mean49_2 <- annual_NDVI(table49_2) 
mean49_2$geometry <- Otava2_nr49$geometry 
mean49_2$id <- "Otava2_nr49" 
 
table50_2 <- mean_of_shapefile(Otava2_nr50,2000,2019) 
mean50_2 <- annual_NDVI(table50_2) 
mean50_2$geometry <- Otava2_nr50$geometry 
mean50_2$id <- "Otava2_nr50" 
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table51_2 <- mean_of_shapefile(Otava2_nr51,2000,2019) 
mean51_2 <- annual_NDVI(table51_2) 
mean51_2$geometry <- Otava2_nr51$geometry 
mean51_2$id <- "Otava2_nr51" 
 
table52_2 <- mean_of_shapefile(Otava2_nr52,2000,2019) 
mean52_2 <- annual_NDVI(table52_2) 
mean52_2$geometry <- Otava2_nr52$geometry 
mean52_2$id <- "Otava2_nr52" 
 
table53_2 <- mean_of_shapefile(Otava2_nr53,2000,2019) 
mean53_2 <- annual_NDVI(table53_2) 
mean53_2$geometry <- Otava2_nr53$geometry 
mean53_2$id <- "Otava2_nr53" 
 
table54_2 <- mean_of_shapefile(Otava2_nr54,2000,2019) 
mean54_2 <- annual_NDVI(table54_2) 
mean54_2$geometry <- Otava2_nr54$geometry 
mean54_2$id <- "Otava2_nr54" 
 
table55_2 <- mean_of_shapefile(Otava2_nr55,2000,2019) 
mean55_2 <- annual_NDVI(table55_2) 
mean55_2$geometry <- Otava2_nr55$geometry 
mean55_2$id <- "Otava2_nr55" 
 
table56_2 <- mean_of_shapefile(Otava2_nr56,2000,2019) 
mean56_2 <- annual_NDVI(table56_2) 
mean56_2$geometry <- Otava2_nr56$geometry 
mean56_2$id <- "Otava2_nr56" 
 
table57_2 <- mean_of_shapefile(Otava2_nr57,2000,2019) 
mean57_2 <- annual_NDVI(table57_2) 
mean57_2$geometry <- Otava2_nr57$geometry 
mean57_2$id <- "Otava2_nr57" 
 
table58_2 <- mean_of_shapefile(Otava2_nr58,2000,2019) 
mean58_2 <- annual_NDVI(table58_2) 
mean58_2$geometry <- Otava2_nr58$geometry 
mean58_2$id <- "Otava2_nr58" 
 
table59_2 <- mean_of_shapefile(Otava2_nr59,2000,2019) 
mean59_2 <- annual_NDVI(table59_2) 
mean59_2$geometry <- Otava2_nr59$geometry 
mean59_2$id <- "Otava2_nr59" 
 
table60_2 <- mean_of_shapefile(Otava2_nr60,2000,2019) 
mean60_2 <- annual_NDVI(table60_2) 
mean60_2$geometry <- Otava2_nr60$geometry 
mean60_2$id <- "Otava2_nr60" 
 
table61_2 <- mean_of_shapefile(Otava2_nr61,2000,2019) 
mean61_2 <- annual_NDVI(table61_2) 
mean61_2$geometry <- Otava2_nr61$geometry 
mean61_2$id <- "Otava2_nr61" 
 
table62_2 <- mean_of_shapefile(Otava2_nr62,2000,2019) 
mean62_2 <- annual_NDVI(table62_2) 
mean62_2$geometry <- Otava2_nr62$geometry 
mean62_2$id <- "Otava2_nr62" 
 
table63_2 <- mean_of_shapefile(Otava2_nr63,2000,2019) 
mean63_2 <- annual_NDVI(table63_2) 
mean63_2$geometry <- Otava2_nr63$geometry 
mean63_2$id <- "Otava2_nr63" 
 
table64_2 <- mean_of_shapefile(Otava2_nr64,2000,2019) 
mean64_2 <- annual_NDVI(table64_2) 
mean64_2$geometry <- Otava2_nr64$geometry 
mean64_2$id <- "Otava2_nr64" 
 
table65_2 <- mean_of_shapefile(Otava2_nr65,2000,2019) 
mean65_2 <- annual_NDVI(table65_2) 
mean65_2$geometry <- Otava2_nr65$geometry 
mean65_2$id <- "Otava2_nr65" 
 
table66_2 <- mean_of_shapefile(Otava2_nr66,2000,2019) 
mean66_2 <- annual_NDVI(table66_2) 
mean66_2$geometry <- Otava2_nr66$geometry 
mean66_2$id <- "Otava2_nr66" 
 
table67_2 <- mean_of_shapefile(Otava2_nr67,2000,2019) 
mean67_2 <- annual_NDVI(table67_2) 
mean67_2$geometry <- Otava2_nr67$geometry 
mean67_2$id <- "Otava2_nr67" 
 
table68_2 <- mean_of_shapefile(Otava2_nr68,2000,2019) 
mean68_2 <- annual_NDVI(table68_2) 
mean68_2$geometry <- Otava2_nr68$geometry 
mean68_2$id <- "Otava2_nr68" 
 
table69_2 <- mean_of_shapefile(Otava2_nr69,2000,2019) 
mean69_2 <- annual_NDVI(table69_2) 
mean69_2$geometry <- Otava2_nr69$geometry 
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mean69_2$id <- "Otava2_nr69" 
 
table70_2 <- mean_of_shapefile(Otava2_nr70,2000,2019) 
mean70_2 <- annual_NDVI(table70_2) 
mean70_2$geometry <- Otava2_nr70$geometry 
mean70_2$id <- "Otava2_nr70" 
 
table71_2 <- mean_of_shapefile(Otava2_nr71,2000,2019) 
mean71_2 <- annual_NDVI(table71_2) 
mean71_2$geometry <- Otava2_nr71$geometry 
mean71_2$id <- "Otava2_nr71" 
 
table72_2 <- mean_of_shapefile(Otava2_nr72,2000,2019) 
mean72_2 <- annual_NDVI(table72_2) 
mean72_2$geometry <- Otava2_nr72$geometry 
mean72_2$id <- "Otava2_nr72" 
 
table73_2 <- mean_of_shapefile(Otava2_nr73,2000,2019) 
mean73_2 <- annual_NDVI(table73_2) 
mean73_2$geometry <- Otava2_nr73$geometry 
mean73_2$id <- "Otava2_nr73" 
 
table74_2 <- mean_of_shapefile(Otava2_nr74,2000,2019) 
mean74_2 <- annual_NDVI(table74_2) 
mean74_2$geometry <- Otava2_nr74$geometry 
mean74_2$id <- "Otava2_nr74" 
 
table75_2 <- mean_of_shapefile(Otava2_nr75,2000,2019) 
mean75_2 <- annual_NDVI(table75_2) 
mean75_2$geometry <- Otava2_nr75$geometry 
mean75_2$id <- "Otava2_nr75" 
 
table76_2 <- mean_of_shapefile(Otava2_nr76,2000,2019) 
mean76_2 <- annual_NDVI(table76_2) 
mean76_2$geometry <- Otava2_nr76$geometry 
mean76_2$id <- "Otava2_nr76" 
 
table77_2 <- mean_of_shapefile(Otava2_nr77,2000,2019) 
mean77_2 <- annual_NDVI(table77_2) 
mean77_2$geometry <- Otava2_nr77$geometry 
mean77_2$id <- "Otava2_nr77" 
 
table78_2 <- mean_of_shapefile(Otava2_nr78,2000,2019) 
mean78_2 <- annual_NDVI(table78_2) 
mean78_2$geometry <- Otava2_nr78$geometry 
mean78_2$id <- "Otava2_nr78" 
 
table79_2 <- mean_of_shapefile(Otava2_nr79,2000,2019) 
mean79_2 <- annual_NDVI(table79_2) 
mean79_2$geometry <- Otava2_nr79$geometry 
mean79_2$id <- "Otava2_nr79" 
 
table80_2 <- mean_of_shapefile(Otava2_nr80,2000,2019) 
mean80_2 <- annual_NDVI(table80_2) 
mean80_2$geometry <- Otava2_nr80$geometry 
mean80_2$id <- "Otava2_nr80" 
 
table81_2 <- mean_of_shapefile(Otava2_nr81,2000,2019) 
mean81_2 <- annual_NDVI(table81_2) 
mean81_2$geometry <- Otava2_nr81$geometry 
mean81_2$id <- "Otava2_nr81" 
 
table82_2 <- mean_of_shapefile(Otava2_nr82,2000,2019) 
mean82_2 <- annual_NDVI(table82_2) 
mean82_2$geometry <- Otava2_nr82$geometry 
mean82_2$id <- "Otava2_nr82" 
 
table83_2 <- mean_of_shapefile(Otava2_nr83,2000,2019) 
mean83_2 <- annual_NDVI(table83_2) 
mean83_2$geometry <- Otava2_nr83$geometry 
mean83_2$id <- "Otava2_nr83" 
 
table84_2 <- mean_of_shapefile(Otava2_nr84,2000,2019) 
mean84_2 <- annual_NDVI(table84_2) 
mean84_2$geometry <- Otava2_nr84$geometry 
mean84_2$id <- "Otava2_nr84" 
 
table85_2 <- mean_of_shapefile(Otava2_nr85,2000,2019) 
mean85_2 <- annual_NDVI(table85_2) 
mean85_2$geometry <- Otava2_nr85$geometry 
mean85_2$id <- "Otava2_nr85" 
 
table86_2 <- mean_of_shapefile(Otava2_nr86,2000,2019) 
mean86_2 <- annual_NDVI(table86_2) 
mean86_2$geometry <- Otava2_nr86$geometry 
mean86_2$id <- "Otava2_nr86" 
 
table87_2 <- mean_of_shapefile(Otava2_nr87,2000,2019) 
mean87_2 <- annual_NDVI(table87_2) 
mean87_2$geometry <- Otava2_nr87$geometry 
mean87_2$id <- "Otava2_nr87" 
 
table88_2 <- mean_of_shapefile(Otava2_nr88,2000,2019) 
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mean88_2 <- annual_NDVI(table88_2) 
mean88_2$geometry <- Otava2_nr88$geometry 
mean88_2$id <- "Otava2_nr88" 
 
table89_2 <- mean_of_shapefile(Otava2_nr89,2000,2019) 
mean89_2 <- annual_NDVI(table89_2) 
mean89_2$geometry <- Otava2_nr89$geometry 
mean89_2$id <- "Otava2_nr89" 
 
table90_2 <- mean_of_shapefile(Otava2_nr90,2000,2019) 
mean90_2 <- annual_NDVI(table90_2) 
mean90_2$geometry <- Otava2_nr90$geometry 
mean90_2$id <- "Otava2_nr90" 
 
table91_2 <- mean_of_shapefile(Otava2_nr91,2000,2019) 
mean91_2 <- annual_NDVI(table91_2) 
mean91_2$geometry <- Otava2_nr91$geometry 
mean91_2$id <- "Otava2_nr91" 
 
table92_2 <- mean_of_shapefile(Otava2_nr92,2000,2019) 
mean92_2 <- annual_NDVI(table92_2) 
mean92_2$geometry <- Otava2_nr92$geometry 
mean92_2$id <- "Otava2_nr92" 
 
table93_2 <- mean_of_shapefile(Otava2_nr93,2000,2019) 
mean93_2 <- annual_NDVI(table93_2) 
mean93_2$geometry <- Otava2_nr93$geometry 
mean93_2$id <- "Otava2_nr93" 
 
table94_2 <- mean_of_shapefile(Otava2_nr94,2000,2019) 
mean94_2 <- annual_NDVI(table94_2) 
mean94_2$geometry <- Otava2_nr94$geometry 
mean94_2$id <- "Otava2_nr94" 
 
table95_2 <- mean_of_shapefile(Otava2_nr95,2000,2019) 
mean95_2 <- annual_NDVI(table95_2) 
mean95_2$geometry <- Otava2_nr95$geometry 
mean95_2$id <- "Otava2_nr95" 
 
table96_2 <- mean_of_shapefile(Otava2_nr96,2000,2019) 
mean96_2 <- annual_NDVI(table96_2) 
mean96_2$geometry <- Otava2_nr96$geometry 
mean96_2$id <- "Otava2_nr96" 
 
table97_2 <- mean_of_shapefile(Otava2_nr97,2000,2019) 
mean97_2 <- annual_NDVI(table97_2) 
mean97_2$geometry <- Otava2_nr97$geometry 
mean97_2$id <- "Otava2_nr97" 
 
table98_2 <- mean_of_shapefile(Otava2_nr98,2000,2019) 
mean98_2 <- annual_NDVI(table98_2) 
mean98_2$geometry <- Otava2_nr98$geometry 
mean98_2$id <- "Otava2_nr98" 
 
table99_2 <- mean_of_shapefile(Otava2_nr99,2000,2019) 
mean99_2 <- annual_NDVI(table99_2) 
mean99_2$geometry <- Otava2_nr99$geometry 
mean99_2$id <- "Otava2_nr99" 
 
table100_2 <- mean_of_shapefile(Otava2_nr100,2000,2019) 
mean100_2 <- annual_NDVI(table100_2) 
mean100_2$geometry <- Otava2_nr100$geometry 
mean100_2$id <- "Otava2_nr100" 
 
table101_2 <- mean_of_shapefile(Otava2_nr101,2000,2019) 
mean101_2 <- annual_NDVI(table101_2) 
mean101_2$geometry <- Otava2_nr101$geometry 
mean101_2$id <- "Otava2_nr101" 
 
table102_2 <- mean_of_shapefile(Otava2_nr102,2000,2019) 
mean102_2 <- annual_NDVI(table102_2) 
mean102_2$geometry <- Otava2_nr102$geometry 
mean102_2$id <- "Otava2_nr102" 
 
table103_2 <- mean_of_shapefile(Otava2_nr103,2000,2019) 
mean103_2 <- annual_NDVI(table103_2) 
mean103_2$geometry <- Otava2_nr103$geometry 
mean103_2$id <- "Otava2_nr103" 
 
table104_2 <- mean_of_shapefile(Otava2_nr104,2000,2019) 
mean104_2 <- annual_NDVI(table104_2) 
mean104_2$geometry <- Otava2_nr104$geometry 
mean104_2$id <- "Otava2_nr104" 
 
table105_2 <- mean_of_shapefile(Otava2_nr105,2000,2019) 
mean105_2 <- annual_NDVI(table105_2) 
mean105_2$geometry <- Otava2_nr105$geometry 
mean105_2$id <- "Otava2_nr105" 
 
table106_2 <- mean_of_shapefile(Otava2_nr106,2000,2019) 
mean106_2 <- annual_NDVI(table106_2) 
mean106_2$geometry <- Otava2_nr106$geometry 
mean106_2$id <- "Otava2_nr106" 
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table107_2 <- mean_of_shapefile(Otava2_nr107,2000,2019) 
mean107_2 <- annual_NDVI(table107_2) 
mean107_2$geometry <- Otava2_nr107$geometry 
mean107_2$id <- "Otava2_nr107" 
 
table108_2 <- mean_of_shapefile(Otava2_nr108,2000,2019) 
mean108_2 <- annual_NDVI(table108_2) 
mean108_2$geometry <- Otava2_nr108$geometry 
mean108_2$id <- "Otava2_nr108" 
 
table109_2 <- mean_of_shapefile(Otava2_nr109,2000,2019) 
mean109_2 <- annual_NDVI(table109_2) 
mean109_2$geometry <- Otava2_nr109$geometry 
mean109_2$id <- "Otava2_nr109" 
 
table110_2 <- mean_of_shapefile(Otava2_nr110,2000,2019) 
mean110_2 <- annual_NDVI(table110_2) 
mean110_2$geometry <- Otava2_nr110$geometry 
mean110_2$id <- "Otava2_nr110" 
 
table111_2 <- mean_of_shapefile(Otava2_nr111,2000,2019) 
mean111_2 <- annual_NDVI(table111_2) 
mean111_2$geometry <- Otava2_nr111$geometry 
mean111_2$id <- "Otava2_nr111" 
 
table112_2 <- mean_of_shapefile(Otava2_nr112,2000,2019) 
mean112_2 <- annual_NDVI(table112_2) 
mean112_2$geometry <- Otava2_nr112$geometry 
mean112_2$id <- "Otava2_nr112" 
 
table113_2 <- mean_of_shapefile(Otava2_nr113,2000,2019) 
mean113_2 <- annual_NDVI(table113_2) 
mean113_2$geometry <- Otava2_nr113$geometry 
mean113_2$id <- "Otava2_nr113" 
 
table114_2 <- mean_of_shapefile(Otava2_nr114,2000,2019) 
mean114_2 <- annual_NDVI(table114_2) 
mean114_2$geometry <- Otava2_nr114$geometry 
mean114_2$id <- "Otava2_nr114" 
 
table115_2 <- mean_of_shapefile(Otava2_nr115,2000,2019) 
mean115_2 <- annual_NDVI(table115_2) 
mean115_2$geometry <- Otava2_nr115$geometry 
mean115_2$id <- "Otava2_nr115" 
 
#nr 3 Volyňka 
table1_3 <- mean_of_shapefile(Otava3_nr1,2000,2019) 
mean1_3 <- annual_NDVI(table1_3) 
mean1_3$geometry <- Otava3_nr1$geometry 
mean1_3$id <- "Otava3_nr1" 
 
table2_3 <- mean_of_shapefile(Otava3_nr2,2000,2019) 
mean2_3 <- annual_NDVI(table2_3) 
mean2_3$geometry <- Otava3_nr2$geometry 
mean2_3$id <- "Otava3_nr2" 
 
table3_3 <- mean_of_shapefile(Otava3_nr3,2000,2019) 
mean3_3 <- annual_NDVI(table3_3) 
mean3_3$geometry <- Otava3_nr3$geometry 
mean3_3$id <- "Otava3_nr3" 
 
table4_3 <- mean_of_shapefile(Otava3_nr4,2000,2019) 
mean4_3 <- annual_NDVI(table4_3) 
mean4_3$geometry <- Otava3_nr4$geometry 
mean4_3$id <- "Otava3_nr4" 
 
table5_3 <- mean_of_shapefile(Otava3_nr5,2000,2019) 
mean5_3 <- annual_NDVI(table5_3) 
mean5_3$geometry <- Otava3_nr5$geometry 
mean5_3$id <- "Otava3_nr5" 
 
table6_3 <- mean_of_shapefile(Otava3_nr6,2000,2019) 
mean6_3 <- annual_NDVI(table6_3) 
mean6_3$geometry <- Otava3_nr6$geometry 
mean6_3$id <- "Otava3_nr6" 
 
table7_3 <- mean_of_shapefile(Otava3_nr7,2000,2019) 
mean7_3 <- annual_NDVI(table7_3) 
mean7_3$geometry <- Otava3_nr7$geometry 
mean7_3$id <- "Otava3_nr7" 
 
table8_3 <- mean_of_shapefile(Otava3_nr8,2000,2019) 
mean8_3 <- annual_NDVI(table8_3) 
mean8_3$geometry <- Otava3_nr8$geometry 
mean8_3$id <- "Otava3_nr8" 
 
table9_3 <- mean_of_shapefile(Otava3_nr9,2000,2019) 
mean9_3 <- annual_NDVI(table9_3) 
mean9_3$geometry <- Otava3_nr9$geometry 
mean9_3$id <- "Otava3_nr9" 
 
table10_3 <- mean_of_shapefile(Otava3_nr10,2000,2019) 
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mean10_3 <- annual_NDVI(table10_3) 
mean10_3$geometry <- Otava3_nr10$geometry 
mean10_3$id <- "Otava3_nr10" 
 
table11_3 <- mean_of_shapefile(Otava3_nr11,2000,2019) 
mean11_3 <- annual_NDVI(table11_3) 
mean11_3$geometry <- Otava3_nr11$geometry 
mean11_3$id <- "Otava3_nr11" 
 
table12_3 <- mean_of_shapefile(Otava3_nr12,2000,2019) 
mean12_3 <- annual_NDVI(table12_3) 
mean12_3$geometry <- Otava3_nr12$geometry 
mean12_3$id <- "Otava3_nr12" 
 
table13_3 <- mean_of_shapefile(Otava3_nr13,2000,2019) 
mean13_3 <- annual_NDVI(table13_3) 
mean13_3$geometry <- Otava3_nr13$geometry 
mean13_3$id <- "Otava3_nr13" 
 
table14_3 <- mean_of_shapefile(Otava3_nr14,2000,2019) 
mean14_3 <- annual_NDVI(table14_3) 
mean14_3$geometry <- Otava3_nr14$geometry 
mean14_3$id <- "Otava3_nr14" 
 
table15_3 <- mean_of_shapefile(Otava3_nr15,2000,2019) 
mean15_3 <- annual_NDVI(table15_3) 
mean15_3$geometry <- Otava3_nr15$geometry 
mean15_3$id <- "Otava3_nr15" 
 
table16_3 <- mean_of_shapefile(Otava3_nr16,2000,2019) 
mean16_3 <- annual_NDVI(table16_3) 
mean16_3$geometry <- Otava3_nr16$geometry 
mean16_3$id <- "Otava3_nr16" 
 
table17_3 <- mean_of_shapefile(Otava3_nr17,2000,2019) 
mean17_3 <- annual_NDVI(table17_3) 
mean17_3$geometry <- Otava3_nr17$geometry 
mean17_3$id <- "Otava3_nr17" 
 
table18_3 <- mean_of_shapefile(Otava3_nr18,2000,2019) 
mean18_3 <- annual_NDVI(table18_3) 
mean18_3$geometry <- Otava3_nr18$geometry 
mean18_3$id <- "Otava3_nr18" 
 
table19_3 <- mean_of_shapefile(Otava3_nr19,2000,2019) 
mean19_3 <- annual_NDVI(table19_3) 
mean19_3$geometry <- Otava3_nr19$geometry 
mean19_3$id <- "Otava3_nr19" 
 
table20_3 <- mean_of_shapefile(Otava3_nr20,2000,2019) 
mean20_3 <- annual_NDVI(table20_3) 
mean20_3$geometry <- Otava3_nr20$geometry 
mean20_3$id <- "Otava3_nr20" 
 
table21_3 <- mean_of_shapefile(Otava3_nr21,2000,2019) 
mean21_3 <- annual_NDVI(table21_3) 
mean21_3$geometry <- Otava3_nr21$geometry 
mean21_3$id <- "Otava3_nr21" 
 
table22_3 <- mean_of_shapefile(Otava3_nr22,2000,2019) 
mean22_3 <- annual_NDVI(table22_3) 
mean22_3$geometry <- Otava3_nr22$geometry 
mean22_3$id <- "Otava3_nr22" 
 
table23_3 <- mean_of_shapefile(Otava3_nr23,2000,2019) 
mean23_3 <- annual_NDVI(table23_3) 
mean23_3$geometry <- Otava3_nr23$geometry 
mean23_3$id <- "Otava3_nr23" 
 
table24_3 <- mean_of_shapefile(Otava3_nr24,2000,2019) 
mean24_3 <- annual_NDVI(table24_3) 
mean24_3$geometry <- Otava3_nr24$geometry 
mean24_3$id <- "Otava3_nr24" 
 
table25_3 <- mean_of_shapefile(Otava3_nr25,2000,2019) 
mean25_3 <- annual_NDVI(table25_3) 
mean25_3$geometry <- Otava3_nr25$geometry 
mean25_3$id <- "Otava3_nr25" 
 
table26_3 <- mean_of_shapefile(Otava3_nr26,2000,2019) 
mean26_3 <- annual_NDVI(table26_3) 
mean26_3$geometry <- Otava3_nr26$geometry 
mean26_3$id <- "Otava3_nr26" 
 
table27_3 <- mean_of_shapefile(Otava3_nr27,2000,2019) 
mean27_3 <- annual_NDVI(table27_3) 
mean27_3$geometry <- Otava3_nr27$geometry 
mean27_3$id <- "Otava3_nr27" 
 
table28_3 <- mean_of_shapefile(Otava3_nr28,2000,2019) 
mean28_3 <- annual_NDVI(table28_3) 
mean28_3$geometry <- Otava3_nr28$geometry 
mean28_3$id <- "Otava3_nr28" 



 
 
58 

 
table29_3 <- mean_of_shapefile(Otava3_nr29,2000,2019) 
mean29_3 <- annual_NDVI(table29_3) 
mean29_3$geometry <- Otava3_nr29$geometry 
mean29_3$id <- "Otava3_nr29" 
 
table30_3 <- mean_of_shapefile(Otava3_nr30,2000,2019) 
mean30_3 <- annual_NDVI(table30_3) 
mean30_3$geometry <- Otava3_nr30$geometry 
mean30_3$id <- "Otava3_nr30" 
 
table31_3 <- mean_of_shapefile(Otava3_nr31,2000,2019) 
mean31_3 <- annual_NDVI(table31_3) 
mean31_3$geometry <- Otava3_nr31$geometry 
mean31_3$id <- "Otava3_nr31" 
 
table32_3 <- mean_of_shapefile(Otava3_nr32,2000,2019) 
mean32_3 <- annual_NDVI(table32_3) 
mean32_3$geometry <- Otava3_nr32$geometry 
mean32_3$id <- "Otava3_nr32" 
 
table33_3 <- mean_of_shapefile(Otava3_nr33,2000,2019) 
mean33_3 <- annual_NDVI(table33_3) 
mean33_3$geometry <- Otava3_nr33$geometry 
mean33_3$id <- "Otava3_nr33" 
 
table34_3 <- mean_of_shapefile(Otava3_nr34,2000,2019) 
mean34_3 <- annual_NDVI(table34_3) 
mean34_3$geometry <- Otava3_nr34$geometry 
mean34_3$id <- "Otava3_nr34" 
 
table35_3 <- mean_of_shapefile(Otava3_nr35,2000,2019) 
mean35_3 <- annual_NDVI(table35_3) 
mean35_3$geometry <- Otava3_nr35$geometry 
mean35_3$id <- "Otava3_nr35" 
 
table36_3 <- mean_of_shapefile(Otava3_nr36,2000,2019) 
mean36_3 <- annual_NDVI(table36_3) 
mean36_3$geometry <- Otava3_nr36$geometry 
mean36_3$id <- "Otava3_nr36" 
 
table37_3 <- mean_of_shapefile(Otava3_nr37,2000,2019) 
mean37_3 <- annual_NDVI(table37_3) 
mean37_3$geometry <- Otava3_nr37$geometry 
mean37_3$id <- "Otava3_nr37" 
 
table38_3 <- mean_of_shapefile(Otava3_nr38,2000,2019) 
mean38_3 <- annual_NDVI(table38_3) 
mean38_3$geometry <- Otava3_nr38$geometry 
mean38_3$id <- "Otava3_nr38" 
 
table39_3 <- mean_of_shapefile(Otava3_nr39,2000,2019) 
mean39_3 <- annual_NDVI(table39_3) 
mean39_3$geometry <- Otava3_nr39$geometry 
mean39_3$id <- "Otava3_nr39" 
 
table40_3 <- mean_of_shapefile(Otava3_nr40,2000,2019) 
mean40_3 <- annual_NDVI(table40_3) 
mean40_3$geometry <- Otava3_nr40$geometry 
mean40_3$id <- "Otava3_nr40" 
 
table41_3 <- mean_of_shapefile(Otava3_nr41,2000,2019) 
mean41_3 <- annual_NDVI(table41_3) 
mean41_3$geometry <- Otava3_nr41$geometry 
mean41_3$id <- "Otava3_nr41" 
 
table42_3 <- mean_of_shapefile(Otava3_nr42,2000,2019) 
mean42_3 <- annual_NDVI(table42_3) 
mean42_3$geometry <- Otava3_nr42$geometry 
mean42_3$id <- "Otava3_nr42" 
 
table43_3 <- mean_of_shapefile(Otava3_nr43,2000,2019) 
mean43_3 <- annual_NDVI(table43_3) 
mean43_3$geometry <- Otava3_nr43$geometry 
mean43_3$id <- "Otava3_nr43" 
 
table44_3 <- mean_of_shapefile(Otava3_nr44,2000,2019) 
mean44_3 <- annual_NDVI(table44_3) 
mean44_3$geometry <- Otava3_nr44$geometry 
mean44_3$id <- "Otava3_nr44" 
 
#nr. 5 Černíčský potok 
table1_5 <- mean_of_shapefile(Otava5_nr1,2000,2019) 
mean1_5 <- annual_NDVI(table1_5) 
mean1_5$geometry <- Otava5_nr1$geometry 
mean1_5$id <- "Otava5_nr1" 
 
table2_5 <- mean_of_shapefile(Otava5_nr2,2000,2019) 
mean2_5 <- annual_NDVI(table2_5) 
mean2_5$geometry <- Otava5_nr1$geometry 
mean2_5$id <- "Otava5_nr2" 
 
table3_5 <- mean_of_shapefile(Otava5_nr3,2000,2019) 



 
 
59 

mean3_5 <- annual_NDVI(table3_5) 
mean3_5$geometry <- Otava5_nr1$geometry 
mean3_5$id <- "Otava5_nr3" 
 
table4_5 <- mean_of_shapefile(Otava5_nr4,2000,2019) 
mean4_5 <- annual_NDVI(table4_5) 
mean4_5$geometry <- Otava5_nr1$geometry 
mean4_5$id <- "Otava5_nr4" 
 
table5_5 <- mean_of_shapefile(Otava5_nr5,2000,2019) 
mean5_5 <- annual_NDVI(table5_5) 
mean5_5$geometry <- Otava5_nr1$geometry 
mean5_5$id <- "Otava5_nr5" 
 
#nr.9 Volsovkou 
table1_9 <- mean_of_shapefile(Otava9_nr1,2000,2019) 
mean1_9 <- annual_NDVI(table1_9) 
mean1_9$geometry <- Otava9_nr1$geometry 
mean1_9$id <- "Otava9_nr1" 
 
table2_9 <- mean_of_shapefile(Otava9_nr2,2000,2019) 
mean2_9 <- annual_NDVI(table2_9) 
mean2_9$geometry <- Otava9_nr2$geometry 
mean2_9$id <- "Otava9_nr2" 
 
table3_9 <- mean_of_shapefile(Otava9_nr3,2000,2019) 
mean3_9 <- annual_NDVI(table3_9) 
mean3_9$geometry <- Otava9_nr3$geometry 
mean3_9$id <- "Otava9_nr3" 
 
table4_9 <- mean_of_shapefile(Otava9_nr4,2000,2019) 
mean4_9 <- annual_NDVI(table4_9) 
mean4_9$geometry <- Otava9_nr4$geometry 
mean4_9$id <- "Otava9_nr4" 
 
table5_9 <- mean_of_shapefile(Otava9_nr5,2000,2019) 
mean5_9 <- annual_NDVI(table5_9) 
mean5_9$geometry <- Otava9_nr5$geometry 
mean5_9$id <- "Otava9_nr5" 
 
table6_9 <- mean_of_shapefile(Otava9_nr6,2000,2019) 
mean6_9 <- annual_NDVI(table6_9) 
mean6_9$geometry <- Otava9_nr6$geometry 
mean6_9$id <- "Otava9_nr6" 
 
table7_9 <- mean_of_shapefile(Otava9_nr7,2000,2019) 
mean7_9 <- annual_NDVI(table7_9) 
mean7_9$geometry <- Otava9_nr7$geometry 
mean7_9$id <- "Otava9_nr7" 
 
table8_9 <- mean_of_shapefile(Otava9_nr8,2000,2019) 
mean8_9 <- annual_NDVI(table8_9) 
mean8_9$geometry <- Otava9_nr8$geometry 
mean8_9$id <- "Otava9_nr8" 
 
table9_9 <- mean_of_shapefile(Otava9_nr9,2000,2019) 
mean9_9 <- annual_NDVI(table9_9) 
mean9_9$geometry <- Otava9_nr9$geometry 
mean9_9$id <- "Otava9_nr9" 
 
table10_9 <- mean_of_shapefile(Otava9_nr10,2000,2019) 
mean10_9 <- annual_NDVI(table10_9) 
mean10_9$geometry <- Otava9_nr10$geometry 
mean10_9$id <- "Otava9_nr10" 
 
table11_9 <- mean_of_shapefile(Otava9_nr11,2000,2019) 
mean11_9 <- annual_NDVI(table11_9) 
mean11_9$geometry <- Otava9_nr11$geometry 
mean11_9$id <- "Otava9_nr11" 
 
table12_9 <- mean_of_shapefile(Otava9_nr12,2000,2019) 
mean12_9 <- annual_NDVI(table12_9) 
mean12_9$geometry <- Otava9_nr12$geometry 
mean12_9$id <- "Otava9_nr12" 
 
table13_9 <- mean_of_shapefile(Otava9_nr13,2000,2019) 
mean13_9 <- annual_NDVI(table13_9) 
mean13_9$geometry <- Otava9_nr13$geometry 
mean13_9$id <- "Otava9_nr13" 
 
table14_9 <- mean_of_shapefile(Otava9_nr14,2000,2019) 
mean14_9 <- annual_NDVI(table14_9) 
mean14_9$geometry <- Otava9_nr14$geometry 
mean14_9$id <- "Otava9_nr14" 
 
table15_9 <- mean_of_shapefile(Otava9_nr15,2000,2019) 
mean15_9 <- annual_NDVI(table15_9) 
mean15_9$geometry <- Otava9_nr15$geometry 
mean15_9$id <- "Otava9_nr15" 
 
table16_9 <- mean_of_shapefile(Otava9_nr16,2000,2019) 
mean16_9 <- annual_NDVI(table16_9) 
mean16_9$geometry <- Otava9_nr16$geometry 
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mean16_9$id <- "Otava9_nr16" 
 
table17_9 <- mean_of_shapefile(Otava9_nr17,2000,2019) 
mean17_9 <- annual_NDVI(table17_9) 
mean17_9$geometry <- Otava9_nr17$geometry 
mean17_9$id <- "Otava9_nr17" 
 
table18_9 <- mean_of_shapefile(Otava9_nr18,2000,2019) 
mean18_9 <- annual_NDVI(table18_9) 
mean18_9$geometry <- Otava9_nr18$geometry 
mean18_9$id <- "Otava9_nr18" 
 
table19_9 <- mean_of_shapefile(Otava9_nr19,2000,2019) 
mean19_9 <- annual_NDVI(table19_9) 
mean19_9$geometry <- Otava9_nr19$geometry 
mean19_9$id <- "Otava9_nr19" 
 
table20_9 <- mean_of_shapefile(Otava9_nr20,2000,2019) 
mean20_9 <- annual_NDVI(table20_9) 
mean20_9$geometry <- Otava9_nr20$geometry 
mean20_9$id <- "Otava9_nr20" 
 
table21_9 <- mean_of_shapefile(Otava9_nr21,2000,2019) 
mean21_9 <- annual_NDVI(table21_9) 
mean21_9$geometry <- Otava9_nr21$geometry 
mean21_9$id <- "Otava9_nr21" 
 
table22_9 <- mean_of_shapefile(Otava9_nr22,2000,2019) 
mean22_9 <- annual_NDVI(table22_9) 
mean22_9$geometry <- Otava9_nr22$geometry 
mean22_9$id <- "Otava9_nr22" 
 
table23_9 <- mean_of_shapefile(Otava9_nr23,2000,2019) 
mean23_9 <- annual_NDVI(table23_9) 
mean23_9$geometry <- Otava9_nr23$geometry 
mean23_9$id <- "Otava9_nr23" 
 
table24_9 <- mean_of_shapefile(Otava9_nr24,2000,2019) 
mean24_9 <- annual_NDVI(table24_9) 
mean24_9$geometry <- Otava9_nr24$geometry 
mean24_9$id <- "Otava9_nr24" 
 
table25_9 <- mean_of_shapefile(Otava9_nr25,2000,2019) 
mean25_9 <- annual_NDVI(table25_9) 
mean25_9$geometry <- Otava9_nr25$geometry 
mean25_9$id <- "Otava9_nr25" 
 
table26_9 <- mean_of_shapefile(Otava9_nr26,2000,2019) 
mean26_9 <- annual_NDVI(table26_9) 
mean26_9$geometry <- Otava9_nr26$geometry 
mean26_9$id <- "Otava9_nr26" 
 
table27_9 <- mean_of_shapefile(Otava9_nr27,2000,2019) 
mean27_9 <- annual_NDVI(table27_9) 
mean27_9$geometry <- Otava9_nr27$geometry 
mean27_9$id <- "Otava9_nr27" 
 
table28_9 <- mean_of_shapefile(Otava9_nr28,2000,2019) 
mean28_9 <- annual_NDVI(table28_9) 
mean28_9$geometry <- Otava9_nr28$geometry 
mean28_9$id <- "Otava9_nr28" 
 
table29_9 <- mean_of_shapefile(Otava9_nr29,2000,2019) 
mean29_9 <- annual_NDVI(table29_9) 
mean29_9$geometry <- Otava9_nr29$geometry 
mean29_9$id <- "Otava9_nr29" 
 
table30_9 <- mean_of_shapefile(Otava9_nr30,2000,2019) 
mean30_9 <- annual_NDVI(table30_9) 
mean30_9$geometry <- Otava9_nr30$geometry 
mean30_9$id <- "Otava9_nr30" 
 
table31_9 <- mean_of_shapefile(Otava9_nr31,2000,2019) 
mean31_9 <- annual_NDVI(table31_9) 
mean31_9$geometry <- Otava9_nr31$geometry 
mean31_9$id <- "Otava9_nr31" 
 
table32_9 <- mean_of_shapefile(Otava9_nr32,2000,2019) 
mean32_9 <- annual_NDVI(table32_9) 
mean32_9$geometry <- Otava9_nr32$geometry 
mean32_9$id <- "Otava9_nr32" 
 
table33_9 <- mean_of_shapefile(Otava9_nr33,2000,2019) 
mean33_9 <- annual_NDVI(table33_9) 
mean33_9$geometry <- Otava9_nr33$geometry 
mean33_9$id <- "Otava9_nr33" 
 
table34_9 <- mean_of_shapefile(Otava9_nr34,2000,2019) 
mean34_9 <- annual_NDVI(table34_9) 
mean34_9$geometry <- Otava9_nr34$geometry 
mean34_9$id <- "Otava9_nr34" 
 
table35_9 <- mean_of_shapefile(Otava9_nr35,2000,2019) 
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mean35_9 <- annual_NDVI(table35_9) 
mean35_9$geometry <- Otava9_nr35$geometry 
mean35_9$id <- "Otava9_nr35" 
 
table36_9 <- mean_of_shapefile(Otava9_nr36,2000,2019) 
mean36_9 <- annual_NDVI(table36_9) 
mean36_9$geometry <- Otava9_nr36$geometry 
mean36_9$id <- "Otava9_nr36" 
 
table37_9 <- mean_of_shapefile(Otava9_nr37,2000,2019) 
mean37_9 <- annual_NDVI(table37_9) 
mean37_9$geometry <- Otava9_nr37$geometry 
mean37_9$id <- "Otava9_nr37" 
 
table38_9 <- mean_of_shapefile(Otava9_nr38,2000,2019) 
mean38_9 <- annual_NDVI(table38_9) 
mean38_9$geometry <- Otava9_nr38$geometry 
mean38_9$id <- "Otava9_nr38" 
 
table39_9 <- mean_of_shapefile(Otava9_nr39,2000,2019) 
mean39_9 <- annual_NDVI(table39_9) 
mean39_9$geometry <- Otava9_nr39$geometry 
mean39_9$id <- "Otava9_nr39" 
 
table40_9 <- mean_of_shapefile(Otava9_nr40,2000,2019) 
mean40_9 <- annual_NDVI(table40_9) 
mean40_9$geometry <- Otava9_nr40$geometry 
mean40_9$id <- "Otava9_nr40" 
 
table41_9 <- mean_of_shapefile(Otava9_nr41,2000,2019) 
mean41_9 <- annual_NDVI(table41_9) 
mean41_9$geometry <- Otava9_nr41$geometry 
mean41_9$id <- "Otava9_nr41" 
 
table42_9 <- mean_of_shapefile(Otava9_nr42,2000,2019) 
mean42_9 <- annual_NDVI(table42_9) 
mean42_9$geometry <- Otava9_nr42$geometry 
mean42_9$id <- "Otava9_nr42" 
 
table43_9 <- mean_of_shapefile(Otava9_nr43,2000,2019) 
mean43_9 <- annual_NDVI(table43_9) 
mean43_9$geometry <- Otava9_nr43$geometry 
mean43_9$id <- "Otava9_nr43" 
 
table44_9 <- mean_of_shapefile(Otava9_nr44,2000,2019) 
mean44_9 <- annual_NDVI(table44_9) 
mean44_9$geometry <- Otava9_nr44$geometry 
mean44_9$id <- "Otava9_nr44" 
 
table45_9 <- mean_of_shapefile(Otava9_nr45,2000,2019) 
mean45_9 <- annual_NDVI(table45_9) 
mean45_9$geometry <- Otava9_nr45$geometry 
mean45_9$id <- "Otava9_nr45" 
 
table46_9 <- mean_of_shapefile(Otava9_nr46,2000,2019) 
mean46_9 <- annual_NDVI(table46_9) 
mean46_9$geometry <- Otava9_nr46$geometry 
mean46_9$id <- "Otava9_nr46" 
 
table47_9 <- mean_of_shapefile(Otava9_nr47,2000,2019) 
mean47_9 <- annual_NDVI(table47_9) 
mean47_9$geometry <- Otava9_nr47$geometry 
mean47_9$id <- "Otava9_nr47" 
 
table48_9 <- mean_of_shapefile(Otava9_nr48,2000,2019) 
mean48_9 <- annual_NDVI(table48_9) 
mean48_9$geometry <- Otava9_nr48$geometry 
mean48_9$id <- "Otava9_nr48" 
 
table49_9 <- mean_of_shapefile(Otava9_nr49,2000,2019) 
mean49_9 <- annual_NDVI(table49_9) 
mean49_9$geometry <- Otava9_nr49$geometry 
mean49_9$id <- "Otava9_nr49" 
 
table50_9 <- mean_of_shapefile(Otava9_nr50,2000,2019) 
mean50_9 <- annual_NDVI(table50_9) 
mean50_9$geometry <- Otava9_nr50$geometry 
mean50_9$id <- "Otava9_nr50" 
 
table51_9 <- mean_of_shapefile(Otava9_nr51,2000,2019) 
mean51_9 <- annual_NDVI(table51_9) 
mean51_9$geometry <- Otava9_nr51$geometry 
mean51_9$id <- "Otava9_nr51" 
 
table52_9 <- mean_of_shapefile(Otava9_nr52,2000,2019) 
mean52_9 <- annual_NDVI(table52_9) 
mean52_9$geometry <- Otava9_nr52$geometry 
mean52_9$id <- "Otava9_nr52" 
 
table53_9 <- mean_of_shapefile(Otava9_nr53,2000,2019) 
mean53_9 <- annual_NDVI(table53_9) 
mean53_9$geometry <- Otava9_nr53$geometry 
mean53_9$id <- "Otava9_nr53" 
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table54_9 <- mean_of_shapefile(Otava9_nr54,2000,2019) 
mean54_9 <- annual_NDVI(table54_9) 
mean54_9$geometry <- Otava9_nr54$geometry 
mean54_9$id <- "Otava9_nr54" 
 
table55_9 <- mean_of_shapefile(Otava9_nr55,2000,2019) 
mean55_9 <- annual_NDVI(table55_9) 
mean55_9$geometry <- Otava9_nr55$geometry 
mean55_9$id <- "Otava9_nr55" 
 
#nr. 10 Locenice  
table1_10 <- mean_of_shapefile(Otava10_nr1,2000,2019) 
mean1_10 <- annual_NDVI(table1_10) 
mean1_10$geometry <- Otava10_nr1$geometry 
mean1_10$id <- "Otava10_nr1" 
 
table2_10 <- mean_of_shapefile(Otava10_nr2,2000,2019) 
mean2_10 <- annual_NDVI(table2_10) 
mean2_10$geometry <- Otava10_nr2$geometry 
mean2_10$id <- "Otava10_nr2" 
 
table3_10 <- mean_of_shapefile(Otava10_nr3,2000,2019) 
mean3_10 <- annual_NDVI(table3_10) 
mean3_10$geometry <- Otava10_nr3$geometry 
mean3_10$id <- "Otava10_nr3" 
 
table4_10 <- mean_of_shapefile(Otava10_nr4,2000,2019) 
mean4_10 <- annual_NDVI(table4_10) 
mean4_10$geometry <- Otava10_nr4$geometry 
mean4_10$id <- "Otava10_nr4" 
 
table5_10 <- mean_of_shapefile(Otava10_nr5,2000,2019) 
mean5_10 <- annual_NDVI(table5_10) 
mean5_10$geometry <- Otava10_nr5$geometry 
mean5_10$id <- "Otava10_nr5" 
 
 
#nr. 14 Blanice - Podedvory  
table1_14 <- mean_of_shapefile(Otava14_nr1,2000,2019) 
mean1_14 <- annual_NDVI(table1_14) 
mean1_14$geometry <- Otava14_nr1$geometry 
mean1_14$id <- "Otava14_nr1" 
 
table2_14 <- mean_of_shapefile(Otava14_nr2,2000,2019) 
mean2_14 <- annual_NDVI(table2_14) 
mean2_14$geometry <- Otava14_nr2$geometry 
mean2_14$id <- "Otava14_nr2" 
 
table3_14 <- mean_of_shapefile(Otava14_nr3,2000,2019) 
mean3_14 <- annual_NDVI(table3_14) 
mean3_14$geometry <- Otava14_nr3$geometry 
mean3_14$id <- "Otava14_nr3" 
 
table4_14 <- mean_of_shapefile(Otava14_nr4,2000,2019) 
mean4_14 <- annual_NDVI(table4_14) 
mean4_14$geometry <- Otava14_nr4$geometry 
mean4_14$id <- "Otava14_nr4" 
 
table5_14 <- mean_of_shapefile(Otava14_nr5,2000,2019) 
mean5_14 <- annual_NDVI(table5_14) 
mean5_14$geometry <- Otava14_nr5$geometry 
mean5_14$id <- "Otava14_nr5" 
 
table6_14 <- mean_of_shapefile(Otava14_nr6,2000,2019) 
mean6_14 <- annual_NDVI(table6_14) 
mean6_14$geometry <- Otava14_nr6$geometry 
mean6_14$id <- "Otava14_nr6" 
 
table7_14 <- mean_of_shapefile(Otava14_nr7,2000,2019) 
mean7_14 <- annual_NDVI(table7_14) 
mean7_14$geometry <- Otava14_nr7$geometry 
mean7_14$id <- "Otava14_nr7" 
 
table8_14 <- mean_of_shapefile(Otava14_nr8,2000,2019) 
mean8_14 <- annual_NDVI(table8_14) 
mean8_14$geometry <- Otava14_nr8$geometry 
mean8_14$id <- "Otava14_nr8" 
 
table9_14 <- mean_of_shapefile(Otava14_nr9,2000,2019) 
mean9_14 <- annual_NDVI(table9_14) 
mean9_14$geometry <- Otava14_nr9$geometry 
mean9_14$id <- "Otava14_nr9" 
 
table10_14 <- mean_of_shapefile(Otava14_nr10,2000,2019) 
mean10_14 <- annual_NDVI(table10_14) 
mean10_14$geometry <- Otava14_nr10$geometry 
mean10_14$id <- "Otava14_nr10" 
 
table11_14 <- mean_of_shapefile(Otava14_nr11,2000,2019) 
mean11_14 <- annual_NDVI(table11_14) 
mean11_14$geometry <- Otava14_nr11$geometry 
mean11_14$id <- "Otava14_nr11" 
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table12_14 <- mean_of_shapefile(Otava14_nr12,2000,2019) 
mean12_14 <- annual_NDVI(table12_14) 
mean12_14$geometry <- Otava14_nr12$geometry 
mean12_14$id <- "Otava14_nr12" 
 
table13_14 <- mean_of_shapefile(Otava14_nr13,2000,2019) 
mean13_14 <- annual_NDVI(table13_14) 
mean13_14$geometry <- Otava14_nr13$geometry 
mean13_14$id <- "Otava14_nr10" 
 
table14_14 <- mean_of_shapefile(Otava14_nr14,2000,2019) 
mean14_14 <- annual_NDVI(table14_14) 
mean14_14$geometry <- Otava14_nr14$geometry 
mean14_14$id <- "Otava14_nr14" 
 
table15_14 <- mean_of_shapefile(Otava14_nr15,2000,2019) 
mean15_14 <- annual_NDVI(table15_14) 
mean15_14$geometry <- Otava14_nr15$geometry 
mean15_14$id <- "Otava14_nr15" 
 
table16_14 <- mean_of_shapefile(Otava14_nr16,2000,2019) 
mean16_14 <- annual_NDVI(table16_14) 
mean16_14$geometry <- Otava14_nr16$geometry 
mean16_14$id <- "Otava14_nr16" 
 
table17_14 <- mean_of_shapefile(Otava14_nr17,2000,2019) 
mean17_14 <- annual_NDVI(table17_14) 
mean17_14$geometry <- Otava14_nr17$geometry 
mean17_14$id <- "Otava14_nr17" 
 
table18_14 <- mean_of_shapefile(Otava14_nr18,2000,2019) 
mean18_14 <- annual_NDVI(table18_14) 
mean18_14$geometry <- Otava14_nr18$geometry 
mean18_14$id <- "Otava14_nr18" 
 
table19_14 <- mean_of_shapefile(Otava14_nr19,2000,2019) 
mean19_14 <- annual_NDVI(table19_14) 
mean19_14$geometry <- Otava14_nr19$geometry 
mean19_14$id <- "Otava14_nr19" 
 
table20_14 <- mean_of_shapefile(Otava14_nr20,2000,2019) 
mean20_14 <- annual_NDVI(table20_14) 
mean20_14$geometry <- Otava14_nr20$geometry 
mean20_14$id <- "Otava14_nr20" 
 
table21_14 <- mean_of_shapefile(Otava14_nr21,2000,2019) 
mean21_14 <- annual_NDVI(table21_14) 
mean21_14$geometry <- Otava14_nr21$geometry 
mean21_14$id <- "Otava14_nr21" 
 
table22_14 <- mean_of_shapefile(Otava14_nr22,2000,2019) 
mean22_14 <- annual_NDVI(table22_14) 
mean22_14$geometry <- Otava14_nr22$geometry 
mean22_14$id <- "Otava14_nr22" 
 
table23_14 <- mean_of_shapefile(Otava14_nr23,2000,2019) 
mean23_14 <- annual_NDVI(table23_14) 
mean23_14$geometry <- Otava14_nr23$geometry 
mean23_14$id <- "Otava14_nr23" 
 
table24_14 <- mean_of_shapefile(Otava14_nr24,2000,2019) 
mean24_14 <- annual_NDVI(table24_14) 
mean24_14$geometry <- Otava14_nr24$geometry 
mean24_14$id <- "Otava14_nr24" 
 
table25_14 <- mean_of_shapefile(Otava14_nr25,2000,2019) 
mean25_14 <- annual_NDVI(table25_14) 
mean25_14$geometry <- Otava14_nr25$geometry 
mean25_14$id <- "Otava14_nr25" 
 
#nr.1 Pisek 
total_1 <- rbind(mean1_1) 
total2_1 <- total_1 %>% group_by(years) %>% summarize(ndvi = mean(NDVI), sd = mean(NDVI_SD)) 
 
ggplot(total2_1,aes(x=as.numeric(years),y=ndvi))+geom_point()+geom_errorbar(aes(ymin =ndvi, ymax = ndvi))+ 
  geom_smooth(se=FALSE)+labs(x="Year",y="NDVI", title = "Pisek nad")+theme_light() 
 
#nr.2 Blanice - Putim pod 
total_2 <- rbind(mean1_2, mean2_2, mean3_2,mean4_2, mean5_2, mean6_2, mean7_2, mean8_2, mean9_2, mean10_2, mean11_2, mean12_2, mean13_2, mean15_2, 
mean16_2, mean17_2, mean18_2, mean19_2, mean20_2, mean21_2, mean22_2, mean23_2,mean24_2, mean25_2, mean26_2, mean27_2, mean28_2, mean29_2, 
mean30_2, mean31_2, mean32_2, mean33_2, mean34_2, mean35_2, mean36_2, mean37_2, mean38_2, mean39_2, mean40_2, mean41_2, mean42_2, mean43_2, 
mean44_2, mean45_2, mean46_2, mean47_2, mean48_2, mean49_2, mean50_2, mean51_2, mean52_2, mean53_2, mean54_2, mean55_2, mean56_2, mean57_2, 
mean58_2, mean59_2, mean60_2, mean61_2, mean62_2, mean63_2, mean64_2, mean65_2, mean66_2, mean67_2, mean68_2, mean69_2, mean70_2, mean71_2, 
mean72_2, mean73_2, mean74_2, mean75_2, mean76_2, mean77_2, mean78_2, mean79_2, mean80_2,mean81_2, mean82_2, mean83_2, mean84_2, mean85_2, 
mean86_2, mean87_2, mean88_2, mean89_2, mean99_2,mean100_2, mean101_2, mean102_2, mean103_2, mean104_2, mean105_2, mean106_2, mean107_2, 
mean108_2, mean109_2, mean110_2,mean111_2, mean112_2, mean113_2, mean114_2, mean115_2)   
total2_2 <- total_2 %>% group_by(years) %>% summarize(ndvi = mean(NDVI), sd = mean(NDVI_SD)) 
 
ggplot(total2_2,aes(x=as.numeric(years),y=ndvi))+geom_point()+geom_errorbar(aes(ymin =ndvi-sd, ymax = ndvi+sd))+ 
  geom_smooth(se=FALSE)+labs(x="Year",y="NDVI", title = "Blanice - Putim pod")+theme_light() 
 
#nr.3 Volyňka 
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total_3 <- rbind(mean1_3, mean2_3, mean3_3, mean4_3, mean5_3, mean6_3, mean7_3, mean8_3, mean9_3,mean10_3, mean11_3, mean12_3, mean13_3, mean14_3, 
mean15_3,  mean16_3, mean17_3, mean18_3, mean19_3, mean20_3, mean21_3, mean22_3, mean23_3,mean24_3,mean25_3, mean26_3, mean27_3, mean28_3, 
mean29_3, mean30_3, mean31_3, mean32_3, mean33_3, mean34_3, mean35_3, mean36_3, mean37_3, mean38_3, mean39_3, mean40_3, mean41_3, mean42_3, 
mean43_3, mean44_3) 
total2_3 <- total_3 %>% group_by(years) %>% summarize(ndvi = mean(NDVI), sd=mean(NDVI_SD)) 
 
ggplot(total2_3,aes(x=as.numeric(years),y=ndvi))+geom_point()+geom_errorbar(aes(ymin =ndvi, ymax = ndvi))+ 
  geom_smooth(se=FALSE)+labs(x="Year",y="NDVI", title = "Volyňka")+theme_light() 
 
#nr.5 Černíčský potok 
total_5 <- rbind(mean1_5,mean2_5, mean3_5, mean4_5, mean5_5) 
total2_5 <- total_5 %>% group_by(years) %>% summarize(ndvi = mean(NDVI), sd = mean(NDVI_SD)) 
 
ggplot(total2_5,aes(x=as.numeric(years),y=ndvi))+geom_point()+geom_errorbar(aes(ymin =ndvi-sd, ymax = ndvi+sd))+ 
  geom_smooth(se=FALSE)+labs(x="Year",y="NDVI", title = "Černíčský potok")+theme_light() 
 
#nr.9 Volšovkou 
total_9 <- rbind(mean1_9, mean2_9, mean3_9,mean4_9, mean5_9, mean6_9, mean7_9, mean8_9, mean9_9, mean10_9, mean11_9, mean12_9, mean13_9, mean15_9, 
mean16_9, mean17_9, mean18_9, mean19_9, mean20_9, mean21_9, mean22_9, mean23_9,mean24_9, mean25_9, mean26_9, mean27_9, mean28_9, mean29_9, 
mean30_9, mean31_9, mean32_9, mean33_9, mean34_9, mean35_9, mean36_9, mean37_9, mean38_9, mean39_9, mean40_9, mean41_9, mean42_9, mean43_9, 
mean44_9, mean45_9, mean46_9, mean47_9, mean48_9, mean49_9, mean50_9, mean51_9, mean52_9, mean53_9, mean54_9, mean55_9) 
total2_9 <- total_9 %>% group_by(years) %>% summarize(ndvi = mean(NDVI), sd = mean(NDVI_SD)) 
 
ggplot(total2_9,aes(x=as.numeric(years),y=ndvi))+geom_point()+geom_errorbar(aes(ymin =ndvi, ymax = ndvi))+ 
  geom_smooth(se=FALSE)+labs(x="Year",y="NDVI", title = "Volšovkou")+theme_light() 
 
#nr.10 Losenice 
total_10 <- rbind(mean1_10,mean2_10, mean3_10, mean4_10, mean5_10) 
total2_10 <- total_10 %>% group_by(years) %>% summarize(ndvi = mean(NDVI), sd = mean(NDVI_SD)) 
 
ggplot(total2_10,aes(x=as.numeric(years),y=ndvi))+geom_point()+geom_errorbar(aes(ymin = ndvi, ymax = ndvi))+ 
  geom_smooth(se=FALSE)+labs(x="Year",y="NDVI", title = "Losenice")+theme_light() 
 
#nr.14 Blanice - Podedvory 
total_14 <- rbind(mean1_14,mean2_14, mean3_14, mean4_14, mean5_14, mean6_14,mean7_14, mean8_14, mean9_14, mean10_14,mean11_14,mean12_14, 
mean13_14, mean14_14, mean15_14, mean16_14,mean17_14, mean18_14, mean19_14, mean20_14, mean21_14, mean22_14, mean23_14, mean24_14, mean25_14) 
total2_14 <- total_14 %>% group_by(years) %>% summarize(ndvi = mean(NDVI), sd = mean(NDVI_SD)) 
 
ggplot(total2_14,aes(x=as.numeric(years),y=ndvi))+geom_point()+geom_errorbar(aes(ymin =ndvi-sd, ymax = ndvi+sd))+ 
  geom_smooth(se=FALSE)+labs(x="Year",y="NDVI", title = "Blanice - Podedvory")+theme_light() 
 
save.image(file = "martine_data.Rdata") 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 


